
UNCLASSIFIED r/G 25/5 HL

EI1

[He L.S. Heath and A.L. Rosenberg (1987): An optimal mapping of the FFT algorithm
onto the llyperciibe architecture. Typescript, Univ. of Massachusetts; submitted for
nublication.

1_2.2

Ll, - W 12.

ifliU 1.8
UI1.25 . l i I 61

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU DT 5ANOARb, lt .A

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

00 DTIC
to'

VLSI Memo No. 87-427 ELECTE

Ln November 1987 MAY 13 88

OPTIMAL SIMULATIONS BY BUTTERFLY NETWORKS: EXTENDED ABSTRACT

Sandeep N. Bhatt, Fan R. K. Chung, Jia-Wei Hong, F. Thomas Leighton and Arnold
Rosenberg

Att3tihution Uriknjtfd .

Abstract- _ _

We investigate the power of the Butterfly network (which is the FFT network with inputs
and outputs identified) relative to other proposed multicomputer interconnection
networks, by considering how efficiently the Butterfly can simulate the other networks:
Formally we ask, How efficiently can one embed the graph underlying the other network in
the graph underlying the Butterfly? We measure the efficiency of an embedding of a graph
G in a graph H in terms of: the dilation, or, the maximum amount that any edge of G is
"stretched" by the embedding; the expansion, or, the ratio of the number of vertices of H to
the number of vertices of G. We present three simulations that are optimal, to within
constant factors: (1) Any complete binary tree can be embedded in a Butterfly graph, with
simultaneous dilation 0(I) and expansion 0(1). (2) The n-vertex X-tree can be embedded
in a Butterfly graph with simultaneous dilation 0(log log n) and expansion 0(1); no
embedding has better dilation, independent of expansion. (3) Any embedding of the n x n
mesh in the Butterfly graph must have dilation (log n), independent of expansion; any
embedding of the mesh in the Butterfly graph achieves this dilation. Thus, we have
simulations of complete-binary-tree machines, X-tree machines, and mesh computers on
Butterfly machines, that are optimal in resource utilization (expansion) and delay
(dilation), to within constant factors.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute M sachusetts (617) 253-8138
Room 39-321 of Technology 02139 A -' .-

Acknowledgements

This work was supported in part by the Air Force under contract number AFOSR-86-0076,
the Defense Advanced Research Projects Agency under contract number N00014-80-C-
0622, the MIT Army Center for Intelligent Control, and an NSF Presidential Young
Investigator Award with matching funds from AT&T and IBM.

Author Information

Bhatt: Department of Computer Science, Yale University, New Haven, CT 06520; Chung:
Mathematics, Information Sciences and Operations Research Division, Bell
Communications Research, Morristown, NJ 07960; Hong: Beijing Computer Institute,
Beijing 10044, CHINA and Courant Institute of Mathematics, New York University, New
York, NY 10012; Rosenberg: Department of Computer and Information Science,
University of Massachusetts, Amherst, MA 01003; Leighton: Department of Mathematics,
MIT, Room NE43-419, Cambridge, MA 02139, (617)253-6043.

Copyright (c) 1987, MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in th's series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research Center,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

L _ _ _ _i_ i n

OPTIMAL SIMULATIONS BY BUTTERFLY
NETWORKS:

Extended Abstract

Sandeep N. Bhatt" Fan R. K. Chungt Jia- Wet Hong

F. Thomson Leighton! Arnold L. Rosenbergi

October 7, 1987

Abstract

We investigate the power of the Butterfly network (which is the FFT network with
inputs and outputs identified) relative to other proposed multicomputer interconnection
networks, by considering how efficiently the Butterfly can simulate the other networks:
Formally, we ask, How efficiently can one embed the graph underlying the other network
in the graph underlying the Butterfly? We measure the efficiency of an embedding of
a graph G in a graph H in terms of: the dilation, or, the maximum amount that any
edge of G is "stretched" by the embedding; the expansion, or, the ratio of the number
of vertices of H to the number of vertices of G. We present three simulations that
are optimal, to within constant factors: (1) Any complete binary tree can be embed-
ded in a Butterfly graph, with simultaneous dilation 0(1) and expansion 0(1). (2)
The n-vertex X-tree can be embedded in a Butterfly graph with simultaneous dilation
0(loglog n) and expansion 0(1); no embedding has better dilation, independent of ex-
pansion. (3) Any embedding of the n x n mesh in the Butterfly graph must have dilation
fl(logn), independent of expansion; any embedding of the mesh in the Butterfly graph
achieves this dilation. Thus, we have simulations of complete-binary-tree machines, X-
tree machines, and mesh computers on Butterfly machines, that are optimal in resource
utilization (expanlsion) and delay (dilation), to within constant factors.

*Department of Computer Science, Yale University, New Haven, CT 06520
tMatheniatics, Information Sciences and Operations Research Division, Bell Communications Research,

Morristown, NJ 07060
$Beijing Computer Institute, Beijing 10044, CHINA and Courant Institute of Mathematics, NYU, New

York, NY 10012
IDepartment of Mathematics, MIT, Cambridge, MA 02139
5Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003

... ,

I.....

1. INTRODUCTION

This paper reports on a continuing program of the authors, dedicated to determining the
relative computational capabilities of the various interconnection networks that have been
proposed for use as multicomputer interconnection networks IBC, BI, He, Lei . We focus here
on one member of the family of butterfly machines, that have become one of the benchmark
architectures for multicomputers.

1.1. The Formal Setting

The technical vehicle for our investigations is the following notion of graph embedding. Let
G and H be simple undirected graphs. An embedding of G in H is a one-to-one association
of the vertices of G with vertices of H. The dilation of the embedding is the maximum
distance (in H) between vertices of H that are the images of adjacent vertices of G; it thus
measures how much the edges of G are "stretched" by the embedding. The ezpansion of the
embedding is the ratio IHI/IGI of the number of vertices in H to the number of vertices in G.
We use the dilation- and expansion-costs of the best embedding of G in H as our measures
of how well H can simulate G as an interconnection network: One views the graph H as
abstracting the processor-intercommunication structure of a physical architecture; one views
the graph G as abstracting either the task-interdependency structure of an algorithm one
wants to implement on H or the processor-intercommunication structure of an architecture
one wants to simulate on H.

The host graphs in our study, which play the role of our H's, are Butterfly networks
(that is, FFT networks whose input and output vertices have been identified). Formally,

Let m be a positive integer. The r-level Butterfly graph B(m) has vertex-set

v,. = (0,1,...,M- 1) X (o, l} =,

where (0, 1)' denotes the set of length-m binary strings. The subset Vm,t =

{t) x {0, 1)"' of V (0 < t < m) is the t th level of B(m). The string z E (0, 1)"
of vertex (t, z) is the position-twithin-level string (PWL string, for short) of the
vertex. The edges of B(m) form butterflies (or, copies of K2 ,2) between consec-
utive levels of vertices, with wraparound in the sense that level 0 is identified
with level m. Each butterfly connects vertices

(1, Pool ... f #.-I)

and
(t, Po . t10+ . .I

on level t of B(m) (0 < I < m; each Pi E (0,1)) with vertices

(I + l(mod m), &01 ... "-10e+l "" "-2

2

and
(t + I (mod rn), P0PI ... "o-1le + ... "#.-I)

on level f + l(mod m) of B(m). One can represent B(m) level by level, in
such a way that at each level the PWL strings are the reversals of the binary
representations of the integers 0, 1,. .. , m - 1, in that order.

The guest graphs in our study, which play the role of our G's, are the height-h complete
binary tree T(h), the height-h X-tree X(h) (which is obtained from T(h) by adding cross
edges connecting the vertices at each level of T(h) in a path, with the vertices in left-to-right
order), and the a x a mesh M(s). All of these networks have been seriously proposed as
interconnection networks for multicomputers JDP, Ga, HZI, hence are important candidates
for our study. Another approach to comparing these networks, via implementation and
analysis of specific algorithms, appears in (Agj.

1.2. The Main Results

Theorem 1 The complete binary tree T(h) can be embedded in a Butterfly graph, with
simultaneous dilation 0(1) and expansion Ol).

Theorem 1 is within a constant factor of optimal in both dilation and expansion.

Theorem 2 The height-h X-tree X(h) can be embedded in a Butterfly graph with simulta-
neous dilation O(log h) = O(og log (X(h)() and expansion 0(l). Any embedding of X(h) in
a Butterfly graph must have dilation 1(log h) = fl(loglog IX(h)j).

Theorem 3 Any embedding of the side-s mesh M(s) in a Butterfly graph must have dilation
fl(log s) = fl(log fM(s)!).

Theorem 3 betokens a mismatch in the structures of meshes and Butterfly graphs, since
any expansion-O(1) embedding of any graph G in B(m) has dilation 0(log IGI). 1

In the next three sections we prove the main results. We sketch the upper bound from
Theorem 1 and the lower bound from Theorem 2 in some detail, to indicate the machinery
we bring to bear on the problem; other proofs are merely outlined.

The sketched proofs are important because they can be adapted to other families
of graphs: For instance, our embedding of complete binary trees can be used to em-
bed arbitrary bounded-degree outerplanar graphs in Butterflies with sinpultaneous dilation
0(loglogn) and expansion 0(l), in much the way that we embed X(h); and, our lower
bound on embeddings of X-trees can be adapted to yield analogous bounds for any family
of "mesh-like" graphs, as defined in Section 3.2, in much the way that we obtain our lower
bound for meshes.

'This follows from the facts that B(m) has m2" vertices and diameter 0(m).

3

/

2. COMPLETE BINARY TREES

2.1. Optimally Embedding Trees in Butterfly Graphs

To simplify exposition, we represent sets of binary strings by strings over the alphabet
(0, 1, *), using * as a wild-card character. The length-k string

each O, E (0, 1, represents the set o(#) of all length-k binary strings that have a 0 in
each position i where 0, = 0, a I in each position i where f, = 1, and either a 0 or a I in
each position i where P = *. Call 0 the code for the set o(#).

A. The Embedding Strategy

Let tn be a power of 2; clerical changes will remove this assumption. We wish to embed
the tree T(m + login) with dilation 0(1), in the smallest Butterfly that is big enough to
hold the tree, namely, 8(m). We fall somewhat short of this goal, but not by much: We
find an embedding with dilation 0(1), but we have to use a somewhat larger host Butterfly
graph (specifically, B(m +3)) in order to resolve collisions in our embedding procedure. Our
embedding proceeds in four stages. Stage 1 embeds the top log m levels of T(',s + log m)
with unit dilation in B(m), thereby specifying implicitly the images in B(m) of the roots
of the m subtrees of T(m + log rn) rooted at level log m. Stage 2 expands these m subtrees
a further m/2 levels, but now in B(m + 1), with dilation 2, thereby specifying implicitly
the images in B(m) of the roots of the m . 2 "/2 subtrees of T(m + log m) rooted at level
rn/2 + log m of the tree. In Stage 3, we embed the final m/2 levels of T(m + log m) in
B(m + 1), with dilation 2. The vertex-mappings in each stage are embeddings (i.e., are one-
to-one); there is, however, "overlap" (i.e., distinct vertices of T(m + log m) getting mapped
to the same vertex of B(m + 1)) among the mappings of the three stages. In Stage 4, we
eliminate this overlap by expanding the host Butterfly by two more levels, thereby giving
us four connected isomorphic copies of B(m + 1). At the cost of increasing dilation to 4,
we modify our mapping so that each of Stages 1, 2, 3 is performed in a distinct copy of
B(m + 1), thereby eliminating all overlap.

B. Stage 1: Levels I - log m of T(m + log m)

We place the root of T(rn + log m) at position

(m-logim, 0')

of B(m). We then proceed to higher-numbered levels, embedding the top log m levels of
T(m + log m) as a subgraph of B(m), ending up with the leaves of these levels in positions

(o, 0"n-log'* '°ogm)

of B(m) (because of wraparound). We call the rightmost log m bits of each of the resulting
PWL strings the signature of the Butterfly position and of the subtree rooted at that

4

position. It is convenient to interpret a signature as an integer in the range (0, 1,..., m- I),
as well as a bit string.

The embedding in Stage 1 is trivially one-to-one, with unit dilation.

C. Stage 2: Levels log m - (m/2 + log m) of T(m + log m)

Call the subtree of T(m + log m) with signature k, the kth .ubtree. Our goal is to embed
the kth subtree in B(m+ 1) (with dilation 2), so that its 2 m/2 leaves form the set of positions

(M- 1, *0,0...*0*1.0...*0*0*),

where the 1 appears in the kth even position from the right (using 0-based counting); call
this the aignatory 1 of the tree position.2 We embed these (m/2)-level trees by alternating
binary and unary branchings in B(m + 1), starting at the "roots" placed at level-0 vertices
of B(m + 1) during Stage 1; we place a tree vertex after each unary branching. Binary
branchings generate the *'s in the code for the set of PWL strings, while unary branchings
generate the O's and l's in the code.

This stage of our embedding clearly has dilation 2. One notes that this stage is one-to-
one (though it may produce conflicts with the embedding from Stage 1), since the signatory
1, whose placement identifies the tree, is set "on" before the signature bits are reached
and altered by the sequence of branchings. This is ensured by the fact that we place the
signatory 1 by counting from the right: the signature bits occupy the rightmost log m bits
of the PWL string; by the time the branchings have reached the ith bit from the right,
only the rightmost log i bits of the signature are needed to specify the next position where
branching occurs. Hence, at the point when we place the signatory 1 in the i h position,
the odd-numbered positions to the left of the I are all 0, and the positions to the right of
the 1 form the binary representation of i, possibly with leading 0's.

D. Stage 3: Levels (m/2 + logm) - (m + Iogm) of T(m + logm)

Our goal in Stage 3 is to use the leaves of the trees generated in Stage 2 as the roots of
the rn. 2m/2 subtrees comprising the bottom m/2 levels of T(m + log m). Each root has a
signatory 1, identifying the subtree it came from in Stage 2, and a serial number obtained
from the even-numbered bits of its PWL string. The signatory 1 helped to keep the many
trees generated in Stage 2 disjoint; the signatory 1 plus the serial number play the same
role here. The main difficulty here is to achieve the embedding while the roots of all the
trees reside at the same level of B(m + 1) (which is how Stage 2 has placed them). To
accomplish this, we have the trees grow upward, in the direction of lower level-numbers,
for varying amounts of time, before starting to grow downward, in the direction of higher
level-numbers. Whether a tree grows upward or downward, it grows via alternating unary
and binary branchings; when it "turns" from growing upward to growing downward, the
embedding has to stretch edges by an extra factor of 2, as it moves from one subgraph of
B(m + 1) to a neighboring isomorphic subgraph.

2For instance, when m = 8, the second subtree has leaves in positions (7, *0 * I * 0 * 0.) of B(9).

5

To simplify our description, we ignore the serial numbers of the trees and present just
the other m/2 bits of each PWL string. We use alternating unary and binary branchings
when placing tree vertices to guarantee that serial numbers do not change throughout the
embedding procedure. This ensures the mutual disjointness of all trees that share the same
signatory 1, albeit at the cost of increasing dilation by a factor of 2. (The position of the
signatory 1 ensures the mutual disjointness of trees with different signatory l's.)

At each level t of B(m + 1), m + 2 - k < t < m + 1, we reserve the following positions
for vertices from the kh subtree, 0 < k < m/2.

(V, Om/2-kl*k-1).

We place the top k - I levels of the kth subtree in the reserved positions via the following
scheme. At level 0 of B(m + 1), the root of the subtree is placed in position

(0, 0'n/2-o- 10h);

and the 2 k-2 vertices from level k - 2 of the subtree (for k > 2) are placed at positions

(0, 0rn/2-kl l't-2).

At each level m - 2j of B(m+ 1), 1 < " _< [(k - 3)/2J, the V level-j vertices of the subtree
are placed in positions

(m - 2j, Om/2-kl01okI)*1)

and the 2 k-2-y vertices from level k - 2 - j of the subtree are placed at positions

(e, 0m/2-klI *-2-i p).

When k is even, one more level of B(m + 1) is needed, for the middle level of the subtree.

This portion of the embedding engenders dilation 4, namely, dilation 2 for the alternating
unary and binary branchings and dilation 2 for the top level, where the subtree stops
growing upward and starts growing downward.

Proceeding down B(m + 1), from level 0 to higher-numbered levels, we reserve the
following positions for vertices from the kth subtree at level t, 1 < t !5 m/2 - k.

(*,o0m/2-k-tlok-l).

The tree gets expanded into these positions, basically as a subgraph except for the skipping
of alternate levels in order to preserve the serial number. This portion of the embedding
engenders dilation 2.

The injectiveness and the dilation of the described mapping should be clear.

E. Resolving Collisions

We resolve the possible collisions among our three injective subembeddings as follows.

Instead of performing the embeddings in B(m + 1), we perform them in B(m + 3), placing

6

//

each subembedding in a distinct copy of B(m + 1). We make the transition between copies
of B(m + 1) as follows. As the Stage-I embedding of the top of T(m + log m) reaches level
m - I of B(m + 1), we use a sequence of unary branchings in B(m + 3) to reach level 0 of
the next copy of B(m + I). We perform the Stage-2 subembedding within this copy, which
takes us to level m - 1 of the copy, where a sequence of unary branchings in B(m + 3) takes
us to level 0 of the third copy of B(m + 1). We perform the Stage-3 subembedding in this
third copy. This Stage of the embedding process engenders dilation 4, as one switches from
level m - I of the second copy of B(m + 1) to level 0 of the third copy.

The embedding, hence the proof, is now complete. 0

2.2. The Issue of Optimality

Theorem 1 leaves open the possibility of constant-factor improvements, but it is impossible
to optimize both dilation and expansion simultaneously.

Proposition I No embedding of T(m + [log mJ) in B(m) has unit dilation.

Proof. Both T(h) and B(m) are bipartite. In B(m), the numbers of red and blue vertices
are within m of equal; in T(h), one of the sets is roughly twice as large as the other. 0

3. X-TREES

3.1. Optimally Embedding X-Trees In Butterfly Graphs

Our embedding of the X-tree in the Butterfly graph is indirect: First we find a unit-
expansion, dilation-O(log log n) embedding of X(h) in T(h). Then we compose this em-
bedding with the expansion-O(1), dilation-O(1) embedding of T(h) in B(m) from Theorem
1, to obtain the upper bound of Theorem 2. We discuss here only the former embedding,
which uses a device from JBC, BL). Details appear in the full paper.

It is not hard to verify that for each positive integer k, the n-vertex X-tree has a k-color
bisector IBLI of size k. log2 n.3 Using 3-color bisectors in the same manner as in JBCI, one
proves the following.

Lemma I There is a many-to-one mapping of X(h) into T(h) for which
(a) exactly

N(t) = 12log2 (2h+' + 216log 2h+1 -i +2268

3That is, for every way of labelling X(h)'s vertices with one of k 'colors": By removing !< k log 2 n
vertices, one can partition X(h) into two subgraphs, each having half of the vertices of each color.

7

vertices of X(h) are mapped to each level-t vertex of T(h), and
(b) the images of vertices that are adjacent in X(h) are at most distance 3 apart in T(h).

We refine the "dilation"-3 mapping of Lemma I to a dilation-O(log log n) embedding of
X(h) in a new copy of T(h), inductively. First we spread the log n elements at the root of
the old copy of T(h) throughout the topmost log log n levels of the new copy of T(h), in any
way. In rough terms, we then spread the X-tree vertices mapped onto level-(t > 0) vertices
of the old copy of T(h) across level t+ log log n of the new copy of T(h), retaining the order
induced by their position in level I of the old tree.

This procedure clearly produces an embedding of X(h) in T(h); the embedding has unit
expansion since all vertices at each level t of the old tree have the same population N(t);
the embedding has dilation O(log log n) since our method of spreading the images from
vertices in the old tree guarantees that the spread vertices always lie within a subtree of
height O(log log n) in the new copy of T(h). 0

3.2. The Optimality of the Embedding

We demonstrate the optimality (to within constant factors) of the previous embedding, by
proving the lower bound of Theorem 2. Our proof technique extends directly to a broad
class of graphs that we call "mesh-like". Assume henceforth that we are given a dilation-6
embedding u of a graph G in the Butterfly graph B(p).

Say that a graph H is c.weakly connected, c a positive integer, if every two vertices u, w
of H are connected by a chain of vertices:

U J- V0,VV2,...,Vk = W,

where consecutive vertices v,, v1+. are at distance no more than c apart, in H;

Proposition 2 Say that there is a subgraph H of G and constants c and d such that

" H is c-weakly connected;

" the image of H under the embedding p lies within d6 consecutive levels of B(p).

Then 6 > a(c)logIHI, where a(c) is a constant depending only on c.

Proof Sketch. One can show that the PWL strings of all images of vertices of H can differ
in some set of at most (2c + 1)6 bit positions; hence, there can be no more than d62(2c+l)

such vertices (d6 levels and 2 (2c+1)6 vertices per level), so this number can be no smaller
than IH. 0

8

A slice of a graph G is a set of vertices whose removal partitions G into subgraphs, each
having < IG1/3 vertices. Let SG denote the number of vertices in the smallest slice of G.

We say that the graph G is mesh-like if every simply connected component of G of size
less than S(, has a 2-weakly connected boundary 4 .

Proposition 3 If the graph G is mesh-like, then the embedding p must have dilation 6 >
(const) log SG.

Proof Sketch. Partition B(p) into bands, each band fl, being a sequence of ci6 consecutive
levels, 2 < c, < 4, where the c, can be chosen in any way that achieves a partition. Let
#c(v), the color of vertex v of G, be the index i of the band fl, in which p(v) resides.

We perform a modified breadth-first search of G, to find a 2-weakly connected component
of size > SC., all of whose vertices have images in a single band of B(p), hence the same
color. By Proposition 2, the existence of such a component will yield the lower bound on 6.

The breadth-first search proceeds as folbws. We select an arbitrary vertex vo of G. Let
Vo be the maximal connected component of G that contains v0 and that consists entirely
of vertices with color K(v0). Since V0 is (2-weakly) connected, removing its vertices from G
separates G into at least two connected components; let Co be the largest of these. Form
the simple hull C6 of Cu.5 Let B0 be that subset of C; that is part of the boundary of Vo.
Since G is mesh-like, B0 is 2-weakly connected. One can show, therefore, that all vertices of
B0 have the same color (which is either oc(vo) + I or K(vo) - 1). Now, let V, be the maximal
monochromatic subgraph of G that contains both B0 and all connected components of C
that contain vertices from Bo; obviously, V1 is 2-weakly connected. In an analogous way
and using analogous reasoning, we now construct, in turn, for i = 1,2,..., the following
(monochromatic) subgraphs of G, with the indicated properties:

" C,: the largest connected component of G remaining when one removes Vi

" C,*: the simple hull of C,

" B,: the (2-weakly connected, monochromatic) boundary of V, within C',.

" V,+i: the (2-weakly connected) maximal monochromatic subgraph of G that contains
both B, and all connected components of C,' that contain vertices from B,.

One continues this construction until some subgraph V contains at least SC, vertices. This
point must occur, since one can show that each Vi is a cutset of G, and that the largest
components remaining upon removal of V decrease in size as i increases. It follows that at

4 The boundary comprises those vertices that are not in the simply connected component but are adjacent
to vertices that are in the component.

6C.,* is the smallest simply connected supergraph of C,,.

9

some point, all of the components remaining upon removal of some V will contain at most
IG1/3 vertices. The then-current V, will be a slice of G, hence will be a weakly-connected,
monochromatic set of at least S(vertices. At this point, we shall be done. U

The proof is completed by the following two lemmas.

Lemma 2 The X-tree X(h) is mesh-like.

Lemma 3 [HRJ Any slice of X(h) must contain 11(h) = 0(loglX(h)j) vertices.

4. MESHES

The upper bound being trivial, we establish only the lower bound, which follows from
Proposition 3 and the following two lemmas.

Lemma 4 The mesh M(s) is mesh-like.

Lemma 5 (e.g., IHR]) Any slice of M(s) must contain fl(s) = fn(VI/M(s)N) vertices.

ACKNOWLEDGMENT: The research of A. L. Rosenberg was supported in part by
NSF Grant DCI-87-96236.

5. REFERENCES

(Ag] A. Aggarwal (1984): A comparative study of X-tree, pyramid, and related machines.
25th IEEE Symp. on Foundations of Computer Science, 89-99.

(BC I S.N. Bhatt, F.R.K. Chung, r.T. Leighton, A.L. Rosenberg (1986): Optimal sim-

ulations of tree machines. 27th IEEE Symp. on Foundations of Compute- Science,

274-282.

1BI] S.N. 13hatt and 1. Ipsen (1985): Embedding trees in the hypercube. Yale Univ. Rpt.
RR-443.

[BL I S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph layout

problems. J. Comp. Syst. Sci. 28, 300-343.

[DP I A.M. Despain and D.A. Patterson (1978): X-tree - a tree structured multiprocessor

architecture. 5th Symp. on Computer Architecture, 144-151.

(Ga I D. Gannon (1980): On pipelining a mesh-connected multiprocessor for finite element

problems by nested dissection. Intl. Conf. on Parallel Processing.

10

[He] L.S. Heath and A.L. Rosenberg (1987): An optimal mapping of the FFT algorithm
onto the tlypercube architecture. Typescript, Univ. of Massachusetts; submitted for
publication.

(HR I J.-W. Hong and A.L. Rosenberg (1982): Graphs that are almost binary trees. SIAM
J. Comput. 11, 227-242.

(HZ I E. Horowitz and A. Zorat (1981): The binary tree as an interconnection network:
applications to multiprocessor systems and VLSI. IEEE Trans. Comp., C-30, 247-253.

(Ie] F.T. Leighton (1984): Parallel computation using meshes of trees. 1983 Workshop on
Graph-Theoretic Concepts in Computer Science, Trauner Verlag, Linz, pp. 200-218.

11

6 4

