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ABSTRACT

A determined case is made for the use of a nonparametric multidimensional
monotonic IRT modeling framework with local independence replaced by the less

restrictive assumption of essential independence. The concept of essential

dimensionality is then introduced to count the number of dominant latent

dimensions. Consequences of this more general approach include the consistent
estimation of ability on a common scale using a natural class of estimators,
uniqueness of the latent ability when essential unidimensionality holds, a
theoretical treatment of test bias, an IRT based notion of validity, and a

reassessment of the importance of the concept of item parameter invariance.

Key words: Local independence, essential independence, essential trait,

intrinsic ability scale, marginal item response fuanction, latent dimensionality,
multidimensionality, essential dimensionality, essential unidimensionality, item
response theory, latent trait theory, ability estimation, consistent estimation,

item parameter invariance, validity, linear formula scoring, nonparametric.
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A Nonparameteric Multidimensional IRT Approach with Applications

to Ability Estimation and Test Bias

Introduction. The central thesis of this paper is that a successful approach to
such fundamental topics as bias, consistent estimation of the ability intended
to be measured, and item calibration requires a nonparametric multidimensional
item response theory (IRT) modeling approach with an infinite item pool assumed.
Until recently, most theoretical and applied IRT based research has uncritically

assumed one of a small set of unidimensional, locally independent monotone

parametric models; e.g., one-, two-, or three-parameter logistic and normal

.
.
S

3 1
(4 R
fetaals

i

ogive models for a fixed finite number of items. (See Lord [1980] for a survey

of this IRT modeling research tradition and Mislevy (1987) for a survey of

current IRT modeling research.)

By contrast, this paper makes a determined case for the use of a non-
parametric multidimensional monotonic IRT modeling framework with local
independence replaced by a less restrictive and, we claim, psychometrically more

appropriate assumption, namely essential independence. 1In the spirit of factor

analysis, essential independence together with essential dimensionality provide

a conceptual basis for establishing the number of major latent dimensions even

in the presence of multiple minor dimensions. Essential unidimensionality, the

existence of exactly one major dimension, provides a conceptual basis for

carrying out IRT based statistical analyses that require unidimensionality. It

G
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A

x

is our position that a standard unidimensional IRT modeling approach should only

.S °

e @

be used subsequent to a careful multivariate statistical analysis of
unidimensionality based on a more general nonparametric multidimensional

5T approach like the one herein. To use uncritically the standard unidimensional

4
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three parameter logistic model in applications is the equivalent of Plato's cave
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dweller's attempt to interpret the outside world entirely on the basis of
shadows cast on his cave wall.

Consequences of our more general multidimensional modeling approach include
the establishment of consistent estimation of ability on a common ability scale
even when different examinees have taken different tests, and the existence of a
"unique” (appropriately defined) latent ability provided essential unidimension-
ality holds. As a vital part of our proposed multidimensional IRT framework,

the concept of the intrinsic ability scale of a test is also presented.

Further, our approach leads to a re-examination of test bias from a multidimen-
sional perspective.

This paper continues the work of Stout (1987), where essential
unidimensionality was first defined and a statistical test of essential
undimensionality was presented and explored.

The paper is organized as follows: Section 1 reviews the traditional
multidimensional IRT model. Section 2 defines essential dimensionality and
studies some of its basic properties. Section 3 considers the consistent
estimation of ability in the single-test single-population setting. The
vniqueness of the latent ability is considered. Section 4 cautions against the
overreliance cn i*em parameter invariance and presents its relationship to
essential unidimensionality. An IRT based definition of validity is proposed.
Section 5 proposes a new definition of test bias and studies test bias from a
multidimensional modeling prospective. Section 6 considers the consistent
estimation of ability using any of a large class of linear formula scores
including proportion correct. Section 7 considers the consistent estimation of

ability in multiple-test multiple-population settings. Section 8 briefly

discusses and summarizes the results of the paper.
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‘;; 1. Multidimensional Modeling. According to the latent trait viewpoint, each
:} examinee is indexed by a possibly vector valued and not necessarily distinct
‘;: variable 8. Associated with each item i is an item response function (IRF)
i; Pi(g) that denotes the probability that a randomly chosen examinee from those
;Q examinees with ability € will get the item right. Random sampling of
-
A examinees from a specified population induces a distribution F on @, and
:i- hence, a distribution on the test responses,
':':'
,._~. QN = (Ul, ‘.UN)
{;-_ Here Ui = 1 denotes a correct response and Ui = 0 an incorrect response to
ﬂJI item i by a randomly chosen examinee. Note that Pi(g) = P[Ui = 1] = 8] =
i?: E[Uile = 9} for all i, @. It is important to stress that a model QN can have
TR 4 d
A many latent model representations (QN , @). That is, there are many choices of
'l
‘- »
J!
N ® such that. for all u,
A
7 T
,\) -
1 u. = = e P(U. = e = 6]dF
—® —0
{-
it Three characteristics of latent representations are of considerable
-i{ importance:
:)‘ (i) The model (QN . @) is said to be a monotone model if Pl(g) is
&5
e nondecreasing in _@ for each i (here 9 <9, if and only if 0,; S8,
o
\.
,:} for each coordinate i). M will denote such a monotone model.
'b' (ii) The model (QN , &) 1is said to be d-dimensional if @ is a d-dimen-
oo
':{ sional random vector. The d dimensional ability is then denoted
o by (91.---.9d). The dimensionality of & will be denoted by
0. dim(e) or d.
:i, (iii} The model (QN , @) is said to be a locally independent (LI) model if
N N
..'- y = . ee = = = .= 6 =
(1.2) PIU, =u oo Uy = ugje = 8] =TT PlU, = u,le -6]
P i=1
u’: for all 8 and each of the ZN choices of (u_,---u,).
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The most commonly used class of models has been the LI, M, d = 1 models.

Usually for models when M, d = 1 holds, the IRFs will be strictly monotone.

2. A New Conceptualization of Test Dimensionality. For later use, we first

establish that an LI, M latent model with latent dimensionality £ N is always

possible for a given length N test QN.
Theorem 2.1. For any test QN there exists an LI, M latent model

representation (QN , &) with dim (&) < N.

Proof of Theorem 2.1. Assume that the test gN has a particular distribution.

Define
(2.1) e, =U

for i £ N. Then the range of each 91 is (0,1} and for all i,

1]
)

P.(6) = P[U, = 1]¢] = o

- i i

The intuitive interpretation of (2.1) is that @ represents an examinee's state

of knowledge of the N items, in the sense that 9i =1 or 0 depending on

whether the examinee knows the answer to item i or not. Clearly, monotonicity

holds because Pi(g) is monotone in 6 for each i. 1In order to verify LI,

note that for all u, @ that

gl if u=49
(2.2) P{Uy = ule = 8] = P[Uy = ulUy = 8] =
L0 otherwise
and that (letting 0O = 1 for convenience)
N U l-ui N ug l-ui jl if u-=29
TTe(e) " (1 -P(8)] =TTe, (1 -0 =
i=1 i=1 [O otherwise
Thus LI holds. Finally, it must be verified that (QN. @) is a latent

representatic in the sense that (1.1) holds: Note that (2.1) implies that

= P[QN = gN]. Thus, applying (2.2) to the right hand side of (1.1)

shows that (1.1) holds.
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;}} This mathematically trivial theorem provides a certain insight: For a test
:}} of length N, the assumption of an LI,M model is a totally nonrestrictive
(\ > assumption provided & is allowed to have an N dimensional distribution.
‘ LY
\:_\
;:,: Thus, given a sequence of tests {gN, N 21} , each QN can be given an LI M
*.':\
\'--, . v . < . .
poe, representation (QN,_QN) such that dlm(gN) £ N. This fact will be used below.
:,\, ) It is important to note that, although mathematically helpful, the latent
::; trait 6 of Theorem 2.1 is totally uninteresting from the modeling viewpoint.
- z
“i; For. unlike the @ of Theorem 2.1, a valid latent trait should surely be
something more abstract and indeed more "latent” than an examinee's state of
N
ﬁ}{: knowledge concerning a particular finite set of items. Surely no meaningful
:ES cognitive construct (e.g., reading comprehension) is reducible to which of a
.;( finite set of items an examinee can correctly answer. Further, it is clearly
O
j:} inappropriate from a modeling viewpoint for the dimensionality of the test to
}i: equal the test length.
The @ of Theorem 2.1 is uninteresting from another viewpoint as well.
;:: Holland and Rosenbaum (1987) strongly make the point that an assumption true for
.‘_.J
-53 all models is "vacuous" and is neither a mathematical assumption (because it is
o)
N always satisfied) nor a scientific hypothesis (because it places no testable
!':;: restrictions on the behavior of observable data). The @ guaranteed to exist
s -
f:f by Theorem 2.1 is clearly of this vacuous character. What is interesting is
e that for many tests QN there do exist lower dimensional (than N) latent trait
f%: representations. Indeed, the psychometrician's goal is to construct a test that
ﬁ;: validly measures the construct of interest using items sufficiently
L
o "homogeneous” that the test can be well modeled by a low dimensional or
N
NS
‘jj: hopefully even unidimensional model.
A
i}f: Let us recall the traditional IRT definition of test dimensionality:
[ R
5 Definition 2.1. The dimensionality d of a test QN is the minimal
b
o
-
. -5-
o
.'_:.f
"'::/ T, . e e T e T e T AT T A e T A et T e '.‘-\‘.‘*\'-'-‘-."
,';%;nxﬂ}%:\;”;t;”;x;“;:;v';¥‘xx.:'n:uI?JTf:fulnf.W?J:I;J'f:f;f:“:’;’“J:’. '“-~“’u’5’5“x’\<b’\’\'u u’u’u’x‘ﬂ{;
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dimensionality required for € to make the latent model representation (Uy. ©)

an LI.M representation.

Although mathematically appealing, this definition is rather impractical
for mental testing because, in actual practice, individual test items clearly
have multiple determinants of their respective probabilities of correct

response. This position has been pursued clearly and vigorously by Humphreys

(1984). who states:

The related problems of dimensionality and bias of items are
being approached in an arbitrary and over-simplified fashion. It
should be obvious that unidimensionality can only be approxi-
mated. Even in highly homogeneous tests the mean correlation
between paired items is quite small. The large amount of unique
variance in items is not random error, although it can be called
error from the point of view of the attribute that one is
attempting to measure. Test theory must cope with these small
correlations. We start with the assumption that responses to
items have many causes or determinants.

Humphreys (1984) asserts that dominant attributes (dimensions) result from
overlapping attributes common to many items. Attributes unique to individual
items or common to relatively few items are unavoidable and indeed are not
detrimental to the measurement of dominant dimensions. In his writings,
Humphreys stresses that the low item intercorrelations researchers have observed
argue strongly for viewing items as multiply determined. Although the existence
of multiply determined items is rarely stressed in the IRT literature, it is a
theme with a long history in the factor analytic test theory literature.
Classical factor analysis applied to binary test data of course implicitly
assumes the possibility of many determinants, allowing for many determinants
specific to individual items in addition to one or more dominant dimensions.
McDonald (1981) actually argues for the existence of "minor components” in

factor analytic modeling of test data. That is, he argues for the existence of




. ::*;:
o
L) :-.:.:.
-:;S multiple determinants, many of which are common to relatively few items at most.
iii Tucker. Koopman, and Linn (1969) have developed a factor analytic test
( ~ simulation model that includes "minor factors” as well as dominant factor and
‘:2: unique factors. Tucker has specialized this model to binary item tests in work
.o
;:&: yet to be published.
i Unfortunately, the traditional definition (Definition 2.1), with its
’ ;r
‘:}i insistence on the achievement of local independence., makes no distinction
’3:i between dominant and minor factors. Thus, if taken seriously, this definition
*,\ compels us to take as test dimensionality the total number of all item
lizi dimensions rather than adopting the more appropriate "factor analytic viewpoint"”
f;té by which only the number of dominant dimensions is counted. This is true even
;!; in situations with only one dominant dimension where, from both a psychometric
: and a data analytic viewpoint, it would be desirable to ignore multiple
;fﬁ; determinants (i.e., minor and unique factors) and categorize tests as unidimen-
> sional. Thus the traditional definition requires us to assign dimensionality
f: d = d0 > 1 (do. thus assigned, possibly quite large in fact) in settings where
Q;k it would be desirable to assign d = 1. The following hypothetical example
N illustrates the multidimensional nature of items in tests that should be
"
iif considered unidimensional.
N
;Ej Example. Consider a multiple item "probability"” test in which item 1 measures
1fj ability in probability but is influenced by the examinees' knowledge of an
iia ordinary deck of playing cards, item 2 measures ability in probability but is
‘SZ: influenced by the examinees' understanding of elementary physics, item 3
:E. measures ability in probability but is influenced by the examinees' knowledge of
f;g elementary Mendelian genetics, item 4 measures ability in probability, but...
_%5 One is clearly forced to label such a test as multidimensional according to
g% the traditional conceptualization of dimensionality described above. Indeed. it
- -7-

v




Sl SR Sl Sad Sal Gl N

.
'
D
[
v
t
I
r
[
’

~
T

;] .:(' e .

is clear that d 2 3: with the dimensions including ability in probability

2

the context of bridge knowledge, ability in probability in the context of

e elementary physics knowledge., and ability in probability in the context of

knowledge of genetics.

< The multicontextual nature of this example is deliberate. It seems

{n undesirable to construct, perhaps under the guise of eliminating biased ite
Zi context free probability test (even if possible), for it would probably not
j: measure what should be measured, namely the ability to solve probability
:\‘ problems in a variety of contexts. Hence, whether the multiple determinant
‘ig prominent as in the abcve example or more subtle, a probability exam would
3: necessity comprise multiply determined items. Moreover, testing that compr
_g' multiply determined items is necessarily widespread and is in no way restri
i: only to tests in probability. Clearly, it would be useful to have a concep
:f: test dimensionality that would allow such tests as the above to be consider
?} unidimensional. Such a conceptualization is provided by the essential
‘Ei dimensionality of a set of items, defined below. This definition is design
‘:i count the number of dominant dimensions only, uninflated by the incidental
b multidimensionality of items.

ii In order to present our definition of essential unidimensionality and
a; study the asymptotic theory of ability estimation, it is necessary to view
\é' test EN as embedded in a sequence of tests gi.---.gﬂ, -++, each obtainec
:t the previous one by the addition of one more item. Two justifications for
; realism of this shift in modeling perspective can be given: (1) If an actt
L%f Item Banking scheme is being used to construct the test, then our embedding
N

'El scheme is totally realistic. Indeed, random sampling of items is commonly
i& for criterion referenced tests constructed from item banks, according to

:
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iﬁ:: Hambleton and Swamanathan (1985, Chapter 12). (2) Even when there is no actual
b\
lifi sampling of items from a population of items, QN certainly can be and we think
f*. should be viewed as a representative sample of the infinite population that

:g: would be constructed by continuing to generate items by whatever test

N

?i: construction process has been used to generate the first N items QN'

‘;1 ' It will be assumed throughout the remainder of the paper that QN is
&
i :3 embedded in a sequence gl.---.gN.- This will be referred to as the item
;?ﬁ pool formulation of IRT. This embedding is analogous to the mathematical

A statistician's study of the estimation of a population mean, say, by a sequence
;35; of estimators RN = zTXi/N resulting from a sequence of random samples, each of
}izi which is obtained from the preceeding one by the selection of one more

;;3 observation. As with Justification (2) above, such a sampling model is often
¢

j;: used when the "population” being "sampled” from is only conceptual rather than
sl

ﬁf. an actual population.

g wWe now define a weaker type of independence than local independence.
)
x
'ﬁg Definition 2.2. The latent model (UN, e, N2 1} is said to be essentiall
B d o y
I.\".
f*a independent (EI) if the conditional distribution of QN given 6 in (1.1)
f;{ satisfies for each @ in the range of @,
:-'_'l_' - c bad
s .l COV(U., U.| & = 8)]
- < ! e =6
S (2.3) p(g) = L1Z1I=N v + Oas N+,
._::. N
o 2
aﬁﬁ Remarks. Mathematically, the notation {UN. €, N2 1} in Definition 2.2 means
a — — -
L)
.
:ﬁ. that the Ug are random vectors and € a random vector defined on a common
o .,:
." probability space. This corresponds to the intuitive notion of an infinite item
,:ﬁ pool and a fixed examinee population from which the sample is drawn. In this
; .'-:
0., paper, issues of rigor when using measure-theoretic probability, although always
1ate
I.I .
. surmountable, are suppressed in the interest of clarity.
3
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It is informative to contrast the definition of essential independence with

the traditional latent trait conceptualization of local independence given in

! - (1.2). LI implies pairwise independence of all pairs (Ui'Uj)' i#j, given
Ko
l:j @, which is equivalent to cov(Ui.Ujlg =6) =0 for all o, i # j. By
-F\J'
s . .
’x; contrast, EI only requires that for each fixed @, cov(Ui.Uj|§ = 9) is small on

O

average as the test length N grows.

5.

NN

Ay

~~§$ Now essential dimensionality can be defined.

)

:53 Definition 2.3. The essential dimensionality dE of a family of tests {QN}
By is the minimal dimensionality required for a latent trait @ to make the latent
Z%f model representation {QN. €, N2 1} an EI, M representation. When

LS

':25 dE = 1, essential unidimensionality is said to hold. If essential dE

=

i dimensionality holds using ability €, then {QN) is said to be essentially dE
o

O dimensional with respect to ability €. An essential trait & is any latent
;i_ trait @ for which {QN. €. N 21} is an EI, M representation with the

.. essential dimensionality of €@ the minimum possible.

: Remarks. Although dE=0 is theoretically possible, it is psychometrically
;J‘: uninteresting. Thus, to avoid irrelevant trivialities it is assumed that dEZI
o for all latent representations considered in this paper.

-."'Nn‘

‘i@ The following theorem makes precise one way that essential unidimen-
B ":-\‘

3{5 sionality might occur.

o

Aty Theorem 2.2. Suppose there is a random variable & such that for each @
o ANeorem ¢.c

a7 -

o~ sup cov(Ui. Uu.je = 9)' -0 as N » o,

e li-j| 2 N J
|'l‘-

.f Then essential unidimensionality holds.
‘:;: Proof. Fix €. Fix € > 0. Choose N0 such that

'.l
e = <
.:;: |j—§Tp> \ cov(Ui, Uj|9 9)| < e.

5 S
N2 Then, for N > N_,
-_':-, 0
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:: Zi<icjen|COV(Us. Ujle = @)| < e N° + NN,

'E:i Then DN(B) < 3¢ for N large, thus establishing essential unidimensionality. O
-

.0

?i; The following example illustrates the difference between essential

~£t dimensionality (Definition 2.3) and the traditional definition (Definition 2.1)

of dimensionality.

Example 2.1. Consider the construction of a paragragh comprehension test of

LIRS

;: length N = 5n, where n = number of paragraphs and each paragraph is followed
‘5 by five related questions. Assume total independence between questions

?23 involving different paragraphs given €, where for convenience we think of €
ﬁJ&f as reading ability. Suppose that cov(Ui. Ujle =9) >0 for all Ui' Uj for
25 the same paragraph (as should be the case) and that the IRFs are monotone.

. Note, using |cov(Ui. .| = 1 for all i, j, e,

8)| =
o 5
.. 2 const

T

Thus essential unidimensionality holds, whereas a traditional dimensionality of

—s 0 as N — @,

- n + 1 seems necessary for a test of length N = 5n. Reading ability (@) is the

N essentially trait for this essentially undimensional model. u]
{EI The example illustrates our view that minor or idiosyncratic dimensions
SCN
11; should be ignored in assessing test dimensionality from the applications

o

- viewpoint. Our requiring EI rather than LI is the key step that makes it

i

:ﬁi possible to ignore minor dimensions in assessing dimensionality.

. -‘.

o . .

LV Example 2.1 suggests an interesting sufficient condition for essential
L ]
. unidimensionality: 1If there is one trait common to many items, if the other
IR
;;? traits are "orthogonal” to one another given this "dominant" trait, and if each
| .~‘:
‘o of the other traits influences only a bounded finite number of items. then
0.
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"
-ﬂ essential unidimensionality should hold.
,f‘ Theorem 2.3. Let U = {Ui' i 21} be an item pool with U partitioned as
( ! _— (1) (2) . . (i) .
Q U = (U Y ,**+). Suppose that the number of items in each U is
53 uniformly bounded in 1 and that local independence holds with respect to
=:« 6 = (6, 91. 92.---). Suppose that the item response functions for each item of
‘ .
“ !(1) depend on 6, 9i only, and that ei and Gi, are conditionally
;; independent given © for all i # i'. Suppose for all i that
R def |
" (2.4) Pj(e) = JPji(a. e,) dP(e o)
. is monotone nondecreasing in 6, where Pji(e' oi) is the item response
_j; function of the jth item of gi and P(Oilo) is the conditional distribution of
‘}: 9i given € = 6. Then (QN. N 2 1} is essentially unidimensional with respect
Hy
A to ability 8.
'i: Remarks. In the statement of Theorem 2.3 above, @ is the essential trait. The
.}f hypotheses of Theorem 2.3 can easily be modified to allow each individual item
N to depend on more than one nuisance parameter, or to allow the number of items
pri in each category to grow slowly.
N Proof of Theorem 2.3. Choose Uj Uj' from different partitions - say, i and
- i'. Then, denoting the joint density of ei and Gi.. given © = 8 by
~
o f(e. 0.,]0).
A i, i
- = .9, .8} de.de.
t E(U,U,.[6 = 0) ( } P10, 8) Pl (8. 0,,) £(8,.0010) doda,,
F.x- ) @)
:-. © @©
2 - .[_apj'l'(e'e ')[[_iji(e’ o.) f(e.le) de. | f(e . 10)doe,,
o
. = E[U.|e = 0) E[U.,|® = 8].
. [yl ) ELUj. ]
c':: Thus. given €. Uj and Uj' are therefore conditionally independent. Thus
-
f} cov(U.,, UJ,{O = 8) = 0. Now let the number of items Ki in each partition set
‘S lg‘” be bounded by K. Then, DN(s) satisfies for all @
Ao
A
&f:
v,
o
°® -12- ;
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-
B 'y [¥;)
£ Z"=1“ 2}
e D.(8) < i
oy 8 N - —r—1—N
(| ey
":{" where ng = the number of partitions into which the first N items are split.
-_-(-
RIS
‘j} Thus, noting that VnN K. = N, for all ¢
\_,. L i
A2 i=1
: N L2
o Loy “ KN K
S 1=
. < < < ®
L O®) = w vy *Fv-D w7 0 s N—
17 Jal
:f"¢ which establishes the result since M holds for the Pj(e) of (2.4) by hypothesis.
8]
>
Qo
::,: 3. Application to Consistent Estimation of Ability. We turn now to the problem
<
L
" }: of estimating a particular latent ability 6 in the presence of other
-
:3; ("nuisance”) abilities. In order to illuminate certain theoretical issues most
N clearly, ability estimation will be considered in its simplest setting: we
SO
i consider a fixed test for a single examinee population with no consideration of
‘:.J scaling/equating issues such as the need to find a common ability scale when
= using more than one test. Later in Sections 4, 6, and 7 we will address some of
K-
J‘.‘_‘

the practical problems raised when the rather strict one-test one-population

)

assumptions are relaxed.

R A
Sy
..L A

; \"'v “y

We suppose that (QN. 6, N 2 1} 1is either essential dE dimensional or

v

traditional d dimensional with respect to & for some dE 21 ord21

4

respectively. The item response functions for (U

Un- @, N 2 1} are denoted by

.
R
D

Pi(Q). Let & be the ability desired to be estimated, and suppose that @

L)

SRR
AL AL N R ]

determines @; i.e., that 6 is a function of 6.

@

LV R AN

In this single population problem there is nothing unique or preferable

o]
LN L NN

about the 6 scale. That is, any strictly increasing transformation A(#6)

-

yields an equally acceptable scale for purposes of estimating 6. Let

-
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(3.1) P.(e) = E[P,(@)|e = 8] = P[U, = 1|6 = 0]

(the distinction between Pi(e) and Pi(gi henceforth assumed clear from

context). The Pi(a)s are called the marginal item response functions with
respect to ability 8. Let

{3.2) A (8) = \N P.(6)/N
N Lizl i

AV(Q) is called the intrinsic ability scale for @ relative to the test QN

and to the examinee population . AN(O) has an interpretation bridging
classical test theory and IRT: AN(O) is the expected test score, that is, true
score, among all examinees with latent ability @. Under the assumption of
strict monotonicity, Theorem 3.1 below implies that AN(O) is strictly
increasing in 6 and hence is an acceptable scale for estimating ¢.

Considerable recent attention has been focused on nonmonotone unidimen-
sional item response functions. It has been shown that attractive distractors
are a source of nonmonotonicity. It has been suggested that the existence of
attractive distractors may be explainable by multidimen§ionality of the ability
space. In this regard, it is interesting to note that Pi(Q) can be monotone
and yet Pile) nonmonotone:

Example 3.1. Let P(6,, 8,) = (8 +6,)/17, 1/4 <6 <1.0586,516. and

1’ 2 1 1 2
= / i < < = i
f(92|91) 91/4 if 0 £ 92 < 4/91. 0 otherwise.
Then
4/, 8. + 6
RS IS! 2
Ple) = J 68 6, do,
0
8
1 1 2
= {5- + 3_] - 1/74 < 81 <1
1
But P(Ol) is decreasing in 91 for all 91. 0]

Of course, as is intuitively clear, mild and natural regularity conditions

preclude this nonmonotone behavior. Indeed. the nonmonotonicity of a projected
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\'j:
<
N
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8
v,}j item response function can occur only when the multidimensional ability ® has
f:: some sort of negative associatiorn among its components.
3 Definition 3.1. A random vector Y is said to be stochastically larger than a
.
.
i~ random vector X if, for all t,
I
ey (3.3) P[X 2 t] < P[Y 2 t]
.
o with strict inequality for at least one t.
;E; The following fact is well known:
\}i Lemma 3.1. Let Y be stochastically larger than X. and let f be a non-
; negative nondecreasing real valued function. Then
EM" -
i Ef (X) < Ef(Y)
i;} Theorem 3.1. Let (QN. @) be a monotone representation. Let 6 = (e, 92).
7 Suppose that, for every 91 < 92 pair that the distribution of 92 given
b
: 2: 6 = 92 is stochastically larger than the distribution of 92 given € = 91.
~
)
:w: Then, for i £ N, each marginal item response function Pi(o) of (3.1) is
v v nondecreasing in 8.
o
oo Proof. It must be shown that
 ,{‘ IPi(O.ga)dP(gzle)
G ic nondecreasing in 6 where P(92|9) denotes the distribution of 92, given
_l_) - =
‘G .
' ® =0. Fix 8' < 6''. By Lemma 3.1, noting that Pi(e. 92) is for fixed o a
(’ - -
-r'\J
fa:. nondecreasing function of 22 by the assumption of monotonicity,
L _
- ’ ' < ' ]
s (3.4) [Pi(o . 8,)dP(8,(0") < [Pi(e . 8,)dP(g,l6"")
‘oY
- But, because Pi(g) = Pi(o. ga) is nondecreasing in 8 for each fixed 9, .
L] " < i “o
o (3.5) [Pi(o . gz)dP(gz|o ) £ [Pi(o . gz)dP(gz|9 )
if The combination of (3.4) and (3.5) yields the desired result. 0
:fﬁ We now turn directly to the ability estimation problem. As we shall see,
i:' essential unidimensionality characterizes the consistent estimation of some
o
*: unidimensional latent ability; moreover. it implies that, in a certain sense,
] ;\
N
NS
L’y -15-
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the latent ability is unique. It is in this spirit that an essential trait

(recall Definition 2.3) can be referred to as "the" essential trait with respect

to which the items are essentially unidimensional.
Theorem 3.2 below asserts that essential unidimensionality is precisely the
condition needed for consistent estimation of ability. The main estimation tool

is proportion correct UN' Later in Sections 6 and 7 generalizations based on
"linear formula scores” are explored.

Before stating Theorem 3.2, we must carefully consider what it means to
consistently estimate © wusing an item pool formation. Recall our viewpoint
that any strictly monotone transformation of 8 -- for example AN(O). which is
strictly monotone when the IRFs are -- is an acceptable scale on which to

estimate 6. Clearly U, is a natural estimator of A(8).

N
Let N(C) denote the cardinality of a finite set C. For >0, let YN(e)
denote the collection of all subsets C of (1,...,N} such that N(C)/N 2 €.
For example, fN(l/Z) consists of all subsets containing at least half the
integers between 1 and N. We will call a sequence (CN. N 2 1} of integer
subsets nonsparse provided there exists € > 0 such that CNefN(e) for every
N. Let C e fN(e). Def ine
U, = Eiec U /N(C) .

Definition 3.2. It is said that e may be consistently estimated (in

probability) using the sequence {UN, N 2 1) of items if for every nonsparse

sequence {CN. N 2 1} there exists a sequence (gc (e), N 2 1} of functions of
N

8 such that for each o, given 6 = @,

(3.6) u - gc () - O

in probability as N - o,

_16_
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Remarks. The intuitive idea of the definition is that any nonsparse subsequence

i

L

Vot s

of items should be usable to estimate @ in the sense of (3.6). Also. not all

)

.

sparse subsequences of items need necessarily be usable to estimate 6. For

.
z
a4

Lo
[l
el

, k . . " .
example if every 2 th item in a "mathematics" test were a "verbal” item, we

(O e ]
‘I
(]

L

e , . .

Z would still be able to consistently estimate €@ (mathematics) since the bad
\

A . ) W™ ) .

i sequence of estimators { /k=1 U k»M, M 21} is formed from too sparse a

RS B 2

:f: subsequence of the items {Ui' i 2 1}. However, Definition 3.2 does for example
1 '.-l
‘ require {YM v /M. M2 1} to estimate @8 in the sense of (3.6). Thus, if

Li=1 "10i
every 10th item were a verbal item. the sequence of items {UN. N 21} would

not be able to consistently estimate 6.

A reasonable question to ask is why our definition of consistent estimation

should require (3.6) rather than merely requiring the existence of functions

oS (gv(e)} such that for each given @

( {3.7) UN - gyle) = 0
:y;: in probability as N -+ ®. One reason is that if a test is formed by sampling
S

:a items, as in item banking or computerized adaptive testing, then clearly @
o
¢ s

must be estimable using any reasonable sequence CN in (3.6). A second reason

-

that requiring (3.7) is inappropriate is that it is vacuous in the sense that

LN 4.'1,‘
"-
.
R

every test U of fixed length N can be viewed as embedded in an essentially

' .

2,
e
»

IR N
e d dimensional sequence of tests (U, @ N 2 1} such that (3.7) holds for a
e E N 2
{;: judicious choice of 6. The following example illustrates this embedding for a
f?f test where 50% of the items measure one trait and 50% measure a seconc :rait.
L [t presents an essentially two dimensional family of tests where (3.7) is
LS g
_Cf satisfied for a mathematically judicious choice of 6. 6 being some function of
N
\-.' . Y :
f\f the dimensions (91. 92). However, (3.6), which postulates consisten* estimation
2 -"’:
’;'! of 8 by all nonsparse subsequences of items, is seen to fail in the sense that
\-
5
o
\!
v
o -l7-
L

L]
- x
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NN two nonsparse subsequences of items can be selected that estimate 91. 92

Qj{ respectively. This is a situation where most psychometricians would prefer to

_—

split the test up into two unidimensional tests and only then address the issue

>

Laey
-
o ) R
a}: of consistency. Requiring (3.6) instead of (3.7) as a definition of consistency
#Jf reflects these considerations.
A{.' Example 3.2. Let (QZK . 8} be a LI, M family of latent variable models with
Fi: 9 = (8,. 8,) and for 1 =i 2K,
- Pai(8) = 6). Ppy4(8) = 8,
. where the distribution of & is given by 91. 92 independent identically
N -
:j:' distributed with 91 uniformly distributed on [0,1]. Let & = 91 + 92. Fix @.
:;:' Then, standard multivariable calculus yields for 1 £ i,j €K, 1 £k £ 2K
o Ay
8 92
Lty = S ——— = T e—
?}: (3.8) E(Ukle 9) 5 cov (UZi—l.U2j|e e) 13
- and. if i # j,
'}.-.;i 62 R
S = = - -
( cov | Lei.)zj'e 8) 5 Cov (U21-1.U2j—1‘e a) 13
;}: Thus. using (3.8),
o - 1 T2K
o v = = . =
S ar(0,,16 = o) > [[_i=1 var(u |6 - o)
e (2K)
D) + N cov(u..U.le = 8)
L i'7j
.Q; 1€i#j<2K
N 1 9 o 202 [[K K 2
e e CRC R R
B - 2 2 12 2 2
~ (2K)2
AN 2
o = 1 _3_ 1 - i - 9 -+ 0 as K ®
- T T2k 2 2 24K ”
o
ENT) 9 2
RS . - = _ -
3 Further, E[L2K|9 = 9] = /2. Thus P[|L2K - —§—| > e |& = O] < Var(UzK)/e -+ 0
-'k as K » » Hence, for each 6, given & = 8,
.
-, . - 0
S - o]
o k0 Tz 7
..",.. _
ff- in probability as K -+ o, A similar analysis holds for U2K—l and also for
R
by
»
.':_’.
R -18-
o
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iii 1 <9 <2. Thus (3.7) does hold in what is clearly an essentially two
- i
s dimensional sequence of tests. However, it is intuitively clear that (3.6}
¥a . . . .
::. fails since the even items can be used to consistently estimate 91 and odd
-'.--
0 items to consistently estimate @,. o]
N':'.
: Now Theorem 3.2 can be stated and proved.
:jx Theorem 3.2. Let (UN} be essentially unidimensional with respect to ability
o -
RS
,u;% 6. Then. 8 may be consistently estimated. In particular, for each given o =
20
8, (3.7) holds.
‘;}ﬁ Conversely, if for some monotone latent model {QN. 8} the undimensional! ¢
c\--.
o may be consistently estimated., then {QN. 8} is an EI, M representation and hence
";L essential unidimensionality holds.
T—"
L Proof. Assume essential unidimensionality. Fix e > 0 and #¢.
. u, ~ > =
G (3.9) P[|UN AN(O)I ele 0}
e _ 2
< Var (UNIO = 8)/e
- since E[UN|9 = 8] = AN(B).
;%ﬁ But. noting that
-
- N
(3.10) W Var(u.|e = 0) < N/4,
L. i
- i=1
’.- .
N it follows that
>
I‘.- E
s var(U |6 = @) < LA 2 Y COV(Ui.UjIe > — 0 as N+
i NIT T = N L N
.'-."'- 1<i<j<N
,fgi by the assumption of essential unidimensionality with respect to 8. Thus (3.7)
o
‘}:i follows with g“(e) = AN(O). Now consider any nonsparse sequence (CN. N 2 1}.
N ol I\
Y
e It follows from essential unidimensionality that
‘X
-u:: ! z |cov(Ui.UJ|9 = 9)] -0
o iTj. € g
:n, N(CN) 1w cN.x#J
._::. 2
W
4 since for some e > 0, N(CV)/N 2 ¢ for all N. Thus the same argument that
I = A
v,
i
-~
o
s
ala -19-
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3
s
2

'l ‘. .

' ,.:'(l."’/l

o

_f':jj‘ established (3.7) vields (3.6); i.e., consistent estimation of 8. Here

o g. (8) = P (8). N(C_).

b C.. L1eC i N

- N N

(

ot Conversely. suppose 6 may be consistently estimated. Consider first the
NS

SR

'_::-'_\: case of C\, = {1....,N}. Let {gN(O). N 2 1} denote the centering functions for
e '

LAY

U, guaranteed to exist by Definition 3.2. Suppose without loss of generality

N
)
A that 0 < g\.(e) <1 for all N,6. Note that
L :
WA N N
b (3.11) 0<var(S U |e - 9) - v var(U.|e = 8)
.-‘\".- L 1 L 1

S i=1 i=1

5
s + 2 Y Cov(U.,.U.|® = 81},

o L 1
e 1<i<j<N
'-“-:" which implies by (3.10) that
o (3.12) inf Cov(U,,U |® =8) 2 - N
o L i) 8
. - 1£i<j=<N
o Therefore
N _r z Cov(U .U |6 - 6)

N 1<i#j<N J
2

‘,'{-j cannot have any negative limit points.

:::-f For any bounded random variable X , denoting the bound by a (i.e.,
.-

i IX| < a).
2 2
2o (3.13) PIX| 2¢] 2 EX ¢
.:_:_: a

:::»' Thus, letting X = CN - gN(O). for e > 0,

- (3.14) P[|U, - 2.(8)| >el6 =8) 2 E|U —g(e)|2-ez>Var(G o = 0) - €.
e ' N N = N N = N
{‘:- By the consistent estimation of 6, (JN - gN(O) -+ 0 in probability as N -« .
:;;:: Thus
~. P[|C’N—gN(e)|>ee=9]-.0 as N » o,
e | |
oY Thus. using (3.11} and (3.14)., for each € > O,

N
' -"': N
';\ z \'ar(Ui|9 = 8)

. i-=1 2 < 2
L - v Cov(U._ U.|j® = 8) - ¢
\:_:. \,Z ,\.2 L 1)

o ‘ Yo1gicjN
ARl

Lo -
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has no positive limit points. But

N
) var(l, |e = 9)/"N2 — 0
Loy !

for all 8. Thus. for each @

- 2 A\

3. i ) =

{3.13) Nz / Cov(Lj.Ujle 8)
1<i<j<N

has no positive limit points. But when (3.12) is used for each @ ., the
expression in (3.15) has no negative limit points.

Thus

n

(3.16) _t X cov(iU,.U.|®
N L ']
{ é ] 1<i<j<N

as N - @ But., this same argument implies for fixed € > 0 and any nonsparse

) - 0

sequence {C ., N 2 1} that

N
(3 17) ! z cov(Uj.UJ|9 = 8) -0
N(LN) I.JECN. i#)
2

as N - @

Now suppose that DN(O) + 0 as N - ® Thus it is easily seen that for
some € > 0 there exists a subsequence N' of the positive integers and

subsets C‘, € CV,(e) and €' > 0 such that

’

(3.18) ——t ¥ cov(U,, U |e =0)] > ¢’

(Cy.) L v

(N ‘N' ] i,jeCc , i#)
N

2
for all N and such that every summand is the same sign. But this clearly
contradicts (3.17). Thus DN(O) <+ 0 as N -« o, establishing EI for {QN,G} and
hence the desired essential unidimensionality. 0
Remarks. It is interesting to note that Theorem 3.2 allows the consistent
estimation of ability even if the IRFs are unknown to the practitioner. That
is. uase of UN to estimate AV(O) does not require knowledge of the form of

AN(G)‘ As long as no attempt is being made to estabish a standardized ability
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scale across tests {e.g.., as a precurser to equating tests) knowledge of t

[RFs is not required. Moreover, consistent estimation of ability with unk
[RFs 1s possible in several populations being administered the same test -
Section 5. Also note that the proof of Theorem 3.2 makes clear that when

consistently estimated that gc (8) = AC (8) always works in (3.6).
N N

It is a foundationally relevant fact that essential unidimensionality

implies under a mild and natural regularity condition for (U that the

N/

ability is. in a certain sense, unique, as Theorem 3.3 below asserts.

Detinition 3.3. Let a sequence of tests <UV) be essentially unidimensio
=L

with respect to ability 6. Suppose for every fixed 91 such that 91 1

the range R of €& (i.e.., P[@ c R] = 1 with R "minimal”) that there ex

e > 0 and an open neighborhood H9 of 91 such that for all 92 € Hg
1 1 1

range R of & that

;I‘v _
1 Li:1Pj(92) P (91)
' 2 N,
{(3.19) X 58 > 69 >0 for all

2 1 1

Then <QV.9} is said to be locally asymptotically discriminating (LAD) wi

respect to €.

SN
t /i

some positive-slope linear function in some neighborhood of 8 for every

Remark. What LAD really supposes is tha :]Pi(e)/N is increasing faster
independent of N.

Theorem 3.3. Suppose {QN) is essentially unidimensional with respect tc
9 and @ . Let the corresponding marginal item response functions be denot

Pi(el = E(Ui|9 = 8), Pi(e) = E(Ui|9'= 8)
for ali 8. Suppose (QN. ®} is LAD with respect to ©. There then existe
function g defined on the range R' of 6' such that
@ = g(8'}) . ¢ nondecreasing

and the range of g 1s R.
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(S Remarks. Since a d=1, M, LI model is also an EI model, note that Theorem 3.4
e Y
o L
-$§ holds for d=1, M. LI models as well. Thus Theorem 3.4 may be of interest even
! if one does not wish to use EI in IRT modeling.
-
%:} Proof of Theorem 3.3. By Theorem 3.2, for each & and @6'
- (3.20) Uy — Ay(8) 0
‘d ' in probability given © = 8 (and hence on any subset of & = @) and
- (3.21) Uy - Agle') =0
;' in probability given &' = @' (and hence on any subset of &' = 8') where
Ay(8) = E[U j6 = 8] and Ag(e’) = E(Uyle’ = e'].
J‘:
“;:. Let
':\ ] [}
\ Gg,g, = [@e=8]1N7{e' =2¢8']
- for all 6, @'. Then, for each 6. 6' such that G, ., # ¢, (3.20) and (3.21)
T '
ii imply on Ge'e, that
\-: - ] ]
(3.22) Ay(8) - Ag(8') » 0
- Fix 6'eR' and let, denoting the empty set by ¢,
o By, = (61Gg o0 # )
‘j; Note that Be, # & for all 6'eR since each examinee has an ability value for
533 both & and @'. Suppose 91 # 92 with OleBe, 82eBe, and 92 > 91 without
_\
.~ loss of generality. Then (3.22) implies that
::" -
oo AN(OZ) AN(el) +0 as N 4+ =
o .
‘N That is,
» o Pil8%) “ i)
Ly N |
o 1=
; contradicting (3.19). Thus Be, consists of a unique 6 for each 6': i.e.,
;-“

a function g is defined:

-

e = g(e') for all #6'eR.

Choose 8! > oi with eieR'. eéeR. Then define

2
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N

1, o

"‘j

'.-I

N

L ) = 8! R = '

‘i} 2 g(az) 91 8(91)

‘iﬁ Now,

4 y
. Al(el) _ Al(el) >0

N2 N T

Fi: because the essentially unidimensional model (QN, &'} is M. By the definition
"~ of g. recalling (3.22). it follows that A (8,) - A.(8,) has no negative limit
\

L points. Thus 92 2 91 by monotonicity of the Pi(e)s. That is. g is

D .

'{i- monotone nondecreasing and well defined for all @':zR'.

N

L

i ﬁ Because [©' = 06'] c [® = g(8')] the probability space, say 2, satisfies
rz=L.J (.e =68') < U8 =gle'))

N 8'eR

N and

Sy , -

., 2 eléjR(e e).

K. it follows that the range of g is R. 0
\-.-

Remarks. (1) Note that the theorem does not claim that g is strictly

s >
ST
Lt

increasing. That is, the rescaling given by g could assign many 6' to the

o~
'l

same 6. Because no assumption analogous to (3.19) was made for &', this is of

.
AR

course expected, for the @' scale could produce a finer partition than needed

AL I Y
L "

to achieve essential unidimensionality. Thus the collapsing of distinct o'

'.'(_)

into a single 6 cannot be ruled out. The essential point is that, if for the

L
. J'_
fta ® scale there exists an interval [a.b] such that,
he ",
- d L e
s —, P!(8') = 0 for all i, 6'e[a.b]

¢ d e i

h2 then the ' scale should be rescaled so that all e&'e[a.b] should be

>
"ty

'aj collapsed to a single point, say 9;. However, assuming (3.19) for 6' as well
A . . . .

° does imply a strictly increasing g.
;~j} (2) In a private communication. Brian Junker has pointed out that an
:f{: alternate proof of Theorem 3.4 can be given that produces g explicitly. It
i ',.\

:‘* seems worthwhile to describe this construction: By the Helly Selection Theorem
-
b

s
o
O
k) -l -24-
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for uniformly bounded increasing functions (Billingsley, [1968], p. 227) one can
exhibit an integer subsequence Nk and functions A(9), A'(6) such that for all e

A(g) = lim AN (6). A'(8) = lim A&(e).

k= 'k k= "k

By (3.19). A(8) can be shown to be invertible. Junker's proof then shows that
g can be defined by
(3.23) g(e') = A (ar(e'))
{3) Note that the item pool formulation was essential for establishing the
uniqueness of ability scale. It is the author's position that an item pool
formulation with its implicit requirement of infinitely many items greatly aids
the study of many foundational IRT issues. Indeed, that is a major point of
this research.

It is an axiom of psychometrics that a "test” should be unidimensional. If
not. it should be broken up into a battery of unidimensional subtests, each to
be analyzed separately. Thus, in the context of this paper, the axiom becomes
that a test should be essentially unidimensional. In this context, the
following example shows that it is possible to construct a sequence of tests
{EN' N 2 1} that is not essentially unidimensional. Thus, the concept of

essential unidimensionality is not mathematically vacuous.

r)

2
DAL LRI PP and U,

Example 3.3. Let for each r > 1 Ui = Uj for

independent of Uj otherwise. Let P[Ui = 1] = P[Ui = 0] = 1/2 for all i

define the marginal distributions. Then., letting
2
(r)
2
\ 2 U,
r7) Ly -1 i
- ] r2 (r—l)2 ’
2 2
it follows that
_25-
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—(I‘z) | 2)
o (3.24) P[U 1] = p[u'" ) < 0] = 1/2.

that {C . r 21} are independent, and that with probability one,

= - 1 s 1
‘ > - <
(3.23) U 21 2r-1 or U , £ 3 1

Suppose essential unidimensionality for {U, , @}. Then by Theorem 3.1, given

o0 =N

e =8

UN - AN(O) — 0

in probability as N - o,

Thus, given & = 6,

N _
oo U - A _(8) — O
ol r2 r2

az as r -» o, Thus, by a standard probability argument, there exists a subsequence

1

6

U rf such that given @

‘ U 2~ A 2(9) - 0

r. r,
1 1

with probability one as i -» ». Thus, given & = 8,

2
e (Pi)
Ry (3.26) ) - A 2(9) — 0
_.:_:. r

i

with probability one as i - ®. Because M is part of the assumption of

o essential unidimensionality, A 2(9) is nondecreasing in 6. A contradiction
l:::l_- Ty
2
_(ry)
o of this is now obtained. By (3.24), (U , 121} 1is a sequence independent
oy
f}f identically distubuted random variables with marginal distribution p(0) =
s p(1) = 1.2. Let, for i 21 and fixed 1/16 2 € > 0
n“-
. = < = > -
o Al (A ,(8) < el. Ay (A ,(8) 21 - ¢]
iy Ty T

Ry S Aty g bt
J;ﬂv' AL s
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“i)

By (3.25), (3.26), and the distribution of (U . 1 21}, we choose i' so
large that
> -~ > —
(3.27) P[Ai',O] 2 1/2 €, P[Ai’.l] 2 1/2 €,
> ~ > -
P[Ai'+1,0] 2 1/2 €, p[Ai'Ol.l] 2 1/2 €

and further that

(3.28) P[A ] 21/4 - e, P[A. na, ] 2174 - €.

ir,0 n Ai'+1.1
Because the events in (3.28) each have positive probability, they are each

nonempty events of the probability space, @ say. This will produce a contradic-

tion as follows: Let w. and w, be outcomes of R such that

0 1
o €A oM A, @ EAL DAL
Then obviously “0 € Ai‘.O ;oW € Ai'.l , so that e(wo) < G(wl) by the
monotonicity of Arz(e). But, similarly, wl € Ai'+1.0' w, € Ai'+1.1 so that
i
Q(ul) < leo). a contradiction. 0]

Theorems 3.2 has an interesting multidimensional analogue. Let for a

latent model ‘UN' ®) with item response functions (Pi(g). 1 £i £n},

(3.29) Ay(@) = ) Pie)/N.

i=1

{the distinction between AN(g) and AN(O) henceforth assumed clear from context).

Theorem 3.4. Suppose essential d. dimensionality with respect to ability .

E
Then, 6 is able to be consistently estimated in probability in the sense of
(3.6) with g. (8} replaced by g_. (8) in (3.6).
C C. -
N N
Suppose that essential dE dimensionality fails for (QN). Then there do

not exist a dE dimensional & and accompanying functions E¢ (8) such that
N

{UV' 6} is monotone and for each given €& = @
N
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" - given. into an operational definition with only the "observed" data given. that
jil_ 1s with the distribution of the test QN given. Of course, in any statistical
(. application the "given" distribution of QN is observed only with error because
‘.-‘

" only a finite amount of data is ever available. With only the distribution of
:}j !V given, then the definition must contend with the essential nonuniqueness of
!;) the IRFs and accompanying scale for @.

Definition 4.1. Let Q;B) and Q;C) represent a test administered to two
} populations, B and C. Then d-dimensional invariance holds provided each test
administration has a d-dimensional M, LI representation using the same item

R

}}: response functions. That is, for each u = (ul.. ..uN) with @ and @' d-
;:33 dimensional,

-.":\

. N u, 1-u,.

- (4.1) P[U(B) =u) =TT / p(o)] ' |1 -p (o) i dP(B)(O)

B -N - S I S i’ =7 | hd

. i=1

:-'_: and

e N u 1-u,

b i C
( (4.2) YTTANLAE I I & S8 PUPYRY B PRSP N gp(C gy

-N - i=11 i'- i - | -

A (B) (C) . o d . .

o where P and P are arbitrary distributions on R , d dimensional

:;j Euclidean space.

A

Remarks on Definition 4.1. (1) A key point to note is that the ability

-"
a o (B) (C) . . .
o\ distributions P and P are arbitrary and in no way required to be
e
A
::. related to one another. This amounts to allowing an arbitrary choice of ability
o
o
-"~ metric for each population in an effort to obtain the same item response
i:n functions {Pi(e)} in (4.1) and (4.2). The two metrics need not be the same in
:{f any mathematical or psychological sense. Nevertheless, once statistical
P
’Q evidence is given that (4.1) and (4.2) hold, it is standard IRT practice to
:3 declare that a common ability metric has been found.
b\::
L X
I
-"_:-/'
TR
{-:'.
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(2) In applications, because the latent ability is usually assumed to be

unidimensional. "invariance” usually means unidimensional invariance. For
example, when invariance is used to justify a technique for identifying biased
items, then the practitioner surely has unidimensional invariance in mind (see
Lord (1980}. Chapter 14, for example).

{3} Of course, once the IRFs for a model are specified, then invariance
holds for all subpopulations of 6. For., an IRT model. once specified, by its
very structure assigns to each examinee a fixed 6. Thus altering the
distribution of € by choosing a subpopulation of examinees cannot change the
[RFs. The distribution of !N for the subpopulation is then derived from (4.2)

with P(L)(e) the subpopulation distribution and the IRFs identical to those in

(4.1). the expression for the entire population. Thus, the Lord viewpoint of
fixing the latent variable 6 is appropriate when focusing on a subpopulation
after the IRT model has been specified.

(4} Note that (4.1) and (4.2) really state that populations B and C being
administered the test QN each can be modeled by a M d=1 LI model.

The following idealized example., in the author's opinion, illustrates a
fundamental flaw in the uncritical application of invariance.
Example 4. 1. Consider two populations of examinees, males and females say. Let
8 denote the unidimensional ability intended to be measured. Let Pi(o),

1 €1 £ N denote a family of item response functions that satisfies (4.1) for

miles Suppose that the items are uniformly biased against females in the sense

that

P[Ui = 1]female of ability @] Pi(e - 1) for all i. 6 and

h

P[l,'1 iimale of ability 6] Pi(e) for all i.8.
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Thus. for females, for all u, with PF denoting the distribution of ability for

females,

l-uil

P[U, - ul - [T? {[Pi(e - 1)]ui [1 - P.(8 - 1)] | dapF (o).

i=1
But, a simple change of variable
N

P[U, = u) - JTT [Pi(a'

i=1

Thus (4.2) holds with PF(G' + 1
sional invariance therefore holds,

bias in the test.

' =8 -1 yields
u, 1-u
)] 1 [1 . Pi(o')] LapFer + 1)

the new ability distribution. Unidimen-

in spite of the pervasive (and uniform) sex

The example is certainly idealized. For example, some items would surely

be more biased than others in any

serious practical problem, in the

no guarantee against failure to identify pervasive bias. What is really going
on is that if administered simultaneously to males and females, the test is

driven by a two-dimensional latent variable (91. ]

to be measured and 92 (= -1 for

degree of bias. For example, 81

be familiarity with computers. However, the above example is easily seen to be

unidimensional in the traditional sense. For, let @0 = 91 + 92. Then
n ui 1-ui
(4.3) P[U, = u] = [TT [p.(e)] [1 - P.(O)] dpP(e)
-N - i i
i=1
where P(8) = PF(9+1). Thus, pervasive bias is possible even when traditional

unidimensionality holds. In this
relevant.

Theorem 4.1. Let U(B)

Iheorem 4.1 Un and U

N

populations, B and C. Then unidimensional invariance holds if and only if

traditional unidimensionality holds.

(C)

actual application. But it represents a

author's view. Unidimensional invariance is

), where @ is the ability

2 1

females, = 0 for males say) measures the

could be mathematical ability and 92 could

regard the following easily proved theorem is

represent a test administered to two
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Proof. Assume traditional unidimensionality. Then (4.3) holds for monotone

[RFs Pi(o). But then (really the context of Remark (3) above)

1-u,

n u,
P(U. - u|B] = ITT [P.(e)] ! [1 : P.(O)] Y dp_(e)
-N - . i i B
i=1
follows trivially where PB(O) = P(e|B). The same holds for C:; thus, unidimen-
sional invariance holds.
Assume unidimensional invariance; i.e., (4.1) and (4.2) with 6, ' real

valued. Let €'’ be the @ of (4.1) for all Population B examinees and 8'' be

the 8’ of (4.2) for all Population C examinees. Thus, each examinee of B U C

is assigned a unidimensional ''. Then, for some 0 < p < 1
P(Uy = u] = P[U; = u|B] p + P[Uy = u|C](1-p)
N u, 1-u,
f 7 {Pi(e")} ! [1 - Pi(e")] ! d{pP(B)(e") + (1-p) P(C)(e")}.
i=1

Clearly, letting P''(8'') = pP(B)(G") + (1—p)P(C)(9") completes the proof.

Remark. The theorem shows us that (unidimensional) invariance is simply

traditional unidimensionality.

Theorem 1.1 and the results concerning essential unidimensionality suggest
that unidimensional invariance be redefined so that it dovetails with essential

unidimensionality.

Definition 4.2 Let (ul®. N2z 1) and (uf’

N 2 1} represent a sequence of

tests administered to two populations, B and C. Then essential d-dimensional

invariance holds provided each test administered has an essential d-dimensional
. . b 3
representation using the same latent model representation P[QNIQ = 8]. That

is. for each u = (u . -+ ,uy) with @ and 6' d-dimensional,

AB) _
(4.4) P[LN : u] = IP[Q

o - q] ar ' (e)
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and

(14.3) P[géC) - g] - [P[g

where P(B) and P(C)

are arbitary distributions on Bd . d dimensional

Euclidean space and (4.4) and (4.5) each define essential d-dimensional models.
The analogue of Theorem 4.1 is trival to state and prove.

Theorem 4.2. Let Q;B) and géC) represent a test administered to two

populations. B and C. Then essential unidimensional invariance holds if and

only if essential unidimensionality holds.

Proof. Same as that of Theorem 4.1, except for minor details. 8]
Example 4.1 compels us to be cautious concerning the centrality of the
concept of invariance in IRT modeling. For, unidimensional invariance (whether
essential or traditional) clearly does not preclude the inappropriate assignment
of a common metric to the underlying ability of interest in a single test, two
population problem. Can something be substituted for unidimensional invariance

that will rule out such faulty applications? We suggest that the central

property that must hold in such single-test, multiple-population applications is

essential unidimensionality together with the conclusion that the underlying

essentially unidimensional ability 6 is the ability intended to be measured.

In the above example, 91 was the ability intended to be measured rather than

9 = 91 *92. This suggests the following definition.

Definition 4.3. A test sequence (QN. N 21} is said to be valid provided (i)
it is essentially unidimensional with respect to @ and (ii) 6 1is the ability
desired to be measured.

Certain results in Section 3 support the appropriateness of this

definition. First, Theorem 3.3 states that, under mild regularity conditions,

essential unidimensionality with respect to 6 guarantees that, up to monotone
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transformations, the & of the model is unique. That is, essential

unidimensionality makes the measurement of #© well defined in the sense that @
itself is "unique” and hence well defined. Second, Theorem 3.2 shows that U
through computation of the statistic GN' can be used to consistently estimate
8 by use of the rescaling AN(O). That is, the data can be used operationally
to obtain 6. as one would expect a "valid” test to be able to do.

Of course, IRT validity as defined above requires both essential
unidimensionality and that the underlying latent ability € is the ability
intended to be measured. Statistical analysis of data from the administration
of a test cannot in the absence of additional data concerning other valid tests,
external criteria, etc. be used to ascertain whether the latent ability being
measured is the one intended. However, statistical analysis of data from the
administration of a test can be used to assess whether the prerequisite
essential unidimensionality holds. Moreover, as remarked above, the author's
(Stout, 1987) statistical test of unidimensionality is designed to address
precisely this question of whether essential unidimensionality holds.

One final point must be emphasized. If essential unidimensionality holds
for a combined multiple-population test, then it is purely a matter of taste and
convenience which transformation of the the underlying ability 6 is used for
the ability scale. In Section 3, AN(O) is used for the one population case
because it makes the basic estimation results especially easy to formulate.
Clearly. if one wishes to use a common metric for two or more populations being
administered the same test, then the AN(G) of the combined superpopulation is
totally appropriate. That is., the theory of Section 3 easily extends to the

fixed test multiple population setting. This is developed in Section 5.
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5. Two Group Test Bias. In this section, we will apply the theory of Section 3

to the situation in which the test population is assumed to consist of two
groups cf examinees, B and C. The main objective is to assess whether the
estimation of ability is somehow "unfair" to Group B as compared with group C,
or vice versa. Let & be the unidimensional ability intended to be measured in
the combined population. Let GB and ﬁg denote respectively the ability
intended to measured and the test scores of a randomly chosen examinee from
Group B. Define e* and Gg similarly. Note that by definition @ = e® for
each Group B examinee and 6 = ec for each Group C examinee.

The results of Section 3 suggest that essential unidimensionality implies
consistent estimation of ® in each group.

Theorem 5.1. If essential unidimensionality holds for 6 in the combined

population consisting of Group B and Group C examinees, then @ is able to be

consistently estimated in each population using the AN(O) E[EVIG] scale
I\

computed from the combined population.

Proof . Fix 6. By Theorem 3.2, given 6 = 8,

(5.1) GN-AN(e)-.o

in probability as N =« @, Let B denote the event that a randomly sampled
examinee (according to the distribution of &) 1is a Group B examinee. Fix
€ > 0. Let GN = [lEN - AN(O)I > e]. It is an elementary fact of probability
that P[GN] - 1, and P{B] > 0 implies that P[GNIQ] - 1. Thus given OB = 9,
it follows that

~B

(5.2) UN - AN(O) - 0

in probability as N - ®©. The argument is the same for any nonsparse sequence

<CV' N 2 1}. Thus. the result is proved for Group B. The argument is the same

for Group C. 8]
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Since essential unidimensionality guarantees consistent estimation of @

in each group. this suggests that a natural setting for the study of test bias

is under the assumption that {!V' &} s essentially dE dimensional for some

dE > 1. Essential dE dimensionality for some dE > 1 is assumed throughout the

remainder of Section 5. We suppose throughout Section 5 that 6 determines @;
i.e.. 6 is a func*ion of 6. Then, without loss of generality, we assume that
the first component of @8 is the ability 6 intended to be measured. Thus

6 = (6. 6,) where 6, consists of "nuisance” abilities. We first note that

essential dE dimensionality guarantees that the proportion correct consistently
es*imates AV(g) among all examinees of ability @ regardless of their group

membership.

Theorem 5.2. Let QB and 62 denote respectively the ability and the test

score of a randomly chosen examinee from Group B. Define QC and ﬁg

analogously. Then. for each nonsparse sequence {C N2 1} and for each 8,

N’
given 98 = 8,

(5.3) U. - A (8) 20
“ O

- . C
in probability as N —» »: and for each 8. given 6 =9,

-
{5.4) Ul - A_(8) -0
C Z
N CN
in probability as N - o
Proof. Essentially the same as that of Theorem 5.1. o]

We propose the following definition of test bias.

Definition 5.1. We say that there is no test bias in the estimation of € if,

C

for each 6. the distribution of QB given QB - @ 1is equal to that of @

¢
given @ 2]
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Remark. [t is essentijal to note that this definition of test bias places r
restrictions on the distributions of the ability to be measured for Group F
Group C. The existence of test bias rests in the conditional distributions
given ec and not in the marginal distributions of

98 given GB and @

~)
<

0N

and & . The point is that bias is not to be mistaken for a genuine differ

between the two groups in the ability 6 to be measured. Rather, it rests
group ability differences in other attributes also influencing the test in
essential way among examinees with the same 6 ability.

It Is useful to illustrate the role of Definition 5.1 with a simple
example.

Example 5.1. Suppose essential 2-dimensionality for 6. Let 8 = (8, 92)

fix & = 8. Let 92 be a discrete random variable with range {0.,1}. Supg

for Group B that. given € = 0, then 6_ = 0 with probability 3/4 and th

2
for Group C, given © = 0, then 92 = 1 with probability 3/4. Recall that
- N . .
AV(Q’ = E[Uﬁlq} = Zi=1 Pi(Q)/N. Suppose the item response functions are su
that AV(O. 0) = 1 8, AV(O' 1) = 7.8 for all N. Then, according to Theorenm

given & - (0. 0},

-B 1 -C 1

LN § - 0 and [JN - g -+ 0,
each in probability as N - ®. Also, given & = (0.1).

-B 7 -C 7

LN 3~ 0 and UN 5" 0.

each in probability as N - ®  Note that

B B 1

pe® - 1] @ :0]:4.P[eg:1|e - 0] -

EEM

Thus test blas in the sense of Definition 5.2 exists. How does this test t

affect the asymptotic behavior of EB and 69 ? For Group B.

N N
B 1 B 3 B 7 B 1
Pty =016 =0] =35 . PLy-5=0]8 =0]:=g

while for Group .,




.,

A -C 1 c _ ! -C 7 c _ _ 3

- P[U( - 5~018 =0} =32, PlU;-5~0]|86 =0]-=7

j;: Thus, even though (5.3) and (5.4) hold, the behaviors of ﬁ: and ﬁg in their
h

. }' attempts to estimate 8 (on some scale) clearly favor Group C over Group B for
o -

j:jv examinees of ability e = 0. Here the asymptotic distribution of UCN given
NS

:\:' eC = 0 1is stochastically larger than the distribution of U: given GB =0. O
t Note that the marginal distributions of the ability to be measured in Group B
_,“_-
?¢ui and in Group C played no role in the example.

oty
t::j Recall that essential dE dimensionality for dE > 1 implies by Theorem 3.7
j' that there do not exist functions gN(e) such that

o _

ot -
-:;2' Uy - gy(8) =0

A

:;: in probability as N -+ ®. This precludes consistent estimation of 6. However,
y X

?,: if there is no test bias (in the sense of Definition 5.1), then using proportion
i?;, correct to score the test is guaranteed not to favor either group over the other
}l} asymptotically in any way whatsoever, as the following theorem makes precise.

o«

— o

Theorem 5.3. Suppose there is no test bias. Let {CN, N 2 1} be any nonsparse

)

1
A7
R

sequence. Then for each 6, the asymptotic distribution of U given OB = 0

').'.."-"- .'-
P an
[@ -/

is the same as the asymptotic distribution of ﬂc given GC = 9.

o) N

532 Proof. Fix 6. The argument used to prove Theorem 5.1 is easily modified to
0

':ﬁ~ establish that, given QB =0,
h -.'-’:

2 =B B

Py {5.5) UC AC {9, 92) -0

o N N

j: in probability as N - ®, and that, given ec = 9,

Ca )
o (5.6) Gg - A (8, gg) -0
s N N
}!&{ in probability as N -« . Here AN(O) = AV(O' 92). But absence of test bias

- - i -

\ [

"-t
“:j merely means that the distribution of Qg given GB = 8 is the same as the
b . . . c . C
"\:v distribution of 92 given © = 0. The desired result then follows from (5.5)
o
iy and (5.6). a
g

”
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Remarks. (1) The point of the theorem is clear: If test bias does not exist

when dE > 1, then ﬁg and Ug are equally inconsistent in their respective
N N

attempts to estimate ©. That is, each group is equally mistreated.

{2) At the end of Section 3, we pointed out that essential unidimension-

@) still allows for fixed

ality for a latent trait family of models {QN.

measurement error for a finite length test administration, this caused by the

presence of abilities other than @. these other abilities being inessential.

Clearly. in the two population setting of Section 5, it similarly holds that

this source of measurement error can favor one population over another in a

finite length test administration, even when essential unidimensionality holds.
From a lack of model fit perspective, the issue becomes one of whether the
magnitude of the differences A:(O) - Ag(e) as @ varies are too large to be

. B B 1 XN B B _ C ,
ignored. Here AN(O) = E[ -« Li=,Pi(€ )i = 9] and AN(O) is defined

similarly, where {gN,G.NZI} is assumed to have dE = 1 and traditional
dimensionality dim(e) > 1. Because dim(®) > 1, Az(a) and Ag(a). the Group B and
Group C intrinsic ability scales defined by (3.1) and (3.2) will in general be
different.

(3) The theoretical results of this paper caution against the casual use
of short tests with confidence that test bias will not occur. For, the shorter
the test, the harder it is to assess essential unidimensionality. Furthermore,
even if essential unidimensionality holds, the shorter the test, the more likely
(3.30) (or the opposite inequality)} is to hold to a damaging degree. By

contrast Theorem 5.1 guarantees for a long essentially unidimensional test that

(3.30) will have little to no ill effect in the consistent estimation of the

essential trait in each population.
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:f%t 6. Essential Unidimensionality and Linear Formula Scoring. Thus far we have
‘{ﬁ: presented our thesis in the context of ability estimation with proportion right
(
(r . used as the estimator of ability. Of course, one of the major contributions of
‘\I
"..'!
ﬁxj IRT has been the establishment that the use of a "linear formula score”
‘:{j EN a; (U, . all a, 20
v i=1 7
f}j can be more appropriate than the use of DN' For example, with N fixed in the
S M, LI case of two parameter logistic modeling, z?zl a; n Ui is a sufficient
v '
s statistic for 6 provided ai N is proportional to the discrimination
SO parameter of the ith item.
::j Definition 6.1. A sequence of linear formula scores with coefficients {ai N’
o '
ol 1 €1 <N, N21} 1is called admissible if
‘V_‘; <. < < K .
!:.,'-:. (61) O_aiN_T for all I,N
\_\:
e for some constant K.
~
A
- Remarks. Several special cases of linear formula scores are admissible. First
}}2 a, y = 1/N for i £ N, vielding {GN' N 2 1} is clearly admissible. Second
O .
‘ifﬁ a, §* l/N(CN) for all ieCN and equal to zero otherwise with (CN, N21} a
‘)-“_-. ]
YAS

nonsparse sequence of integer subsets clearly yields an admissible sequence of

N

l;;} linear formula scores since by definition N(CN) > eN for all N for some € >
i}i 0. Third, suppose a two parameter logistic model for (Ui' i 21} with
;*1 discrimination parameters a; satisfying
S (6.2) 0<esa <Kc<= forall i.
*5?f Then, the normalized sufficient statistic
¥ 2?—1 ;Y4
o (6.3) e
o W
Li=1 i

O is clearly admissible with a = a,./ \N a

o y ioN T3 zi=1 3

S
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It can be argued that most useful linear scoring methods surely satisfy
(6.1) since (6.1) merely requires a scoring method where no single item or small
subset of items is allowed undue influence on the overall formula score.

Note that if Z?=1 a, v~ 0 as N -« o, then the corresponding formula

score is of no practical interest since

= W '
UN = Lizl ai'N Li -0

with probability one as N - ® and hence cannot estimate anything consistently
(other than 0). Thus each admissible linear formula score of interest should
also satisfy for some ¢ > 0

(6 1) W a. > e for all N2 1.
Liy 1.N

Definition &

oo

An admissible sequence of linear formula scores with
coefficrents satisfying (6.4) is called an admissible nonsparse sequence.

In this regard., note that if ai.N > 0 only on a sparse sequence of integer
subsets C,, (i.e.. C, < {1,...,N}, where N(CN)/N + 0 as N -« ®), then either

N N

{6.1) or (6.4) is violated. That is. an attempt to use a "sparse" sequence of
items to estimate 6 will either result in an inadmissible sequence of linear
formula scores or one which is sparse (in the sense that (6.4) fails) and is
hence useless.

It is now possible to advance a theory very similar to that of Sections 2 -
5 that includes admissible nonsparse linear formula scoring. For example, the
analogue of the sufficiency part of Theorem 3.2 is as follows:

Theorem 6.1. Let (U 8} be essentially unidimensional with respect to @.

N’
Then, for each given & = 6 and each set of nonsparse admissible linear formula

scores

it follows that

-43-
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N
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v
A
®
o
:._ (6.1) UN - AN(O) - 0
. in probability as N - ® where
{
P : ¢
o Ai®) = yior 2 n PilO)
m Proof. Fix 6. [t suffices to show that
\ Var VN .U e = 6 - 0
NG =1 i,N i
o
e s Now
R < .
. . . = = . . v . =
s Var {L1=1a1.N Ul‘ e =8 ] L1=lax.N ar(Ullo e)
' + V = «®
T 2 / a; v aj,N Cov(Ui,Uj|9 ) « 0 as N -
1<i<j<N
:_:-:f:', by admissibility and essential unidimensionality; that is, (6.1) holds. o
I.:.\. _
.."‘ The use of UN as estimator in the development of the theory in Sections
v 2 - 5 was done for simplicity and clarity of exposition and not because of
Mo
B
y 4
D :‘_‘-;{ necessity. Further generalization along the lines of Sections 2 - 5 using
y
B
(‘ nonsparse admissible linear formula scoring is routine and is left to the
::':j:" reader.
" 7. Essential Unidimensionality and Consistent Estimation of & on the 6 scale.
:"_T'.‘: The use of (GN) or more generally of a nonsparse admissible linear formula
r e score {21? 13N Ui} as a sequence of estimators of € on the intrinsic
,'\'"-_" = ’
AR
6 : ability scale when essential unidimensionality holds supposes a single fixed
Vo
_jf_--‘ test administered to one or more populations. Applications in this setting were
x':.
o developed in Sections 3, 5, and €. Such single-test applications of IRT occur
W
L0 . . . . . : .
9. less frequently in practice than multiple-population multiple-test applications.
.‘:j-"ff In multiple-test applications a standardized ability scale is usually
:::::: desired, perhaps as a prerequisite to a horizontal equating of the various
RN
e..
1SRN
N~
A
P~
NV
\:_'. 44 -
e
.'-:.' )
e i
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tests. In many such applications, the items (or at least a common core of them)
have been calibrated relative to the constructed standardized ability scale g¢.
Then a major application is the estimation of individual abilities on the @
scale. Estimation of 6 with known IRFs has been widely treated in the
literature (see for example Hambleton and Swaminathan, 1985, Section 5.3).

Maximum likelihood estimation (MLE) is one method of choice in this setting.
The MLE 8 ‘“"consistently” estimates 6 under suitable regularity conditions in

the sense that, given € = 9, @ - & in probability as the number of items

-~

N - @ (Here and throughout Section 7, "consistency" is used in its usual
mathematical statistical sense and is not to be confused with its special usage
as given by Definition 3.2.) Only rarely however, is it possible to provide an

explicit formula for the MLE as a function of QN' Moreover, the MLE is usually

a highly non-linear function of U Thus in the known IRFs case it seems

N
desirable to seek alternatives to MLE that are based on linear formula scoring
and for which explicit formulae are available. We now propose a family of such
estimators, using the results of Sections 3 and 6.

Recall from Theorem 3.2 that when {gN} is essentially unidimensional with
respect to & then for each given 8 = @&,

UN - AN(B) -0

_l -
in probability as N - ®. This suggests estimating 6 by (AN (UN)} and also

suggests for each given @ = 8 that

-1 -
AN (UN) -+ 8

in probability as N - @ should hold. Moreover, recalling Theorem 6.1 and its
notation, this result should generalize to nonsparse admissible linear formula

scoring with, for each € = @6,

P
AN (LN) - @

-45-
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in probability as N -+ ® Theorem 7.1 below states that this is true provided
local asymptotic discrimination holds. Definition 7.1 is the appropriate

~
analogue of Definition 3.3.

Definition 7.1. Let a sequence of tests be essentially unidimensional with

respect to ability €. Let AN(OI = ZT_l aniPi(e) be formed from a nonsparse

admissible sequence of linear formula scores. Suppose for every fixed O] such

that 91 is in the range R of @ that there exists 69 > 0 and an open
1

neighborhood He of 91 such that for all 92 € H9 and in the range R of
1 1

@ with 92 > 91 that
N SN
a., P.(8,) - a P.(ol) >

(7.1) Li=1 "iN i 92 _ e[_1=] iN i 2 eel(Oz - 91) for all N.
2 1
Then {Ug. 8. AV(G)) is said to be locally asymptotically discriminating (LAD)
Yy \

with respect to 0.

Usually AN(O) is continuous in applications, thus making its inverse well
defined over its range. However, in order to have a theory that allows for

discontinuities, the following definition of Agl(u) will be used

- 4 ‘ -
A, (u) = inf { 8: A_(8) 2 u}.
N N
8eR
Here R denotes the range of 6. Note that AN(u) = -® or ® js possible; e.g.,

if u =15 and AN(O) 2 1’4 for all 8.

Theorem 7.1. Let (!N‘ 6} be essentially unidimensional with respect to @.

N : L
Suppose AV(OJ = zizl ani Pi(9) is formed from a nonsparse admissible sequence
of linear formula scores U = zN a . U,. Suppose (U

N i=1 %ni Yi Uy e, AN(G)} is LAD with

respect to 8. Then., for each given € = 98,

" o1,
(7.2) AN (UN) - 8

in probability as N - ®,
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Proof. Fix 6. By Theorem 6.1, given & = @,

(7.3) Uy - Agl@) =0

in probability as N -« ®. It is an elementary lemma of probability theory that

X. » X in probability as N - @ if and only if each subsequence

X ANGH)

contains a further subsequence -+ X with probability one as Kk - o,

XN(I(Kk))

Thus to prove the theorem, it suffices to select an arbitrary subsequence

{N(Jj)} and then prove there exists a further subsequence N{j(k)) such that

-1, . -
AN (ji(k))(u 0

N(j(k))) 7
with probability one as k -« ®. Choose {(N(j}}. Then (7.3) implies that

Uniiy = 2w =0

in probability as j - ®. Then, using the above mentioned lemma. there exists a

further subsequence N{j(k)) for which

~ ~

(7.4) UNGio) T ANk

() - O
with probability one. By (7.1) and the definition of the inverse, for all

U, - AV{O) sufficiently smail in magnitude and satisfying H, > inf9 AN(O).
L

2

there exists K9 < @ such that

-1 -
7.5 - < -
(7.3) |AN (u2) e < KO |u AN(a)l for all 6.

2

Fix a typical point in the probability space. Now, it may be that for some

arbitrarily large k

~

7.6 U . < inf_ A . 8).
(7.6) NGk S I Ay 8
By (7.4) and LAD, there exists ek 4 0 such that for all large k
U . > A . - .
NGk T AN T &
Thus > inf A (8) for all sufficiently large Kk wusing LAD.

YN(5ek)) 8™N(j(K))

Hence (7.6) cannot hold for arbitrarily large k.
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Thus. combining (7.5) with (7.4),

-~ ~

- )
- < -
A Ongao! ~ 8 = KelUyi50k)) ~ Angiky) (8N =0
with probability one, as required. D

Remarks. (1) Theorem 7.1 provides a large class of sequences of estimators of

8. including (A;I(UN)). based on linear formula scoring. In practice, one

needs to compute AN(O) and its inverse A

N (6) to make use of one of these

estimators.

(2) It is to be noted that Holland, Junker, and Thayer (1987) have
proposed using {A;I(GN)} to estimate the distribution of € and have proved a
convergence in distribution result to justify this. Their motivation for
suggesting {A;I(ﬁN)} is different from ours.

(3) It is elementary to show that (7.2) holding for all @ implies
(7.5) ;;I(GN) -8
in probability as N - ®. Given the IRT context., (7.2) is perhaps a more
interesting formulation than (7.5). It does of course follow from (7.5) that
A&I(GN) can be used as a method of estimating the distribution of o.

(1) Note that (7.2) states that convergence in probability to individual
ability holds regardless of which of a large class of estimators is used. That

is, convergence in probability to individual ability holds for every nonsparse

admissible sequence of linear formula scores.

8. Discussion and Summary of Results. The purpose of the paper is to argue

that a successful approach to certain fundamental test measurement topics such
as bias requires multidimensional latent modeling. The paper provides a new

conceptualization of latent dimensionality, essential dimensionality. This

conceptualization depends on the replacement of local independence by the weaker

_68_




;aj and, in our opinion., psychometrically more appropriate notion of essential
:2;: independence. Essential dimensionality, designed to mesh with the empirical
A reality of multiply determined items, attempts to count only the dominant
:iii dimensions. Theorems 2.2 and 2.3 present conditions that guarantee that
.2; essential unidimensionality holds.
':f. In Section 3, essential unidimensionality is shown in Theorems 3.2 and 3.3
;%: to characterize the consistent estimation of a unidimensional latent trait.
A
jﬁj Here the "consistent estimation of ¢" is defined precisely in Definition 3.2.
» In order to facilitate this, the concepts of marginal item response functions
1
;E; and intrinsic ability scale are presented. This theory is applicable to
i; single-test applications and does not require that the IRFs be known (i.e.,
,Jg. calibrated).
;;' Theorem 3.3 shows that essential unidimensionality guarantees, under the
N,
:i- mild regularity condition of local asymptotic discrimination of {QN). that the

latent ability is unique up to monotone transformations. That is, essential

"
N

unidimensionality, an empirically testable condition, guarantees that the latent

e

; trait of the model is "well defined” in the sense that it is completely
. specified. up to a monotone transformation. Loosely stated, the "data”

T

.~

e (distributions of gN's) determine the latent trait when essential
;f unidimensionality holds. The above results, as with most of the results of the
®

A paper, requires an infinite item pool formulation. It is the author's position
fj that such a formulation facilitates the study of many foundational IRT issues.
N

Pa

‘} Example 3.3 shows that the concept of essential dE dimenionality for some
@

0" dE < ® js not vacuous by showing that test sequences exist that could be
:fi intuitively described as essentially o-dimensional. It is pointed out that
K
e
",

2‘

Al

7

7
E :-'_
,sj -49-

®

.

b

' ) [ S e % e Y ” - L . -~ AL WL W MK Vg L R A S S NN LN N -
NP AT A S G 2 e, 1 N A N N B A A N A G R M !




.
14
B
v
‘
v
I's
0
.
-
.
.
’
.
]
s
<
i
.
-
.

[ 4
P
e

R 2 S SN ACTAL R A i, Wi A AR Y w

DA
hY
W

)

AL

o
‘:\: essential unidimensionality, when other (minor) dimensions besides the ability

")
o

“.
(’.’ of interest @ are present, does not rule out non-random pre-asymptotic bias in
R the estimation of @ for short tests.

:I; In Section 4, the uncritical acceptance of the centrality of the role of
>:;~ item parameter invariance is challenged. In particular, Example 4.1 shows that
0
;{7{ invariance (precisely, unidimensional invariance) can hold and yet pervasive
“}i: bias against a particular group still exist. It is shown that unidimensional
‘.!—' -
b. .~-\ - . . . . . . . ry s

™ invariance is equivalent to traditional unidimensionality holding. Essential
P d-dimensional invariance is defined by replacing local independence by essential
- My

b
‘:Cﬁ- independence in the definition of invariance. Then essential unidimensional

T

AN

T\ invariance is shown to be equivalent to essential unidimensionality. These

o

QiJ results motivate a simple latent trait based definition of validity, namely that
S8
S . , , , .o . , .. .

LA validity holds if (i) essential unidimensionality holds and (ii)} the (unique by

’
v
A
i

L]
.
v

Theorem 3.4) essential trait 6 is the ability intended to be measured.

P

Section 5 addresses the issue of test bias in a single-test two group

"
r v
L] ! . !

P IR T

setting from the viewpoint of consistent estimation. Essential unidimensional-

B
R
Sl A
(AR
"t

1 e ¥

ity is shown to guarantee consistent estimation of ability in both groups. Thus

"

.19

EENY
3

the issue of test bias can be analyzed assuming that essential dE dimensionality

L4

. %
s ettty
R

holds for some dE > 1. The test bias problem is then characterized as the

v
L2
.
:

- -

::“ estimation of the intended to be measured 6 for a two-group latent model with
;:j: essential dE dimensional latent ability (e, gz). where the "nuisance" ability
N

Y 92 is d - 1 dimensional. Test bias for Groups B and C is defined as the

l- ." -

o . o B B c . C

{SSRS conditional distributions of 92 given €& =60 and 92 given & =8

;f:: differing for at least one value of €. It is stressed that the marginal

B, '_\v

':vt distributions of GB and GC play no role in the definition. Example 5.1
b demonstrates the role that test bias as herein defined plays in the attempts to

-50_

I}

)
(e dE3

T O P B Vo T o L. P W o o e Ll P WA
N, N %Y v J ’ » " - »
!.- > . g N, -. L ) A .‘ .il - s, 2"‘:“-"\.0 ll

Chadit) Lt e N3 '

-
b, 10,00 g 0




l. . -
o
Sy

estimate 6 in Groups B and C. Finally, Theorem 5.3 shows, recalling that

:t; d. > 1 assumed. that the lack of test bias implies that G: and Gg are
( . equally inconsistent in their attempts to estimate 6; that is, neither

;i; population B or C is favored over the other.

E;E Section 6 demonstrates that the theory of Sections 1 - 5 need not be

LZ' ‘ presented only in the context of the behavior of GN . but that admissible

;SE linear formula scoring can be used as a basis for Sections 2 - 5 with only minor
ﬁ:ﬁ alterations required. This development is largely left to the reader. Here an
: admissible linear formula score ’VN a, Uu., N2 1l is one where 0 £ a, <
e \£i=1 "i,N i f i.N
‘j;‘ K.-N for all i and some fixed K < ®. It is noted that most linear formula
:;E scores of interest are admissible.

= Section 7 addresses the problem of estimating 6 _on the 8 scale in the

iz; multiple-test multiple-population problem with known IRFs assumed. Theorem 7.1
E&; establishes that @ can be consistentely estimated on the 6 scale by a large
= class of sequences of estimators in the sense that for each such sequence,

:r:. ! 1(;] ) - @

o N

in probability as N - ®. Each such sequence is computable, has an explicit

formula, and is based on an admissible linear formula score in an intuitive

R

i;; natural way.
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