
U-A195 671 li AIf9J L I'

UNCLASSIFIED ii.

1.08 2\~1 32t2

~L.IUM

MAeCRoeopy fESOLUTION 'ES' CH'R

BUREALO SlpNDARDS 1963-1

i-i

'Io-

i TIC

Lo THE ROLE OF PROLOG IN NATURAL
SLANGUAGE PROCESSING

II

-M M m.o~w Mm DT UTVN .h*TEmai EVLPMN CENTER
- FernAYSms5Cm96i'

Oals s Air-os w 130414M.

88 9,

rIbis port has been reviewed by the 3ADC Public Affairs Office (PA) and
is x seiasbe to the National Technical Information Service (NTIS). At NTIS
It vl be releasable to the general public, including foreign nations.

tADC-T-88-74 has been revieved and is approved for publication.

APPROVED:

SAMUEL A. DINITTO, JR.
Chief, C2 Software Technology Division
Directorate of Cosmand and Control

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Cona nd and Control

FOR THE COMM~ANDER

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addresses is no longer employed by your organization,
pleas*e notify RADC (C03) Criffis* AFB NY 13441-5700. This will assist us in
maintaining a current ailing list.

Do not return copies of this report unless contractual obligations or
notices a a specific document require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

For Appoved

REPORT DOCUMENTATION PAGE O O. 070

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Apprvedior ulimirel
XIA distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

RADC-TR-88-74 N/A

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Ofr &Appkble)

Rome Air Development Center COES N/A

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

riffiss AFB NY 13441-5700 N/A

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COES N/A

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM 0 PROJECT ITASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO.

62702F 5581 27 30

11. TITLE (Include Security Classification)

THE ROLE OF PROLOG IN NATURAL LANGUAGE PROCESSING

12. PERSONAL AUTHOR(S)
Michael L. McHale

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

In-House FRMTOfl.,.7 March 1988 40
16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Logic Programming Definite Clause Grammars

12 05 1 PROLOG CHAT-80
I I-Natural Laneuaae Processinp

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents an introduction to the use of PROLOG for Natural Language Processing

(NLP). First, some historical background information is covered, then, a review of some
of the better known NLP systems in PROLOG including CHAT-80, the Bottom Up Parser (BUP)

and Modular Logic Grammars is covered. Also included is a section on Definite Clause

Grammars (DCG), the Japanese Fifth Generation Project, text generation, and the elements of

good PROLOG style.

2'0. DISTRIBUTIONI/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
EJuNCLASSIFIEDIUNLIMITED [:I SAME AS RPT. 0~ DTiC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOLMichael L. McHale 1 (315) 3,30-2973 R AD(C (COES)_

DO Form 1473, JUN 36 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

TABLE OF CONTENTS

1. INTRODUCTION 1

2. PROLOG 2

3. Definite Clause Grammar 9

4. CHAT-80 14

5. Bottom Up Parser (BUP) 19

6. Modular Logic Grammars (MLG) 22

7. Zen, Haiku and PROLOG 24

8. SUMMARY 27

A. PROLOG SYNTAX 28

B. BIBLIOGRAPHY 29

Acoession For

NTIS IGRA&I
DTIC TAB Cl

Unannounced El
Juati'ioation

By-
_Dijstribution/

Ava!lability Codes

* *. ---.Avail ax*/or- iSpeal 0

'DtIst Special

L 1

CHAPTER 1

INTRODUCTION

The field of Artificial Intelligence strives to produce
computer programs that exhibit intelligent behavior. One of the
areas of interest is the processing of natural language. This
report will discuss the role of the computer language PROLOG in
Natural Language Processing (NLP) both from theoretic and
pragmatic viewpoints.

The reasons for using PROLOG for NLP are numerous. First,
linguists can write natural language grammars almost directly as
PROLOG programs; this allows 'fast-prototyping' of NLP systems and
facilitates analysis of NLP theories. Second, semantic
representations of natural language texts that use logic
formalisms are readily produced in PROLOG because of PROLOG's
logical foundations. Third, PROLOG's built-in inferencing
mechanisms are often sufficient for inferences on the logical
forms produced by NLPs. Fourth, The logical, declarative nature
of PROLOG may make it the language of choice for parallel
computing systems. Finally, the fact that PROLOG has a de facto
standard (Edinburgh) makes the porting of code from one computer
system to another virtually trouble free. Perhaps the strongest
tie one could make between NLP and PROLOG was stated by John
Stuart Mill in his Inaugural Address at St. Andrews:

OThe structure of every sentence is a lesson in logic."

CHAPTER 2

PROLOG

A. Overview

PROLOG was developed in the early 1970's at the University of

Marseille-Aix by Alain Colmerauer and Phillipe Roussel [Roussel

75] to do natural language processing. The system evolved using

ideas from Colmerauer's earlier grammar formalism, Q-systems

[Colmerauer 70] and logic programming concepts (which had a long

lineage including: Kowalski and van Emden; Robinson; Godel,

Herbrand and Skolem; and Frege). [Robinson 83] PROLOG (which

stands for PROgramming and LOGic) is an implementation of Horn

clauses as a programming language with the execution mechanism

provided by a depth-first, left-to-right, top-to-bottom backward

chaining proof procedure that is a special case of SLD resolution.

Additionally, PROLOG systems include extralogical mechanisms to

control search, to manipulate program clauses and to provide some

form of programming environment. [Periera 85] While PROLOG was

designed for natural language processing, the fact that it uses

the Horn clause subset of first order predicate logic makes it

-2-

useful as a general programming language. One of the finest

examples of this is David H.D. Warren's implementation of the

Dec-10 PROLOG compiler. [Periera and Warren 79] The compiler

itself is written almost entirely in PROLOG. An interesting side

note to this compiler is that while the compiler

1) was written while both Periera and Warren were PhD. candidates
at Edinburgh,

2) 'broke new ground' in the area of logic programming, and

3) was an efficient, well written program (indeed, it's still used
as a 'bench-mark'), it wasn't used by either Periera or Warren as
the basis for their thesis.

In order to understand the relation of PROLOG to NLP it is

necessary to have a basic understanding of how PROLOG works. With

that goal in mind this section will present a simple overview of

PROLOG syntax and semantics. An attempt will be made to balance

theory with pragmatics and to clarify using simple examples.

B. Syntax

Appendix A contains the formal definition of the syntax of

the 'standard' or Edinburgh PROLOG, presented in a Backus-Naur

type notation. There are a few points of the syntax worth noting.

First, words can be of any length. This capability helps make

PROLOG code easy to read. Second, is the simplicity of the

syntax. The syntactical simplicity coupled with the relatively

small number (generally less than 150) of built-in predicates

-3 -

makes the language easy to learn. (At least for people -.2w to

programming, the non-procedural nature of PROLOG can be somewhat

of an enigma to programmers experienced in a more conventional

language). Third, is the importance of lists. The list is the

basic data structure for PROLOG, other structures (ex., matrices,

trees, frames) are built by combining lists. (PROLOG shares this

feature with other languages, noticibly LISP. These two languages

are the most used in the area of Artificial Intelligence and

Natural Language Processing. (LISP is used mainly in the United

States and PROLOG elsewhere.) The list representation has been

found to be adequate for most problems.) Certainly there can be no

conceptual problem with representing a sentence as a list of

words.

C. Semantics

There are two conceptual approaches to PROLOG semantics. The

first is procedural in nature. This is the approach used by many

experienced programmers that are new to PROLOG. One views each

clause as a procedure definition. The conclusion of a clause is

the procedure name, and the conditions of the clause represent the

procedure body. However, many people with programming experience

make the jump from problem to sequence of steps producing a

solution without clearly formulating the facts on which their

solution is based. [Davis 85]

-4-

The other viewpoint is that PROLOG has a declarative

semantics. That is, when programming in PROLOG some facts and

rules are asserted about individuals and their relationships. A

solution is directly described rather than describing a process

that results in the computation of a solution. For example, to

build a database of family relationships, certain facts need to be

asserted. The relationships

X is the father of Y.

Mary is the mother of Rob.

are represented by the atomic formulae

father(X,Y).

mother(mary,rob).

Similarly, continuing to build up facts about the family tree, the

grandparent relationship is defined with the rules

grandparent(GP,GC) :- parent(GP,P), parent(P,GC).

parent(P,C) father(P,C).

parent(P,C) mother(P,C).

The rules are declarative in nature, that is they state that

if GP is a grandparent of GC then GP is the parent of some P and P

is the parent of GC. The rules don't need to define any method of

finding any of GP,GC or P. Also note that there is no apriori

indication which values will be known. That is the rules are

"invertible". One can as easily ask

-5-

?- parent(mary,X).

and get the reply

X = rob

as well as

?- parent(X,rob).

and get the reply

X = mary

or even

?- parent(X,Y).

and get

X = mary

Y = rob

This invertibility is the direct result of PROLOG's declarative

nature and is one of its most powerful features. Another example

may show the utility of invertibility more clearly.

One of the important type of lists in LISP is the property

list. It is the basis for many higher data structures including

flavors, frames, etc. The general idea is that objects can have

attributes or properties with associated values. For instance

John may have the property 'height' with a value of 175 cm., or

John may have the property 'part-of-speech' with the value of

'proper noun'. Generally in LISP one asks questions of the type

-6-

What is John's height?

or

What part-of-speech is the word John?

but asking questions of the type

Who is taller than 160 cm.?

or

What parts-of-speech are represented?

are extremely difficult to ask, using the standard property list

representation. However, if the properties are represented as

PROLOG relations such as

property(john,height,175).

property(john,part-of-speech,proper-noun).

Then the properties can be queried in any 'direction'. That is

Who is taller than 160 cm.?

becomes

?- property(Who,height,Y), Y > 160.

and

What parts-of-speech are represented?

becomes

?- setof(X,property(-,part-of-speech,X),Set).

-7-

That these may not be intuitive queries may be disheartening, but

the mere fact that they can be asked at all should demonstrate the

power of declarative programming. In actual usage, one would

write a Natural Language Interface to the system to allow easier

user interaction. Of course the way that is usually done in

PROLOG is by using Definite Clause Grammars, which are explained

in the next section.

CHAPTER 3

Definite Clause Grammar

Definite clauses are Horn clauses with a nonempty consequent.

This name comes from the fact that a definite clause has a single

definite conclusion, as opposed to a general clause, which can be

put in a form with a disjunctive conclusion. [Periera 85]

Definite Clause Grammars (DCG) which are based on definite

clauses, are an extension of Context Free Grammars. The PROLOG

implementation of DCG is really a "syntactic sugar" for the actual

PROLOG code, that is DCGs are not built into PROLOG but are

translated into PROLOG code by the compiler. DCGs are based on

difference lists, which are a powerful PROLOG technique that uses

the flexibility of uninstantiated variables to limit unnecessary

searching. So to better understand DCGs, let's examine the

structure of difference lists.

One could write a parser by breaking' up a sentence into

subject, object and verb and representing those parts in the

following way.

-9-

subject([the,big,dogITail],Tail).
subject([a,bluebirdITail],Tail).
subject([that,animallTail],Tail).

verb([singsiTail],Tail).
verb([bitesITail],Tail).

object([the,mailmaniTail],Tail).
object([contatas by bachITail],Tail).

and then use the following grammar to parse possible sentences

sentence(Start,End) :-
subject(Start,Pointl),
verb(Pointl,Point2),
object(Point2,End).

then the query

?- sentence([the,big,dog,bites,the,mailman],[]).

would succeed in the following way.

Sentence would begin by trying to find a subject; (i.e., subject

would be called in the form

subject([the,big,dog,bites,the,mailman],Pointl))

'subject' would match [the,big,doglTail] and unify the tail of the

sentence (i.e., [bites,the,mailman]) to the variable Pointl.

(Note that the list [bites,the,mailman] is the difference between

the complete sentence and the part that 'subject' matches (i.e.,

[the,big,dog]) thus the name difference list. This also is the

realization of the afforementioned flexibility of uninstantiated

variables.)

- 10 -

Verb would then match [bitesiTail] and unify the rest of the

sentence to Point2. Finally, object would match

([the,mailmanJTail],[]) (the variable End was instantiated to (]

in the query) and PROLOG would reply, yes. In effect saying

[the,big,dog,bites,the,mailman] is a sentence. It is obvious that

for small grammars this is fast and efficient but lacks enough

power to be truly useful as it's implemented here.

DCGs add more power and flexibility than this and also add a

"sweeter" way of writing it. The "syntactic sugar" comes in with

the way DCGs are actually written. A more flexible grammar, than

the above, could be written in DCGs as

s -- > np, vp.
np -- > det, n.
np -- > det, adj, n.
vp -- > v-intrans.
vp -- > v-trans, np.
det -- > [the].
adj -- > (big].
n -- > [dog].
n -- > [mailman].
v-trans -- > [bites].
v-intrans -- > [sleeps].

This would be translated by the compiler into the following

PROLOG code.

s(Head,Tail) :- np(Head,Middle), vp(Middle,Tail).

np(Head,Tail) :- det(Head,Middle), n(Middle,Tail).
np(Head,Tail) :- det(Head,Midl), adj(Midl,Mid2),

n(Mid2,Tail).

vp(Head,Tail) :- v-intrans(Head,Tail).
vp(Head,Tail) :- v-trans(Head,Middle), np(Middle,Tail).

det([thelTail],Tail).

- 11 -

adj([biglTail],Tail).

n([doglTail],Tail).
n([mailmaniTail],Tail).

v-trans([biteslTail],Tail).

v-intrans([sleepslTail],Tail).

The DCG notation is obviously much more readable, much easier

to write and much easier to maintain and modify. Also there is a

much closer relationship between the DCG and the Backus-Naur Form

given in Appendix A. This similarity suggests that we can use

DCGs to implement simple syntax checkers for languages for which

we have a Backus-Naur description. [Boisen 87]

While the DCG formalism so far presented is quite powerful

there are a number of extensions which have been added to it to

make it even stronger. First, regular PROLOG terms can be

included in the grammar if they are enclosed in curly braces.

Such clauses are not translated but simply inserted into the

resulting PROLOG code. This can be used to separate the

dictionary (lexicon) from the grammar so that 'n --> [bat].'

doesn't have to be written every time a noun is introduced, but

could instead be translated directly into DCGs. Another useful

feature is the ability to add an extra argument to the symbols in

the DCG notation. These can be used for checking agreement

between constituents, tracking context or other bookkeeping tasks.

[Boisen 87]

- 12 -

From a linguistic viewpoint, one of the nicest features of

the DCG formalism is that the grammar is executable, this isn't

the case for other parsers. In a LISP implementation of Augmented

Transition Networks (ATN) (Woods 72] for instance, the grammar and

the executable code aren't even in a one-to-one relationship much

less the same code. The major criticism of DCGs from its

detractors is that all DCGs are in effect an implementation of a

context-free grammar and lack the sophistication for really

'robust' natural language systems. Yet it has been shown that

other linguistic grammar formalisms can easily be implemented with

the Definite Clause Grammar notation [ATNs:Periera 80, Montague

Grammar:Jowsey 86, Unification-based Grammar:Hirsch 87, Word

Expert Parser:Papegaaij 86]. (Actually Periera did more than just

show that ATNs were implementable in DCGs. He also demonstrated

that DCGs are more powerful than ATNs and have the advantages of

modularity, perspicuity and efficiency over them). It is also

worth noting that it is often necessary to backtrack when parsing

ambiguous sentences and backtracking is expensive in ATN directed

parsers. [Kalish 87] However, the DCG formalism isn't the final

tn ZTP?, ust a step along tho way.

- 13 -

CHAPTER 4

CHAT-80

In the early 1980's, Fernando Periera wrote "Logic for

Natural Language Analysis" as a thesis submitted to the Department

of Artificial Intelligence, University of Edinburgh for the degree

of Doctor of Philosophy. [Periera 83] This thesis is significant

for a number of reasons. It was theoretically interesting in that

the basis for the NLP system presented was Extraposition Grammar

(XG). XGs are an extension of Definite Clause Grammar designed to

handle a problem found frequently in relative clauses, namely left

extraposition. Left extraposition occurs when some part of a

sentence is completed by a part that previously occurred (is to

the left of the original part) in the sentence. For example, in

the sentence:

The country that borders Korea has a tonal language.

The clause 'that borders Korea' is completed by the noun phrase

'The country' but the noun phrase preceeded it in the sentence.

- 14 -

Extraposition Grammars solves this ambiguity by placing markers in

the relative clauses, a sort of relative pronoun variable, and

binding them within the noun clause in which they occur.

As a demonstration of his ideas, Periera wrote the Chat-80

NLP system. Chat is a natural language front-end for a global

geographical data base. (Actually, there are two distinct parts

to Chat, Periera's NLP front-end and David H.D. Warren's query

optimization techniques.) Since Chat was the first serious attempt

at using Definite Clause Grammars for NLP and since it was

available to a large number of people for experimentation, Chat's

position in the NLP community is an important one. Its premier

position may in fact be a mixed blessing. While it has positively

influenced most of the succeeding logic programming NLP systems,

its shortcomings have been used as demonstrations of PROLOG's

unsuitability for NLP systems!; a strange position to take with a

programming language designed for NLP and seems to be a case of

'throwing the baby out with the bath water'. With that as an

introduction, let's examine Chat more closely.

As might be expected Chat does very well with relative

clauses. It can answer questions as complicated as:

Which country bordering the Mediterranean borders a country
that is bordered by a country whose population exceeds the
population of India?

- 15 -

The query is first syntactically parsed and categorized as being

one of four basic type of queries: declarative, yes/no, wh-type,

or imperative. This parse is then sent to the semantic processor

where it is checked semantically, and if meaningful, converted to

a query. The query is then mathematically optimized for efficient

access to the database, the database is searched for an answer and

the answer is printed.

Of course, Chat was designed as a demonstration program and

therefore doesn't meet many of the requirements for a 'robust' NLP

system. It handles one sentence at a time (i.e., query-answer)

and thus has no dialog capabilities. It cannot handle anaphora,

ellipses or sentence fragments. It cannot handle general

conjunction though it does handle the conjunction of two relative

clauses. It has a very user-UNfriendly interface, gives very

little feedback on failures, and degrades awkwardly.

Many of these shortcomings were recognized by Periera at the

time Chat was written. In fact, in Chapter 6 of his thesis

[Periera 83), he discusses a number of them. The first of these

is conjunction. Theoretically the interaction of 1e.

extraposition and conjunction ca-:ses a rrb>'. Foir *.'

the phrase

the letter that Mary wrote ar,! sent

the noun phrase would have to be extraposed for both of the

conjoined verb phrases which is not possible with XGs. He

proposed a way of handling this problem with 'conjunction schema'

which use an abstract variable for the marker but decided that he

didn't want to tackle the problem in Chat.

The second shortcoming discussed is the reliance on PROLOG's

top-down approach for his parser. While a top-down approach is

more efficient for well-formed input, it has difficulty in

handling sentence fragments or allowing error correction.

Practical dialog systems require both capabilities. (PROLOG's

top-down, depth-first, control procedure has drawn unfair

criticism from people unfamiliar with PROLOG's true power.

Actually the top-down control is provided gratis by PROLOG, if you

want some other control scheme (ex., breadth-first, best-first)

it's as easy to write it in PROLOG as it is in LISP. The

difference is that in LISP you have to write something and in

PROLOG you don't). A number of systems since Chat have addressed

these shortcomings, in particular, the BUP system described in the

next section can handle sentence fragments, and the CHARISMA

system deals, though in a somewhat ad hoc manner, with error

correction (McHale 87].

Periera also states that the organization of his dictionary

would be a problem for anyone moving to a new domain. Certainly

it is organized a bit strangely. Accordingly to Chat, every verb

- 17 -

is a regular verb and one has to add each verb in half-a-dozen

different places. Rather than entering verbs as:

irregular-verb(present-tense, past-tense, future-tense, ...) one

must add each verb to the present-tense clauses, the past-tense

clauses, etc. Notice the last sentence says 'each verb'. The

program doesn't take care of the morphological changes for the

truly regular verbs but instead requires the dictionary builder to

add them explicitly. [This problem was also addressed in

CHARISMA]. Changes to the semantic hierarchy and the world

rule-base aren't as complex but the necessity of changing all

three is problematic for those wishing to modify Chat.

The fourth shortcoming discussed is the relationship between

quantification and referents. Periera uses classical quantifiers

as the exclusive representation of bindings but feels that in

order to handle anaphora, or other structures of dialog, a more

flexible notion of bindings would be necessary.

Chat-80 then is an important milestone in the short history

of NLP. It not only demonstrated the utility of Definite Clause

Grammars and PROLOG in general but also paved the way for future

research. One of the systems that Chat set the stage for was the

Bottom Up Parser.

- 18 -

CHAPTER 5

Bottom Up Parser (BUP)

Shortly after Periera produced the Chat-80 system, Yuji

Matsumoto and Hozumi Tanaka wrote BUP, A Bottom-up Parser Embedded

in PROLOG (Matsumoto 83]. The abstract of BUP states the reason

BUP was written was to maintain the perspicuity, power,

generality, et al, of DCG while allowing the grammarian to write a

grammar with left recursive rules. (Which isn't allowed in DCGs

that rely on PROLOG's top-down control mechanism). Other features

of the system include a greater separation of the dictionary from

the grammar, some morphological treatment of words, the handling

of some idiomatic expressions and various tools to aid the

grammarian in developing an NLP system. The system was originally

written to parse Japanese but has since been expanded to handle

English.

The parser that BUP uses is a bottom up, left corner parser

with top-down expectation. BUP is divided into three parts:

goals, rules and dictionary. While the dictionary will be the

largest part for any real implementation, the goal and rule part

- 19 -

define BUPs actions, as the dictionary is only called from goal.

From a control viewpoint, goal could be written as:

goal(Goal,List,Tail) -
dictionary(PartOfSpeech,List,NewTail),
PartOfSpeech(Goal,NewTail,Tail).

Of course, this isn't executable PROLOG, but the idea is that goal

looks in the dictionary for the part of speech of the first word

in the list. Then the proper rule for that part of speech is

called which in turn either matches a terminal or calls goal with

a new subgoal.

To write a grammar in BUP, one uses DCGs. This style was

maintained for the reasons listed above. BUP then translates the

DCG into BUP rules and the dictionary. (Matsumoto 83] gives

numerous examples of translations of DCG into BUP code, while

[Matsumoto 85] deals more with idiomatic expressions.

BUP has included some nice extensions to the DCG type grammar

that Chat uses. Some of these are a linking mechanism that is a

local top-down mechanism that checks appropriateness of rules and

thus speeds goal selection; an ability to do some morphological

analysis of words thus simplifying the task of the system builder

(a feature that should be deemed necessary for NLP systems that

deal with inflectional languages); a way of limiting backtracking

by storing successes and failures; and the ability to handle some

sentence fragments.

- 20 -

The point being stressed about BUP is not that it is a

'robust', end user ready system but that it demonstrates how

relatively easy it is to modify and extend the DCG formalism.

This particular system has shown that it is possible to give a

different control structure in PROLOG. Furthermore once a DCG

type grammar is written for one natural language it is flexible

enough to be extended for a different language with minimal

effort. In regards to robustness Periera states in the

introduction to "PROLOG and Natural Language Analysis",

"One of the major insufficiencies remaining in the text
is a lack of linguistic sophistication and coverage
evinced by the analyses we use. The reader should not
think that such naivete inheres in PROLOG as a tool for
natural language analysis...".[Periera 87]

- 21 -

CHAPTER 6

Modular Logic Grammars (MLG)

Modular Logic Grammar is not a descendant of Chat but Chat

has influenced the design and implementation of MLGs. Michael

McCord has developed the MLG formalism to accomplish a number of

goals. The most important of these, seems to be the desire to be

able to mix syntactic and semantic analysis. As Richard Kittredge

observes:

"MLGs are syntactically similar to DCGs, but with
distinctions between strong and weak non-terminals, to
help separate grammatical categories with semantic
import and those which are used as auxiliaries during
treatment of non-compositional structures. There are
also logical terminals, u~ed to build up pieces of
semantic representation. Compiled MLG rules may apply
in single-pass mode, where calls to semantics are
interleaved with application of syntactic rules, giving
only semantic (logical) forms as the output, or they
may apply in two-pass mode to build first a syntactic
structure which is passed to the semantic interpreter."
[Kittredge 87]

MLGs also allow left recursive grammar rules but handle them

quite differently from BUP. Rather than doing a bottom-up parse,

MLG still maintains a top-down parse but flags left-recursive

- 22 -

rules to be rewritten by the MLG compiler. MLGs can also handle

left extraposition but do so by using explicit topic-pair

arguments as opposed to Periera's XGs; this also allows for easier

handling of conjunctions. At least it removes the theoretical

conflict that occurs in XGs between the scoping of conjunctions

and left extraposition. Another point of interest is McCord's

structuring of the lexicon, He assumes the lexicon is too large to

fit into main memory and must reside on disk. He gives an

algorithm for fast lexicon searching and thus addresses the

problem of 'scaling-up' that many systems are criticized for

ignoring. The lexicon is somewhat more cohesive than Chat's and

allows a morphological rule system to infer the correct tense

forms for regular verbs. Both of these are welcome extensions to

the Chat methodology.

- 23 -

CHAPTER 7

Zen, Haiku and PROLOG

The intent of this chapter is two fold. First, the

connection of PROLOG with the Japanese Fifth Generation Computer

Project will be presented and second, those properties that PROLOG

and Zen have in common will be examined.

A. Fifth Generation Computing

While LISP is the favorite language of Artificial

Intelligence (AI) researchers in the United States, PROLOG is the

Lingua Franca for the rest of the AI world. A paramount example

of this is PROLOG's part in the Japanese Fifth Generation Computer

Systems (FGCS) project. Logic programming is envisioned in the

FGCS as the missing link unifying the various fields of computer

science and is thus highly emphasized. The reasons for this

include logic programming's suitability for: problem

specification, relational databases and query languages,

rule-based expert systems and natural language processing. More

importantly perhaps, is the view that logic programming is much

- 24 -

better suited to parallel processing than any other programming

paradigm. [Fuchi 83] It isn't anticipated that PROLOG will

replace LISP in American AI research, but it seems very narrow

minded at best to ignore PROLOG in places where it out performs

LISP and both parallel processing and natural language processing

may well be such domains.

B. Zen in the Art of PROLOG

At one level Zen and PROLOG can be viewed as being

diametrically opposed. That is, Zen states that the only way to

attain an understanding of truth is not through logic but through

experiencing 'what is'. The Zen experience is to cut through the

surface structure of objects and discover their basic

relationships and functions. It can be seen as the ultimate

honing of Occam's razor, that is, "cut away the superfluous and

what is left is reality".

A realization of the spirit of Zen can be found in haiku.

Haiku are short poems that strive for beauty and elegance within

the bounds of a highly constrained structure. In the best written

PROLOG programs (certainly a subjective judgement), there is a

striving for logical elegance that is intuitively similar to the

creation of haiku. Perhaps this "intuitive similarity" isn't

obvious to everyone, certainly the Zen masters had no intention of

comparing haiku to PROLOG, yet the fit seems so natural. Periera

seems to say something similar,

- 25 -

"But PROLOG might be most easily learned by ignoring
previous experience with other programming languages and
trying to absorb the PROLOG gestalt from first principles."
[Periera 87].

Of course, the comparison of PROLOG to haiku could be viewed

differently. The question could be one of 'can a PROLOG program

be written that writes haiku?'. I feel the answer to that is yes

and no. Certainly one could write a program which follows the

rules of construction of haiku, (i.e., 17 syllables, references to

time, season, etc.) but presently it is not possible to write a

program that consistently produces meaningful haiku. This may be

seen as a result of lack of intelligence in AI systems, though it

is doubtful that most people could write more meaningful haiku

than present programs can.

The whole area of natural language output has been ignored in

this paper. This shouldn't be judged as an indication of PROLOG's

inability in this area, but rather as an indication of the

author's familiarity with the input problem. For those interested

in output, an interesting section on generation of poetry,

including haiku, can be found in the book by Goldenberg

[Goldenberg 87]. This book deals with the computer language Logo,

which is closer to LISP than PROLOG, but the translation of

non-graphic Logo routines to PROLOG is rather straightforward.

- 26 -

CHAPTER 8

SUMMARY

The intent of this report was to show the strong relationship

between PROLOG and Natural Language Processing. The growth of

PROLOG has been closely tied to its use as a programming paradigm

for NLP. While the future of logic programming may be more

closely related to hardware considerations (i.e., parallel

processing), the continued reliance on logic programming for NLP

will emphasize those aspects that best suit both purposes (the

Word Expert Parser of Papegaaij is inherently parallel-izable).

No real attempt at explaining the details of either the logic

or syntax of PROLOG has been made. Those interested in questions

of logic should see [Lloyd 81] or similar texts. The best texts

on PROLOG are Clocksin and Mellish [Clocksin 81] and Sterling and

Shapiro [Sterling 86]. The latter is highly recommended.

The contents of this report are due to me with one

reservation. I feel that the only way most of us have 'original'

ideas is by combining the thoughts of others in new ways, thus

this report is a product of my experience and exposure to the

thoughts of others. I have made an attempt to footnote all the

places where I could pinpoint someone else's idea, all oversights

are unintentional.

- 27 -

APPENDIX A

PROLOG SYNTAX

<clause> ::= <atmf> "." I <atmf> ":-" <atmfs> "."

":-" <atmfs> " "0

<atmfs> <atmf> ("," <atmf>)*

<atmf> <predicate> "(" <terms> ")"

<terms> <term> ("," <term>)*

<term> <variable> I <constant> I
<function> "(" <terms> ")" <list>

<variable> ::= (uppercase-letter I "-") <word>

<word> ::= (letter I digit)*

<constant> number I <lowerword>

<function> <lowerword>

<predicate> :-= <lowerword>

<lowerword> lowercase-letter <word>

<list> "[]" I "[" <head> "I" <tail> "]"

<head> <term>

<tail> <list>

(where '<atmf>' is an atomic formula,
'I' is a disjunction,
sentential elements are quoted and
'*' allows unbounded repetition) [Davis 85]

- 28 -

BIBLIOGRAPHY

[Boisen 87] Boisen, S.
Language Processing Using Definite Clause Grammars
AI Expert, 46-56, June 1987

[Clocksin 81] Clocksin, W.F., Mellish, C.S.
Programming in PROLOG
Springer-Verlag, 1981, 1984

[Colmerauer 70] Colmerauer, A.
Les Systems-Q ou un Formalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur

Internal Publication 43, Department d'Informatique,
Universite de Montreal, Canada, 1970

[Davis 85] Davis, R.E.
Logic Programming and PROLOG: A Tutorial
IEEE Software, 53-62, September 1985

[Fuchi 83] Fuchi, K.
The Direction the FGCS Project Will Take
New Generation Computing, l(l):3-9, 1983

[Goldenberg 87] Goldenberg, E.P., Fuerzeig, W.
Exploring Language with Logo
MIT Press, 1987

[Herrigel 53] Herrigel,E.
Zen in the Art of Archery
Random House, New York, 1971 (Reprint)

[Hirsch 87] Hirsch, S.B.
P-PATR: A Compiler for Unification-Based Grammars
Proceedings of Second International Workshop on
NL Understanding and Logic Programming,
63-74, Simon Fraser University, August, 1987

- 29 -

[Jowsey 86] Jowsey, H.E.
Montague Grammar and First-Order Logic
DAI Working Paper No. 190,
University of Edinburgh, 1986

[Kalish 87] Kalish, C.
A Portable Natural Language Interface
RADC-TR-87-155, September 1987

(Kittredge 87] Kittredge, R.
Advanced Command and Control Environment,
Natural Language Interface Investigation

Final Report, RADC, 1987

[Lloyd 84] Lloyd, J.W.
Foundations of Logic Programming
Springer-Verlag, 1984

[Matsumoto 83] Matsumoto, Y., Tanaka, H.
BUP: A Bottom-Up Parser Embedded in PROLOG
New Generation Computing, 1(2):144-158, 1983

(Matsumoto 85] Matsumoto, Y., Kiyono, M., Tanaka, H.
Facilities of the BUP Parsing System
NL Understanding and Logic Programming
Elsevier Science Publishers B.V.,
North-Holland, 1985

[McCord 86) Walker, A., McCord, M., Sowa,
J.F., Wilson, W.G. (eds)
Knowledge Systems and PROLOG:
A Logical Approach to Expert Systems and
Natural Language Processing

Addison-Wesley, 1987

[McHale 87] McHale, M.L., Huntley, M.A.
CHARISMA
Internal Report, RADC, August, 1987

[Papegaaij 86] Papegaaij, B.C., Sadler, V., Witkam, A.P.M. (eds)
Word Expert Semantics:

an Interlingual Knowledge-Based Approach
BSO, Netherlands, 1986

[Periera 79] Periera, F.C.N., Warren, D.H.D.
User's Guide to DECsystem-10 PROLOG
Occasional Paper 15,
Dept. of Artificial Inteligec n'ce,
-T--v-r-t -f E inbrrt--

I

[Periera 80] Periera, F.C.N., Warren, D.H.D.
Definite Clause Grammars for Language Analysis
Artificial Intelligence, 13:231-278, 1980

[Periera 83] Periera, F.C.N.
Logic for Natural Language Analysis
Technical Note No. 275, SRI, Menlo Park, CA, 1983

[Periera 85] Periera, F.C.N.
PROLOG with Natural-Language Examples
Presented as a tutorial at the

23rd Annual Meeting of the
Association for Computational Linguistics,

Chicago, 1985

[Periera 87] Periera, F.C.N., Shieber, S.M.
PROLOG and Natural-Language Analysis
CSLI, Stanford University, 1987

[Robinson 83] Robinson, J.A.
Logic Programming-Past, Present and Future
New Generation Computing, 1(2):107-124, 1983

[Roussel 75] Roussel, P.
PROLOG: Manuel de Reference et Utilisation
Technical Report, Groupe d'Intelligence Artificelle,
U.E.R. de Luminy,
Universite d'Aix-Marseille II, 1975.

[Sterling 86] Sterling, L., Shapiro, E.
The Art of PROLOG: Advanced Programming Techniques
MIT Press, 1986

[Woods 72] Woods, W.A., Kaplan, R.M., and Nash-Webber, B.
The Lunar Sciences Natural Language

Information System: Final Report.
Report 3438, BBN Inc., June, 1972.

- 31 -

U.S. GOVERNMENT PRINTING OFFICE 1968-511-117164057

MISSION
Of

Rom Air Developrment Center
RAOC ptax& and CxccutA e~ e~a~cA, devetopuvzt, te~t
and 4eftected acqui.ition p4ogh~aP4 in Auppowt 06
Command, Coxt4ot, CommnicatioK4 anid Intettgene
IC31) ati.viti4e. Technicat and eng4.neeLing
Appo&.t wtthin axeaA 06 competence ia p'wv' 'ded to
ESV P'LogJ~am 066Lee (P061 avid othelL E4V etementU
~to pe4&oi~m eiiective acquiion o6 C31I 6y6ttrn4.
The a~eah o6 technicat comptence in tude
communicationa, command and contrtot, battte
management, in6oknation p'iuc"Aing, &ukJvet.Uane
6en~ou ~, intettigence data cotteto anid kavidtng,
sctid 6tate 4cienceA. £ectAomagnetica, and
p'opagation, anid etectitonic, maintainabt-ty,
anvd compa*tbiUtt.

0

