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\SUMMARY

This report documents the area of modal parameter estimation in terms of reviewing efforts over the
past twenty-five years, in developing several new multiple reference methods, and in attempting to
provide a common basis and understanding for all of the modal parameter estimation methods
developed to date. The review of modal parameter estimation includes a substantial literature review
and the presentation of previous methods, such as the Least Squares Complex Exponential, as special
cases of general methods, such as the Polyreference Time Domain method. Several new modal

. parameter estimation methods are developed and presented using consistent theory and
nomenclature. The methods that are presented in this manner include: Polyreference Time Domain,
Polyreference Frequency Domain, Multiple Reference Ibrahim Time Domain, Multiple Reference

‘ Orthogonal Polynomial, and Multi MAC. These methods, in terms of general characteristics, are also
compared to other methods such as the Least Squares Complex Exponential, Ibrahim Time Domain,
Eigensystem Realization Algorithm, and Direct Parameter Estimation methods. These methods are
all similar in that the methods involve the decomposition of impulse response functions (time
domain), frequency response functions (frequency domain), or forced response patterns (spatial
domain) into characteristic functions in the appropriate domain. These characteristic functions are
the single degree of freedom information in the respective domain.
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PREFACE

This volume is one of six Technical Reports that represent the final report on the work involved with
United States Air Force Contract F33615-83-C-3218, Experimental Modal Analysis and Dynamic
Component Synthesis. The reports that are part of the documented work include the following:

AFWAL-TR-87-3069
. VOLUME 1 Summary of Technical Work
VOLUME I Measurement Techniques for Experimental Modal Analysis
VOLUME 111 Modal Parameter Estimation
. VOLUME 1V System Modeling Techniques
VOLUME V Universal File Formats
VOLUME V1 Software User’s Guide

For a complete understanding of the research conducted under this contract, all of the Technical
Reports should be referenced.
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1. INTRODUCTION

Modal parameter estimation is the estimation of frequency, damping, and modal coefficients from the
measured data which may be in: (1) relatively raw form in terms of force and response data in the
time or frequency domain, or (2) in a processed form such as frequency response or impulse response
functions. Most modal parameter estimation is based upon the measured data being the frequency
response function; or the equivalent impulse response function, typically found by inverse Fourier
transforming the frequency response function. Regardless of the form of the measured data, the
modal parameter estimation techniques have traditionally been divided into two categories: (1)
single degree-of-freedom (SDOF) approximations, and (2) multiple degree-of-freedom (MDOF)
approximations. Since the single degree-of-freedom equations are simply special cases of the multiple
degree-of-freedom equations, all theoretical discussion is made only in terms of the multiple degree-
of-freedom case.

The current effort in the modal parameter estimation area is concerned with a unified theory that
explains any previously conceived modal parameter estimation method as a subset of a general
theory. This unified theory concept would eliminate the confusing nomenclature that currently exists
and simplify the understanding of the strengths and weaknesses of each method. The modal
parameter estimation methods that have been developed over the past several years involve multiple
measurement, multiple reference concepts that can be viewed as an interaction between the temporal
domains (time, frequency, etc.) and the spatial domains (physical coordinates, modal coordinates,
etc.) in order to achieve the "best” estimate of the modal parameters.

1.1 Historical Overview

While engineers have tried to estimate the vibration characteristics of structures since the turn of the
century, the actual history of experimental modal parameter estimation is normally linked to the work
by Kennedy and Pancull] in 1947. Until this time, the instrumentation that had been available was
not sufficiently refined to allow for detailed study of experimental modes of vibration. As the
instrumentation and analysis equipment has improved over the last forty years, major improvements
in modal parameter estimation techniques have followed. Specifically, the development of accurate
force and response transducers, the development of test equipment based upon digital computers and
the development of the fast Fourier transform (FFT) have been the key advances that have initiated
bursts of development in the area of modal parameter estimation.

During this time period, efforts in modal parameter estimation have involved two concepts. The first
concept involved techniques oriented toward the forced normal mode approach to modal parameter
estimation. This approach to the estimation of modal parameters involves exciting the system into a
single mode of vibration by using a specific sinusoidal forcing vector. Since the success of this
method is determined by the evaluation of the phase characteristics with respect to the characteristics
occurring at resonance, this approach can be broadly classified as the phase resonance method. In
order to refine the phase resonance method, particularly the force appropriation aspect of the
method, efforts to estimate the modal information on a mode by mode basis using measured
impedance, or frequency response, functions began. Much of the early work on this concept
centered on using the phase information as a means of identifying the effects of separate modes of
vibration in the measurement. For this reason, this concept has become known as the phase
separation method. Most methods that are in use today can be classified as phase separation
methods since no effort is made to excite only one mode of vibration at a time.

With respect to the phase resonance methods, the basic theory was first documented by Lewis and
Wrisley!2) in 1950. This theory was refined and presented in a more complete manner by F. de
Veubekel3] in 1956. Significant advances in the approach to force appropriation were documented by
Trail-Nashl4] and Asher(S] in 1958. Significant improvements and refinements in the phase




resonance methods have taken place in the last thirty years, particularly in the automation of the
force appropriation and the use of digital computers, but the basic theoretical concept has not
changed since 1950.

With respect to the phase separation methods, much effort has occurred over the last forty years and
continues to the present day. Kennedy and Pancu(ll in 1947 documented that the presence of two
modes of vibration could be detected by observing the rate of change of the phase in the area of
resonance. Since this method was developed based upon a plot of the real part of the impedance
function versus the imaginary part of the impedance function, this method is referred to as a circle-fit
method based upon these characteristics in the Argand plane. Broadbent®] applied this concept to
flight flutter data in 1958. Since the data acquisition process was largely analog until 1970, most of
the work until that time was oriented towards trying to fit a single degree of freedom model to
portions of the analog data. The significant contributors during this time period began with Stahle (7]
in 1958, and continued with Bishop and Gladwell [8] and Pendered and Bishop (%111 in 1963, and
Mahalingham [12} in 1967. Once data began to be collected and stored in a digital fashion, the phase
separation methods migrated to multiple degrees of freedom approaches. The initial work involving
multiple degree of freedom models was documented by Klosterman (13 in 1971, Richardson and
Potter [14] in 1974 and Van Loon [15] in 1974. While the work during this period involved the basic
polynomial and partial fraction models that are the basis of modern experimental modal parameter
estimation methods, the solution algorithms were basically unstable, iterative approaches to the
solution for the unknowns. Also, these methods used only one measurement at a time in the
estimation of the modal parameters. In 1978, Brown {161 documented work on the Least Squares
Complex Exponential method that was a two stage approach to the estimation of modal parameters
using all of the available data. In the first stage, the frequency and damping values are estimated; in
the second stage, the modal coefficients are estimated. Ibrahim (17], also in 1977, documented the
initial version of the Ibrahim Time Domain Method, which formulated the solution for the modal
parameters into an eigenvalue-eigenvector solution approach. These last approaches represent
conceptual approaches that have been extended today into similar methods involving multiple
references. The significant advances in the multiple reference, or polyreference, methods used and
being developed at the present time were first documented by Vold [18] in 1982 with the
Polyreference Time Domain method. Since that time, several other polyreference methods have

been developed. Detailed documentation of the multiple reference methods is contained in later
sections.

In summary, over the last forty years, many experimental modal parameter estimation methods have
been developed that can be classified as either phase resonance or phase separation methods. Often,
it seems that these methods are very different and unique. In reality, the methods all are derived
from the same equation and are concerned with the decomposition of a composite function into its
constituent parts. This decomposition may occur in the time domain in terms of damped complex
exponentials, in the frequency domain in terms of single degree-of-freedom functions, or in the
modal domain in terms of modal vectors. This decomposition may occur during the test, as in the
phase resonance methods, or occur during analysis, as in the phase separation methods. The various
modal parameter estimation methods are enumerated in the following list:

« Forced Normal Mode Method (2319201

o Quadrature Amplitude (78:11]

« Kennedy-Pancu Circle Fit (132123}

« Single Degree-of-Freedom Polynomial [14:212224.25]
» Nonlinear Frequency Domain (13,14,21,22) A
« Complex Exponential (26%7]
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« Least-Squares Compiex Exponential (LSCE) (1€}
o Ibrahim Time Domain (ITD) (%32

« Eigensystem Realization Algorithm [33-35]

« Orthogonal Polynomial (37

« Giobal Orthogonal Polynomial 38

« Polyreference Time Domain {183940]
ain (40431

« Polyreference Frequency Dom
« Direct Parameter Identification: Time Domain 47}

o Autoregressive Moving Average (ARMA) [44-43]

o Direct Parameter Identification: Frequency Domain 140.49)

1.2 Multiple-Reference Terminology

1.2.1 Mathematical Models

The most general model that can be used is one in which the elements of the mass, damping, and
stiffness matrices are estimated, based upon measured forces and responses. Thus, the model that is
used is based upon a matrix differential equation transformed into the domain of interest.

Time domain:

[M]{£} + [C]{x} + [KH{x} = {f} 1)
Frequency domain:

wP[M){X} + jfC){X} + [K]{X} = {F} 2
Laplace domain:

s*M]{X} +s[C){X} + [K]{X} ={F} ©)

If Eq. (1), (2), or (3) is used as the model for parameter estimation, the elements of the unknown
matrices must first be estimated from the known force and response data measured in the time or
frequency domain. Once the matrices have been estimated, the modal parameters can be found by
the solution of the classic eigenvalue-eigenvector problem [38"‘2"9]. Due to truncation of the data in
terms of frequency content, limited numbers of degrees-of-freedom, and measurement errors, the
matrices found by Eq. (1), (2), or (3) are, in general, not directly comparable to matrices determined
from a finite element approach. Instead, the matrices that are estimated simply yield valid input-
output relationships and valid modal parameters. This is because there is an infinite number of sets
of mass, damping, and stiffness matrices that yield the same modal parameters over a reduced
frequency range limited to the dynamic range of the measurements. For this reason, Egs. (1), (2), and
(3) are often pre-multipled by the inverse of the mass matrix so that the elements of the two matrices
[D] and [E] are estimated:
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Time domain:

[71{x} + [D]{x} + [E]{x} ={f"} @
Frequency domain:

w?[11{X} + ju{D}{X} + [E}{X}={F} &)
Laplace domain:

s21){X} + sIDH{X} + [E}{X} = {F '} (6)

Existing modal parameter estimation methods used in commercial modal analysis systems most often
employ a model based upon measured impulse response (time domain) or frequency response
(frequency domain) functions. While the exact model used as the basis for modal parameter
estimation varies, almost all models used in conjunction with frequency response function data can be
described by a general model in the time domain, frequency domain, or Laplace domain. The general
model in the time domain is a damped complex exponential model (often the impulse response
function) while the general model in the frequency domain is the frequency response function. The
general model in the Laplace domain is the transfer function. For general viscous damping, the
mathematical models for each domain for a multiple degree degree-of-freedom mechanical system
can be stated as:

Time Domain:
N . *
hog(t) = 33 Ape €™ + A7, £ Q)
r=1

Frequency Domain:

N Ay Ape

H, (w)= +— 8
(@) ,§ Jwd,  jued, ‘ ®
Laplace Domain:
N A A,
H,(s)= Lo AP . & 9
() 2 S, S-A, ©)
where:
s = Laplace variable
s T otjw
o = angular damping variable (rad/sec)
w = angular frequency variable (rad/sec)
P = measured degree-of-freedom (response)
q = measured degree-of-freedom (input)
r = modal vector number
N = number of modal frequencies
Ape = residue
Anr f Qr¢p¢p
A T Vple
@, = complex modal scaling coefficient for mode r
¥» = modal coefficient for measured
-4-
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degree-of-freedom p and mode r

Le = modal participation factor for reference
degree-of-freedom q and mode r
Ar = systempole
A = optje

The models described in Egs. (7) through (9) have many other equivalent forms based upon
expansion of the terms under the summation. Also, the models take on slightly different forms under
assumptions concerning specific physical damping mechanisms (hysteretic, etc) 51440, Other
forms of these models are also used where certain assumptions or mathematical relationships are
utilized. For example, an equivalent model can be found when the common denominator of Eq. (8)
is fochd yielding a polynomial numerator and polynomial denominator of maximum order "2N"
13.142] The denominator polynomial is then a function of the system poles. Often, an assumption is
made concerning the modal vectors being normal (real) rather than complex. This reduces the
number of unknowns that must be estimated by "N".

1.2.2 Sampled Data

The mathematical models described in the previous section are all developed based upon the concept
that the data is continuous. In reality the data that is available must be thought of as sampled data in
cach domain. This restriction requires special consideration when applying the models developed in
Eqgs. (1) through (9). Differentia! equations must now be thought of as finite difference equations;
continuous integral transforms are replaced by discrete transforms such as the Fast Fourier
Transform (FFT) and the Z Transform. The concepts affecting the numerical processing of sampled
data with respect to the continuous models represented in Egs. (1) through (9) are exactly the same
as the concepts that are the basis of the area of digital signal analysis with respect to the
measurement of the data. The limitations of the frequency information creates special processing
problems that are related to Shannon’s Sampling Theorem; the limitations of the dynamic range of

the measured data and of the computer precision yield special numerical problems with respect to the
solution algorithm.

In general, the numerical considerations often determine which mathematical model will be most
effective in the estimation of modal parameters. Time domain models tend to provide the best
results when a large frequency range or large numbers of modes exist in the data. Frequency domain
models tend to provide the best results when the frequency range of interest is limited and when the
number of modes is small. While these are general considerations, the actual numerical

implementation determines the ability of the algorithm to estimate modal parameters accurately and
efficiently.

1.2.3 Consistent Data

Modal parameter estimation methods all assume that the system that is being investigated is lincar
and time invariant. While this is often nearly true, these assumptions are never exactly true.
Consistent data refers to the situation where the data is acquired so as to best satisfy these two
assumptions. Problems associated with linearity can be minimized by maintaining a prescribed force
level and/or using excitation methods that give the best linear approximation to the nonlinear
characteristic (random excitation). Problems associated with the time invariance constraint can be
minimized by acquiring all of the data simultaneously using multiple excitations (50-34] " This reduces
mass loading and boundary condition variations that can be caused by moving a transducer around
the structure or by changing the location of the excitation.




1.2.4 Residuals

Continuous systems have an infinite number of degrees-of-freedom but, in general, only a finite
number of modes can be used to describe the dynamic behavior of a system. The theoretical number
of degrees-of-freedom can be reduced by using a finite frequency range (f,.f,). Therefore, for
example, the frequency response function can be broken up into three partial sums, each covering the
modal contribution corresponding to modes located in the frequency ranges (0.£,). (f..fs), and
(f,,00) as shown in Figure 1.
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Figure 1. Frequency Range of Interest
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In the frequency range of interest, the modal parameters can be estimated to be consistent with Eq.
(8). In the lower and higher frequency ranges, residual terms can be included to handle modes in
these ranges. In this case, the general frequency response function model can be stated:
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Hypg(w) = Rppg(w) + .§ j«.::, + X + Ry (10)

where:
Ripe(w) = residual effect of lower frequency modes
Ry, = residual effect of higher frequency modes (constant with w)

In many cases the lower residual is called the inertia restraint, or residual inertia, and the upper
residual is called the residual flexibility (3], In this common formulation of residuals, both terms are
real-valued quantities. The lower residual is a term reflecting the inertia or mass of the lower modes
and is an inverse function of the frequency squared. The upper residual is a term reflecting the the
flexibility of the upper modes and is constant with frequency. Therefore, the form of the residual is
based upon a physical concept of how the system poles below and above the frequency range of
interest affects the data in the range of interest. As the system poles below and above the range of
interest are located in the proximity of the boundaries of the frequency range of interest, these effects
are not the simple real-valued quantities noted in Eq. (10). In these cases, residual modes may be
included in the model to partially account for these effects. When this is done, the modal parameters
that are associated with these residual poles have no physical significance, but may be required in
order to compensate for strong dynamic influences from outside the frequency range of interest.
Using the same argument, the lower and upper residuals can take on any mathematical form that is
convenient as long as the lack of physical significance is understood. Power functions of frequency
(zero, first, and second order) are commonly used within such a limitation. In general, the use of
residuals is confined to frequency response function models. This is primarily due to the difficulty of
formulating a reasonable mathematical model and solution procedure in the time domain for the
general case that includes residuals.

1.2.5 Global Modal Parameters

Theoretically, modal parameters are considered to be unique based upon the assumption that the
system is linear and time invariant. Therefore, the modal frequencies can be determined from any
measurement and the modal vectors can be determined from any reference condition. If multiple
measurements or reference conditions are utilized, the possibility of several, slightly different, answers
for each modal parameter exists. The concept of global modal parameters, as it applies to modal
parameter estimation, means that there is only one answer for each modal parameter and that the
modal parameter estimation solution procedure enforces this constraint. Every frequency response
or impulse response function measurement theoretically contains the information that is represented
by the characteristic equation (modal frequencies and damping). If individual mneasurements are
treated in the solution procedure independent of one another, there is no guarantee that a single set -
of modal frequencies and damping are generated. In a like manner, if more than one reference is .
measured in the data set, redundant estimates of the modal vectors can be estimated unless the
solution procedure utilizes all references in the estimation process simultaneously. Most modal
parameter estimation algorithms estimate the modal frequencies and damping in a global sense but
few estimate the modal vectors in a global sense.

1.2.6 Modal Participation Factors

A modal participation factor is a complex-valued scale factor that is the ratio of the modal coefficient
at one reference degree-of-freedom to the modal coefficient at another reference degree-of-freedom.
A more general view of the modal participation factor is that it represents the relationship between
the residue and the eigenvector coefficient as in the following equations:

[ S EF S5 I - S T
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Apr = Qr¥pby (11)
L' = Qr*p (12)
Ape = VpL g (13)
where
P = measured degree-of-freedom (response)
q = measured degree-of-freedom (reference)
r = modal vector number
A,y = residue
Q, = complex modal scaling coefficient for mode r
¥» = modal coefficient for measured
degree-of-freedom p and mode r
Ye — modal coefficient for reference
degree-of-freedom q and mode r
L, = modal participation factor for reference

degree-of-freedom q and mode r

From a mathematical standpoint, the modal participation matrix is equal to the left eigenvectors of
next equation :

[#]-[s]rm ]

where:
[ H ] = transfer function matrix
[W] = complex modal vector matrix
[A] = diagonal matrix with poles

Note that for Eq. (12) the modal participation factor represents the product of a modal scaling
coefficient and another term from the right eigenvector for reference degree-of-freedom q. This will
always be true for reciprocal systems since the left and right eigenvectors for a given mode are equal.
For non-reciprocal systems, the modal participation factor is the appropriate term from the left
eigenvector. Note also that the modal participation factor, since it is related to the eigenvector, has
no absolute value but is relative to the magnitudes of the other elements in the eigenvector.

i

" Modal participation factors reflect the interaction of the spatial domain with the temporal domain

‘ (time or frequency). Modal participation factors can be computed anytime that multiple reference .
‘} data are measured and such factors are used in multiple reference modal parameter estimation
o algorithms. Modal participation factors relate how well each modal vector is excited from each of the
reference locations. This information is often used in a weighted least squares error solution
. procedure to estimate the modal vectors in the presence of multiple references. Theoretically, these
modal participation factors should be in proportion to the modal coefficients of the reference degrees
of freedoin for each modal vector. Modal participation factors in a solution procedure enforce the
constraint concerned with Maxwell’s reciprocity between the reference degrees of freedom. Most
multiple reference, modal parameter estimation methods estimate modal participation factors as part
of the first stage estimation of global modal frequencies and damping.
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1.2.7 Order of the Model

The order of the model equals the number of unknowns that must be estimated in the model. In the
modal parameter estimation case, this refers to the frequency, damping, and complex modal
coeflicient for cach mode of vibration at every measurement degree-of-freedom plus any residual
terms that must be estimated. Therefore, the order of the model is directly dependent on the number
of modal frequencies, "N, that are to be estimated. For example, for a system with "N" modes of
vibration, assuming that no residuals were required, "4N" unknowns must be estimated. For cases
involving measured data, the order of the model is extremely important. Estimates of modal
parameters are affected by the order of the model. A problem arises from the inability to be certain
that the correct order of the model has been chosen during the initial estimation phase. If the
number of modes of vibration is more or less than "N, modes of vibration will be found that do not
exist physically or modes of vibration will be missed that actually do occur. In addition, the values of
frequency, damping, and complex modal coefficient for the actual modes of vibration will be affected.

The number of modes of vibration is normally chosen between one and an upper limit, dependent on
the memory limitations of the computational hardware. The true number of system poles is a
function of the frequency range of the measurements used to estimate the modal parameters. By
observing the number of peaks in the frequency response function, the minimum number of system
poles can be estimated. This estimate is normally low, based upon poles occuring at nearly the same
frequency (psuedo-repeated roots), limits on dynamic range, and poorly excited modes. For these
reasons, the estimate of the correct order of the model is often in error. When the order of the model
is other than optimum, the estimate of the modal parameters will be in error.

Many of the parameter estimation techniques that are used assume that only one mode exists in a
limited range of interest and all of the other modes appear as residual terms. For this case Eq. (10)
can be rewritten as:

Apq Apy
Hp(@) = Ripg (@) + o N Y Jur AL

+ Rppy (14)

1.2.8 Solution Procedure

Equations (7) through (9) represent a nonlinear model in terms of the unknown modal parameters.
This can be noted from the unknowns in the numerator and denominator of Eq. (8) and the
unknowns as the argument of the transcendental functions of Eq. (7). The nonlinear aspect of the
model must be treated in one of two ways: (1) by the use of an iterative solution procedure to solve
the nonlinear estimation problem, allowing all modal parameters to vary according to a constraint
relationship until an error criterion reaches an acceptably low value, or (2) by separating the
nonlinear estimation problem into two linear estimation problems. For the case of structural
dynamics, the common technique is to estimate "2N" frequencies and damping values in a first stage
and then to estimate the "4N" modal coefficients plus any residuals in a second stage.

In the iterative technique in the solution of the nonlinear estimation approach, a set of starting values
must be chosen to initiate the sequence. The number and value of these starting values affect the final
result. Poor initial estimates can lead to problems of convergence, as a result of which, close operator
supervision usually is required for a successful use of this technique.

An alternative method is to reformulate the nonlinear problem into a number of linear stages so that
cach stage is stable. The actual data that are used in the estimate of the modal parameters also affect
the results. Based on the choice of the order of the model, "N", there are "4N" modal parameters to
be estimated. If residuals, in one form or another, are also included, the number of modal
parameters to be estimated will be slightly higher. The common method of solving for these
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unknown modal parameters is to find an equation involving known information for every unknown
that will be found. In this case, the frequency response function or impulse response function that
has been measured provides the known information and Eq. (7) or Eq. (8) can be repeated for
different frequencies or time values in order to obtain the sufficient number of equations. These
equations, for the linear case, can then be solved simultaneously for the unknown modal parameters.
As an illustration of this relationship, consider a common modal parameter situation in which the
number of modes in the frequency range of interest is between 1 and 30. Assuming the highest
ordered model means that slightly more than 120 modal parameters must be estimated. From a single
frequency response measurement, 1024 known values of the function will be available (512 complex
values at succesive values of frequency). Many more equations, based on the known values of
frequency response, can be formed than are needed to find the unknown modal parameters. An
obvious solution is to choose enough equations to solve for the modal parameters. The problem
arises in determining what part of the known information is to be involved in the solution. As
different portions of the known data (data near a resonance compared to an anti-resonance, for
example) are used in the solution, the estimates of modal parameters vary. As the quality of the data
becomes marginal, this variance can be quite large. When the modal parameters that are estimated
appear to be non-physical, this is often the reason.

To solve this problem, all or a large portion of the data can be used if a pseudo-inverse type of
solution procedure is used. One procedure that is used is to formulate the problem so as to minimize
the squared error between the data and the estimated model. This least-squares error method to the
solution is the most commonly used technique in the area of modal parameter estimation. If there
are many more known pieces of information than unknowns that must be estimated, many more
equations can be formed than are needed to solve for the unknowns. The least-squares error method
to the solution allows for all of these redundant data to be used to estimate the modal parameters in
a computationally efficient manner. The least-squares error method usually can be derived directly
from the lincar equations using a normal equations approach. In general, this procedure does not
increase the memory or computational requirements of the computational hardware significantly.
Any solution procedure that can be used is only estimating a "best" solution based upon the choice of
the model, the order of the model, and the known, measured data used in the model.

1.2.9 Characteristic Polynomial

The impetus of this section is to show that for discrete data, a difference characteristic equation can
be formulated in order to solve for the poles of the system. Further, it will be shown that the
difference equation can be formulated directly from the impulse response function data. By solving
for the polynomial coefficients and the roots of the polynomial equation, the modal parameters,
frequency and damping, are determined. The characteristic polynomial will be formulated for the
continuous case, as a differential function, and then extended to the discrete case, as a difference
function.

1.2.9.1 Differential Theory

The homogeneous differential equation for a single degree of freedom system is:
mx(t)+cx(t)+kx(t)=0 . (15)

In order to solve the differential equation assume a solution of the of the form x (f) = X e**, where X
is a scalar value. Substituting the appropriate derivatives of the assumed solution into Eq.(15):

(ms2+ecs+k)Xe't=0 .

Thus, the differential equation is transformed into an algebraic polynomial equation, called the
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characteristic equation.
msdecs+k=0 (16)
The complex valued roots of the characteristic equation will yield the characteristic solutions, A, and

Az. The real part is the damping and the imaginary part is the eigenfrequency, or damped natural
frequency. Thus, the solution to the governing differential equation is:

(@)= ix, et
r=1

The scalar magnitudes, X; and X, are determined from the system initial conditions. Note that any
exponential function will satisfy the differential equation. One such function of particular interest, is
the impulse response function.

h(t) = f;A, et .
'=l

A system with N degrees-of-freedom can be described by a set of N, coupled, second order
differential equations. The characteristic equation for this system is represented by the following
polynomial:

aav s vagn .y ¥ vagyg s34, 4a;54a0=0 a”n

Solving this polynomial equation will yield 2N complex valued roots, or, characteristic solutions ).
Then the solutions to the differential equations will be complex exponentials of the form:

v
Xp) = T X,
r=1
where:
« p = response location degrce-of-freedom

« q = reference location degree-of-freedom.

Thus, impulse response functions,
w Act
hpg(t) = Y Apg €™
r=1

will also satisfy the differential equations. Consider a few impulse response functions for various
reference and response points.

w At
hy@)= YAy, ¢
rad

el At
hy(t) = Y, Ayg, €

r=l

w At
his(t) = Y, Ay, €

r=l

w At
hoe(t) = 35 Apy, €
r=l

N
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The common characteristic in ecach of the above equations is that every impulse response function is a
linear superposition of identical damped complex exponentials, e*** for r = 1 — 2N. That is, the roots
of the characteristic polynomial are common to all reference and response locations. Thus, the
characteristic solutions are global system parameters, since t are independent of reference or,
response location. The important result is that since each e*' is a characteristic solution to the
homogeneous linear differential equation,

5 &

Ay D’"{A,, e""] +dqay, D! [Aw e*"] +aqya D2 [A,,, e‘\"] +...+a, D[Aw e‘\"] +ag=0

where,

o« DMf (D)= g:[d%‘@l (differential operator)

o N T RN )

that a linear superposition of characteristic solutions will also be a solution. That is, A, (¢) will also
satisfy the differential equation. Actually, a set of N second order linear differential equations must
be satisfied, but, a differential equation of order 2V can be found that will have the same roots as the

EOEER

set of N second order equations. s

o

Substituting a few impulse response functions for various reference and response points, a number of ’
differential equations are obtained. »
N N anN 3

aan D (A (®) + 22wy D¥4 (hyu()) + aawa D2 hyy ()] +... + 2y DAy (1)) +a0 = 0 N

aaw D (hia()] +aans D4 h1a(0)) + dawa D (hia(®)] +... + @y D[ A1 ()] + a0 =0
aaw D (i3] +aans D hys(0)) + aawa DM (his(®)] +... +ay D(his)] + a0 =0

G D"’[h,,(:)] + gy DWW (h,,(:)] +awa D’"-’[h,,(r)] ‘...va, D[h,,(z)] +do=0

< a

r

Note that the coefficients 2, to ay do not vary with reference or response location and thus, can be
estimated from a combination of various number of reference and response points.

:v}'r/‘n{’ L J

1.2.9.2 Difference Theory

4 %%

k]

From an experimental standpoint, the data are sampled, which means instead of continuous
knowiedge of the system, the values obtained are for distinct discrete time points. The impuise
response functions are generally obtained by inverse Fourier transforming the frequency response
functions. Thus, from the discrete impulse response functions the pole information, frequency and
damping, is determined. The model for the discrete impulse response function is:

o ¢ O T
z"{'."q. a‘ Y }‘i

aw e N

Bp(fa) = Y Apy " = EAN'Z’ (18) e
r=l r=l :.F
PN
where, o
oty =k Al -
o At is the sample interval l ]
o k = 1 — blocksize K
‘\"
2, = At '::’.:
'.:'_'"
g
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It should be noted, for discrete data, that the sample interval, A ¢, limits the frequency for which valid
information can be determined, whereas, in the analysis of continuous data, there are no frequency
constraints. In other words, theoretically, characteristics can be determined to infinite frequency for
continuous functions, but, the process of digitally sampling continuous data causes a maximum
frequency for which characteristics can be determined. The frequencies above this maximum will
alias back into the sampled bandwidth, and thus bias the results. For this reason, low-pass filters are
used to exclude information above the maximum frequency.

Recall the characteristic equation for an n degree-of-freedom system:
aps®+a;stvays?+.. . van 5P vaysP=0 19)

will have 2N characteristic solutions, 1,, for r = 1 — 2N. The characteristic polynomial is not unique
in that, many polynomials can be constructed that will yield the same characteristic solutions, even
though the coefficients will be different. For this reason, another polynomial can be formulated that
will have characteristic solutions that are related to the characteristic solutions of Eq.(19). The
polynomial has the form:

ag2®+ayzi vaz2%+. . vagyg 2V eag W =0 . (20)

The relationship between z and s is z = 4%, Analogous to Eq.(19), there are also 2N characteristic
solutions of Eq.(20), z, for r =1 — 2N. The roots of the two equations are related by z, = Mot
where, 2, are precisely the values of z for which the characteristic equation, Eq.(20), is zero. Note that
2, is simply the sampled form of the continuous exponential solution in the differential case. Thus, by
knowing the system characteristics, z,, the desired parameters, ),, can be determined. If the
coefficients are known, Eq.(20) could be solved, but, from an experimental aspect, both the
coefficients and the system characteristics are unknown. Thus, in order to determine the system
characteristics, the a” coefficients must be determined first. This is accomplished by substituting a
characteristic solution of the system, z,, into Eq.(20).

A0 Apge 20+ ) Apge 2} + 83 Apg 23 +. .. + @y g Apy 72V ¢ @y Ap 22 = 0

ArAt

Substituting z, = ¢ into the above equation,

. At ‘ AcAt . A, . AcAt

A Apg (€240 +a) Ay (M) 403 Apy, (M4 Y 4. v ay Ay (e¥2) =0
or,

. . A . A

Ay Apy €0 + Ay Apgy €V%" 4 a3 Apg €4t 4 ANAL .o

cootagyAgg e 1)

The important result is that since each e’ is a characteristic solution to the homogeneous linear

difference equation, that a linear superposition of characteristic solutions will also be a solution of
Eq.(21), which means that, in general, Eq.(18) can be substituted into Eq.(21). Once again, a set of N
second order linear difference equations must be satisfied, but, a difference equation of order 2N can
be found that will have the same roots as the set of N second order equations.
Consider a number of equations for various reference and response locations:

ao hy(to) +ay hyy () vaz hy(f2) +. .. +aany By (fana) + aan By (fay) = 0

o hiz(te) + a3 hya(ty) +az hya(ta) +. .. + agn.y hig(fan.) + aaw hia(fay) =0

@o hys(to) + @y hys(t1) +az hys(ta) +. .. + Az hys(fan.) + azw hys(tay) =0

g Bpq(to) + @y hpg(ty) + @3 hpgtz) + ... + Gy Bog(tan) + Gy Apg(fan) = 0
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Note that the coefficients a, to azy do not vary with reference or response location and thus, can be
estimated from a combination of various number of reference and response points. Once the a’
coefficients are estimated from a set of equations similar to the ones above, the poles, z,, and hence
A,, can be estimated from the 2N solutions of the characteristic equation,

agz%+ay; 2 vaz 23+, . vagy 2™V eagy ¥ =0

where:
.z,- Mot

In summary, a series of 2N linear difference equations with constant coefficients are formed from the

sampled impulse response function data in order to solve for the common constant coefficients.

These coefficients are then used in the characteristic equation to solve for the system characteristics,
2z,, which contain the desired parameters, A,.

Note that the characteristic polynomial for the continuous, or discrete case, is of order 2N, that is,
twice the number of modes. This results in a time domain differential, or difference equation of
o.der 2N. For this reason, from a numerical analysis concept, for large numbers of modes, N, or

large differences in modal frequency (A, compared to )\y), time domain methods are numerically
better conditioned.

-14-

DOIOE ; C AN AT R W B R R R o A W A e (R N N N S I SN
0 T O TN N 7420 AN VoMY S A o o e T A A T

» A




2. CHARACTERISTIC SPACE CONCEPTS

A new way of conceptualizing the area of parameter identification was developed during the course
of performing the work defined under this contract. One of the objectives of this contract was to
summarize existing modal parameter estimation methods and develop new ones. In the process of
performing this task it became obvious that most of the current algorithms could be described
conceptually in terms of a three-dimensional complex space of the system’s characteristics. Modal
parameter estimation is the process of deconvolving measurements defined by this space into the
system’s characteristics.

The frequency and/or unit impulse response function matrix which describes a system, can be
expressed in terms of the convolution of three fundamental characteristic functions; two complex
spatial, and one complex temporal. The spatial characteristics are a function of geometry and the
temporal corresponds to either time or frequency. Mathematically the frequency response matrix and
the impulse response matrix can be expressed as follows:

H@)=[VI[AJIL] [ =[¥][ ™) [L]) 22)
where:
o [H(ws)lw, xn = frequency response matrix (element Hpy (wy))
o [A(t4)ln, xa = unit impulse response matrix (clement k(1))
o [¥]x, xav = modal vector matrix (function of spatial variable p, element y,)
e [L Ly »» = modal participation factor (function of spatial variable g, element L,)

)

o [AsJan xav = diagonal martix of characteristic roots (element

1
Jwy -2,
o [ €™ oy xax = diagonal martix of characteristic roots (element e***)
s wy = frequency temporal variable (k = 1 — blocksize /2, may be unequally spaced)
e I} = time temporal variable (1, =k A ()

e p = response degree-of-freedom spatial variable

e @ = reference degree-of-freedom spatial variable

o r = temporal degree-of-freedom variable

e N = number of modes (system poles, indexed by r)
¢ N, = number of responses (indexed by p)

o N; = number of references (indexed by q)

The frequency response function matrix consists of three-dimensional complex space, which for a real
system is a continuous function of the three characteristic variables (p,q,w). However, in terms of
measurements the functions consist of sampled data where, p,q and w, are sampled characteristic
variables. In other words, the frequency response function is measured at discrete input, or reference
points (g), output response points (p), and discrete frequency (w, ), or time points (¢ ).

A summary of the characteristic vectors are:

« The response characteristic functions consist of a set of vectors which are proportional to the

cigenvectors of the system. The eigenvectors are indexed by r and the elements of the vectors are
indexed by p.
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o The reference characteristic functions consist of a set of vectors which are proportional to the
modal participation factors, which are in turn proportional to the system eigenvectors at the
reference degrees-of-freedom. The modal participation vectors are indexed by r and the elements
of the vectors are indexed by g.

« The temporal characteristic functions consist of vectors which are equivalent to sampled single
degree-of-freedom frequency response functions, or unit impulse response functions. The index
on the vector is 7 and the index on the sampled element of each vector is w,, or £,.

The variable r is the index on the characteristic. For a given r there is a discrete characteristic space.
The summation, or superposition with respect to r defines; the measured, or sampled frequency
response, or impulse response matrix, or, in other words, the three-dimensional complex space.

This concept is difficult to visualize, since the matrix is represented by three-dimensional complex
characteristic space. The easiest method is to describe the variation along lines parallel to axes of the
space. Lines parallel to the temporal axis correspond to individual frequency response functions, or
unit impulse response functions. These frequency response functions consist of a summation of the
temporal characteristics, weighted by the two spatial characteristics, which define the other two axis
of the characteristic space.

Lines parallel to the response axis correspond to forced modes of vibration. These forced modes
consist of a summation of the system eigenvectors weighted by the input characteristic and the
temporal characteristic.

Likewise, lines parallel to the input, or reference axis consist of a summation of the system
eigenvectors weighted by the response characteristic and the temporal characteristic. The variation
along these lines are referred to in the literature as the modal participation factors.

Modal parameter estimation is the process of deconvolving this sampled space into the basic
characteristic functions which describe the space. In practice, there are many more measured, or
sampled points in the space than there are elements in the three characteristic vectors, therefore, the
parameter estimation process is over determined. As a result, one of the important steps in the
process has been the reduction of the data to match the number of unknowns in the parameter
identification process. This data reduction has historically been done by using a pseudo inverse, or a
principal component method, with least squares being the most common pseudo inverse method.

The early single degree-of-fredom (SDOF) and multiple degree-of-fredom (MDOF) modal
parameter estimation methods used subsets of the sampled data and extracted one of the
characteristic functions at a time, normally the temporal characteristic. For example, the very early
methods like the complex exponential were used to fit individual frequency response, or unit impulse
response functions for the temporal characteristics (eigenvalue) and the residues (convolution of the
response and input characteristics). For these cases, each frequency response measurement gave a
different estimation of the system eigenvalues, or temporal characteristics. Since the measurements
were taken one function at a time some of this variation was due to inconsistencies in the data base
and the rest of the variation due to noise and distortion errors.

Later methods started to use cither, least square, or principal component methods to condense the
data over a number of sampled frequency response functions, into small subsets parallel to the
temporal axis (for example the Least Square Complex Exponential and/or the Polyreference Time
Domain methods). These methods then give giobal estimates of the eigenvalues, or temporal
characteristic functions. The Least Squares Complex Exponential parameter estimation algorithm
reduced the information to a single function parallel to the temporal axis and as a result, only
estimated the temporal characteristic in a global sense. The Polyreference Time Domain algorithm
estimates several functions parallel to the temporal axis at the input, or reference points. As a result
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this method also gives global estimates of the input characteristic functions, or modal participation y

factors. .

The more recent methods use larger subsets of the sampled data and utilize simultaneous data from
all three axis resulting in global estimates of all three characteristics. In order to use these global

methods, it is important that a consistent data base be measured. §
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3. THEORY OF MULTIPLE REFERENCE PARAMETER ESTIMATION
TECHNIQUES

3.1 Polyreference Time Domain

3.1.1 Introduction

In the last decade modal analysis has become important in the design process. There are two rea-
sons for this. First, there have been significant developments in computer hardware. More
powerful computers have made the heavy computational load involved in modal analysis
achievable within reasonable time periods. Furthermore, developments in electronics have resulted
in larger, cheaper and more reliable data acquisition systems. In addition to developments in
the hardware sector, there have been significant developments in software. New parameter esti-
mation algorithms have been developed to provide more accurate results.

The subject of this section is one of the latest of the parameter estimation algorithms, namely the
Polyreference Time Domain Techniquel18], as developed by H. Vold at SD.R.C..

The Polyreference Time Domain Technique is a two stage parameter estimation technique. In the
first stage, the damped natural frequency and damping values are extracted from time data using
single or multiple references. The modal coefficients or residues are then calculated in the second
stage. Although the first stage utilizes a time domain technique, calculation of the residues can be
done in the time domain as well as in the frequency domain. When only data acquired from a single
reference is used to estimate frequency, damping values and the modal coefficients, the Polyrefer-
ence Time Domain Technique is equal to the Least Square Complex Exponential (161, Therefore,
one can use the Polyreference Technique with a single reference or with multi-references.

3.1.2 General Equations

The Polyreference Time Domain Technique is used to extract modal parameters, namely the modal
dainping, frequency and residues, from free decay or impulse response function data. Instead of
utilizing a frequency response function, like many frequency domain algorithms, the Polyreference
Time Domain Technique is formulated from the impulse response function, h(t). This h(t)
represents the response of the system due to a Dirac impulse. The impulse response function may
be obtained by taking the inverse Fourier transform of the frequency response function.

h(t)=F' (Hw))
Where :
« h(t) =impulse response function
« F! = inverse Fourier transform
« H(w) = frequency response function

The impulse response function represents a decaying time history of the system and can be
expressed as a function of the damped exponentials of the system.

N .
Bg(t) = 3 Apg €' + A 0" (23)
rxl




aN
hog(t) = ) Apgr €
r=l

Where :
« p = response point
« q = input point or reference point
« r = mode number

o A,y = residue for mode r at point p due to an input at point q

o A, = complex conjugate of A,y
¢ A, = system pole

=0, + ju,

e 0, = system damping for mode r (rad/sec)
¢ w, = damped natural frequency for mode r (rad/sec)

« ), = complex conjugate of A,

« N = number of modes in the frequency bandwidth of interest

o for r=123,..N { ‘:""’: ;.""
reN L4

Since sampled data is used, h(t) is not a continuous function, but a discrete function.

2N
Rog(t) = 3 Apg €™
ral
Where :
[ ) th *k At

e At =sample time or time resolution
¢ k = integer value

. el,l. 'CM‘A‘ =z'.

oz,=e™ At
By substitution, Eq. (24) becomes :

N
h”('h)gz A”r Z’ + A”v zrh
r=1

aN
hpg (t)= 3 Ape z;
r=l

24

> Ty ]

(25

Because there typically can be more than one reference, each input will generate an equation like

Eq. (24). Therefore, for every response point, a set of N; equations, of the form shown in Eq. (26),
can be written,




fa” ta hnainats aTh AR M8 g%3 4ii gt alp va gts” 10 258 20 208 274 a0 2% atd a2 204  2la ath ot gt POV WO

4
w A by
hpl(’h) = EAplr (4
ral

w Ae by
hya(ta) = 35 Apa €
o
i : : (26)
. ZN' Aty
hora(h) = L Apwar €°°
E‘

w Ar by
how, () = 3 A,y €
r=l

Where : N; = number of references or inputs

In basic modal analysis theory (58], a relationship has been established between the residues and the
eigenvectors :

A" = Qr ¢p ¢|r r= 1,2,....,2N
Where :
¢ O, =scaling factor for the r-th mode
e ¥, =scaled p-th response of a complex modal vector for mode r
o Ye = scaled g-th response of a complex modal vector for mode r

This relationship enables us to express alt residues as a function of the residues of one particular
reference.

A=Y 4 @7)
Vo
Writing
¥
% . 28
Ve (28)

where L., is defined as the modal participation factor, sometimes referred to as the weighting or
forcing factor, i is a reference location, q the reference or input location used as reference, and r the
mode number.

Substituting Egs. (27) and (28) into Eq. (26) results into Eq. (29).
( w Ac by
hpl(’h) = EAplr e

r=1

w Ar by
hp?(’b) = 2 LerAplr e’

r=t
. Z (29)

. w ' Arty
hnM-l (’h) = Z LN‘-l.erplr e
Fd

w Agty
how,(6) = 3 Ly, Apye €7°
r=1

\
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These equations have been written as a function of the first reference. This is arbitrary and done
for convenience. The following application of theory is independent of the reference used for the
modal participation factors.

Using the concept developed in Eq. (25), Eq. (29) can be written in matrix notation :

hor(t)
hpa(te)
= | Z)* 14, (30)
) [L i
how, ()
Where :
1 00...0
020...0
o« Zlaew= |1 10 |
0 00... zay '
. z‘ =eX|AC
Apl.l
pl,2
. {A,} = residue vector ={ °
2¥x1 )
Apl.?N
aNx1

L3y Lapa .. Layaw
LS,I,l . .
o [Liy Jimayxaw =

Lysa Lvaa .- Lwpaw

e {I }15any = @ row vector for which all entries are 1

. [L ]qu = [ I'} = modal participation matrix
L“ Nix2N
hpl(th)
hpa(ty)
So { - -[L] e {A,}
Ao (t
’Nl(k Mx1
L)
21-
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To simplify the notation, the following convention will be used :

hy1(ta)
hpﬁ(‘b)

Equation (30) can now be written in a more concise form.

{h’b} = [L]szﬂ (Z |Anxan {A;} 31
Nix1 aNx1

Note that only the left hand side of Eq. (31) is known, based upon measured data.

oy (¢
ml(h Nix1

3.1.3 First Stage Solution: Poles and the Modal Participation Matrix

In this section a solution will be developed for the poles and the modal participation matrix. It will be
shown that the poles are the eigenvalues of a matrix polynomial and that the columns of the modal
participation matrix are the eigenvectors of this matrix polynomial. The matrix polynomial is the
characteristic equation in the case of mulitiple references.

A matrix polynomial is a polynomial which has matrices as coefficients instead of scalars [59). The
matrix coefficients of the polynomial can be derived in different ways. In this section, the Prony-
method is used to obtain these matrix coefficients. In Section 3.1.5 the matrix coefficients are
derived from a relationship between the Laplace transform and the Z-transform.

Using a matrix polynomial instead of a scalar polynomial enables the Polyreference Time
Domain Technique not only to process data from multiple reference locations simultaneously but
also makes use of the fact that multiple reference data is available. The advantage of this is that the
Polyreference Time Domain Technique is able to detect repeated roots equal to the number of
references, or, to the dimension of the matrix coefficients. A proof of this is given in Section 3.1.6.

It should be mentioned that data from all references can be used for the pole calculation. However,
certain references can be selected to emphasize certain properties of the system. In the previous
section, N; was defined as the number of references. In this section this definition is still valid,
however N; does not have to be equal to the number of references used during the test. Instead, N;
is equal to the number of selected references chosen to be included in the calculations.

The primary concern in any parameter estimation technique is the order of the model. For the
Polyreference Time Domain Technique, this problem can be translated as the choice of 2N unknown
poles and 2N unknown mode shapes, where 2N is the assumed number of degrees of freedom of
the system. In the first stage of the calculations, a solution is sought only for 2N unknown poles.

As mentioned before, the unknown poles are found to be the eigenvalues of the matrix polynomial.
The number of eigenvalues in a matrix polynomial is equai to the order of the polynomial times
the dimension of the matrix coefficients. As defined before, the dimension of the matrix
coeficient is equal to the number of references, while the number of unknown poles is 2N. There-
fore, the order of the matrix polynomial, n, has to be :

P X
b
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nZN.-

(32)

Where :
« n = order of the matrix polynomial
« 2N = number of degrees of freedom

o N; = number of references

Due to the discrete nature of the sampled data, it should be noted that n must be defined as the
smallest integer that will satisfy Eq. (32). In the case n > %Vﬂ there will be nx N; eigenvalues

found. Since nx N; > 2N, there will be some computational poles.

A matrix polynomial that yields the poles and the modal participation matrix is sought. This poly-
nomial will be shown to be of the form:

[a(O)] [L] [Zj“+[a(1)] [L] [Z]*h s e +[a(n)] [L] [ZJ°=[0] (33)

Where : {a(i)}nxw, =i-th matrix coefficient

|
|

{

In complete matrix notation, Eq. (33) can be written as:

7 &

[Q ]mx (m1)M, [G ](mw.m = [O]N.xmv (34)

Where :
« [] = [famtaa-D).... .13 O] e

2=‘i'=\i\r

(L]Z)

el -
L1z

(n+1)N\x 2N

%

One way to prove the validity of Eq. (33) is to start from the matrix [G ] in Eq. (34). This matrix
has 2N columns and (n +1)N; rows, where :

(n+1)xN,-=(%+1)xN‘.=2N+N.-

The columns are 2N vectors in a 2N +N; dimensional space. These 2N vectors may be independent
with respect to each other, but do not have to be. In case that the 2N vectors are independent, they
form a base for a subspace of the space, of dimension 2N +N,. In other words, these 2N vectors span
a 2N- dimensional space which is a subspace of the global 2V + N; dimensional space. Since this glo-
bal space is spanned by 2V + N; independent vectors, the 2N independent vectors of matrix [G ] can
be taken, expanded with N; vectors, independent from these 2N vectors, such that a complete base

ey

.

is defined for the total space. It is possible to define the N; additional vectors in such a way that :-I':

they are orthogonal to all 2N vectors. In other words, the dot product of the N, vectors with the

2N vectors is zero. This is stated by Eq. (34). E
hY
ﬁ
~
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Where :

e [Q ] = the transpose of the N; vectors

« [G ] = the 2N vectors of the subspace
In the case that the vectors do not form an independent set of vectors, they do not span a 2N
dimensional space, but a Y dimensional space, where Y is the number of independent vectors. For
this case, there still exists a set of N; vectors which are independent and orthogonal with respect to

these Y vectors and Eq. (34) is still valid. In other words, if the 2N vectors are independent or not,
N; vectors can always be found such that Eq. (34) is satisfied.

Using this property of the [G ] matrix, an equation can be derived to determine the matrix
coefficients [a (i)). The method used is called Prony’s algorithm (26]. This method makes use of

the matrix coefficients [a (i)] and Eq. (31) to derive a set of equations. Equation (31) is repeated
here for convenience.

o 1 e )

A first equation is obtained by taking Eq. (31) at time #,,,, (in other words, k equal to 0+n, ), and
multiplying this equation by the matrix coefficient [a(7)]. The next equation is obtained by
shifting the time by one time interval (so that k is equal to n,+1), and multiplying the equation
by the matrix coefficient [a (n-1)]. This procedure is repeated another n-1 times so that the last
equation is equal to Eq. (31) at time ¢,,,, , multiplied by the coefficient matrix {a (0)]. Summing
this set of equations gives :

fam) {h,‘w}= e} ] 1z J-«o{A,}
[a (n-1)] {h,w,}= [a(n-l)] [L] Z J"-*‘{A,,}
: : (35)
[a(l)] {hm,,,l}= [a(lj [L] [z J"‘“‘"{A,}
[a (0)] {h,_,,.,,} - [a (0)] [L] iz J"‘"{A,}
2'30 a ) {h,_,,w“}= é a @[] iz {A,}

The index n,, in Eq. (35), is used to indicate an arbitrary origin of the time history. This enables Eq.
(35) to be written at different starting points for the same time history.

Note that the right hand side of Eq. (35) is Eq. (33) multiplied by [Z]™{A, }. Therefore, the
right hand side of Eq. (35) equals zero.

'_2:30 a () {h,‘.w“-} . {0} (36)

------



,
4
L
a
A
i
i
¢ 4

[y

Y -~ W v SRRV RO PRSI I U7 Ig¥ e )
LN I T R T N A AN A O] : ’, Wy

V3 e Bah ety gty [ ovg aia aly ada v ta ¢ $ac el Gat 248 v gar . ot ipat ‘D, et Bat "Nl “gia e A koAl Winat ‘e e A ta gl A Yol ta i

Equation (36) has the coefficient matrices {a (/)] as unknowns. It should be emphasized that Eq.
(36) is valid only for free decay functions or for impulse response functions because Eq. (36) has
been derived from Eq. (31), which has the same limitations.

Since [a (0)] is the matrix coefficient of the highest order in the matrix polynomial, {a (0)] can be

chosen as the identity matrix [/ ], without a loss of generality (60, Therefore Eq. (36) can be written
as:

) ,};: 2 (i)] {hmm.} -- {h,w.} 37

For each point p, a set of equations can be written by varying n, from 0 to (X-1), where X is an
arbitrary large number. An identical set of equations can be obtained for every response location
p. All of these sets of equations can be written as one equation in matrix notation, namely,

[B [rrmnees ). kv - - [(RT)RAD. . (R ] (38)

Where :
« n = order of the polynomial

e N, =number of response locations
o [Re] = [ihond (hend - hmsead],

- [ = [la 1 1@, (4 )]

. [T;]uN.xX = hp,u-l} {hp.n} v {hp,-u.x-z
{hp,u-ﬂ} {hp,u-l} see {hp.lHXJ}

{hpo} {Ap1} . {hpxa}

« X = large number
Note that the last row in the [ T3] submatrix is the initial portion of the impulse response function,
associated with each respective input location. The second to last row is the same impulse response
function, shifted over one time sample (A ¢), and so on, as shown in Figure 2.

The notation can be simplified by using the following definitions :

[R]=- [tR21. (R3).... (R3]

NyxN.X
[B] = [tla 1. (a @ (3 ()] |wcwn
[r] = [resr i) 1va,]

Ninx N X

Equation (38) can be written in a more concise form.

[B ] [T] ) [R] (39)

There are N;x nN; unknowns in Eq. (39). The number of equations is N; ( equals the number of rows
-25-
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Figure 2. [T] - Matrix

of [B ])x (N,X ) (equals the number of columns of [T ]). By taking X such that N, X is equal to
nN;, there are exactly as many equations as unknowns (60l Therefore, there exists a unique solution
for the coefficient matrices, as long as the equations are consistent.

However, it is advisable that X be determined such that N, X is greater than aN;. This makes Eq.
(39) an overdetermined system. Therefore the least squares method can be used to solve for the
coefficient matrices. Using a least squares method provides an advantage in that it reduces ran-
dom errors in the data [61],

However, an X which is too large has several disadvantages. Since the computational load is not
linear with this variable, it is not advantageous to have X very large from a computational
viewpoint. Second, the values in the time history decrease for large values of X, since the
impulse response function is a decaying function. As a result, the signal to noise decreases with
increasing time. Third, the truncation error, due to an inverse Fast Fourier Transform (F.F.T.),
increases at the end of the data block (Figure 3). Note, this truncation error only exists for F.F.T.
data.

The least squares solution of Eq. (39) can be found from the normal equation:

o] ] (T - e
]2 5] (5 S e ]

where the entities [T ] [T} ]* and [R3 ] [T3 ]T can be shown to be asymptotically equal to the
lagged auto- and cross- correlation matrices (62l The unknown coefficient matrices can be
solved from Eq. (40) by using a simultaneous equation solution technique such as Gaussian
Elimination.

Once the coefficient matrices have been estimated, the natural frequency and damping values can
be determined by Eq. (33).
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Figure 3. Impulse Response Function

.;:30 a(iﬂ [L] [Z|™ = [0] (41)

Both sides of Eq. (41) are postmultiplied by a unit vector (2Nx 1), composed of all zeros except for
unity at the position corresponding to the system pole to be extracted.

% fac Ea {Ld} - {0} (42)

Where :
e 23V =(e

o {Lq }nx1 = column’d’ of [L]

Aq At )“‘.

e {0 }wx1 = zero vector

Since {L4 } is a non zero vector, Eq. (42) can only be satisfied if :
det [ [a (i)] 2 1=0 (43)
=0

Therefore, the resonance frequency and damping values are obtained by solving for the poles of the
matrix polynomial.

As mentioned earlier this matrix polynomial has nN; =(-2WN-X N;) = 2N poles, or sometimes
[}

(%— + 1)x N, = 2N + N; poles.

One method of solving this system of equations is to formulate Eq. (42) as a standard eigenvalue
problem. Recalling that [a (0}] = [/ ], the following matrix polynomial equation is obtained from Eq.
(43).

&




{[a (1)] 3+ [a (23 233 4.4 [a (n )]}x {L,} = {L,} 23 (44)

The roots of Eq. (44) can be found by using a companion matrix approach [63]. This approach uses
(n-1) matrix equations expressing identity relationships. This method converts the polynomial into
an eigenvalue problem of the form :

([E]-8[r] xix}={0} (45)
Where :

¢ B = eigenvalue

o {X } = eigenvector
o [E ] = the coefficient matrix

Before building the companion matrix, the following vectors are defined to enable (7 -1) identity
equations to be written:

'{Vo} = adz(‘) {Ld }
{(Vi} = agzi{La}=24(Vo]
{va} ag23{La}=24{V1}

(46)

.{Vu-l }; oq 23! {.Ld }=24{Va3}

\

where a4 is a proportionality constant

Using Eq. (44) and Eq. (46) the following matrix equation can be formulated as shown in Eq.
.

- - 2 e, = - - {Vu- } {Vu- }
[E'I(}“ [["o(l’] [“[(3 1‘” [‘[’é'i’ Vi) (Vi)
. . . . x ) =z44 . 47
(0] (01 ... [} [0] {Vo} {Vo)
aN|x1 aNjx1l

Equation (47) is the companion matrix equation for the matrix polynomial Eq. (44). It should be
noted that the poles of Eq. (47) are the same as those for Eq. (44). The vector {L, } in Eq. (44) is
the eigenvector associated with the pole z; and also the modal participation factor. This vector
{Lg } is proportional to { V, }, as defined in Eq. (46).

By using the appropriate solution algorithm (64], the eigenvalues and eigenvectors of Eq. (47) can

be found. The resonance frequency and damping can be calculated by substitution of the following
equations ;
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|
| Z, = Zy el * Zrimay g

o, = damping = lnMA—af-
IMag = (22 ot +22imeg)/? (48)
tan“(—z"m )
Zy.real
At

-

W, = resonance frequerncy =
LA t = sample time

. 3.1.4 Second Stage Solution: Residues

Although the pole calculation for the Polyreference Time Domain is a purely time domain technique,
the residue calculation can be performed in the time domain as well as in the frequency domain. The
residue calculation in the time domain will be first discussed, followed by a brief discussion of the fre-
quency domain calculation.

3.14.1 Time Domain Residue Calculation

To determine the residues, in the time domain, and the resulting modal coefficients, Eq. (31) is
utilized.

{h,.} = [L] wixan 2 Viwxan {A,} (49)
Nix1 2Nx1

Matrix [Z] is adiagonal matrix with the poles on the diagonal, with every pole appearing with
its complex conjugate. Therefore, matrix [Z | can be rewritten as :

0] (50)
[ o] [Y’j
2Nx2N
Where :
2y 0 . 0
0 Z3 . 0
. - Y‘J - . 0
rYJNxN I NxN . 8
b b ' 2y
Since the columns of the [L ] matrix were obtained as eigenvectors of an eigenvalue problem
. that had z; as its eigenvalues, these vectors also appear in complex conjugate pairs. Therefore, the
{L 1 matrix can be written as :
[L]-[iET.1£%)) (51)
re :

.[E]=[E'].=[Il,l,,...,IN]

. [L]:[I..I,.... N ,1;,]

229.
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Concentrating on the matrix product between [L ) and [Z], this matrix consists of two subma-
trices which are complex conjugates of one another.

L] -1, 2]

it [o],
[0] [y‘

-[Er e 1 [

-y, (52)

Where :
 Pltor ]

» k = time point

The residues also appear in complex conjugate pairs, corresponding to complex conjugate poles.
So vector {4, } in Eq. (49) can be rewritten as :

2Nx1
Where :
Apll
4 Apl?
ot -
A,,w

Substituting Egs. (52) and (53) into Eq. (49) results in :

v
G L a
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{h,.} =2 Re {[V ]"{U,}} (54 i
Nix1

Where : Re = real part of a complex number i

Note that V and U are complex vectors.
‘ V] = ] . [
& o) foefr )

Where :

. {UM.,}= Re{{u,, }}
| A} i}
; . [V,,,.,]= Re{[V]}

. [V.-,,,.,]= Im{[V]}

¢ Re = real part of a complex number

o Im = imaginary part of a complex number

Equation (54) can be written as :

{h..} <2 (Vs I~ Voo '] x{{{”""‘ {} (55)

e

Uv.-’mna

‘ In certain cases, it is correct to assume that the modes are normal. In these cases, {Up e } ={0}
X (58], and Eq. (55) can be simplified as :

{h,,,,} =2 [Vinag' {U,,,m,} (56)

A least squares estimate of the residues can also be formulated. By varying k in Eq. (49), the fol-
lowing equation is obtained:

{hpo } [L]Zz)°
, {hp1 } L)zt

] {A,} (57)
, ) 1
' X
'n {h'x } (X+1)N;x1 [L ] [ZJ X+ xX2N

.

st

Where : X = an arbitrary positive integer

LT e Bt ol g |
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Premultiplying both sides by
.[L‘] za 011'
i lz'|
[B ]sz(x+1)m =
wfzf

results in the normal equation as follows :

2] {H,} - [e] {A,} (8)

Where :
* [Cluwear = [B]x[B'T
{hpo }
{hpl }
. {H,} = )
X+1)Nx1 .
{hpx }

From Eq. (58), the unknown residues can be determined by using a simultaneous linear equa-
tion solution technique.

A least squares solution can also be found for the normal mode assumption. By varying k in Eq.
(56) aset of equations is obtained, similar to Eq. (57) :

{H,,} =-2{p| {U,';,,.,,,} (59)
(X+1)Mx1 Nx1

[Vimag 1°
(Vineo 1!
Where : [D](xu)n.xu = ’

[Vinag ¢

By premultiplying both sides of the equation by the transpose of the coefficient matrix [D ], the

normal equation is obtained, which can be solved again by a simultaneous linear equation solution
technique.

[D ]T {H,} =-2 [c] {un,,_,} (60)

et [Cla- o] )
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3.14.2 Frequency Domain Residue Calculation

As mentioned before, once the poles and modal participation matrix are known, the residues do not
have to be calculated in the time domain. The advantage of calculating the residues in the frequency
domain is that the effects of modes outside the frequency range of interest can be compensated by
the use of residuals. The disadvantage of the frequency domain calculation is that for a wide fre-
quency range (order of 2 difference between the lowest and highest frequency), this calculation is

numerically not as stable as the time domain calculation.

In the basic modal analysis theory [58] has been proven that the frequency response function in the

frequency domain, can be written as :
N A A,

Hoy(w) = ad 2 )+Rp-R
e (W) E,(jwh\,’jwh\,) r - Ry

where :
o Rp =residual flexibility
- constant

* R; =residual inertia = 2

for the case of a single reference. For multiple references, the previous equation becomes :

b1 e o))

where :

o [L]nxan = modal participation matrix

o {Rp }nx1 = flexibility residue vector

o {R: }nx1 = inertia restraint vector = I}

o?
o [C(@))awxan = €11
.- CNN
- CN N4
. C2N,2N
Where
1 ,
®Cii == fori=1,2,.N
¥ jw- X
e (i = ‘——l—,- fori =N+1,N+2,..2N
jw- X

(61)
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Hypy(w)

Hy3(w)
hd {H’}Nﬂ(l =

H,,;l (w

Equation (61) can be simplified to the following Eq.:

{H,(«»} - [D] [EW)] {R} - [F(w)] {R} (62)

Where :
o [D Incatw oy = [[L] i) [IJ]thrc 1] is the identity matrix

ARORG
o [Elawempanany = [10] 11 [0]
[0) [0] [31

o [FWlyxanm)= [D] [EW)]

{4,
o {R Yaw + mp1 = {{Rr
{1r}

Equation (62) is a set of N; equations in 2(N + N; ) unknowns. In order to have a unique solution for
these 2(N + N; ) unknowns, at least 2(N + N; ) equations are needed. If more than 2(N + N;) equa-
tions are available, an overdetermined system is obtained and a least squares estimation can be used .

By using different values of w in Eq. (62) an overdetermined system is obtained of the form :

{H,(0Aw)} FOA

{H:(l Aw)} [Fgl A:H {R}

(H,X Aw) FOB D penomy
XNix1

ot

where X is an arbitrary large integer which has to be smaller than the used blocksize during the meas-
urements.

By premultiplying by [F]T , the normal equation is obtained :

[F]"{H’}=[F] T(F) {R} (64)
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This set of simultaneous equations can be solved, for example, by a Gauss elimination process.

It should be noted that the solution for Eq. (64) gives complex residues while the residuals are real
numbers.

For the case where real modes are desired the same procedure is followed. In Eq. (61), the matrices
[L ] and [C ] are replaced by [L" ] and [C ] where :

cl.l 0 ... 0
. 0 €232 - -
. o [C wxn= .
0 0 ...cun
Where :
1 1
e iy =T "~ .
Jo-XN ju-X

L] [L']N|XN= [11 lg “« o . IN]
(Llwxav=[h 13 . . . Iy03 I ... Iy)

Performing the same substitutions, a similar equation to Eq. (64) is obtained. Solving this equation
gives real modes.

i 3.1.5 Time, Frequency, Laplace and Z-Domain Relations

In this section the validity of Eq. (36) will be proven. The proof is based on the relationship
between the Laplace domain and Z-domain. The main difference between these domains is that
a Laplace transformation is used for continuous data, while the Z-transformation is used on
sampled data. The Laplace Transformation transforms a differential equation, in the time
domain, into a polynomial equation as a function of s in the Laplace domain. The Z-transformation
converts a difference equation, in the time domain, into a polynomial equation as a function of z in
the Z domain.

The differential equation for a one degree of freedom system with single input is :
mi(t)+cx(t)+kx(®)=f(@) (65)
The Laplace Transformation of Eq. (65), assuming zero initial conditions, is :

(ms?+cs5+k)X()=F(s)
. or

! X(s) 1
, F($) ms+cs+k

(66)

Where :
e m 52 + ¢ s + k = 0 the characteristic equation

e X (s) = Laplace transform of the response x (t)
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¢ F(s) = Laplace transform of the force f ()
A system with N degrees of freedom and single input has a characteristic equation equal to :
baw S + by s 4 by g s34, 4b,s5+bg=0 (67)

The roots of this polynomial are called eigenvalues. The real part is the damping and the ima-
ginary part is the eigenfrequency or damped natural frequency.

In the Z domain, z is equal to e*2* with At the sample time. Therefore there is a relation
between s, the Laplace domain variable and z, the Z domain variable. Based on this fact it can be
shown that there exists a polynomial in the Z domain that has exactly the same roots as the charac-
teristic equation in the Laplace domain, namely:

7= ex,Ae
where A, is a root of Eq. (67). This new polynomial with different coefficients, has the following
form:

awwz¥ van, 2% 4. va,z+a0=0 (68)

Assuming now that the different characteristic values for Eq. (68) are known and can be represented
by z,, where r refers to the root number. If z, is substituted into Eq. (68), the equation is satisfied and

can be multiplied by any arbitrary function without violating the equation. Taking —Z%__ asan

Ar b
zZ-e
arbitrary function, Eq. (68) becomes :
(6ay 22 +aawa 2%+ 40y 2,4 80)—F5- =0 (69)
Where :
] tk =k At

Equation (69) represents a sum of constant coefficients multiplied by a function in z Therefore, if an
inverse Z-transform is performed on Eq. (69) the only factor that changes is the function in z and
Eq. (69) becomes :

(Qanz™ vagy 22V 4. . +a,z,+a,) e =0 (70)
or
- A
(Xa;z)e"™=0 ()
=0
Substituting z, = ™ ** into Eq. (71) gives: ;
L] N
20‘_ CA.(\+|AI) =0 (72)
=0

Az
Instead of —Z—A.., the function ";r Y could have been taken as arbitrary function, without loss
z-e™ z-e

of generality. For this arbitrary function Eq. (72) becomes :

T L U
R :"T‘!“‘u“"l‘.-ix, o, '.v‘ »
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f;a.-A,,, eMhriat) g (73)
=20

Equation (73) is valid for all characteristic values of Eq. (67). In other words, each damped exponen-
tial, associated with each particular characteristic values, satisfied Eq. (73). Since Eq. (73) is a linear
equation in e, any linear combination of the individual solutions will be a solution for Eq. (73). Recal- J
ling now the equation for the impulse response function, namely :

»
hog(ty) = T Apg €™
=0

This is a linear combination of the individual solutions of the linear Eq. (73), and is therefore also a
solution. This means :

S, (1, +iA1)=0 (14)
=0

Where :
¢ o At =sample time 4,

« h(t,) = impulse response function

B What has been proven up till now in this section can be summarized as follows. Equation (65)
) represents the differential equation for a continuous function. By performing a Laplace transform, )
. this differential equation is converted into a polynomial. Then by showing the relation between the
" Laplace domain variable s and the Z domain variable z one can prove that a polynomial in the Z

domain exists with the same poles. This polynomial is the Z transform of a difference equation. This

5 difference equation is the equivalent of the differential equation in Eq. (65). Namely a differential
K equation, which is only valid for continuous data, converts into a difference equation when the func- ‘
tion is a discrete function. )

| It is known that the solution for the characteristic equation are damped exponentials in the time
domain. For the case when discrete data is available, the characteristic equation is a difference equa-
tion in the time domain. Every part of the damped exponential satisfies the characteristic difference
equation. This property has been proven between Eq. (68) and Eq. (73). Namely by multiplying by the

R function _L»\T gives in the characteristic difference equation the term elh By taking different
.t 1 4

z-e .
values for t, different portion of the damped exponential function are used and the characteristic A
difference equation is still satisfied. This proofs that indeed any portion of the damped exponential

function satisfies the characteristic difference equation as was stated previously. ,

T e e b

In the case of multiple references, Eq. (67) becomes a matrix polynomial of the form :

[b (n)] s+ [b(n “ﬂ s s [b (n -z)] L PN [b(l)] s+ [b (0)] - [0] (75)

The dimensions of the matrix coefficients and the value for n, the order of the matrix polyno-
mial, have been discussed in Section 3.2.

From Eq. (75) and using a similar procedure as used in a single input case, the following equation is
obtained.

[0 {;, (,,} +[ar) {h ((+a :y} tootfa@) {h (t+n AI)} = {0}

-
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or

f; a (i)] {h (i At)} = {0} (76)
[ ]

Where: t, =k At

Restricting k> 0, Eq. (36) and Eq. (76) are identical.
3.1.6 Detecting Repeated Roots

The single reference algorithms, developed prior to the Polyreference Time Domain Technique, are
theoretically not able to detect repeated roots in a data set. However, in practice, perfect multiple
roots hardly ever occurs. This does not mean that very close coupled poles are not possible in a data
set. Even for close coupled poles,the single reference algorithms may have trouble to detect all close
coupled poles or calculating a proper estimate of the modal vectors. When a modal model is wanted
for later applications, such as modifacation analysis for example, missing a pole or having a poor
modal vector estimate in the modal model, makes the results of the further analysis very doubtful.
The Polyreference Time Domain Technique has the ability to detect repeated roots.

This proof starts with Eq. (36) :

,.Z:}, a ) {hm-} {0} (77

where n, is taken zero for convenience.

As mentioned in Section 2, this equation is only valid for an impulse response function or for a free
decay function.,

Consider a free decay function of only one frequency, namely :

{hm} ={A,',} e (78)

Where :
Ap.l,r
Anzr
b
Ny x1 .
AP.M-'

o Apq = residue for mode r at point p due to an input at point q
e A, =Systempole= o, +jw,
» o, = system damping for mode r (rad/sec)

¢ w, = damped natural frequency for mode r (rad/sec)

Since Eq. (78) satisfies the conditions for which Eq. (77) is true, Eq. (77), for this special case,
becomes :
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,.é, [a (i)] {A,.} eMe - {0} (19)

Assume now that the pole ), is a repeated root with multiplicity two. Further, let {4,, } and {A4,,,, }
be two distinctive residue vectors that are related to the two respective eigenvectors that are con-
nected with this pole.

For both residue vectors, Eq. (79) becomes :

( 2l @) e ){A,,,} - {0}
=0

» (80)
(L [a@fe™™ ){Aw} - {0}
=0

Taking :
(5 fo Ol =) = €O,

Equation (80) can be written as

[€O)]wxm [{An} {Aw}]M =[] G)

Therefore, the matrix [C ] transforms the {A,, } residue vector as well as the {A,,,; } residue vec-
tor into the zero vector. As a result, the nullspace of the transformation matrix is at least two,
since {A,, } and{A,,,, } are independent.

If the nullspace has a maximum dimension of at least two, the rowspace has a dimension of max-
imum N; -2 with N; the number of rows in the [C ] matrix (Figure 4).

Therefore, to determine if a pole has a multiplicity greater than one, the matrix [C ], for this
particular pole, can be calculated. The rank of this matrix [C ] is equal to the dimension of the
row space. The dimension of the nullspace is smaller than or equal to the multiplicity of the pole.
If the rank of the [C ] matrix is different from zero, then the dimension of the nullspace is equal
to the multiplicity of the pole. In the case in which the rank of the [C ] matrix is equal to zero, the
multiplicity of the pole is at least L, the number of rows of the [C ] matrix. Only L eigenvectors
connected with that pole can be detected, although there may be more.
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3.2 Polyreference Frequency Domain

3.2.1 Introduction

Recent advances in frequency response function (FRF) estimation techniques clearly show the
benefits of multiple input 15052, The redundancy in the measurement data allows the analyst to
separate closely spaced modal frequencies, to identify repeated modal frequencies (repeated roots) or
to distinguish between closely coupled modes. Noise can also effectively be averaged out by taking
into account more data simultaneously.

In the last decade several new techniques have been developed to take advantage of multiple input
measurements such as the Polyreference Time Domain Technique (18land the Modified Ibrahim
Techniquel65], These methods all apply to time domain impulse response functions. Since the actual
measurements are commonly stored as frequency response functions, the measurements have to be
transformed to the time domain by an inverse Fourier transform. This inversion gives some disad-
vantages to the time domain techniques:

» Truncation errors are introduced when converting data from frequency to the time domain by an
inverse Fourier transform.

o In order to be able to perform a inverse fast Fourier transform (FFT), the data has to be taken
with a constant frequency spacing.

In recent years, data acquisition systems have evolved from 4 channel systems to 64 channels or more.
This development minimize the disadvantage of sine testing, specifically, the time consuming nature
of the sine test method. This is due to the fact that 64 measurements, or more, can be taken simul-
taneously. Since the sine technique may yield superior measurements compared to random excita-
tion, due to the signal to noise ratios, there is a tendency to evaluate sine testing methods again. One
of the advantages of sine testing is that the frequency spacing does not have to be constant. How-
ever, existing time domain modal parameter estimation techniques require equidistant frequency
spacing in the data in order to use an inverse FFT. To take optimal advantage of sine testing,
without resorting to a forced normal mode approach, a polyreference frequency domain method was
necessary.

With this background in mind, a Polyreference Frequency Domain parameter estimation technique
has been developed simultaneously at the University of Cincinnati and the Katholic University of
Leuven (Belgium) [4243]. At the University of Leuven, a second order system was used as a starting
point for the algorithm, while at the University of Cincinnati a first order system was used. This
makes the algorithm developed at the University of Cincinnati basically a special case of the algo-
rithm developed at the University of Leuven.

In this section, both Polyreference Frequency Domain Methods will be described. Both methods cal-
culate global estimates for the system poles as well as the modal vectors.

3.2.2 General Concepts

When the force is equal to a unity Dirac impulse, the time response is equal to the impulse response
function. This means that this time function can be expressed as a sum of complex exponentials each
multiplied by a constant [58]. This constant is a function of the input point and the response point.

For the case where there are N, inputs and N, responses, the impulse response matrix can be written
as:

.-.—i-:-&‘ ;..-lt,\ﬁ-.'
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[h (:)] = [w] e Mt [L] (82)
where:
o [A(t) ]nxn, = impulse response matrix
;: o [¥ )y xan = matrix with the modal vectors
J o [A Janxay = diagonal matrix with the system poles
¢ [L ]zwxw, = modal participation matrix
s o Ny = number of measurements
: o N; = number of references
« N = number of system poles
[L ] is not identical to the modal participation matrix as it is defined for the Polyreference Time
Domain. The scaling factors for the different modal vectors are included in this matrix. This makes
the [L ] matrix and the [¥ ] matrix together a unique set and their product is equal to the residue
matrix. However, the same interpretation can be still given to the [L ] matrix as to the modal partici-
i pation matrix as it is defined in the Polyreference Time Domain. Namely the modal participation

matrix indicates how well a particular reference excites a particular mode. Therefore, the [L | matrix
will be simply referred as the modal participation matrix.

- h

3=

)
3
j: In order to obtain an expression for the displacement transfer function in the frequency domain, the
,: Laplace transform of Eq. (82) can be taken, which gives:
s
t 'l
[H.,(s)]mm - [e]fs wr- o 2] (®3)
where:

PP B R

+ s = Laplace variable

o [Ha(s) Ingxm, = transfer function matrix equal to the Laplace transform of the impulse response
matrix [k (¢) ]

a1 B

. [s f]- [AJ] = Laplace transform ofe PJ*
2Nx 2N

e [I] = identity matrix

The subscript d on the [H ] matrix indicates that the transfer function matrix is in terms of displace-
ment over force. By defining a [T ] matrix as:

[ 1

[Plawsw = [5 111 1 J]" [£] (84)
R’ Equation (84) can be simplified to:
; 1460 ¥ [T ®

S

In order to obtain an expression for the transfer function in terms of velocity and acceleration in the
frequency domain, the single and double partial derivative with respect to time can be taken of Eq.
(82) and a Laplace transform can be performed on the obtained equations. Another way to obtain
these two equations is by making use of the Laplace transformation properties and apply these
immediately to Eq. (85). The resulting two equations, obtained for the transfer function matrix with

P
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b))
respect to the velocity and the acceleration, are: :
.
= - 86
)], . =5 [He)] - o] (86) )
=5 [H4(s)] . [w] [L] (87) 3
N
] = [w] Al [T(s)] (88) :
4
. and :
’ .
[®] =5 [H)] -5 [ Od - 102 (89) ]
NoxX Ny
=52 [Hs)] -5 [¥] [L]- [¥] mi [L] (90) .
!
= [w] [Af3 [T(s)] ©1) v
In order to compensate for the influence of the modes outside the frequency range of interest, an .
additional term can be added to the previous equations to compensate for these residuals effects. Eq. q
(85), (88) and (91) become: ¢
. 0 Fe
His)] = [¥] [T6)] + [Re] 92) .
H,()] = [e] [A) [T(s)] + [R,] 93)
[ ) I O ™
r q r - §
H)] = [#] 2 [T®)] + [Rd] (94) 3
where:
i
. [R,] = residual effects for the displacement v
Nox Ny
X
o [R,] = residual effects for the velocity .
NoxX M ¢
. [R.] = residual effects for the acceleration .
Nox Ny
~
3.2.3 Second order model i
]
In this section the more general second order model, that was developed at the Katholic University (
. of Leuven, will be discussed. In the next section, the special case of this model, namely the first order 3
model, will be discussed. N
hY)
Equations (92), (93) and (94) can be combined into one equation: ::
N
2
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[H‘(s)] v [R‘]
] ]

Substituting Eqs. (87) and (90) into Eq. (95) gives:

R,,]
. [

[Ha(s)] = Lﬁ[ JA Ja [T(s)] . [R,]
s [He)] - [¥] [£] ¥ i) ] (96)
o [Heo]-s [o] L] [¢] mfc]
Concentrating on the [ {¥],[¥] [A ], [¥] [A J* ]7 matrix, this matrix hac 3N, rows while 2N
columns. This means that this matrix represents 2N vectors in a 3N, dimensional space. When
3N, > 2N these vectors define a subspace of a 3N, dimensional space. This means that at least
3Ny - 2N linear independent vectors can be found that are orthogonal to these 2N vectors. If the 2N
vectors are not independent, more than 3N, - 2N orthogonal vectors can be found. If the indepen-

dent orthogonal vectors are represented by a matrix [Q], the previous property can be expressed in
next equation:

[Q]Tanrzn)xwo [9] = [0](3No'2N)x2N o7

where:

V]
* [0 Jawoxaw = [WH A )

(W] A2
Under the restriction 3N, - 2N > Nom or No > N, at least N, orthogonal vectors can be found and
Eq. (97) becomes:
0o o] Pl

The reason for the restriction No > N is that a matrix polynomial is desired that will have poles equal
to the system poles. This restriction for a matrix polynomial is necessary so that the coefficients will
be square matrices.

The fact that the different vectors in the [© ] matrix appear in complex conjugates, makes the orthog-
onal vectors monophase vectors. A monophase vector is a vector that can be scaled such that all ele-
ments of the vector are real or imaginary. An example of a monophase vector is the normal mode
vector. The monophase property can be proven as follows:

Assume that the complex vectors of the [© ] are written as

4-[e]+i[e]

and their complex conjugate vectors as:

SN

where j =v-1
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Writing the orthogonal vector as the sum of real plus imaginary part:

el-lo}1 o]

In order for the [Q ] matrix to be orthogonal to the complex conjugate vectors, it has to satisfy next
two sets of equations:

([2]+i @] <[]+ [&])=[]
([e]+ife]xe]-ifa]r=]o]

These two sets of equations can be reduced to the following constraints:

4

o]fo)-f
/o] -
] o] -
o]

In order to satisfy these restrictions, the orthogonal vectors have to be monophase. Practically, this
means that these orthogonal vectors might be complex, but a scaling factor can always be found such
that this scaling factor makes them real vectors, Mathematically, this comes down to:

o]

where:
. [E] is a real matrix

e ais a complex scaling factor

The matrix [Q] can be divided into submatrices:
Bo
][]
B,

Without affecting the generality of Eq. (98) and taking advantage of the monophase property, the
matrix [Q] can be normalized with respect the submatrix [ B3] and the [Q] matrix becomes:

o]
AR

7]

Substituting Eq. (99) into Eq. (98) gives:

- - e . L ey
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= [o]m,,, (100)

[l o e[

Equation (100) represents a matrix polynomial of order 2. Since the matrix coefficients have a

dimension of N, this matrix polynomial has 2N, poles The 2N system poles represented by the matrix
[A] are a subset of these 2N, poles. Since N, can be a lot larger than 2N, this can cause a numerical

problems. This numerical problem can be minimized and this will be discussed later in this text.

Lvoxmv

Bringing the residue matrix in Eq. (96) to the left hand side, the next equation is obtained:
] [
s [Ho)] - [¢] [£]- [&.]
s? )]s [¥] L] [¥] mi ][R o

Postmultiplying Eq. (100) with the [T } matrix and substituting Eq. (101) into the obtained equation
gives:

[T(s)]zﬂxﬂl
Woxan (101)

. i [Ha(s M- [Rd]
D I ] S N R
o]+ WL ) W - e

This equation means that the measured FRF’s can be described by a linear frequency domain model
with real matrix coefficients:

o o) os ] o] o]
[l B [ ] w ) ol ol Wl ] ] oo
s 0] ]

where:
e [R,] =[¥] [L] and is equal to the residue matrix.

* [Rol = [[ALJ" (91 + [¥] (A1] (L] + (o 1 T[Ra ] + [y I7 (R, ] + [Ra ]

This equation holds for each value of s (s =jw for frequency response function ) of the frequency band
where Eq. (82) is valid. It defines a linear model for the measured FRF’s between N, response loca-
tions and N; inputs or references. The unknowns of this model are the matrix coefficients [Ao] »
[41), [R,] and [R,).

To summarize, the algorithm proceeds as follows: first the unknown matrices [40) . [44). [R,] and
[Ro] are calculated by solving Eq. (103) in a least squares sense, then the solution of the generalized
cigenvalue problem, defined by Eq. (100), directly yields the complex system poles and the
corresponding mode shapes for the structure.

As already mentioned, Eq. (100) is a matrix polynomial that has 2N, poles. In the case where
No>>N, the solution of the eigenvalue problem of dimension 2Ny will generate a lot of
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computational modes, since only 2N physical modes ( including the complex conjugate system poles )
contribute to the measurement data. Moreover, the solution process for [44] , [4,], [R,] and [R,]
may then become ill conditioned. To solve this problem, the data can first be condensed using princi-
ple component analysis, [66:67)

3.2.4 First order model

This section explains the first order model, which is a special case of the second order model which
was discussed in previous section. The first order model was developed and implemented at the
University of Cincinnati.

Instead of combining Egs. (92), (93) and (94) to develop a second order model, Egs. (92) and (93)
can be combined into one equation to develop a first order model:

[:8]] [[W][ Y ] ]

Substituting Eq. (87) into Eq. (104) and bringing the residual matrix to left hand side:

(104)

o) ]

ol BB R, (B e aos

Through the same reasoning as in the previous section, it can be shown that if Ny > 2N there are at
least N vectors that are orthogonal with respect to the 2N vectors in |[[¥], [¥] [A]|T. This property
can be expressed in Eq. (106) where the [B ] matrix containing the" orthogonal vectors is already
expressed in terms of submatrices:

[Bo)[" [[W ﬁ‘l‘ J] [ (106

[2:]
Since the 2N vectorsin [ [W] , [¥] [A] ] appear as pairs of complex conjugate vectors, the orthogo-
nal vectors are monophase vectors. The matrix [B ] can be normalized with respect to [B,;] and Eq.
(106) becomes:

[11 [ [\Ff|l] [o] (107)

Equation (107) is a first order matrix polynomial where the matrix coefficients are real coefficients
with dimension N,. Therefore, the matrix polynomial has N, poles. Notice that the matrix polynomial
for the second order model was of order 2 with 2N, poles, which could lead to numerical unstability.
Therefore, by chosing a first order model, this problem is minimized.

Postmultiplying Eq. (107) with the [T] matrix and substituting Eq. (105), the obtained equation
becomes:
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o] o [
where: [By ] =[W][L]+[R,]1+[A4o]" [Rs]

This means that the measurement data [H] can be described by a model which is linear in the real
unknowns [4, ] and [B, ].

It is possible to reduce the dimensions of the matrices by taking advantage of some system properties.
It is known that elements of [¥ ], [A | and [L ] occur in complex conjugate pairs. This property can
be used advantageously to reduce the dimensions of the different matrices used in the first order
model.

If the complex conjugate terms are ignored in the matrices [¥ ], fA LIT ] and [L ], the dimensions
reduce from 2N to N and the reduced matrices can be represented by:

e Flow Ol Fl,

Using this notation Eq. (105) becomes:

peo]- ] 1 [ ]
peo]- W] ]- &), (]
where the matrices [R, ] and [R, ] no longer only compensate for the residuals effects of the out-of-

band modes, but also compensate for the error that is introduced by neglecting the complex conju-
gate term in the different matrices.

[T‘ (s)] (110)
J - NxN,

The matrix [ [¥] [¢'] [A J IT has only N vectors in a 2N, dimensional space. Therefore, when
No 2 N, there exits N vectors that are orthogonal to these N vectors. This is expressed in Eq. (111):

Bl ] ]
) (] ¥ ]

The orthogonal vectors can be normalized. In this case, Eq. (111) becomes:

= [o] (111)

0

it

- [0] (112)

The disadvantage of this reduction in the matrix size, when the complex conjugate terms are ignored,
is that the matrix [A5 ] is no longer a real matrix but a complex matrix. Postmultiplying Eq. (112) by
the [T '] matrix and substituting Eq. (110) yields:

-48-

Y Tyt My e G P % 00 T RS Y ol Vo e T S Sl L g S,
S A “‘7-&,‘m‘,‘s‘."»‘.h‘,’l')‘ -‘i" S 1’.."9 ¥y "t f .‘. ~ ~ N\' -‘C.. o h. 0 “ N M ~~ A N o o ‘. 4

|
3
3



a ad ed S ab. g ad b fat VaB e vl i wyd bo Eoh ak ¥ad MR Vat *al tal Yol Sal dad 2l vaf 0gA- L " ‘Gl b, “ Sl Gk Gl by

(6] 11, |, [H,(s)[]ﬁ.‘(fy ]. [E{‘]]- ], b o

pol o]« o] » 7))+ po [R2] ] 19 :

- [H,,(s)] + [B;]

where: 1
o [Bi]=[¥ ][L" ) +[40 1" [Ra] +[R,] ’
This means that the measurement data [ H ] can be described by a model which is linear in the com- 2
plex unknowns [A4, ] and [B; ]. .
X
'
A
3.2.5 Principle Component Reduction !
In order to reduce the size of the matrices involved in the Polyreference Frequency Domain "
Methods, the measured data can be transformed to their principle components by means of a linear v
transformation{40.6667), This process minimizes not only the computer requirements (storage b
memory and execution time) but also provides a good way for estimating the number of modes con- ]
tributing to the response of the structure. .
7 '
. The measurement data [H] and the principle components, represented by [H¢], are interrelated by ;
: following pair of linear transformations: ] A
h
e = o
[H (s)]"M [c],,.x,,o [H (s)],,ox,,l (115)
or
- . &
[H(s)],.x,,‘ [c];,x,.,, [H (s)]".xm (116) \
i where N, is the number of principle components and is in general much smaller than the number of o
B measurements N. N
H t
: The principle component data [ H°] will satisfy the same linear model as the actual measurement data .
. [H]. Indeed, combining Eq. (82) and (115) results in: .
- [H‘]= [c] [w]e e [L] (117) ,
- [#]e M ] :
Therefore, [ H¢] will also satisfy the second order linear model with real coefficients as stated in Eq. ;
(103): ‘
~
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[Ao] [H'(s)] +s P,] [H‘(s)] +53 [H‘(s)] oy [R‘{] ‘ [Rf,] (118)
| where:
_f  [Rf) = [¥] L]
« [R§] = [(4:] [¥] + [¥] (AIJIL] + [0 1 [RZ] + [42 1 (R ]+ [R.]
The same algorithm can be applied to the condensed principle component data to calculate the
N modal parameters. The results for these data will be a set of eigenvalues [A} and eigenvectors [¥].
' Note that from Eq. (82) and (100), [A) remains the same for the principle component data. The

mode shapes [¥ ] can be calculated from the mode shapes [¥* ] of the principle component data by
5 the following transformation:

[w]"ox”'= [C]E"""- [‘r]u,m (119)

3.2.6 The Modal Participation Matrix

R e T

The calculation of the modal participation factors [L] of Eq. (82) can be performed on the actual
data as well as on the principle component data. The system of equations to be solved is:

y .

-1

O v = [#wocar s 711+ AL [ e (120

where the mode shapes [V ] and the poles [A | are already known. To keep the modal participation
. factors global, all output stations ( or all principle components) should be included in the calculation.

2Nx 2N

However, the matrices [R§] and [R§], for the case when a principle component reduction is per-
formed, contain sufficient information to solve for the modal participation factors, since the matrices

fA ] and [¥ ] are known in this phase of the parameter estimation. From Eq. (118) the matrix [L ]
can be expressed as a function of the known variables:

7]
[rs]

+

(121)

S
H | el e m

- To investigate the accuracy of the parameter estimation process, Eq. (84) can now be evaluated in
' order to curve-fit the measurement data for some or all output and/or input locations. The errors
; between the actually measured and the synthesized frequency response functions will be minimum in
a global linear least squares sense.
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3.3 Multiple-Reference Ibrahim Time Domain

3.3.1 Introduction

The Ibrahim Time Domain technique was originally developed for the analysis of single-
input/multiple-output free decay or impulse response time domain data [17:28], This technique can be
expanded into the multiple-input/multiple-output algorithm by introducing the relation of mode
shapes and modal participation factors.

Principal Component Analysis, Minimal Realization Approach and the generalized inverse technique
have been found to be very useful during the development of the Polyreference Frequency Domain
[42.43] and the Eigensystem Realization Approach(34]. Principal Component Analysis is used to evalu-
ate the rank of an auto correlation matrix and to aid in the selection of the number of modes.
Minimal Realization Algorithm is used to reduce the size of the system matrix of an eigenvalue prob-
lem to the approximate rank of the matrix. The generalized inverse technique is used to solve the
equation [B ]{x} ={b} with or without the normal equations method. Since these mathematical
approaches are also used in the development of multiple-reference Ibrahim Time Domain, this
method is similar to the Polyreference Frequency Domain and the Eigensystem Realization Algo-
rithm. It can be said that Multiple-Reference Tbrahim Time Domain is a time domain version of
Polyreference Frequency Domain or another approach of Eigensystem Realization Algorithm,

3.32 Theory

The mathematical derivation starts from the time domain equations:

[h@)]=[¥] e, [L] ‘ (122)
where:
o [¥]=N, by 2N mode shape matrix
» [ L ] =2N by N; modal participation factor matrix
e N = number of modes
e N, = number of outputs

e N; = number of inputs
Expanding these matrices with respect to sampling times:

[Ha(®)1=[W]Te*) (L] (123)
where:

h h(t+A . h k-1DA
[h[(t+(2 r])] [[ h ((t‘+2Att))]] [ S:Et(qkA) x)?
e [Ha(t)]=

[h(t+(i-l)At)] [h(t+l'At)] [h(t+(i+k-2)At)]
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(%] [ex,(.'.x)mj ‘
— ) X,
S[L1=[IL] | T Ly | oo | T L] v
e i = number of time shifts in column direction =
« k = number of time shifts in row direction B
The matrix [ Ha(t) ] is called Hankel's matrix. Note that the matrices [ Ha(f) ] and (W] are nor- '.”_j
mally rectangular matrices, therefore, only their generalized inverse exits. N
’
Using one sampling time shift on Eq. (123): hy
— — i
[Ha@+an)]=[¥] ™) Te™) (T (124) '::i
¥
— — N,
Premultiply Eq. (123) by [ ¥ J*, the generalized inverse of the [ ¥ ] matrix. A
— . -
[¥F [Ha()]=Te™) [L] (125) S
gl
The right hand side of this equation is a common term in Eq. (124). Substituting Eq. (125) into Eq. 4
(124) yields N
"
[Ha(t+an) 1= (W] T (W1 [Ha)] (126) )
-"'
Denoting [¥] e**, [W]* asmatrix [B]: "
‘)
‘a ]
[Ha@t+a1)]1=[B]1[Ha®)] (127 ::
o
This is a matrix homogeneous difference equation which also can be derived via Prony's algorithm. _‘
The matrix [ B ], is the matrix of coefficient matrices of the matrix polynomial equation. : ;
S
To _obtain the eigenvalue problem, postmultiply Egq. (126) by the generalized inverse of ::
[{¥ T [Ha(t)]],since [{¥ T [Hw(t)]] isin general not a square matrix. 'n-
[Ha@+aD)] [[VFHa@®) 1] =[¥] T, (128) .
\J
Using the property: '_?.
e
¥ T [Ha®) 11 = [HaO T [F) ]
Equation (128) can be simplified to : ;
-
[BI[W]=[W] ™) (W] Te™) (129) N
I"
where: :"-
o [B]=[Ha(t+A0) ][ Ha®) I N
Equation (129) is an cigenvalue problem; the size of the system matrix [B ] is N,i x N,i . The )
cigenvalues that are found are of the form z, = e*™*,
-52- 4
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Mode shapes are calculated as eigenvectors of Eq. (129). The eigenvalues are translated to damped
natural frequencies and damping factors as follows (A, = o, + w, ):

o,=Re(Inz, )/ At w=Im(lnz )/ At (130)

3.3.2.1 Minimal Realization Approach

The minimal realization approach is a technique that is used to reduce the size of the system matrix
[ B ] of an eigenvalue problem to the approximate rank of the matrix.

The matrix [ Hg(t) ] is decomposed as follows:

[Ha(®) Inixme = [Pluixni "Dy wisxme [Q vk xwn (131)
Denoting the rank of the matrix [ Hax(t) ] as p, the matrix T D is written as follows:

(d, 0..00.. 0
0d;..00..0

D, = o (132)
_0

---------

00..00..0

These diagonal terms are called singular values. The number of significant singular values and, there-
fore, the rank p of the matrix, may be evaluated using the definition of condition number and/or the
ratio of successive singular values. This procedure is explained as follows:

Condition numbers are defined as follows:

d
CN=—-~ (133)
d,

Since the first singular value is the largest numerical value, the condition number is always larger than
zero. If the condition number is evaluated for different submatrices of the [D] matrix by taking suc-
cessive singular values, the rank p of the matrix is defined when the condition number first becomes
very large.

LY

The rank p can also be determined from the ratio of successive singular values calculated as follows:

d,
ratio = A

134
dk+l ( )

If the ratio of successive singular values is evaluated, this ratio will be approximately equal to one
when the successive singular values are significant. This will also be true when the successive values
are trivial. At the transition between these two subsets of the singular values, the ratio of successive

singular values will peak indicating the rank p ( p =k ). Then, the dimensionality of Eq.(131) is
denoted as follows:

B,

[Ha() Inixnme = [Pluixe "Dy pxp [Q 15 xmu (135)

This process is called the Principal Component Analysis. Theoretically, this rank number p is equal
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to twice of the number of modes.

The minimal realization process begins from this point. Premultiplying Eqs.(123) and (124) by the
transfer matrix [P [ :

[PF[Hat)1=[PF[¥]Te™ [L] (136)
[PF[Ha(+at)}=[PF[¥] TeX?*) Te* [L] (137)

Note that the matrix product [ P F [ ¥ ] represents the reduced mode shapes and can be represented
by [ ¥ ). Premultiplying Eq.(136) by the generalized inverse of [ ¥ ]

[W F [PF[Hat)]=Te*) [L] (138)

The right hand side of this equation is a common term in Eq.(137). Substituting Eq.(138) into
Eq.(137) yields:

[PF[Ha(t+an)1=[PF[W] ¥ [V FPF[Ha(t)) (139)
Simplifying:

[Ha(t+at)J=[¥ ] Te™?) [V F[Ha@)] (140)
where:

o [Ha(t+Ar)) =[P [Ha(t+A0)])
o [Ha®)1=[PT [Ha®) ]

The normal equation of Eq.(140) is:
[HaC+AO [ Ha@® F =¥ 1 Te™*) (V I [Ha®) W Ha ) F (141)

To obtain the system matrix of an eigenvalue problem, postmultiply Eq.(141) by the generalized
inverse, [[ Ha(®) ] [Ha®) T I*

[Ha(+AD [ Ha®) F ([Ha@® 1 [Ha@® F I =[¥ ] Te) (¥ I (142)
Postmultiplying both sides of Eq. (142) by [ % ] and simplifying gives :

[BI[W ]=[W ]Te™) <[ ]Te™, (143)
where:

s [BY=[Ha(+aN[Ha®) F [[Ha®) ) [Ha) T I

This is an eigenvalue problem; the size of the system matrix [ B ] is now p xp , which is smaller
than N,ixN,i .

This is the Minimal Realization Approach. The eigenvectors are translated into the mode shapes as
follows:

(¥]=(P](V¥ ] (144)

Transfer matrix [ P ] is obtained from the correlation matrix by solving the following eigenvalue
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problem. : .,
[Ha@®) ) [Ha®) T [P)=[P) [D? (145) ’
This algorithm is referred to as the Multiple-Reference Ibrahim Time Domain. \
3.3.3 Modified Multiple-Reference Ibrahim Time Domain N
In practice, the matrix size of [ Ha(t) ][ Ha(t) ¥ ( N,i xN,i ) is too large to be installed in many B
mini-computers. Only a few measurement data can be included. This difficulty is overcome by some h
matrix manipulations. o J
Transposing Eq.(123) and Eq.(124) o3
_ _ ]
[Ha) T =[L T Te™) [W] (146) i
4
[Ha@+an) T =[L ] Py T (W (147) et
Decomposing the matrix [ Hgz(t) J* as follows: .f,
]
[Ha@)1=[P)'D, [QT (148) )
~ 8
or o
Y -
Y
[Ha@) T =[Q1'D) [PT (149) ~
|
Using this matrix [ Q ] as the transformation matrix, Eq.(146) and Eq.(147) can be modified as fol- 5
lows: ':
I N
[QF [Ha) P =(QT (LT fe™) (¥ (150) ;;
or, 4
— _ -3
[Ha) T = [LT T [T (151)
-
where: -
e [Ha®) 1=[Q T [Ha) T N
e [L"F=[QFI[L I = reduced modal participation matrix N ';
S
Likewise : ;'
Y
[QF [HatsanT =[Q I [LT T TeM) [¥] (152) -
or, N
_ _ ]
[Ha@san) [ =[L7 [ 1M 1) [V (153)
§
where: |

o [Halt+AD |=[Q F [Hualt+an) "

Premultiplying Eq.(151) by [ [L™ [T ]*:
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(LY (Ha®]= e, (W] (154)
. The right hand side of Eq.(154) is a common term in Eq.(152). Substituting Eq.(154) into (153) yields
[Ha@sa) [ =[L7F T8 ([LF T [Ha®)) (155)

The normal equation of Eq.(155) is

) [Ha@+a D) [[Ha® F=[L"F T [[LF Y [Ha® 1 [Ha®) (156) t

Xy

o

:‘ Taking a generalized inverse of [[ Ha(®) [ Hax®) ]"] to obtain the system matrix of an eigenvalue

Y

‘: problem:

i 4

A + ar ponr 4 4
[Halt+sa) I [Ha® F [[Ha®) | [He@ F| = (L7 F T ([T ) (157)

" Postmultiplying Eq. (157> by [ L~ J* and simplifying

iy

[ e - A

o [BI[L [F=[L T re®,

4 where:

1. “ +

o « [B1=[Ha@+a0 1 [Ha® T [[Ha) ) [Ha) T

W

¥

*: This is the eigenvalue problem to be solved; the size of this system matrix [B] is p xp . In this

K algorithm, modal participation factors are calculated as eigenvectors. They are transformed as fol-

. lows:

R —_ —

o [LT=[QlIL"F (158)

The transfer matrix [ Q ] is calculated from the correlation matrix by the following eigenvalue prob-
lem:

o [Ha®) I [Ha(t)][Q1=[Q] D?, (159) i
{
Y

R The size of the matrix [[Hi,,(t)]T[H.-,,(t) ]] is Nk xNk . This size is usually smaller than

N,i xN,i in Eq.(145), and this algorithm is, therefore, easy to implement on mini-computers. This
) algorithm is referred to as the Modified Multiple-Reference Ibrahim Time Domain. The modal vec-
W tors can be calculated by using the partial fraction method or by setting up an overdetermined system
W using Eq. (123). This overdetermined system, that has as unknowns only the modal vectors, can be
W solved in a least squares sense. These two methods have been explained in detail in the Polyreference
" Time Domain Technigue.

3.3.4 Conclusions

Two approaches of Multiple-Reference Ibrahim Time Domain modal parameter estimation tech-
K niques, named Multiple-Reference Ibrahim Time Domain and Modified Multiple-Reference
¢ Ibrahim Time Domain, were developed, and attained sufficient accuracy for modal parameter esti-

; mation. As an additional tool to predict the convergence of the calculated modal parameters,
o) the Modal Confidence Factor (MCF) was also included.

Y There is a limitation on the developments of the Multiple-Reference Ibrahim Time Domain. This
" technique involves the formulation of a very large system matrix for an eigenvalue problem in
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order to include all measurement data. Since several data time shifts must be taken in the system
matrix in order to increase the rank of the system matrix, this matrix is sometimes larger than 100
x 100. This limitation is avoided in the Modified Multiple-Reference Ibrahim Time Domain algo-
rithm. The size of the system matrix is always fixed to an arbitrary dimension; usually this size is lim-
ited to 40 x 40 which yields 20 modes.

The condition number and rank chart is also developed for the selection of the number of modes and
the effective rank in order to better estimate the modal parameters. The rank chart usually indicates
the number of modes in the measurement data within a certain frequency range, and the rank
number at this mode indication normally satisfies the required accuracy for modal parameters.
Where more precise results are required, the selection of a higher rank will yield better results for
modal parameter estimates and convergence of MCFs.

The Multiple-Reference Tbrahim Time Domain algorithm calculates resonant frequencies, damping
factors and mode shapes during the first stage of modal parameter estimation. The residues are
obtained with respect to a specific reference point using the normal equations method at the second

stage. Since this process is done in the time domain, residual effects are not considered in this algo-
rithm.

The Modified Multiple-Reference Ibrahim Time Domain obtains modal participation factors during
the first stage estimation the same as the Polyreference Time Domain technique. These modal parti-
cipation factors are identical to those of Polyreference Time Domain; therefore, the second stage
residue calculation is performed by a general polyreference residue calculation algorithm. This algo-
rithm includes time domain and frequency domain normal equation methods, Section 3.1, and also
has capability to obtain real normal modes. These options, therefore, are also available with the
Modified Multiple-Reference Ibrahim Time Domain technique.

Time domain modal parameter estimation algorithms usually are more numerically robust solutions
than frequency domain algorithms for lightly damped systems. The presented modal parameter esti-
mation techniques in this section, Multiple-Reference Ibrahim Time Domain and Modified
Multiple-Reference Ibrahim Time Domain, both use time domain data. For this reason, these
methods are numerically very robust and consequently the Modified Multiple-Reference Ibrahim
Time Domain technique is comparable to the Polyreference Time Domain technique. The Modified
Multiple-Reference Ibrahim Time Domain technique is able to detect repeated roots, since it is a
multiple-reference algorithm, and has the advantage to produce less computational poles in com-
parison with the Polyreference Time Domain technique.
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3.4 Multiple-Reference Orthogonal Polynomial

3.4.1 Introduction

The recent trend of experimental modal analysis is to apply a multiple excitation force and to meas-
ure multiple response functions [51). This approach results in a more uniform distribution of the exci-
tation energy applied to the structure, and hence, more uniform response level; thus, higher quality
and more consistent data can be obtained. Another practical advantage is that the data acquisition
time can be reduced if the appropriate equipment is available.

In the last few years, several "multiple-reference” parameter estimation methods have been
developed to take advantage of the consistency of the frequency response measurements relative to
different reference locations. Such methods include Polyreference Time and Frequency Domain
Method(1842), Eigensystem Realization Algorithm{34], and Direct Parameter Estimation(68l. With
these methods, great improvement in identifying experimental modal models have been achieved.
Moreover, the multiple reference approach can be used to identify highly coupled and repeated
modes, which is difficult or even impossible to attack for single reference approach.

Most of the early multiple reference work was based upon time domain algorithms. These algorithms
were characterized by numerical stability, ease of use, and were particularly good at analyzing wide
frequency bands. However, there are several important limitations:

« Averaging is often performed in the frequency domain and Fourier transformed into the time
domain for analysis. For this case, time domain "leakage" can be a problem, particularly for small
frequency bands.

o These time domain methods are based upon sampled data, with the result that all of the com-
puted frequencies fall into the Nyquist band (from 0 to 1/2 of the sampling frequency). This can
make it more difficult to sort out computational modes. This is becoming increasing more impor-
tant for the application of active control of large structures (Space Station, etc) where
modal/servo systems exist. These system have both low and high damped poles making it particu-
larly difficult to separate the computational poles from the real poles.

« Sine testing is becoming more popular with the advent of systems capable of making many simul-
taneous measurements. In sine testing, the frequency interval may not be equal making it difficult
to transform into the time domain.

« It is difficult to weight the data in a given frequency band with time domain methods.

As a result, there has been a great deal of recent interest in developing multiple reference frequency
domain algorithms as witnessed by the recent development of the Frequency Domain Polyreference
and Eigensystem Realization Algorithm (ERA). The rational fraction polynomial is one of the fre-
quency domain algorithms, which can be extended to multiple references formulation with the advan-
tage of increasing frequency resolution by the use of multiple reference data.

The general formulation for the Frequency Response Function (FRF) 1s in the form of rational frac-
tion polynomials. In the frequency domain parameter estimation, some numerical difficulty prevents
one from using this simple formulation directly. One of the difficulties 1s that the formulated equa-
tions are usually ill-conditioned, resulting from the dynamic range of the polynomial terms. Thus,
one of the natural extensions is to use orthogonal polynomals instead of ordinary power polynomials.
As the property of orthogonality is exercised, the normal equation used in the solution process is
casily decoupled, and the size of the system matrix is greatly reduced.

In this section, a rational fraction formulation in orthogonal polynomials, based on the earlier
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derivation by Richardson and Formenti(37), and Houl®), is extended to a matrix formulation, ie. A
matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain(40). This method
can include multiple reference FRF calculations and thus is able to detect highly coupled and
repeated modes. The matrix polynomial coefficients of the AR part is first estimated in least square
sense, and then the system poles can be solved from the characteristic equation in companion matrix
form. The residue matrices can be calculated from the matrix polynomial coefficients of the MA part,
which is estimated in the same least square formulation as AR part. Therefore, the global estimation
of both residues as well as poles is achieved.

A singular value decomposition method has been used to develop a complex mode indicator function
(CMIF){™), which can be used to help determine the number of poles before the analysis. The CMIF
is formed by performing a singular value decomposition of all of the FRF’s at each spectral line. The
singular values are plotted as functions of frequency. These singular values can also be used to gen-
erate appropriate weighting functions in order to enhance some certain frequency band and/or to
enhance weak modes.

3.4.2 Theory

For a2 N degree-of-freedom linear system with viscous damping, one can formulate an Auto-
Regressive Moving Average (ARMA) model of order (m,n) as

> [@ls* [HE] =3 bs* (160)
k=0 k=0

or in orthogonal polynomial basis
5 el e) [HE)]= 3 (8] ] (161)
A=0 k=0

where:
e N degree-of-freedom of the system or the number of modes.
o N; number of excitation location.
e N, number of response point.
e« m order of matrix polynomial chosen in the Auto-Regressive part. mN; >N .
« n order of matrix polynomial chosen in the Moving-Average part.n >m+2.
o [H(s)] transfer function matrix of size N; by N,,.
e [a;] matrix polynomial coefficient of size N; by N;.
o [by] matrix polynomial coefficient of size N; by N,,.
o [a] matrix polynomial coefficient for orthogonal polynomials of size N; by N;.
o [Ax] matrix polynomial coefficient for orthogonal polynomials of size N; by N,.

 [ps] orthogonal polynomial of order &, which is a scalar function.

Since [oy] and [B,] are both unknown parameters in Eq.(161), one can always choose one of the
matrix coefficients to be the identity matrix. By choosing [a,] = [7], Eq.(161) can be arranged and
rewritten in matrix form for all frequency channels.




[ [HY'(Pol™ -~ [HP[Pma]® -[Po’)® -+ -[PJF]] {%;’ [ - [H)F[Pm]?]
: o* .

[“[é:if - : (162)

br | |

(for i=1,2,..,! frequency channel ) L B.F

where:
o [P.}¥ productof p,’ and identity matrix [I] of size N; by N;.
o [P.'}¥ productof p,” and identity matrix [I] of size N, by N,.

In order to solve for the matrix coefficients, one can formulate the normal equation and further
decouple it by taking the advantage of the orthogonal property.

[m ['(W] [f1- “ﬁ (163)

or

(XF - []) o] = [XTF [X.] - [Y.] (164)
1A =X.) - X1 ) (165)
where: ) ;
B 1Po WHPPSLE .. - 5 (Po THI [P
e [X]=Re ) - .
- S NHPE . - E 1P, THF P
r pl P
o [X] - Re
L 1P THP (P
£ WPollH (HFIPol . £ o) (P 1 '
o [Y]=Re

(P s NH) HIP.. 5 (P H) (1P ¥

s=1




-
-,

Y
e

NP

. ;;: [PollH] [HIF[P.J?

o [Y.]=Re
: z':J [Pos JIH] (P
[aF Y
«lo]=] - =] -
[am‘-l ]T [ﬂn]T

Yo 2% A7A 4% 8 B E0 Bat Db Db’ t g 9 da* $a¥a0a’ da ava avi gle -

Note here that the size of the system matrix in Eq.(164) is mN; by mN; , which is significantly smaller

than the size of the previous system matrix in Eq.(163).

The orthogonal polynomial with any weighting function g (s) is defined and normalized as:

i
Y Pis) a6 PG’ = b
.'=l

(166)

A step by step procedure for generating the orthogonal polynomials is developed by Forsythe(73). A
simplified Forsythe orthogonal polynomials, namely Real Half-Function Orthogonal Polynomials(37},

for complex variable function can be derived as:

Pul(w) = (1) Siu(w)
Normalized function
Sa(w)=0
So(wi) = -

do

i
2

1
do=(2 T q:)
=1

R, (w:
ity = 52
! 1
41"(221?1(%')2%)2
=1
Ra(w:
Sa(w) = ;‘:"’
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(167)
Nonnormalized function
R, (w)=0

Ro(w) =1

Ry(w) = wy Solw)

Vo=0

Ra(w) = ay Sy(w) - vy So(w)

L)
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1 [
da = (25 Ra(wP ) b =2 5w S1(w) So(w)
=) =1
R
Sa(w) = h;:).) Ru(w;) = wy Sea (@) - vig Sea(ay)
1 1
dy= (23 R 4;)? Ves =2 5 ok SeaCet) Sealet)
=1 =1

A transformation matrix [I') can also be calculated in the generating procedure. Thus the power
polynomial coefficients can easily be calculated from orthogonal polynomial coefficients [a] and

(81.

bo a

SURERRRC

& & & &

Bo
. (168)
b, Ba
where, the subscript ik indicate only one of the entry ik of the matrix polynomial coefficients is

considered.
1 “YooV1

d, 0 00 T3
1 -
O 7 0 0
1 . N3 - Y3
[I‘] _ 0 o0 dodid, 0 (,)2(-7_)
0 1
0 0 dod d2dy 0
0 0 0 0 0
|

Once the [a,]’s are found, one can solve for the poles, natural frequencies and dampings characteris-
tics, by setting the determinant of the characteristic equation equal to zero.

det ( f) [aa]s*)=0 (169)
k=0

Instead of solving the matrix characteristic equation, one can reformulate Eq.(169) in the companion
matrix form and solve the eigenvalue problem for the poles.
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-[@a.1] -[9a3] - [ao] s*{v} 5";{"}
g] 0o - s~3(v} s*3{v}
mn - s““’{v} =S s“°{v} (170)
00 Mo (v} (v} '
Note that in this formulation {v} is one of the columns of the modal participation matrix, which is :
proportional to the modal coefficients at the reference degrees of freedom for one mode. ‘
Assuming that no exact repeated roots exist, which is always the case, then the residue matrix for ;
mode r can be defined as )
[4]= lim (s-3,) [H(5)] (171)
3
by applying Eq.(160)
[4]= lim (s-2) @) () (172) g
where: :

cla®)]= 3 [a]s*
k=0

.« b)) = 3 [Ba)s*
k=0

: Since [a(s)] is singular as s—), , one can formulate a Singular Value Decomposition to determine
R the generalize inverse of [a (s)] A
: e )] = W) [E6)] V) a73) )
or
m '
[a(s)]= § 0i(s) {u(s)} {vi(s)}¥ (174) "
where:
T; 01(5)
" o [E(5)] = c’(f) singular value matrix, which is a diagonal matrix.
;z ’ ow (s)

. [UG))= [{u,(s)} {ua(s)} -~ {uy, (s)}] left singular matrix, which is a unitary matrix.
cWUOFWEN=0]

o [V(s)]= [{v,(s)} {va(s)} -~ {vw, (s)}] right singular matrix, which is a unitary matrix.
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The generalized inverse is obtained as

@) =V = (U (175)
or
N
a1 = §1 oi(s)™ {vi()Hui ()} (176)

Applying Eq. (176) to the indeterminate term in Eq.(172):
N
.'lT, G-2)a@)l = .ljg“ (s-A¢) .‘_:_‘, oi(s)* {(vi()Hui(s)}¥ Qa7

If Eq.(174) is evaluated at s =), at least one of the singular values, o;(A,), must be zero, which
indicates that the matrix [a(\,)] is not of full rank. This is consistent with the inability to deter-
mine the eigenvector in an absolute sense. For the case of repeated roots at s = A, , more than one
of the singular values will be zero. For the case of no repeated roots, only one of the singular values,
o;(A,) , will be zero. Thus, Eq.(177) reduces to:

. . (S -A r)
lim G-Aa@)l = Jlim or®)

v ) Hu(A )Y (178)

For the identity that o;(A,) =0 , the reciprocal of the indeterminate term in Eq.(178) can be
expressed as:

0i8) . 0i(s)-ai(A,)  doi(s)
m =

ol-»ng, -ﬁj N ol—u\, $ - A, ds |'='\' (179)
Therefore, Eq.(178) becomes:
do
lim (A = (2 |, )" (40} {1 ) (180)
do,

(s
In order to determine ‘;: ) | =1, » ONE can take the derivative of Eq.(174) as

d{u(s)} d{vy(s)}¥

M dd.'
LBON |, - 5 (A + ) e N + N} ) L,
i=1

(181)

Then, by pre-multiplying Eq.(181) by {i;(A,)}¥ , post-multiplying by {v;(A,)}, and using the ortho-
gonality property of a unitary matrix, only one term remains on the right hand side.

doy(s)

o L 00y 2, (8

Substituting this result into Eq.(180),
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. (O DHuO Y
lim (s-A)a ()] = (183)
. o PO, o)
Therefore, the residue matrix in Eq.(172) can be calculated as,
| , (0 1
| Al {viA )Hu(A )} O] (184)

o 0L, o)

3.4.3 Conclusions

The Multiple-Reference Orthogonal Polynomial has demonstrated some attractive characteristics for
modal parameter estimation. Some of these are:

« It can use any frequency spacing data, and thus is suitable for step sine measurement data.
o Works well in narrow frequency bands
« Global parameter estimation for all FRF measurement.

« It includes multiple reference measurements calculation and, therefore, it is good for system with
highly coupled and repeated modes

« Easy to increase the order of the polynomials for residual calculation and error compensation.
« Weighting as a function of frequency can be used

« Additional weighting function can be used to detect or enhance weak modes.

« By direct use of FRF data, time domain "leakage” is avoided.

« Fewer computational modes introduced, thus it is suitable for combined modal/servo systems
which can include both low and high damping modes.

» CMIF can be used to indicate close or repeated eigenvalues before the parameter estimation pro-
cedure, so that the proper order of the polynomials can be chosen.
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3.5 Multi-Mac

3.5.1 Introduction

Multi-Mac is a spatial domain method of determining modal parameters based on multiple-reference
frequency response functions. Multi-Mac is an extension of the concept of Modal Assurance Cri-
terion (MAC). MAC is a calculation that is used to gain confidence in the estimates of modal vec-
tors either by verifying that the estimates of different modal vectors are unique, that normal modes
have been estimated, or that estimates from different rows or columns of the residue matrix for the
same mode are identical. Multi-Mac uses principal component analysis to determine the number of
independent vectors that make up the residue vectors calculated from a number of reference loca-
tions. The number of significant eigenvalues is used to determine the number of independent vectors.
Using the eigenvectors from the principal component analysis, a set of orthogonal mode shapes can
be calculated.

3.5.2 Theory

For linear systems with normal modes, the residue of any input/output combination is made up of
three parts, the modal vector at the input location, the modal vector at the output location, and the
scaling constant for that modef50.54,76-78),

Ape = Q¥uVer (185)

Where:
o (. =Scaling constant for mode r
 ¥» =Modal vector for location p of mode r
* Y =Modal vector for location q of mode r
e A,y = Residue

Equation (185) can be expanded to form the complete residue matrix for any mode r.

ity ViV Yu¥e
2t Vv Yot ..
[4.]1=0, (186)

From Equations (186) it can be seen that there must be a linear relationship between any row or any
column of the residue matrix for a particular mode. For example, if the structure was excited at
points 1 and 2, then in column one every residue would have v, in common. Likewise, every residue
in row two would have ¢, in common. The modal vectors at the output loactions, ¢, through ¢,
must therefore be related since they define the same mode. If this linear relationship does not exist,
either measurement errors have contaminated the data, the modes are closely coupled or, there is a

repeated root at that pole location so that the residue is a linear combination based on input loca-
tion.

Also, from the basic theory of modal analysis, the modal vectors of two different modes must be
orthogonal with each other and a weighting matrix such as the mass matrix.
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If estimates of the residues for the same mode but for different rows or columns is used, a principal
component analysis can be used to determine the number of independent vectors that make up those
residues. If one significant eigenvalue is found from the principal component analysis, then one
mode is presented. If more than one significant eigenvalue is calculated, then there are more than
one set of independent vectors that make up the residue matrix for that mode.

Equation (186) can be used to set up the principal component analysis. The size of the matrices is
determined by the number of modal vector estimates and the number of measurement locations.
The residue matrix can have more than one estimate of the modal vector for the same input/output
locations. These estimates could be from different curve fitting algorithms. The matrix [U] is the
matrix of eigenvectors for each eigenvalue.

A4 )7 = (Wl [U] [ [UT (W (187)
Where:

o [A] = Residue matrix
o [W] = Diagonal weighting matrix
¢ [U] = Eigenvector matrix

 [A] = Diagonal eigenvalue matrix

Equation (187) will yield as many eigenvalues as the number of rows in the residue matrix. Some of
these eigenvalues will be zero or of insignificant value. The number of significant eigenvalues will
indicate the number of independent vectors that make up the residues at that frequency. Associated
with each eigenvalue will be the eigenvectors for that eigenvalue which will number as many as the
number of rows in the residue matrix. The weighting matrix that was used in Eq. (187) for this work
was the identity matrix. A better weighting matrix would be to use the inverse of the square root of
the mass matrix or an estimate of the inverse of the square root of the mass matrix from a finite ele-
ment analysis. The matrix could also be an error matrix or a matrix that would allow different types
of data in the residue matrix. For example, if both acceleration and displacement data was contained
in the residue matrix, the multiplication of acceleration and displacement would not be dimensionally
correct. But, the weighting matrix could be used to make the multiplication dimensionally correct(70],

Any estimate of the residue may be used in this procedure. Since, at resonance, the quadrature part
of the frequency response function is proportional to the residue, the simplest method is to use the
peak of the imaginary part of the frequency response estimate as an estimate of the residuell6]. If
leakage is present in the data, it is advantageous to use spectral lines that are adjacent to the highest
peak in the imaginary part. These spectral lines will be less contaminated by leakage. Therefore, the
multi-mac calculation can be used before any sophisticated parameter estimation is attempted to
define the number of independent vectors at each pole location or can be used after all parameter
estimation has been completed to gain confidence in the estimate modal vectors.

Once the eigenvalues and eigenvectors have been calculated by the principal component analysis, the
residues can be transformed to a new coordinate space which are mathematically guaranteed to be
orthogonal with each other and the assumed weighting matrix. Therefore, if more than one eigen-
value of significant value is found, the orthogonal mode shapes that make up the estimate of the resi-
due at that frequency can be computed. For example, if there are repeated roots, the residues that
make up that repeated root will be calculated. If the modes are heavily coupled, unique modes will
be estimated. But, the transformed modes will have the contamination of other modes removed and
will be othogonal with each other.

Equation (187) defines the transformation from the original residues to the new space. This
transformation would be used for each eigenvalue of significant value. Therefore, if more than one

CaSNS S




cigenvalue of significant value is found, the transformation will yield orthogonal estimates of the resi-
dues. If more than one estimate of the residue is used for each row or column, these transformed
estimates are summed together to reduce the variance. The matrix multiplication will therefore yield
one residue for each measurement location. The variance of the modal vectors will be reduced in a
least squares sense by [1/n J¥/3.

A -1 =T UT 4] (188)
3.5.3 Experimental Procedure

In practice, a number of reference locations are used to estimate the frequency response functions.
These can be from either a multiple input test or an impact test with a number of reference
accelerometers. In this way, a number of rows equal to the number of reference accelerometers or a
number of columns equal to the number of inputs of the residue matrix will be estimated. To get
good estimates of the natural frequencies of the system, a summation of the power spectrum of the
quadrature response is calculated(16]. This summation, which can use all frequency response estimates
or a subset of the frequency response estimates, enhances the global modes of the system and give
less weight to any local modes.

From these starting values, the quadrature part of the frequency response estimates are used. In
practice, the peak location and one or two spectral lines on either side of the peak is used. In this
way, the errors caused by leakage can be reduced. If there is no leakage or if a large number of refer-
ences is used, it is not necessary to use more than the peak value. These three or five frequencies are
used as an estimate of the residue for that mode for a given reference location.

A principal component analysis, which is the number of spectral lines times the number of references
in size, is then done on these estimates of the residue. This will yield a number of eigenvalues equal
to the number of spectral lines times the number of references. If only one eigenvalue of significant
value is calculated, then there is one independent vector that makes up the residue vectors at those
frequencies. If more that one significant eigenvalue is found then there are that many independent
vectors that make up the residue vectors at that frequency.

The residue vectors can then be transformed by the eigenvectors found from the principal component
analysis. These new mode shapes are mathematically guaranteed to be orthogonal with each other.
These transformed residues could be weighted by the mass matrix to yield mode shapes of the system.

Using these transformed estimates of the residue vectors, an enhanced frequency response function
can be computed which can be fit for estimates of the frequency and damping of that model50],
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4. CASE STUDIES

-

4.1 Circular Plate

*: Utilizing impact testing, data was taken on a circular plate structure. Seven accelerometers were per-
Y manently mounted on the structure, while the force was moved to 36 different locations. Therefore,

a data set was obtained with seven references. Figure 5 shows the circular plate modal model with
the seven references points indicated.
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! Figure 5. Circular Plate Model

‘ The following algorithms were used to analyze the data for frequency and damping characteristics:
L

" « Polyreference Time Domain (PTD)

K « Polyreference Frequency Domain (PFD)

. « Orthogonal Polynomial (OP)

R « Multiple-Reference Tbrahim Time Domain (MRITD) A
;: o Modified Multiple-Reference Ibrahim Time Domain (MMRITD)

U
.v Due to memory limitations in the implementation of the algorithms, the data was analyzed with only i
- six references. The references used for the analysis were arbitrarily chosen. The data was obtained

using baseband analysis from 0 Hz. to 2560 Hz., with a time domain blocksize of 1024. Therefore, the

: frequency resolution, Af, was 5§ Hz. A typical driving point frequency response function is shown in

K Figure 6.
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Figure 6. Circular Plate Driving Point Frequency Response Function

The data was processed in several analyses. First, the data was analyzed from spectral line 50 to spec-
tral line 178 or, from 250 Hz. to 890 Hz. The second analysis band was from spectral line 200 to spec-
tal line 328 or, from 1000 Hz. to 1640 Hz. The frequency and damping results of these analyses are

presented in Table 1.
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TABLE 1. Circular Plate Frequency and Damping Analysis

Frequency/Damping Estimation Method
Mode PTD PFD oP MRITD | MMRITD
1 Freq. (Hz) 362.276 362.368 362.474 362.208 362.254
Damp. (%) 0.8665 0.8296 0.8876 0.8580 0.868
. 2 Freq. (Hz) 363.612 363.562 363.603 363.629 363.567
Damp. (%) 0.9368 0.8850 0.9554 09013 0.946
3 Freq. (Hz) 557.041 557.124 557.078 557.085 557.045
Damp. (%) 0.5129 0.5683 0.5389 0.5154 0.523
4 Freq. (H2) 761.143 761.309 761.185 761.228 761171
* | Damp. (%) 0.6654 0.6287 0.6667 0.6653 0.663
5 Freq. (Hz) 764.138 764.166 764.146 764.340 764.190
Damp. (%) 0.3371 0.3259 0.3338 0.3335 0.339
6 Freq. (Hz) 1223.021 1223.119 1223.006 1223.033 | 1223.006
Damp. (%) 0.3337 0.3445 03357 03372 0334
" Freq. (Hz) 1224.126 1223.814 1224.145 1224.034 | 1224.092
Damp. (%) 0.3262 0.3195 0.3211 0.3314 0.332
8 Freq. (Hz) 1328.063 1328.213 1328.030 1328.070 | 1328.069
Damp. (%) 0.5031 0.5207 0.4999 0.4936 0.496
9 Freq. (Hz) 1328.760 1328.687 1328.754 1328.772 | 1328.781
Damp. (%) 0.4129 0.4079 0.4084 0.4032 0.408
Notes: PTD Polyreference Time Domain
PFD Polyreference Frequency Domain
oP Orthogonal Polynomial

MRITD Multiple-Reference Ibrahim Time Domain
MMRITD Modified Multiple-Reference Ibrahim Time Domain

4.2 Body-In-White

Frequency response functions were obtained from a "body-in-white" automobile structure using
dual-shaker random excitation with triaxial responses. The data set contains 432 frequency response
functions; from the 72 measurement locations, measured in the three global directions, and the two
references. Figure 7 shows the "body-in-white" modal model with the two reference points indicated.
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Figure 7. Body-In-White Model

The frequency response functions were obtained using baseband analysis from 0 Hz to 60 Hz., with a
time domain blocksize of 1024. Therefore, the frequency resolution, Af, was 0.117 Hz. A typical
driving point frequency response function is shown in Fig. 8.
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Figure 8. Body-In-White Driving Point Frequency Response Function

The following algorithms were used to analyze the data for frequency and damping characteristics:

« Polyreference Time Domain (PTD)
« Eigensystem Realization Algorithm (ERA)
o Modified Multiple-Reference Ibrahim Time Domain (MMRITD)

The frequency and damping evaluation presented in Table 2 was performed as a class project at the
University of Cincinnatil65.79],

4.3 Multi-Mac Experimental Examples

To demonstrate the value of the Multi-Mac calculation, a number of test cases were evaluated.

First, a H-frame was tested. Figure 9 shows the H-frame. Twelve reference accelerometers were
used, four tri-axial accelerometers at the four ends as shown in Figure 9. The H-frame was impacted
at 29 points in the vertical direction and 26 points in the horizontal direction.

Figure 10 shows a typical driving point frequency response function estimate in the range of 430
Hertz to 630 Hertz. There appears to be 3 or 4 natural frequencies in this range. Figure 11 is a sum-
mation of the power spectrum of the quadrature responses using points 1Z, 13Z, 17Z, 29Z, 1Y, and

13Y as the references. This function shows that, using these references, there are at least 7 global
modes in this range.
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TABLE 2. Body-In-White Frequency and Damping Analysis ,‘
Frequency/Damping Estimation Method 4
Mode PTD ERA MMRITD
1 Freq. (Hz) 23.704 23.740 23.693
Damp. (%) 0.6848 0.9602 0.637
2 Freq. (Hz) 32.174 32173 32.175
Damp. (%) 0.6265 0.6161 0.625
3 Freq. (Hz) 35.293 35.294 35.293
Damp. (%) 0.4460 0.4653 0.445
4 Freq. (Hz) 40.636 40.658 40.663
Damp. (%) 0.5425 0.4779 0.501
s Freq. (Hz) 41.691 41.713 41.719
Damp. (%) 0.4263 0.3306 0.404
6 Freq. (Hz) 42.760 42.767 42.750
Damp. (%) 03728 0.3762 0.374
7 Freq. (Hz) 43.383 43.382 43.385
Damp. (%) 0.4357 0.4264 0.439
8 Freq. (Hz) 46.748 46.784 46.728
Damp. (%) 0.7213 0.9369 0.656
9 Freq. (Hz) 48.819 48.955 48.943
Damp. (%) 0.8949 0.8937 0.955
10 Freq. (Hz) 53926 53.938 n/a
Damp. (%) 03771 0.3487
Notes: PTD Polyreference Time Domain
ERA Eigensystem Realization Algorithm
MMRITD Modified Multiple-Reference Ibrahim Time Domain
n/a not analyzed

To demonstrate the value of Multi-Mac, a principal component analysis was performed on each
mode. Tables 3 through 9 are the first 20 eigenvalues from the principal component analysis. These
eigenvalues are from five spectral lines and six references locations using the quadrature part of the
frequency response estimate. The tables show the most significant eigenvalues as a function of the
rate of change in the eigenvalues.

Figures 12 through 25 are the transformed mode shapes using the eigenvectors found from the prin-
cipal component analysis. If more than one significant eigenvalue was found, then that many modes
were calculated. These modes are orthogonal with each other due to the transformation. Although
none of the modes are repeated roots, the Multi-Mac calculation shows the high degree of modal
coupling for many of the modes in this range. As an example, the estimate of the residue vector at
576 Hertz is contaminated by both the mode at 567 Hertz and the mode at 581 Hertz. This can be
seen by noting that the one mode computed for 576 Hertz is the same as the 567 Hertz and the
modes at 581 are also similar to the 576 Hertz estimate. But, as shown by Table 10, the estimates are

-
orthogonal to each other. This is true for any of the frequencies that have more than one significant ?:.
cigenvalue, e
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TABLE 3. H-frame Eigenvalues for 479 Hertz

2223222222222 222222222 222222222

#%%  CRITERIA TO JUDGE RANK  ##%
RRERRRERRRRRRRARARRARRR SRR AR AR AR AR kR
NO.= 1 E.VAL= .127152E+03@***************************@
NO.= 2 E.VAL= .257414E+00@+%
NO.= 3 E.VAL= .823126E-01@%
. NO.= 4 E.VAL= .314892E-02@*
NO.= S5 E.VAL= .909428E-02@+
NO.= 6 E.VAL= .391440E-020%
. NO.= 7 E.VAL= .544588E-03@%

8

9

NO.= E.VAL= .486090E-03@*

NO.= E.VAL= .318055E-03@x*
NO.= 10 E.VAL= .138132E-03@*
NO.= 11 E.VAL= .930068E-04@*
‘ NO.= 12 E.VAL= .522677E-04@*
NO.= 13 E.VAL~ .409133E-046@*
NO.= 14 E.VAL= .146818E-04@*

|

| NO.= 15 E.VAL= .102797E-04@%

| NO.= 16 E.VAL= .869041E-05@8+
NO.= 17 E.VAL= .786539E-05@%
NO.= 18 E.VAL= .689718E-05@+*
NO.= 19 E.VAL= .483071E-05@+
NO.= 20 E.VAL= .347911E-05@+%

\ SELECTED RANK OF DD MATRIX= 1

\

\

|

|

|
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Figure 12. H-frame Mode Shape at 479 Hertz .
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TABLE 4. H-frame Eigenvalues for 492 Hertz

RREARRRARRARR R AR R R hR bk kh kA hhhhd

hkk CRITERIA TO JUDGE RANK ik
I I I R R R R T

PR

£

3

e

NO.= 1 E.VAL= V220459 E4+02@ kkkkhhkhhh kR xrkh kA hhhhhn@
NO.= 2 E.VAL= +647909E+00@* kkhkkkhkhhkkhkdk e
NO.= 3 E.VAL= .282519E~-01@*%* e
NO.= 4 E.VAL- .961900E-02@* e
NO.= 5 E.VAL= «528314E-02@*%*%* e
NO.= 6 E.VAL= .126037E~028* e
NO.= 7 E.VAL~ .843033E-03@* e
NO.= 8 E.VAL~ +344217E-03@* e
NO.= 9 E.VAL~ .263810E~03€%* e
NO.= 10 E.VAL~ .162976E~-03@%* e
NO.= 11 E.VAL~ .920806E-04@* e
NO.= 12 E.VAL= .729814E-04@%* e
NOo.= 13 E.VAL~ .427178E-04@%* e
NO.= 14 E.VAL- .314986E-040%* e
NO.= 15 E.VAL~ .208977E-04@* e
NO.= 16 E.VAL~ .831395E-05@* e
NO.= 17 E.VAL= .512812E-05@* e
NO.= 18 E.VAL= .376602E-05@%* e
NO.= 19 E.VAL= .180069E-05@%* e
NO.= 20 E.VAL= .140457E-058%* e
SELECTED RANK OF DD MATRIX= 2
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Figure 13. H-frame First Mode Shape at 492 Hertz ?
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Figure 14. H-frame Second Mode Shape at 492 Hertz

hhkhkhhhkhkhkhhhrhhhhhhhhhhhhhhhhhhhihhik

*hk CRITERIA TO JUDGE RANK

bk

hhkhhhhdddddddedddedoddoddodedoedededodeddodhhhk

«194833E+02@* Rk hhhhhAhRhhhhh kA kA kR hhthQ

NO.= 1 E.VAL=

NO.= 2 E.VAL= .211252E+00@*
NO.= 3 E.VAL= +.995534E-01@%*
NO.= 4 E.VAL= .158864E-010%
NO.= 5 E.VAL= +743090E-02@%*#*
NO.= 6 E.VAL= .518315E-03@*
NO.= 7 E.VAL= .400569E-03@*
NO.= 8 E.VAL= «341622E-03@%*
NO.= 9 E.VAL= .156928E-03@*
NO.= 10 E.VAL= .116135E-03@*
NO.= 11 E.VAL= .685376E~-04@%*
NO.= 12 E.VAL= .428652E-04@*
NO.= 13 E.VAL= +.256207E~-04@*
NO.= 14 E.VAL= +.100953E-04@%*
NO.= 15 E.VAL= .558249E-05@%*
NO.= 16 E.VAL= .469059E-05@*
NO.= 17 E.VAL= .313182E-05@%*
NO.= 18 E.VAL= «.173096E-050*
NO.= 19 E.VAL= .123087E-05@*
NO.= 20 E.VAL= .883329E-068*
SELECTED RANK OF DD MATRIX= 1
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TABLE §. H-frame Eigenvalues for 500 Hertz
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Tk CRITERIA TO JUDGE RANK
hhhkhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhk

NO.= 1
NO.= 2
NO.= 3
NO.= 4
NO.= 5
NO.= 6
NO.= 7
NO.= 8
NO.= 9
NO.= 10
NO.= 11
NO.= 12
NO.= 13
NO.= 14
NO.= 15
NO.= 16
NO.= 17
NO.= 18
NO.= 19
NO.= 20

E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=
E.VAL=

Figure 15. H-frame Mode Shape at 500 Hertz

TABLE 6. H-frame Eigenvalues for 567 Hertz

%k

+835621E+02@*kkkkkhkdkhhhhhhrhhhkhhrrrdQ

«712774E+00@%*
.295527E+00@*
.151509E+00@*
.336923E-01@*
.132355E-01@*
«332226E-02@%*
.237506E-02@*
.110479E~02@%*
.488129E-03@*
.400007E-03@*
+157472E-03@%*
.994866E~-04@*
.550801E-04@*
.318778E~-04@%*
.111433E~04@*
.965316E~-05@*
.759809E~-05@*
.520880E-05@*
.394904E-058%*

SELECTED RANK OF DD MATRIX= 1
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Figure 16. H-frame Mode Shape at 567 Hertz

TABLE 7. H-frame Eigenvalues for 576 Hertz

hhkhkhhhhhhhhhhhkhhkhkhhhhhkhhhhhkdhkhkkhh

ek CRITERIA TO JUDGE RANK * ok ok
RhhkhhhkRhhhhhhhhhhhhrhhhhhhhhhhhhk

NO.= 1 E.VAL~ .785431E+02@* e
NO.= 2 E.VAL= «393105E+0208*%** e
NO.= 3 E.VAL= . 595365E+01@A Nk khkhhhhhhhhhrhhhhhrhhrr@
NO.= 4 E.VAL= «.119642E+00@* e
NO.= 5 E.VAL= .764095E~01@*%* e
NO.= 6 E.VAL= .191642E-01@%* e
NO.= 7 E.VAL= .176129E-01@* e
NO.= 8 E.VAL= .117179E-01€* e
NO.= 9 E.VAL= .426094E-02@* e
NO.= 10 E.VAL= .338080E-02@* e
NO.= 11 E.VAL- .121294E-020* e
NO.= 12 E.VAL= .726578E-03@* e
NO.= 13 E.VAL= .501546E~03@%* @
NO.= 14 E.VAL= .258313E-03@* e
NO.= 15 E.VAL= .110423E-030* e
NO.= 16 E.VAL-= «.797348E-04@* e
NO.= 17 E.VAL- .600097E-04@* e
NO.= 18 E.VAL-= .260145E-04@* e
NO.= 19 E.VAL= .211416E-048@* e
NO.= 20 E.VAL= .166732E-04@* e
SELECTED RANK OF DD MATRIX= 3
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Figure 17. H-frame First Mode Shape at 576 Hertz

Figure 18. H-frame Second Mode Shape at 576 Hertz
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y Figure 19. H-fri me Third Mode Shape at 576 Hertz
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%
L
. TABLE 8. H-frame Eigenvalues for 581 Hertz
)
§ o de e de g e de e o e e e e e ok o ok ok ok ok ke ek ke ok e e ek e ok
K *kk CRITERIA TO JUDGE RANK %k ke
S hkkkddededddhhhhhhkhrkdhdhdddkhhdddhhk
' NO.= 1 E.VAL= .119269E+03@kk#* e

NO.= 2 E.VAL-= .105354E+02@* *
3 NO.= 3 E.VAL= 76534 1E+01@*kkkkhkhhhhhhhhhhhhkhhhhhhhkn@
\ NO.= 4 E.VAL~ .948675E~01@* @
i NO.= &5 E.VAL= .730457E-01@* e
! NO.= 6 E.VAL~ .443483E-01@%* e
X NO.= 7 E.VAL~ .874408E-02@* e
‘ NO.= 8 E.VAL= .512513E-02@* e :
4 NO.= 9 E.VAL= .387253E~-02@* e 3
R NO.= 10 E.VAL= .133609E-02@%* e g
" NO.= 11 E.VAL- .736777E-03@* e ")
K NO.= 12 E.VAL~= .376061E~03@%* e .
5 NO.= 13 E.VAL~= .213631E-03@x* e R
- NO.= 14 E.VAL~ .144119E-03@* .
" NO.= 15 E.VAL= .122016E-03@%* e b,
i NO.= 16 E.VAL-= .879375E~-040* e :
B NO.= 17 E.VAL=  .343842E-04@* e b
N NO.= 18 E.VAL-= .232610E-04@* e g
1 NO.= 19 E.VAL- .120455E~-04@* e A
- NO.= 20 E.VAL= .903840E~-05@* e
; SELECTED RANK OF DD MATRIX= 3
*
) :
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Figure 20. H-frame First Mode Shape at 581 Hertz

Figure 21. H-frame Second Mode Shape at 581 Hertz
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Figure 22. H-frame Third Mode Shape at 581 Hertz ,
3
§
TABLE 9. H-frame Eigenvalues for 600 Hertz 1
!
RAERRRRRRRBARRRRARRA ARk ARk Rhhkhhdhhdh ::
*%%  CRITERIA TO JUDGE RANK  ##* :
RBRRRERANRREERARrhhhkhhhhhkhhhhhdhkhi :
NO.= 1 E.VAL=  .944627E+01Q@%k*%# e v
NO.= 2 E.VAL= .218838E+01@* e ,
NO.= 3 E.VAL= _128650E+01@***************************@
NO.= 4 E.VAL= .509607E-01@%*%* @ .
NO.= 5 E.VAL= .171052E-01@%#*% e "
NO.= 6 E.VAL= .628757E-02@%% e
NO.= 7 E.VAL=  .297248E-02@%*% e
NO.= 8 E.VAL= .984154E-03@%* @ .
NO.= 9 E.VAL= .491233E-03@# e 8
NO.= 10 E.VAL= .326437E-03@#* e i
. NO.= 11 E.VAL= .292134E-03@# e R
NO.= 12 E.VAL= .168954E-03@% @ ¥
NO.= 13 E.VAL= .908950E-04@** e
NO.= 14 E.VAL= .456719E-04@% e _
NO.= 15 E.VAL= .313949E-04@% e Y
NO.= 16 E.VAL= .169647E-04@%* ] W
NO.= 17 E.VAL= «116909E-04@* e N
NO.= 18 E.VAL= .871389E-05@%#+ e 3
NO.= 19 E.VAL= .344043E-05@* e
NO.= 20 E.VAL= .244828E-05@* -
SELECTED RANK OF DD MATRIX= 3 ;
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Figure 23. H-frame First Mode Shape at 600 Hertz

Figure 24. H-frame Second Mode Shape at 600 Hertz
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Figure 25. H-frame Third Mode Shape at 600 Hertz

TABLE 10. H-frame Modal Assurance Criterion for Transformed Modes

REFERENCE ANALYSIS M.A.C. M.S.F. M.S.F.
MODE MODE (REAL) (IMAG)
1 1l 1.0000000 1.0000000 0.0000000
1 2 .0000000 . 0000000 .0000000
i 3 .0000000 .0000001 .0000000
2 2 1.0000000 1.0000000 0.0000000
2 3 .0000000 -.0000002 0.0000000
3 3 1.0000000 1.0000000 0.0000000
M. Modal Scaling Factor (complex)

S.F
M.A.C. Modal Assurance Criterion

Next, the Multi-Mac calculation was tried on a circular plate that is expected to have repeated roots.
Again, 6 reference accelerometers were attached to the structure and 5 channels around the peak in
the quadrature part were used in the calculation. Figure 26 is a typical frequency response estimate
and Figure 27 is the summation of the power spectrum of the quadrature response. Both functions
indicate that there are two mode in the frequency range. Tables 11 and 12 are the eigenvalues from
the principal component analysis. Both analysis show two significant eigenvalues indicating two
independent modal vectors. Figures 28 and 29 are the transformed mode shapes using the eigenvec-
tors from the principal component analysis. Both show that there exists repeated roots at both fre-
quencies. Tables 13 and 14 show that these transformed mode shapes are orthogonal with each other.
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Figure 26. Circular Plate Driving Point Frequency Response Estimate
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Figure 27. Circular Plate Summation of the Power Spectrum of the Quadrature Responses




TABLE 11. Circular Plate Eigenvalues for 1225 Hertz

22 2222222222222 222222222222 X 2

badad CRITERIA TO JUDGE RANK hhk
RRRRRRRRRRRRAARRR AR R AR AR RAh kR

NO.= 1 E.VAL= .175307E+05@* e
NO.= 2 E.VAL= «600946E+04Q@*khkhkhhhhhhhhhhhhhhhhhhrhhn@
NO.= 3 E.VAL= .816603E+01@* e
. NO.= 4 E.VAL= .241708E+01@* e
NO.= 5 E.VAL- .129267E+01@%* ?
NO.= 6 E.VAL~- «331926E+00@* e
. NO.= 7 E.VAL= «207313E+00@* e
NO.= 8 E.VAL= .163597E+00@* e
NO.= 9 E.VAL= .133060E+00@* e
NO.= 10 E.VAL~ .895497E-01@* e
NO.= 11 E.VAL= .351897E~01@* e
NO.= 12 E.VAL= .281372E-010* e
NO.= 13 E.VAL= .244295E-01@%* e
NO.= 14 E.VAL= .191932E-01@* e
NO.= 15 E.VAL~ .100598E-01@%* e
NO.= 16 E.VAL- .729477E-02@%* e
NO.= 17 E.VAL= .548224E-02@* e
NO.= 18 E.VAL~= .321106E-02@* e
NO.= 19 E.VAL= +140953E-02@%* e
NO.= 20 E.VAL= «.109937E-02e%* @

SELECTED RANK OF DD MATRIX= 2
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Figure 28. Circular Plate Mode Shapes at 1225 Hertz
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TABLE 12. Circular Plate Eigenvalues for 1330 Hertz

RRRRRARRRARR AR AR R AR AR RRN AR R AR

Rk CRITERIA TO JUDGE RANK hhk
RRARRARRRNRRRRRARARR R AR AR RN AR R AN

NO.= E.VAL= .650219E-01@*
NO.= E.VAL= .469805E-01@*
NO.= 10 E.VAL= .386407E-01@%*
NO.= 11 E.VAL= +«225943E-01@*
NO.= 12 E.VAL= .209756E-018+*
NO.= 13 E.VAL= .936288E-02@+*
NO.= 14 E.VAL= .488921E-02@*
NO.= 15 E.VAL= .391385E~-02@*
NO.= 16 E.VAL= .283658E-02@%*
NO.= 17 E.VAL= .189168E-02@*
NO.= 18 E.VAL= .150162E-02@*
NO.= 19 E.VAL= .123286E-02@*
NO.= 20 E.VAL= .593683E~-03@*
SELECTED RANK OF DD MATRIX= 2

SED

Figure 29. Circular Plate Mode Shapes at 1330 Hertz

NO.= 1 E.VAL= +220557E+05@* e
NO.= 2 E.VAL= ¢123343E+05@*khkhhhhhhhhhhhhAhhhrhahid@
NO.= 3 E.VAL= .453680E+01@*
NO.= 4 E.VAL= .370407E+01@%*
NO.= 5 E.VAL= .882260E+00@¥*
NO.= 6 E.VAL= .255783E+00@*
NO.= 7 E.VAL= +127655E+00@*
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TABLE 13. Circular Plate Modal Assurance Criterion for Transformed Modes 1225 Hertz Mode

REFERENCE ANALYSIS M.A.C. M.S.F. M.S.F.
MODE MODE (REAL) (IMAG)
1 1 1.0000000 1.0000000 1.0000000
1 2 .0000000 -.0000002 0.0000000
2 2 1.0000000 1.0000000 0.0000000
M. Modal Scaling Factor (complex)

S.F
M.A.C. Modal Assurance Criterion

TABLE 14. Circular Plate Modal Assurance Criterion for Transformed Modes 1330 Hertz Mode

REFERENCE ANALYSIS M.A.C. M.S.F. M.S.F.
MODE MODE (REAL) (IMAG)
1l 1 1.0000000 1.0000000 1.0000000
2 2 1.0000000 1.0000000 0.0000000
M. Modal Scaling Factor (complex)

S.F
M.A.C. Modal Assurance Criterion
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S. CONCLUSIONS

One of the conclusions reached in a previous Air Force Contract (F33615-77-C3059) was that the
area of modal parameter estimation was, to in the future, advance rapidly due to technology transfer
from other fields involved in parameter estimation. This certainly has occurred as indicated by the
drastic increase in the number of parameter estimation algorithms which have been described in the
literature in the last five years. This effort has been international in scope, with many of the newer
techniques being variations of each other.

These methods range from single reference single degree-of-freedom (SDOF) methods to sophisti-
cated multi-reference, multi-response, multiple degree-of-freedom (MDOF) methods. The algorithm
of choice depends upon a number of conditions:

¢ Modal Application

o Trouble Shooting--For many of the problem solving, or trouble shooting applications, the
simplier SDOF, or single reference MDOF methods are used, since simple test procedures
and a quick look are desirable.

o Model Verification--There has been increased emphasis on finite element verification. These
applications require a higher level test and parameter identification procedures.

» Model Generation, or Correction--There is also increased emphasis on; the generation of
modal models based upon experimental data, and/or the correction of existing models. These
applications require the highest level of test and parameter identification procedures.

« Equipment Considerations

The parameter identification methods reviewed in this report depend heavily upon the testing
methods (single input, or multiple input) and testing equipment. These new algorithms place a
severe requirement upon the testing methods to obtain consistent data bases, particularly for the
more advanced multi-input multi-output methods.

o Wideband vs Narrowband

Wideband verses narrowband refers to the frequency bandwidth of the frequency response meas-
urements. In general, for very broad frequency range measurements, time domain algorithms
work well, while frequency domain algorithms seem to perform well for the narrow, or zoom
bands. Recently, there has been increased emphasis in sine testing. Sine testing, not in the classi-
cal sense, but in terms of multi-input multi-output test and parameter estimation methods. This
emphasis will provide the impetus to refine the frequency domain algorithms to efficiently use the
increased spatial information that multi-input multi- output sine testing yields.

+ Modal Density

The choice of the parameter estimation method depends heavily upon the modal density. For
cases with low modal density, single input SDOF or MDOF methods work well. For the high
modal density cases the multi-input methods, especially ones which use spatial information, are
the methods of choice. It should be noted that the advanced methods require consistent data and
place additional constraints on the testing methods.




A summary of the characteristics of the modal parameter identification methods is shown in Table
15. All of the methods which were discussed in detail in this report are briefly summarized in this
table.

It should be again noted that all of the methods covered in this report can be described in terms of a

characteristic space, where a particular parameter identification algorithm uses as input, measured

values in this characteristic space, to deconvoive the systems characteristics. The more advanced

methods use information from all three axes of the characteristic space simultaneously. From the
. measurement standpoint, it is increasingly more important that the measured data be consistent.

TABLE 15. Summary of Modal Parameter Estimation Methods

Modd Paumeter Estimation Characteristics ———
Tme, Smgle or | Global Modal | Repeated Modal | Gilobal Globat
Frequency, Multiple Frequencies Frequencics Modal Modal Residuals
or Spatial | Degrees-of- | and Damping and Damping Vectors | Participation
Domain Freedom Factors Factors Factors
[Quadrature Ampiitude “Frequency | SDOF No No No fo No
Keanedy-Pancu Circle Fit Frequency SDOF No No No No Yes
SDOF Polynomial Frequency SDOF Yes/No No No No No
Non-Lincar Frequency Domain Frequency MDOF No No No No Yes
Compilex Exponential Time MDOF No No No No No
Least Squares Complex Exponential (LSCE) Time MDOF Yes No No No No
Ibrahim Time Domain (TTD) Time MDOF Yes No Yes No No
Multi-reference lorahim Time Domain (MITD) Time MDOF Yes Yes Yes/No No/Yes No
Eigenwystem Realization Algorithm (ERA) Time MDOF Yes Yes Yes Yes No
Orthogonal Polynomial Frequency MDOF Yes No No No Yes
Multi-reference Orthogonal Polynomial Frequency MDOF Yes Yes Yes Yes Yes
Polyreference Time Domain Time MDOF Yes Yes No Yes No
Polyreference Frequency Domain Frequency MDOF Yes Yes Yes Yes Yes
Time Domain Direct Parameter Identification Time MDOF Yes Yes Yes Yes No
Frequency Domain Direct Parameter Identification | Frequency MDOF Yes Yes Yes Yes Yes
Multi-MAC Spatisl SDOF No Yes Yes No No
Multi-MAC / CMIF / Enhanced FRF Spatial MDOF Yes Yes Yes Yes No
-93.
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NOMENCLATURE
Matrix Notation

¥ {-} braces enclose column vector expressions

i (. oW vector expressions

‘ [-] brackets enclose matrix expressions

) (.}¥ complex conjugate transpose, or Hermitian transpose, of a matrix
[.}F transpose of a matrix
. [.1? inverse of a matrix

[..)* generalized inverse (pseudoinverse)
[-Je x» size of a matrix: q rows, p columns
[-1 diagonal matrix
Operator Notation
A’ complex conjugate
F Fourier transform
F! inverse Fourier transform
H Hilbert transform
H? inverse Hilbert transform
In natural logrithm
L Laplace transform
L inverse Laplace transform
Re +jIm complex number: real part “Re", imaginary part "Im"

x first derivative with respect to time of dependent variable x

X second derivative with respect to time of dependent variable x
y mean value of y

y estimated value of y

5> A: B;
,-?, summation of A; B; fromi=1ton
d
> partial derivative with respect to independent variable "t"
det]..] determinant of a matrix
[1.112 Euclidian norm
Roman Alphabet
Aper residue for response location p, reference location g, of mode r
C damping
COH ordinary coherence functiont
COH, ordinary coherence function between any signal i and any signal kt
COH"™ conditioned partial coherencet
e basce (2.71828..)

F input force
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‘4"
F, spectrum of g* referencet =
GFF auto power spectrum of reference! 4
GFF,, auto power spectrum of reference gt '
GFF, cross power spectrum of reference i and reference kt y
[GFFX] reference power spectrum matrix augmented with the response/reference cross .
power spectrum vector for use in Gauss elimination |
GXF cross power spectrum of response/referencet A
GXX auto power spectrum of response! !
‘ GXX,, auto power spectrum of response p! '
‘ h(t) impulse response functiont )
| ()] impulse response function for response location p, reference location q N
| H(s) transfer function! =
‘ H(w) frequency response function, when no ambiguity exist, H is used instead of H (w)t "o
‘ Hpg(w) frequency response function for response location p, reference location q, when no -
ambiguity exist, H,, is used instead of Hpy (w)t )
H,(w) frequency response function estimate with noise assumed on the response, when no 0
l ambiguity exist, H, is used instead of H, (w)t o
1 Hjy(w) frequency response function estimate with noise assumed on the reference, when no g
ambiguity exist, H, is used instead of H,(w)! :
Hg(w) scaled frequency response function estimate, when no ambiguity exist, Hg is used Kk
instead of Hg(w)t )
H,(w) frequency response function estimate with noise assumed on both reference and v
response, when no ambiguity exist, H, is used instead of H, (w)t s,
i identity matrix Ky
j v B,
K stiffness by
L modal participation factor )
M mass N
M, modal mass for mode r 3
MCOH multiple coherence functiont o
N number of modes hS
N; number of references (inputs) '_'.C
N, number of responses (outputs) \
» output, or response point (subscript) N
N input, or reference point (subscript) ~
. mode number (subscript) '_:.
R, residual inertia ';
Ry residual flexibility ~
s Laplace domain variable Vo
t independent variable of time (sec) X
! A discrete value of time (sec) Y
ty =k At o
T sample period -
x displacement in physical coordinates N
X response )
X, spectrum of p® responset o
z Z domain variable \
N
~
o
Greek Alphabet '
L
50 Dirac impulse function :
Af discrete interval of frequency (Hertz or cycles/sec) "
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. At discrete interval of sample time (sec)
" € small number
n noise on the output
X A, r® complex eigenvalue, or system pole :
g A,=0, + ju, ;
[A] diagonal matrix of poles in Laplace domain i
v noise on the input
w variable of frequency (rad/sec) ]
w, imaginary part of the system pole, or damped natural frequency, for mode r
. (rad/sec) !
’ w=0,vV1-¢ 2 K
;j Qq, undamped natural frequency (rad/sec) N
: Q,=Vo,2+u2
: bor scaled p® response of normal modal vector for mode r
{4}, scaled normal modal vector for mode r
& [®] scaled normal modal vector matrix
: {¢} scaled eigenvector ;
s Yo scaled p® response of a complex modal vector for mode r
! {¢¥}), scaled complex modal vector for mode r
(¥] scaled complex modal vector matrix
- o variable of damping (rad/sec) )
! o, real part of the system pole, or damping factor, for mode r .
) ¢ damping ratio X
I damping ratio for mode r .
L%
% vector implied by definition of function A
1
.
-
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e uae 2%
B

A *f]‘[{%‘%}Lﬁ )

=

line which would "best” describe the x and y sets of values.

the square of errors in thex andy (e, ).

y A

—

X

Figure A-2. Errors in Least Squares Estimation

The least squares problem can be formulated in matrix notation as:

(Y} = (X1{4}
where, (N X1
p b /] X3
' (rp=4:1 m=| - {A}={Z;}
i v ]

yyyyy

Equations (a3) and (a4) can be solved for the unknown parameters a, and a,.

The a, and aq values computed from Egs. (a5) and (a6) represent the characteristics of a straight

Similarly, one could compute a, and a, parameters with the criterion that the sum of the square of
errors in the x ( e, ) would be minimum. Another approach could be the minimization of the sum of

(a3)

(a4)

(a5)

(a6) '
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The equations presented by matrix Eq. (a7) are in general a set of inconsistent and overdetermined >"
equations. Inconsistent, since it is not usually possible to find {A} that would satisfy all the individual -
equations of Eq. (a7), and overdetermined, since the number of equations is larger than the number '
of unknowns. The least square solution of Eq. (a7) is: :'f
[XF(Y} = KTIX1{A} (a8)
]
and solving for unknown vector {A} \
] '
a1
{4} = (XTIX) " XT(Y) (a9) 3
provided that ([XF[X])? exists. In the case that the inverse of ([X F[X]) does not exist, one could
use numerical techniques to solve for vector {A}. '
In a more general case where matrices A, X, and Y are complex valued, the transpose notation, T, .
must be replaced with hermitian notation, H, in Egs. (a8) and (a9). Where the hermitian operator, A
H, is the complex conjugate transpose. Hence, the unknown vector {A} is given by: )
.1 1
{4} = ()" () (a10) 3
Individual equations in matrix Eq. (a7) could be multiplied by a weighting factor to give that equation -
more or less weight in the computation. The weighting factors could be presented in form of a diago-
nal (NxN) matrix, W. The diagonal element in row i represents the weighting factor corresponding '
to equation i, and the off diagonal terms are all zero. Matrix W is pre-multiplied to both sides of Eq. \
(a7):
[WI{Y} = [WIIX]{4} (al1) %
B
where, ;
wy 0. 0 4
0 wy. 0
LEl D :
0 0 .w .|
.
Solving for vector {A}in Eq. (a11): )
.
.1 !
{4} = (KFPwIX]” XPWEWIY) (a12)
In general the relationship of Eq. (al) could be in the form of: :
y=ayx"+ay ¥ 1+---+ayx+a, (a13)
A set of equations similar to the formulation above could be written and solved to obtain the least X
squares estimation of unknown parametersay ,ay.; , ... 43 , do. ‘
i
The least squares method stated above could easily be extended to problems involving more than one N
independent variable. For example, z could be expressed in terms of x and y: d

Z=a;y+a,x+aq (al4)

The corresponding normal equations for the least squares problem of Eq. (a14) are:
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_— =§ ZP,-(a,y, +a,x + ao]: -1] =0 (a17)

Equations (al5) - (a17) can be solved for the unknown parameters a, , @, , and ao. The computed
values @, , @, , and @, represent the characteristics of a plane which would "best” describe thex .y,
and z sets of values.

The above theory and formulation could be expanded to least squares estimation of a surface and
eventually to higher order dimensions.

A.2 Correlation Coefficient

The "goodness” of the least squares estimation process is measured by the coefficient of correlation
parameter which"is defined in terms of fotal variation and explained vaniation. The total variation of

y is defined as 33(y,-¥)?, which is the sum of the squares of the deviations of y, from the mean
[

N
value,y. Total variation consists of two parts: (1) the explained variation, Y(#.-¥7)?% and (2) the
r=1

N
unexplained variation, ¥(»,- ¥,)2. The terms explained variation and unexplained variation are used

=l
to denote the fact that the deviations y,- 7 have a definite pattern, while, the deviations y,- y, are ran-
dom and unpredictable.

N o

total variation = unexp. var. + €xp. var. =y, -y

L -

=

X

A

|

| o } unexplained variation =y, - 3,
: } explained variation = y, -y

|

I

|

I

Figure A-3. Variations in Data
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Therefore, the coefficient of correlation 43, is defined as:

g (a18)
3 The magnitude of 42 varies between 0 and 1. A value of 0 indicates no correlation between depen-

dent and independent variable(s), while a value of 1 indicates perfect correlation. :
v It should be pointed out that the coefficient of correlation computed for a set of data and a assumed

model, only indicates the relationship of data based on the assumed model. That is, the coefficient of
correlation measures the degree to which the assumed model describes the relationship for a set of
data.

A.3 Examples

A3.1 Example 1

For the data given in Table A-1 and the assumed model equation:

; y=a,x+aq (a19) g
: A {
x{|65 63 67 64 68 62 70 66 68 67 69 71
yjg68 66 68 65 69 66 68 65 71 67 68 70
N ‘
1' TABLE A-1. x and y Values for Least Squares Fit :
'
> a) Find the least squares solution of @, and a,.
v b) Find the coefficient of correlation.
e"ff Solution:
: a) The following normal equations must be solved for @, and 2,
] N N 1
a v 40~*¢12&=2)’r (a20) )
‘ N ™y ™=y
QYL X +a, 317 =1 1,y, (a21)
N r=1 r=t r=l
substituting the appropriate terms in Eqgs. (a20) and (a21):
i 1200 +800¢1 = 811
. 8004, + 534184, = 54107
from which we find @, = 0.476 and a4 = 35.82 or
y =0.476x + 35.82 (a22)
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Figure A-4. Least Squares Fit of Data

N
b) Explained variation = ¥3(¥,-¥)? = 19.22
r=1

Total variation =Yy, ¥)?=3892 -

LM=

=

19.22

=().7027
3892 0.702

Coefficient of correlation =43 =

A3.2 Example 2

Given the model for the sampled impulse response function between two points on a structure as,
aN
h(t) = ¥ Aot (a23)
r=1

where,
k=012, -+ ,2N
At = value of time subinterval

h=kAt
) and the known pole information J,, formulate the least squares solution of estimating the residues,
' A,

Solution:

For simplicity and conciseness let,

z, = Mo

and therefore Eq. (a23) can be rewritten as,
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™
h(w) =LAz (a24)
ral

expanding Eq. (a24) for time values of ¢, to £y, Will result in the following 2N equations

h(te)=A  +Az+- + A
h(t))=A12,+ A2, + -+ Aay Zyy
h(ta)=A 23 +Az23 ¢+ Aay 23y

(a25)
Bltan) = Ay 2% ¢ A3 239 oo o Ay 2BV
presenting the 2N equations of Eq. (a25) in matrix form gives,
1 1 .1 A, h(to)
5 ono. oz h(t,)
13 23 . 23, 2h=2 h(ty) (a26)

ava g "l A 1y
or,
z]{A}={n} .

Solving Eq. (a26) with more than 2N rows for vector {A} will resuit in the least squares solution of
the residues.
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APPENDIX B: SINGULAR VALUE DECOMPOSITION \

B.1 Singular Value Decomposition

The singular value decomposition will decompose a matrix into the simplest possible form, that being j
diagonal. This decomposition will always be possible regardless of the rank, or dimension, of the :
matrixi1l, <

Consider the right and left eigenvectors of the m x n matrix [4 ], which is of rank k. ’
[A1{v}={u}e (®1) 4
(417 {u}={v}o (b2)
where:
o {u} = m x 1left singular vector

e {v} = n x 1 right singular vector o
e o = scalar singular value

By substituting Eq. (b1) into Eq. (b2) for {u}, the right singular vectors can be determined from:
[P [A]{v}={v}o? , (b3) 1
[ [A)E[4]-0%[1]] =0 X
where:
ei=1—k 0’.3 >0 N
ei=k+l1—=n o2=0
o [V]1=[{vh {v}s {v}s --- {v}s]rightsingular unitary matrix.

By substituting Eq. (b2) into Eq. (b1) for {v}, the left singular vectors can be determined from:
[4][AF {u}={u}o? (b4) '
| [4][A)F-o*[1]] =0

where:

' eizl—=k o250

ciz=k+l—m of=0

o [U)={{u}; {u}a {u}s - {u}m ]left singutar unitary matrix.

If the eigenvector matrices [U ] and [ V'] are unitary ((U]¥ =[U]* and [V]¥ = [V']?), that is, both
columns and rows form an orthonormal set, the linear transformation will preserve both angles and
lengths. Interpreted geometrically, linear transformations defined by unitary matrices behave like
simple rotations in space. The matrix [A4 ], can now be decomposed into diagonal form by appending
the eigenvector matrices to Eq. (b1) and premultiplying by [ U }7, forming the matrix product:

S ORIOOO0 N
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[S1=(UFATIVI= |[{u}f | [(whor + {(whow (Oha - {Oh] - ®5)
(u}E

Using the unitary matrix property, [U ]# [U] = [ 1 ], the right hand side can be further simplified as:

r 1 0 0 - 0 1

o

0 o 0 -+ 0 | [0]
0 003 0
0

0 0 - o - (54 fof] - (®6)

L) A N )]

[S1=[UF[4]1(V]=

Thus, the origonal matrix, [A ], is decomposed into the matrix [ S ], with the singular values on the
diagonal, by the unitary matrices [U] and [V'].

Then the singular value decomposition of [ A ] is defined by:

(A1=[U][SIIVH ®7)
Noting the partitioning of the matrix [ S ] of Eq. (b6), the unitary transformation matrices [ U] and
[V] can be partitioned in the same way to yield:

(1= 101181071 = [ 1w 1) [[5 18] }‘;};:] ©®)

Thus, the singular value decomposition of { 4 ] can be further reduced to:

(A1=[ULIZ| VI (9)
where:
o [U]; = left singular submatrix of size m xk
» [L] = diagonal singular value matrix of size kK x k
o [V1Z = right singular submatrix of size k x n.

The (Moore-Penrose) generalized inverse (pseudoinverse) [1-3], [A4 J*, of [ A4 ] is:
[AF=[V] ['[”J,' [3]] [V =[VLIEf [UIF .

where:
o [A ] =n xm generalized inverse of [A ]
e [V], = right singular submatrix of size n x k.
¢ [E]! = inverse of diagonal singular value matrix of size k x k

o [U)F = left singular submatrix of size k xm.
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