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ABSTRACT

Plasma exhaust and impurity control represent significant

problems for the viability of fusion as an energy source.

The divertor concept is an attractive solution to these

problems in which fuel particles and ash are exhausted into

a separate chamber, away from the plasma, where they can be

impacted on a target plate, neutralized, and pumped out of

the reactor. The performance of conceptual divertor

designs, though, can presently only be assessed with the use

of plasma edge models. This thesis examines the necessary

components of these models and develops a simple,

comprehensive, and accurate divertor model.

Divertor modeling is a complex process because of the

strong coupling between numerous reactor systems (core

plasma, first wall, divertor, pumping,...) and the

nonlinearity of the fluid equations used in modeling. Some

models oversimplify both the equations and processes

included to , obtain analytic expressions for divertor

parameters. While these approaches have identified useful

dependencies, they do not yield quantitatively accurate

results. More sophisticated models attempt to include all

the physics and solve the fluid equations in two dimensions

(axially and radially) resulting in computer codes which are

highly numerical and complex.
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The objective in this thesis has been to develop a simple

and comprehensive model of the divertor region which is

highly usable and which gives quantitatively accurate

results. Therefore, it includes the key processes of:

neutral recycling; impurity production and radiation; remote

radiative cooling; neutral pumping; particle convection; ash

effects; and the effects of divertor geometry and plate

material. The "fluid equations are solved for the plate

temperature and density, and the divertor throat

temperature, using a fixed point iteration routine with

Gauss-Seidel updating and successive over-relaxation.

Neutral particle modeling is accomplished with a simple

model of a wedge-shaped section of plasma overlying the

divertor plate and a simple slab attenuation model. The

results of benchmarking the model developed here against

four other divertor models was very successful and validates

the approach taken.
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CHAPTER I

INTRODUCTION AND HISTORICAL REVIEW

The purpose of this thesis is twofold: (1) to present an

overview of the methods and approaches to modeling fusion

reactor divertors; and (2) to develop a simple, yet

comprehensive, model which will allow divertor performance

to be examined as a function of divertor geometry, core

plasma properties, and pumping capability. With such a

model the sensitivity of divertor performance to key

parameters can be evaluated and, thus, modifications can be

identified to achieve operational requirements.

1.1 Background

Much of the current research on tokamaks centers on the

problem of handling plasma exhaust and impurity control.

Plasma particles will eventually diffuse outward across

magnetic flux surfaces until they encounter a physical

boundary, for example, the reactor vessel first wall. On

striking this wall the particles deposit energy and can also

physically erode the wall through sputtering. These

interactions increase the cooling requirements for the first

wall and decrease its service lifetime. More significantly,

the influx of sputtered wall material (impurities)
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represents an energy sink in the plasma due to atomic

ionization and radiation emission by repetitive collisional

excitation and bremssstralung processes. These impurities

also cause a fuel depletion effect by reducing the allowable

density of fuel ions in the plasma. For a given plasma

electron density, an impurity ionized to a +Z state will

take the place of Z fuel ions (+1) , reducing the amount of

fuel available for fusion and thereby, reducing reactor

power. This fuel depletion effect also occurs by virtue of

the buildup of fusion reaction by-products (helium for a D-T

plasma).
4

The problems of heat deposition, wall erosion, fuel

depletion, and plasma cooling have provided the impetus for

the development of several impurity control and exhaust

handling concepts. Among the most successful of these is

the divertor concept.

The divertor concept involves magnetically perturbing

field lines near the edge of the core plasma such that they

leave the main reactor chamber and enter a separate

"divertor" chamber (Figure 1.1). Plasma particles

(electrons, fuel, reaction products, and impurities)

diffusing out of the core plasma region are swept along

these field lines until they intercept a material target or

plate. In this way, particles are intentionally impacted on

a specially designed target plate rather than on the vesseli 1

A ?.Q : ;?..::;. . . ? ? . -
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first wall. It is assumed that servicing damaged divertor

plates will be less of an impact on machine availability

than servicing a damaged first wall. The neutral particles

coming off the divertor plate can subsequently be pumped out

of the divertor chamber. Major design considerations for

the divertor system include; handling the large heat fluxes

(radiation and particle), coping with potentially severe

material erosion problems, and providing adequate neutral

pumping to satisfy impurity exhaust requirements.

1.2 Rationale for Divertor Modeling

Divertor design requires development of models for the

edge plasma and divertor regions which establish plasma

properties and define plasma interaction with reactor

components (walls, target plate, pumps). In general these

models should include transport both across and along field

lines. Among the most important plasma parameters for

divertor design are the plasma density and temperature in

front of the divertor plate. These parameters establish the

heat and particle loads which determine the cooling

requirements and erosion rates at the plate. In addition,

modeling of the neutral particle transport is required to

estimate the fraction of neutrals (D-T and He) coming off

the divertor plate that escape through the plasma fan
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overlying the plate and are pumped out of the divertor

chamber. The gross amount of helium-ash pumped will then

determine the steady state concentration of helium in the

core plasma. The total heat exhausted into the divertor

determines the fraction of the fusion alpha power that will

be deposited on the reactor first wall. Plasma conditions

in the divertor will influence the amount of impurities

produced at the plate and their probability of transport

into the main plasma, poisoning it.

The above discussion implies a substantial linkage

between divertor operation and ultimate fusion reactor

performance. This impact has made the modeling of the

plasma edge and divertor regions an important area of study

and one which has received significant attention.

1.3 Models Available and Approaches

The sophistication of impurity control modeling has

increased greatly over the past 5-10 years. Beginning with

simple, almost heuristic models, there has been an evolution

to two dimensional (2D) computer codes employing realistic

geometries. In general, most of these models start with a

form of the plasma fluid equations originally derived by

Braginskii i and vary in the number of dimensions considered,

atomic processes modeled, and number of fluids assumed.

~ .'~ 44- -V .'V
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One early model by Mahdavi 2 (1981) solved the fluid

equations in one dimension (ID), along field lines, for the

scrapeoff region by assuming the dominance of parallel

electron heat conduction. This assumption allowed analytic

expressions to be derived for temperature and density. The

predictions of this model --compare qualitatively with

experimental results in reproducing a strong dependence of

scrapeoff temperature and density on main plasma boundary

density and a weak dependence on fusion alpha power. This

model did not, however, account for the significant effects

of particle recycling at the divertor plate. Another ID,

one fluid model along field lines, by Harrison, Hotston, and

Harbour3 (1982), also assumed the dominance of electron

parallel heat conduction, but included neutral particle

recycling, pumping, and impurity radiation. It is this

neutral particle recycling which cools the plasma in front

of the divertor target plate, reducing the heat load and

sputtering. This model's assumption of 100% electron heat

conduction has limited its application to a narrow range of

plasma conditions in which such an assumption is valid.

A ID model by Harbour and Morgan4 (1984), ZEPHYR, uses two

sets of fluid equations (electron and ion) and solves them

numerically for the ion and electron temperatures and

densities along field lines from a "watershed" (or symmetry)

point between divertors to the divertor plate(s). The
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ZEPHYR model was used for the divertor design in the

International Torus (INTOR) study. Peng and Galambos 5 (1984)

numerically solved a ID, one fluid, set of equations for the

temperature and density at two points (divertor throat and

plate). This "two-point" model was used for

scaling/parametric studies of divertor performance, and, in

combination with the ZEPHYR code, was used for particle

escape studies of divertors In these studies the

recycling coefficient, a key parameter, was not calculated,

but rather, was taken as an input from the case being

benchmarked.

Other codes have been developed as 2D or quasi-2D.

ODDESSA by Prinja and Conn 7 (1984) is such a quasi-2D code,

in which radial solutions of the fluid equations are coupled

between a watershed point and the divertor recycling region.

This approach has the advantage of giving the radial

variation of plasma parameters and linkage between the core

plasma edge region and the divertor region without entailing

the use of more complex 2D solution methods. The PLANET

code 8 of the Princeton Plasma Laboratory and the code of

Braams9 -1 0 (1983), used to model the Next European Torus

(NET), are examples of 2D codes employing realistic

geometries.

One difficulty encountered in solving the fluid equations

is that they represent a highly nonlinear set of equations
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(even in ID) which are normally not solvable by ordinary

numerical means II . The least cumbersome models arrive at

analytic expressions only by grossly simplifying the

equations. The more sophisticated ID and 2D models are

computationally cumbersome, requiring specialized numerical

methods on powerful. computers. Even implemented as such, it

is noted that these codes are not as computationally

4
"robust" as desired (i.e. they do not always converge)

1.4 Approach and Rationale for a Simple and Comprehensive

Model

The development of a divertor model involves a tradeoff

between making the model readily "usable" and making it

"accurate" and "applicable" to a wide range of reactor

designs and divertor conditions. If one simplifies the

fluid equations and neglects modeling certain key processes

in the divertor, the results will be qualitatively and

quantitativley suspect. If one attempts to include all the

physics of the divertor in more than one dimension, the code

becomes computationally complex. In many instances, this

complexity makes it necessary to run the code on a mainframe

and requires a large amount of pre-run preparation time to

configure the code for the problem at hand and to calculate

and specify various parameters (diffusion coefficients,
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ionization energies ,reaction rate parameters, ect.). In

this way the code becomes less interactive and less

"usable".

The purpose of the research described in this thesis is to

produce a simple, yet comprehensive, model of the divertor

region which can be implemented on a personal computer so as

to retain an interactive capability. To achieve the desired

goal, the model must satisfy three requirements. First, it

must remain as analytic as possible so as to reduce the

variety and complexity of any numerical methods used. This

requirement will limit the number of dimensions in which the

fluid equations are solved. Second, it should include the

following significant processes in the divertor: neutral

recycling, impurity production and radiation, line

radiation, neutral pumping, particle convection, and the

effect of divertor geometry and plate material. Finally, the

model must yield results comparable to the more

sophisticated models to validate the approach used.

1.5 Outline of Thesis

Chapter 2 of this thesis presents the diverse ingredients

necessary for an impurity and particle control model, and

highlights the essential issues and physics involved in

these models. This chapter is included to give perspective

W A
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to the final choices made for the divertor model adopted

here. Chapter 3 details these choices and develops the

analytic expressions and the evaluation methods used in the

final model. Chapter 4 is a description and discussion of

the computer code which implements the divertor model,

including the numerical methods employed. Chapter 5

compares the results of this model to those obtained by some

of the previously described divertor models. Finally, a

summary of this work and its major conclusions are presented

in Chapter 6, together with suggestions for future work and

refinements



CHAPTER 2

MODELING OF THE PLASMA EDGE REGION

Models of the plasma edge region and divertor chamber

vary widely in their approach and included processes

depending on their application. They can vary from a point

model to three dimensional (3D), and may be based on kinetic

or fluid approximations. However, as discussed below, there

are certain basic components, and fundamental processes that

must be accounted for in the development of any model.1
I

First, the model must include a set of plasma transport

equations which are tailored to a specific or schematic

geometry. To solve the equations, a set of boundary

conditions must be applied. For a divertor, these boundary

conditions generally include the sheath condition present at

the target plate. The transport equations in many instances

include particle, momentum, and energy source (or sink)

terms that must be calculated. These source terms usually

arise from the recycling of neutrals from walls or the

divertor plate, or from refueling of the plasma. Obtaining

the spatial distribution of the neutrals involves detailed

neutral transport calculations, including neutral and ion

reflection from surfaces and neutral-ion interactions.

These distribution calculations in turn enter into the

determination of (1) the helium-ash pumping efficiency of

11[
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the divertor, and (2) the production of impurities by

charge-exchange neutrals. An estimate of impurity production

(by neutrals or ions) must be included as the impurities

will alter plasma energy balances via ionization and

radiation losses. From a design standpoint these estimates

can also provide an evaluation of the erosion by self-

sputtering of reactor walls and the target plates.

A final requirement is that all these individual

components and processes must be linked together in an

interactive way to obtain a self-consistant solution. What

follows is a more detailed discussion of each of these

components and processes.

2.1 Transport Equations

Traditionally, two different sets of transport equations

have been applied to the plasma edge region; kinetic, and

fluid. Each is derived from the first three moments of the

Boltzmann equation. The applicability, or appropriateness,

of either set can be determined by estimating the

collisionality of the plasma being modeled.

The effective collisionality of a plasma, v, can be

defined as the ratio of the effective mean free path for 900

scatter collsions of ions and electrons, N, to a

characteristic length, L, v=X/L. This collisionality could
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also be called the Knudsen number from molecular gas

dynamics. For an axisymetric toroidal device, L is the

connection length L=rRq, where R is the plasma major radius,

and q is the safety factor on edge. When v<<1, the plasma

is highly collisional and the fluid approximation is

appropriate. When v>>l, a kinetic treatment is warranted.

Between these two limits, the fluid approach can be used,

but with some caution.

The mean free path for cumulative 900 scatter can be

written as:
II

X(m) = 5 x 10 16T 2(eV) n e(m-3 )- (2.1)

where T is the plasma temperature and ne is the plasma

electron density.

Equation (2.1) is plotted below in Figure 2.1 as a

function of T and ne. For typical values of L, 10-50 m, the

plot implies that the fluid approximation is valid for low

temperatures and high densities, but not valid for low

densities and high temperatures. It should be noted that

typical parameters for the plasma edge region can be

densities in the range 1016-1020 m-3 and temperatures in the

range 1-400 ev. However, for most operating or planned

devices, the edge density and temperature should be in a

ACL.- v.n .6 * *V V
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region where the fluid approximation is applicable.

The form of the fluid equations used in most models is

generally derived from the formulation of Braginskii. 1

Neglecting a few terms these equations have the form of

conservation equations for particles, momentum, and energy:

-V. r + Sn = 0

-V. R + S p = 0 (2.2)

-V. Q + Se = 0

where f, R, and Q are the particle, momentum, and energy

fluxes, respectively, and Sn, Sp, Se are the associated

source terms.

Several critical assumptions are r: quired to arrive at

the above form of the fluid equations and they include: the

magnetic field at any point is externally determined; steady

state conditions apply (which negates any microturbulence

terms); and collisions and gyromotion are sufficient to

maintain a Maxwellian distribution for the particles.12

The fluid equations can be expanded to more detail and

written in a "semi-conservative" form in which as many terms

as possible are expressed as the divergence of a flux. For

circular magnetic flux surfaces the equations become:1
I

. - C - ----- -- ~ - -
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Continuity

an_11 ) = 1_r( an +S (2.3)
a r r r)r n

Momentum

8 i + p + mnv2 + 1.28 Tin Ti I 1
Pi e V1 =

r 5r mv(-nvr+ D-- )) (2.4)

Ion Energy

T 1 nV2 nv i8T i J_

aT + n V1)nvR- nXlI "'

a -. ' i + 2~

-Vl15- (nTe)+r 8r rnX± + Ti +. mv •

D n - nvr S (2.5)

and

Electron Energy

-( e a ea
S TenVl nx,11 - -- ( vj-a, (nTe) +

a r D an _+ nx e]- Q Se

ra r r - nVr Lr E
(2.6)

In these equations viscous effects have been neglected. The

variable ( is the coordinate along field lines, while r is

the radial direction, the cross field direction. The

velocity, vil, is the fluid velocity along field lines, vr is

the radial fluid velocity, n is the particle density, Ti,e
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is the ion, electron temperature, m is the ion mass, Ti is

the ion collision time, D± is a radial density diffusion

coefficient, X1,I1 is a heat diffusivity (radial and

parallel). The term Q6 is the classical ion-electron energy

equipartition rate. The terms Sn, Sp, and Se are,

respectively, the density, momentum, and energy source terms

from impurity and neutral atom collisions. The term Pi,e is

the ion, electron pressure (nT).

In the above equations, the requirement for plasma

neutrality makes the tontinuity equations for the ions and

electrons the same and the momentum balance equations for

electrons and ion have been combined.

The fluid equations are four highly nonlinear, second

order partial differential equations in n, vil, Ti , vr, and

Te 'They involve source terms which tend to be nonlinearly

dependent on plasma parameters and are subject to their own

modeling equations. Solution of these equations usually

involves some degree of simplification (such as going to one

dimension, or assuming the dominance of parallel electron

conduction as the only energy transport mechanism) and an

iterative process to converge on a solution because of the

source terms. As a first step, though, a set of boundary

conditions must be specified.

2.2 Boundary Conditions

,'' 

~r,\\S



Depending on the dimensionality of the problem, there may

be as many as four boundaries to be considered in the

computational mesh: the main plasma, the reaction chamber

walls to which field lines are parallel, and two or more

target plates. The symmetry of the problem can often be

used to divide the edge plasma into two (or more) regions,

each flowing to a target plate.

The boundary conditions of the main plasma can be set in

several ways. The core-plasma edge density and temperatures

(electron and ion) can be specified at a particular point

(like the symmetry point). If the equations are only to be

solved along the field lines, then these values could be

used as radially representative across the entire edge

region at that axial position. This would tend to

overestimate the sputtering, recycling, and heat deposition

on the target plate at most points since these represent

peak radial values (T and n decrease radially). Another

approach for a ID solution would be to use a simple edge

radial profile (exponential) in order to integrate for

average values of density and temperature. This approach

would tend to underestimate the heat flux to the target

plate at some points (where T and n are larger than their

average values) and overestimate it at others (where T and n

are less than these average values). Using the same simple

-w
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radial profile, the iD solution could be converted to a

quasi-two dimensional one by solving the ID equations

stepwise across the edge region. If the full 2D equations

were used, then a set of fluxes (particle, momentum, and

energy) from the main plasma could be used as boundary

conditions.

The boundary conditions at the wall would involve the

influx of reflected charge-exchange neutrals and the

impurities they produce by sputtering. These particles

would represent a form of energy and momentum sinks, or

particle sources. For a 2D solution the fluxes themselves

could be used. For a ID solution, the only way to include

them would be as volumetric sources or sinks.

At the target plates an electrostatic potential forms.

This sheath potential retards the electron flow so that ion

and electron fluxes to the plate are equal, thus maintaining

plasma neutrality. At the sheath the particle flow becomes

collisionless, so the fluid approximation breaks down. The

requirement for equal electron and ion fluxes leads to

boundary conditions involving the particle and heat fluxes

to the plates. From the continuity and momentum equations

it can be shown that the fluid flow velocity cannot exceed

the local sound speed as the plate is approached (i.e. Mi=

v,/Cs<1, where IN is the mach number and Cs is the sound

speed). The Bohm Criterion requires that the flow velocity
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at the plate be at least sonic for a stable sheath to

form.11  Therefore, the usual modeling assumption is that

the fluid velocity at the plate is the local ion sound

speed; i.e. 9=1.

The power to the plate is usually expressed in terms of

an energy transmission factor, y , defined as the ratio of

power flux to the plate to, particle flux times particle

temperature. Thus,

Qe kTere 
(2.7)

i kT i (2.8)

re r i = neCs (2.9)

( kTe+ kTjll/2Cs m. (2.10)

s~ M.

The form of the energy transmission coefficients can be

expressed as:ii

Fe =  --- - .5 ln(2 - ) + 1 - e)] (2.11)

2T.

Y = T1 (2.12)

where ye is the secondary electron yield per incident ion-

electron pair.

IW1 & I
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Using the above energy transmission factors, the total

power to the plate is:

Qplate = rp(kTiyi + kTeye) (2.13)

where r is the particle flux at the plate. It should be

noted that the above equation gives the energy flux that

passes through the sheath to the target plate. It does not

represent the actual energy deposited on the plate. This

topic will be discussed in the next section along with

recycling.

2.3 Neutral Particles and the Source Terms

The source terms in the fluid equations are usually

derived from detailed neutral transport calculations.

Neutrals can enter the plasma from several sources. The

primary source of neutrals is the divertor target plate(s).

Energetic hydrogen and helium ions are accelerated through

the sheath and strike the divertor plate. Some of these

particles are immediately backscattered as neutrals,

retaining a large fraction of their original energy. The

remaining particles are implanted in the target material

where they come to rest as interstitial atoms. The helium

atoms tend to become trapped in the material at grain
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boundaries and dislocation sites. The hydrogen atoms are

more mobile and can diffuse back out to the surface of the

material where they recombine into molecular hydrogen and

are emitted from the plate with an energy corresponding to

the surface temperature of the target material. These

molecules, however, are quickly dissociated and the

resulting hydrogen atoms continue with an energy

approximately equal to the Franck-Condon energy (3-5 ev).

Because of this, the usual assumption is that the slow

neutrals are emitted from the plate at the Franck-Condon

energy. This flux of neutrals (fast and slow) diffuses

through the plasma, undergoing excitation (emitting line

radiation) and ionization by electron and ion impact. Until

ionization take place, and a neutral appears as an ion with

a given energy and momentum, the neutral acts as a momentum

and energy sink. Thus, the spatial distribution of these

neutrals and the associated excitation and ionization events

serve as source/sink terms.

Once a neutral is ionized, it is swept back towards the

target plate by the background plasma where it can once

again impact the divertor plate. This process of repetitive

neutralization at the plate and ionization near the plate is

called recycling and is very dependent on plasma temperature

and density since these parameters determine the reaction

probabilities and rates. The recycling process is what
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gives the divertor great potential for particle exhaust and

impurity control. Its impact on divertor plasma parameters

can be appreciated using a simple ID recycling model, as

discussed below.

Consider a plasma incident on a wall at x=a as shown in

Figure 2.2. The continuity equation for the plasma is:
1 I

a(nv) = S = ne n <oV> (2.14)

ax ionization

where x is the direction along field lines, nv is a particle

flux, ne is the electron density, nO is the neutral density,

and <av> is the electron impact ionization rate coefficient.

Integrating from the divertor entrance (x=O) to the

divertor plate (x=a) yields:

ra =ro + fa ne no <av> dx (2.15)
0[

where ra = niva is the particle flux at the divertor plate

(ni is ion density), and rO is the input particle flux at

the divertor throat.

From the above expression it can be seen that the flux

increases as the plate is approached (due to ionization of

neutrals coming of the plate). A flux amplification factor

... . .. -. -
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can be defined, A = ra/o. Then the above equation becomes:

A r f ne no <Gv> dx > 1 (2.16)

If the sheath boundary condition, Q(a)=ykT(a)ra (where y=

i+e ) is applied, where Q(a) is the energy going to the

plate at x=a, kT(a) is the target plasma temperature (the

ion and electron temperatures are assumed to be the same),

and ra is the target flux, and if the substitution ra=roA is

made, we get:

Q (a) Q(a) 1
kT = = • -- (2.17)

yr a A r A

From equation (2.17) we can see that increasing A decreases

kT.

If Va C. a CT(a)] I/2 then:

Q(a)- ra kT(a) - n(a)vakT(a)

Q(a) ~ n(a)[kT(a)] 3/2  or

n(a) m Q(a) 3/ o A 3/2

[kT(a)]

~ )I ~ ~ * U ~ U U
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Thus, increasing the particle recycling increases n and

decreases kT as noted before. A>I implies that each ion

entering the divertor will, on average, impact the plate A

times. Therefore the energy per particle that goes to the

plate is less. Another way of expressing recycling is with

the recycling coefficient, R, defined by

ra- ro ran n <Gv> dx

R= ra~ r 0 o e o ion (2.19)a a

and representing the fraction of particles hitting the plate

which are recycled particles.

The result of recycling is a cool dense plasma in front of

the target plate. Besides giving each entering particle

several opportunities to deposit its energy on the divertor

plate, the actual amount of energy to be deposited on the

plate by particle impact is reduced because each time a

particle recycles it has the chance to emit line radiation

by collisional excitation prior to being ionized and going

back to the plate. This energy loss by line radiation in

the divertor is designated as "remote radiation cooling 13

and is another advantage to the divertor because this

radiated heat flux is distributed over the entire surface

I
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of the divertor chamber. An empirical estimate by Harrison

et a14 of the energy loss due to ionization and radiation by

each ionized neutral is:

X(eV)= 17.5 + 5 + 37.5 ejlogl0 1 (2.20)

Under most divertor conditions the magnitude of this energy

loss is about 25 eV per ionized D-T neutral.

Post and Lackner I I have solved the continuity equations

for neutrals and ions, matching the fluxes at the plate.

Using several assumptions they found two stable operating

regimes for a divertor. One regime is found around A= 1 or

R=O (low recycling) where neutrals stream (with little

ionization) back to the main plasma or down pump ducts. For

this regime the plasma temperature at the plate is high and

the density low. The second stable regime is a high

recycling one, where A>>I or R=1, and the divertor plasma is

cooler and more dense. This is the preferred operating mode

because the divertor plate heat load and sputtering is less

than in the low recycling regime.

2.4 Impurities and the Source Terms

Impurities present in the plasma do not enter into the
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particle source terms but at high enough densities can enter

into the momentum and energy source terms by causing

radiation losses via collisions. In this way impurities act

as energy and momentum sinks. Low Z impurities will become

fully stripped above several eV and, thereby, cease to be

significant energy sinks. However, their presence in the

main plasma can take the place of fuel atoms, due to plasma

neutrality requirements and beta limits. The same is true

for medium Z impurities which can radiate up to temperatures

of around 2 keV (unlikely in a divertor). This means that

until they are redeposited on a surface or pumped, they will

continue to cause energy losses in the divertor plasma.

Heavy impurities are capable of radiating from the core of

the main plasma so they will also cause radiation losses in

the divertor plasma. These heavy impurities, though, are

quickly ionized so they should quickly return tn the surface

from which they were emitted.
1I

The primary source of impurities in the main plasma

chamber (besides He) is the sputtered wall material

resulting from the impact of charge-exchange neutrals on the

walls. The precipitating slow neutrals could come from

refueling atoms. The prime source of impurities in the

divertor is obviously the divertor plates where the ions are

intentionally impacted. A fraction, f , of the atoms that

are sputtered off the plate will be quickly ionized and

* "I
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carried back to the plate where they will redeposit and/or

cause self-sputtering with a yield per impact of Ys'

Summing successive generations of self-sputtering and

redeposition shows that if fYs < 1 per incident ion, then

the net impurity production rate, Re, or sputtering of the

plate is given by:

Re = FH+ YH+ (Ify (2.21)

where rH+ is the hydrogen ion (D or T) flux to the plate,

YH+ is the sputtering yield for hydrogen on the plate

material, and f and Ys are as defined above.

If fYs > 1, the plate could potentially erode away very

quickly due to runaway sputtering. However, at a local

level, self-sputtering is a self-limiting process. An

increase in sputtering will cause the plasma to cool down

due to impurity radiation (described below) which will

decrease the sheath potential and thereby reduce the impart

energy of the D-T ions and impurity ions. This same cooling

though, can allow impurities to escape into the main plasma,

poisoning it. Sputtering of the divertor chamber walls can

also occur as a result of charge-exchange neutrals that

escape tht divertor plasma.

As noted above, the major impact of impurities on the
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plasma is to cool it via line radiation. Estimating the

amount of impurity radiation is extremely difficult.

Impurities in the divertor will radiate by: line radiation,

recombination, and bremsstrahlung processes. Each of these

processes is in turn dependent on the charge state of the

impurity. In some cases the assumption of coronal

equilibrium is made in which the rate equations for

ionization and recombination to different charge states are

solved based on a constant density and temperature plasma

and no impurity-particle transport losses. The results of

these calculations yields the following empirical expression

for radiation power:1
5'1 6

Prd(MW/m) = nan. (T) ZA = n2 f Lz  (2.22)
ra(Wm eimp e

where ne(m -3 ) is the electron density, nimp is the impurity

density, a(T) and A are fitting constants, Z is the atomic

number of the impurity, f is the fractional impurity

density, and Lz is the power parameter.

These expressions are valid for Z>6 and T> 1 keY. Little

data exists for the lower temperatures anticipated in the

divertor. Even if such data existed, the assumption of

coronal equilibrium is suspect. The timescale for the onset

of coronal equilibrium in a plasma is, in the case of a

:A
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divertor, greater than the timescale for ionization and

return to the target plate. Preequilibrium values for the

power parameter, Lz, can be 2-10 times the equilibrium

values, depending on the impurity. Additionally, there are

steep temperature and density gradients near the divertor

plate which would also tend to invalidate coronal power

estimates. This is an area which requires further research.

It is important to note that the impurity radiation can

have a beneficial effect in the divertor by cooling the

plasma while depositing the radiation energy over an area

substantially greater than just the divertor plate. Some

divertor designs include a provision for the intentional

injection of medium Z impurities (e.g. xenon) into the

divertor plasma to reduce the particle heat load on the

target plate.

If the divertor is to operate effectively, divertor

impurities must remain in the divertor. Impurity

concentrations in the core plasma of as low as .01 % can

fatally poison it. There are two dominant forces on an

impurity ion which tend to pull in opposite directions. The

first is the frictional drag of the background plasma as it

flows into the divertor. The second is a thermal force A

pointing in the direction of higher temperature (i.e. out of

the divertor to the core plasma).

Neuhauser 1 4  has identified a criterion which if

5' - - - - "r.
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satisfied, implies that highly charged impurities will tend

to be entrained and drift with the background plasma back to

the divertor plate. Based on a model of the above forces,

the criterion for impurity entrainment is:

' -1 >(2.23)

XT

where T is the plasma flow mach number, X, is the mean free

path for coulomb collisions between impurity ions and the

background plasma ions, ana XT is the axial (along field

lines) scale length for changes in the ion temperature. If

the criterion is met, then the divertor will accrue the

advantages of plasma cooling by impurity radiation without

poisoning the core plasma.



CHAPTER 3

THE TWO POINT MODEL

As noted in Chapter 1, the development of a divertor

model involves a tradeoff between simplicity, ease of

implementation, and completeness. One immediate

simplification that can be made is to develop the model in

only one dimension. The choice of dimension adopted here is

the direction along field lines. Using this dimension

allows for linkage back to the core plasma. An additional

consideration in this selection is that radial solutions to

the fluid equations tend to be very sensitive to the value

of the radial diffusion and thermal diffusivity coefficients

which can only be estimated.

A second simplification is to solve the model equations

at only two points, rather than continuouly along field

lines. The two-point method of solution of the fluid

equations involves integration along field lines between the

divertor throat and target plate. By limiting the solution

to the densities and temperatures at only these two points,

the integrals of the particle, momentum, and energy source

terms can be evaluated globally, greatly simplifying their

representation and method of solution.

The two-point approach to modeling the divertor will

yield values for the most critical divertor-plasma

33
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parameters without requiring an inordinate amount of

numerical computing effort.

This chapter of the thesis presents the derivation of the

two point analytic equations for the throat and plate

temperatures and densities, and the models and methods of

evaluation for key terms in these analytic expressions.

.3.1 Description/Geometry

The geometry of the two-point model assumes that the edge

region of the plasma can be divided into two regions: one

outside the divertor, and the other inside the divertor. An

idealized elemental flux tube parallel to magnetic field

lines (Figure.3.1) of length L (outside the divertor) and
s

Ld (inside the divertor) is "unwound" from the torus. Both

L. and Ld are dependent on the geometry and magnetic

topology of the reactor. The two point model is then

applied to the region inside the divertor. Appendix C

presents some simple analytic expressions for estimating

plasma parameters between the symmetry (watershed) point

and the divertor throat. These results for throat density

and temperature are used as input for the model inside the

divertor.

The steady state fluid equations which will be integrated

along the straightened out field lines are,
5
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Continuity nv = -Sn (3.1)

Momentum d [ nMv2 + nT(I+r)]= Sp (3.2)Momenum I=-x

Energy d x T2.5 dT + nv[ Mv2+ T(I+r)]}Se (3.3)Energ 0-[o dx 2 2JS

where x is the direction along field lines, Sn' Sp, and Se

are, respectively, the particle, momentum, and energy source

terms, n is the particle density, v is the plasma fluid flow

speed, T is the electron temperature, M is the ion mass, r

is the ion to electron temperature ratio (Ti/Te), and xo is

the electron thermal conductivity coefficient (ion

conduction is neglected).

The first term inside the brackets of the momentum

equation, (3.2), accounts for the momentum due to fluid flow

(convection) and the second term is the temperature

(internal energy) contribution to momentum. The first term

inside the brackets of the energy equation, (3.3),

represents the energy conducted by electrons while the

second term is the energy convected by ions and electrons.

The energy source term is primarily derived from the

recycling of neutrals at the plate, but can be artificially

increased to mimic the losses due to impurity atoms. The

addditional components required in the model, as outlined

w V,
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in Chapter 2, will be presented as they arise in the

derivation of the modeling equations and the description of

the evaluation of terms.

3.2 Integration of the Fluid Equations Along Field Lines

Integration of the energy equation yields,

xoT2 . 5 d T  n v ]r1  Jp SedX + C (3.4)d-x 2 nvM 2 Tf re

If the origin, (x=O), is at the plate, then the constant of

integration, C, is found to be,

rix ' 2 it~
{=1o " dx +n[M2+JTl~)lI t _;edx (35

where the first term on the right (in brackets) can be

interpreted as Qt, the energy flux that enters the throat,

and the second term, as the energy loss/gain between the

throat and the plate.

Integrating equation (3.4) results in
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-1 7 /2 (3.6)2 oT

where Tt is the throat electron temperature, Tp is the plate

electron temperature, and p is the average fraction of

energy transported in the divertor by conduction, and is

given by,

1 .tjftSedx +nv[ .Mv2 + .T(+r)]}dx (3.7)Qtj d p x~e x  2 2

The next step in the derivation of the model equations is

to eliminate the plate temperature from the right hand side

of equaticn (3.6) using the sheath boundary condition
5

Q tSedX npvpTp (e + rpi) (3.8)

where Ye,i is the sheath energy transfer factor for

electrons, ions, np is the plate electron density, Tp is the

plate electron temperature, vp is the fluid speed at the

divertor plate, and rp is the ion to electron temperature

ratio at the plate.

Solving for Tp and substituting the resulting expression

-110- - >101V
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into equation (3.6) gives,

(TtJ7- 1 = VT (3.9)
T p n VT

where nVT is given by

( 2x-0  ______________ j M 11/2 (.0
nVT~ 7L JP (e + r 1+r (3.10)

and can be interpreted as a temperature gradient threshold.

In reference 5 it was found that if the throat density was

less than this value, heat conduction tended to overwhelm

the tendancy of recycling to produce a temperature gradient

near the divertor plate. This means neutral recycling

becomes less effective in lowering the plate temperature if

the throat -density falls below this threshold value. The

momentum and continuity equations are now used to eliminate

Tt and Tp from the left hand side of equation (3.9) as

described below.

First the momentum equation is rewritten to include the

fluid mach number (M= v/Cs),
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d- [MnM2C' + nT(1+r)] = S (3.11)
dx S p

where Cs is the ion sound speed, and is given by

= [ T(1+r) ]1/2 (3.12)

Integrating equation (3.11) and simplifying we obtain

nT(x+r)(1+M 2  
= S dx + C (3.13)

p

If the integral on the right is evaluated at the plate (i.e.

x=0) then,

C= npTp(1 + rp)(I + II)= 2 n T (1+r

where Mp has been set equal to 1.0 as a boundary condition.

Solving equation (3.13) for T we obtain

1 1[ Spdx' + 2npTp(l+rp)] (3.14)

+ + v r )- 11 fpp
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Evaluating the integral of equation (3.14) out to the

throat, point t, and dividing by T p results in

T t I 1 IS d + 2npTp(1+rp)] (-5

or rearranged as,

T, n 1+r 1 S dx
l~r1 + 2 + (3.16)

Tp n + t t 1+1 2n +rpT,

The above expression can be further simplified by

employing the following definitions:

R= fraction of ions hitting the plate which
come from the ionization of neutrals
and is equal to

r -r MfSd M1/2 ftS dx
R - - n v 1n1/2 (3.17)

p p p npLTp l+rp~J

where rptare, respectively, the particle fluxes at the

plate and divertor throat.

. . ~,.:v * -



42

S= average neutral velocity normalized to the ion
speed at the plate, given by

1Sdx M-1/2'tS dx

v - tv S dx = [Tp(]+rp 1/2tSndx (3.18)

Using R and V as defined above, equation (3.16) can be

rewritten as

T 2...1.. 1 2 + VR (3.19)
Tp nt l+rt i+ 2t

Finally, this equation can be inserted into equation (3.9)

to give

2~ 1 7/2 1/p/3
l+r 12 (2 + 7/2 V n (3.20)

s lrt 1+11 n VT

An expression for Mt can be derived from the continuity

equation, the definition of R, and equation (3.19). Thus,
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1-a (3.21)

where a= nP I-R)2R 1
n t (2+VR

Equation (3.20) uses information from all three fluid

equations in it derivation. This equation, along with

equation (S.8) and a simplification of equation (3.18), can

be used to solve for three of the four primary plasma

parameters; Tp, np, Tt, and nt. Before this can be done

though, methods for evaluating the integrals of the source

terms, the conduction fraction (p), and the recycling

coefficient (R) must be determined.

3.3 Evaluation of the Integrals of the Source Terms

3.3.1 Introduction

The evaluation of the integrals of the particle,

momentum, and energy source terms requires a detailed

understanding of divertor physics. The source terms are

primarily derived from the recycling of neutrals produced at

the divertor plate. Plasma ions are accelerated through the

sheath, strike the divertor plate, and are neutralized. A

fraction (Rn) of these particles is immediately
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backscattered, retaining a large fraction (Re) of their

impact energy (see Appendix A for expressions for Rn and

Re). The remaining fraction (l-Rn) is implanted in the

target material where the particles come to rest as

interstitial atoms. The normal assumption is that at

equilibrium the implanted hydrogen atoms diffuse back out to

the surface of the divertor plate where they recombine into

hydrogen molecules and are emitted with an energy

corresponding to the plate temperature. Dissociation by

electron impact occurs quickly near the plate after emission

so another assumption often used is that these neutrals are

emitted from the plate as atoms (rather than molecules) with

an energy equivalent to the Franck-Condon energy (3-5 eV).

This flux of fast and slow neutrals then diffuses through

the plasma undergoing excitation (emitting line radiation),

charge exchange, and ionization (by electron impact). Each

of these processes will be considered in the derivation of

the integrals of the source terms.

3.3.2 Integral of the Particle Source Term

The only source of D-T particles in the divertor region

is the ionization of neutrals. The value of the particle

source term can be expressed as a function of the recycling

coefficient defined in this chapter and Chapter 2. Thus,

- .. - . ,~***. 1 4
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f tSndx = Rrp= Rn [ (3.22)

The evaluation of the recycling coefficient is accomplished

by modeling neutral transport and will be discussed in

Section 3.5.

3.3.3 Integral of the Momentum Source Term

The integral of the momentum source term must account for

the two energy groups of neutral particles, slow and fast.

After leaving the target plate, each neutral particle can

undergo charge exchange, ionization, or escape to the

divertor plenum where it may return to the plasma or be

pumped. Charge exchange and ionization events both

contribute to the momentum source term while escape/pump

events contribute nothing. Considering only these two

contributing processes, Fion, the fraction of neutrals

coming directly from the plate which undergoes ionization

rather than charge exchange, is given by,4.!
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F. = <cion> (3.23)

ion <Gv>. + <ov>(.ion cx

where <av>ion is the reaction rate coefficient for electron

impact ionization (ground state and excited state combined)

and <ov>cx is the charge exchange rate coefficient (see

Appendix A for evaluation of these quantities).

Each neutral that is ionized contributes an average of

MvosinO to the momentum source. This is derived from the

assumption of perpendicular emission of the neutrals from

the plate. The velocity of the neutral in this

perpendicular direction is Vo, while e is the angle of

incidence of the magnetic field lines to the plate (see

Figure 3.2). The neutral velocity in the field line

direction is vosine.

For the fast group the neutral velocity is given by

vf 1/2 (2 Re )lT ( p~i) -1/2 (3.24)vf R Rn M I R n M (.4

where Eo is the incident energy of the ion. For the slow

group the neutral velocity would be

0U J
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v = ( (3.25)

where Efc is the Franck-Condon energy.

The relative fraction that undergoes charge exchange is,

F cx= I- Fio n  (3.26)

Charge exchange represents a change in momentum because

incoming ions change places with neutral particles of

different speeds and directions. The calculation of this

component of the momentum source term depends on whether

neutrals are modeled with their own set of fluid equations

or included in the single fluid considered here. If

neutrals are accounted for separately, the contribution to

the momentum source would be,

M(v sinO+ Vavg) (3.27)

where M is the ion mass, v sine is the neutral velocity in
o

the field direction, and vavg is the average ion velocity

between the throat and plate. The neutralization of the

incoming ion causes an average loss of momentum of Mvavg,

I i = I -I _z " " ' " ' ' ' ': " " -.
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where vavg is calculated as,

Vavg 1 1 [tl~t)/2 1T l~p)/2

vavg' 2 M t + M] (3.28)

This approach to calculating the momentum source term

assumes that there is no change in direction of the initial

neutral (now an ion) as a result of the charge exchange

interaction. If the resulting neutral from this interaction

is subsequently ionized then the momentum of the neutral

(MVavg) is regained making a negative addition to the source

term. If neutral particles are not accounted for separately

with a set of fluid equations then the neutral contribution

to the source term must be added to the ion component. This

makes the charge exchange component Mvosine, the same as for

ionization.

Based on the above expressions, and whether neutrals are

independently modeled, the final expression(s) for the

integral of the momentum source term can be written as
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pnS dx MnpvpR Rn [F fvfsine + F+vsin@ +

Vavg)] + (1-Rn)[Fion-sVs s inO + Fcx_s(vsSino +

v avg)]f

If neutral momentum pressure is included in the D-T ion

equations, this expression reduces to

t Spdx = M npvpR [RnVfSine + (l-R) vsSine] (3.29)

where npVp represents the neutral particle flux coming off

the plate at steady state and the other terms are as

described previously.

Here the recycling coefficient (R) is being used as a

measure of the fraction of neutral flux that undergoes

interaction. Although this is a reasonable use for R, it

does imply that the contribution to the momentum source term

of ionized or charge exchanged neutrals coming from the

divertor plenum is negligible.

Numerical evaluation of the integral of the momentum

source term for a variety of divertor conditions resulted

in values which are small compared to the total momentum of

the D-T particles as they flow to the plate and thus, this
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term has little effect on the final solution of the fluid

equations. It is noted that in some models 2 ,3 ,2 2 this term

is neglected altogether. The divertor code developed in

this thesis gives the user the option of including this term

or setting it to zero.

3.3.4 Integral of the Energy Source Term

The integral of the energy source term includes

contributions from radiation, ionization, and charge

exchange. To account for radiation and ionization losses,

the average energy loss per ionization event, X, defined

previously, is used

37.5 ~ -01 3
X(eV)=17.5 + 5 + Te(V)I log 0 ne ev

For a neutral produced at the target and moving through the

plasma fan in front of the divertor plate, the use of an

energy loss per ionization event assigns the entire energy

loss to the point of ionization. In reality it will radiate

throughout its trajectory due to excitation by electron

impact. Over a wide range of operating conditions, the value

of X does not vary much from a value of around 25-26 eV for

hydrogen. Its value could be artificially increased to

- t f tf
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include losses due to the radiation and ionization of

impurities. This enhancement would be proportional to the

amount of sputtering, impurity type, and mean free paths for

impurity ionization and excitation. As noted in Chapter 2,

evaluating the magnitude of this energy loss increment is

difficult. Therefore, in the divertor model code this

increment is treated as a multiplicative parameter, X '=

Imp- X , where Imp is a multiplicative factor, increasing D-T

radiation losses to account for impurity energy losses.

Charge exchange also contributes to the energy source

term. Incoming ions change places with neutrals which have

different energies. The total energy of an incoming ion can

be written as
5

Eion = 3/2 T + 1/2Mv2  (3.30)

where T is the plasma temperature and v is the flow speed.

If the assumption is made that the energy of the fast

neutrals is approximately the same as that of the incoming

ions, then the charge exchange of neutrals of this energy

group contributes nothing to the energy source term. If, in

addition, it is assumed that the energy of the slow neutrals

is negligible compared to the energy of the incoming ions,

then charge exchange represents the total loss of the
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incoming ion's energy. Based on these assumptions, the

integral of the energy source term can be expressed as,

Sedx = npVp[RX'+ (-Rn )Fcx_s( Tav *Mavg)] (3.31)

where Tavg is the average plasma temperature between the
throat and plate and Vavg is the average flow velocity.

In equation (3.31) above, X' is multiplied by the

recycling coefficient since this represents the total

fraction of neutral flux that is ionized. The second term

is not multiplied by R because this term pertains only to

slow neutrals. The fraction of slow neutrals that is

ionized is much larger than the combined fraction of slow

and fast. Therefore it is assumed that 100% of the slow

neutrals undergo some sort of interaction (i.e. Rslow~l).

3.4 Evaluation of the Conduction Fraction

The conduction fraction introduced -in Section 3.2 (eqn

3.7) is the average fraction of energy transported in the

divertor by electron conduction. Thus
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1- 1 t JtJfSedx' +nvL. Mv + T(1+r)jjdx (3.32)Qt Ld p '

Evaluation of this quantity requires a knowledge of the

density, temperature, mach number, and energy source (sink)

term profiles in the divertor region. The two point model

does not pr6vide this profile information so the following

assumptions must be made to evaluate i.

The first assumption is to ignore the integral of the

energy source term. The major contribution to this integral

comes from a narrow band near the divertor plate. While

this term might be significant near the plate, it

represents a small contribution to the second integral.

Numerical integration of this integral has confirmed the

insignificance of the source term.

The second assumption concerns the profiles of the

density and ion to electron temperature ratio, (r). A

previous study, using more sophisticated models 5 , has shown

a reasonable distribution for these two quantities has the

following form, f(x),

f(x) f(O) + [f(L) - f(0) i - (3.32)

where a is a polynomial shape factor.
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Using the continuity equation, (3.1), the mach number can

be expressed in terms of n and r as

T(1+r)) 1/2 2

(1-RR) [n T (l+r) 1 /2 (S.33)

where R' is the fraction of ionization up to x and is given

by

RP = p (3.34)

ft Sdx'

Equation (3.33) can be used along with the momentum

equation, (3.2), to yield the temperature profile,

)2) n P n] 2 Tl +r)

T(x)= VR + 2- (1-RR ] npTp( (3.35)

where (VR)' is the fraction of momentum source up to the

point x and is given by

p
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(VR)' VR IL (3.36)
J4S dx'

Evaluation of R' and (VR)' requires additional

assumptions about the distribution of the particle and

momentum sources. One intuitively simple method is to

assume an exponentially decreasing distribution for these

sources. Thus

Sn o [R EXP(.- ) + (1-R )EXP(~- (3.37)

and

S c Rn [Fio~ sin@EXP(-x.- )+ Fcxf(vfsinO +

vg)EXP( -)]+ (1-RJ[F. svsineEXP(F
avg) X 3 n)ion-s s-2

F cx-s(v ssinO + v avg) EXP (3.38)

or in its simplified form (neutral momentum included)
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SpaR v fs ifO EXP( -X ) + ( 1- Rn) vssine EXP( X

(3.39)

where hj is the mean free path (MFP) for; fast neutral

ionization (j=l); slow neutral ionization (j=2); fast

neutral charge exchange (j=3); and slow neutral charge

exchange (j=4). Each mean free path is calculated as,

V.

X. =(3.40)
Snav <ov>.sin@

where nav is the average throat to plate density, <ov>j is

the appropriate reaction rate coefficient, and vj is the

particle velocity. The sino term adjusts the MFP to account

for the fact that the integration is being performed along

field lines while the particles are assumed to come off the

divertor plate perpendicularly.

Given a shape factor, a, the above set of equations can

be numerically integrated to give a value for the conduction

fraction, i.

3.5 Evaluation of the Recycling Coefficipnt

3.5.1 Introduction



58

The recycling coefficient, R, was defined in Section 3.2

as the fraction of ions hitting the plate that come from the

recycling of neutrals. Those neutrals that are not ionized

in their first pass through the plasma, but escape to the

plenum region of the divertor can eventually meet one of

three fates: 1.) return to the plasma and be ionized after

scattering around the divertor plenum (the. probability that

a neutral makes it back through the plasma to the plate

reflects, and escapes again is very small); 2.) be pumped

out of the divertor plenum; or 3.) escape out the divertor

throat to the core plasma where they are ionized. The

contribution of this third channel is small so, to first

order, what is not pumped out of the divertor chamber is

eventually recycled to the divertor plate. Based on this

phenomenological description the global recycling

coefficient can be approximated as,

R= 1- pf (3.41)

where p is the average neutral escape probability (energy

group and position averaged) and f is the ratio of neutrals

pumped to those reaching the divertor plenum.

For the purposes of this model, the pumped fraction will

be varied as a free parameter. One does have some control

Lmal
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over the value of this parameter based on pump speed,

geometry of the pump ducts (conductance) and divertor

plenum, and plenum wall materials. Calculation of the

pumped fraction would be the subject of future study. Thus,

the evaluation of R requires the determination of the

neutral escape probability, p.

3.5.2 Calculating the Neutral Escape Probability

The method used to calculate p is based on a wedge shaped

section of plasma overlying the divertor plate and a simple

slab attenuation approach (see Figure 3.3). First the MFP

for ionization of a neutral by electron impact is calculated

for slow and fast neutrals using

S= n<cv>. (3.42)
ion

where v is the fast or slow velocity, n is the electron

density, and <ov> is the combined ground state and excited

state electron impact ionization reaction rate coefficient.

The MFPs can be calculated using plate or average

quantities.

The probability that a neutral of given velocity and

angular direction will be ionized after being emitted from a
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Figure 3.3 Geometry of Neutral Escape Probability
Calculation
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where l(x,O) is the distance to the plasma surface

(beginning of plenum) along the direction 0 from the point x

and N is the energy/velocity dependent MFP. It should be

noted that no particular allowance has been made for the

effect of charge exchange events. A similar approach to

calukating p (reference 3) found that this contribution to p

is small so it is neglected here.

Several methods for summing these probabilities over all

directions and points on the plate have been examined in

this thesis. Each has been included in the final divertor

model programs as options.

The first method entails calculating an average distance,

1(x), to the plasma surface for each of a mesh of points on

the divertor plate. At each point, 1 is expressed as a

function of angle p, point position (x), width of the

divertor plate(xt), and angle of incidence of the field

lines to the plate (8). This function is then integrated

between O=o and O=ARC, where ARC is the angle back to the

throat of the divertor. Any neutral that is emitted in a

direction greater than ARC is assumed to be ionized. This

.~t a 4
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method gives the following result

ARCl ( O)dO = TANO(x-xt) CA dC

fJARC do 0R J ACOSO+BSINO

where A is TANO and B is 1.0. The explicit result is,

1(x) = TAN8 (X-XtJ lnTANI(ARC+O)ln[TAN(_l]l

TA2+ B 2)/ARC22

(3.45)

The neutral escape probability for neutrals emitted from a

point on the plate is then

ARC nP f)+ XP S (3.46)

where Xf and X. are the fast and slow neutral ionization

MFPs.

This escape probability is then calculated for a mesh of

points along the divertor plate and the average, p, defined

as the global escape probability. The advantage to this
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method lies in the fact that the integral used has an

explicit solution which speeds calculation for a mesh of

points. The disadvantage is that the exponential of an

average escape distance is not the same as the integral of

the escape probability averaged over all possible

directions.

The second method involves numerically evaluating the

integral of the escape probability as a function of angle.

Thus,

p(x) ARCEXP(l(o)) ARC do (3.47)

This integral is evaluated for slow and fast neutrals and

the escape probability at x calculated as

p(x)=.RnP(X)fast+ (1-Rn)P(X)slow (3.48)

Again, this evaluation must be performed for a mesh of

points along the plate and the average escape probability,

p, calculated.

Another option included in the divertor model program is

an angular probability for reflection in the integral of the

second method. Some experiments have found that particle
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reflection from a smooth surface was not isotropic for 90

incidence but showed a cosine distribution. Use of this

option decreases the escape probability because most of the

particles that escape do so by escaping from the tip of the

plasma wedge. Weighting the directional escape probabilities

with a cosine distribution decreases the contribution of

those particles which are emitted in a direction towards

this tip.

A program was written to compare the results of each of

these methods against one another and against the results in

reference 3. A detailed comparison of the three methods

(lavg, integral, and integral with a cosine distribution)

can be found in Appendix D. Typical results are shown in

Figure 3.4, giving the escape probalility as a function of

plate position for the integral with cosine method. As seen

in this figure, the escape probability increases as the

thickness of the plasma overlying the plate decreases (see

Figure 3.3 for geometry). Also, it is noted that the escape

probability is much less for slow neutrals than for fast

neutrals due to their smaller ionization MFP. Below, the

results of the three methods are compared to the result of

reference 3.

It- A
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Table 3.1
Neutral Escape Probability Comparison

Approach

lavg .067

integral .095

integral
w/cosine .074

Ref 3 .077

For these results, plate quantities (Tp and np) were used.

It is noted that in reference 3 a cosine distribution was

employed.

3.6 Helium Effects

The steady state concentration of helium in the core

plasma has a great influence on the power output of the

reactor. Additionally, helium in the divertor can

significantly increase the sputtering of the divertor plate

and increase radiative cooling of the divertor plasma. The

concentration in the core plasma and in the divertor is a

function of the helium-ash removal rate from the divertor.

Helim ni-nF flnw with the plasma into the divertor and

impact the divertor plate where they are neutralized (some

A'N
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may become permanently implanted) and return to the divertor

plasma. Just as with D-T neutrals, some of the helium

neutrals will be ionized and recycled to the plate while

others will escape to the divertor plenum and may be pumped

or return to the plasma to be ionized. Analogous to the D-T

recycling coefficient,a global helium recycling coefficient

can be defined as

RHe = - P HefHe (3.49)

where PHe is the average helium neutral escape probability

and fHe is the helium pumping probability. This pumping,

probability, fHe, may differ from the D-T pumping

probability depending on pump type, plenum and duct

configuration, and neutral particle (D-T or He) energy

distribution. Just as with the pumping probability for D-T,

fHe is also varied as a free parameter in the divertor model

code. The escape probability for helium can be calculated

using the same equations presented in section 3.5 by

replacing the D-T ionization rate coefficient with the

helium ionization rate coefficient.

The helium ions which originally enter the divertor are

normally in the +2 charge state. The recycled helium ions,

however, can be in charge state +1 or +2. This distribution

of charge states will have an impact on the concentration of
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helium at the plate and on the sputtering of the plate due

to the sheath potential. The probability, P12, that a

singly charged helium ion will be ionized to the +2 state

can be estimated as
3

PI2 = 1 - EXP((3.50)

where tres is the residence time of the He+ ion in the

divertor, and Ti (-3 x 10- 5 sec) is 'a characteristic time

for the ionization step He+ to He+ + .

An upper limit on this residence time can be obtained by

neglecting the effects of local electric fields and

expressing it as

tres t t + tdrift (3.51)

where tt is a thermal equilibration time (-10- 5sec) for ion-

ion collisions and tdrift is the ion drift time at the fluid

velocity (assumed to be the plate sound speed, Cp) and is

e t

esiatda
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MFPion (3.52)
tdrift - C(

p

The ionization probability, P1 2 , can be used to estimate the

fractional concentration of helium at the divertor plate.

At steady state, the helium which enters the divertor must

be equal to the helium pumped. This condition can be

expressed as

He(t)rt = He(P)rp(l-RHe) (3.53)

where He is the fractional concentration of helium (singly

and doubly charged) relative to the electron density and

rt,p is the electron flux at the throat/plate.

The helium concentration at the throat is normally taken

to be the core plasma concentration. The D-T ion flux at

both locations, throat and plate, is less than the electron

flux due to the presence of helium. At the throat

rt,D-T = ne(l - 2 He(t))Ct t (3.54)

and at the plate

• -ValI I I . .. - I 
: '
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r p,DT = ne l - (1 + Pl 2 )He(P)]Cp (3.55)

So, at the plate, part of the D-T ion flux is replaced by

helium flux which will increase sputtering due to its

greater mass and possible +2 charge state.

The exhaust performance of the divertor can be

characterized in terms of the helium enrichment factor, r,

expressed as

He(pump)/ rDT(pump) (3.56)

rHe(t) / r (DT(t)

or expressed in the quantities defined above

(1-R He) He(P) 1- 2  He(t)l

(i-R) [- (i+ PI2) He(P) ]  He(t)

In addition to causing a fuel depletion effect and

increased sputtering, the helium which is recycled in the

divertor can add to the radiation energy losses, cooling the

plasma. In the present calculations this radiation

component has been estimated as
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(ev) 15 + P (70 + 3300) (3.57)
1

where XHe is the energy loss per ionized helium particle and

Te is the local electron temperature. The 15 eV term

corresponds to the energy loss in going from HeO to He+

while the remainder of the XHe expression is for ionization

to He + +  The energy loss in the divertor plasma due to

helium recycling (to be added to equation (3.31) ) is

PRadHe(eV) = npVpHe(P)XHeRHe (3.58)

Any charge exchange component to this energy loss has been

neglected.

3.7 Sputtering

One of the critical concerns in designing a divertor is

the sputtering rate of the target plate material. This rate

will determine the service lifetime of the plate, and as

noted in Chapter 2, impurity production can have a great

impact on the viability of the divertor design. Once the

plasma model has determined the plate temperature and

density (with an estimated impurity increment), these

parameters can be used to estimate the plate sputtering.
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Some iterative process might be necessary to make the result

self-consistent.

The sputtering rate (including self sputtering) at a

point on the target plate, as expressed in Chapter 2, is

Re = r~ f 1)s

where r is a particle flux at a point on the plate, Y isFp

the sputtering yield for the particular particle (incident

energy and plate material dependent), Ys is the self

sputtering yield, and f is the fraction of impurities

returned to the plate. The above equation is valid for

fYs<l.

The sputtering yields can be determined using a

sputtering model by Smith et al21 which can be expressed as

C z75(z1~.8)2(MM) E 0-E th 20( )  1 2-5 • 2 E 5z 5z)

(3.59)

where

C = 2000 for incident hydrogen (IH)
= 400 for all other particles



!I,'
73

Z1  = atomic number of incident particle

Z2  = atomic number of plate material

M 1  = mass number of incident particle

= mass number of plate material

Eo  = incident particle energy (eV)

Eth = threshold energy for sputtering (eV)

The threshold energy for sputtering is given by

4M + M2Eth= Uo 3.0
th 4 M1M2  (6

where Uo is the binding energy of the plate material (eV).

Appendix A includes a table of values for Z, M, and Uo for

various plate materials.

The incident energy of particles impacting the plate can

be expressed as a function of the sheath energy transmission

coefficients. Thus,

E= rp[ E+ ZTp(i -2)) (3.61)

44"

where Ep is the energy of the particles prioi to sheath

acceleration (which has a Maxwell-Poltzmann distribution at

the plate), Tp is the electron temperature at the plate, and

e.4. r If
.4 - . .
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Z is the charge of the particle.

If the temperature of the plasma is well above the

sputtering threshold, then E p=2Tp can be used, 3  and

evaluating the sputtering is very straight-forward. In most

instances, though, the plate temperature is less than the

sputtering threshold. However, this does not imply that

there is no sputtering. Particles in the high temperature

tail of the Maxwell-Boltzmann distribution may still cause

sputtering. Therefore, the calculation of the sputtering

rate must take account of this particle distribution. Thus,

Re= rp l.fy) 0 ,P(E)Y(Eo)dE (3.62)

where P(E) is the Maxwell-Boltzmann distribution

P(E) E 12EXP E

and E' is the particle energy at which Eo=Eth

E' = Eth/rp - ZTp(yi-2)

Equation (3.62) can be numerically integrated to give the

~ ..
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sputtering rate.

The sputtering rate can be converted to an erosion rate

(cm/yr, 100% duty) by dividing Re by the plate material

number density (cm-1) and multiplying by the number of

seconds in a year

Re 7
de(cm/yr) = . 3.15 x (3.63)

The code for the divertor model includes a subroutine

which calculates sputtering of the target plate due to

deuterium, tritium, and helium (+I and +2). An assumption

necessary to implement this model is that sputtered plate

material atoms return to the plate in the +1 charge state.

The erosion and sputtering rates are calculated at each of

50 points across the divertor plate and the peak erosion

rate outputed, along with the total impurity production rate

per length of divertor.

3.8 Impacts of Radial Variations

The simplication of the fluid equations to consider only

the axial direction introduces certain inaccuracies in

calculating neutral escape probabilites and plate

sputtering. These quantities are sensitive to the plate
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density and temperaure. Use of the axial approximation

makes it necessary to assume a constant plasma density and

temperature across the divertor plate. To remedy this a

literature search was conducted to determine how to

introduce radial variation of these parameters ir.to the

divertor model.

The results of most models 9 ,1 3 , 17 ,1 8 , 19 ,2 0 show that

radial density and temperature profiles are approximately

exponential in both the upstream region (throat and beyond),

and in the downstream region (in the divertor) and can be

expressed as

P(r) = P EX (- (3.64)
0 \XaJ

where P is the parameter of interest (T or n), and Xa is

the fall-off distance for that parameter.

For density, the fall-off distance can be approximated as

Xn D T 1) 1/ (3.65) i

where D is the radial diffusion coefficient (mn/sec) (in

this work experimental values have been used) and TIf is a

characteristic transport time, approximated as
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= L (3.66)

where L is a connection length in the region for which Nn is

being calculated, and v is an average fluid velocity in the

region.

For Nn at the target plate, L is the divertor connection

length, Ld, and v is the sound speed at the plate (even

though the mach number at the throat is normally small, the

sound speed is large, so Cp represents a reasonable

average).

The temperature fall off distance is more difficult to

calculate and has been modeled many different ways. In

reference 17 the ratio NT/xn was found to be an increasing

function of X1 /D and a decreasing function of the sheath

energy transmission factor. Rather than attempt to

calculate NT, the ratio AT/Nn can be varied as a free

parameter, A.

To test the validity of using exponential profiles for

the temperature and density at the plate a separate program

was written which evaluated these profiles in the pressure

balance equation derived from the continuity and momentum

fluid equations,

I
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t + rt)(i + I R ) =2 nP TP ( + r) (3.67)

On the basis of this investigation, it was concluded that

the pressure balance equation could be satisfied radially

with exponential profiles for density and temperature. In

the computer model Xn at the plate is calculated and A is an

input parameter. The radial profiles for temperature and

density have been added to the calculations of the recycling

coefficient (including weighting each escape probability

along the plate by the flux incident at that point) and

sputtering rate.

Na.
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CHAPTER 4

DESCRIPTION OF THE COMPUTER MODEL

To yield results, the divertor model described in Chapter

3 must be implemented on a computer using various numerical

computing techniques to solve for the parameters of

interest. Section 4.1 of this chapter discusses the

possible* solution techniques and the rationale for the

selection of a fixed-point iteration approach. Section 4.2

then describes the implemented model code, DIV, in detail

including; program logic and structure, data input

requirements, and program output.

4.1 Discussion of Numerical Solution Techniques

Solution of the model equations given in the previous

chapter involves the simultaneous solution of a system of

nonlinear equations. There are several techniques that can

be used to solve such a system. The first is a straight

forward fixed-point iteration approach. The advantage to

this method is the simplicity of implementation. While the

convergence of this method is only linear to super-linear

(better than linear, less than quadratic), the final

solution set need not be accurate to greater than about 1%

since the model is only an approximation. Given a good set

79
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of initial guesses for the solution variables, the only

concern would be the stability of the solution. The

disadvantage to this method is the requirement for good

initial guesses. If the initial guesses are too far from

the solution values, then the results might diverge, or

converge to an unstable set.

Other more sophisticated methods are based on Newton-

Raphson approaches which require the evaluation or

estimation (via the secant method) of the partial

derivatives of the equation set These methods involve the

use of matrix operations to solve the system of equations.

Such methods will normally converge more quickly than the

fixed-point method (quadratic convergence) and can be

written in ways to increase the chance for convergence even

with poor initial guesses. However, this increase in

"power" is bought at the cost of much increased complexity

and computing time. Reference 5 used a software package

program, HYBRID, to solve a set of model equations.

Solution of this similar set required .2 seconds of Cray

computer time. For the model described in this thesis, a

fixed point iteration approach with some improvements has

been adopted.

4.2 Computer Model DIV Description

.%.N...
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The computer model DIV, written in IBM Fortran for an

IBM-PC/AT (or compatible), uses a fixed point iteration

routine to solve the model equations for the plate density

and temperature, and the throat temperature using the

following fixed-point equations:

[ nP 17/3_, 1 ]2/7 [nt l+rt 1+111 p
np n VT 2 +.VR} I + rpl 41

derived from equation (3.20),

T1 M/2(ye+r 1i) 2/3

p Q n p l+ rp 1/2 (4.2)

derived from equation (3.8), and

2-+VR) l+r P"T Pn
Tt= +1 2)+ n~ (4.3)

t tt

derived from equation (3.19)

The throat density is held constant.

Input for the code (Table 4.1) requires starting values

for np, Tp, and Tt. The user has the option of specifying

the recycling coefficient, R, and/or the conduction



Table 4. 1

Program DIV Input

Inputs Definition Units

QT Power flux into
the divertor W/m2

LD Divertor connection
length m

M D-T ion mass amu

XT Divertor plate width m

THETA Angle of incidence of
magnetic field lines
to the divertor plate radians

EL D-T reflection coefficient
reduced energy

TP Plate electron temperature eV

) TT Throat electron
temperature eV

NP Plate electron density x10Im -3

NT Throat electron density xl0'm -

RP Plate ion to electron
temperature ratio

RT Throat ion to electron
temperature ratio

G1 Electron sheath energy
transmission coefficient

G2 Ion sheath energy
transmission coefficient

R Recycling coefficient

AI
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Table 4.1 cont.

Input Definition Units

U Conduction fraction

F D-T pump fraction

IMP Impurity increment

D Radial diffusion
coefficient m 2/sec

A Temperature to density
fall-off distance ratio

CT Fractional concentration

of helium at the throat

FHE Helium pump fraction

ELh Helium reflection coefficient
reduced energy

SHP Shape factor, a, for the
conduction fraction

METH Method for p calculation
1=Lavg 2=integral

DIST Distribution for p calculation
1=none 2=cosine

TOL Convergence tolerance

SOR Over or under relaxation
constant

.N*
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fraction, i, (which will then be held constant) and of

setting the momentum source term equal to zero. Otherwise

these variables will be calculated. Most of the variables

inputed are known quantities or can be calculated using

methods presented in Appendices A and C. Others, such as

the ion to electron temperature ratios and pump fractions,

can be estimated from the results of other models or

experifents. The only parameter for which there is no

physical or calculational basis is the shape factor, a, used

in calculating the conduction fraction. However, experience

with the code has shown the final solution set to be

insensitive to the value of a except for very low recycling

cases.

After the initial data entry, the program (see flowchart

of Figure 4.1) first calculates initial and intermediate

quantities, such as Xt, i, R, and V, based on the initial

values for Tp, np, and Tt. The program then calculates the

first of the fixed point parameters, applies successive over

or under relaxation,

A' SOR(An+I + (I-SOR)An (4.4)

where A' is the relaxed variable and SOR is the over/under

relaxation constant, and then updates the intermediate

V IV
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variables prior to calculating the next fixed point

parameter (a la Gauss Seidel). This relaxation method was

added to the fixed point routine to preclude wide

oscillations (if SOR <1 is used) or to speed convergence (if

SOR >1 is used) of the iterations.

The newly calculated value for the plate density is then

compared to the old value using a relative error check for

convergence (the user specifies the tolerance). The plate

density was chosen as the convergence parameter because its

equation includes information from all three fluid equations

and, by practice, was found to be the most difficult

parameter to get to converge. If the convergence criterion

is met, then the program recalculates the intermediate

parameters based on the solution set and displays this set

and the intermediate parameters (Table 4.2). If the

criterion is not met, then the program loops back to start

another iteration. After each iteration is complete the

most current values for the fixed-point parameters are

displayed on the screen so the user can observe if the

results are converging or diverging. After ten iterations

with no convergence the user is prompted to continue or stop

iterations and return to data entry. If convergence is

achieved, the user is asked if sputtering should be

calculated. Sputtering calculations require additional data

entry (Table 4.3). The sputtering subroutine canalso be

$



11 ( NSIMPLE ONE-DXNWNIONRL ON-FLUnD DIYERTOR XWELCU~
ARNYjUjTRRY ;JRSSNEL CENTER RLEXANRIR YR

UNCLRSXIFIED F/0 16/11 NMEMNONhhiI

MhhEMOhhhEEEfK



1. 1

3.29

Ism
.6

11111

p 5



87

Table 4.2

Program DIV Output

Output Definition Units

TP Plate temperature eV

NP Plate density m- x10 - 9

TT Throat temperature eV

NT Throat density m- x10-1

MT Throat mach number

U Conduction fraction

ISE Radiation loss fraction

R Recycling coefficient

CP Fractional helium at the plate

HER Helium enrichment

P12 Ionization probability of
He+ - He++

LNP Density fall distance at the
plate, hn

directly accessed after the initial data entry, bypassing

the divertor calculations.

An extensive number of runs with the DIV code for a

variety of input data has allowed the inclusion of a number

of error checks in the program to stop execution of the code

if certain parameters are diverging. This has eliminated

most realtime fatal errors. Appendix B includes a complete
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Table 4.3

Sputtering Input Data

Input Definition Units

UO Plate material
binding energy eV

Z3 Plate material atomic
number

M3 Plate material mass
number

NM Plate material number
density cm-3xl0-

4

IE Multiple of TP for upper
limit to maxwell-boltzmann
integration

listing of the DIV computer code. It also has a description

of each of the subroutines displayed in Figure 4.1.

I'.t



CHAPTER 5

BENCHMARKING THE DIVERTOR MODEL

5.1 Introduction

As stated in Chapter 1, the goal of this research is to

produce a simple, comprehensive, and accurate model of the

divertor reaion. The requirements to limit the complexity

of the model and to include all key processes have been met

as described in Chapters 3 and 4. How close the model has

come to satisfying the third requirement, accuracy (i.e.to

yield results comparable to those of more sophisticated

models), will now be discussed. In this chapter the

computer code DIV is benchmarked against four other models:

a model by the JAERI team2 2, the Harrison et al model 3, the

ZEPHYR code4 , and the Braam's code9 . The results displayed

in the comparison tables reflect only the parameters

reported by each of these codes which are also calculated by

DIV. Complete data input and output for each benchmark case

can be found in Appendix E.

5.2 JAERI Team Model Benchmark

This model is a one fluid, ID (axial) plasma edge model

which includes remote radiative cooling, recycling, and

89V.I .
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particle shielding at the main plasma surface. The

particle, momentum, and energy source terms are evaluated by

a neutral transport code. In reference 22 the code is

described, and results for modeling of Doublet III compared

(favorably) to experimental results. To obtain the DIV

results listed in Table 5.1 the following assumptions were

made: the momentum source term was set to zero, and the

radiative power loss was artificially increased (by making.

IMP=1.45) to mimic the oxygen impurity radiation included in

the JAERI calculations. Additionally, the recycling

coefficient was calculated, in the absence of any divertor

plate data, by assuming a plate width of .25 m and a theta

of .35 radians. The pump fraction, f, was arrived at by

back-calculation using the reported recycling coefficient

and divertor plasma results. The remainder of the input

data for DIV was the same as that used by the JAERI team for

its results. The results of this comparison are listed in

Table 5.1.

N
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Table 5.1

JAERI Team Benchmark Case

Parameter JAERI Team DIV

Tp(eV) 4.0 3.8

np(xl0' 9 m-3 ) 9.1 9.2

Tt(eV) 37.0 35.0

nt(xlO1' m-3 ) 1.8 1.8

Throat Mach
Number,lit .26 .34

Radiation
fraction .50 .51

Recycling
Coefficient,R .81 .80

The results of Table 5.1 indicate that DIV compares

extremely well with the JAERI team model. The largest

deviation in any fixed point parameter is less than 6%. The

sensitivity of these results to changes in impurity

radiation and the shape factor was also examined. A 5%

increase in the impurity increment, increasing the radiation

fraction by a like amount, caused about a 20% decrease in Tp

and a corresponding increase in np. Variation of the shape

factor, , from 3 to 4, caused a 15% change in np and Tp.

Both these sensitivities were cxpected. Expeiience with the

DIV code has shown that Tp becomes more sensitive to the
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impurity increment as the impurity fraction increases. In

this case, the radiation fraction, is fairly large (-.5).

Alternatively, it has been found that sensitivity to the

shape factor decreases as the recycling coefficient

increases (or as the conduction fraction increases). The

recyling coefficient for this case, .81, is rather low,

correlating to the sensitivity to the shape factor observed.

5.3 Harrison, et al Model Benchmark

This model is also iD and one fluid. It includes neutral

particle transport, remote radiation cooling, helium

effects, and impurity radiation. The data and results

presented in reference 3 are for INTOR under "standard

conditions". One of this model's assumptions is that

electron conduction is the only energy transport mechanism.

The modeling assumptions for DIV in this case were that

impurity radiation was zero (it was found to be negligible

in reference 3 ) and the momentum source term was equal to

zero. Table 5.2 gives the results of this comparison.

FF%
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Table 5.2
Harrison et al Model Benchmark Case

Parameter Reference 3 DIV

Tp(eV) 25.5 23.8

np(xl0'9 m) 9.6 9.2

Tt(eV) 66.0 63.0

nt(xlO'9 m- ) 6.97 6.97

Conduction
Fraction,p 1.00 .99

Radiation
Fraction .13 .16

Helium
Enrichment,E 3.18 2.23

Recycling
Coeffient,R .99 .99

Plate Helium
Concentration .05 .025

The DIV results compare very well with the Harrison et al

results. The largest deviation of any of the parameters is

for the radiation fraction (23%) and the helium enrichment

(30%), but the deviation for the parameters of most

interest, T and np, is less than 7%. One difference

between the two models is that the Harrison model assumes

that the concentration of helium at the plate is the same as

the concentration in the core plasma while DIV calculates
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this quantity. This difference was accounted for in the

calculation of the helium enrichment but was not sufficient

to account for the difference in values of the helium

enrichment. Some additional runs were made to try to make

the two radiation fractions equal by adjusting the impurity

increment. Setting the impurity increment (IMP) equal to

.85 (from an initial value of 1.0) succeeded in matching

these parameters, but increased the plate temperature

slightly and decreased the plate density. However, there

appears to be no physical basis on which to decrement theD-

T radiation value.

The results above were found to be fairly sensitive to

the energy transmission factors (yi and Ye)" An increase in

both of about 20% caused a 28% decrease in Tp and a 39%

increase in np. The percentage changes and the directions

of the changes were reversed for a 20% decrease in the

energy transmission factors. The results were also found to

be insensitive to the shape factor due to the large

recycling coefficient and conduction fraction.

5.4 ZEPHYR Benchmark

ZEPHYR is an axial ID, two fluid numerical divertor model

developed at Culham laboratories. It includes: a simple iD

neutral model; neutral recycling; D-T radiation; particle
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and energy convection; fluid viscosity; and electron/ion

equipartition. It solves the fluid equations along field

lines between a symmetry point and the divertor plate. The

results presented in reference 4 are for an INTOR-like

device. The specific results to which DIV is compared is

the "Search 13A" case (one of the many results in this

parametric study). The only assumption made to benchmark

against this case was to set the momentum source term equal

to zero. The input data values for DIV were, for the most

part, all taken from the reported ZEPHYR input or ZEPHYR

results (such as ion to electron temperature ratios and Qt

,alue). The recycling coefficient was set to the .471 value

used by ZEPHYR. Benchmarkina for the pump fraction value,

as was done for the JAERI case, yielded a pump fraction

greater than 1.0 (an impossibility). Therefore, iterative

calculation of the recycling coeffcient was not possible.

This benchmarking result indicates a significant difference

between the neutral particle models of the two divertor

models. It should be noted that the reported recycling

coefficient for this case, .471, is extremely low

considering the reported plate temperature (10.8 eV) and

density (8.6 x 1019 m-3 ). One final note is that helium

effects were neglected. Table 5.3 displays the comparison to

the ZEPHYR results.

'44



I
96

TABLE 5.3

ZEPHYR Benchmark Case

Parameter ZEPHYR DIV

Tp(eV) 10.8 10.5

np(xlO 9 m- 1) 8.6 8.68

Tt(eV) 26.7 28.0

nt(x101 9 m- ') 3.66 3.66

Throat Mach
Number,1(t .73 .70

Radiation
Fraction .15 .16

Recycling
Coefficient,R .471 .471

The largest deviation from the ZEPHYR values was in the

radiation fraction which was only 8% different. As

expected, the DIV results were somewhat sensitive to the

shape factor due to the low value of the conduction fraction

(-.14). The results above are for a=5. Changing this to

a=6 caused T p/np to increase/decrease by about 6%. A

similar sensitivity was arrived at when the shape factor was

decreased to a value of 4. The results are also very
sensitive to changes in the sheath energy transmission

factors (though the values used for the results above were

ip
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the same as those used in reference 4 ) A 10% increase in

the radiation fraction (by setting IMP=l.l) had only a

slight effect on the temperature and density at the plate

(:6%). Because the radiation fraction is only 15% in this

case, radiative cooling does not play an important role in

determining the plate conditions.

5.5 Braam's Code Benchmark

This model solves the Braginskii fluid equations for

electrons and ions in two dimensions (axially and radially)

from a symmetry point (between divertors) to the divertor

plates. The code includes particle/energy convection,

viscosity, equipartition, axial variation in the radial

thickness of the edge plasma (i.e. cross-sectional area),

radiation, and helium effects. The results of this model,

reported in the NET Report #50, reference 9, are for a

NET/INTOR-like device for both the inner and outer divertor

plates. In doing this benchmark case it was necessary to

convert the radial results for temperature and density into

average values at the plate and throat for both data input

and comparison. The modeling assumptions made include: the

momentum source term is zero, and the pump fractions for D-T

and helium are the same. Another inherent assumption in

this approach is that the average values themselves

,%
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represent a solution to the fluid equations. Some of the

specific input data requirements had to be satisfied using

the calculational methods of Appendix C. The pump fractions

were back-calculated as described in Section 5.2, using the

plate data given in the NET report. Table 5.4 reports the

results of this comparison.

Table 5.4

NET Report #50 (outer target) Benchmark

Parameter Report #50 DIV

Tp(eV) 7.6 11.0

np(xl0'7 m- 1) 14.0 13.4

Tt(eV) 67.3 64.8

nt(xl0' 9 m- ') 5.0 5.0

Radiation
Fraction .17 .21

Recycling
Coefficient,R .998 .998

Plate Helium
Concentration .011 .025

Helium
Enrichment,c 1.0 .99

The plate temperature for this case is 45% higher than it

should be and the plate concentration of helium is more than

twice the Report #50 value. Additionally, the radiation
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fraction is somewhat high (which makes this an unlikely

candidate for lowering Tp). Numerous runs were made in an

attempt to improve the results with no success. The

conclusion arrived at is that the assumption, that average

values represent a solution, may in fact not be valid. The

disperity between the two reported helium plate

concentrations may be due to the assumption the fHefD-T

used in DIV. In some other models the pump fraction for

helium is larger than that for D-T. This would tend to

decrease the plate concentration bringing it closer to the

Report #50 value.

The results tended to be sensitive to the sheath energy

transmission factors. As expected, the results were

insensitive to the shape factor (R was large) and the

radiation fraction (which was low, -21%).

5.6 Benchmarking Conclusions

In general, the divertor model DIV yields very good

results when compared to other ID axial models. Some

problems arise, due to the average value assumption, when

comparison is made to a 2D model. The sensitivity of the

results to three input parameters, the shape factor, energy

transmission factors, and radiation fraction (via theI impurity increment), was examined and qualitative

I"
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dependencies identified as listed in Table 5.5 and discussed

below. The most sensitive of these three parameters was the

Table 5.5

Parameter Sensitivities

Sensitivity of Tp and np

Parameter Small Large

Sheath Energy
Transmission
Factors,yi and Always
Ye

Impurity If radiation If radiation
Increment,IMP fraction is fraction is

small large

Shape Factor, a If R or W If R or
is large is small

sheath energy transmission factors which directly control

the rate at which energy can be exhausted to the divertor

plate. Any increase in these factors will decrease the

plate temperature, and increase the plate density. The next

most sensitive parameter was the radiation fraction. This

quantity could be adjusted using the impurity increment.

The greatest sensitivity was found when the impurity

fraction was high. This observation implies that the final

plate temperature is very dependent on the total power lost

by radiative processes. When the radiation fraction is low,
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the sensitivity is much decreased. Finally, the sensitivity

to the shape factor was found to be a function of the

recycling coefficient. As R increases, the mach number at

the throat decreases, decreasing the fluid flow velocity,

and thereby, energy convection. This forces the conduction

fraction to increase. As i increases it becomes less

sensitive to the shape factor. In general, an increase in

the shape factor would independently decrease the conduction

fraction, but the interplay with the other variables tends

to make the net effect an increase in p.

Several other comments are warrented as a result of the

benchmarking and other program runs. The pressure at the

divertor plate (- npT p) is ultimately determined by the

energy flux (Qt) into the divertor. The effect of the

sheath energy transmission factors and radiation fraction is

only to alter the relative value of these parameters, not

their product. This implies that there is only so much that

can be done with the injection of impurities to reduce heat

deposition and sputtering. This impurity injection

approach, though, sensitizes the plate density and

temperature to changes in the magnitude of the radiation

fraction. Any mechanism which might cause fluctuations in

the amount of radiation produced in the divertor (such as

flow reversal) will cause wide variation in plate density

and temperature.

'NW7
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Another comment concerns the inclusion of the the

calculation of R in the program. The ability to allow R to

vary as the program iterates has improved the convergence

characteristics of the numerical techniques used and gives a

more self-consistent final solution. It also appears that

the low recycling regime is not accessible for some

combinations of input data. In most cases, if the initial

guesses for the fixed-point parameters were poor the program

tended to move towards the high recycling regime. Whether

this indicates a greater amount of stability for this

regime, or is just a numerical quirk is not known.

Finally, a few comments about sensitivities, other than

those noted in the benchmarking section, are warranted. In

most cases the results of a converged run are sensitive to

the throat density, nt. As nt increases, the plate density

will increase, with a corresponding decrease in plate

temperature (this is with Qt constant). An increase in Qt

tends to increase the plate temperature. The response of

the radiation energy loss mechanisms is normally not great

enough to compensate for an increase in the energy flux, so

the plate temperature must increase to reflect the greater

amount of energy that much be exhausted to the divertor

plate.

IM



CHAPTER 6

SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.1 Motivation and Objective

If fusion by magnetic confinement is ever to become a

viable energy source, the problems associated with impurity

production and exhaust must be solved. The divertor concept

represents an attractive solution to these problems by

exhausting D-T particles and helium-ash into a separate

chamber,. away from the core plasma, where they can be

impacted on a target plate, neutralized, and pumped out of

the reactor. The performance of a given divertor design,

though, can presently, only be assessed with the use of

plasma edge models. Expensive experimentation must

eventually be performed to verify the results of these

models.

The modeling itself is a complex process both because it

involves a strong coupling between numerous reactor systems

(core plasma, first wall, divertor, pumping, etc..) and

because the fluid equations used are highly nonlinear. Some

models oversimplify both the equations and processes

included in order to obtain analytical expressions. While

some of these simple models can identify certain

dependencies, they do not yield quantitatively accurate

103
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results. Other models attempt to include all the physics

and solve the fluid equations in two dimensions (axially and

radially) resulting in computer codes which are highly

numerical and complex. The objective of this thesis has

been to develop a simple, comprehensive, model of the

divertor region that is highly usable and gives

quantitatively accurate results.

The approach has been to solve the fluid equations in the

axial direction (along field lines) with a two point

technique in which only throat and plate quantities are of

interest. This allows the particle, momentum, and energy

source terms to be evaluated globally, simplifying their

calculation. This approach has also limited the complexity

of the numerical techniques needed to solve for the

parameters of interest. The model includes the key

processes of: neutral recycling; impurity production and

radiation; remote radiation cooling; neutral pumping;

particle convection; helium effects; and the effects of

divertor geometry and plate material. Neutral particle

modeling was accomplished using a simple model of a wedge-

shaped section of plasma overlying the divertor plate, and a

simple slab attenuation model. Additionally, a simple

exponential radial profile was introduced for the plate

temperature and density to make the calculations of neutral

recycling and sputtering more realistic. Implementation of
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the model was accomplished in Fortran on a PC to make the

code highly "usable" and responsive. The numerical

techniques used to solve for the plate temperature and

density, and the throat temperature were a fixed-point

iteration routine with Gauss-Seidel updating and successive

over-relaxation. Convergence with this method is fairly

quick, usually requiring less than twenty iterations. The

quality of the results was examined using a series of

benchmarking cases, as discussed next.

6.2 Benchmarking Results

The divertor model code, DIV, was benchmarked against

four other divertor models. The results of the benchmarking

validated the approach taken in this research. DIV compares

extremely well with the three ID (axial) divertor models

examined. The largest deviation in any of the fixed point

parameters (Tp1 np, and Tt) was less than 8%. Comparison

with the results of a 2D model was less successful but not

poor. One explanation for this might be that the

assumption, that averages of the radial solutions of the 2D

model represent an axial solution, is not valid. The

sensitivity of the results to variations in a variety of

parameters was examined and qualitative dependencies

identified. The only input parameter which cannot be

Loo
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calculated or evaluated beforehand is the shape factor used

in the calculation of the conduction fraction. However, at

the high recycling regimes anticipated for effective

divertor operation, the results become insensitive to the

value of this parameter.

6.3 Applications

The inclusion of all key processes and the interactive

calculation of the recycling coefficient, helium

concentration, and divertor plasma parameters, along with

its PC implementation, makes DIV especially useful for

conducting parametric studies of divertor designs. Once

plasma results are generated, they can be input into the

sputtering module to evaluate erosion rates and impurity

production. Additionally, the ability to input different

materials in both the divertor code and sputtering module

allows for self-consistent assessments of divertor material

options.

Another versatility of DIV is the variety of allowable

inputs to the code which makes it possible to match other

model results. Once a given model's results are matched,

the effect of slight changes to the original design or input

can be determined quickly.

'I
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6.4 Future Work

In conducting the research and in development of the

model, certain information was found to be lacking in the

literature, and certain expediencies had to be adopted.

These deficiencies represent avenues for future work, as

noted below.

1. Noncoronal equilibrium impurity radiation data is

nonexistent. The timescale for the return of

impurities to the divertor plate is smaller than

that for the onset of coronal equilibrium,

invalidating the coronal equilibrium assumption

made by some models. There appears to be little

definitive work on noncoronal equilibrium

radiation. This gap has made it impossible to

link the sputtering rate at the plate to the

impurity radiation.

2. Some of the input data for DIV could be

calculated by the program rather than

calculated off-line as done now. These

might include the energy flux to the divertor

(Qt) and the sheath energy transmission factors.
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3. The present model does not allow for a variation

in the cross-sectional area of the plasma as it

flows to the plate. This variation could have a

significant impact on the heat deposition on the

plate. Such an improvement would allow for a

more realistic magnetic field line topology at

the plate rather than the simple topology currently

used.

4. Models for the D-T and helium pump fractions

(f and fHe) would make the final divertor

solutions more self-consistent and increase

accuracy in calculating the recycling

coefficient and helium enrichment.

5. An investigation of flow reversal and its impact

on divertor operations would be desireable.

Flow reversal has been identified as occuring

when the local recycling coefficient is greater

than 1.0.23 The escape of divertor impurities

into the main plasma made possible by this flow

reversal could make operation of the divertor

in the high recycling regime undesireable. F
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APPENDIX A

INPUT DATA FOR DIVERTOR MODELING

A.1 Thermal Conduction

The Spitzer2 3 electron thermal conductivity coefficient

(x=x0T2"5) was used in the energy equation, (3.3), and the

derivatives of this equation. The value of x0 is calculated

as,

X 31500 W(eV)-7/2 m-I (A.)o= <Z>lnA WA.I)

where <Z> is the effective charge of the plasma (taken to be

1.25) and lnA is the coulombic logrithm (value of 13 used).

.11! A.2 Surface Reflection

The reflection coefficients, Rn and Re , for particles (D-

T and helium) normally incident at energy Eo on a surface

were evaluated using the empirical relationships of

reference 3.

N
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For Particles

Rn= .19 - .2371og10 (Eo/EL) (A.2)

For Energy

Re= 0.06 - .22log1 0 (Eo/EL) (A.3)

where EL is a material, and particle, dependent reduced

energy given by

(M I+ M 2 ) (ZlZ2) (Z2/3+ Z22/3) 1/2 (A.4)

.03255 M2

where M1 ,2 is the mass of the incident particle/target

material, and Z1, 2 is the atomic number of the incident

particle/target material.

A.3 Electron Impact Ionization Rates for Hydrogen

The equation for the rate coefficient for electron impact

ionization of D-T from the ground state (<cV>ion) was taken

from the divertor model, ZEPHYR4 , and is given by

W%% IV . - **
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6
<O V> ionD-T =EXPjLa[ln(kT )]n(A5

iOn=O IA5

where kT is the electron plasma temperature in ev and an are

fitting constants given by

a = -45.56 a 4 = 7.43x10-2

11 l.44 a 5=4.15x10 -3

a 2 = 3.83 a 6 =- 9.49x10-
5

* .3705

The collisional radiative ionization rate coefficient for D-

T (ionization of an excited atom) can be expressed as3

<GV> rD-T <GV>i on,D-T [ 0 nF 201 (A.6)kT 102

where kT is the plasma temperature in eV, n is the electron

plasma density in m-3, and (3is,

.5 - .36EXP(
3=~ 1.69n.



-~W IN -.IF '

115

A.4 Charge Exchange Rates for Hydrogen

The charge exchange rate coefficients were evaluated

using the expressions given in reference 3. For a D-T

plasma at average temperature Tavg (eV), the coefficients

are:

For one particle at rest (slow neutral CX)

[(.4282 T )'3338]X I0- 14 m3 sec - 1 (A.7)

For both particles at Tavg (fast neutral CX)

<av>cxf = [(.8426 Tavg)' 3369]X i0-14 m3sec - I (A.8)

A.5 Electron Impact Ionization Rates for Helium

The expression for the electron impact ionization rate

for neutral helium was taken from reference 24 and is given

by

------
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n=0
(A.9)

where kT is the electron plasma temperature in eV, I is the

ionization energy of neutral helium in eV (24.6 ev) and an

are fitting coefficients given below:'

a 0= 1.5xl10 8  a3 = -3.59x10-
9

a1 = 5* 67x10-10  a4 = 1.55x10-

a 2=- 6.08x10-
9  a 5= 1.3 2x10 9

The collisional radiative ionization rate coefficient for

neutral helium can be expressed as3

<Gv> = <Gv>. I + _O I(He) n__ IV
cr,He icn-,He IkTJ I(D-T) 10 20)

(AlO)

where I is the ionization energy for helium (24.6 eV) and D-

T (13.6 eV), and (3is as given above.
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A.6 Sputtering Data

The parameters for calculation of physical sputtering

yields used in equations (3.59) and (3.60) are listed in

Table A.1 below.
2 1

Table A.1

Material Sputtering Parameters

Wall Material Z M Uo(eV)

Be 4 9.0 3.4

B 5 10.8 5.7

C 6 12.0 7.4

Ti 22 47.9 4.9

V 23 50.9 5.3

Fe 26 55.9 4.3

Ni 28 58.7 4.4

Cu 29 63.5 3.5

Nb 41 92.9 7.6

Mo 42 95.9 7.8

Ta 73 180.9 10.4

W 74 183.9 11.1

Equation (2.21) presented in Chapter 2 for the

-- -'- |,i • ' I i I - '| ' .. . . a . .. ..... I



118

calculation of the sputtering rate due to a hydrogen ion

flux can be derived based on summing the sputtering yields

over a number of generations. An impacting hydrogen ion

will produce Y (sputtering yield) impurity neutrals. If a

fraction, f, of these plate material atoms then return *o

the plate, each will cause another Ys (self sputtering

yield) impurity neutrals. The total yield due to the impact

of a single hydrogen ion can be represented over a number of

generations by

Total Yield= Y + YfY s + YfYs(fy5 )+ Y(fyS)3+

If fYs is < 1 then this can be rewritten as

Total Yield= Y (A. 11)

So the sputtering rate due to a flux, rH+, of hydrogen ions

would be, as given by equation (2.21)

Re = FH+Y (lj



APPENDIX B

PROGRAM DIV SUPPORT MATERIALS

This appendix contains a list of the variables in the

program DIV along with a description of the subroutines in

the program. Enclosed with the appendix is a printout of a

sample run and the program itself.

B.1 Program Variables

Each of the significant variables used in the divertor model

program DIV is described below along with its dimensions.

Items with a star are data entries.

Variable Description

A Ratio of temperature to density
scale lengthes

ARC Angle from a point on the divertor
back to the throat (Radians)

CHE Energy loss by radiation and
ionization per recycled helium
particle (eV)

CHI Energy loss by radiation and
ionization per recycled D-T
particle (eV)

CP Fractional plate concentration
of helium

119
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* CT Fractional throat concentration
of helium

" D Particle diffusion coefficient

(m/sec)

" EL Reflection coefficient reduced
energy for D-T particles (eV)

" ELM Reflection coefficient reduced
energy for helium particles (eV)

ELOSS Average energy loss per recycled
neutral (eV)

" DIST Neutral reflection distribution to
be used for the neutral escape
probability calculation, l=cosine,
2=none.

" F D-T Pump fraction, the fraction of
neutrals pumped that reach the
divertor plenum

" FHE Helium pump fraction

FCXF Relative probability of CX
versus ionization for fast
neutrals

FCXS Relative probability of CX
versus ionization for slow
neutrals

FIF Relative probability of
ionization versus CX for fast
neutrals

* GI Sheath energy transmission factor
for electrons

* G2 Sheath energy transmission factor
for ions

HER Helium enrichment

IE Upper integration limit as a
multiple of plate temperature
for sputtering calculations
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IMP Impurity radiation increment, a
multiplicative factor

ISE Integral from plate to throat of

the energy source term

LD Divertor connection length (m)

LCXF Mean free path in field line
direction for fast neutral CX (m)

LCXS MFP in field line direction for
slow neutral CX (m)

LDAF MFP for fast neutral ionization(m)

LDAS MFP for slow neutral ionization(m)

LF MFP in field line direction for
fast neutral ionization (m)

LNP Density scale length at the plate

LS MFP in field line direction for

slow neutral ionization (m)

* M D-T particle mass (amu)

* M3 Atomic mass of plate material
(amu)

* METH Method to be used for calculation
of neutral escape probability, 1=
integral, 2=lavg.

MLT Multiple of <oV>iQn to get total
ionization rate (includes ground
state and excited state rates)

MT Throat mach number

NAV Throat to plate average electron
density (m-3 )

NDT Temperature gradient density
threshold (m -3 )

NM Plate material number density(m-3 )

ba
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* NP Plate electron density (M - 3 )

* NT Throat electron density (M- 3 )

P12 Ionization probability of He+ to
He++

PBAR Neutral escape probability

PFT Total fast neutral escape prob-
ability

PH Neutral helium escape probablity

PST Total slow neutral escape prob-
ability

* QT Energy flux entering the throat
(W/m )

* R Recycling coefficient

RE Energy reflection coefficient

RHE Helium recycling coefficient

RN Particle reflection coefficient

* RP Ion to electron temperature ratio
at the plate

* RT Ion to electron temperature ratio
at the throat

* SHP Shape factor for p calculation

SI <oV>ion for groundstate ionization

* SOR Successive under or over relax-
ation coefficient

TAV Average throat to plate electron
temperature

* THETA Angle of incidence of field lines
to divertor plate (radians)

* TOL Tolerance for convergence

- ,.e
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* TP Plate electron temperature (eV)

* TT Throat electron temperature (eV)

* U Conduction fraction

* UO Binding energy for plate material

(eV)

VAVG Average plasma flow speed (m/sec)

VBAR Average neutral velocity normal-
ized to plate ion sound speed

VF Fast neutral speed (m/sec)

VS Slow neutral speed (m/sec)

XC Point along divertor plate (m)

* XT Width of divertor plate (m)

* Z3 Atomic number of plate material

Other variables found in the program are intermediate

variables. Those with a "0" suffix are original entry

values retained for comparison. Any prefix with "ANS" after

it is a response to a "yes" or "no" query.

B.2 Subroutine Description

This section briefly describes the subroutines included

in the divertor model program DIV. The more important of

these appeared on the program flow diagram, Figure 4.1.

Subroutine Description

ICALC Performs initial calculation

%j
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of basic quantities used
throughout the program

ESC Calculates the neutral escape
probability and recycling
coefficient for D-T using
ROMBERG,EVAL1 and EVAL2.

HESC Calculates the neutral escape
probability and recycling
coefficient for helium using
ROMBERG, EVALI, and EVAL2.

SRVBAR Calculates VBAR

SRMT Calculates MT

SRNDT Calculates ISE and NDT

MU Calculates the conduction
fraction (A) using ROMBERG and
EVAL3.

ROMBERG Evaluates an integral using
Romberg integration.

EVALl Function evaluation for the
integral calculation of ESC
and HESC for slow neutrals

EVAL2 Function evaluation for the
integral calculation of ESC
and HESC for fast neutrals

PROB Function evaluation for ESC
and HESC for the lavg method

EVAL3 Function evaluation for the
integral of MU

SPUD Sputtering subroutine

B.3 DIV Program Listing (attached)

Ir r'V1r ,I .m
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PROGRAM DIV

C Specifications Block

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R,ISE,U,NDT,TPO,TTO,NPO,

2 NTO,UO,RO,SOR,D,A,LNP
REAL X(101),Y(101),Z(101),PROD,ANS,RANS,
2 UANS,TOL,CT,CP,FHE,RH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,RN,

2 RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,CKANS,IMP,VANS,ELH,HER,P12,TANS

C Common Blocks- used to pass common data between
C subroutines

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH,THETA,EL
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,

2 LDAS,LDAF,LCXS,LCXF,MLT,LNP,RN,RE,VF,VS
COMMON /SR/ PBAR,R,VBAR, ISE,MT,U,NDT,RHE,CP,P12

CHARACTER*64 FNAME

C Format Block

100 FORMAT(' Input known parameters,QT,LD,M,XT,THETA,EL')
200 FORMAT(' Input guesses,TP,TT,NP,NT,RP,RT')
250 FORMAT(' Input plasma constants,G1,G2,R,U,F,IMP')
300 FORMAT(' Input calc parameters,SHP,METH,DIST,TOL,SOR')
400 FORMAT(' Change known parameters? 1=yes 2=no')
500 FORMAT(' Change guesses? 1=yes 2=no')
550 FORMAT(' Change plasma constants? 1=yes 2=no')
600 FORMAT(' Change shape/plasma parameters? 1=yes 2=no')
700 FORMAT(' Another calculation? 1=yes 2=no')
800 FORMAT(' 10 loops complete, continue? 1=yes 2=no')
900 FORMAT(' Store iterations? l=yes 2=no')
1000 FORMAT(' Enter data file name')

C Diagnostic Error Statements, all cause iterations
C to stop

1100 FORMAT(' MT was negative')
1200 FORMAT(' NDT was Negative')
1300 FORMAT(' PROD is LT 1')
1400 FORMAT(' QT-ISE is negative')
1500 FORMAT(A)
1600 FORMAT(I4,3X,E10.4,3X,E10.4,3X,E10.4)
1700 FORMAT(' Convergence to ',E9.4,' achieved')
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1800 FORMAT(' TP=',E9.4,' NP=',E9.4,' TT',E9.4,' NT-',
2 E9.4)

1900 FORMAT(' MT=',E9.4,' U=',E9.4,' ISE=',E9.4,' R=',E9.4)
1950 FORMAT(' CP=',E9.4,'HER=',E9.4,' P12=',E9.4,'LNP=',

2 E9.4)
2000 FORMAT(' Iteration #-',14)
2100 FORMAT(' U is negative on TT change')
2600 FORMAT(' NP=',EIO.4,' TT=',E10.4,'TP=',E10.4)
2700 FORMAT(' U is negative, TP decremented -I')
2800 FORMAT(' Do you want to calculate R? 1=yes 2=no')
2900 FORMAT(' Do you want to calculate U? l=yes 2=no')
3000 FQRMAT('ICALC')
3100 FORMAT(' SRVBAR')
3200 FORMAT(' SRMT')
3300 FORMAT(' MU=',EIO.4)
3400 FORMAT(' SRNDT')
3500 FORMAT(' ESC, R=',E1O.4)
3600 FORMAT(' Want to check MU? 1=yes 2=no')
3700 FORMAT(' Change input data? 1=yes 2=no')
3800 FORMAT(' Want to check R? 1=yes 2=no')
3900 FORMAT(' Change input data? 1=yes 2=no')
4000 FORMAT(' VBAR=0? 1=yes 2=no')
4100 FORMAT(' Radial/HE data,enter D,A,CT,FHE,ELH')
4200 FORMAT(' Change radial/He data? 1=yes 2=no')
4300 FORMAT(' Do you want to calculate sputtering?

2 l=yes 2=no')
4400 FORMAT(' Jump to Sputtering? 1=yes 2=no')
4500 FORMAT(' Do you want to hold TT constant? 1=yes 2=no')
C Prompt for Inputs

WRITE(*,100)
READ(*,*) QT,LD,M,XT,THETA,EL
WRITE(*,200)
READ(*,*) TPO,TTO,NPO,NTO,RP,RT
WRITE(*,250)
READ(*,*) G1,G2,RO,UO,F,IMP
WRITE(*,4100)
READ(*,*) D,A,CT,FHE,ELH
WRITE(*,300)
READ(*,*) SHP,METH,DIST,TOL,SOR

C Initialization

70 K=1

MT=.1
TP=TPO
NP=NPO
TT=TTO
NT=NTO
U=UO

r
,
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R=RO
RHE=RO
X( 1)NPO
Y ( 1) TTO
Z ( 1) =TPO

C Prompt for Jump to Sputtering Subroutine
WRITE(*,4400)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
CALL ICALC
CP=CT
P12=0.0*
CALL SPUD
GOTO 65
ENDIF

C Prompts for calculation of VBAR, R, Mu,TT
WRITE(*,4000)
READ(*,*) VANS
WRITE(*,4500.)
READ(*,*) TANS
WRITE(*,2800)
READ(*,*) RANS
IF(RANS.LT.1.5) THEN
WRITE(*,3800)
READ(*,*) CKANS
IF(CKANS.LT.1.5) THEN
CALL ICALC
CALL ESC
WRITE(*,3500) R
WRITE(*,3900)
READ(*,*) CKANS
IF(CKANS.LT.1.5) GOTO 75
ENDIF
ENDIF
WRITE(*,2900)
READ(*,*) UANS
IF(UANS.LT.1.5) THEN
WRITE(*,3600)
READ(*,*) CKANS
IF(CKANS.LT.1.5) THEN
CALL ICALC
CALL SRVBAR
CALL SRMT
CALL MU
WRITE(*,3300) U
WRITE( *, 3700)
READ(*,*) CKANS
IF(CKANS.LT.1.5) GOTO 75
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ENDIF
ENDIF

C Do loop for 10 Fixed Point iterations
20 DO 10 J=1,10

K=K+1

80 CALL ICALC
WRITE(*,3000)
IF(RANS.LT.1.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE( *,3100)

CALL SRMT
WRITE( *,3200)
IF(MT.LT.0.0) THEN
WRITE( *11100)
GOTO 60
END IF

IF(UANS.LT.1.5) THEN
CALL MU
WRITE(*,3300) U

C This decrements TP by 1 if Mu is negative
IF(U.LT.0.0) THEN

* WRITE(*,2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80
ENDIF
ENDIF

CALL SRNDT
WRITE( *13400)
IF(NDT.LT.0.0) THEN
WRITE( *,1200)

* GOTO 60
ENDIF

C Use Fixed point iteration to get NP.,TT,TP

PROD=(2.+VBAR*R)*( 1.+RP)/NT/( 1.+RT)/( 1.+MT*MT)

C X(K) is NP

X(K)=(((NP/NDT)**2.33333+1.)**.2857 14)/PROD
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NP=SOR*X(K)+(l.-SOR)*X(Kl1)
C Check for Convergence on NP, if satisfied outputI

C updated results

IF(ABS((X(K)-X(K-1))/X(K)).LT.TOL) THEN

WRITE(*,1700) TOL
WRITE(*,1800) TP,NP,TT,NT
HER=( .-RHE) /( 1.-R)
WRITE(*,1900) MT,U,ISE,R
WRITE(*,1950) CP,HER,P12,LNP*SIN(THETA)
GOTO 60
ENDIF

C Now all variables are updated on most current NP
CALL ICALC
WRITE(*,3000)
IF(RANS.LT.l.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE(*,3100)

CALL SRMT
WRITE( *,3200)
IF(MT.LT.0.0) THEN
WRITE( *,1100)
GOTO 60

A ENDIF

IF(UANS.LT.1.5) THEN
CALL MU
WRITE(*,3300) U
IF(U.LT.0.0) THENa
WRITE( *,2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80

ENDIF

ENDIF

CALL SRNDT
WRITE(*,3400)
IF(NDT.LT.O.0) THEN
WRITE(*, 1200)
GOTO 60

ENDIF
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C Y(K) is TT
IF(TANS.LT. 1.5) GOTO 35
Y(K)=(2.+R*VBAR*(1.+RP))*NP*TP*(l.+RP)/(NT*(1.+RT)*

2 (I.+MT*MT))
TT=SOR*Y(K)+(l1.-SOR) *Y(K-1)

C Now all variables are updated using most current TT
CALL ICALC
WRITE( *,3000)
IF(RANS.LT.1.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE( *,.3100)

CALL SRMT
WRITE( *13200)
IF(MT.LT.Q.0) THEN
WRITE(*, 1100)
GOTO 60
ENDIF

IF(UANS.LT.1.5) THEN
CALL MU
WRITE(*,3300) U
IF(U.LT.0.0) THEN
WRITE(*,2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80
ENDIF
ENDIF

CALL SRNDT
WRITE(*,3400)
IF(NDT.LT.0.0) THEN
WRITE( *,1200)
GOTO 60
ENDIF

IF((QT-ISE).LT.0.0) THEN
WRITE(*, 1400)
GOTO 60
ENDIF

C Z(K) is TP
35 Z(K)=(6.355E-5*(QT-ISE)/(NP*SQRT((1.+RP)/M)

2 *(G1+RP*G2)))**.66667
TP=SOR*Z(K)+(1.-SOR)*Z(K-1)
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C Now output results of most current iterationI

WRITE(*,2600)NP,TT,TP

10 CONTINUE

C prompt to do ten more loops
WRITE( *,800)
READ(*,*) ANS
IF(ANS.LT.1.5) GOTO 20

C Prompt for storing iterations
60 WRITE(*,900)

READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE(*,1000)
READ(*,1500) FNAME
OPEN( 2, FILE=FNAME)
DO 30 I=1,K
WRITE(2,1600) I,Z(I) ,Y(I) ,X(I)

30 CONTINUE
CLOSE(2)
ENDIF

C Prompt for Sputtering calculations
WRITE(*,4300)
READ(*,*) ANS
IF(ANS.LT.1.5) CALL SPUD

C Prompts for another calculation and data changes
65 WRITE(*,700)

READ(*,*) ANS
IF(ANS.GT.1.5) GOTO 50

75 WRITE(*,400)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN

WRITE(*, 100)
READ(*,*) QT,LD,M,XT,THETA,EL
ENDIF
WRITE(*,500)
READ(*,*) ANJS
IF(ANS.LT.1.5) THEN
WRITE(*,200)
READ(*,*) TPO,TTO,NPO,NTO,RP,RT
ENDIF
WRITE( *,550)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
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WRITE(*,250)
READ(*,*) G1,G2,RO,UO,F,IMP
ENDIF
WRITE(*,4200)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE(*,4100)
READ(*,*) D,A,CT,FHE,ELH
ENDIF
WRITE(*,600)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE( *,300)
READ(*,*) SHP,METH,DIST,TOL,SOR
ENDIF

GOTO 70.
50 STOP

END

SUBROUTINE ICALC

C This subroutine does initial calculations which go
C into the CALC common block

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 XT,THETA,EL,DIST,METH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXS,FCXF,

2 RN,RE,VF,VS,LDAS,LDAF,ELH
REAL LCXS,LCXF,MLT,Z,ZS, IMP,VANS,D,A,LNP,CT,FHE

COMMON /INPUT/ TP,TT,MP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,EL,DIST,METH, IMP,VANS,
3 D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,

2 FCXS,RN, RE,VF,VS, LDAS,LDAF,LCXS,LCXF,MLT,LNP

TAV=(TP+TT)/2.
NAV=(NP+NT)/2.
LNP=SQRT(D*LD9822.27/(TP*(1.+RP)/M)**.5)/SIN(THETA)
RN=.19-.237*ALOG1O(3.*TP/EL)
RE=.06-.22*ALOG10(3.*TP/EL)
VF=9822 .27*SQRT( 6. *TP*RE/M/RN)

C VS is based on a Franck-Condon energy of 3 ev
VS=9822.27*SQRT( 6. /M)
Z=ALOG(TAV)
ZS(((94e5Z4.5-)Z74e2*
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2 +.7O5)*Z-3.83)*Z+1l.44)*Z-.31.74
SI=EXP(ZS-13.82)
MLT=2.O+(1O./TAV)*(NAV/1O. )**(.5*(1.-.136*EXP(-NAV)))
SCXS=( (.4282*TAV)**.3338)*1.e-14
SCXF=((.8426*TAV)**.3369)*1.e-14
FIF=MLT*SI/ (MLT*SI+SCXF)
FCXF=1. -FIF
FCXS=SCXS/ (SCXS+MLT*SI)
LDAS=VS/ (NAV*1 .el9*MLT*SI )/SIN(THETA)
LDAF=VF/(NAV*1.el9*MLT*SI) /SIN(THETA)
LCXS=VS/ (NAV*1 e19*SCXS) /SIN (THETA)
LCXF=VF/ (NAV*1 .e19*SCXF) /SIN(THETA)
RETURN
END

SUBROUTINE SRVBAR

C This subroutine calculates VBAR

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,I4ETH
REAL MT,VBAR,PBAR,R,ISE,U,NDT,VANS,D,A,

2 LNP,RHE,CT,FHE,CP
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,

2 RN,RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,FVBAR,SVBAR,VAVG, IMP,ELH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,FHE,ELH,
2 F,G1,G2 ,XT,THETA,EL,DIST,METH, IMP,VANS,D,A,CT
COMMON /CALCI TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,

2 RN,RE,VF,VS,
LDAS,LDAF,LCXS,LCXF,MLT,LNP

COMMON /SR/ PBAR,R,VBAR, ISE,MT,U,NDT,RHE,CP, P12

*C Calculate VBAR

VAVG=4911.13* (MT*SQRT(TT* (1.O+RT) /1) +
2 SQRT(TP*(1.O+RP)/M))

FVBAR=RN*VF*SIN (THETA)
SVBAR=( 1.-RN)*VS*SIN(THETA)

VBAR=(FVBAR+SVBAR)/(9822.27*SQRT(TP*(1.Q+RP)/M))
IF(VANS.LT.1.5) VBAR=O.O
RETURN
END

or ********************
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SUBROUTINE SRMT

C This subroutine calculated MT, the throat mach number
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,

2 XT,THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R, ISE,U,NDT,MTO,A, IMP,
2 VANS,D,AA,CT,FHE,RHE,CP
REAL ELH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,
2 SHP,F,G1,G2,XT,THETA,EL,
3 DIST,METH,IMP,VANS,D,AA,CT,FHE,ELH
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12

C Calculate MT

15 A=NP*(1.0-R)*(1.0-R)/(NT*(2.0+R*VBAR))
IF(A.GT.l.0) THEN
MT=-1 .0
RETURN
ENDIF
MTO=SQRT(A/ (1-A))

C This loop is to adjust VBAR using the most current MT
IF(ABS((MTO-MT)/MTO).GT. .05) THEN
MT=MTO
CALL SRVBAR

GOTO 15
ENDIF
MT=MTO

RETURN
END

SUBROUTINE SRNDT

C This subroutine calculated NDT and most energy loss
C related terms

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,Gl,G2,XT,
2 THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R, ISE,U,NDT,VANS,D,A,LNP,CT,
2 FHE,RHE,CP,CHE,ELH
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,
2 RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,CHI,ELOSS,VAVG, IMP,TRES,P12
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COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2F,Gl,G2,XT,THETA,EL,I

3 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,
2 FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12

100 FORMAT(' ELOSS=',ElO.4)

CHI=17.5+(5.+37.5/TAV)*ALOGlO(100./NAV)
TRES=3.64*(RN*LDAF+(l.-RN)*LDAS)*SIN(THETA)/
2 9822.27/SQRT(TP*(1+RP)/M)
P12=1.-EXP(-( 1.e-5+TRES)/3.e-5)
CHE=15.+P12*(70+3360 ./TP)
CP=CT*NT*MT*SQRT(TT*(.+RT)/TP/.(1.+RP) )/(1.-RHE)"/NP
VAVG=4911.13*(MT*SQRT(TT*( 1.0+RT)/M)+
2 SQRT(TP*(1.0+RP)/M))

ELOSS=IMP*(1.-(1.+P12)*CP)*(CHI+(l.-RN)*(1.
2 -R)*FCXS*(1.5*TAV+
2 5.183E-9*M*VAVG*VAVG-3. )/R)+RHE*CHE*CP/R
WRITE(*,100) ELOSS
ISE=R*NP*9822 .27*SQRT(TP* (1. +RP) /M) *ELOSS*1 .602

* IF(ISE/QT.GT.1.0) THEN
NDT=-l.0
RETURN
ENDIF
NDT=(553.83/(U*LD))**.42857*(QT**.57143)*(1.0-ISE/QT)*
2 SQRT(M/(1.0+RP))*6.35515E-5/(G1+RP*G2)

RETURN
END

SUBROUTINE ESC

C This subroutine calcu lates PBAR and R for D-T. It
C calculates the escape probability for particles based
C on simple exponential attentuation at 50 points across
C the divertor plate and averages the PBAR values by
C weighting them with the local plate particle flux

REAL PS,PF,PST,PFT,PBAR,XC, INCR,ARC,TN,RST,
2 R,EF1,EF2,LDS,LDF,ELH
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 XT,THETA,EL,DIST,METH
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,
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2 RE,VF,VS,LDAS,LDAF,CPI

REAL LCXS,LCXF,MLT,VBAR, ISE,MT,U,NDT, IMP,VANS,
2 D,A,LNPJ,CT,FHE,RHE
REAL NPO,TPO,TPR,NPR,VFR,RNR,RER,MLTR,P12 ,FXT

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,
3 EL,DIST,METH,I11P,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,
2 RN,RE,VF,VS,LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,14T,U,NDT,RHE,CP,P12
COMMON /SUBESC/ ARC,XC,LDF,LDS

INTEGER JL

C Initialize Parameters

xC=0.o
PSTO0.0
PFTO .0
P5=0.0
PF=0.0
EF1l.0
EF2=2 .0
FXT=0.0

C Initial Calculations

INCR=XT/ 50.
TN=TAN( THETA)
NPO=XT*NP/LNP/( 1. -EXP (-XT/LNP))

N TPO=XT*TP/A/LNP/ (1.-EXP (-XT/A/LNP))
C Do Loop to Calculate Escape Probability for a mesh of
C points

DO 50 JL=1,49

XC=XC+INCR
TPR=TPO*EXP (-XC/A/LNP)
NPR=NPO*EXP (-XC/LNP)
RNR=.19 .237*ALOG10(3 .*TPR/EL)
RER=.06-.22*ALOG10(3.*TPR/EL)
VFR=9822 . 27SQRT( 6. *TPR*RER/M/RNR)

Z=ALOG(TPR)
ZS=( ((( -. 9 -*+4 1e 3* -74e 2*

2 +. 705) *Z-3.83) *Z+11 44) *Z-31.74
SI=EXP(ZS-13 .82)
MLT=2.0+(10./TPR)*(NPR/10.)**(.5*(1.-l.36*EXP(-NPR)))
LDS=VS/ (NPR*1 .e19*MLT*SI)
LDF=VFR/ (NPR*1 .e19*MLT*SI)
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ARC=3. 1416-ACOS(XC/SQRT(XT*XT*TN*TN+XC*XC))

IF(METH.LT.1.5) THEN
CALL RMBG(O.0,ARC,EF1,RST)
PS=RST/ARC
ENDIF

IF(METH.GT. 1.5) CALL PROB(LDS,PS,THETA,XT)

PST=PST+NPR*SQRT(TPR) *PS*( 1.-RNR)-

IF(METH.LT.1.5) THEN
CALL RMBG(0.0,ARC,EF2,RST)
PF=RSTI ARC
ENDIF

IF(METH.GT.1.5) CALL PROB(LDF,PF,THETA,XT)

PFT=PFT+NPR*SQRT(TPR) *PF*RNR
FXT=FXT+NPR*SQRT (TPR)

50 CONTINUE

C Calculate final escape probability
PBAR=(PFT+PST) /FXT
R=1. -PBAR*F
RETURN
END

SUBROUTINE HESC

C This subroutine does the same thing as ESC but for He

REAL PS,PF,PST,PFT,PBAR,XC,INCR,ARC,TN,RST,R,
2 1EF1,EF2,LDS,LDF,ELH
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2 ,XT,

2 THETA,EL,DIST,METH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,RN,RE,

2 VF,VS,LDAS,LDAF,CP
REAL LCXS,LCXF,MLT,VBAR,ISE,MT,U,NDT,IMPVANS,

2 D,A,LNP,CT,FHE,RHE
REAL NPO,TPO,TPR,NPR,VFR,RNR,RER,MLTR,VSH,PH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP, RT,LD,QT,M,
2 SHP,F,G1,G2,XT,THETA,
3 EL,DIST,METH, IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,

2 FCXS,RN,RE,VF,VS,
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3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12
COMMON /SUBESC/ ARC,XC,LDF,LDS

INTEGER JL

C Initialize Parameters

XC=0 .0
PST=0 .0
PFT=0 .0
Ps=0.0
PFO . 0
EF1=1 .0
EF2=2.0
FXT=Q. 0

C Initial Calculations

INCR=XT/50.
TN=TAN( THETA)
NPO=XT*NP/LNP/ (1. -EXP (-XT/LNP))
TPO=XT*TP/A/LNP/ (1.-EXP (-XT/A/LNP))

C Do Loop to Calculate Escape Probability for a mesh of
C points

DO 50 JL=1,49

XC=XC+INCR
TPR=TPO*EXP (-XC/A/LNP)
NPR=NPO*EXP (-XC/LNP)
RNR=.19-.237*ALOG10(3.*TPR/ELH)
RER=.06-.22*ALOG10(3.*TPR/ELH)
VFR=9822 .27*SQRT( 6. *TPR*RER/4 ./RNR)
VSH=9822.27*SQRT(6./4.)
Z=ALOG1u(TPR/24. 6)

2 -6.082e-9)*Z+5.666e-10)*Z+1.5e-8

SI=EXP( -24. 6/TPR) *SQRT(TPR/24 .6) *ZS*J.e-6
1LT=2.0+(18.1/TPR)*(NPR/10.)**(.5*(1.-1.36*EXP(-NPR)))
LDS=VSH/(NPR*1 .e19*MLT*SI*0.55)
LDF=VFR/ (NPP* 1.e19*MLT*SI*0 .55)

ARC=3.1416-ACOS(XC/SQRT(XT*XT*TN*'tN+XC*XC))

* IF(METH.LT.1.5) THEN
CALL RMBG(0.0,ARC,EF1,RST)
PS=RST/ARC
ENDIF

LEV
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IF(METH.GT.1.5) CALL PROB(LDS,PS,THETA,XT)

PST=PST+NPR*SQRT(TPR) *PS*(1. -RNR)

IF(METH.LT.1.5) THEN
CALL RMBG(O.O,ARC,EF2,RST)
PF =RST /ARC
END IF

IF(METH.GT. 1.5) CALL PROB(LDF,PF,THETA,XT)

PFT=PFT+NPR*SQRT( TPR) *PF*RNR
FXT=FXT+NPR*SQRT (TPR)

50 CONTINUE

C Calculate final escape probability
PH= (PFT+PST) /FXT
RHE=l . PH*FHE
RETURN
END

C This subroutine evaluates an integral A-B of EFusn
yC Romberg integration. It is used in ESC, HESC, MU, and

C SPUD

$ SUBROUTINE RMBG(A,B,EF,RESULT)

REAL A,B,H,V,FF,R1(12),R2(12),RA,RB,RV,EF,RESULT

INTEGER K,J,L,M,I
C Initial Calculations

DO 50 I=1,12
Rl(I)=0.O
R2(I)0O.0

50 CONTINUE

H=B-A
C Calculate R1,1

IF(EF.LT.1.5) THEN
CALL EVAL1(A,RA)
CALL EVAL1(B,RB)
ENDIF
IF(EF.GT.1.5) THEN
IF(EF.LT.2.5) THEN
CALL EVAL2(A,RA)
CALL EVAL2(B,RB)
ENDIF
ENDIF
IF(EF.GT.2.5) THEN
IF(EF.LT.3.5) THEN
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CALEAL(,A

CALL EVAL3(A,RA)
CAL EAL(BRB
ENDIF

IF(EF.GT.3.5) THEN
CALL EVAL4(A,RA)
CALL EVAL4(B,RB)
ENDIF
R1( 1)=H*(RA+RB) /2.0
DO 400 I=2,10
L=2**( 1-2)
FF=0.0
DO 100 K=1,L
V=A+(FLOAT(K)-O .5) *H
IF(EF.LT.1.5) THEN
CALL EVAL1(V,RV)
ENDIF
IF(EF.GT.1.5) THEN
IF (EF.LT.2.5) THEN
CALL EVAL2(V,RV)
ENDIF
ENDIF
IF(EF.GT.2.5) THEN
IF(EF.LT.3.5) THEN
CALL EVAL3(V,RV)
ENDIF
ENDIF
IF(EF.GT.3.5) THEN
CALL EVAL4(V,RV)
ENDIF
FF =FF +RV

100 CONTINUE
R2 (1) =0. 5*(R1( 1) +IH*FF)
DO 200 J=2,I
R2(J)=((4.0**FLOAT(J-1)*R2(J-i))-R1(J

2 -1))/(4.0**FLOAT(J-1)-1.0)
IF(EF.LT.3.5) THEN

* IF(ABS(R2(J)).LT.1.e-2) THEN
R2 (J)0 .0
GOTO 500
ENDIF
ENDIF

* IF(ABS((R2(J)-R2(j-1))/R2(J)).LT.1.OE-3) GOTO 500
200 CONTINUE

H=H/2.0
le DO 300 M=1,I

R1(M)=R2(M)
300 CONTINUE
400 CONTINUE
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500 RESULT=R2(J)
RETURN

* END

SUBROUTINE EVALl (X, RST)

C This subroutine is function evaluation for fast
C particle calculations of method 1 of ESC

* REAL L,ARC,XC,TN,RST,LDF,LDS, D,A,LNP,CT,FHE
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2 ,XT,
2 THETA,EL,DIST,METH
REAL IMP,VANS

COMMON /SUBESC/ ARC,XC,LDF,LDS
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,
2 Gl,G2,XT,THETA,EL,DIST,METH,
3 IMP,VANS,D,A,CT,FHE,ELH

TN=TAN(THETA)
L=TN*(XT-XC)/(SIN(X)+TN*COS(X))
RST=(ARC/3. 1416)*EXP(-.1.0*L/LDS)

IF(DIST.LT. 1.5) RST=SIN(X) *RST

RETURN

.e END

SUBROUTINE EVAL2 (X, RST)

C This subroutine is function evaluation for slow
C particle calculations of method 1 of ESC

REAL L,ARC,XC,TN,RST,LDF,LDS ,D,A,CT, FHE,LNP
REAL TP,TT,NP,NT, RP, RT,LD,QT,M,SHP, F,G1 ,G2,

2 XT,THETA,EL,DIST,METH

REAL IMP,VANSII COMMON /SUBESC/ ARC,XC,LDF,LDS
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,

p2 F,G1,G2,XT,THETA,
3 EL,DIST,METH, IMP,VANS,D,A,CT,FHE,ELH

TN=TAN (THETA)
LV L=TN*(XT-XC)/(SIN(X)+TN*COS(X))

RST=(ARC/3.1416)*EXP(-1.O*L/LDF)
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IF(DIST.LT.1.5) RST=SIN(X)*RST

RETURNI
END* **** **********

SUBROUTINE PROB (LDA, P, THETA, XT)

C This subroutin2 is function evaluation for method 2
C of ESC

REAL LDA,XC,P,ARC,PT1 ,PT2 ,LAVG,TN,THETA,
2 XT,DIST,LDF,LDS

COMMON /SUBESC/ ARC,XC,LDF,LDS

C Initial Calculations

TN=TAN (THETA)

C Calculate LAVG
PT1=ALOG(TAN(THETA/2.O))
PT2=ALOG(TAN( (THETA+ARC)/2.O))
LAVG=TN* (XT-XC) *(PT2-PTl) /(SQRT( 1. O+TN*TN) *A1C)

C Calculate Escape Probability
P=(ARCI3. l4l6)*EXP(-l.Q*LAVG/LDA)

RETURN
END

SUBROUTINE MU

C This subroutine calculates the conduction fraction

REAL PBAR,R,VBAR,ISE,MT,U,NDT,RST,EF,IMP,VANS,
2 D,A,RHE,CT,FHE,CP,P12
REAL NP,TP,NT,TT,RP,RT,LD,QT,M,SHP,F,G1,G2,

2 XT,THETA,EL,DIST,METHFCOMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,

S2 F,Gl,G2,XT,THETA,EL,
2 DIST,METH,INP,VANS,D,A,CT,FHE,ELH

CALL RMBG(Q.Q,LD,3.,RST)
U=1.-RST/QT/LD
RETURN

IR
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END

SUBROUTINE EVAL3(X,RST)

C This is function evaluation for romberg integration
C of MU

REAL PBAR,RCY,VBAR,ISE,MT,U,NDT,RST,IMP,
2 BOT,VANS,D,A,LNP,RHE,FHE
REAL NP,TP,NT,TT,RP,RT,LD,QT,M,SHP,F,G1,

2 G2,XT,THETA,EL,DIST,METH
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,

2 RE,VF,VS,LDAS,LDAF,CP
REAL LCXF,LCXS,MLT, FC, N, R,T,MA, RPR,TOP,

2 VRPRS,VAVG,LF,LS,P12

COMMON /SR/ PBAR,RCY,VBAR,ISE,MT,U,NDT,RHE,CP,P12
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,

2 Gl,G2,XT,THETA,EL,
3 DIST,METH, IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,ST&,SCXS,SCXF,FIF,
2 FCXF,FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP

N=NP+ (NT-NP) *FC

R=RP+ (RT-RP) *FC

LF=LDAF

LS =LDAS

RP =L *N ( .EP -/F )(l -N *S ( .EP -/S )
2 /(LF*RN*(1.-EXP(-LD/LF) )+(1.-RN)*LS*(l.-EXP(
3 -LD/LS)))

VAVG=4911.13* (MT*SQRT(TT* (1 +RT) /M) +
2 SQRT(TP*(1.+RP)/M)

TOP=RN*(FIF*SIN(THETA)*VF*(l.-EXP(-X/LF))
2 +FCXF*(VF*SIN(THETA)+VAVG*(1.-RCY) )*
3 (1.-EXP(-X/LCXF) ))+(1.-RN)*VAVG*(1.-RCY)
4 *FCXS*(1.-EXP(-X/LCXS))

BOT=RN*(FIF*SIN(THETA)*VF*(1.-EXP(-LD/LF))
2 +FCXF*(VF*SIN(THETA)+VAVG*(1.-RCY))
3 *( 1.-EXP(-LD/LCXF) ))+( 1.-RN)*VAVG
4 *(1.-RCY)*FCXS*(1.-EXP(-LD/LCXS))
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VRPR=RCY*VBAR*TOP/IBOT

T=(VRPR+2 . - (-RCY*RPR) **2.*NP/N) *NP*TP
2 *(1.+RP)/(N*(l.+R))

MA=(1.-~RCY*RPR)*(NP/N)*SQRT(TP*(l.+RP )/T/(1.+R))

RST=N*MA*SQRT(T*(l1.+R)IN) *(MA*MA*T*(l1.+R) *.5+2. 5*T*

2 (1.+R))*1.5735E4

RETURN
END

SUBROUTINE SPUD

C This subroutine calculates sputtering on the divertor
C plate based on an exponential profile. You can used
C the average local temperature for each of 50 points
C across the plate or integration of the MB distribution
C and Yield at each.

REAL UO,Z3,M3,NPO,TPO,x, INC,ETH1,ETH2 ,ETH3,
2 TPR(51),NPR(51)
REAL SP(51) ,Y1,Y2,Y3,YT,SPT,ANS,DIST,METH,

2 IMP,VANS,D,A,CT,FHE
REAL PBAR,RCY,VBAR, ISE,MT,U,NDT,RHE,CP,

2 LDAS,LDAF,LCXS,LCXF,MLT
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,

2 Gl,G2,XT,THETA,EL,P12,LNP
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,

2 FCXS,RN,RE,VF,VS,NM,PEA(
*REAL FLAG,SDT(51)iSHE(51),EI,TPRC,IE,

2 E1,E2,E3,RST1,RST2,RST

COMMON /SR/ PBAR,RCY,VBAR,ISE.,MT,U,NDT,RHE,CP,P12
COMMON IINPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,EL,
3 DIST,METH, IMP,VANS,D,A,CT,FHE,ELH
COMMON ICALCI TAV,NAV,SI,SCXS,SCXF,FIF,
2 FCXF,FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /MB/ TPRC,FLAG,M2,M3,UO,Z3,ETH1,ETH2

CHARACTER*64 FNAME

C FORMAT BLOCK
'ft100 FORMAT(' Input plate material data,

2 UO,Z3,M3,NM(xE24),IE '
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200 FORMAT(' Peak sputtering rate is',E10.4,' CM/YR TP=',
2 E9.4,' NP=',E9.4)

300 FORM-AT(' Sputtering Yield per meter is',ElO.4,' xEl9')
400 FORMAT(' Enter sputtering data file.prn")
500 FORMAT(A)
600 FORMAT(I5,3X,E1O.4,3X,E1O .4,3X,E1O.4,

2 3X,E10.4,3X,E10.4)
700 FORMAT(' Do another plate material? l=yes 2=no')
800 FORMAT(' Use average temps or integrate MB? lavg

2 =integrate')
900 FORMAT(' Do you want to store data? 1=yes 2=no')

a1000 FORMAT(' Impurity yield is GT 1.0 set =0.0')

350 WRITE(*,100)
READ(*,*) UO,Z3,M3,NM,IE
WRITE(*,800)
READ(*,*) ANS
NPO=XT*NP/LNP/( 1. -EXP (-XT/LNP))
TPO=XT*TP/A/LNP/( 1. -EXP (-XT/A/LNP))
SPT=0.0
x=0.0

INC=XT/50.
ETH1=UO* (4.*M+M3) *(4 *M+M3) /4. /M/M3
ETH2=UO*(16.+M3)*(16.9M3)/16./M3
ETH3=UO*6 .25

C This block evaluates sputtering using MB integration
IF(ANS.GT.1.5) THEN
DO 150 I=1,50
Y3=0. 0
SHE(I)=0.0
SDT(I)=0.0
TPR( I )=TPO*EXP (-X/A/LNP)
TPRC=RP*TPR( I)
NPR( I) =NPO*EXP (-X/LNP)
E3=(G2-2. )*RP*TPR(I)
IF(E3.GT.ETH3) THEN
Y3=YLD(TJO,400.,Z3,Z3,M3,M3,E3,ETH3)
IF(Y3.GT.1.0) THEN

* WRITE(*,1000)
Y3=0. 0
ENDIF
ENDIF
EI=.5*(ETH1-(G2-2.)*RP*TPR(I))
IF(EI.LT.0.0) EI=O.0
IF(EI.LT.IE*TPRC) THEN

4 FLAG=1.

2 IF(EI.LT.1.5*TPRC) THEN
CALL RMBG(EI,1.5*TPRC,4.,RST1)
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CALL RMBG(1.5*TPRC,IE*TPRC,4.,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4.,RST1)
ENDIF
RST=RST 1+RST2
RST1=O .0 j
RST2O0.0
SDT(I)=(1.-(1.+P12)*CP)*RST*NPR(I)*SQRT(TPR(I)*

2 (1.+RP)/M)*11083.6/(1.-Y3)
ENDIF

IF(EI.LT.0.0) EI=0.0
IF(CP.LT;0.001) GOTO 550

IF(EI.LT.IE*TPRC) THEN
FLAG=2.
IF(EI.LT.1.5*TPRC) THEN
CALL RMBG(EI,1.5*TPRC,4.,RST1)
CALL RMBG(1.5*TPRC,IE*TPRC,4. ,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4. ,RST1)
ENDIF
RST=RST1+RST2
RST1=0.0
RST2=0.0
SHE(I)=P12*CP*RST*NPR(I)*SQRT(TPR(I)*(1.+RP)/M)

2 *11083.5/(1.-Y3)
ENDIF
ET=.5*(ETH2-1.*(G2-2.)*RP*TPR(I))
IF(EI.LT.0.0) EI=0.0
IF(CP.LT.0.001) GOTO 550

IF(EI.LT.IE*TPRC) THEN
FLAG=3.
IF(EI.LT.1.5*TPRC) THEN
CALL RMBG(EI,1.5*TPRC,4.,RST1)
CALL RMBG(1.5*TPRC,IE*TPRC,4. ,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4. ,RST1)
ENDIF

* RST=RST1+RST2

RST1=0 .0
RST2=0.0
SHE(I)=SHE(I)+(1.-P12)*CP*RST*NPR(I)*
2 SQRT(TPR(I)*( 1.+RP)/M)*11083.5/( 1.-Y3)
ENDIF

550 SP(I)=SDT(I)+SHE(I)
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SPT=SPT+0.02*XT*SP( I)
X=X+INC

150 CONTINUE
ENDIF

C This block evaluates sputtering using average local
C temp

IF(ANS.LT.1.5) THEN
DO 450 I=1,50
Y1=0.0
Y2=0.0
Y3=0.0
SDT(I)0O.0
SHE(I)=0.0
TPR( I) =TPO*EXP( -X/A/LNP)
TPRC=TPR( I)
NPR( I) =NPO*EXP (-X/LNP)
E1=TPR( I) *G2*RP
E2=TPR(I)*2.*RP*(G2-1.)
E3=TPR(I)*RP*(G2-1.)
IF(E3.GT.ETH3) THEN
Y3=YLD(UO,400. ,Z3,Z3,M3,M3,E3,ETH3)
IF(Y3.GT.1.O) THEN
WRITE( *,1000)
Y3=0.0
ENDIF
ENDIF
IF(E1.GT.ETH1) THEN
Y1=YLD(UO,400.,1.,Z3,14,M3,E1,ETHl)
ENDIF
IF(E2.GT.ETH2) THEN
Y2=YLD(UO,400.,2.,Z3,4.,M3,E2,ETH2)
ENDIF
SDT(I)=9822..27*NPR(I)*SQRT(TPR(I)*(1.+RP)/M)*Yl*(1.

2 -(.+P12)*CP)/(1.-Y3)
SHE(I)=9822.27*NPR(I)*SQRT(TPR(I)*(1.+RP)/M)*

2 Y2*CP/(l.-Y3)
SP(I)=SDT( I)+SHE( I)
SPT=SPT+.02*XT*SP( I)
X= X +INC

450 CONTINUEI ENDIF
C On screen Output of results

PEAK= SP(1)*.0315/NM
WRITE(*,200) PEAK,RP*TPR(1) ,NPR(1)
WRITE(*,300) SPT

C Prompt for storage of sputtering rates for each of 50
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C points

WRITE ( *,900)I
IF(ANS.LT.1.5) THEN
WRITE(*,400)
READ(*,500) FNAME
OPEN (3, FILE=FNAME)
DO 250 J=1,50
WRITE(3,600) J,SP(J),SDT(J),SHE(J),TPR(J),NPR(J)

250 CONTINUE
CLOSE(3)
ENDIF

C Prompt for another calculation
75 WRITE(*,700)

READ(*,*) ANS
IF(ANS.LT.1.5) GOTO 350
RETURN

END

REAL FUNCTION YLD(UO,C,Z1,Z2,M1,M2,EO,ETH)

C This is sputtering yield function evaluation based on
C D.L. Smith's model

REAL UO,C,Z1,Z2,MI,M2,EO,ETH

YLD=C*Zl**.75*(Z2-1.8)*(Z2-1.8)*( (M1-.8)/M2)
2 **1.5*(EO..ETH)/UO/(EO.ETH+50 *Z2*Z1**.75)**2.
RETURN

END

SUBROUTINE EVAL4 (E, RST)

C This is function evaluation for MB integration of
C SPUD

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,METH
REAL IMP,VANS,D,A,CT,FHE, ELH,TPRC,FLAG,
2 M2,M3,UO,Z3,ETH1,ETH2,EO
REAL RST,E

COMMON /INPUT/ TP, TT,NP,NT,RP,RT,LD,QT,M, SHP, F,
2 G1,G2,XT,THETA,EL,

MI1
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3 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH

COMMON /MB/ TPRC,FLAG,M2,M3,UO,Z3,ETH1,ETH2

IF(FLAG.LT.1.5) THEN

EO=2.O*E+TPRC*(G2-2.)

RST=SQRT(EITPRC) *EXP( -E/TPRC) *
2 YLD(UO,400.,1.,Z3,M,M3,EO,ETH1)ITPRC
ENDIF
IF(FLAG.GT.1.5) THEN
IF(FLAG.LT.2.5) THEN
EO=2.*E+2.*TPRC*(G2-2.)
RST=SQRT(E/TPRC) *EXP( -E/TPRC) *

2 YLD(UO,400. ,2. ,Z3,4. ,M3,EO,ETH2)/TPRC
ENDIF
ENDIF
IF(FLAG.GT.2.5) THEN
EO=2.*E+41.*TPRC*(G2-2.)
RST=SQRT(E/TPRC) *EXP(-E/TPRC) *
2YLD(UO,400. ,2. ,Z3,4. ,M3,EO,ETH2)/TPRC

ENDIF
RETURN
END



APPENDIX C

GENERIC DIVERTOR MODELING

The best approach in modeling a divertor is to use as

many known data values as possible. However, in the absence

of knowledge about the value of a particular parameter some

sort of estimate must be made in order to continue modeling.

The purpose of this appendix is to present calculational

methods for the estimation of some DIV input parameters and

reasonable ranges for others.

C.1 Power Flux into the Divertor, Qt

The power flux into the divertor can be estimated using

the equation

Qt (W/m) =N PA1d (C.1)

where P (W) is the total power to be exhausted, N is the

number of divertor plates (a reactor may have more than one

divertor, each with more than one plate), and Aid(ml) is

the cross-sectional area of the plasma as it flows into the

divertor.
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The power to be exhausted and the number of divertor plates

are usually known, so determining Qt depends on finding the

plasma cross sectional area. For a Tokamak, this area can

be estimated as
3

F 2n a A
AI,d(m 2) = (C.2)

q

where a(m) is the plasma minor radius, As(m) is the scapeoff

thickness (normally several heat flux scale lengthes, XQ), q

is the safety factor on edge, and Fe is a flux expansion

factor at the throat to account for the normal expansion of

magnetic field lines as they enter the divertor. Reference

3 gives a value for Fe of about 1.4. The heat flux scale

length, XQ(m), is often a given parameter. If it is not

given, it can be estimated using25

XnXT AX n (C3)AQ X + X ,3 A(c3
2n T

where A is the ratio of temperature to density scale

lengthes. The density scale length, Xn, would be calculated

as given in Section 3.8 using some estimate of the fluid

velocity (-.3-.5 of the sound speed).
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C.2 The Divertor Connection Length, LD

This connection length is the distance along field lines

between the divertor throat and the target plate. It is a

function of the magnetic field line topology and sensitive

to the plate position being considered. If its value is

unknown, some fraction (.2-.3) of the outside connection

length can be used. The outside connection length, Ls, is

Ls(m) = 2r Rq (C.4)

where R(m) is the plasma major radius and N is the number of

divertors. Thus

LD(m) z .25 Ls  (C.5)

C.3 The Throat Electron Plasma Temperature, Tt
ti

If the symmetry point electron temperature, Ts, is

specified, this value can be extrapolated forward to the

divertor throat using an equation based on 100% electron

thermal conduction3



*-VT'T% 71W q -77A - - - V

153

TT7  7P Ls

T 7/2 (eV)= T 7/2(eV)- 7Ps (C.5)

where P and Ls are as previously defined, N is the number of

divertor plates, Al, S(m 2 ) is the cross-sectional area of the

plasma outside the divertor (i.e. no flux expansion factor),

and x. is the Spitzer electron thermal conductivity

coefficient (-2000 W(eV) -/2m-1).

C.4 The Throat Electron Density, nt

The pressure balance equation can be used to estimate the

throat electron density, once the throat temperature has

been calculated. Thus,

n Tnm-,) s Tts 1C.6)nt(m ) = Tt5 C6

where ns(m-3) is the symmetry point electron density. The

mach numbers squared (T 2 ) at both locations are assumed to

be small and can be neglected. If after a computer run the

mach number at the throat is found not to be small, then

this value could be used to adjust the throat density

(divide by l+flt).
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C.5 Estimates for the Plate Electron Temperature and

Density, Tp and np

Another equation based on the assumption of 100% electron

thermal conduction can be used to get an initial estimate of

Tp 3 Thus,

p.

7/2(eV )  T 7/2(eV ) 
7QtLD (C.7)p V 2 xt((V)

and the plate electron density estimated using the pressure

balance equation,

n n Tt dt t' (C8)~~~np(m 3) =( . )

2T 1 + r

where the mach number at the throat has been assumed to be

zero and the mach number at the plate set equal to 1.0. If

a sample run shows the mach number at the throat not to be

small, then the plate density can be adjusted by multiplying

by (1 + Nt2).

C.6 Reasonable Ranges for Other Input Parameters
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Based on a review of the literature and experience with

the DIV code, Table C.1 below displays reasonable ranges for

other input parameters for which no calculation or estimate

has been given in the body of this thesis or this appendix.

Table C.1

Parameter Ranges

Parameter Units Range

Pump Fractions
f and He 0-.5

Diffusion
Coefficient,D m2 /sec .8-1.5

Scale Length
Ratio, A .7-1.1

Shape Factor,a 3-8

Field Line
Angle of Radians .09-.79
Incidence,0 (50-450)

A few additional comments regarding other parameter values

are warranted. The mass the the D-T ions is usually taken

to be 2.5 amu. If you are going to calculate R and i in the

DIV program, then these input values do not matter.

t4
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APPENDIX D

DISCUSSION OF NEUTRAL ESCAPE PROBABILITY

As stated in Chapter 3, the recycling coefficient, R, can

be approximated as l-pf, where f is the pumped fraction, and

is the average neutral escape probability. Section 3.5

outlined the various calculational approaches to determining

f;. This appendix presents a discussion of the effects of

variations in certain parameters on the neutral escape

probability and a comparison of the three calculational

methods.

D.1 Effects of Varying Parameters

The parameters required to calculate the neutral escape

probability are:

Xt  - the width of the divertor plate (M)

e - the angle of incidence of the field lines to
the divertor plate (radians)

T - the temperature of the plasma in front of the
plate (eV). This could be the plate temperature
or an average of the throat and plate
tempertures;

n - tqe electron density in front of the plate.
(m ) Again, this could be the plate or an
average quantity.

EL - the material and particle dependent reduced
energy for the calculation of the reflection

156
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coefficients (eV).

I - Number of mesh points along the divertor plate

Each of these parameters was varied to examine its effect

on the neutral escape probability. In each case, the effect

on p was qualitatively predictable. These effects are

discussed below.

X - As X increased the escape probabilityt t
decreased. This was due to the fractional
decrease in the tip area of the plasma wedge.
Most of the particles that escape do so out of
the tip of the plasma wedge. Increasing the
width of the divertor plate just increases the
area from which particles do not escape.

0 - As 0 increased the escape probability
decreased. This makes sense, since increasing 0
increases the effective thickness of the plasma.

T - As T increased, the escape probability
decreased. The temperature is used in the
calculation of particle ionization MFP,
appearing in both the numerator (velocity term),
and the denominator (in the reaction rate
coefficient). This result implies that the
<oV>io. term is more sensitive to temperature
than the velocity term.

n - As the density increased p decreased. This is
because the MFP for ionization scales as 1/n for
density. Increasing n decreases the MFP and
thereby the escape probability.

EL - As EL increases so does p. For a larger
reduced energy the fraction of particles in the
fast group is greater. Particles from this I_

group make up most of those that escape, so
increasing their fraction increases the escape
probability.

I - Past an I of 50 (especially for larger escape
probabilities) the difference between calculated
escape probabilities is less than 5%. Based on
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this an I of 50 was used for the escape
probability subroutine in the divertor model
program DIV.

D.2 Comparison of Methods

As described in Section 3.5, there are three different

methods that can be used in the divertor model program to

calculate p. The "lv" method calculates an average escape
avg

distance (distance to the plenum) for each mesh point. The

escape probability for a particle emitted from a point is

then, p=exp[-i(x)/X], where x is the appropriate energy

group ionization MFP. The second method, "integral",

integrates the escape probability, p=exp[-l(xO)/X],

directly to arrive at p. The third method, "Integral

w/cosine distribution", is the same as the second but adds a

cosine angular distribution probability for the reflected

particles.

Figure D.1 presents the results of calculating p using

each of the three methods for a range of electron densities

from 5x10 8 to 5x10 2 0 m- 3  At high escape probabilities

(corresponding to low recycling) the lavg and Integral

methods yield very similar values for p while the Integral

w/cosine method is 50-60% lower. The lavg and Integral

methods continue to be close in value down to values of .5

for p. Beyond this point the methods are not far apart in
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absolute value but as fractions of each other the difference

increases to about 30% at small values of p. The Integral

w/cosine method produces a value for p lower than the other

two methods except for p < .1 . In this region the lavg

method is a reasonable approximation for the Integral

w/cosine method (assumed to be the most realistic predictor

of the actual escape probability because it takes angular

probability into account) and takes much less computational

time. All three methods are available in the DIV program.

at
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APPENDIX E

BENCHMARKING INPUT AND OUTPUT DATA

This appendix tabulates the DIV input data used in the

benchmarking cases presented in Chapter 5, along with the

output from the divertor model code. The symbols used in

the tables that follow are the -same DIV program variables

presented in Tables 4.1 and 4.2 of Chapter 4.
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Table E. 1

JAERI Case Input and Output Data

Input Output

Parameter Value Parameter Value Parameter Value

QT 17e6 R .81 TP 3.8

LD 13.33 U - NP 9.1

M 2.0 F 1.14 TT 35.0

XT .29 IMP 1.45 NT 1.8

THETA .35 D 1.0 MT .34

EL 9660 A .7 U .61

TP 4.0 CT 0.0 ISE .51

TT 37.0 FHE 1.14 R .8

NP 9.1 ELH 20400 CP NA

NT 1.8 SHP 3.0 HER NA

RP 1.0 METH 2.0 P12 NA

RT 1.0 DIST 2.0 LNP NA

G1 3.9 TOL le-3

G2 3.9 SOR 1.0

Note: NA means "Not Applicable"

I L*
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Table E.2

Harrison et al Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 107e6 R .99 TP 23.8

LD 10.0 U - NP 9.2

M 2.5 F .028 TT 63.0

XT .27 IMP 1.0 NT 6.97

THETA .26 D 1.0 MT 8.1e-4

EL 9660 A .7 U .99

TP 25.5 CT .05 ISE .16

TT 66.0 FHE .031 R .99

NP 9.24 ELH 20400 CP .025

NT 6.97 SHP 4.0 HER 2.23

RP 1.0 METH 2.0 P12 .30

RT 1.0 DIST 2.0 LNP .021

Gi 3.0 TOL le-3

G2 3.0 SOR 1.0
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Table E.3

ZEHPYR Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 31e6 R .471 TP 10.5

LD 15.0 U - NP 8.68

M 2.5 F - TT 28.0

XT .35 IMP 1.0 NT 3.66

THETA .26 D 1.0 MT .70

EL 9660 A .7 U .61

TP 10.8 CT 0.0 ISE .16

TT 26.7 FHE - R .471

NP 8.6 ELH 20400 CP NA

NT 3.66 SHP 5.0 HER NA

RP .70 METH 2.0 P12 NA

RT 1.02 DIST 2.0 LNP NA

G1 3.8 TOL le-3

G2 4.3 SOR 1.0

Note: The recycling coefficient, R, was not calculated.

.1S

-.1 % '::- : - " 
"
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Table E.4

NET Report #50 Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 81.3e6 R - TP 11.0

LD 15.0 U - NP 13.4

M 2.5 F .034 TT 64.8

XT .35 IMP 1.0 NT 5.0

THETA .26 D -1.0 MT 2.3e-3

EL 9660 A .7 U .991

TP 7.6 CT 0.05 ISE .21

TT 67.3 FHE .034 R .998

NP 14.0 ELH 20400 CP .025

NT 5.0 SHP 4.0 HER .99

RP 1.2 METH 2.0 P12 .30

RT 1.0 DIST 2.0 LNP .031

G1 4.8 TOL le-3

G2 3.42 SOR 1.0

.. J..*..p-..J '|
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ABSTRACT

Plasma exhaust and impurity control represent significant

problems for the viability of fusion as an energy source.

The divertor concept is an attractive solution to these

problems in which fuel particles and ash are exhausted into

a separate chamber, away from the plasma, where they can be

impacted on a target plate, neutralized, and pumped out of

the reactor. The performance of conceptual divertor

designs, though, can presently only be assessed with the use

of plasma edge models. This thesis examines the necessary

components of these models and develops a simple,

comprehensive, and accurate divertor model.

Divertor modeling is a complex process because of the

strong coupling between numerous reactor systems (core

plasma, first wall, divertor, pumping,...) and the

nonlinearity of the fluid equations used in modeling. Some

models oversimplify both the equations and processes

included to obtain analytic expressions for divertor

parameters. While these approaches have identified useful

dependencies, they do not yield quantitatively accurate

results. More sophisticated models attempt to include all

the physics and solve the fluid equations in two dimensions

(axially and radially) resulting in computer codes which are

highly numerical and complex.
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The objective in this thesis has been to develop a simple

and comprehensive model of the divertor region which is

highly usable and which gives quantitatively accurate

results. Therefore, it includes the key processes of:

neutral recycling; impurity production and radiation; remote

radiative cooling; neutral pumping; particle convection; ash

effects; and the effects of divertor geometry and plate

material. The fluid equations are solved - for the plate

temperature and density, and the divertor throat

temperature, using a fixed point iteration routine with

Gauss-Seidel updating and successive over-relaxation.

Neutral particle modeling is accomplished with a simple

model of a wedge-shaped section of plasma overlying the

divertor plate and a simple slab attenuation model. The

results of benchmarking the model developed here against

four other divertor models was very successful and validates

the approach taken.

4i
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CHAPTER 1

INTRODUCTION AND HISTORICAL REVIEW

The purpose of this thesis is twofold: (1) to present an

overview of the methods and approaches to modeling fusion

reactor divertors; and (2) to develop a simple, yet

comprehensive, model which will allow divertor performance

to be examined as a function of divertor geometry, core

plasma properties, and pumping capability. With such a

model the sensitivity of divertor performance to key

parameters can be evaluated and, thus, modifications can be

identified to achieve operational requirements.

1.1 Background

Much of the current research on tokamaks centers on the

problem of handling plasma exhaust and impurity control.

Plasma particles will eventually diffuse outward across

magnetic flux surfaces until they encounter a physical

boundary, for example, the reactor vessel first wall. On

striking this wall the particles deposit energy and can also

physically erode the wall through sputtering. These

interactions increase the cooling requirements for the first

wall and decrease its service lifetime. More significantly,

the influx of sputtered wall material (impurities)

1 "I
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represents an energy sink in the plasma due to atomic

ionization and radiation emission by repetitive collisional

excitation and bremssstralung processes. These impurities

also cause a fuel depletion effect by reducing the allowable

density of fuel ions in the plasma. For a givei plasma

electron density, an impurity ionized to a +Z state will

take the place of Z fuel ions (+1) , reducing the amount of

fuel available for fusion and thereby, reducing reactor

power. This fuel depletion effect also occurs by virtue of

the buildup of fusion reaction by-products (helium for a D-T

plasma).

The problems of heat deposition, wall erosion, fuel

depletion, and plasma cooling have provided the impetus for

the development of several impurity control and exhaust

handling concepts. Among the most successful of these is

the divertor concept.

The divertor concept involves magnetically perturbing

field lines near the edge of the core plasma such that they

leave the main reactor chamber and enter a separate

"divertor" chamber (Figure 1.1). Plasma particles

(electrons, fuel, reaction products, and impurities)

diffusing out of the core plasma region are swept along

these field lines until they intercept a material target or

plate. In this way, particles are intentionally impacted on

a specially designed target plate rather than on the vessel

N
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Coilactar Plates

Figure 1.1 Divertor Diagram



first wall. It is assumed that servicing damaged divertor

plates will be less of an impact on machine availability

than servicing a damaged first wall. The neutral particles

coming off the divertor plate can subsequently be pumped out

of the divertor chamber. Major design considerations for

the divertor system include; handling the large heat fluxes

(radiation and particle), coping with potentially severe

material erosion problems, and providing adequate neutral

pumping to satisfy impurity exhaust requirements.

1.2 Rationale for Divertor Modeling

Divertor design requires development of models for the

edge plasma and divertor regions which establish plasma

properties and define plasma interaction with reactor

components (walls, target plate, pumps). In general these

models should include transport both across and along field

lines. Among the most important plasma parameters for

divertor design are the plasma density and temperature in

front of the divertor plate. These parameters establish the

heat and particle loads which determine the cooling

requirements and erosion rates at the plate. In addition,

modeling of the neutral particle transport is required to

estimate the fraction of neutrals (D-T and He) coming off

the divertor plate that escape through the plasma fan hi1
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overlying the plate and are pumped out of the divertor

chamber. The gross amount of helium-ash pumped will then

determine the steady state concentration of helium in the

core plasma. The total heat exhausted into the divertor

determines the fraction of the fusion alpha power that will

be deposited on the reactor first wall. Plasma conditions

in the divertor will influence the amount of impurities

produced at the plate and their probability of transport

into the main plasma, poisoning it.

The above discussion implies a substantial linkage

between divertor operation and ultimate fusion reactor

performance. This impact has made the modeling of the

plasma edge and divertor regions an important area of study

and one which has received significant attention.

1.3 Models Available and Approaches

The sophistication of impurity control modeling has

increased greatly over the past 5-10 years. Beginning with

simple, almost heuristic models, there has been an evolution

to two dimensional (2D) computer codes employing realistic

geometries. In general, most of these models start with a

form of the plasma fluid equations originally derived by

Braginskii and vary in the number of dimensions considered,

atomic processes modeled, and number of fluids assumed.



6

One early model by Mahdavi 2 (1981) solved the fluid

equations in one dimension (1D), along field lines, for the

scrapeoff region by assuming the dominance of parallel

electron heat conduction. This assumption allowed analytic

expressions to be derived for temperature and density. The

predictions of this model compare qualitatively with

experimental results in reproducing a strong dependence of

scrapeoff temperature and density on main plasma boundary

density and a weak dependence on fusion alpha power. This

model did not, however, account for the significant effects

of particle recycling at the divertor plate. Another ID,

one fluid model along field lines, by Harrison, Hotston, and

3Harbour (1982), also assumed the dominance of electron

parallel heat conduction, but included neutral particle

recycling, pumping, and impurity radiation. It is this

neutral particle recycling which cools the plasma in front

of the divertor target plate, reducing the heat load and

sputtering. This model's assumption of 100% electron heat

conduction has limited its application to a narrow range of

plasma conditions in which such an assumption is valid.

A D model by Harbour and Morgan (1984), ZEPHYR, uses two

sets of fluid equations (electron and ion) and solves them

numerically for the ion and electron temperatures and

densities along field lines from a "watershed" (or symmetry)

point between divertors to the divertor plate(s). The
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ZEPHYR model was used for the divertor design in the

International Torus (INTOR) study. Peng and Galambos5 (1984)

numerically solved a ID, one fluid, set of equations for the

temperature and density at two points (divertor throat and

plate). This "two-point" model was used for

scaling/parametric studies of divertor performance, and, in

combination with the ZEPHYR code, was used for particle

escape studies of divertors6  In these studies the

recycling coefficient, a key parameter, was not calculated,

but rather, was taken as an input from the case being

benchmarked.

Other codes have been developed as 2D or quasi-2D.

ODDESSA by Prinja and Conn 7 (1984) is such a quasi-2D code,

in which radial solutions of the fluid equations are coupled

between a watershed point and the divertor recycling region.

This approach has the advantage of giving the radial

variation of plasma parameters and linkage between the core

plasma edge region and the divertor region without entailing

the use of more complex 2D solution methods. The PLANET

code 8 of the Princeton Plasma Laboratory and the code of

Braams 9 1 0 (1983), used to model the Next European Torus

(NET), are examples of 2-D codes employing realistic

geometries.

One difficulty encountered in solving the fluid equations

is that they represent a highly nonlinear set of equations

I
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(even in 1D) which are normally not solvable by ordinary

numerical means1' The least cumbersome models arrive at I
analytic expressions only by grossly simplifying the

equations. The more sophisticated 1D and 2D models are

computationally cumbersome, requiring specialized numerical

methods on powerful computers. Even implemented as such, it

is noted that these codes are not as computationally

"robust" as desired (i.e. they do not always converge) 4

1.4 Approach and Rationale for a Simple and Comprehensive

Model

The development of a divertor model involves a tradeoff

between making the model readily "usable" and making it

"accurate" and "applicable" to a wide range of reactor

designs and divertor conditions. If one simplifies the

fluid equations and neglects modeling certain key processes

in the divertor, the results will be qualitatively and

quantitativley suspect. If one attempts to include all the

physics of the divertor in more than one dimension, the code

becomes computationally complex. In many instances, this

complexity makes it necessary to run the code on a mainframe

and requires a large amount of pre-run preparation time to

configure the code for the problem at hand and to calculate

and specify various parameters (diffusion coefficients,

%F
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ionization energies ,reaction rate parameters, ect.). In

this way the code becomes less interactive and less

"usable".

The purpose of the research described in this thesis is to

produce a simple, yet comprehensive, model of the divertor

region which can be implemented on a personal computer so as

to retain an interactive capability. To achieve the desired

goal, the model must satisfy three requirements. First, it

must remain as analytic as possible so as to reduce the

variety and complexity of any numerical methods used. This

requirement will limit the number of dimensions in which the

fluid equations are solved. Second, it should include the

following significant processes in the divertor: neutral

recycling, impurity production and radiation, line

radiation, neutral pumping, particle convection, 3nd the

effect of divertor geometry and plate material. Finally, the

model must yield results comparable to the more

sophisticated models to validate the approach used.

1.5 Outline of Thesis

Chapter 2 of this thesis presents the diverse ingredients

necessary for an impurity and particle control model, and

highlights the essential issues and physics involved in

these models. This chapter is included to give perspective

I
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to the final choices made for the divertor model adopted

here. Chapter 3 details these choices and develops the

analytic expressions and the evaluation methods used in the

final model. Chapter 4 is a description and discussion of

the computer code which implements the divertor model,

including the numerical methods employed. Chapter 5

compares the results of this model to those obtained by some

of the previously described divertor models. Finally, a

summary of this work and its major conclusions are presented

in Chapter 6, together with suggestions for future work and

refinements



CHAPTER 2

MODELING OF THE PLASMA EDGE REGION

Models of the plasma edge region and divertor chamber

vary widely in their approach and included processes

depending on their application. They can vary from a point

model to three dimensional (3D), and may be based on kinetic

or fluid approximations. However, as discussed below, there

are certain basic components, and fundamental processes that

must be accounted for in the development of any model.
1

First, the model must include a set of plasma transport

equations which are tailored to a specific or schematic

geometry. To solve the equations, a set of boundary

conditions must be applied. For a divertor, these boundary

conditions generally include the sheath condition present at

the target plate. The transport equations in many instances

include particle, momentum, and energy source (or sink)

terms that must be calculated. These source terms usually

arise from the recycling of neutrals from walls or the

divertor plate, or from refueling of the plasma. Obtaining

the spatial distribution of the neutrals involves detailed

neutral transport calculations, including neutral and ion

reflection from surfaces and neutral-ion interactions.

These distribution calculations in turn enter into the

determination of (1) the helium-ash pumping efficiency of

11
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the divertor, and (2) the production of impurities by

charge-exchange neutrals. An estimate of impurity production

(by neutrals or ions) must be included as the impurities

will alter plasma energy balances via ionization and

radiation losses. From a design standpoint these estimates

can also provide an evaluation of the erosion by self-

sputtering of reactor walls and the target plates.

A final requirement is that all these individual

components and processes must be linked together in an

interactive way to obtain a self-consistant solution. What

follows is a more detailed discussion of each of these

components and processes.

2.1 Transport Equations

Traditionally, two different sets of transport equations

have been applied to the plasma edge region; kinetic, and

fluid. Each is derived from the first three moments of the

Boltzmann equation. The applicability, or appropriateness,

of either set can be determined by estimating the

collisionality of the plasma being modeled.

The effective collisionality of a plasma, v, can be

defined as the ratio of the effective mean free path for 90'

scatter collsions of ions and electrons, X, to a

characteristic length, L, v=A/L. This collisionality could I
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also be called the Knudsen number from molecular gas

dynamics. For an axisymetric toroidal device, L is the

connection length L=nRq, where R is the plasma major radius,

and q is the safety factor on edge. When v<<, the plasma

is highly collisional and the fluid approximation is

appropriate. When v>>1, a kinetic treatment is warranted.

Between these two limits, the fluid approach can be used,

but with some caution.

The mean free path for cumulative 90 ' scatter can be

written as:
II

X(m) 5 x 106 T 2(eV) n e(m-3)-1 (2.1)

where T is the plasma temperature and ne is the plasma

electron density.

Equation (2.1) is plotted below in Figure 2.1 as a

function of T and ne. For typical values of L, 10-50 m, the

plot implies that the fluid approximation is valid for low

temperatures and high densities, but not valid for low

densities and high temperatures. It should be noted that

typical parameters for the plasma edge region can be

densities in the range 1016 -1020 m- 3 and temperatures in the

range 1-400 ev. However, for most operating or planned

devices, the edge density and temperature should be in a

I M ~u9> :
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Figure 2.1 The Mean Free Path for 900 Scattering
as a Function of n and T [reference 11)



region where the fluid approximation is applicable. 15

The form of the fluid equations used in most models is

generally derived from the formulation of Braginskii. 1

Neglecting a few terms these equations have the form of

conservation equations for particles, momentum, and energy:

i-V, r + Sn = 0

-V R + Sp = 0 (2.2)

-V. Q + Se = 0

where r, R, and Q are the particle, momentum, and energy

fluxes, respectively, and Sn' Sp, Se are the associated

source terms.

Several critical assumptions are required to arrive at

the above form of the fluid equations and they include: the

magnetic field at any point is externally determined; steady

state conditions apply (which negates any microturbulence

terms); and collisions and gyromotion are sufficient to

maintain a Maxwellian distribution for the particles.12

The fluid equations can be expanded to more detail and

written in a "semi-conservative" form in which as many terms

as possible are expressed as the divergence of a flux. For

circular magnetic flux surfaces the equations become:1I

1I
%JI
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Continuity

a(nv ) (1 D n - +S (2.3)
a r r O r rj + nn

Momentum

a 2Pi + p + mnv + 1.28 rn T. 1 i =

Sp mvll(-nv r + ) (2.4)

Ion Energy

a [ ( T + 1 nm v2)nvl- nXI -i=

a a raaT. 5 1
-V, - rinv4- r+1 T.+- mv'e)+r ar(2 + 2 1)

( &a - nvr) + (2.5)

and

Electron Energy
-n e aTe a

5 TenVll - n×, -) F v-I (nTe) +

Sa 5 (On n + nXe 0Tel+e + Se
r rr 2 e Qr Svr) A E

(2.6)

In these equations viscous effects have been neglected. The

variable C is the coordinate along field lines, while r is

the radial direction, the cross field direction. The

velocity, vil, is the fluid velocity along field lines, vr is

the radial fluid velocity, n is the particle density, Ti,e

"\',"".,,%" ",'\'',;,"," ', ,. ". -.,', ',', 'L ,' .',." .'', ...;" .".,'.,".".. % .. -.' -v -,.; "% ," '." ,.'... .'- Ik
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is the ion, electron temperature, m is the ion mass, Ti is

the ion collision time, Di is a radial density diffusion

coefficient, X1,I1 is a heat diffusivity (radial and

parallel). The term Q. is the classical ion-electron energy

equipartition rate. The terms Sn, Sp, and Se are,

respectively, the density, momentum, and energy source terms

from impurity and neutral atom collisions. The term Pi,e is

the ion, electron pressure (nT).

In the above equations, the requirement for plasma

neutrality makes the continuity equations for the -ions and

electrons the same and the momentum balance equations for

electrons and ion have been combined.

The fluid equations are four highly nonlinear, second

order partial differential equations in n, vil, Ti, vr, and

Te They involve source terms which tend to be nonlinearly

dependent on plasma parameters and are subject to their own

modeling equations. Solution of these equations usually

involves some degree of simplification (such as going to one

dimension, or assuming the dominance of parallel electron

conduction as the only energy transport mechanism) and an

V iterative process to converge on a solution because of the

source terms. As a first step, though, a set of boundary

conditions must be specified.

2.2 Boundary Conditions

A
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Depending on the dimensionality of the problem, there may

be as many as four boundaries to be considered in the

computational mesh: the main plasma, the reaction chamber

walls to which field lines are parallel, and two or more

target plates. The symmetry of the problem can often be

used. to divide the edge plasma into two (or more) regions,

each flowing to a target plate.

The boundary conditions of the main plasma can be set in

several ways. The core-plasma edge density and temperatures

(electron and ion) can be specified at a particular point

(like the symmetry point). If the equations are only to be

solved along the field lines, then these values could be

used as radially representative across the entire edge

region at that axial position. This would tend to

overestimate the sputtering, recycling, and heat deposition

on the target plate at most points since these represent

peak radial values (T and n decrease radially). Another

approach for a 1D solution would be to use a simple edge

radial profile (exponential) in order to integrate for

average values of density and temperature. This approach

would tend to underestimate the heat flux to the target

plate at some points (where T and n are larger than their

average values) and overestimate it at others (where T and n

are less than these average values). Using the same simple

-U
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radial profile, the ID solution could be converted to a

quasi-two dimensional one by solving the ID equations

stepwise across the edge region. If the full 2D equations

were used, then a set of fluxes (particle, momentum, and

energy) from the main plasma could be used as boundary

conditions.

The boundary conditions at the wall would involve the

influx of reflected charge-exchange neutrals and the

impurities they produce by sputtering. These particles

would represent a form of energy and momentum sinks, or

particle sources. For a 2D solution the fluxes themselves

could be used. For a 1D solution, the only way to include

them would be as volumetric sources or sinks.

At the target plates an electrostatic potential forms.

This sheath potential retards the electron flow so that ion

and electron fluxes to the plate are equal, thus maintaining

plasma neutrality. At the sheath the particle flow becomes

collisionless, so the fluid approximation breaks down. The

requirement for equal electron and ion fluxes leads to

boundary conditions involving the particle and heat fluxes

to the plates. From the continuity and momentum equations

it can be shown that the fluid flow velocity cannot exceed

the local sound speed as the plate is approached (i.e. i=

v,,/Cs<1, where 'X is the mach number and Cs is the sound

speed). The Bohm Criterion requires that the flow velocity

v1 / 8 1 hr i stemchnme n si h on



20

at the plate be at least sonic for a stable sheath to

form.11  Therefore, the usual modeling assumption is that

the fluid velocity at the plate is the local ion sound

speed; i.e. 9=1.

The power to the plate is usually expressed in terms of

an energy transmission factor, y , defined as the ratio of

power flux to the plate to, particle flux times particle

temperature. Thus,

re kTefe 
(2.7)

Qi

- kTiri  (2.8)

re e i =  neCs (2.9)

kT+ kTi i/2

c kT(2.10)Cs mi

The form of the energy transmission coefficients can be

expressed as:
11

e = 1 _e .5 ln 2 i + e 1 - le (2.11)

2T.
i T (2.12)

where Ve is the secondary electron yield per incident ion-

electron pair.
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Using the above energy transmission factors, the total

power to the plate is:

Qplate = rp(kTiyi + kTeye) (2.13)

where rp is the particle flux at the plate. It should be

noted that the above equation gives the energy flux that

passes through the sheath to the target plate. It does not

represent the actual energy deposited on the plate. This

topic will be discussed in the next section along with

recycling.

2.3 Neutral Particles and the Source Terms

The source terms in the fluid equations are usually

derived from detailed neutral transport calculations.

Neutrals can enter the plasma from several sources. The

primary source of neutrals is the divertor target plate(s).

Energetic hydrogen and helium ions are accelerated through

the sheath and strike the divertor plate. Some of these

particles are immediately backscattered as neutrals,

retaining a large fraction of their original energy. The

remaining particles are implanted in the target material

where they come to rest as interstitial atoms. The helium

atoms tend to become trapped in the material at grain

I
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boundaries and dislocation sites. The hydrogen atoms are

more mobile and can diffuse back out to the surface of the

material where they recombine into molecular hydrogen and

are emitted from the plate with an energy corresponding to

the surface temperature of the target material. These

molecules, however, are quickly dissociated and the

resulting hydrogen atoms continue with an energy

approximately equal to the Franck-Condon energy (3-5 ev).

Because of this, the usual assumption is that the slow

neutrals are emitted from the plate at the Franck-Condon

energy. This flux of neutrals (fast and slow) diffuses

through the plasma, undergoing excitation (emitting line

radiation) and ionization by electron and ion impact. Until

ionization take place, and a neutral appears as an ion with

a given energy and momentum, the neutral acts as a momentum

and energy sink. Thus, the spatial distribution of these

neutrals and the associated excitation and ionization events

serve as source/sink terms.

Once a neutral is ionized, it is swept back towards the

target plate by the background plasma where it can once

again impact the divertor plate. This process of repetitive

neutralization at the plate and ionization near the plate is

called recycling and is very dependent on plasma temperature

and density since these parameters determine the reaction

probabilities and rates. The recycling process is what
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gives the divertor great potential for particle exhaust and

impurity control. Its impact on divertor plasma parameters

can be appreciated using a simple ID recycling model, as

discussed below.

Consider a plasma incident on a wall at x=a as shown in

Figure 2.2. The continuity equation for the plasma is:" I

8(nv) =S = ne  ionization (2.14)
ax

where x is the direction along field lines, nv is a particle

flux, ne is the electron density, nO is the neutral density,

and <ov> is the electron impact ionization rate coefficient.

Integrating from the divertor entrance (x=O) to the

divertor plate (x=a) yields:

pa
ra = ro + Ja ne no <ov> dx (2.15)

where ra = niva is the particle flux at the divertor plate

(n i is ion density), and r O is the input particle flux at

the divertor throat.

From the above expression it can be seen that the flux

increases as the plate is approached (due to ionization of

neutrals coming of the plate). A flux amplification factor



can be defined, A = Fa/r O . Then the above equation becomes:

A = 1 + f - ne no <ov> dx > 1 (2.16)

If the sheath boundary condition, Q(a)=ykT(a)ra (where y=

i+ ), is applied, where Q(a) is the energy going to the

plate at. x=a, kT(a) is the target plasma temperature (the

ion and electron temperatures are assumed to be the same),

and ra is the target flux, and if the substitution ra=roA is

made, we get:

Q (a) Q(a) 1
kT = = - - (2.17)

Y Fa yF 0  A

From equation (2.17) we can see that increasing A decreases

kT.

If va = CS o [T(a)]1/2 then:

Q(a)- ra kT(a) - n(a)vakT(a)

I 3/2
Q(a)- n(a)[kT(a)] or

n(a) 3/2 A3 2  (2.18)
[kT(a)]



Axr~~ . ~ ~ -'ww~.~' X'PX 'A J J M~~L 1~U .~N

25

(1 )nv

I
Divertar Plate

~ VV

-FlIux a

Figure 2.2 Schematic Illustration of a Divertor model
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Thus, increasing the particle recycling increases n and

decreases kT as noted before. A>i implies that each ion

entering the divertor will, on average, impact the plate A

times. Therefore the energy per particle that goes to the

plate is less. Another way of expressing recycling is with

the recycling coefficient, R, defined by

R= a o e ion (2.19)

a a

and representing the fraction of particles hitting the plate

which are recycled particles.

The result of recycling is a cool dense plasma in front of

the target plate. Besides giving each entering particle

several opportunities to deposit its energy on the divertor

plate, the actual amount of energy to be deposited on the

plate by particle impact is reduced because each time a

particle recycles it has the chance to emit line radiation

by collisional excitation prior to being ionized and going

back to the plate. This energy loss by line radiation in

the divertor is designated as "remote radiation cooling"13

and is another advantage to the divertor because this

radiated heat flux is distributed over the entire surface

I

I,
?I
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of the divertor chamber. An empirical estimate by Harrison

et a14 of the energy loss due to ionization and radiation by

each ionized neutral is:

x(eV)= 17.5 + (5 + 37.5 eVlog 02 31 (2.20)=~ 1 - lg0 n e (.

Under most divertor conditions the magnitude of this energy

loss is about 25 eV per ionized D-T neutral.

Post and Lackner II have solved the continuity equations

for neutrals and ions, matching the fluxes at the plate.

Using several assumptions they found two stable operating

regimes for a divertor. One regime is found around A= 1 or

R=0 (low recycling) where neutrals stream (with little

ionization) back to the main plasma or down pump ducts. For

this regime the plasma temperature at the plate is high and

the density low. The second stable regime is a high

recycling one, where A>>i or Rzl, and the divertor plasma is

cooler and more dense. This is the preferred operating mode

becauise the divertor plate heat load and sputtering is less

than in the low recycling regime.

2.4 Impurities and the Source Terms

Impurities present in the plasma do not enter into the
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particle source terms but at high enough densities can enter

into the momentum and energy source terms by causing

radiation losses via collisions. In this way impurities act

as energy and momentum sinks. Low Z impurities will become

fully stripped above several eV and, thereby, cease to be

significant energy sinks. However, their presence in the

main plasma can take the place of fuel atoms, due to plasma

neutrality requirements and beta limits. The same is true

for medium Z impurities which can radiate up to temperatures

of around 2 keV (unlikely in a divertor). This means that

until they are redeposited on a surface or pumped, they will

continue to cause energy losses in the divertor plasma.

Heavy impurities are capable of radiating from the core of

the main plasma so they will also cause radiation losses in

the divertor plasma. These heavy impurities, though, are

quickly ionized so they should quickly return to the surface

from which they were emitted."

The primary source of impurities in the main plasma

chamber (besides He) is the sputtered wall material

resulting from the impact of charge-exchange neutrals on the

walls. The precipitating slow neutrals could come from

refueling atoms. The prime source of impurities in the

divertor is obviously the divertor plates where the ions are

intentionally impacted. A fraction, f , of the atoms that

are sputtered off the plate will be quickly ionized and

I '' , ' .' ,, . ,...; ... .-. , -/ -., _ ,,.. _ -.i
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carried back to the plate where they will redeposit and/or

cause self-sputtering with a yield per impact of Ys.

Summing successive generations of self-sputtering and

redeposition shows that if fYs < 1 per incident ion, then

the net impurity production rate, Re, or sputtering of the

plate is given by:

Re = rH+ YH+ (ly) (2.21)

where rH is the hydrogen ion (D or T) flux to the plate,

YH is the sputtering yield for hydrogen on the plate

material, and f and Ys are as defined above.

If fYs > 1, the plate could potentially erode away very

quickly due to runaway sputtering. However, at a local

level, self-sputtering is a self-limiting process. An

increase in sputtering will cause the plasma to cool down

due to impurity radiation (described below) which will

decrease the sheath potential and thereby reduce the impact

energy of the D-T ions and impurity ions. This same cooling

though, can allow impurities to escape into the main plasma,

poisoning it. Sputtering of the divertor chamber walls can

also occur as a result of charge-exchange neutrals that

escape the divertor plasma.

As noted above, the major impact of impurities on the

V' I!
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plasma is to cool it via line radiation. Estimating the

amount of impurity radiation is extremely difficult.

Impurities in the divertor will radiate by: line radiation,

recombination, and bremsstrahlung processes. Each of these

processes is in turn dependent on the charge state of the

impurity. In some cases the assumption of coronal

equilibrium is made in which the rate equations for

ionization and recombination to different charge states are

solved based on a constant density and temperature plasma

and no impurity-particle transport losses. The results of

these calculations yields the following empirical expression
15,16

for radiation power:

Prad M3) = nen.mp(T ) ZA = n2f Lz (2.22)

where ne(m-3) is the electron density, nimp is the impurity

density, a(T) and A are fitting constants, Z is the atomic

number of the impurity, f is the fractional impurity

density, and Lz is the power parameter.

These expressions are valid for Z>6 and T> 1 keY. Little

data exists for the lower temperatures anticipated in the

divertor. Even if such data existed, the assumption of

coronal equilibrium is suspect. The timescale for the onset

of coronal equilibrium in a plasma is, in the case of a
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divertor, greater than the timescale for ionization and

return to the target plate. Preequilibrium values for the

power parameter, Lz , can be 2-10 times the equilibrium

values, depending on the impurity. Additionally, there are

steep temperature and density gradients near the divertor

plate which would also tend to invalidate coronal power

estimates. This is an area which requires further research.

It is important to note that the impurity radiation can

have a beneficial effect in the divertor by cooling the

plasma while depositing the radiation energy over an area

substantially greater than just the divertor plate. Some

divertor designs include a provision for the intentional

injection of medium Z impurities (e.g. xenon) into the

divertor plasma to reduce the particle heat load on the

target plate.

If the divertor is to operate effectively, divertor

impurities must remain in the divertor. Impurity

concentrations in the core plasma of as low as .01 % can

fatally poison it. There are two dominant forces on an

impurity ion which tend to pull in opposite directions. The

first is the frictional drag of the background plasma as it

flows into the divertor. The second is a thermal force

pointing in the direction of higher temperature (i.e. out of

the divertor to the core plasma).

Neuhauser 14  has identified a criterion which if

11111 50 11 C' 1,b
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satisfied, implies that highly charged impurities will tend

to be entrained and drift with the background plasma back to

the divertor plate. Based on a model of the above forces,

the criterion for impurity entrainment is:

III --> (2.23)

where AT is the plasma flow mach number, XI is the mean free

path for coulomb collisions between impurity ions and the

background plasma ions, and xT is the axial (along field

lines) scale length for changes in the ion temperature. If

the criterion is met, then the divertor will accrue the

advantages of plasma cooling by impurity radiation without

poisoning the core plasma.

|4
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CHAPTER 3

THE TWO POINT MODEL

As noted in Chapter 1, the development of a divertor

model involves a tradeoff between simplicity, ease of

implementation, and completeness. One immediate

simplification that can be made is to develop the model in

only one dimension. The choice of dimension adopted.here is

the direction along field lines. Using this dimension

allows for linkage back to the core plasma. An additional

consideration in this selection is that radial solutions to

the fluid equations tend to be very sensitive to the value

of the radial diffusion and thermal diffusivity coefficients

which can only be estimated.

A second simplification is to solve the model equations

at only two points, rather than continuouly along field

lines. The two-point method of solution of the fluid

equations involves integration along field lines between the

divertor throat and target plate. By limiting the solution

to the densities and temperatures at only these two points,

the integrals of the particle, momentum, and energy source

terms can be evaluated globally, greatly simplifying their

representation and method of solution.

The two-point approach to modeling the divertor will

yield values for the most critical divertor-plasma

33

r.4 *



34

parameters without requiring an inordinate amount of

numerical computing effort.

This chapter of the thesis presents the derivation of the

two point analytic equations for the throat and plate

temperatures and densities, and the models and methods of

evaluation for key terms in these analytic expressions.

3.1 Description/Geometry

The geometry of the two-point model assumes that the edge

region of the plasma can be divided into two regions: one

outside the divertor, and the other inside the divertor. An

idealized elemental flux tube parallel to magnetic field

lines (Figure.3.1) of length L (outside the divertor) and
s

Ld (inside the divertor) is "unwound" from the torus. Both

Ls and Ld are dependent on the geometry and magnetic

topology of the reactor. The two point model is then

applied to the region inside the divertor. Appendix C

presents some simple analytic expressions for estimating

plasma parameters between the symmetry (watershed) point

and the divertor throat. These results for throat density

and temperature are used as input for the model inside the

divertor.

The steady state fluid equations which will be integrated

along the straightened out field lines are,
5

%I



1 35

iner f low a U

*~~T No Sorc.

Figure~~~~~ 3a Tw0on odlGoer

Io

tin; a

oue o



36

d

Continuity d nv = -Sn (3.1)

Momentum d [ nMv2 + nT(l+r)]= Sp (3.2)Enrg x{o 2 .5 dT  M2

Energy -. lx T2dT- + nv[. Mv2 + T(l+r)]}=Se (3.3)

where x is the direction along field lines, Sn, Sp, and Se

are, respectively, the particle, momentum, and energy source

terms, n is the particle density, v is the plasma fluid flow

speed, T is the electron temperature, M is the ion mass, r

is the ion to electron temperature ratio (Ti/Te), and xo is

the electron thermal conductivity coefficient (ion

conduction is neglected).

The first term inside the brackets of the momentum

equation, (3.2), accounts for the momentum due to fluid flow

(convection) and the second term is the temperature

(internal energy) contribution to momentum. The first term

inside the brackets of the energy equation, (3.3),

represents the energy conducted by electrons while the

second term is the energy convected by ions and electrons.

The energy source term is primarily derived from the

recycling of neutrals at the plate, but can be artificially

increased to mimic the losses due to impurity atoms. The

addditional components required in the model, as outlined

ZI
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in Chapter 2, will be presented as they arise in the

derivation of the modeling equations and the description of

the evaluation of terms.

3.2 Integration of the Fluid Equations Along Field Lines

Integration of the energy equation yields,

xo dT + nv [jMv 2+ r SedX + C (3.4)

If the origin, (x=O), is at the plate, then the constant of

integration, C, is found to be,

C= IxoT2.5 d +nv[ My 2 +  T(l+r)]} t-Sdx (3.5)
dx' 2 2 ~ -ft

where the first term on the right (in brackets) can be

interpreted as Qt, the energy flux that enters the throat,

and the second term, as the energy loss/gain between the

throat and the plate.

Integrating equation (3.4) results in

I
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-Tt 7/2  (3.6)

T2 xop7/2
op

where Tt is the throat electron temperature, Tp is the plate

electron temperature, and A is the average fraction of

energy transported in the divertor by conduction, and is

given by,

: 1- QtLd P xedX' +nv[. Mv2 + 5 T(+r)] dx (3.7)

The next step in the derivation of the model equations is

to eliminate the plate temperature from the right hand side

of equation (3.6) using the sheath boundary condition
5

Qt- pSe = npvpTplye + rYi) (3.8)

where Ye,i is the sheath energy transfer factor for

electrons, ions, np is the plate electron density, Tp is the

plate electron temperature, vp is the fluid speed at the

divertor plate, and rp is the ion to electron temperature

ratio at the plate.

Solving for Tp and substituting the resulting expression

w_
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into equation (3.6) gives,

-Tt)/ 1 = ( 1a (3.9)
T p n VT

where nVT is given by

(2~~~4/ )3/ St'7 jjdx
nVT - 1t JM 1/2(3.10)nVT= 7L DA y e + r p Yi)r

and can be interpreted as a temperature gradient threshold.

In reference 5 it was found that if the throat density was

less than this value, heat conduction tended to overwhelm

the tendancy of recycling to produce a temperature gradient

near the divertor plate. This means neutral recycling

becomes less effective in lowering the plate temperature if

the throat density falls below this threshold value. The

momentum and continuity equations are now used to eliminate

Tt and Tp from the left hand side of equation (3.9) as

described below.

First the momentum equation is rewritten to include the

fluid mach number (T= v/Cs),
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d [Mn 2C + nT(l+r)] = S (3.11)

where Cs is the ion sound speed, and is given by

C [ T(1+r) ]1/2 (3.12)

Integrating equation (3.11) and simplifying we obtain

nT(x+r)(1+9 2  = S dx + C (3.13)
p P

If the integral on the right is evaluated at the plate (i.e.

x=0) then,

C= npTp(I + rp)( 1 + 1)= 2 npTp(1+rp)

where Ip has been set equal to 1.0 as a boundary condition.

Solving equation (3.13) for T we obtain

T= 1+ r + 2 fSdx' + 2n Tp(1+rp)] (3.14)

F 11 )[f
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Evaluating the integral of equation (3.14) out to the

throat, point t, and dividing by Tp results in

Tt 1 tSpdX + 2npTp(l+rp) (3.15)

p T Jpp

or rearranged as,

T t n 1+r P 1 fpS dxJnr2 2 (3.16)
T t t ++11 2  + nP(l+rp Tp

The above expression can be further simplified by

employing the following definitions:

R= fraction of ions hitting the plate which
come from the ionization of neutrals
and is equal to

r P- rtdx M1/2ftSndx
R r n v - 1 (3.17)

p npyp np[Tp l+rp)]1/2

where rp't are, respectively, the particle fluxes at the

plate and divertor throat.
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V= average neutral velocity normalized to the ion
speed at the plate, given by

I SpdX M-12f~ dx
- lt sd M 1  t i/2sts (3.18)

vpftSndx [Tp(l+rp] ] pndx

Using R and V as defined above, equation (3.16) can be

rewritten as

Tt np l+rp
S1+r 

2 + VR (3.19)Tp n t l+r t + 2t

Finally, this equation can be inserted into equation (3.9)

to give

I 1 +r 7/2 [ I
t lr

1 =  nT 7/3

S 2 (2 + VR)]: 1 n _a ) (3.20)

t 1+1 VT

An expression for Tt can be derived from the continuity

equation, the definition of R, and equation (3.19). Thus,

" i , - .-
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t= (a )1/2 (3.21)

where a= I I-R)2 )
n t 2+VR

Equation (3.20) uses information from all three fluid

equations in it derivation. This equation, along with

equation (3.8) and a simplification of equation (3.18), can

be used to solve for three of the four primary plasma

parameters; Tp, np, Tt, and nt .  Before this can be done

though, methods for evaluating the integrals of the source

terms, the conduction fraction (4), and the recycling

coefficient (R) must be determined.

3.3 Evaluation of the Integrals of the Source Terms

3.3.1 Introduction

The evaluation of the integrals of the particle,

momentum, and energy source terms requires a detailed

understanding of divertor physics. The source terms are

primarily derived from the recycling of neutrals produced at

rthe divertor plate. Plasma ions are accelerated through the

sheath, strike the divertor plate, and are neutralized. A

fraction (Rn) of these particles is immediately

* W~ \~ .~ * ~
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backscattered, retaining a large fraction (Re) of their

impact energy (see Appendix A for expressions for Rn and

Re). The remaining fraction (l-Rn) is implanted in the

target material where the particles come to rest as

interstitial atoms. The normal assumption is that at

equilibrium the implanted hydrogen atoms diffuse back out to

the surface of the divertor plate where they recombine into

hydrogen molecules and are emitted- with an energy

corresponding to the plate temperature. Dissociation by

electron impact occurs quickly near the plate after emission

so another assumption often used is that these neutrals are

emitted from the plate as atoms (rather than molecules) with

an energy equivalent to the Franck-Condon energy (3-5 eV).

This flux of fast and slow neutrals then diffuses through

the plasma undergoing excitation (emitting line radiation),

charge exchange, and ionization (by electron impact). Each

of these processes will be considered in the derivation of

the integrals of the source terms.

3.3.2 Integral of the Particle Source Term

The only source of D-T particles in the divertor region

is the ionization of neutrals. The value of the particle

source term can be expressed as a function of the recycling

coefficient defined in this chapter and Chapter 2. Thus,
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f SndX Rri= Rnp[_ 4 +r) ]1/2 (3.22)

The evaluation of the recycling coefficient is accomplished

by modeling neutral transport and will be discussed in

Section 3.5.

3.3.3 Integral of the Momentum Source Term

The integral of the momentum source term must account for

the two energy groups of neutral particles, slow and fast.

After leaving the target plate, each neutral particle can

undergo charge exchange, ionization, or escape to the

divertor plenum where it may return to the plasma or be

pumped. Charge exchange and ionization events both

contribute to the momentum source term while escape/pump

events contribute nothing. Considering only these two

contributing processes, Fion, the fraction of neutrals

coming directly from the plate which undergoes ionization

rather than charge exchange, is given by,

V tM- s! v
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F. <av > ion - (3.23)ion <GV>ion+ <V>cx(

where <oV>ion is the reaction rate coefficient for electron

impact ionization (ground state and excited state combined)

and <ov>cx is the charge exchange rate coefficient (see

Appendix A for evaluation of these quantities).

Each neutral that is ionized contributes an average of

MvosinO to the momentum source. This is derived from the

assumption of perpendicular emission of the neutrals from

the plate. The velocity of the neutral in this

perpendicular direction is Vo , while e is the angle of

incidence of the magnetic field lines to the plate (see

Figure 3.2). The neutral velocity in the field line

direction is voSine.

For the fast group the neutral velocity is given by

vf =2 ReEo ]1/2 (2 ReTpYi ]1/2 (3.24)
vf R Rn M I R n M (3.24

where EO is the incident energy of the ion. For the slow

group the neutral velocity would be

1101, 12I
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2 Efc 1/2
v s  =(3.25)

where Efc is the Franck-Condon energy. j
The relative fraction that undergoes charge exchange is,

F cx= 1- Fio n  (3.26)

Charge exchange represents a change in momentum because

incoming ions change places with neutral particles of

different speeds and directions. The calculation of this

component of the momentum source term depends on whether

neutrals are modeled with their own set of fluid equations

or included in the single fluid considered here. If

neutrals are accounted for separately, the contribution to

the momentum source would be,

M(v sinO+ Vavg )  (3.27)

the field direction, and vavg is the average ion velocity

between the throat and plate. The neutralization of the

incoming ion causes an average loss of momentum of Mvavg,
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where vavg is calculated as,

1 (~!~i1/2 1 ~j~)/2 (.8
Vavg 2 M Vt (3.28)

This approach to calculating the momentum source term

assumes that there is no change in direction of the initial

neutral (now an ion) as a result of the charge exchange

interaction. If the resulting neutral from this interaction

is subsequently ionized then the momentum of the neutral

(MVavg) is regained making a negative addition to the source

term. If neutral particles are not accounted for separately

with a set of fluid equations then the neutral contribution

to the source term must be added to the ion component. This

makes the charge exchange component Mvosine the same as for

ionization.

Based on the above expressions, and whether neutrals are

independently modeled, the final expression(s) for the

integral of the momentum source term can be written as

. S 2 Z 1'';¢ - ' - . . A'~ r-b3.. ;-.' ..- . .'
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Spdx = MnpvpRJR [F ionfvfsinO + Fcx-f(vfsin@ +

Vavg)]+ (I-Rn) [Fion-svssine + F c x_s(vssinO +

vavg)ij

If neutral momentum pressure is included in the D-T ion

equations, this expression reduces to

J' Spdx = M npvpR [RnfSin@ + (1-R) vsSin@] (3.29)

where npVp represents the neutral particle flux coming off

the plate at steady state and the other terms are as

described previously.

Here the recycling coefficient (R) is being used as a

measure of the fraction of neutral flux that undergoes

interaction. Although this is a reasonable use for R, it

does imply that the contribution to the momentum source term

of ionized or charge exchanged neutrals coming from the

divertor plenum is negligible.

Numerical evaluation of the integral of the momentum

source term for a variety of divertor conditions resulted

in values which are small compared to the total momentum of

the D-T particles as they flow to the plate and thus, this
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term has little effect on the final solution of the fluid

equations. It is noted that in some models 2'3'2 2 this term

is neglected altogether. The divertor code developed in

this thesis gives the user the option of including this term

or setting it to zero.

3.3.4 Integral of the Energy Source Term

The integral of the energy source term includes

contributions from radiation, ionization, and charge

exchange. To account for radiation and ionization losses,

the average energy loss per ionization event, X, defined

previously, is used

x(eV)=I7.5 + 5 + 37.5 log, n ev
Te (ev) 0 nI e

For a neutral produced at the target and moving through the

plasma fan in front of the divertor plate, the use of an

energy loss per ionization event assigns the entire energy

loss to the point of ionization. In reality it will radiate

throughout its trajectory due to excitation by electron

impact. Over a wide range of operating conditions, the value

of X does not vary much from a value of around 25-26 eV for

hydrogen. Its value could be artificially increased to
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include losses due to the radiation and ionization of

impurities. This enhancement would be proportional to the

amount of sputtering, impurity type, and mean free paths for

impurity ionization and excitation. As noted in Chapter 2,

evaluating the magnitude of this energy loss increment is

difficult. Therefore, in the divertor model code this

increment is treated as a multiplicative parameter, X'=

Imp*X , where Imp is a multiplicative factor, increasing D-T

radiation losses to account for impurity energy losses.

Charge exchange also contributes to the energy source

term. Incoming ions change places with neutrals which have

different energies. The total energy of an incoming ion can

be written as
5

Eion = 3/2 T + l/2Mv2  (3.30)

where T is the plasma temperature and v is the flow speed.

If the assumption is made that the energy of the fast

neutrals is approximately the same as that of the incoming

ions, then the charge exchange of neutrals of this energy

group contributes nothing to the energy source term. If, in

addition, it is assumed that the energy of the slow neutrals

is negligible compared to the energy of the incoming ions,

then charge exchange represents the total loss of the
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incoming ion's energy. Based on these assumptions, the

integral of the energy source term can be expressed as,

J SedX = npVp[RX'+ (1-Rn)Fcx-s( T Tav avg)] (3.31)

where Tavg is the average plasma temperature between the

throat and plate and Vavg is the average flow velocity.

In equation (3.31) above, x' is multiplied by the

recycling coefficient since this represents the total

fraction of neutral flux that is ionized. The second term

is not multiplied by R because this term pertains only to

slow neutrals. The fraction of slow neutrals that is

ionized is much larger than the combined fraction of slow

and fast. Therefore it is assumed that 100% of the slow

neutrals undergo some sort of interaction (i.e. Rslow~l).

3.4 Evaluation of the Conduction Fraction

The conduction fraction introduced in Section 3.2 (eqn

3.7) is the average fraction of energy transported in the

divertor by electron conduction. Thus
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I 1- Qttd Jif + nv[-! Mv' + -' T(1+r)]}dx (3.32)

Q___dp_ 2 5

Evaluation of this quantity requires a knowledge of the

density, temperature, mach number, and energy source (sink)

term profiles in the divertor region. The two point model

does not provide this profile information so the following

assumptions must be made to evaluate j.

The first assumption is to ignore the integral of the

energy source term. The major contribution to this integral

comes from a narrow band near the divertor plate. While

this term might be significant near the plate, it

represents a small contribution to the second integral.

Numerical integration of this integral has confirmed the

insignificance of the source term.

The second assumption concerns the profiles of the

density and ion to electron temperature ratio, (r). A

previous study, using more sophisticated models 5 , has shown

a reasonable distribution for these two quantities has the

following form, f(x),

f(x) = f(O) + f(L) - f(O)] i- 1 L (3.32)

where a is a polynomial shape factor.

-RA *k ILW 9 .-I
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Using the continuity equation, (3.1), the mach number can

be expressed in terms of n and r as

= ( RR) n T (1+r) 1/2 ] 3 3

where R' is the fraction of ionization up to x and is given

by

R'I = JP(3.34)J ~S dx'

Equation (3.33) can be used along with the momentum

equation, (3.2), to yield the temperature profile,

T(x)= VR + 2- (1-RR' __ ] nrT( ' (3.35)
n n T (1+r)

where (VR)' is the fraction of momentum source up to the

point x and is given by

'V - - .. .w -V
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(VR)' = yR ILLdx (3.36)
t S dx'

Evaluation of R' and (VR)' requires additional

assumptions about the distribution of the particle and

momentum sources. one intuitively simple method is to

assume an exponentially decreasing distribution for these

sources. Thus

Sn [R EXP(- + (1-R )EXP(-x) (3.37)

and

5SpCX Rn [Fi vsin@EXP(Zx )+ Fcxf(vfsin@ +

vavg)EXP(3 n) ion-svs 2 +

Fcx-s~vsn + vavg )EPXx) (3 .38)

or in its simplified form (neutral momentum included)
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a R Vfsin@ E)P + (I- Rn)vssine EXP ( ~-

(3.39)

where \j is the mean free path (MFP) for; fast neutral

ionization (j=l); slow neutral ionization (j=2); fast

neutral charge exchange (j=3); and slow neutral charge

exchange (j=4). Each mean free path is calculated as,.

V.

n = v> (3.40)
I n av <ovj sin @

where nay is the average throat to plate density, <av>j is

the appropriate reaction rate coefficient, and vj is the

particle velocity. The sinO term adjusts the MFP to account

for the fact that the integration is being performed along

field lines while the particles are assumed to come off the

divertor plate perpendicularly.

Given a shape factor, a, the above set of equations can

be numerically integrated to give a value for the conduction

fraction, A.

3.5 Evaluation of the Recycling Coefficient

3.5.1 Introduction

I
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The recycling coefficient, R, was defined in Section 3.2

as the fraction of ions hitting the plate that come from the

recycling of neutrals. Those neutrals that are not ionized

in their first pass through the plasma, but escape to the

plenum region of the divertor can eventually meet one of

three fates: 1.) return to the plasma and be ionized after

scattering around the divertor plenum (the probability that

a neutral makes it back through the plasma to the plate ,

reflects, and escapes again is very small); 2.) be pumped

out of the divertor plenum; or 3.) escape out the divertor

throat to the core plasma where they are ionized. The

contribution of this third channel is small so, to first

order, what is not pumped out of the divertor chamber is

eventually recycled to the divertor plate. Based on this

phenomenological description the global recycling

coefficient can be approximated as,

R= 1- pf (3.41)

where p is the average neutral escape probability (energy

group and position averaged) and f is the ratio of neutrals

pumped to those reaching the divertor plenum.

For the purposes of this model, the pumped fraction will

be varied as a free parameter. One does have some control
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over the value of this parameter based on pump speed,

geometry of the pump ducts (conductance) and divertor

plenum, and plenum wall materials. Calculation of the

pumped fraction would be the subject of future study. Thus,
the evaluation of R requires the determination of the

neutral escape probability, p.

3.5.2 Calculating the Neutral Escape Probability

The method used to calculate p is based on a wedge shaped

section of plasma overlying the divertor plate and a simple

slab attenuation approach (see Figure 3.3). First the MFP

for ionization of a neutral by electron impact is calculated

for slow and fast neutrals using

v

v . (3.42)
no>ion

where v is the fast or slow velocity, n is the electron

density, and <ov> is the combined ground state and excited

state electron impact ionization reaction rate coefficient.

The MFPs can be calculated using plate or average

quantities.

The probability that a neutral of given velocity and

angular direction will be ionized after being emitted from a
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point on the divertor plate is given by

p(x,O)= EXP(-l(x'o)l 3.4

where l(x,O) is the distance to the plasma surface

(beginning of plenum) along the direction 0 from the point x

and x is the energy/velocity dependent MFP. It should be

noted that no particular allowance has been made for the

effect of charge exchange events. A similar approach to

calulating p (reference 3) found that this contribution to f

is small so it is neglected here.

Several methods for summing these probabilities over all

directions and points on the plate have been examined in

this thesis. Each has been included in the final divertor

model programs as options.

The first method entails calculating an average distance,

1(x), to the plasma surface for each of a mesh of points on

the divertor plate. At each point, 1 is expressed as a

function of angle , point position (x), width of the

divertor plate(xt), and angle of incidence of the field

lines to the plate (e). This function is then integrated

between O=o and O=ARC, where ARC is the angle back to the

throat of the divertor. Any neutral that is emitted in a

direction greater than ARC is assumed to be ionized. This
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method gives the following result

f fARC l(O)dO = TANO(X-xt)C R~

dt ARC dJ() ARC do ARC 0o ACOSO+BSINO

where A is TAN& and B is 1.0. The explicit result is,

TANO (X-X~ 1J
2AN0 2 1/2 { Ln [TAN-(ARC+@) ]-ln [TAN (2 )]

(3.45)

The neutral escape probability for neutrals emitted from a

point on the plate is then

*p(x)= AR- RnEP-1 1x (3.46)
p( X 

1- n) 
,C X

where Xf and Ns are the fast and slow neutral ionization

MFPs.

This escape probability is then calculated for a mesh of

points along the divertor plate and the average, p, defined

as the global escape probability. The advantage to this

UP1
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method lies in the fact that the integral used has an

explicit solution which speeds calculation for a mesh of

points. The disadvantage is that the exponential of an

average escape distance is not the same as the integral of

the escape probability averaged over all possible

directions.

The second method involves numerically evaluating the

integral of the escape probability as a function of angle.

Thus,

p(x)= fARCExP(-__ ARC do (3.47)

This integral is evaluated for slow and fast neutrals and

the escape probability at x calculated as

p(x)= R nP(X)fast+ (l-Rn)P(X)slow (3.48)

Again, this evaluation must be performed for a mesh of

points along the plate and the average escape probability,

p, calculated.

Another option included in the divertor model program is

an angular probability for reflection in the integral of the

second method. Some experiments have found that particle
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reflection from a smooth surface was not isotropic for 900

incidence but showed a cosine distribution. Use of this

option decreases the escape probability because most of the

particles that escape do so by escaping from the tip of the

plasma wedge. Weighting the directional escape probabilities

with a cosine distribution decreases the contribution of

those particles which are emitted in a direction towards

this tip.

A program was written to compare the results of each of

these methods against one another and against the results in

reference 3. A detailed comparison of the three methods

(lavg, integral, and integral with a cosine distribution)

can be found in Appendix D. Typical results are shown in

Figure 3.4, giving the escape probalility as a function of

plate position for the integral with cosine method. As seen

in this figure, the escape probability increases as the

thickness of the plasma overlying the plate decreases (see

Figure 3.3 for geometry). Also, it is noted that the escape

probability is much less for slow neutrals than for fast

neutrals due to their smaller ionization MFP. Below, the

results of the three methods are compared to the result of

reference 3.

I
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Table 3.1
Neutral Escape Probability Comparison

Approach

lavg .067

integral .095

integral
w/cosine .074

Ref 3 .077

For these results, plate quantities (Tp and np) were used.

It is noted that in reference 3 a cosine distribution was

employed.

3.6 Helium Effects

The steady state concentration of helium in the core

plasma has a great influence on the power output of the

reactor. Additionally, helium in the divertor can

significantly increase the sputtering of the divertor plate

and increase radiative cooling of the divertor plasma. The

concentration in the core plasma and in the divertor is a

function of the helium-ash removal rate from the divertor.

Helium ions flow with the plasma into the divertor and

impact the divertor plate where they are neutralized (some

* C Vl . % % '
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may become permanently implanted) and return to the divertor

plasma. Just as with D-T neutrals, some of the helium

neutrals will be ionized and recycled to the plate while

others will escape to the divertor plenum and may be pumped

or return to the plasma to be ionized. Analogous to the D-T

recycling coefficient,a global helium recycling coefficient

can be defined as

RHe = 1- 1 HefHe (3.49)

where PHe is the average helium neutral escape probability

and fHe is the helium pumping probability. This pumping

probability, fHe, may differ from the D-T pumping

probability depending on pump type, plenum and duct

configuration, and neutral particle (D-T or He) energy

distribution. Just as with the pumping probability for D-T,

fHe is also varied as a free parameter in the divertor model

code. The escape probability for helium can be calculated

using the same equations presented in section 3.5 by

replacing the D-T ionization rate coefficient with the

helium ionization rate coefficient.

The helium ions which originally enter the divertor are

normally in the +2 charge state. The recycled helium ions,

however, can be in charge state +1 or +2. This distribution

of charge states will have an impact on the concentration of

]'01
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helium at the plate and on the sputtering of the plate due

to the sheath potential. The probability, P1 2, that a

singly charged helium ion will be ionized to the +2 state

can be estimated as
3

tI
P 12 =1 - EXP res} (3.50)

where tres is the residence time of the He + ion in the

divertor, and Ti (-3 x 10 - 5 sec) is a characteristic time

for the ionization step He+ to He++ .

An upper limit on this residence time can be obtained by

neglecting the effects of local electric fields and

expressing it as

tres =tt + tdrift (3.51.)

where tt is a thermal equilibration time (~10-sec) for ion-

ion collisions and tdrift is the ion drift time at the fluid

velocity (assumed to be the plate sound speed, Cp) and is

estimated as
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MFPion
tdrift - C (3.52)

The ionization probability, P12, can be used to estimate the

fractional concentration of helium at the divertor plate.

At steady state, the helium which enters the divertor must

be equal to the- helium pumped. This condition can be

expressed as

He(t)rt = He(P)rp(!-RHe) (3.53)

where tHe is the fractional concentration of helium (singly

and doubly charged) relative to the electron density and

rt, p is the electron flux at the throat/plate.

The helium concentration at the throat is normally taken

to be the core plasma concentration. The D-T ion flux at

both locations, throat and plate, is less than the electron

flux due to the presence of helium. At the throat

rt,DT= ne(l - 2 He(t)) Ct Vt (3.54)

and at the plate

r v- w . . .
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rP,DT = nel- + P1 2 )4He(P)]Cp (3.55)

So, at the plate, part of the D-T ion flux is replaced by

helium flux which will increase sputtering due to its

greater mass and possible +2 charge state.

The exhaust performance of the divertor can be

characterized in terms of the helium enrichment factor, c,

expressed as

F He(pump)/ rDT(pump) (3.56)
FHe(t) / rDT(t)

or expressed in the quantities defined above

1I-R He) He(P) 1i- 2 He(t) id

-= -R)[i- (1+ P12) He(P)] He(t)

In addition to causing a fuel depletion effect and

increased sputtering, the helium which is recycled in the

divertor can add to the radiation energy losses, cooling the

plasma. In the present calculations this radiation

component has been estimated as

YI
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XHe(ev) = 15 + P12 (70 + 3300) (3.57)Te e (3.57

where XHe is the energy loss per ionized helium particle and

Te is the local electron temperature. The 15 eV term

corresponds to the energy loss in going from He° to He+ ,

while the remainder of the XHe expression is for ionization

to He++. The energy loss in the divertor plasma due to

helium recycling (to be added to equation (3.31) ) is

PRadHe(eV) = n PVP He(P)HeRHe (3.58)

Any charge exchange component to this energy loss has been

neglected.

3.7 Sputtering

One of the critical concerns in designing a divertor is

the sputtering rate of the target plate material. This rate

will determine the service lifetime of the plate, and as

noted in Chapter 2, impurity production can have a great

impact on the viability of the divertor design. Once the

plasma model has determined the plate temperature and

density (with an estimated impurity increment), these

parameters can be used to estimate the plate sputtering.
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Some iterative process might be necessary to make the result

self-consistent.

The sputtering rate (including self sputtering) at a

point on the target plate, as expressed in Chapter 2, is

Re FpY(lY}

where rp is a particle flux at a point on the plate, Y is

the sputtering yield for the particular particle (incident

energy and plate material dependent), Ys is the self
sputtering yield, and f is the fraction of impurities

returned to the plate. The above equation is valid for

fYs<l.

The sputtering yields can be determined using a

sputtering model by Smith et a 2 which can be expressed as

Y 0 ) 0 1% z7( 2 )2 M} 2(EO-Eth+50z* 75z )2

(3.59)

where

C = 2000 for incident hydrogen (IH)
= 400 for all other particles

I
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ZI  = atomic number of incident particle

Z2  =atomic number of plate material

M 1  = mass number of incident particle

M2  = mass number of plate material

Eo  = incident particle energy (eV)

Eth = threshold energy for sputtering (eV)

The threshold energy for sputtering is given by

Eth= 4 IM 2  U0  (3.60)

where UO is the binding energy of the plate material (eV).

Appendix A includes a table of values for Z, M, and U. for

various plate materials.

The incident energy of particles impacting the plate can

be expressed as a function of the sheath energy transmission

coefficients. Thus,

E0  rp( Ep+ ZTp (i -2)) (3.61)

where Ep is the energy of the particles prior to sheathpI
acceleration (which has a Maxwell-Boltzmann distribution at

the plate), Tp is the electron temperature at the plate, andI
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Z is the charge of the particle.

If the temperature of the plasma is well above the

sputtering threshold, then Ep=2Tp can be used,3  and

evaluating the sputtering is very straight-forward. In most

instances, though, the plate temperature is less than -the

sputtering threshold. However, this does not imply that

there is no sputtering. Particles in the high temperature

tail of the Maxwell-Boltzmann distribution may still cause

sputtering. Therefore, the calculation of the sputtering

rate must take account of this particle distribution. Thus,

Re= 0plfy) 0 ,P(E)Y(Eo)dE (3.62)

where P(E) is the Maxwell-Boltzmann distribution

P(E) E 11EXP

and E' is the particle energy at which Eo=Eth

E' = Eth /rp - ZTp(Yi-2)

Equation (3.62) can be numerically integrated to give the

I
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sputtering rate.

The sputtering rate can be converted to an erosion rate

(cm/yr, 100% duty) by dividing Re by the plate material

number density (cm- ) and multiplying by the number of

seconds in a year

d(cm/yr) = e 3.15 x 10' (3.63)

The code for the divertor model includes a subroutine

which calculates sputtering of the target plate due to

deuterium, tritium, and helium (+1 and +2). An assumption

necessary to implement this model is that sputtered plate

material atoms return to the plate in the +1 charge state.

The erosion and sputtering rates are calculated at each of

50 pnoints across the divertor plate and the peak erosion

rate outputed, along with the total impurity production rate

per length of divertor.

3.8 Impacts of Radial Variations

The simplication of the fluid equations to ccnsider only
the axial direction introduces certain inaccuracies in

calculating neutral escape probabilites and plate

sputtering. These quantities are sensitive to the plate
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density and temperaure. Use of the axial approximation

makes it necessary to assume a constant plasma density and

temperature across the divertor plate. To remedy this a

literature search was conducted to determine how to

introduce radial variation of these parameters into the

divertor model.

The results of most models 9'13 ,17 ,18 ,19'20 show that

radial density and temperature profiles are approximately

exponential in both the upstream region (throat and beyond),

and in the downstream region (in the divertor) and can be

expressed as

P(r) = P0 EXP ( -r (3.64)

where P is the parameter of interest (T or n), and Xa is

the fall-off distance for that parameter.

For density, the fall-off distance can be approximated as

n D T 11 1/2 (3.65)

where D is the radial diffusion coefficient (m2/sec) (in

this work experimental values have been used) and T11 is a

characteristic transport time, approximated as
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L =(3.66)

where L is a connection length in the region for which Xn is

being calculated, and v is an average fluid velocity in the

region.

For xn at the target plate, L is the divertor connection

length, Ld, and v is the sound speed at the plate (even

though the mach number at the throat is normally small, the

sound speed is large, so Cp represents a reasonable

average).

The temperature fall off distance is more difficult to

calculate and has been modeled many different ways. In

reference 17 the ratio XT/An was found to be an increasing

function of XI/D and a decreasing function of the sheath

energy transmission factor. Rather than attempt to

calculate XT, the ratio XT/\n can be varied as a free

parameter, A. .

To test the validity of using exponential profiles for

the temperature and density at the plate a separate program

was written which evaluated these profiles in the pressure

balance equation derived from the continuity and momentum

fluid equations,
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nTt(1 + rt 1 t2 = 2 nT (1 + rp) (3.67)

On the basis of this investigation, it was concluded that

the pressure balance equation could be satisfied radially

with exponential profiles for density and temperature. In

the computer model Xn at the plate is calculated and A is an

input parameter. The radial profiles for temperature and

density have been added to the calculations of the recycling

coefficient (including weighting each escape probability

along the plate by the flux incident at that point) and

sputtering rate.



CHAPTER 4

DESCRIPTION OF THE COMPUTER MODEL

To yield results, the divertor model described in Chapter

3 must be implemented on a computer using various numerical

computing techniques to solve for the parameters of

interest. Section 4.1 of this chapter discusses the

possible solution techniques and the rationale for the

selection of a fixed-point iteration approach. Section 4.2

then describes the implemented model code, DIV, in detail

including; program logic and structure, data input

requirements, and program output.

4.1 Discussion of Numerical Solution Techniques

Solution of the model equations given in the previous

chapter involves the simultaneous solution of a system of

nonlinear equations. There are several techniques that can

be used to solve such a system. The first is a straight

forward fixed-point iteration approach. The advantage to

this method is the simplicity of implementation. While the

convergence of this method is only linear to super-linear

(better than linear, less than quadratic), the final

solution set need not be accurate to greater than about 1%

since the model is only an approximation. Given a good set

79
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of initial guesses for the solution variables, the only

concern would be the stability of the solution. The

disadvantage to this method is the requirement for good

initial guesses. If the initial guesses are too far from

the solution values, then the results might diverge, or

converge to an unstable set.

Other more sophisticated methods are based on Newton-

Raphson approaches which require the evaluation or

estimation (via the secant method) of the partial

derivatives of the equaticn set These methods involve the

use of matrix operatio-is to solve the system of equations.

Such methods will normally converge more quickly than the

fixed-point method (quadratic convergence) and can be

written in ways to increase the chance for convergence even

with poor initial guesses. However, this increase in

"power" is bought at the cost of much increased complexity

and computing time. Reference 5 used a software package

program, HYBRID, to solve a set of model equations.

Solution of this similar set required .2 seconds of Cray

computer time. For the model described in this thesis, a

fixed point iteration approach with some improvements has

been adopted.

4.2 Computer Model DIV Description
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The computer model DIV, written in IBM Fortran for an

IBM-PC/AT (or compatible), uses a fixed point iteration

routine to solve the model equations for the plate density

and temperature, and the throat temperaturp using the

following fixed-point equations:

[nP17/3nVT 2/ t~l+rt'[~g )+

np: [- n 1 2/7r 1  (4.1)V TJ 2 + R 1 + r P ) .

derived from equation (3.20),

T' eM/2 ye+rpYi )  2/3
Tp= Qt tSedX p(l+ (4.2)

derived from equation (3.8), and

2+VR) 1 +r PT Pn043
Tt= 2nt(4.3)

t1 2)~ 1+rn
t t'

derived from equation (3.19)

The throat density is held constant.

Input for the code (Table 4.1) requires starting values

for np, Tp, and Tt. The user has the option of specifying

the recycling coefficient, R, and/or the conduction

N.
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Table 4.1

Program DIV Input

Inputs Definition Units

QT Power flux into
the divertor W/m2

LD Divertor connection
length m

M D-T ion mass amu

XT Divertor plate width m

THETA Angle of incidence of
magnetic field lines
to the divertor plate radians

EL D-T reflection coefficient

reduced energy

TP Plate electron temperature eV

TT Throat electron
temperature eV

NP Plate electron density x101 9m-3

NT Throat electron density x10 1 9m-3

RP Plate ion to electron
temperature ratio

RT Throat ion to electron
temperature ratio

G1 Electron sheath energy
transmission coefficient

G2 Ion sheath energy
transmission coefficient

R Recycling coefficient

p

p
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Table 4.1 cont.

Input Definition Units

U Conduction fraction

F D-T pump fraction

IMP Impurity increment

D Radial diffusion
coefficient m2/sec

A Temperature to density
fall-off distance ratio

CT Fractional concentration
of helium at the throat

FHE Helium pump fraction

ELH Helium reflection coefficient
reduced energy

SHP Shape factor, a, for the
conduction fraction

METH Method for p calculation
l=Lavg 2=integral

DIST Distribution for T calculation

1=none 2=cosine

TOL Convergence tolerance

SOR Over or under relaxation
constant

V
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fraction, p, (which will then be held constant) and of

setting the momentum source term equal to zero. Otherwise

these variables will be calculated. Most of the variables

inputed are known quantities or can be calculated using

methods presented in Appendices A and C. Others, such as

the ion to electron temperature ratios and pump fractions,

can be estimated from the results of other models or

experiments. The only parameter for which there is no

physical or calculational basis is the shape factor, a, used

in calculating the conduction fraction. However, experience

with the code has shown the final solution set to be

insensitive to the value of a except for very low recycling

cases.

After the initial data entry, the program (see flowchart

of Figure 4.1) first calculates initial and intermediate

quantities, such as Xt, 4, R, and V, based on the initial

values for Tp, np, and Tt. The program then calculates the

first of the fixed point parameters, applies successive over

or under relaxation,

A' SOR( + I-SOR An (4.4)

where A' i. LIhe relaxed variable and SOR is the over/under

relaxation constant, and then updates the intermediate
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variables prior to calculating the next fixed point

parameter (a la Gauss Seidel). This relaxation method was

added to the fixed point routine to preclude wide

oscillations (if SOR <1 is used) or to speed convergence (if

SOR >1 is used) of the iterations.

The newly calculated value for the plate density is then

compared to the old value using a relative error check for

convergence (the user specifies the tolerance). The plate

density was chosen as the convergence parameter because its

equation includes information from all three fluid equations

and, by practice, was found to be the most difficult

parameter to get to converge. If the convergence criterion

is met, then the program recalculates the intermediate

parameters based on the solution set and displays this set

and the intermediate parameters (Table 4.2). If the

criterion is not met, then the program loops back to start

another iteration. After each iteration is complete the

most current values for the fixed-point parameters are

displayed on the screen so the user can observe if the

results are converging or diverging. After ten iterations

with no convergence the user is prompted to continue or stop

iterations and return to data entry. If convergence is

achieved, the user is asked if sputtering should be

calculated. Sputtering calculations require additional data

entry (Table 4.3). The sputtering subroutine canalso be
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Table 4.2

Program DIV Output

Output Definition Units

TP Plate temperature eV

NP Plate density m-3 x10- 19

TT Throat temperature eV

NT Throat density m- x10-1 9

MT Throat mach number

U Conduction fraction

ISE Radiation loss fraction

R Recycling coefficient

CP Fractional helium at the plate

HER Helium enrichment

P12 Ionization probability of
He+ - He++

LNP Density fall distance at the
plate, hn

directly accessed after the initial data entry, bypassing

the divertor calculations.

An extensive number of runs with the DIV code for a

variety of input data has allowed the inclusion of a number

of error checks in the program to stop execution of the code

if certain parameters are diverging. This has eliminated

most realtime fatal errors. Appendix B includes a complete
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Table 4.3

Sputtering Input Data

Input Definition Units

UO Plate material
binding energy eV

Z3 Plate material atomic
number

M3 Plate material mass
number

NM Plate material number
density cm-x1Q 2 4

IE Multiple of TP for upper
limit to maxwell-boltzmann
integration

listing of the DIV computer code. It also has a description

of each of the subroutines displayed in Figure 4.1.

IV

Li



CHAPTER 5

BENCHMARKING THE DIVERTOR MODEL

5.1 Introduction

As stated in Chapter 1, the goal of this research is to

produce a simple, comprehensive, and accurate model of the

divertor region. The requirements to limit the complexity

of the model and to include all key processes have been met

as described in Chapters 3 and 4. How close the model has

come to satisfying the third requirement, accuracy (i.e.to

yield results comparable to those of more sophisticated

models), will now be discussed. In this chapter the

computer code DIV is benchmarked against four other models:

a model by the JAERI team2 2 , the Harrison et al model3 , the

ZEPHYR code4 , and the Braam's code9 . The results displayed

in the comparison tables reflect only the parameters

reported by each of these codes which are also calculated by

DIV. Complete data input and output for each benchmark case

can be found in Appendix E.

5.2 JAERI Team Model Benchmark

This model is a one fluid, iD (axial) plasma edge model

which includes remote radiative cooling, recycling, and

89
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particle shielding at the main plasma surface. The

particle, momentum, and energy source terms are evaluated by

a neutral transport code. In reference 22 the code is

described, and results for modeling of Doublet III compared

(favorably) to experimental results. To obtain the DIV

results listed in Table 5.1 the following assumptions were

made: the momentum source term was set to zero, and the

radiative power loss was artificially increased (by making

IMP=1.45) to mimic the oxygen impurity radiation included in

the JAERI calculations. Additionally, the recycling

coefficient was calculated, in the absence of any divertor

plate data, by assuming a plate width of .25 m and a theta

of .35 radians. The pump fraction, f, was arrived at by

back-calculation using the reported recycling coefficient

and divertor plasma results. The remainder of the input

data for DIV was the same as that used by the JAERI team for

its results. The results of this comparison are listed in

Table 5.1.

p! W"i
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Table 5.1
JAERI Team Benchmark Case

Parameter JAERI Team DIV

Tp(eV) 4.0 3.8

np(xl0 9 m-3 ) 9.1 9.2

Tt(eV) 37.0 35.0

nt(xlO' 9 m-3 ) 1.8 1.8

Throat Mach
Number,'Xit .26 .34

Radiation
fraction .50 .51

Recycling
Coefficient,R .81 .80

The results of Table 5.1 indicate that DIV compares

extremely well with the JAERI team model. The largest

deviation in any fixed point parameter is less thaii 6%. The

sensitivity of these results to changes in impurity

radiation and the shape factor was also examined. A 5%

increase in the impurity increment, increasing the radiation

fraction by a like amount, caused about a 20% decrease in Tp

pp.'. and a corresponding increase in np. Variation of the shape

factor, , from 3 to 4, caused a 15% change in np and Tp.

Both these sensitivities were expected. Experience with the

DIV code has shown that T becomes more sensitive to the

1:.
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impurity increment as the impurity fraction increases. In

this case, the radiation fraction, is fairly large (-.5).

Alternatively, it has been found that sensitivity to the

shape factor decreases as the recycling coefficient

increases (or as the conduction fraction increases). The

recyling coefficient for this case, .81, is rather low,

correlating to the sensitivity to the shape factor observed.

5.3 Harrison, et al Model Benchmark

This model is also 1D and one fluid. It includes neutral

particle transport, remote radiation cooling, helium

N effects, and impurity radiation. The data and results

presented in reference 3 are for INTOR under "standard

conditions". One of this model's assumptions is that

electron conduction is the only energy transport mechanism.

The modeling assumptions for DIV in this case were that

impurity radiation was zero (it was found to be negligible

in reference 3 ) and the momentum source term was equal to

zero. Table 5.2 gives the results of this comparison.

p'

m'I
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Table 5.2
Harrison et al Model Benchmark Case

Parameter Reference 3 DIV

Tp(eV) 25.5 23.8

np(xl0 1 M- ) 9.6 9.2

Tt(eV) 66.0 63.0

nt(xlO" m- ') 6.97 6.97

Conduction
Fraction,p 1.00 .99

Radiation
Fraction .13 .16

Helium
Enrichment,t 3.18 2.23

Recycling
Coeffient,R .99 .99

Plate Helium
Concentration .05 .025

The DIV results compare very well with the Harrison et al

results. The largest deviation of any of the parameters is

for the radiation fraction (23%) and the helium enrichment

(30%), but the deviation for the parameters of most

interest, Tp and n is less than 7%. One difference

between the two models is that the Harrison model assumes

that the concentration of helium at the plate is the same as

the concentration in the core plasma while DIV calculates

- |
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this quantity. This difference was accounted for in the

calculation of the helium enrichment but was not sufficient

to account for the differen-e in values of the helium

enrichment. Some additional runs were made to try to make

the two radiation fractions equal by adjusting the impurity

increment. Setting the impurity increment (IMP) equal to

.85 (from an initial value of 1.0) succeeded in matching

these parameters, but increased the plate temperature

slightly and decreased the plate density. However, there

appears to be no physical basis on which to decrement the D-

T radiation value.

. The results above were found to be fairly sensitive to

the energy transmission factors (yi and Ye)- An increase in

both of about 20% caused a 28% decrease in Tp and a 39%

increase in np. The percentage changes and the directions

of the changes were reversed for a 20% decrease in the

energy transmission factors. The results were also found to

be insensitive to the shape factor due to the large

recycling coefficient and conduction fraction.

5.4 ZEPHYR Benchmark

ZEPHYR is an axial ID, two fluid numerical divertor model

developed at Culham laboratories. It includes: a simple ID

neutral model; neutral recycling; D-T radiation; particle

I

N.



95

and energy convection; fluid viscosity; and electron/ion

equipartition. It solves the fluid equations along field

lines between a symmetry point and the divertor plate. The

results presented in reference 4 are for an INTOR-like

device. The specific results to which DIV is compared is

the "Search 13A" case (one of the many results in this

parametric study). The only assumption made to benchmark

against this case was to set the momentum source term equal

to zero. The input data values for DIV were, for the most

part, all taken from the reported ZEPHYR input or ZEPHYR

results (such as ion to electron temperature ratios and Qt

value). The recycling coefficient was set to the .471 value

used by ZEPHYR. Benchmarking for the pump fraction value,

as was done for the JAERI case, yielded a pump fraction

greater than 1.0 (an impossibility). Therefore, iterative

calculation of the recycling coeffcient was not possible.

This benchmarking result indicates a significant difference

between the neutral particle models of the two divertor

models. It should be noted that the reported recycling

coefficient for this case, .471, is extremely low

considering the reported plate temperature (10.8 eV) and

density (8.6 x 10'9 m-3 ). One final note is that helium

effects were neglected. Table 5.3 displays the comparison to

the ZEPHYR results.

J.y
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TABLE 5.3
ZEPHYR Benchmark Case

Parameter ZEPHYR DIV

Tp(eV) 10.8 10.5

np(xl0'9 m- ) 8.6 8.68

Tt(eV) 26.7 28.0

nt(xlO" m- 1) 3.66 3.66

Throat Mach
Number,mt .73 .70

Radiation
Fraction .15 .16

Recycling
Coefficient,R .471 .471

The largest deviation from the ZEPHYR values was in the

radiation fraction which was only 8% different. As

expected, the DIV results were somewhat sensitive to the

shape factor due to the low value of the conduction fraction

(-.14). The results above are for a=5. Changing this to

a=6 caused T /n to increase/decrease by about 6%. A

similar sensitivity was arrived at when the shape factor was

decreased to a value of 4. The results are also very

sensitive to changes in the sheath energy transmission

factors (though the values used for the results above were
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the same as those used in reference 4 ). A 10% increase in

the radiation fraction (by setting IMP=1.1) had only a

slight effect on the temperature and density at the plate

(s6%). Because the radiation fraction is only 15% in this

case, radiative cooling does not play an important role in

determining the plate conditions.

5.5 Braam's Code Benchmark

This model solves the Braginskii fluid equations for

electrons and ions in two dimensions (axially and radially)

from a symmetry point (between divertors) to the divertor

plates. The code includes particle/energy convection,

viscosity, equipartition, axial variation in the radial

thickness of the edge plasma (i.e. cross-sectional area),

radiation, and helium effects. The results of this model,

reported in the NET Report #50, reference 9, are for a

NET/INTOR-like device for both the inner and outer divertor

plates. In doing this benchmark case it was neccssary to

convert the radial results for temperature and density into

average values at the plate and throat for both data input

and comparison. The modeling assumptions made include: the

momentum source term is zero, and the pump fractions for D-T

and helium are the same. Another inherent assumption in

this approach is that the average values themselves

IL01
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represent a solution to the fluid equations. Some of the

specific input data requirements had to be satisfied using

the calculational methods of Appendix C. The pump fractions

were back-calculated as described in Section 5.2, using the

plate data given in the NET report. Table 5.4 reports the

results of this comparison.

Table 5.4

NET Report #50 (outer target) Benchmark

Parameter Report #50 DIV

Tp(eV) 7.6 11.0

np(xl0'' m- ) 14.0 13.4

Tt(eV) 67.3 64.8

nt(xlO " r m- ) 5.0 5.0

Radiation
Fraction .17 .21

Recycling
Coefficient,R .998 .998

Plate Helium
Concentration .011 .025

Helium
Enrichment,[ 1.0 .99

The plate temperature for this case is 45% higher than it

should be and the plate concentration of helium is more than

twice the Report #50 value. Additionally, the radiation
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fraction is somewhat high (which makes this an unlikely

candidate for lowering Tp). Numerous runs were made in an

attempt to improve the results with no success. The

conclusion arrived at is that the assumption, that average

values represent a solution, may in fact not be valid. The

disperity between the two reported helium plate

concentrations may be due to the assumption the fHefDT

used in DIV. In some other models the pump fraction for

helium is larger than that for D-T. This would tend to

decrease the plate concentration bringing it closer to the

Report #50 value.

The results tended to be sensitive to the sheath energy

transmission factors. As expected, the results were

insensitive to the shape factor (R was large) and the

radiation fraction (which was low, -21%).

5.6 Benchmarking Conclusions

In general, the divertor model DIV yields very good

results when compared to other iD axial models. Some

problems arise, due to the average value assumption, when

comparison is made to a 2D model. The sensitivity of the

results to three input parameters, the shape factor, energy

transmission factors, and radiation fraction (via the

ry impurity increment), was examined and qualitative
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dependencies identified as listed in Table 5.5 and discussed

below. The most sensitive of these three parameters was the

Table 5.5

Parameter Sensitivities

Sensitivity of Tp and np

Parameter Small Large

Sheath Energy
Transmission
Factors,yi and Always
Ye

Impurity If radiation If radiation
Increment,IMP fraction is fraction is

small large

Shape Factor, a If R or . If R or i

is large is small

sheath energy transmission factors which directly control

the rate at which energy can be exhausted to the divertor

plate. Any increase in these factors will decrease the

plate temperature, and increase the plate density. The next

most sensitive parameter was the radiation fraction. This

quantity could be adjusted using the impurity increment.

The greatest sensitivity was found when the impurity

fraction was high. This observation implies that the final

plate temperature is very dependent on the total power lost

by radiative processes. When the radiation fraction is low, 'I

V. .r ~ -
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the sensitivity is much decreased. Finally, the sensitivity

to the shape factor was found to be a function of the

recycling coefficient. As R increases, the mach number at

the throat decreases, decreasing the fluid flow velocity,

and thereby, energy convection. This forces the conduction

fraction to increase. As i increases it becomes less

sensitive to the shape factor. In general, an increase in

the shape factor would independently decrease the conduction

fraction, but the interplay with the other variables tends

to make the net effect an increase in i.

Several other comments are warrented as a result of the

benchmarking and other program runs. The pressure at the

divertor plate (- npTp) is ultimately determined by the

energy flux (Qt) into the divertor. The effect of the

sheath energy transmission factors and radiation fraction is

only to alter the relative value of these parameters, not

their product. This implies that there is only so much that

can be done with the injection of impurities to reduce heat
N%

deposition and sputtering. This impurity injection

approach, though, sensitizes the plate density and

temperature to changes in the magnitude of the radiation

fraction. Any mechanism which might cause fluctuations in

the amount of radiation produced in the divertor (such as

flow reversal) will cause wide variation in plate density

and temperature.
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Another comment concerns the inclusion of the the

calculation of R in the program. The ability to allow R to

vary as the program iterates has improved the convergence

characteristics of the numerical techniques used and gives a

more self-consistent final solution. It also appears that

the low recycling regime is not accessible for some

combinations of input data. In most cases, if the initial

guesses for the fixed-point parameters were poor the program

tended to move towards the high recycling regime. Whether

this indicates a greater amount of stability for this

regime, or is just a numerical quirk is not known.

Finally, a few comments about sensitivities, other than

those noted in the benchmarking section, are warranted. In

most cases the results of a converged run are sensitive to

the throat density, nt. As nt increases, the plate densiLy

will increase, with a corresponding decrease in plate

temperature (this is with Qt constant). An increase in Qt

tends to increase the plate temperature. The response of

the radiation energy loss mechanisms is normally not great

enough to compensate for an increase in the energy flux, so

the plate temperature must increase to reflect the greater

amount of energy that much be exhausted to the divertor

plate.

- * /JJ- ~-* ~~.r ,~~.



CHAPTER 6

SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.1 Motivation and Objective

If fusion by magnetic confinement is ever to become a

viable energy source, the problems associated with impurity

production and exhaust must be solved. The divertor concept

represents an attractive solution to these problems by

exhausting D-T particles and helium-ash into a separate

chamber, away from the core plasma, where they can be

impacted on a target plate, neutralized, and pumped out of

the reactor. The performance of a given divertor design,

though, can presently, only be assessed with the use of

plasma edge models. Expensive experimentation must

eventually be performed to verify the results of these

models.

The modeling itself is a complex process both because it

involves a strong coupling between numerous reactor systems

(core plasma, first wall, divertor, pumping, etc..) and

because the fluid equations used are highly nonlinear. Some

models oversimplify both the equations and processes

included in order to obtain analytical expressions. While

some of these simple models can identify certain

dependencies, they do not yield quantitatively accurate

103
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results. Other models attempt to include all the physics

and solve the fluid equations in two dimensions (axially and

radially) resulting in computer codes which are highly

numerical and complex. The objective of this thesis has

been to develop a simple, comprehensive, model of the

divertor region that is highly usable and gives

quantitatively accurate results.

The approach has been to solve the fluid equations in the

axial direction (along field lines) with a two point

technique in which only throat and plate quantities are of

interest. This allows the particle, momentum, and energy

source terms to be evaluated globally, simplifying their

calculation. This approach has also limited the complexity

of the numerical techniques needed to solve for the

parameters of interest. The model includes the key

processes of: neutral recycling; impurity production and

radiation; remote radiation cooling; neutral pumping;

particle convection; helium effects; and the effects of

divertor geometry and plate material. Neutral particle

modeling was accomplished using a simple model of a wedge-

shaped section of plasma overlying the divertor plate, and a

simple slab attenuation model. Additionally, a simple

exponential radial profile was introduced for the plate

temperature and density to make the calculations of neutral

recycling and sputtering more realistic. Implementation of
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the model was accomplished in Fortran on a PC to make the

code highly "usable" and responsive. The numerical

techniques used to solve for the plate temperature and

density, and the throat temperature were a fixed-point

iteration routine with Gauss-Seidel updating and successive

over-relaxation. Convergence with this method is fairly

quick, usually requiring less than twenty iterations. The

quality of the results was examined using a series of

benchmarking cases, as discussed next.

6.2 Benchmarking Results

The divertor model code, DIV, was benchmarked against

fuur other divertor models. The results of the benchmarking

validated the approach taken in this research. DIV compares

extremely well with the three ID (axial) divertor models

examined. The largest deviation in any of the fixed point

parameters (Tp, np, and Tt) was less than 8%. Comparison

with the results of a 2D model was less successful but not

poor. One explanation for this might be that the

assumption, that averages of the radial solutions of the 2D

model represent an axial solution, is not valid. The

sensitivity of the results to variations in a variety of

parameters was examined and qualitative dependencies

identified. The only input parameter which cannot be

p..
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calculated or evaluated beforehand is the shape factor used

in the calculation of the conduction fraction. However, at

the high recycling regimes anticipated for effective

divertor operation, the results become insensitive to the

value of this parameter.I I.
6.3 Applications

L

The inclusion of all key processes and the interactive

calculation of the recycling coefficient, helium

concentration, and divertor plasma parameters, along with

its PC implementation, makes DIV especially useful for

conducting parametric studies of divertor designs. Once

plasma results are generated, they can be input into the

sputtering module to evaluate erosion rates and impurity

production. Additionally, the ability to input different

materials in both the divertor code and sputtering module

allows for self-consistent assessments of divertor material

options.

Another versatility of DIV is the variety of allowable

inputs to the code which makes it possible to match other

model results. Once a given model's results are matched,

the effect of slight changes to the original design or input

can be determined quickly.

I
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6.4 Future Work

In conducting the research and in development of the

model, certain information was found to be lacking in the

literature, and certain expediencies had to be adopted.

These deficiencies represent avenues for future work, as

noted below.

1. Noncoronal equilibrium impurity radiation data is

nonexistent. The timescale for the return of

impurities to the divertor plate is smaller than

that for the onset of coronal equilibrium,

invalidating the coronal equilibrium assumption

made by some models. There appears to be little

definitive work on noncoronal equilibrium

radiation. This gap has made it impossible to

link the sputtering rate at the plate to the

impurity radiation.

2. Some of the input data for DIV could be

calculated by the program rather than

calculated off-line as done now. These

might include the energy flux to the divertor

(Qt) and the sheath energy transmission factors.

4t
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3. The present model does not allow for a variation

in the cross-sectional area of the plasma as it

flows to the plate. This variation could have a

significant impact on the heat deposition on the

plate. Such an improvement would allow for a

more realistic magnetic field line topology at

the plate rather than the simple topology currently

used.

4. Models for the D-T and helium pump fractions

(f and fHe) would make the final divertor

solutions more self-consistent and increase

accuracy in calculating the recycling

coefficient and helium enrichment.

5. An investigation of flow reversal and its impact

on divertor operations would be desireable.

Flow reversal has been identified as occuring

when the local recycling coefficient is greater

than 1.0.23 The escape of divertor impurities

into the main plasma made possible by this flow

reversal could make operation of the divertor

in the high recycling regime undesireable.
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APPENDIX A

INPUT DATA FOR DIVERTOR MODELING

A.1 Thermal Conduction

The Spitzer23 electron thermal conductivity coefficient

(x=0T2"5) was used in the energy equation, (3.3), and the

derivatives of this equation. The value of x0 is calculated

as,

31500 W(eV)-7/2 m-I (A.)

o <Z>lnA (A.I)

where <Z> is the effective charge of the plasma (taken to be

1.25) and inA is the coulombic logrithm (value of 13 used).

A.2 Surface Reflection

The reflection coefficients, Rn and Re, for particles (D-

T and helium) normally incident at energy Eo on a surface

were evaluated using the empirical relationships of

reference 3.
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For Particles

Rn= .19 - .2371og10 (Eo/EL) (A.2)

For Energy

Re= 0.06 - .22log10 (Eo/EL) (A.3)

where EL is a material, and particle, dependent reduced

energy given by

EL(eV)= M , + M2 ) (z 1 z 2 ) (z 1 2/3+ Z2
2 / 3 1/2 (A.4)

.03255 M2

where M1, 2 is the mass of the incident particle/target

material, and Z1, 2 is the atomic number of the incident

particle/target material.

A.3 Electron Impact Ionization Rates for Hydrogen

The equation for the rate coefficient for electron impact

ionization of D-T from the ground state (<Gv>ion) was taken

from the divertor model, ZEPHYR4 , and is given by

I|
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6

< ion, D-T =EXP{a ln(kT)]n (A.5)
In=OI

where kT is the electron plasma temperature in ev and an are

fitting constants given by

-2

ao  -45.56 a4 = 7.43x10

I= 11.44 a5 = 4.15x10
- 3

a2= 3,83 a6 =-9.49x10
5

*a3= .705

The collisional radiative ionization rate coefficient for D-

T (ionization of an excited atom) can be expressed as3

<GV> = <ov>[1+ 10 n 00 A6irD- on, D-T kT 10 20A6p
where kT is the plasma temperature in eV, n is the electron

plasma density in m- 3 , and A is,

.5= 1.36 EXP (-n
- 1 19 J
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A.4 Charge Exchange Rates for Hydrogen

The charge exchange rate coefficients were evaluated

using the expressions given in reference 3. For a D-T

plasma at average temperature Tavg (eV), the coefficients

are:

For one particle at rest (slow neutral CX)

cx-s[(.4282 T avgj 3338]X 10-14 m3 sec -  (A.7)

For both particles at Tavg (fast neutral CX)

AG- cxv-f = [(.8426 T avg) 3369]X 10-14 m3 sec'1(A8

A.5 Electron Impact Ionization Rates for Helium

The expression for the electron impact ionization rate

for neutral helium was taken from reference 24 and is given

by
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<cv>i EXP I Lan n m s e c -

ion,He kTJ IJL A. llo\'n=0 (A.9)

where kT is the electron plasma temperature in eV, I is the

ionization energy of neutral helium in eV (24.6 eV) and an

are fitting coefficients given below:

-9
ao= 1.5x10 8  a3= -3.59xi0

a1 = 5.67xi0
10  a4= 1.55x10

a2=-6.08x10 - 9  a5 = 1.32x10- 9

The collisional radiative ionization rate coefficient for

neutral helium can be expressed 
as3

<Uv> <Gv>. 1 + ,(He,- n
cr,He ion,He kT I(D-T) 1020

(AlO)

where I is the ionization energy for helium (24.6 eV) and D-

T (13.6 eV), and I is as given above.
| F,
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A.6 Sputtering Data

The parameters for calculation of physical sputtering

yields used in equations (3.59) and (3.60) are listed in

Table A.1 below.
21

Table A.1

Material Sputtering Parameters

Wall Material Z M Uo(eV)

Be 4 9.0 3.4

B 5 10.8 5.7

C 6 12.0 7.4

Ti 22 47.9 4.9

V 23 50.9 5.3

Fe 26 55.9 4.1

Ni 28 58.7 4.4

Cu 29 63.5 3.5

Nb 41 92.9 7.6

Mo 42 95.9 7.8

Ta 73 180.9 10.4

W 74 183.9 11.1

Equation (2.21) presented in Chapter 2 for the

Lrv ., -
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calculation of the sputtering rate due to a hydrogen ion

flux can be derived based on summing the sputtering yields

over a number of generations. An impacting hydrogen ion

will produce Y (sputtering yield) impurity neutrals. If a

fraction, f, of these plate material atoms then return to

the plate, each will cause another Ys (self sputtering

yield) impurity neutrals. The total yield due to the impact

of a single hydrogen ion can be represented over a number of

generations by

Total Yield = Y + YfYs + YfY(fY)+ Y(fY) 3+

If fys is < 1 then this can be rewritten as

Total Yield= Y (A. 11)

So the sputtering rate due to a flux, FH+, of hydrogen ions

would be, as given by equation (2.21)

Re = rH+Y l fYs



APPENDIX B

PROGRAM DIV SUPPORT MATERIALS

This appendix contains a list of the variables in the

program DIV along with a description of the subroutines in

the program. Enclosed with the appendix is a printout of a

sample run and the program itself.

B.1 Program Variables

Each of the significant variables used in the divertor model

programd DIV is described below along with its dimensions.

Items with a star are data entries.

Variable Description

A Ratio of temperature to density
scale lengthes

ARC Angle from a point on the divertor
back to the throat (Radians)

CHE Energy loss by radiation and
ionization per recycled helium
particle (eV)

CHI Energy loss by radiation and
ionization per recycled D-T
particle (eV)

CP Fractional plate concentration
of helium

119
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* CT Fractional throat concentration
of helium

D Particle diffusion coefficient
(m2 /sec)

EL Reflection coefficient reduced
energy for D-T particles (eV)

ELM Reflection coefficient reduced
energy for helium particles (eV)

ELOSS Average energy loss per recycled
neutral (eV)

* DIST Neutral reflection distribution to
be used for the neutral escape
probability calculation, l=cosine,
2=none.

F D-T Pump fraction, the fraction of
neutrals pumped that reach the
divertor plenum

* FHE Helium pump fraction

FCXF Relative probability of CX
versus ionization for fast
neutrals

FCXS Relative probability of CX
versus ionization for slow
neutrals

FIF Relative probability of
ionization versus CX for fast
neutrals

* Gl Sheath energy transmission factor
for electrons

* G2 Sheath energy transmission factor
for ions

HER Helium enrichment

* IE Upper integration limit as a
multiple of plate temperature
for sputtering calculations
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IMP Impurity radiation increment, a
multiplicative factor

ISE Integral from plate to throat of

the energy source term

LD Divertor connection length (m)

LCXF Mean free path in field line
direction for fast neutral CX (m)

LCXS MFP in field line direction for
slow neutral CX (m)

LDAF MFP for fast neutral ionization(m)

LDAS MFP for slow neutral ionization(m)

LF MFP in field line direction for
fast neutral ionization (m)

LNP Density scale length at the plateW((mn)

LS MFP in field line direction for

slow neutral ionization (m)

* M D-T particle mass (amu)

* M3 Atomic mass of plate material
(amu)

" METH Method to be used for calculation
of neutral escape probability, 1=
integral, 2=lavg.

MLT Multiple of <av>io n to get total
ionization rate (includes ground
state and excited state rates)

MT Throat mach number

NAV Throat to plate average electron
density (m- 3)

NDT Temperature gradient density
threshold (m- )

NM Plate material number density(m- 3)

V.-. ,
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* NP Plate electron density (m- 3 )

* NT Throat electron density (M- 3 )

P12 Ionization probability of He + to
He++

PBAR Neutral escape probability

PFT Total fast neutral escape prob-
ability

PH Neutral helium escape probablity

PST Total slow neutral escape prob-
ability

* QT Energy flux entering the throat
(W/m

* R Recycling coefficient

RE Energy reflection coefficient

RHE Helium recycling coefficient

RN Particle reflection coefficient

RP Ion to electron temperature ratio
at the plate

RT Ion to electron temperature ratio
at the throat

SHP Shape factor for A calculation

SI <v >ion for groundstate ionization

SOR Successive under or over relax-
ation coefficient

TAV Average throat to plate electron
temperature

THETA Angle of incidence of field lines
to divertor plate (radians)

TOL Tolerance for convergence

...... ..........
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* TP Plate electron temperature (eV)

* TT Throat electron temperature (eV)

* U Conduction fraction

* UO Binding energy for plate material
(eV)

VAVG Average plasma flow speed (m/sec)

VBAR Average neutral velocity normal-
ized to plate ion sound speed

VF Fast neutral speed (m/sec)

VS Slow neutral speed (m/sec)

XC Point along divertor plate (m)

* XT Width of divertor plate (m)

* Z3 Atomic number of plate material

Other variables found in the program are intermediate

variables. Those with a "0" suffix are original entry

values retained for comparison. Any prefix with "ANS" after

it is a response to a "yes" or "no" query.

B.2 Subroutine Description

This section briefly describes the subroutines included

in the divertor model program DIV. The more important of

these appeared on the program flow diagram, Figure 4.1.

Subroutine Description

ICALC Performs initial calculation

kiiil,11 W .



124

of basic quantities used
throughout the program

ESC Calculates the neutral escape
probability and recycling
coefficient for D-T using
ROMBERG,EVAL1 and EVAL2.

HESC Calculates the neutral escape
probability and recycling
coefficient for helium using
ROMBERG, EVALl, and EVAL2.

SRVBAR Calculates VBAR

SRMT Calculates MT

SRNDT Calculates ISE and NDT

MU Calculates the conduction
fraction (A) using ROMBERG and
EVAL3.

ROMBERG Evaluates an integral using
Romberg integration.

EVALI Function evaluation for the
integral calculation of ESC
and HESC for slow neutrals

EVAL2 Function evaluation for the
integral calculation of ESC
and HESC for fast neutrals

PROB Function evaluation for ESC
and HESC for the lavg method

EVAL3 Function evaluation for the
integral of MU

SPUD Sputtering subroutine

B.3 DIV Program Listing (attached)

I
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PROGRAM DIV

C Specifications Block

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R,ISE,U,NDT,TPO,TTO,NPO,
2 NTO,U0,RO,SOR,D,A,LNP
REAL X(101),Y(101),Z(101),PROD,ANS,RANS,
2 UANS,TOL,CT,CP,FHE,RH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,RN,
2 RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,CKANS,IMP,VANS,ELH,HER,P12,TANS

C Common Blocks- used to pass common data between
C subroutines

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH,THETA,EL
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,

2 LDAS,LDAF,LCXS,LCXF,MLT,LNP,RN,RE,VF,VS
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12

CHARACTER*64 FNAME

C Format Block

100 FORMAT(' Input known parameters,QT,LD,M,XT,THETA,EL')
200 FORMAT(' Input guesses,TP,TT,NP,NT,RP,RT')
250 FORMAT(' Input plasma constants,G1,G2,R,U,F,IMP')
300 FORMAT(' Input calc parameters,SHP,METH,DIST,TOL,SOR')
400 FORMAT(' Change known parameters? 1=yes 2=no')
500 FORMAT(' Change guesses? 1=yes 2=no')
550 FORMAT(' Change plasma constants? 1=yes 2=no')
600 FORMAT(' Change shape/plasma parameters? 1=yes 2=no')
700 FORMAT(' Another calculation? 1=yes 2=no')
800 FORMAT(' 10 loops complete, continue? 1=yes 2=no')
900 FORMAT(' Store iterations? 1=yes 2=no')
1000 FORMAT(' Enter data file name')

C Diagnostic Error Statements, all cause iterations
C to stop

1100 FORMAT(' MT was negative')
1200 FORMAT(' NDT was Negative')
1300 FORMAT(' PROD is LT 1')
1400 FORMAT(' QT-ISE is negative')
1500 FORMAT(A)
1600 FORMAT(I4,3X,EIO.4,3X,E10.4,3X,EIO.4)
1700 FORMAT(' Convergence to ',E9.4,' achieved')

A- K-- -A &J.% - - V IL.h~-%;.- r.' 1-
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1800 FORMAT(' TP=',E9.4,' NP=',E9.4,' TT=',E9.4,' NT,
2 E9.4)

1900 FORMAT(' MT=',E9.4,' U=',E9.4,' ISE=',E9.4,' R=',E9.4)
1950 FORMAT(' CP=',E9.4,'HER=',E9.4,' P12=',E9.4,'LNP=',

2 E9.4)
2000 FORMAT(' Iteration #-',14)
2100 FORMAT(' U is negative on TT change')
2600 FORMAT(' NP=',EIO.4,' TT=',EIO.4,'TP=',E1O.4)
2700 FORMAT(' U is negative, TP decremented -1')
2800 FORMAT(' Do you want to calculate R? l=yes 2=no')
2900 FORMAT(' Do you want to calculate U? 1=yes 2=no')
3000 FORMAT('ICALC')
3100 FORMAT(' SRVBAR')
3200 FORMAT(' SRMT')
3300 FORMAT(' MU=',E1O.4)
3400 FORMAT(' SRNDT')
3500 FORMAT(' ESC, R=',EIO.4)
3600 FORMAT(' Want to check MU? l=yes 2=no')
3700 FORMAT(' Change input data? 1=yes 2=no')
3800 FORMAT(' Want to check R? 1=yes 2=no')
3900 FORMAT(' Change input data? 1=yes 2=no')
4000 FORMAT(' VBAR=0? 1=yes 2=no')
4100 FORMAT(' Radial/HE data,enter D,A,CT,FHE,ELH')
4200 FORMAT(' Change radial/He data? 1=yes 2=no')
4300 FORMAT(' Do you want to calculate sputtering?

2 1=yes 2=no')
4400 FORMAT(' Jump to Sputtering? 1=yes 2=no')
4500 FORMAT(' Do you want to hold TT constant? 1=yes 2=no')
C Prompt for Inputs

WRITE(*,100)
READ(*,*) QT,LD,M,XT,THETA,EL
WRITE(*,200)
READ(*,*) TPO,TTO,NPO,NTO,RP,RT
WRITE(*,250)
READ(*,*) GI,G2,RO,UO,F,IMP
WRITE(*,4100)
READ(*,*) D,A,CT,FHE,ELH
WRITE(*,300)
READ(*,*) SHP,METH,DIST,TOL,SOR

C Initialization

70 K=I
MT=.1
TP=TPO
NP=NPO
TT=TTO
NT=NTO
U=UO
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R=RO
RHE=RO
X(1)=NPO
Y ( 1) =TTO

Z(1)=TPO

C Prompt for Jump to Sputtering Subroutine
WRITE(*,4400)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
CALL ICALC
CP=CT
P12=0.0
CALL SPUD
GOTO 65 I
ENDIF

C Prompts for calculation of VBAR, R, Mu,TT
WRITE(*,4000)
READ(*,*) VANS
WRITE(*,4500)
READ(*,*) TANS
WRITE(*,2800)
READ(*,*) RANS
IF(RANS.LT.1.5) THEN
WRITE( *,3800)
READ(*,*) CKANS
IF(CKANS.LT.1.5) THEN
CALL ICALC
CALL ESC
WRITE(*,3500) R
WRITE(*,3900)
READ(*,*) CKANS
IF(CKANS.LT.1.5) GOTO 75
ENDIF
ENDIF
WRITE(*,2900)
READ(*,*) UANS
IF(UANS.LT.1.5) THEN
WRITE(*,3600)
READ(*,*) CKANS
IF(CKANS.LT.l.5) THEN
CALL ICALC
CALL SRVBAR
CALL SRMT
CALL MU
WRITE(*,3300) U
WRITE(*,3700)
READ(*,*) CKANS
IF(CKANS.LT.1.5) GOTO 75
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ENDIF
ENDIF

C Do loop for 10 Fixed Point iterations
20 DO 10 J=1,10

K=K+1

80 CALL ICALC
WRITE(*, 3000)
IF(RANS.LT.1.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE( *,3100)

CALL SRMT
WRITE(*,3200)
IF(MT.LT.0.0) THEN
WRITE( *,1100)
GOTO 60
ENDIF

IF(UANS.LT.1.5) THEN
CALL MU
WRITE(*,3300) U

C This decrements TP by 1 if Mu is negative
IF(U.LT.0.0) THEN
WRITE(*,2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80
ENDIF
ENDIF

CALL SRNDT
WRITE(*,3400)
IF(NDT.LT.0.0) THEN
WRITE(*, 1200)
GOTO 60
ENDIF

C Use Fixed point iteration to get NP,TT,TP

PROD=( 2.+VBAR*R) *( 1.+RP) /NT/(1. +RT)/ (1. +MT*MT)

C X(K) is NP
X(K)=(((NP/NDT)**2.33333+1.)**.2857 14)/PROD
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NP=SR*X(() +(1. -SOR) *X(K-1)
C Check for Convergence on NP, if satisfied output
C updated results

IF(ABS((X(K)-X(K-l))/X(K)).LT.TOL) THEN

WRITE(*,1700) TOL
WRITE(*,1800) TP,NP,TT,NT
HER=(1.-RHE)/(1.-R)
WRITE(*,1900) MT,U,ISE,R
WRITE(*,1950) CP,HER,P12,LNP*SIN(THETA)
GOTO 60
ENDIF

C Now all variables are updated on most current NP
CALL ICALC
WRITE(*,3000)
IF(RANS.LT.1.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE( *,3100)

CALL SRMT
WRITE( *,3200)
IF(MT.LT.0.0) THEN
WRITE(*, 1100)
GOTO 60
ENDIF

IF(UANS.LT.1.5) THEN
CALL MU
WRITE(*,3300) U
IF(U.LT.0.0) THEN
WRITE( *,2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80
ENDIF
ENDIF

CALL SRNDT
WRITE(*,3400)
IF(NDT.LT.0.0) THEN
WRITE( *,1200)
GOTO 60
ENDIF

Lim . %~!% %... S
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C Y (K) is TT
IF(TANS.LT.1.5) GOTO 35
Y(K)=(2.+R*VBAR*(l.+RP))*NP*TP*(l.+RP)/(NT*(1.+RT)*
2 (1.+MT*MT))
TT=SOR*Y(K)+(1.-.SOR)*Y(K-1)

C Now all variables are updated using most current TT
CALL ICALC
WRITE(*,3000)
IF(RANS.LT.1.5) THEN
CALL ESC
CALL HESC
ENDIF
WRITE(*,3500) R
CALL SRVBAR
WRITE(*,3100)

CALL SRiMT
WRITE( *,3200)
IF(MT.LT.0.0) THEN
WRITE( *,1100)
GOTO 60
ENDIF

IF(UANS.LT.1.5) THEN
CALL M4U
WRITE(*,3300) U
IF(U.LT.0.0) THEN
W'RITE( *2700)
TP=TP-1.
IF(TP.LT.3) GOTO 60
GOTO 80
ENDIF
ENDIF

CALL SRNDT
WRITE(*,3400)
IF(NDT.LT.0.0) THEN
WRITE(*, 1200)
GOTO 60
ENDIF

IF((QT-ISE).LT.0.0) THEN
WRITE( *, 1400)
GOTO 60
ENDIF

C Z(K) is TP
35 Z(K)=(6.355E-5*(QT-ISE)/(NP*SQRT( (1.+RP)/M)

2 *(G1+RP*G2)))** 66667
TP=SOR*Z(K)+( 1.-SOR)*Z(K-.1)

MAL.*
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C Now output results of most current iteration
WRITE(*,2000) K
WRITE( *,2600)NP,TT,TP

10 CONTINUE

C prompt to do ten more loops
WRITE(*,800)
READ(*,*) ANS
IF(ANS.LT.1.5) GOTO 20

C Prompt for storing iterations
60 WRITE(*,900)

READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE(*, 1000)
READ(*,1500) FNAME
OPEN(2,FILE=FNAME)
DO 30 I=1..K

2 WRITE(2,1600) I,Z(I) ,Y(I) ,X(I)
30 CONTINUE

CLOSE(2)
ENDIF

C Prompt for Sputtering calculations
WRITE(*,4300)
READ(*,*) ANS
IF(ANS.LT.1.5) CALL SPUD

C Prompts for another calculation and data changes
65 WRITE(*,700)

READ(*,*) ANS
IF(ANS.GT.1.5) GOTO 50

75 WRITE(*,400)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN

WRITE(*, 100)
READ( *,*) QT,LD,M,XT,THETA,EL
ENDIF
WRITE ( *500)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE(*,200)
READ( *,.*) TPO,TTO,NPO,NTO,RP,RT
ENDIF
WRITE (* ,550)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
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WRITE(*,250)
READ( *,*) G1,G2 ,RO,UO,F, IMP
ENDIF
WRITE(*,4200)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE( *,4100)
READ(*,*) D,A,CT,FHE,ELH
ENDIF
WRITE(*, 600)
READ(*,*) ANS
IF(ANS.LT.1.5) THEN
WRITE( *,300)
READ(*,*) SHP,METH,DIST,TOL,SOR
ENDIF

GOTO 70
50 STOP

END

SUBROUTINE ICALC

C This subroutine does initial calculations which go
C into the CALC common block

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 XT,THETA,EL,DIST,METH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXS,FCXF,

2 RN,RE,VF,VS,LDAS,LDAF,ELH
REAL LCXS,LCXF,MLT,Z,ZS, IMP,VANS,D,A,LNP,CT,FHE

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M, SHP,
2 F,G1,G2,XT,THETA,EL,DIST,METH, IMP,VANS,
3 D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,

2 FCXS, RN, RE ,VF,VS, LDAS,LDAF,LCXS,LCXF,MLT,LNP

TAV=(TP+TT) /2.
NAV=(NP+NT) /2.
LNP=SQRT(D*LD/9822 .27/(TP* (1.+RP) /M) ** .5) /SIN(THETA)
RN=.19-.237*ALOG10(3.*TP/EL)
RE=.06-.22*ALOG10(3.*TP/EL)
VF=9822 .27*SQRT( 6. *TP*RE/M/RN)

C VS is based on a Franck-Condon energy of 3 ev
VS=9822 .27*SQRT( 6. /M)
Z=ALOG(TAV)

ZS (((94e 5Z4.5 -)Z74e 2*

jI



133

2 +. 705) *Z-3. 83)*Z+1l .44) *Z-31 .74
SI=EXP(ZS-13 .82)
MLT=2.0+(10./TAV)*(NAV/10.)**(.5*(1.-1.36*EXP(-NAV)))
SCXS=( (.4282*TAV)**.3338)*1.e-14
SCXF=(( .8426*TAV)**.3369)*1.e-14
FIF=MLT*SI/ (MLT*SI+SCXF)
FCXF=1 .-FIF
FCXS=SCXS/ (SCXS+MLT* SI)
LDAS=VS/ (NAV*1 .e19*MLT*SI )/SIN(THETA)
LDAF=VFI (NAV*1 .el9*MLT*SI) /SIN(THETA)
LCXS=VS/(NAV*1.el9*SCXS) /SIN(THETA)
LCXF=VF/ (NAV*1 .e19*SCXF) /SIN(THETA)
RETURN
END

SUBROUTINE SRVBAR

C This subroutine calculates VBAR

REAL TP,TT,NP,NT,R-P,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,M.ETH
REAL MT,VBAR,PBAR,R, ISE,U,NDT,VANS,D,A,
2 LNP,RHE,CT,FHE,CP
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,

2 RN,RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,FVBAR,SVBAR,VAVG,IMP,ELH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,FHE,ELH,
2 F,G1,G2,XT,THETA,EL,DIST,METH,IMP,VANS,D,A,CT
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,
2 RN,RE,VF,VS,

LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR, ISE,MT,U,NDT,RHE,CP,P12

-nC Calculate VBAR

VAVG=4911. 13*(MT*SQRT(TT*(1.0+RT)/M)+
2 SQRT(TP*(l.0IRP)/M))

FVBAR=RN*VF*SIN (THETA)
* SVBAR=( 1.-RN) *VS*SIN(THETA)

VBAR=(FVBAR+SVBAR)/(9822.27*SQRT(TP*(1.0+RP)/M))
IF(VANS.LT.1.5) VBAR=0.0
RETURN
END
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SUBROUTINE SRMT

C This subroutine calculated MT, the throat mach number
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 XT,THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R, ISE,U,NDT,MTO,A, IMP,
2 VANS,D,AA,CT,FHE,RHE,CP
REAL ELH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,
2 SHP,F,G1,G2,XT,THETA,EL,
3 DIST,METH,IMP,VANS,D,AA,CT,FHE,ELH
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12

C Calculate MT

15 A=NP*(l.O-R)*(1.0-R)/(NT*(2.0+R*VBAR))
IF(A.GT.l.0) THEN
?4T=-1 .0
RETURN
ENDIF
MTO=SQRT(A/( 1-A))

C This loop is to adjust VEAR using the most current MT
IF(ABS((MTO-MT)/MTO).GT. .05) THEN
MT=MTO
CALL SRVBAR

GOTO 15
ENDIF
MT=MTO

RETURN

END

SUBROUTINE SRNDT

C This subroutine calculated NDT and most energy loss
C related terms

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1 ,G2,XT,
2 THETA,EL,DIST,METH
REAL MT,VBAR,PBAR,R, ISE,U,NDT,VANS,D,A,LNP,CT,

2 FHE,RHE,CP,CHE,ELH
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,

2 RE,VF,VS,LDAS,LDAF
REAL LCXF,LCXS,MLT,CHI,ELOSS,VAVG,IMP,TRES,P12
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COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,EL,
3 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXSS.SCXF,FIF,FCXF,
2 FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12

100 FORMAT(' ELOSS=',E1O.4)

CHI=17 . 5-4-5.+37.5/TAV) *AOG10 (100. /NAV)
TRES=3.64*(RN*LDAF+(1.-RN)*LDAS)*SIN(THETA)/
2 9822.27/SQRT(TP*(1+RP)/M)
P12=1.-EXP(-(1.e-5+TRES)/3.e-5)
CHE=15 .+P12* (70+3360./TP)
CP=CT*NT*MT*SQRT(TT*(1.+RT)/TP/(1.+RP) )/(1.-RHE)/NP
VAVG=4911. 13* (MT*SQRT(TT*(1. 0+RT) /M)+
2 SQRT(TP*(1.0+RP)/M))

ELOSS=IMP* (1.-(l1.+P12) *CP) *(CHI+( 1.-RN) *( 1.
2 -R)*FCXS*(1.5*TAV+
2 5.183E-9*M*VAVG*VAVG-3. )/R)+RHE*CHE*CP/R
WRITE(*,100) ELOSS
ISE=R*NP*9822 .27*SQRT(TP* (1. 0+RP) /M) *ELOSS*1 .602

IF(ISE/QT.GT.1.0) THEN
NDT=-1 .0
RETURN
ENDIF
NDT=(553.83/(U*LD) )**.42857*(QT**.57143)*(1.0-ISE/QT)*
2 SQRT(M/(1.0+RP))*6.35515E-5/(G1+RP*G2)

RETURN
END

SUBROUTINE ESC

C This subroutine calculates PBAR and R for D-T. It
C calculates the escape probability for particles based
C on simple exponential attentuation at 50 points across
C the divertor plate and averages the PBAR values by
C weighting them with the local plate particle flux

REAL PS,PF,PST,PFT,PBAR,XC, INCR,ARC,TN,RST,
2 R,EF1,EF2,LDS,LDF,ELH
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1 ,G2,

2 XT,THETA,EL,DIST,METH

REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,
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2 RE,VF,VS,LDAS,LDAF,CP
REALJ LCXS,LCXF,M4LT,VBAR,ISE,MT,U,NDT,IMP,VANS,

2 D,A,LNP,CT,FHE,RHE
REAL NPO,TPO,TPR,NPR,VFR,RNR,RER,M-TR,P12,FXT

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,
3 EL,DISTMETH, IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,
2 RN,RE,VF,VS,LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,Pl2
COMMON ISUBESCI ARC,XC,LDF,LDS

INTEGER JL

C Initialize Parameters

xC=o.O
PST-0.0
PFTO .0
P5=0.0
PF=U.0
EF1.0
EF2=2.0
FXTO .0

C Initial Calculations

INCR=XT/50.
TN=TAN(THETA)
NPO=XT*NP/LNP/ ( 1.-EXP (-XT/LNP))
TPO=XT*TP/A/LNP/( 1. -EXP (-XT/A/LNP))

C Do Loop to Calculate Escape Probability for a mesh of
C points

DO 50 JL=l,49

XC=XC+INCR
TP=P*X(-CALP

TPRTNPO*EXP( -XC/LNP)

RNR=.l9 .237*ALOG10(3 .*TPR/EL)
RER=.06-.22*ALOGIO(3.*TPR/EL)
VFR=9822 .27*SQRT( 6. *TPR*RER/M/RNR)

Z=ALOG(TPR)
ZS=( (( ( (9.49e-5*Z+4.15e-3)*Z-7.43e-2)*Z
2 +.705)*Z-3.83)*Z+11.44)*Z-31 .74
SI=EXP(ZS-13.82)
MLT=2.0+(10./TPR)*(NPR/10. )**(.5*(1.-l.36*EXP(-NPR)))
LDS=VS/(NPR*1 .e19*MLT*SI)

LDF=VFR/ (NPR*1. e19*MLT*SI)
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ARC=3. 1416-ACOS(XC/SQRT(XT*XT*TN*TN+XC*XC))

IF(METH.LT.1.5) THEN
CALL RMBG(O.O,ARC,EF1,RST)
PS=RST/ARC
ENDIF

IF(METH.GT.1.5) CALL PROB(LDS,PS,THETA,XT)

PST=PST+NPR*SQRT(TPR) *PS*(1. -RNR)

IF(METH.LT.1.5) THEN
CALL RMBG(0.0,ARC,EF2,RST)
PF=RST/ARC
ENDIF

IF(METH.GT. 1.5) CALL PROB(LDF,PF,THETA,XT)

PFT=PFT+NPR*SQRT (TPR) *PF*RNR
FXT=FXT+NPR*SQRT (TPR)

50 CONTINUE

C Calculate final escape probability
PBAR=(PFT+PST) /FXT
R=1 . PBAR*F
RETURN
END

SUBROUTINE HESC

C This subroutine does the same thing as ESC but for He

REAL PS,PF,PST,PFT,PBAR,XC, INCR,ARC,TN,RST,R,
2 EF1,EF2,LDS,LDF,ELH
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2 ,XT,
2 THETA,EL,DIST,METH
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,FCXS,RN,RE,

2 VF,VS,LDAS,LDAF,CP
REAL LCXS,LCXF,MLT,VBAR, ISE,MT,U,NDT, IMP,VANS,

2 D,A,LNP,CT,FHE,RHE
REAL NPO,TPO,TPR,NPR,VFR,RNR,RER,MLTR,VSH,PH,P12

COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,
2 SHP,F,G1,G2,XT,THETA,
3 EL,DIST,METH, IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,
2 FCXS,RN,RE,VF,VS,
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3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12
COMMON /SUBESC/ ARC,XC,LDF,LDS

INTEGER JL

C Initialize Parameters

xC=0.0
PST=0. 0
PFT=0 .0
Ps=0.0
PF=0.0
EF1=1 .0
EF2=2.0
FXT=0 .0

C Initial Calculations

INCR=XT/50.
TN=TAN (THETA)
NPO=XT*NP/LNP ( 1. -EXP (-XT/LNP))
TPO=XT*TP/A/LNP/( 1. -EXP (-XT/A/LNP))

C Do Loop to Calculate Escape Probability for a mesh of
C points

DO 50 JL=l,49

XC=XC+INCR
TPR=TPO*EXP (-XC/A/LNP)
NPR=NPO*EXP (-XC/LNP)
RNR=. 19-.237*ALOG10(3. *TPR/ELH)
RER=.O6-.22*ALOG10(3.*TPR/ELH)
VFR=9822 .27*SQRT( 6. *TPR*RER/4 . RNR)
VSH=9822 .27*SQRT( 6.14.)
Z=ALOG1O(TPR/24 .6)
ZS((130e9Z1559-)Z35e9*

2 -6.082e-9)*Z+5.666e-l0)*Z+l.5e-8

SI=EXP(-24.6/TPR)*SQRT(TPR/24.6)*ZS*l.e-6
MLT=2.0+(18.l/TPR)*(NPR/l0.)**(.5*(l.-l.36*EXP(-NPR)))
LDS=VSHI (NPR*l .e19*MLT*SI*0 .55)
LDF=VFR/(NPR*l .e19*MLT*SI*0 .55)

ARC=3. 1416-ACOS(XC/SQRT(XT*XT*TN*TN+XC*XC))

IF(METH.LT.l.5) THEN
CALL RMBG(0.0,ARC,EF1,RST)
PS=RST/ARC
ENDIF

P . P
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IF(METH.GT.l.5) CALL PROB(LDS,PS,THETA,XT)

PST=PST+NPR*SQRT(TPR) *PS*(1. -RNR)

IF(I4ETH.LT.1.5) THEN
CALL RIBG(0.0,ARC,EF2,RST)
PF=RST/ARC
ENDIF

IF(METH.GT.l.5) CALL PROB(LDF,PF,THETA,XT)

PFT=PFT+NPR*SQRT (TPR) *PF*RNR
FXT=FXT+NPR*SQRT (TPR)

50 CONTINUE

C Calculate final escape probability
PH=(PFT+PST) /FXT
RHEl . -PH*FHE
RETURN
END

C This subroutine evaluates an integral A-B of EF using
C Romberg integration. It is used in ESC, HESC, MU, and
C SPUD

SUBROUTINE RMBG(A,B,EF,RESULT)

REAL A,B,H,V,FF,R1(12),R2(12),RA,RB,RV,EF,RESULT

INTEGER K,J,L,M,I
C Initial Calculations

DO 50 I=1,12
R1(I)=0.0
R2(I)=0.0

50 CONTINUE

H=B-A
C Calculate Rl,1

IF(EF.LT.1.5) THEN
CALL EVAL1(A,RA)
CALL EVAL1(B,RB)
ENDIF
IF(EF.GT.l.5) THEN
IF(EF.LT.2.5) THEN
CALL EVAL2(A,RA)
CALL EVAL2(B,RB)
ENDIF
ENDIF
IF(EF.GT.2.5) THEN
IF(EF.LT.3.5) THEN
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CALL EVAL3(A,RA)
CALL EVAL3(B,RB)
END IF
ENDIF
IF(EF.GT.3.5) THEN
CALL EVAL4(A,RA)
CALL EVAL4(B,RB)
ENDIF
R1(1)=H*(RA+RB)/2.0
DO 400 I=2,10
L=2**(I-2)
FF=0.0
DO 100 K1I,L
V=A+(FLOAT(K)-0.5)*H
IF(EF.LT.1.5) THEN
CALL EVAL1(V,RV)
ENDIF
IF(EF.GT.1.5) THEN
IF (EF.LT.2.5) THEN
CALL EVAL2(V,RV)
ENDIF
ENDIF
IF(EF.GT.2.5) THEN
IF(EF.LT.3.5) THEN
CALL EVAL3(V,RV)
ENDIF
ENDIF
IF(EF.GT.3.5) THEN
CALL EVAL4(V,RV)
ENDIF
F F =FF +RV

100 CONTINUE
R2 (1) =0. 5* (R1( 1)+H*FF)
DO 200 J=2,I
R2(J)=( (4.0**FLOAT(J-1)*R2(J-1) )-R1(J

2 -1) )/(4.0**FLOAT(J-1)-l10)
IF(EF.LT.3.5) THEN
IF(ABS(R2(J)).LT.1.e-2) THEN
R2(J)=0.0
GOTO 500
ENDIF
ENDIF
IF(ABS((R2(J)-R2(J-1))/R2(J)).LT.1.OE-3) GOTO 500

200 CONTINUE

H=H/2 .0
DO 300 M=1,I
R1(M)=R2(M)

300 CONTINUE
400 CONTINUE
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500 RESULT=R2(J)
RETURN
END

SUBROUTINE EVALl (X, RST)

C This subroutine is function evaluation for fast
C particle calculations of method 1 of ESC

REAL L,ARC,XC,TN,RST,LDF,LDS,D,A,LNP,CT,FHE
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2 ,XT,
2 THETA,EL,DIST,METH
REAL IMP,VANS

COMMON /SUBESC/ ARC,XC,LDF,LDS
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,?4,SHP,F,
2 G1,G2,XT,THETA,EL,DIST,METH,
3 11P,VANS,D,A,CT,FHE,ELH

TN=TAN (THETA)
L=TN*(XT-XC)/(SIN(X)4+TN*COS(X))
RST=(ARC/3.14l6)*EXP(-1.O*L/LDS)

IF(DIST.LT.1.5) RST=SIN(X)*RST

RETURN

END

SUBROUTINE EVAL2 (X, RST)

C This subroutine is function evaluation for slow
C particle calculations of method 1 of ESC

REAL L,ARC,XC,TN,RST,LDF,LDS ,D,A,CT, FHE,LNP
REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,G2,
2 XT,THETA,EL,DIST,METH
REAL IMP,VANS

COMMON /SUBESC/ ARC,XC,LDF,LDS
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,
3 EL,DIST,METH, IMP,VANS,D,A,CT,FHE,ELH

TN=TAN (THETA)
L=TN*(XT-XC)/(SIN(X)+TN*COS(X))
RST=(ARC/3.1416) *EXP(-1.0*L/LDF)
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IF(DIST.LT.1.5) RST=SIN(X)*RST

RETURN

END

SUBROUTINE PROB (LDA, P,THETA, XT)

C This subroutine is function evaluation for method 2
C of ESC

REAL LDA,XC,P,ARC,PT1,PT2,LAVG,TN,THETA,
2 XT,DIST,LDF,LDS

COMMON /SUBESC/ ARC,XC,LDF,LDS

C Initial Calculations

TN=TAN (THETA)

C Calculate LAVG
PT1=ALOG(TAN(THETA/2.O))
PT2=ALOG(TAN( (THETA+ARC)/2.O))
LAVG=TN*(XT-XC)*(PT2-PT1)/(SQRT(l.O+TN*TN)*ARC)

C Calculate Escape Probability
P=(ARC/3. l416)*EXP(-l. O*LAVG/LDA)

RETURN
END

SUBROUTINE MU

C This subroutine calculates the conduction fraction

REAL PBAR,R,VBAR,ISE,MT,U,NDT,RST,EF,IMP,VANS,
2 D,A,RHE,CT,FHE,CP,P12
REAL NP,TP,NT,TT,RP,RT,LD,QT,M,SHP,F,G1,G2,

2 XT,THETA,EL,DIST,METH

COMMON /SR/ PBAR,R,VBAR,ISE,MT,U,NDT,RHE,CP,P12
COMMON /INPUT/ TP,TT, NP,NT, RP, RT,LD,QT,M, SHP,
2 F,G1,G2,XT,THETA,EL,
2 DIST,METH,IMP,VANS,1),A,CT,FHE,ELH

CALL RMBG(O.0,LD,3.,RST)
U=l.-RST/QT/LD
RETURN
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END

SUBROUTINE EVAL3 (X,RST)

C This is function evaluation for romberg integration
C of MU

REAL PBAR,RCY,VBAR,ISE,MT,U,NDT,RST,IMP,
2 BOT,VANS,D,A,LNP,RHE,FHE
REAL NP,TP,NT,TT,RP,RT,LD,QT,M,SHP,F,G1,

2 G2,XT,THETA,EL,DIST,METH
REAL TAV,NAV,SI ,SCXS,SCXF,FIF,FCXF,FCXS,RN,
2 RE,VF,VS,LDAS,LDAF,CP
REAL LCXF,LCXS,MLT,FC,N,R,T,MA,RPR,TOP,

2 VRPR,VAVG,LF,LS,P12

COMMON /SR/ PBAR,RCY,VBAR, ISE,MT,U,NDT,RHE,CP,P12
COMMON /INPUT/ TP,TT,NP,NT,RP,RT,LD,QT,M,SHP, F,
2 G1,G2,XT,THETA,EL,
3 DIST,METH,114P,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,
2 FCXF,FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP

FC=(l1.-( 1.-X/LD) **SHP)
N=NP+ (NT-NP) *FC

R=RP+(RT-RP)*FC

LF=LDAF
LS=LDAS

RPR=(LF*RN*(I.-EXP(-X/LF) )+(1.-RN)*LS*(l.-EXP(-X/LS)))
2 /(LF*RN*(1.-EXP(-LD/LF) )+(l.-RN)*LS*(1.-EXP(
3 -LD/LS)))

VAVG=4911. 13*(MT*SQRT(TT* (1.+RT) /M) +
2 SQRT(TP*(1.+RP)/M)

TOP=RN*(FIF*SIN(THETA)*VF*(1.-EXP(-X/LF))
2 +FCXF*(VF*SIN(THETA4)+VAVG*(1.-RCY) )*
3 (I-X(XLX))(I-N*AG(.RY
4 *FCXS*( 1.-EXP(-X/LCXS))

BOT=RN*(FIF*SIN(THETA)*VF*(l.-EXP(-LD/LF))
2 +FCXF*(VF*SIN(THETA)+VAVG*(1.-RCY))
3 *(1.-EXP(-LD/LCXF)))+(1.-RN)*VAVG
4 *(1.-RCY)*FCXS*(.EXP(.LD/LCXS))
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VRPR=RCY*VBAR*TOP/ BOT

T=(VRPR+2 .- ( 1-RCY*RPR) **2.*Np/N) *NP*TP
2 *(l.+RP)/(N*(1.+R))

MA=(1.-RCY*RPR)*(NP/N)*SQRT(TP*(l.+RP)/T/(l.+R))

RST=N*MA*SQRT(T* (1.+R) /M) *(MA*MA*T*(1. +R) *.5+2. 5*T*
2 (1.+R))*1.5735E4

RETURN
END

SUBROUTINE SPUD

C This subroutine calculates sputtering on the divertor
C plate based on an exponential profile. You can used
C the average local temperature for each of 50 points
C across the plate or integration of the MB distribution
C and Yield at each.

REAL UO,Z3,M3,NPO,TPO,X, INC,ETH1,ETH2 ,ETH3,
2 TPR(51),lNPR(51)
REAL SP(51) ,Y1,Y2-,Y3,YT,SPT,ANS,DIST,METH,

2 IMP,VANS,D,A,CT,FHE
REAL PBAR,RCY,VBAR, ISE,MT,U,NDT,RHE,CP,
2 LDAS,LDAF,LCXS,LCXF,MLT
REA-,L TP,TT,NP,NT, RP,RT,LD,QT,M, SHP, F,
2 G1,G2,XT,THETA,EL,P12,LNP
REAL TAV,NAV,SI,SCXS,SCXF,FIF,FCXF,
2 FCXS,RN,RE,VF,VS,N14,PEAK
REAL FLAG,SDT(51) ,SHE(51) ,EI,TPRC,IE,
2 E1,E2,E3,RST1,RST2,RST

COMMON /SR/ PBAR,RCY,VBAR, ISE,MT,U,NDT,RHE,CP,P12

COMMON /INPUT/ TP,TT,NP,NT,RP, RT,LD,QT,M,SHP,
2 F,G1,G2,XT,THETA,EL,
3 DIST,METH, IMP,VANS,D,A,CT,FHE,ELH
COMMON /CALC/ TAV,NAV,SI,SCXS,SCXF,FIF,
2 FCXF,FCXS,RN,RE,VF,VS,
3 LDAS,LDAF,LCXS,LCXF,MLT,LNP
COMMON /MB/ TPRC,FLAG,M2,M3,UO,Z3,ETH1,ETH2

CHARACTER*64 FNAME

C FORMAT BLOCK
100 FORMAT(' Input plate material data,

2 UO,Z3,M3,NM(xE24),IE '
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200 FORMAT(' Peak sputtering rate is',E1O.4,' CM/YR TP=',
2 E9.4,' NP=',E9.4)

300 FORMAT(' Sputtering Yield per meter is',E1O.4,' xEl9')
400 FORMAT(' Enter sputtering data file-prn')
500 FORMAT(A)
600 FORMAT( 15,3X,E1O.4,3X,E10.4, 3X,E1O.4,

2 3X,E1O.4,3X,E10.4)
700 FORMAT(' Do another plate material? 1=yes 2=no')
800 FORMAT(' Use average temps or integrate MB? 1=avg

2 =integrate')
900 FORMAT(' Do you want to store data? 1=yes 2=no')
1000 FORMAT(' Impurity yield is GT 1.0 set =0.0')

350 WRITE(*,100)
READ(*,*) UO,Z3,M3,NM,IE
WRITE( *,800)
READ(*,*) ANS
NPO=XT*NP/LNP/( 1. -EXP (-XT/LNP))
TPO=XT*TP/A/LNP/( 1. -EXP (-XT/A/LNP))
SPT=0 .0
X=0.0

INC=XT/50.
ETHI=UO*(4.*M+M3)*(4.*M+M3)/4./M/M3
ETH2=UO*(16.4+M3)*(16.+M3)/16./M3
ETH3=UO*6.25

C This block evaluates sputtering using MB integration
IF(ANS.GT.1.5) THEN
DO 150 I=1,50
Y3=0.0
SHE( I)0O.0
SDT(I)=0.0
TPR( I)=TPO*EXP(-X/A/LNP)
TPRC=RP*TPR( I)
NPR( I)=NPO*EXP (-X/LNP)
E3=(G2-2. )*RP*TPR(I)
IF(E3.GT.ETH3) THEN
Y3=YLD(UO,400. ,Z3,Z3,M3,M3,E3,ETH3)
IF(Y3.GT.1.0) THEN
WRITE(*, 1000)
Y3=0.0
ENDIF
ENDIF
EI=.5*(ETH1-(G2-2. )*RP*TPR(I))
IF(EI.LT.0.0) EI=0.0
IF(EI.LT.IE*TPRC) THEN
FLAG=1.

IF(EI.LT.1.5*TPRC) THEN
CALL RMBG(EI,1.5*TPRC,4. ,RST1)
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CALL RMBG(1.5*TPRC,IE*TPRC,4.,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4.,RST1)
ENDIF
RST=RST 1+RST2
RST1=0 .0
RST2=O.0
SDT(I)=(l.-(I.+P12)*CP)*RST*NPR(I)*SQRT(TPR(I)*
2 (1.+RP)fM)*11083.6/(1.-Y3)
ENDIF
EI=.5*(ETH2-2.*(G2-.2.)*RP*TPR(I))
IF(EI.LT.0.0) EI=0.0
IF(CP.LT.0.001) GOTO 550

IF(EI.LT.IE*TPRC) THEN
FLAG=2.
IF(EI.LT.1.5*rPRC) THEN
CALL RMBG(EI,1.5*TPRC,4.,RST1)
CALL RMBG(1.5*TPRC,IE*TPRC,4.,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4.,RST1)
ENDIF
RST=RST1 +RST2
RST1=0.0
RST2=0 .0
SHE(I)=P12*CP*RST*NPR(I)*SQRT(TPR(I)*(1.+RP)/M)

2 *11083-5/(1.-Y3)
ENDIF
EI=.5*(ETH2-1.*(G2-2.)*RP*TPR(I))
IF(EI.LT.0.0) EI=0.0
IF(CP.LT.0.001) GOTO 550

IF(EI.LT.IE*TPRC) THEN
FLAG=3.
IF(EI.LT.1.5*TPRC) THEN
CALL RNBG(EI,1.5*TPRC,4.,RST1)
CALL RMBG(1.5*TPRC,IE*TPRC,4.,RST2)
ENDIF
IF(EI.GT.1.5*TPRC) THEN
CALL RMBG(EI,IE*TPRC,4. ,RST1)
ENDIF
RST=RST 1+RST2 %

RST1=0 .0
RST2=0.0
SHE(I)=SHE(I)+(l.-P12)*CP*RST*NPR(I)*

2 SQRT(TPR(I)*( 1.+RP)IM)*11083.5/(1.-Y3)
ENDIF

550 SP(I)=SDT(I)+SHE(I)
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SPT=SPT+0.02*XT*SP( I)
X=X+INC

150 CONTINUE
ENDIF

C This block evaluates sputtering using average local
C temp

IF(ANS.LT.1.5) THEN
DO 450 I=1,50
Y1=0.0
Y2=0.0
Y3=0.0
SDT(I)=0.0
SHE(I)=0.0
TPR( I) =TPO*EXP( -X/A/LNP)
TPRC=TPR( I)
NPR( I) =NPO*EXP( -X/LNP)
El=TPR( I) *G2*RP
E2=TPR(I)*2.*RP*(G2-1.)
E3=TPR(I)*RP*(G2-1.)
IF(E3.GT.ETH3) THEN
Y3=YLD(UO,400. ,Z3,Z3,143,M3,E3,ETH3)
IF(Y3.GT.1.0) THEN
WRITE(*, 1000)
Y3=0.0
ENDIF
ENDIF
IF(E1.GT.ETH1) THEN
YI=YLD( UO ,400, 1. ,Z3 ,M, M3 ,El,ETHi)
ENDIF
IF(E2.GT.ETH2) THEN
Y2=YLD(UO,400.,2.,Z3,4.,M3,E2,ETH2)
ENDIF
SDT(I)=9822.27*NPR(I)*SQRT(TPR(I)*(1.+RP)/M)*Yl*(l.

2 -(1. +P12)*CP)/(1. -Y3)
SHE(I)=9822.27*NPR(I)*SQRT(TPR(I)*(l.+RP)/M)*
2 Y2*CPI(l.-Y3)
SP( I)=SDT( I)+SHE(I)
SPT=SPT+.02*XT*SP( I)
X=X+INC

450 CONTINUE
ENDIF

C On screen Output of results
PEAK= SP(1)*.0315/NM
WRITE(*,200) PEAK,RP*TPR(1) ,NPR(l)
WRITE(*,300) SPT

C Prompt for storage of sputtering rates for each of 50
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C points
WRITE(*,900)
READ(*,*) ANS
IF(ANS.LT.1.5) THFN
WRITE( *,400)
READ(*,500) FNAME
OPEN( 3, FILE=FNAME)
Do 250 J=1,50
WRITE(3,600) J,SP(J),SDT(J),SHE(J),TPR(J),NPR(J)

250 CONTINUE
CLQSE(3)
ENDIF

C Prompt for another calculation
75 WRITE(*,700)

READ(*,*) ANS
IF(ANS.LT.1.5) GOTO 350
RETURN

END

REAL FUNCTION YLD(UO,C,Z1,Z2,M1,M2,EO,ETH)

C This is sputtering yield function evaluation based on
C D.L. Smith's model

REAL UO,C, Zi,Z2 ,M1,M2 ,EO,ETH

YLD=C*Z1**.75*(Z2-1.8)*(Z2-1.8)*( (M1-.8)/M2)
2 **l.5*(EO-ETH)/UO/(EO-ETH+50*Z2*Zl**.75)**2.
RETURN

END

SUBROUTINE EVAL4 (E, RST)

C This is function evaluation for MB integration of
C SPUD

REAL TP,TT,NP,NT,RP,RT,LD,QT,M,SHP,F,G1,
2 G2,XT,THETA,EL,DIST,METH
REAL IMP,VANS,D,A,CT,FHE,ELH,TPRC,FLAG,
2 M2,M3,UO,Z3,ETH1,ETH2,EO
REAL RST,E

COMMON /INPUT/ TP,TT,NP,NT,RP, RT,LD,QT,M,SHP,F,
2 G1,G2,XT,THETA,EL,

-U x-
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3 DIST,METH,IMP,VANS,D,A,CT,FHE,ELH
COMMON /MB/ TPRC,FLAG,M2,M3,UO,Z3,ETHI,ETH2

IF(FLAG.LT.1.5) THEN

EO=2.O*E+TPRC* (G2-2.)

RST=SQRT(E/TPRC) *EXP( -E/TPRC) *
2 YLD(UO,400.,1.,Z3,M,M3,EO,ETH1)/TPRC
ENDIF
IF(FLAG.GT.1.5) THEN
IF(FLAG.LT.2.5) THEN
EO=2.*E+2.*TPRC*(G2-2.)
RST=SQRT( E/TPRC) *EXP (-E/TPRC) *

2 YLD(UO,400.,2.,Z3,4.,M3,EO,ETH2)/TPRC
ENDIF
ENDIF
IF(FLAG.GT.2.5) THEN
EO=2.*E+1,*TPRC*(G2-2.)
RST=SQRT (EITPRC) *EXP (-E/TPRC) *
2 YLD(UO,400.,2.,Z3,4.,M3,EO,ETH2)/TPRC
ENDIF
RETURN
END
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APPENDIX C

GENERIC DIVERTOR MODELING

The best approach in modeling a divertor is to use as

many known data values as possible. However, in the absence

of knowledge about the value of a particular parameter some

sort of estimate must be made in order to continue modeling.

The purpose of this appendix is to present calculational

methods for the estimation of some DIV input parameters and

reasonable ranges for others.

C.1 Power Flux into the Divertor, Qt

The power flux into the divertor can be estimated using

the equation

Qt (W/m2) N A,d.)

where P (W) is the total power to be exhausted, N is the

number of divertor plates (a reactor may have more than one

divertor, each with more than one plate), and All, d(m2) is

the cross-sectional area of the plasma as it flows into the

divertor.

15

i 150
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The power to be exhausted and the number of divertor plates

are usually known, so determining Qt depends on finding the

plasma cross sectional area. For a Tokamak, this area can

be estimated as
3

A F,d(m2 e a A (C.2)

q

where a(m) is the plasma minor radius, As(m) is the scapeoff

thickness (normally several heat flux scale lengthes, XQ), q

is the safety factor on edge, and Fe is a flux expansion

factor at the throat to account for the normal expansion of

magnetic field lines as they enter the divertor. Reference

3 gives a value for Fe of about 1.4. The heat flux scale

length, XQ(m), is often a given parameter. If it is not

given, it can be estimated using25

X nT Ax n (C3)AQ X + XT  - + A

2 2 n+NT 2+A

where A is the ratio of temperature to density scale

lengthes. The density scale length, \n, would be calculated

as given in Section 3.8 using some estimate of the fluid

velocity (-.3-.5 of the sound speed).
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C.2 The Divertor Connection Length, LD

This connection length is the distance along field lines

between the divertor throat and the target plate. It is a

function of the magnetic field line topology and sensitive

to the plate position being considered. If its value is

unknown, some fraction (.2-.3) of the outside connection

length can be used. The outside connection length, Ls, is

L5 (in) = 27r NRq (C.4)

where R(m) is the plasma major radius and N is the number of

divertors. Thus

LD(m) .25 Ls  (C.5)

C.3 The Throat Electron Plasma Temperature, Tt

tx

If the symmetry point electron temperature, T., is ',

specified, this value can be extrapolated forward to the

divertor throat using an equation based on 100% electron

thermal conduction3

S
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TT7/2 7/2 7P L(sT (eV)= Ts  (eV)- 4AlsN xo (C.5)

where P and L. are as previously defined, N is the number of

divertor plates, A1l,s(m
2 ) is the cross-sectional area of the

plasma outside the divertor (i.e. no flux expansion factor),

and Xo is the Spitzer electron thermal conductivity

coefficient (-2000 W(eV)-/2m-).

C.4 The Throat Electron Density, nt

The pressure balance equation can be used to estimate the

throat electron density, once the throat temperature has

been calculated. Thus,

n T
nt(m- ) Tt (C.6)

where ns(m-) is the symmetry point electron density. The

mach numbers squared (T2) at both locations are assumed to

be small and can be neglected. If after a computer run the

mach number at the throat is found not to be small, then

this value could be used to adjust the throat density

(divide by l+Tt2 ).

!,
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C.5 Estimates for the Plate Electron Temperature and

Density, Tp and n

Another equation based on the assumption of 100% electron

thermal conduction can be used to get an initial estimate of

Tp. 3 Thus,

Tp7/2 7/2 ( 7QtLD (C.7)

2(eV) = Tt 2 

and the plate electron density estimated using the pressure

balance equation,

nt Tt 1 + rt
np(m - ') = 2Tt 1 + r (C.8)p p

where the mach number at the throat has been assumed to be

zero and the mach number at the plate set equal to 1.0. If

a sample run shows the mach number at the throat not to be

small, then the plate density can be adjusted by multiplying

by (I + 1it 2 ).

CC.6 Reasonable Ranges for Other Input Parameters

A
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Based on a review of the literature and experience with

the DIV code, Table C.1 below displays reasonable ranges for

other input parameters for which no calculation or estimate

has been given in the body of this thesis or this appendix.

Table C.1

Parameter Ranges

Parameter Units Range

Pump Fractions
f and fHe 0-.5

Diffusion
Coefficient,D m2 /sec .8-1.5

Scale Length
Ratio, A .7-1.1

Shape Factor,a 3-8

Field Line
Angle of Radians .09-.79
Incidence, (50-450)

A few additional comments regarding other parameter values

are warranted. The mass the the D-T ions is usually taken

to be 2.5 amu. If you are going to calculate R and i in the

DIV program, then these input values do not matter.



APPENDIX D

DISCUSSION OF NEUTRAL ESCAPE PROBABILITY

As stated in Chapter 3, the recycling coefficient, R, can

be approximated as 1-pf, where f is the pumped fraction, and

is the average neutral escape probability. Section 3.5

outlined the various calculational approaches to determining

. This appendix presents a discussion of the effects of

variations in certain parameters on the neutral escape

probability and a comparison of the three calculational

methods.

D.1 Effects of Varying Parameters

The parameters required to calculate the neutral escape

probability are:

Xt  - the width of the divertor plate (M)

e - the angle of incidence of the field lines to
the divertor plate (radians)

T - the temperature of the plasma in front of the
plate (eV). This could be the plate temperature
or an average of the throat and plate
tempertures.

n - tqe electron density in front of the plate.
(m ) Again, this could be the plate or an
average quantity.

EL - the material and particle dependent reduced
energy for the calculation of the reflection

&I
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coefficients (eV).

- Number of mesh points along the divertor plate

Each of these parameters was varied to examine its effect

on the neutral escape probability. In each case, the effect

on F was qualitatively predictable. These effects are

discussed below.

Xt  - As Xt increased the escape probability
decreased. This was due to the fractional
decrease in the tip area of the plasma wedge.
Most of the particles that escape do so out of
the tip of the plasma wedge. Increasing the
width of the divertor plate just increases the
area from which particles do not escape.

0 - As 0 increased the escape probability
decreased. This makes sense, since increasing e
increases the effective thickness of the plasma.

T - As T increased, the escape probability
decreased. The temperature is used in the
calculation of particle ionization MFP,
appearing in both the numerator (velocity term),
and the denominator (in the reaction rate
coefficient). This result implies that the
<Gv> i_ term is more sensitive to temperature
than tle velocity term.

n - As the density increased p decreased. This is
because the MFP for ionization scales as 1/n for
density. Increasing n decreases the MFP and
thereby the escape probability.

EL - As EL increases so does p. For a larger
reduced energy the fraction of particles in the
fast group is greater. Particles from this
group make up most of those that escape, so
increasing their fraction increases the escape
probability.

- Past an I of 50 (especially for larger escape
probabilities) the difference between calculated
escape probabilities is less than 5%. Based on

IAZI
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this an I of 50 was used for the escape
probability subroutine in the divertor model
program DIV. I

D.2 Comparison of Methods

As described in Section 3.5, there are three different

methods that can be used in the divertor model program to

calculate p. The 1- method calculates an average escapeavg

distance (distance to the plenum) for each mesh point. The

escapo probability for a particle emitted from a point is

then, p=exp[-l(x)/&], where X is the appropriate energy

group ionization MFP. The second method, "integral",

integrates the escape probability, p=exp[-l(xO)/X],

directly to arrive at p. The third method, "Integral

w/cosine distribution", is the same as the second but adds a

cosine angular distribution probability for the reflected

particles.

Figure D.1 presents the results of calculating p using

each of the three methods for a range of electron densities

from 5x1O' to 5x10 2 0 m-3 . At high escape probabilities

(corresponding to low recycling) the lavg and Integral

methods yield very similar values for p while the Integral
w/cosine method is 50-60% lower. The lavg and Integral

methods continue to be close in value down to values of .5

for p. Beyond this point the methods are not far apart in
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absolute value but as fractions of each other the difference

increases to about 30% at small values of F. The Integral

w/cosine method produces a value for p lower than the other

two methods except for p < .1 . In this region the 1 avg

method is a reasonable approximation for the Integral

w/cosine method (assumed to be the most realistic predictor

of the actual escape probability because it takes angular

probability into account) and takes much less computational

time. All three methods are available in the DIV program.

M!
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APPENDIX E

BENCHMARKING INPUT AND OUTPUT DATA

This appendix tabulates the DIV input data used in the

benchmarking cases presented in Chapter 5, along with the

output from the divertor model code. The symbols used in

the tables that follow are the same DIV program variables

presented in Tables 4.1 and 4.2 of Chapter 4.

161
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Table E -l

JAERI Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 17e6 R .81 TP 3.8

LD 13.33 U - NP 9.1

M 2.0 F 1.14 TT 35.0

XT .29 IMP 1.45 NT, 1.8

THETA .3 5 D 1.0 MT .34

EL 9660 A .7 U .61

TP 4.0 CT 0.0 ISE .51

TT 37.0 FHE 1.14 R .8

NP 9.1 ELH 20400 CP NA

NT 1.8 SHP 3.0 HER NA

RP 1.0 METH 2.0 P12 NA

RT 1.0 DIST 2.0 LNP NA

Gi 3.9 TOL le-3

G2 3.9 SOR 1.0

Note: NA means "Not Applicable"
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Table E. 2

Harrison et al Case Input and Output Data

Input Output

Parameter Value Parameter Value Parameter Value

QT 107e6 R .99 TP 23.8

LD 10.0 U - NP 9.2

M 2.5 F .028 TT 63.0

XT .27 IMP 1.0 NT 6.97

THETA .26 D 1.0 MT 8.1e-4

EL 9660 A .7 U .99

TP 25.5 CT .05 ISE .16

TT 66.0 FHE .031 R .99

NP 9.24 ELH 20400 CP .025

NT 6.97 SHP 4.0 HER 2.23

RP 1.0 METH 2.0 P12 .30

RT 1.0 DIST 2.0 LNP .021

G1 3.0 TOL le-3

G2 3.0 SOR 1.0
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Table E.3

ZEHPYR Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 31e6 R .471 TP 10.5

LD 15.0 U - NP 8.68

M 2.5 F - TT 28.0

XT .35 IMP 1.0 NT 3.66

THETA .26 D 1.0 MT .70

EL 9660 A .7 U .61

TP 10.8 CT 0.0 ISE .16

TT 26.7 FHE - R .471

NP 8.6 ELH .20400 CP NA

NT 3.66 SHP 5.0 HER NA

RP .70 METH 2.0 P12 NA

RT 1.02 DIST 2.0 LNP NA

Gl 3.8 TOL le-3

G2 4.3 SOR 1.0

Note: The recycling coefficient, R, was not calculated.
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Table E.4

NET Report #50 Case Input and Output Data

Input Output
Parameter Value Parameter Value Parameter Value

QT 81.3e6 R - TP 11.0

LD 15.0 U - NP 13.4

M 2.5 F .034 TT 64.8

XT .35 IMP 1.0 NT 5.0

THETA .26 D 1.0 MT 2.3e-3

EL 9660 A .7 U .991

TP 7.6 CT 0.05 ISE .21 I
TT 67.3 FHE .034 R .998

NP 14.0 ELH 20400 CP .025

NT 5.0 SHP 4.0 HER .99

RP 1.2 METH 2.0 P12 .30

RT 1.0 DIST 2.0 LNP .031

G1 4.8 TOL le-3

G2 3.42 SOR 1.0
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