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IABSTRACT
rA determined case is made for the use of a nonparametric multidimensional

monotonic IRT modeling framework with local independence replaced by the less

restrictive assumption of essential independence. The concept of essential

dimensionality is then introduced to count the number of dominant latent

dimensions. Consequences of this more general approach include the consistent

estimation of ability on a common scale using a natural class of estimators,

_"S uniqueness of the latent ability when essential unidimensionality holds, a

theoretical treatment of test bias, an IRT based notion of validity, and a

reassessment of the importance of the concept of item parameter invariance.

'S.

- Key words: Local independence, essential independence, essential trait,

intrinsic ability scale, marginal item response function, latent dimensionality,

multidimensionality, essential dimensionality, essential unidimensionality, item

response theory, latent trait theory, ability estimation, consistent estimation,

item paramete- invariance, validity, linear formula scoring, nonparametric.
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A Nonparameteric Multidimensional IRT Approach with Applications

to Ability Estimation and Test Bias

Introduction. The central thesis of this paper is that a successful approach to

such fundamental topics as bias, consistent estimation of the ability intended

to be measured, and item calibration requires a nonparametric multidimensional

item response theory (IRT) modeling approach with an infinite item pool assumed.

Until recently, most theoretical and applied IRT based research has uncritically

assumed one of a small set of unidimensional, locally independent monotone

* parametric models; e.g., one-, two-, or three--parameter logistic and normal

-:; ogive models for a fixed finite number of items. (See Lord [19801 for a survey

of this IRT modeling research tradition and Mislevy (1987) for a survey of

current IRT modeling research.)

By contrast, this paper makes a determined case for the use of a non-

parametric multidimensional monotonic IRT modeling framework with local

independence replaced by a less restrictive and, we claim, psychometrically more

appropriate assumption, namely essential independence. In the spirit of factor

• analysis, essential independence together with essential dimensionality provide

a conceptual basis for establishing the number of major latent dimensions even

in the presence of multiple minor dimensions. Essential unidimensionality, the

existence of exactly one major dimension, provides a conceptual basis for

carrying out IRT based statistical analyses that require unidimensionality. It

is our position that a standard unidimensional IRT modeling approach should only

be u3ed subsequent to a careful multivariate statistical analysis of

- unidimensionality based on a more general nonparametric multidimensional

V'. approach like the one herein. To use uncritically the standard unidimensional

three parameter logistic model in applications is the equivalent of Plato's cave

.. . . *.- - - .- .- . .° - . %- -- - - . *- , . - e - g % - , -- -• . .: l r . .. . , . . . . . . _ - ., _ - . . . . , • • , , ' . , .. . , . . , , , - , - , , ,



dweller's attempt to interpret the outside world entirely on the basis of

shadows cast on his cave wall.

Consequences of our more general multidimensional modeling approach include

the establishment of consistent estimation of ability on a common ability scale

even when different examinees have taken different tests, and the existence of a

unique" (appropriately defined) latent ability provided essential unidimension-

ality holds. As a vital part of our proposed multidimensional IRT framework,

-the concept of the intrinsic ability scale of a test is also presented.

Further, our approach leads to a re-examination of test bias from a multidimen-

sional perspective.

This paper continues the work of Stout (1987), where essential

unidimensionality was first defined and a statistical test of essential

undimensionality was presented and explored.

The paper is organized as follows: Section 1 reviews the traditional

multidimensional IRT model. Section 2 defines essential dimensionality and

studies some of its basic properties. Section 3 considers the consistent

estimation of ability in the single-test single-population setting. The

vniqueness of the latent ability is considered. Section 4 cautions against the

overreliance on item parameter invariance and presents its relationship to

essential unidimensionality. An IRT based definition of validity is proposed.

Section 5 proposes a new definition of test bias and studies test bias from a

multidimensional modeling prospective. Section 6 considers the consistent

estimation of ability using any of a large class of linear formula scores
O

including proportion correct. Section 7 considers the consistent estimation of

ability in multiple-test multiple-population settings. Section 8 briefly

discusses and summarizes the results of the paper.
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1. Multidimensional Modeling. According to the latent trait viewpoint, each

examinee is indexed by a possibly vector valued and not necessarily distinct

variable 9. Associated with each item i is an item response function (IRF)

P.(9) that denotes the probability that a randomly chosen examinee from those

examinees with ability 9 will get the item right. Random sampling of

examinees from a specified population induces a distribution F on _, and

hence, a distribution on the test responses,

u - (U1 ,'...' U

Here U. = 1 denotes a correct response and U. = 0 an incorrect response to

item i by a randomly chosen examinee. Note that P.(e) = P[U. = 110 = 8]

E[Ui1 = 9] for all i, 9. It is important to stress that a model U can have
1- -N

J many latent model representations (UN . 0). That is, there are many choices of

9 such that, for all 9N'

(1.1) PI[ =u = P[UN u 19 = GldF(G)S-NN

Three characteristics of latent representations are of considerable

importance:

(i) The model (N , ) is said to be a monotone model if P1 (_ ) is

nondecreasing in 9 for each i (here if and only if S2i

for each coordinate i). M will denote such a monotone model.

* (ii) The model (U ' is said to be d-dimensional if a is a d-dimen-

sional random vector. The d dimensional ability is then denoted

by (9l ,--* 9 d). The dimensionality of 0 will be denoted by

6. dim(0) or d.

(iii) The model (U N -) is said to be a locally independent (LI) model if

-NN

NN

for all9 and each of the 2 choices of (u. 'u)
1' N

-3-
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The most commonly used class of models has been the LI, M, d = 1 models.

Usually for models when M, d = 1 holds, the IRFs will be strictly monotone.

2. A New Conceptualization of Test Dimensionality. For later use, we first

establish that an LI, M latent model with latent dimensionality S N is always

possible for a given length N test U

a,- Theorem 2.1. For any test U there exists an LI, M latent model
-N

representation (UN '-- with dim (g) < N.

Proof of Theorem 2.1. Assume that the test U N has a particular distribution.

Define

(2.1) 9. U.

for i <_ N. Then the range of each 9. is {0,1) and for all i,

Pi(_) E P[U i  = lle] - .

The intuitive interpretation of (2.1) is that 9 represents an examinee's state

of knowledge of the N items, in the sense that 9. = 1 or 0 depending on

whether the examinee knows the answer to item i or not. Clearly, monotonicity

holds because Pi(0) is monotone in 0 for each i. In order to verify LI,

note that for all u, a that

rl if U =
(2.2) P[U=9N = uU = : P uN =Ulu ] 

* andthat0 otherwise
L

and that (letting 0 =1 for convenience)

N u. 1-u. N u. 1-u. I if U"": N u i 1 u i I j - -

Tf P.(a) D [ - P.() 1 .(1 a 1. _
i=l i - 1=1 0 otherwise

Thus LI holds. Finally, it must be verified that (UN. 9) is a latent

representatic, in the sense that (1.1) holds: Note that (2.1) implies that

le P[_ = N P[U = UN]. Thus, applying (2.2) to the right hand side of (1.1)
0.1

with u u N shows that (1.1) holds. 0

5,-
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This mathematically trivial theorem provides a certain insight: For a test

of length N, the assumption of an LI,M model is a totally nonrestrictive

assumption provided o is allowed to have an N dimensional distribution.

Thus, given a sequence of tests (U, N 2_ 1} each U can be given an LI,M
-N' -N

representation (U ,_eN) such that dim(ON ) :S N. This fact will be used below.

It is important to note that, although mathematically helpful, the latent

* .' trait o of Theorem 2.1 is totally uninteresting from the modeling viewpoint.

For, unlike the 9 of Theorem 2.1, a valid latent trait should surely be

something more abstract and indeed more "latent" than an examinee's state of

"- -"knowledge concerning a particular finite set of items. Surely no meaningful

cognitive construct (e.g., reading comprehension) is reducible to which of a

-. finite set of items an examinee can correctly answer. Further, it is clearly
.'.?

inappropriate from a modeling viewpoint for the dimensionality of the test to

equal the test length.

The 9 of Theorem 2.1 is uninteresting from another viewpoint as well.

Holland and Rosenbaum (1987) strongly make the point that an assumption true for

all models is 'vacuous" and is neither a mathematical assumption (because it is

always satisfied) nor a scientific hypothesis (because it places no testable

restrictions on the behavior of observable data). The 9 guaranteed to exist

by Theorem 2.1 is clearly of this vacuous character. What is interesting is

that for many tests UN  there do-exist lower dimensional (than N) latent trait

representations. Indeed, the psychometrician's goal is to construct a test that

validly measures the construct of interest using items sufficiently

"homogeneous" that the test can be well modeled by a low dimensional or

hopefully even unidimensional model.

Let us recall the traditional IRT definition of test dimensionality:

* Definition 2.1 The dimensionality d of a test U is the minimal

-N

-5-
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dimensionality required for _9 to make the latent model representation (UN' 1

an LIM representation.

Although mathematically appealing, this definition is rather impractical

for mental testing because, in actual practice, individual test items clearly

have multiple determinants of their respective probabilities of correct

response. This position has been pursued clearly and vigorously by Humphreys

(1984). who states:

The related problems of dimensionality and bias of items are
being approached in an arbitrary and over-simplified fashion. It
should be obvious that unidimensionality can only be approxi-
mated. Even in highly homogeneous tests the mean correlation
between paired items is quite small. The large amount of unique
variance in items is not random error, although it can be called
error from the point of view of the attribute that one is
attempting to measure. Test theory must cope with these small
correlations. We start with the assumption that responses to
items have many causes or determinants.

Humphreys (1984) asserts that dominant attributes (dimensions) result from

*" . overlapping attributes common to many items. Attributes unique to individual

items or common to relatively few items are unavoidable and indeed are not

detrimental to the measurement of dominant dimensions. In his writings,

Humphreys stresses that the low item intercorrelations researchers have observed

argue strongly for viewing items as multiply determined. Although the existence

* of multiply determined items is rarely stressed in the IRT literature, it is a

theme with a long history in the factor analytic test theory literature.

* classical factor analysis applied to binary test data of course implicitly

O. assumes the possibility of many determinants, allowing for many determinants

specific to individual items in addition to one or more dominant dimensions.

McDonald (1981) actually argues for the existence of "minor components" in

factor analytic modeling of test data. That is. he argues for the existence of

-6-
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multiple determinants, many of which are common to relatively few items at most.

Tucker. Koopman, and Linn (1969) have developed a factor analytic test

simulation model that includes "minor factors" as well as dominant factor and

unique factors. Tucker has specialized this model to binary item tests in work

yet to be published.

Unfortunately, the traditional definition (Definition 2.1), with its

insistence on the achievement of local independence, makes no distinction

between dominant and minor factors. Thus, if taken seriously, this definition

compels us to take as test dimensionality the total number of all item

dimensions rather than adopting the more appropriate "factor analytic viewpoint"

by which only the number of dominant dimensions is counted. This is true even

0 in situations with only one dominant dimension where, from both a psychometric

and a data analytic viewpoint, it would be desirable to ignore multiple

determinants (i.e., minor and unique factors) and categorize tests as unidimen-

sional. Thus the traditional definition requires us to assign dimensionality

. d = d > 1 (d thus assigned, possibly quite large in fact) in settings where

it would be desirable to assign d = 1. The following hypothetical example

illustrates the multidimensional nature of items in tests that should be

considered unidimensional.

Example. Consider a multiple item "probability" test in which item I measures

S
ability in probability but is influenced by the examinees' knowledge of an

ordinary deck of playing cards, item 2 measures ability in probability but is

influenced by the examinees' understanding of elementary physics, item 3
S

measures ability in probability but is influenced by the examinees' knowledge of

elementary Mendelian genetics, item 4 measures ability in probability, but...

One is clearly forced to label such a test as multidimensional according to
S

* the traditional conceptualization of dimensionality described above. Indeed. it

-7-



is clear that d 3: with the dimensions including ability in probability

the context of bridge knowledge, ability in probability in the context of

,. elementary physics knowledge, and ability in probability in the context of

knowledge of genetics.

The multicontextual nature of this example is deliberate. It seems

undesirable to construct, perhaps under the guise of eliminating biased ite

context free probability test (even if possible), for it would probably not

measure what should be measured, namely the ability to solve probability

problems in a variety of contexts. Hence, whether the multiple determinant

prominent as in the above example or more subtle, a probability exam would

necessity comprise multiply determined items. Moreover, testing that compr

- multiply determined items is necessarily widespread and is in no way restri

* .only to tests in probability. Clearly, it would be useful to have a concep

test dimensionality that would allow such tests as the above to be consider

unidimensional. Such a conceptualization is provided by the essential

dimensionality of a set of items, defined below. This definition is design

count the number of dominant dimensions only, uninflated by the incidental

, multidimensionality of items.

In order to present our definition of essential unidimensionality and

study the asymptotic theory of ability estimation, it is necessary to view

test UN as embedded in a sequence of tests UI, UN, ... , each obtainec

the previous one by the addition of one more item. Two justifications for

- realism of this shift in modeling perspective can be given: (1) If an acti

Item Banking scheme is being used to construct the test, then our embeddinj

scheme is totally realistic. Indeed, random sampling of items is commonly

for criterion referenced tests constructed from item banks, according to

-- °
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Hambleton and Swamanathan (1985, Chapter 12). (2) Even when there is no actual

sampling of items from a population of items, UN certainly can be and we think

should be viewed as a representative sample of the infinite population that

would be constructed by continuing to generate items by whatever test

construction process has been used to generate the first N items UN.

It will be assumed throughout the remainder of the paper that U N is

embedded in a sequence U,...,U N*.. This will be referred to as the item

pool formulation of IRT. This embedding is analogous to the mathematical

statistician's study of the estimation of a population mean, say, by a sequence

- N
of estimators X = I X./N resulting from a sequence of random samples, each of

N lII

which is obtained from the preceeding one by the selection of one more

observation. As with Justification (2) above, such a sampling model is often

"5 used when the "population" being "sampled" from is only conceptual rather than

- . an actual population.

We now define a weaker type of independence than local independence.

Definition 2.2. The latent model (UN' 9, N 2 1) is said to be essentially

A independent (EI) if the conditional distribution of U N given B in (1.1)

satisfies for each 9 in the range of 0,

ICov(Ui'UjI I _D() Ll~i<i:SN 1.
(2.3) DN(_ )  -. 0 as N .

• 2

Remarks. Mathematically, the notation (UN , 0, N 2 1) in Definition 2.2 means

that the U N are random vectors and 9 a random vector defined on a common

probability space. This corresponds to the intuitive notion of an infinite item

pool and a fixed examinee population from which the sample is drawn. In this

paper, issues of rigor when using measure-theoretic probability, although always

surmountable, are suppressed in the interest of clarity.

-9-
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-. It is informative to contrast the definition of essential independence with

the traditional latent trait conceptualization of local independence given in

(1.2). LI implies pairwise independence of all pairs (Ui,Uj), i * j, given

9, which is equivalent to cov(Ui ,UJ Q = e) = 0 for all 9, i # j. By

contrast, EI only requires that for each fixed 9, cov(U.i,Ujl = e) is small on

average as the test length N grows.

Now essential dimensionality can be defined.

Definition 2.3. The essential dimensionality dE  of a family of tests (UN)

is the minimal dimensionality required for a latent trait 0 to make the latent

model representation {UN. 0, N 2 1) an El, M representation. When

d = 1, essential unidimensionality is said to hold. If essential dE

dimensionality holds using ability q, then (UN) is said to be essentially dE

dimensional with respect to ability 0. An essential trait 0 is any latent

- ."trait 0 for which (U 0. N 2: 1) is an EI. M representation with the

essential dimensionality of 0 the minimum possible.

Remarks. Although dE=O is theoretically possible, it is psychometrically

uninteresting. Thus, to avoid irrelevant trivialities it is assumed that dE l

for all latent representations considered in this paper.

The following theorem makes precise one way that essential unidimen-

sionality might occur.

Theorem 2.2. Suppose there is a random variable 0 such that for each 0

;N" sup Ncov(Ui Uje = -) 0 as N .

Then essential unidimensionality holds.

Proof. Fix 0. Fix e > 0. Choose N such that

0
€ .- sup cov(U , uj IQ 0) :5

sup
li-il NO

Then, for N > N0 ,

'0'

-10-
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1 vi<jSN cov(Ui, Ujle = 5l N 2 + N N

Then DN(G) : 3 for N large, thus establishing essential unidimensionality. 0

The following example illustrates the difference between essential

dimensionality (Definition 2.3) and the traditional definition (Definition 2.1)

of dimensionality.

Example 2.1. Consider the construction of a paragragh comprehension test of

length N = 5n, where n = number of paragraphs and each paragraph is followed

by five related questions. Assume total independence between questions

involving different paragraphs given G, where for convenience we think of 9

as reading ability. Suppose that cov(U.i , UjeO. = 9) > 0 for all U i, U. for

the same paragraph (as should be the case) and that the IRFs are monotone.

Note, using Icov(U i, U 9 ) 1 for all i, j, 9,

D (9) <5 n( 2 const as N
-N9 -- "- N-I sN -l

Thus essential unidimensionality holds, whereas a traditional dimensionality of

n 1 seems necessary for a test of length N = 5n. Reading ability (a) is the

essentially trait for this essentially undimensional model.

The example illustrates our view that minor or idiosyncratic dimensions

should be ignored in assessing test dimensionality from the applications

viewpoint. Our requiring El rather than LI is the key step that makes it

possible to ignore minor dimensions in assessing dimensionality.

Example 2.1 suggests an interesting sufficient condition for essential

unidimensionality: If there is one trait common to many items, if the other

traits are "orthogonal" to one another given this "dominant" trait, and if each

of the other traits influences only a bounded finite number of items, then

0 -ll-
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essential unidimensionality should hold.

Theorem 2.3. Let U = {Ui , i _ 1) be an item pool with U partitioned as

U = (UM 1  U (2 ) ... ). Suppose that the number of items in each U M is

"" uniformly bounded in i and that local independence holds with respect to

~ e , 2 '. . . Suppose that the item response functions for each item of

U W depend on 9, 9. only, and that 9. and 0., are conditionally

independent given 9 for all i * P. Suppose for all i that
(2.4) def P ( 9) dP(949)

= i , (a) J j)

is monotone nondecreasing in 9, where P.ii(9, 9.) is the item response

function of the jth item of U. and P( Gi1) is the conditional distribution of

9. given 9 = 9. Then (U N > 1) is essentially unidimensional with respect

to ability 0.

Remarks. In the statement of Theorem 2.3 above, G is the essential trait. The

hypotheses of Theorem 2 3 can easily be modified to allow each individual item

to depend on more than one nuisance parameter, or to allow the number of items

in each category to grow slowly.

Proof of Theorem 2.3. Choose Uj UP, from different partitions - say, i and

P. Then, denoting the joint density of 9i and 9i', given 9 = a by

f(G. 9.j9). 9,a P (0 i) ~ !1)d9 i

°1,,

f( Ji 1 11 1 1 1

e f(e19) d 9iJ f(e e) d Oil

O E[UJl = 9] E[U.,1 = 0].

Thus, given 6. U and U., are therefore conditionally independent. Thus

cov(U., U.,l1 = 9) = 0. Now let the number of items K. in each partition set

. U be bounded by K. Then. D (9) satisfies for all 9
N

-12-
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n N FKil

DN(9 _)N

12J

where nN = the number of partitions into which the first N items are split.

Thus, noting that K. = N, for all 9> "Li= 1 K

KN K2 N
D (9)< < < K 0 as NN1- N(N-1) - -NN-l1 - N-I

which establishes the result since N holds for the P.(0) of (2.4) by hypothesis.

ja

3. Application to Consistent Estimation of Ability. We turn now to the problem

of estimating a particular latent ability a in the presence of other

, ("nuisance") abilities. In order to illuminate certain theoretical issues most

clearly, ability estimation will be considered in its simplest setting: we

consider a fixed test for a single examinee population with no consideration of

scaling/equating issues such as the need to find a common ability scale when

using more than one test. Later in Sections 4, 6, and 7 we will address some of

the practical problems raised when the rather strict one-test one-population

assumptions are relaxed.

We suppose that (UN' 9, N > 1) is either essential dE dimensional or

traditional d dimensional with respect to e for some d E 1 or d I

respectively. The item response functions for (UN, 0, N > 1) are denoted by

P.(&). Let 9 be the ability desired to be estimated, and suppose that 9

determines 0; i.e., that a is a function of 9.

In this single population problem there is nothing unique or preferable

about the 9 scale. That is, any strictly increasing transformation A(G)

yields an equally acceptable scale for purposes of estimating G. Let

-13-
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(3.1) P () = E[P (G)le 91 P[U i = e]

(the distinction between P.i) and P.(9) henceforth assumed clear from1 1-

''..' context). The P.()s are called the marginal item response functions with

-.. respect to ability 6. Let

(3.2) A (9) (6 ) (9)1N
N L

.

A (N6) is called the intrinsic ability scale for 6 relative to the test U
N -N

and to the examinee population e. AN(G) has an interpretation bridging

classical test theory and IRT: AN () is the expected test score, that is, true

score, among all examinees with latent ability 0. Under the assumption of

strict monotonicity, Theorem 3.1 below implies that AN(0) is strictly

increasing in 9 and hence is an acceptable scale for estimating 6.

Considerable recent attention has been focused on nonmonotone unidimen-

.sional item response functions. It has been shown that attractive distractors

are a source of nonmonotonicity. It has been suggested that the existence of

attractive distractors may be explainable by multidimensionality of the ability

space. In this regard, it is interesting to note that P.(0) can be monotone
1"-

and yet P.() nonmonotone:1

Example 3.1. Let P(o 1 1
1' 2 ~ 2)/7 / 1, 0 2 1 n

f(6 2 101 ) 01/4 if 0 < O2 : 4/1 = 0 otherwise.

0 Then

-', 4/8 6 + 0-';1 1 2
P( ) a 1 de

1 J0  ~ 6 8  1 2

S1 + 1 2 1/4 < 61 < 1.
2 0 1  17"

But P( 1 ) is decreasing in 6 for all 6 n

1 1

Of course, as is intuitively clear, mild and natural regularity conditions

prclude this nonmonotone behavior. Indeed. the nonmonotonicity of a projected

4' -14-
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. item response function can occur only when the multidimensional ability 9 has

some sort of negative association, among its components.

Definition 3.1. A random vector Y is said to be stochastically larger than a

random vector X if, for all t,

(3.3) P[X 2! t] PlY 2 t]

with strict inequality for at least one t.

The following fact is well known:

Lemma 3.1. Let Y be stochastically larger than X. and let f be a non-

negative nondecreasing real valued function. Then

Ef(X) _5 Ef(Y)

Theorem 3.1. Let (UN , 0) be a monotone representation. Let 0 (6,

Suppose that, for every a1 < 2 pair that the distribution of -2 given

S= a 2  is stochastically larger than the distribution of a-2 given 0 = VI.

Then, for i 5 N, each marginal item response function P1 () of (3.1) is

nondecreasing in 9.

Proof. It must be shown that

-Pi (9,9 2 )dP( -2 10)

ic nondecreasing in 9 where P(o 2 10) denotes the distribution of 0-2' given

S=9. Fix 9' < ''. By Lemma 3.1, noting that P.(9, 9 2_) is for fixed 0 a

nondecreasing function of 0-2 by the assumption of monotonicity,

(3.4) PilG., _2 )dP(l 219') < Pile' _2 )dP( 2 le'')

But, because Pi(9) - Pi(, 0 ) is nondecreasing in 9 for each fixed 0
13.5) Pi(G'., a_ )dP(O less) -:5 Pi(0'', 0_2)dP~ol ogoe' )

1 2 -2 - -

The combination of (3.4) and (3.5) yields the desired result. a

We now turn directly to the ability estimation problem. As we shall see,

essential unidimensionality characterizes the consistent estimation of some

unidimensional latent ability; moreover, it implies that, in a certain sense,

'4- -15-
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the latent ability is unique. It is in this spirit that an essential trait

(recall Definition 2.3) can be referred to as "the" essential trait with respect

to which the items are essentially unidimensional.

-... Theorem 3.2 below asserts that essential unidimensionality is precisely the

condition needed for consistent estimation of ability. The main estimation tool

is proportion correct U N . Later in Sections 6 and 7 generalizations based on

"linear formula scores" are explored.

Before stating Theorem 3.2. we must carefully consider what it means to

consistently estimate 9 using an item pool formation. Recall our viewpoint

that any strictly monotone transformation of a -- for example AN (9) which is

strictly monotone when the IRFs are -- is an acceptable scale on which to

. estimate 9. Clearly U is a natural estimator of AN(S).

Let N(C) denote the cardinality of a finite set C. For &>O, let (e)

denote the collection of all subsets C of (1._N such that N(C)/N 2:f

For example, f (1/2) consists of all subsets containing at least half the
N

integers between 1 and N. We will call a sequence (CN , N ?t 1) of integer

subsets nonsparse provided there exists e > 0 such that CN eN (e) for every

N. Let C e tN(e). Define

U U~ /N(C).
C Liec i

S. Definition 3.2. It is said that 9 may be consistently estimated (in

probability) using the sequence {UN , N > 1) of items if for every nonsparse

sequence (CN. N _ 1} there exists a sequence (g (9), N _ 1) of functions of

N

- such that for each 9, given 9 = 9,

(3.6) 1C - (9) -. 0
.N - N

in probability as N -.

".'

%"
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Remarks. The intuitive idea of the definition is that any nonsparse subsequence

of items should be usable to estimate 9 in the sense of (3.6). Also, not all

sparse subsequences of items need necessarily be usable to estimate 9. For

example if every 2 th item in a "mathematics" test were a "verbal" item, we

would still be able to consistently estimate 9 (mathematics) since the bad

sequence of estimators {M U M. M _ 1) is formed from too sparse a

subsequence of the items (U, i 1} However, Definition 3.2 does for example
i t

require U M. M - 1) to estimate 9 in the sense of (3.6). Thus, if
si =o 10i

every 10th item were a verbal item, the sequence of items (UN' N ?t 1) would

not be able to consistently estimate 9.

* A reasonable question to ask is why our definition of consistent estimation

should require (3.6) rather than merely requiring the existence of functions

" gN(9))} such that for each given 0

(3.7) UN - 9N ( ) "0 0

in probabi.lity as N -. ,. One reason is that if a test is formed by sampling

items, as in item banking or computerized adaptive testing, then clearly 9

must be estimable using any reasonable sequence CN  in (3.6). A second reason

,-.. that requiring (3.7) is inappropriate is that it is vacuous in the sense that

- . every test U of fixed length N can be viewed as embedded in an essentially
-N

Sd E dimensional sequence of tests (U N, O, N _ 1) such that (3.7) holds for a

judicious choice of 9. The following example illustrates this embedding for a

test where 50% of the items measure one trait and 50% measure a secon' irait.

. It presents an essentially two dimensional family of tests where (3.7) is

satisfied for a mathematically judicious choice of 9, 0 being some function of

the dimensions (9 9 )" However, (3.6), which postulates consisten' estimation
1' 2

O, of 9 by all nonsparse subsequences of items, is seen to fail in the sense that

-17-
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two nonsparse subsequences of items can be selected that estimate 6 2

1V 2

respectively. This is a situation where most psychometricians would prefer to

split the test up into two unidimensional tests and only then address the issue

of consistency. Requiring (3.6) instead of (3.7) as a definition of consistency

reflects these considerations.

ExanmLe 3.2. Let (U2K 0) be a LI, M family of latent variable models with

'-0 (6, 62) and for 1 S i S K,

P 2i (6) a 1, P2i -l(_) 2

where the distribution of 0 is given by G1. e2 independent identically

distributed with 0 1 uniformly distributed on [0,1]. Let 0 = e 1 + e 2 . Fix S.

Then, standard multivariable calculus yields for 1 5 i.j < K, 1 < k < 2K

2
6s 6

(3.8) E(U kI0 6) 2 ~- coy (U 2-,U 2j Is 6)1

and, if i * j,

2 2
cov( U IJ t=6) - cov(U U =6)

2i. 2j 12 2i-1,2j-1 12

Thus. using (3.8),

Var(U 2K 1 = 6) - 1 [72K VarU 6)2K(2K) 2 [/i=l Va(il = O

+ L cov(U.'U. I° = 6)I

lSi~jS2K

2

.
1 (2K I -.0 as K - g 2

. .( K 2 2'- 2 12 22

-:. - 2 24K -,0 as K
2K 2~ 2 4

Further, E U2K = 61= I2K Thu - 6- er2K/
S..

- ,as K - Hence, for each 6, given = 0.

2K 2

in probability as K -, A similar analysis holds for U 2K- and also for

-18-
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1 S 9 _< 2. Thus (3.7) does hold in what is clearly an essentially two

dimensional sequence of tests. However, it is intuitively clear that (3.6)

fails since the even items can be used to consistently estimate a 1 and odd

items to consistently estimate 62. 0

Now Theorem 3.2 can be stated and proved.

Theorem 3.2. Let (UN) be essentially unidimensional with respect to ability

,. Then. 0 may be consistently estimated. In particular, for each given a

e, (3.7) holds.

Conversely, if for some monotone latent model (U N' 6) the undimensional 9

may be consistently estimated, then (UN, 6) is an El, M representation and hence

essential unidimensionality holds.

Proof. Assume essential unidimensionality. Fix e > 0 and 9.

(3.9) P[JU N  AN(9)I > .j = 91

S Var (UNI is 9)/2

since E[UNIO = 01 AN(9).

But. noting that

(3.10) 7N Var(UiJ = 9) :S N/4,
Li 1

it follows that

Cov(U ,UIo=9)
Var(U=19 =) + 2 ---.0 as N-..N .- 2

SlSi<jN N

by the assumption of essential unidimensionality with respect to 9. Thus (3.7)
follows with g (9) = A (0). Now consider any nonsparse sequence (CN , N _ 1).

N N N'

S.It follows from essential unidimensionality that

" .L. [Icov(UiUj.O = a)1 -. 0

%N(CN) ij ,CN i j

since for some e > 0, N(C )/N -: c for all N. Thus the same argument that

,.N

-19-
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established (3.7) yields (3.6); i.e.. consistent estimation of 9. Here

gC (9) N P i), N(C N.

Conversely. suppose 9 may be consistently estimated. Consider first the

case of C = (1,. N}. Let {gN(), N > 1} denote the centering functions for

U N guaranteed to exist by Definition 3.2. Suppose without loss of generality

that 0 _< gN(8) _< 1 for all N.G. Note that

N 7
(3.11) 0 < Var(' UI@ = 9) - Var(UIQ 9)

Zi= 1 L. Z-1=

+ 2 7 Cov(U U 19 = 9).

1Li'j'!)' i I-< i < j-<N

,. which implies by (3.10) that

:-7 N
(3.12) inf L Cov(U i Ue = 9) > -

1: j 8 5

Therefore

1 L CovU. ,Uj O)IQ

cannot have any negative limit points.

For any bounded random variable X denoting the bound by a (i.e.,

Xi -S a).

(3.13) 
P[IXI ] > EX2 - e2

2
a

Thus, letting X U - (9), for e > 0,
N -N) f 6 N > 0,

(3.14) P[IUn - 9N()I > a= 9) EIu - 9 (e > Var(U 10 9) , 2,,''N N N gN N a O=O

By the consistent estimation of 0, U - (0) 0 in probability as N

N N~G npoaiiya

Thus

PtU N - g )l > ( 91 0 as N.-,.

Thus, using (3.11) and (3.14). for each 6 > 0.

.Var(U I 9)

1-1.2 Cov(IJ. UJ = 2
2  £ 1]N N j.-- 15i<jN

-20-
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has no positive limit points. But

Var(U I 9)/N - 0
1i= i

for all 0. Thus. for each 9

(315) 2 Cov(U. ,U. =)
2- co i i u  le  9)o

N2  L ' iN3 5 i<jN

has no positive limit points. But when (3.12) is used for each 9 the

expression in (3.15) has no negative limit points.

Thus

(3.16) 1 cov(U.UI6=9) -. 0
N L i'
.2 1:i < j-<N

as N -, D But, this same argument implies for fixed e > 0 and any nonsparse

sequence (C N _ 11 that
* V N

(3 17) cov(U .,U 19 9) 0
as 

-
-.
"

. ( N(C)N} i.jeCN i.

Now suppose that DN () -, 0 as N -, ®. Thus it is easily seen that for

some C > 0 there exists a subsequence N' of the positive integers and

subsets C. E t (e) and c' > 0 such that
%-- 14 N'

(3.18) cov(U..U 19 =6) > -
-. ECN, i j

* for all N' and such that every summand is the same sign. But this clearly

contradicts (3 17). Thus D (9) -. 0 as N -. . establishing El for {UN,9) and
N 

N'

hence the desired essential unidimensionality. 0

* Remarks. It is interesting to note that Theorem 3.2 allows the consistent

estimation of ability even if the IRFs are unknown to the practitioner. That

is. ose of U to estimate A (9) does not require knowledge of the form of
N N

AN(0) As long as no attempt is being made to estabish a standardized ability

-21-
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0

scale across tests (e.g.. as a precurser to equating tests) knowledge of t

-RFs is not required. Moreover. consistent estimation of ability with unk

I RFs is possible in several populations being administered the same test -

Section 5. Also note that the proof of Theorem 3.2 makes cleat that when

consistentlv estimated that gc (9) = A C (9) always works in (3.6).N "N

It is a foundationally relevant fact that essential unidimensionality

" implies under a mild and natural regularity condition for (U that the

ability is. in a certain sense, unique, as Theorem 3.3 below asserts.

Detinition 3.3. Let a sequence of tests {U be essentially unidimensio-N

w 'ith respect to ability 6. Suppose for every fixed 1 such that 9 i

-. the range R of 0 (i.e. P[j c R] = 1 with R "minimal") that there ex

0 and an open neighborhood H of 0 1 such that for all 92 c H
-.-. 1 1 1

range R of 9 that

P.e2 - P (a
L 12 11I..- ~1 -i=l i1

(3.19) >e > 0 for all N.
N 9

2 1 1

Then KUN,6} is said to be locally asymptotically discriminatipg_ (LAD) wi

respect to 6

Remark. What LAD really supposes is that P (9),N is increasing faster

some positive-slope linear function in some neighborhood of 9 for every

* independent of N.

Theorem 3.3. suppose JUN is essentially unidimensional with respect tc

9 and G'. Let the corresponding marginal item response functions be denot

O. P (e) = E(U e = 9), P:(9) = E(Uij1'= 9)... i i

t ale 9. Suppose -N is LAD with respect to G. There then exists

finr(tion g defined on the range R' of' 0' such that

9 e g(9' .g nondecreasing

- an) ,h range of g is R

-22-,,-,



Remarks. Since a d=l, M, LI model is also an El model, note that Theorem 3.4

holds for d=l, M. LI models as well. Thus Theorem 3.4 may be of interest even

if one does not wish to use El in IRT modeling.

Proof of Theorem 3.3. By Theorem 3.2, for each 9 and 0'

(3.20) U - A (a)-.0N N

in probability given 9 9 (and hence on any subset of 9 = 9) and

(3.21) U- AN(O 0
-. N N

in probability given 0' = 9' (and hence on any subset of e' = ') where

AN() = ECUNIG = 01 and AY(O') = E[UNIO' = 9].

Let

~G,, = [0 91 fl [0' = e']
G9,9n'9 v

: for all 9, 9'. Then, for each 0, 0' such that G ( *, (3.20) and (3.21)

imply on G 0,0  that

(3.22) AN(9 ) - A(9') -. 0

Fix V'eR' and let, denoting the empty set by io,

B = (SIG e)

Note that B. , for all 9'eR since each examinee has an ability value for

both G and 0'. Suppose e1 0 02 with 0 1 sB 9 , a2 B., and 02 > 91 without

loss of generality. Then (3.22) implies that

AN( 2) AN( ) 0 as N -.

That is,

7.N P 1(9 - Pi(a)
.. ".~0 0, =

* contradicting (3.19). Thus B., consists of a unique 0 for each 0': i.e.,

a function g is defined:

a = g(e') for all V'eR.

Choose 9' > 9i with GI'R', 9;eR. Then define

-23-
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a 2  g9 - 9 = g(O)

Now,

* -Ale) - AN(1) >0

because the essentially unidimensional model (UN , G') is M. By the definition

of g. recalling (3.22), it follows that AN(9 2  AN(aI ) has no negative limit

points. Thus 02 > 91 by monotonicity of the Pi(G)s. That is, g is

monotone nondecreasing and well defined for all 'aR'.

Because [9' = 6'] C [6 = g(G')] the probability space, say 1i, satisfies

12 U (0' a 9') C U (e g('))
""" @O'eR' '

and

96R

it follows that the range of g is R. 0

Remarks. (1) Note that the theorem does not claim that g is strictly

increasing. That is, the rescaling given by g could assign many 9' to the

same 9. Because no assumption analogous to (3.19) was made for 0', this is of

course expected, for the 0' scale could produce a finer partition than needed

to achieve essential unidimensionality. Thus the collapsing of distinct 0'

into a single 0 cannot be ruled out. The essential point is that, if for the

0 scale there exists an interval [a.b] such that,

d P'(O ) 0 for all i. ' 'e[ab]

then the e' scale should be rescaled so that all 6'e[a b] should be

collapsed to a single point, say G'. However, assuming (3.19) for 9' as well
a

does imply a strictly increasing g.

(2) In a private communication, Brian Junker has pointed out that an

*i alternate proof of Theorem 3.4 can be given that produces g explicitly. It

" seems worthwhile to describe this construction: By the Helly Selection Theorem

. -24-
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for uniformly bounded increasing functions (Billingsley, [1968], p. 227) one can

exhibit an integer subsequence Nk and functions A(G), A'(e) such that for all e

A(e) = lim AN (e), A'(e) = lim Ale).
k-#- k k-sw k

By (3.19). A(9) can be shown to be invertible. Junker's proof then shows that

g can be defined by

(3.23) g(e') = A- I(A'(G'))

(3) Note that the item pool formulation was essential for establishing the

uniqueness of ability scale. It is the author's position that an item pool

formulation with its implicit requirement of infinitely many items greatly aids

the study of many foundational IRT issues. Indeed, that is a major point of

this research.

It is an axiom of psychometrics that a "test" should be unidimensional. If

riot. it should be broken up into a battery of unidimensional subtests, each to

be analyzed separately. Thus, in the context of this paper, the axiom becomes

that a test should be essentially unidimensional. In this context, the

following example shows that it is possible to construct a sequence of tests

{(N' N 1 1) that is not essentially unidimensional. Thus, the concept of

essential unidimensionality is not mathematically vacuous.

-_(r-1 
2  'r2 )

Example 3.3. Let for each r > 1 U. = U. for 2 < i, j : 2 and U.
I J

independent of U. otherwise. Let P[U i  1] : P[U i  0 ] 1/2 for all i

define the marginal distributions. Then, letting

2"-(r2

2 2 U
_( i= r 1

rL r 2  
( r - 1 ) 2

U =2 2

it follows that

-25-
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2 2.. (3.24) P[(r 2 ) -](r

,P[U - 1] P[U 0] = 1/2,

r 2
that (U r ? 1) are independent, and that with probability one,

(3.25) Ur2 - or 2 S

r 2 2r-1 r 2 2r-1

Suppose essential unidimensionality for {UN , 6). Then by Theorem 3.1, given

U - AN(9) - 0
N N

in probability as N -. c.

Thus, given 0 = 9,

U 2 - A 2(9)-. 0
r r

as r -. w. Thus, by a standard probability argument, there exists a subsequence

* 2
r . such that given 0 9

r. r.

with probability one as i -- w. Thus, given 0 = 6,

(r2',..:... (ri )

(3.26) U - A *() ---- 0
r.

with probability one as i -. . Because M is part of the assumption of

essential unidimensionality, A (0) is nondecreasing in 9. A contradiction

2
-(r .

* of this is now obtained. By (3.24), (U , i - 1} is a sequence independent

identically distubuted random variables with marginal distribution p(O) -

p(H) 1 2. Let, for i : 1 and fixed 1/16 > > 0

O A [A (a) <S e A [A (9) 1 -1
1,O 2 - 2

,r r.
21 1

;'-p
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2

By (3.25). (3.26). and the distribution of (U i 1). we choose i' so

large that

(3.27) P[Ai ] 1/2 - e, P[Ai ]  1/2 -
S,.

P[Ai,+ , ] ?t 1/2 - ., P[A., I ? 1/2 -
'10

and further that

(3.28) P[A , A 1/4 -. P[A n Ai 0 1,Y4

Because the events in (3.28) each have positive probability, they are each

nonempty events of the probability space, Q say. This will produce a contradic-

tion as follows: Let w 0 and w be outcomes of 12 such that

" 0  A 0 A i +1,.1. 1  1 fi 1 ,1 0

Then obviously w0 e Ai' 0 I W A i', so that 9(w0 ) < () by the

monotonicity of A 2(). But, similarly, w .& w0 AWe A , so that
r.
i

'(W ) < G(WO), a contradiction.

Theorems 3.2 has an interesting multidimensional analogue. Let for a

latent model (UN , 9) with item response functions {Pi(a). 1 : i S n),

(3.29) A (9) = 7 P (9)/N.
N Li=i -

(the distinction between AN(0) and AN(Q) henceforth assumed clear from context).

Theorem 3.4. Suppose essential d dimensionality with respect to ability 6.
E

*Then. 0 is able to be consistently estimated in probability in the sense of

(3.6) with gN(9) replaced by gN(9) in (3.6).

N N

Suppose that essential dE dimensionality fails for (UN). Then there do

not exist a d dimensional & and accompanying functions gC(9) such that
E CN

") is monotone and for each given 0 9

5, -27-
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0

given, into an operational definition with only the "observed" data given, that

Is with the distribution of the test UN  given. Of course, in any statistical

application the "given" distribution of UN  is observed only with error because

only a finite amount of data is ever available. With only the distribution of

UN given, then the definition must contend with the essential nonuniqueness of

the IRFs and accompanying scale for 9.

Definition 4.1. Let U (B ) and U (C) represent a test administered to two
-N -N

populations, B and C. Then d-dimensional invariance holds provided each test

administration has a d-dimensional M, LI representation using the same item

response functions. That is, for each u a (u .  uN) with 0 and G' d-

dimensional,

-4.1)N T u T Pile)i 1 Pie)]" dP(B)(0)

and
(C) ul N 1u" i P C ( ,

(4.2) P(U_(C) = u f - J ' [Pi(' ) I P ( ')l

(B) (C) d

where P and P are arbitrary distributions on R , d dimensional

Euclidean space.

Remarks on Definition 4.1. (1) A key point to note is that the ability

distributions P.(B) and PI(C) are arbitrary and in no way required to be

related to one another. This amounts to allowing an arbitrary choice of ability

metric for each population in an effort to obtain the same item response

functions {Pi(9)) in (4.1) and (4.2). The two metrics need not be the same in

any mathematical or psychological sense. Nevertheless, once statistical

evidence is given that (4.1) and (4.2) hold, it is standard IRT practice to

declare that a common ability metric has been found.

3,
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(2) In applications, because the latent ability is usually assumed to be

unidimensional. "invariance" usually means unidimensional invariance. For

example, when invariance is used to justify a technique for identifying biased

'. items, then the practitioner surely has unidimensional invariance in mind (see

Lord (1980). Chapter 14, for example).

(3) Of course, once the IRFs for a model are specified, then invariance

holds for all subpopulations of 9. For, an IRT model, once specified, by its

very structure assigns to each examinee a fixed 6. Thus altering the

distribution of 0 by choosing a subpopulation of examinees cannot change the

IRFs. The distribution of UN for the subpopulation is then derived from (4.2)
m-N

with P (C)() the subpopulation distribution and the IRFs identical to those in

(4.1). the expression for the entire population. Thus, the Lord viewpoint of

fixing the latent variable a is appropriate when focusing on a subpopulation

after the IRT model has been specified.

(4) Note that- (4.1) and (4.2) really state that populations B and C being

administered the test UN each can be modeled by a M d=l LI model.

The following idealized example, in the author's opinion, illustrates a

fundamental flaw in the uncritical application of invariance.

Example 4 1. Consider two populations of examinees, males and females say. Let

9 denote the unidimensional ability intended to be measured. Let P.(a),

1 5 1 5 N denote a family of item response functions that satisfies (4.1) for

malePs Suppose that the items are uniformly biased against females in the sense

h .

-u [ lifemale of ability 91 7 Pi(9 - 1) for all i. 9 and

P[l Itmale of ability @I J P.AO) for all i.6.I 1
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F
Thus, for females, for all u, with P denoting the distribution of ability for

females,

-:P[U'N : u] n j[Pil - 1) i 1 - P ( - 1 1 dpF( ).

l tP 
i .=,

But, a simple change of variable e' = - 1 yields

PN = ] I il') [I - Pile) dp(G' + 1)

F

Thus (4.2) holds with P (0' + 1) the new ability distribution. Unidimen-

sional invariance therefore holds, in spite of the pervasive (and uniform) sex

bias in the test. n

The example is certainly idealized. For example, some items would surely

be more biased than others in any actual application. But it represents a

serious practical problem, in the author's view. Unidimenslonal invariance Is

no guarantee against failure to identify pervasive bias. What is really going

on is that if administered simultaneously to males and females, the test is

driven by a two-dimensional latent variable (9I , 92), where 0 is the ability
1 2 1

to be measured and 92 (= -1 for females. = 0 for males say) measures the

degree of bias. For example, 9 could be mathematical ability and *2 could

be familiarity with computers. However, the above example is easily seen to be

unidimensional in the traditional sense. For, let 9 = 9 a 92 . Then
1 2'

n u 1-u.
= (4.3) P[U_ = Pil)] 1 Pile) dP(9)

F
where P(G) = P (9+1). Thus, pervasive bias is possible even when traditional

unidimensionality holds. In this regard the following easily proved theorem is

O. relevant.

(B) (C)
Theorem 4.1. Let U and U represent a test administered to two

-N -N

populations, B and C. Then unidimensional invariance holds if and only if

-*" traditional unidimensionality holds.

-33-
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Proof. Assume traditional unidimensionality. Then (4.3) holds for monotone

"-.' IRFs P (9). But then (really the context of Remark (3) above)

n ui  1-u.
P(_ = _B] = f PT I (6) 1 P ( ) dPB(a)

B1

follows trivially where PB () = P(91B). The same holds for C; thus, unidimen-

sional invariance holds.

Assume unidimensional invariance; i.e., (4.1) and (4.2) with 6, 0' real

valued. Let 6'' be the 6 of (4.1) for all Population B examinees and 6'' be

the 0' of (4.2) for all Population C examinees. Thus, each examinee of B U C

is assigned a unidimensional 6''. Then, for some 0 < p < 1

P[UN ul = P[UN = uIB] p + P[UN = uICI(1-p)

N p i(0,,) u I - PI('')] d Bpp(B '') ( (-pi P(C)(6'')
• -7 i=l

". Clearly, letting P''(9'') = (G'') (1-p)P (C)('') completes the proof.

0
4.

Remirk. The theorem shows us that (unidimensional) invariance is simply

traditional unidimensionality.

Theorem 4.1 and the results concerning essential unidimensionality suggest

that unidimensional invariance be redefined so that it dovetails with essential

unidimensional ity.

Deintin4.. et (B) >p ad u(C)...-Definition ( NN and -N N > 1) represent a sequence of

tests administered to two populations, B and C. Then essential d-dimensional

invariance holds provided each test administered has an essential d-dimensional

representation using the same latent model representation P[uN}6 = 0]. That

is. for each u (u u ) with 6 and 6' d-dimensional,

N"4P "(44) -u] {P u = dP(Bl(G)
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and
(4.5) P _C) U p ue' 1 1 dp(C )

4.)nN - I ilI- - j

(B) (C) dwhere P and P are arbitary distributions on R d dimensional

Euclidean space and (4.4) and (4.5) each define essential d-dimensional models.

The analogue of Theorem 4.1 is trival to state and prove.

There 4 Lt (B) ad(C)
Theorem•4.2. Let U and U ( represent a test administered to two

- - N -N

populations. B and C. Then essential unidimensional invariance holds if and

only if essential unidimensionality holds.

Proof. Same as that of Theorem 4.1, except for minor details. 0

Example 4.1 compels us to be cautious concerning the centrality of the

concept of invariance in IRT modeling. For, unidimensional invariance (whether

0essential or traditional) clearly does not preclude the inappropriate assignment

of a common metric to the underlying ability of interest in a single test, two

-population problem. Can something be substituted for unidimensional invariance

that will rule out such faulty applications? We suggest that the central

property that must hold in such single-test, multiple-population applications is

essential unidimensionality together with the conclusion that the underlying

essentially unidimensional ability 6 is the ability intended to be measured.

In the above example. 61 was the ability intended to be measured rather than

S6 O 1  This suggests the following definition.

1 2*

Definition 4.3. A test sequence (UN' N _ 1) is said to be valid provided (i)

it is essentially unidimensional with respect to 6 and (ii) 6 is the ability

desired to be measured.

Certain results in Section 3 support the appropriateness of this

definition. First, Theorem 3.3 states that, under mild regularity conditions.

-ssential unidimensionality with respect to 6 guarantees that, up to monotone

-35-
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transformations, the e of the model is unique. That is, essential

unidimensionality makes the measurement of 9 well defined in the sense that a

itself is "unique' and hence well defined. Second, Theorem 3.2 shows that UN'

through computation of the statistic U can be used to consistently estimate

NNj e by use of the rescaling AN(G). That is, the data can be used operationally

*to obtain 9. as one would expect a "valid" test to be able to do.

Of course, IRT validity as defined above requires both essential

unidimensionality and that the underlying latent ability 9 is the ability

intended to be measured. Statistical analysis of data from the administration

of a test cannot in the absence of additional data concerning other valid tests,

external criteria, etc. be used to ascertain whether the latent ability being

- measured is the one intended. However, statistical analysis of data from the

administration of a test can be used to assess whether the prerequisite

essential unidimensionality holds. Moreover, as remarked above, the author's

(Stout, 1987) statistical test of unidimensionality is designed to address

precisely this question of whether essential unidimensionality holds.

One final point must be emphasized. If essential unidimensionality holds

for a combined multiple-population test, then it is purely a matter of taste and

convenience which transformation of the the underlying ability 9 is used for

the ability scale. In Section 3, A (9) is used for the one population case
N

because it makes the basic estimation results especially easy to formulate.

Clearly, if one wishes to use a common metric for two or more populations being

administered the same test, then the A (9) of the combined superpopulation is
N

totally appropriate. That is. the theory of Section 3 easily extends to the

fixed test multiple population setting. This is developed in Section 5.

-36-
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5. Two Group Test Bias. In this section, we will apply the theory of Section 3

to the situation in which the test population is assumed to consist of two

groups of examinees, B and C. The main objective is to assess whether the

- estimation of ability is somehow "unfair to Group B as compared with group C,

or vice versa. Let a be the unidimensional ability intended to be measured in

B -B
the combined population. Let e and U denote respectively the ability

N

intended to measured and the test scores of a randomly chosen examinee from

c -C B
Group B. Define C and U similarly. Note that by definition e = for

each Group B examinee and 6 = GC for each Group C examinee.

The results of Section 3 suggest that essential unidimensionality implies

consistent estimation of 9 in each group.

* Theorem 5.1. If essential unidimensionality holds for a in the combined

population consisting of Group B and Group C examinees, then 0 is able to be

consistently estimated in each population using the AN(G) E[UNI 8 scale

*computed from the combined population.

Proof. Fix 9. By Theorem 3.2, given e 6,

(5.1) U - AN() 0
N N

in probability as N - =. Let T denote the event that a randomly sampled

examinee (according to the distribution of 6) is a Group B examinee. Fix

C 0. Let GN = IUN - AN(9 )I > Cj. It is an elementary fact of probability

* that P[GN] - 1, and P[] > 0 implies that P[GNIA' - 1. Thus given e e,

it follows that

(5.2) B A (e)-, 0N N

in probability as N . The argument is the same for any nonsparse sequence

1C N , N ?: 1). Thus, the result is proved for Group B. The argument is the same

for Group C.

-37-
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Since essential unidimensionality guarantees consistent estimation of 9

in each group, this suggests that a natural setting for the study of test bias

is under the assumption that (uN' }  ,s essentially dE dimensional for some

S. dE > 1. Essential d E dimensionality for some d E > 1 is assumed throughout the

*- remainder of Section 5. We suppose throughout Section 5 that 9 determines 9;

i.e., 9 is a funcion of 9. Then, without loss of generality, we assume that

the first component of 9 is the ability 9 intended to be measured. Thus

S , ) where 02 consists of "nuisance" abilities. We first note that

essential dE dimensionality guarantees that the proportion correct consistently

estimates AN() among all examinees of ability 9 regardless of their group

membership.

B -BTheorem 5.2. Let 6 and denote respectively the ability and the test
NTheore Group Be. Deie and U

''' C -C
score of a randomly chosen examinee from Group B. Define and U

-- N

analogously. Then, for each nonsparse sequence (CN' N _ 1) and for each 9,

given B = 9,

-B
(5.3) U - A (9) 0

C CN N

in probability as N -: and for each 9. given 0 9,
-r

(5.4) U AC (9) -0

N N

in probability as N

* Proof. Essentially the same as that of Theorem 5.1. 0

We propose the following definition of test bias.

Definition 5.1. We say that there is no test bias in the estimation of 6 if.

for, each 9. the distribution of B given 6 9 is equal to that of 9

Jvpn 9 0

€.'.'.'-38-
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Remark. It is essential to note that this definition of test bias places r

restrictions on the distributions of the ability to be measured for Group E

Group C. The existence of test bias rests in the conditional distributions

EB gB a C 0C-2 given 0 and -2 given and not in the marginal distributions of

Cand e The point is that bias is not to be mistaken for a genuine differ

between the two groups in the ability 6 to be measured. Rather, it rests

group ability differences in other attributes also influencing the test in

essential way among examinees with the same 6 ability.

It is useful to illustrate the role of Definition 5.1 with a simple

examp le

Example 5.1. Suppose essential 2-dimensionality for 6. Let 8 (8, 8
_ 2

fix e = 9. Let 0 2  be a discrete random variable with range {0,Il. Supp

for Group B that. given 6 0, then 6 = 0 with probability 3/4 and th
2

for Group C, given 6 = 0. then 6 = 1 with probability 3,4. Recall that
2

A A48) -EU 01 N=1 P (6)/N. Suppose the item response functions are su
N N Li 1 i_

that AN (0 0) 1 8 AN (0. 1) = 7,8 for all N. Then, according to Theorem

N N
given 9 (0 0).1

IUN - 0 and U -- 0,

8 N 8
each in probability as N-. . Also, given = (0.1),

B B 7-C 71'.-"--.0 and - -,.0.

each in probability as N -. . Note that

1f6 1 a 6  01 ! ~ 16  1 0 01
4' 2 4

Thus test bias in the sense of Definition 5.2 exists. How does this test t

oB -Caffect the asymptotic behavior of UN and U N  For Group B.

.B I B 3 -B 7 B 1
P N 0 e 01 P[U - . 0 & ] - 4:

wh i I e for Group
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- y o = 0] = P[ - y o I = o] -

N 8 ' N 84
-B -C

Thus, even though (5.3) and (5.4) hold, the behaviors of U and U in their

attempts to estimate a (on some scale) clearly favor Group C over Group B for

-C
examinees of ability e = 0. Here the asymptotic distribution of U given

N
C B-B . Be = 0 is stochastically larger than the distribution of UN  given 0 0. a

Note that the marginal distributions of the ability to be measured in Group B
O...

and in Group C played no role in the example.

Recall that essential dE dimensionality for dE > 1 implies by Theorem 3.7

that there do not exist functions gN(0) such that

UN - 9 (9) 0 o

in probability as N - . This precludes consistent estimation of 9. However,

pif there is no test bias (in the sense of Definition 5.1), then using proportion

correct to score the test is guaranteed not to favor either group over the other

asymptotically in any way whatsoever, as the following theorem makes precise.

Theorem 5.3. Suppose there is no test bias. Let {CN , N 1) be any nonsparse
N'

-B B
sequence. Then for each 9, the asymptotic distribution of U given 6 = 9

CN

-C C
is the same as the asymptotic distribution of UC given =e

Proof. Fix 9. The argument used to prove Theorem 5.1 is easily modified to

establish that, given B = 0,

• (5.5) -B AC ( B
* C C '-2

N N

• - in probability as N -. , and that, given 0= 9,

CCC
. ~in probability as N -. . Here AN(9) AN, ).Btbsneotstbs

men ta.hedstiuio f B @B
merely men htteditiuino 2 given 9=9e is the same as the

distribution of 0 given 9 0. The desired result then follows from (5.5)

and (5.6). 0
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Remarks. (I) The point of the theorem is clear: If test bias does not exist

-B -Cwhen dE > 1 then U and UC are equally inconsistent in their respectiveE CN  CN

attempts to estimate e That is, each group is equally mistreated.

(2) At the end of Section 3. we pointed out that essential unidimension-

ality for a latent trait family of models {UN' Q) still allows for fixed

- .- measurement error for a finite length test administration, this caused by the

presence of abilities other than 9. these other abilities being inessential.

Clearly, in the two population setting of Section 5, it similarly holds that

this source of measurement error can favor one population over another in a

finite length test administration, even when essential unidimensionality holds.

From a lack of model fit perspective, the issue becomes one of whether the

ao B A~(B
magnitude of the differences AN(G) - A (9) as 9 varies are too large to be

N N

ignored. Here A B() = E -- N P (0 GB = 0 and C(O is defined
N I N Li . i -

similarly, where {UNG,N>I} is assumed to have dE = 1 and traditional
B C

dimensionality dim(e) > 1. Because dim(G) > 1. AB(9) and AN(9). the Group B and
N N.

Group C intrinsic ability scales defined by (3.1) and (3.2) will in general be

different.

(3) The theoretical results of this paper caution against the casual use

of short tests with confidence that test bias will not occur. For, the shorter

the test, the harder it is to assess essential unidimensionality. Furthermore,
41,

even if essential unidimensionality holds, the shorter the test, the more likely

(3.30) (or the opposite inequality) is to hold to a damaging degree. By

contrast Theorem 5.1 guarantees for a long essentially unidimensional test that

(3.30) will have little to no ill effect in the consistent estimation of the

essential trait in each population.

-41-
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6. Essential Unidimensionality and Linear Formula Scoring. Thus far we have

Spresented our thesis in the context of ability estimation with proportion right

used as the estimator of ability. Of course, one of the major contributions of

IRT has been the establishment that the use of a "linear formula score"

iL a i.N Ui N all aiN _

can be more appropriate than the use of U For example, with N fixed in the
N'

M.., N, LI case of two parameter logistic modeling, a U is a sufficient
*Lil i ,N i

statistic for 0 provided ai, N  is proportional to the discrimination

parameter of the ith item.

Definition 6.1. A sequence of linear formula scores with coefficients (ai N

1 <5 i :- N, N > 1) is called admissible if

(6.1) 0 5 a - for all i, N
i,N N

for some constant K.

Remarks. Several special cases of linear formula scores are admissible. First

a. = /N for i 5 N, yielding (U N > 1} is clearly admissible. Second
1 ,-N N

a = lI/N(CN) for all ieCN and equal to zero otherwise with {CN , N > 1) a.,,-.. NNN

nonsparse sequence of integer subsets clearly yields an admissible sequence of

linear formula scores since by definition N(CN) 2_ eN for all N for some e >

0. Third. suppose a two parameter logistic model for {U. i 1} with

discrimination parameters a. satisfying

(6.2) 0 < e < a. S K < - for all i.

Then, the normalized sufficient statistic

!VN a.U.

6 (6.3) Lil 1

a
Li l i

is clearly admissible with a. a ..• 'i- ,N i Li~l 1i

e -42-
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It can be argued that most useful linear scoring methods surely satisfy

(6.1) since (6.1) merely requires a scoring method where no single item or small

subset of items is allowed undue influence on the overall formula score.

Note that if 1 ai.N - 0 as N-, m, then the corresponding formula

score is of no practical interest since

u a U .0
N L i.N i

with probability one as N -, and hence cannot estimate anything consistently

(other than 0). Thus each admissible linear formula score of interest should

,tso sat isfy for some #. > 0

(6 4) a. > for all N _ I.
L= i.N

Defliniti()n 6 2 An admissible sequence of linear formula scores with

coefficients satisfying (6.4) is called an admissible nonsparse sequence.

In this regard, note that if ai > 0 only on a sparse sequence of integer

subsets C N (i.e.. CN c (1. N), where N(CN)/N 0 as N w), then either

(6.1) or (6.4) is violated. That is, an attempt to use a "sparse" sequence of

- . items to estimate G will either result in an inadmissible sequence of linear

formula scores or one which is sparse (in the sense that (6.4) fails) and is

hence useless.

It is now possible to advance a theory very similar to that of Sections 2 -

5 that includes admissible nonsparse linear formula scoring. For example, the

analogue of the sufficiency part of Theorem 3.2 is as follows:

Theorem 6.1. Let (UN. 0) be essentially unidimensional with respect to 9.

'" Then, for each given 0 = 9 and each set of nonsparse admissible linear formula

scores

U -~ a UN L. i,N i

. it follows that

-43-
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(6.1) U -AN(a) 0
N N

in probability as N - where

A (9) L = a P.( 0 )

N - Il i.N i

Proof. Fix 9. It suffices to show that

Var ElIa .N U J 9 - 0.

Now

Var .. _a. U. a 8= a. Var(Uj 1@ 9)
E1r=1 i,N J Lili,N i

2 aN a Cov(U 'Uj O 9) -* 0 as N
L iNj.N il

-.. 1 i<j N

by admissibility and essential unidimensionality; that is, (6.1) holds. a

The use of UN as estimator in the development of the theory in Sections

2 - 5 was done for simplicity and clarity of exposition and not because of

J " necessity. Further generalization along the lines of Sections 2 - 5 using

nonsparse admissible linear formula scoring is routine and is left to the

reader.

7. Essential Unidimensionality and Consistent Estimation of 9 on the 9 scale.

- The use of {U ) or more generally of a nonsparse admissible linear formula
N

N
.score (Z a U) as a sequence of estimators of 9 on the intrinsici--- 1 i,N

ability scale when essential unidimensionality holds supposes a single fixed

test administered to one or more populations. Applications in this setting were

developed in Sections 3, 5, and 6. Such single-test applications of IRT occur

less frequently in practice than multiple-population multiple-test applications.

In multiple-test applications a standardized ability scale is usually

desired, perhaps as a prerequisite to a horizontal equating of the various

-44-
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tests. In many such applications, the items (or at least a common core of them)

have been calibrated relative to the constructed standardized ability scale e.

Then a major application is the estimation of individual abilities on the a

scale. Estimation of 9 with known IRFs has been widely treated in the

literature (see for example Hambleton and Swaminathan, 1985, Section 5.3).

Maximum likelihood estimation (MLE) is one method of choice in this setting.

The MLE 9 "consistently" estimates a under suitable regularity conditions in

the sense that, given 0 = 9. 9 -* 9 in probability as the number of items

N w -. (Here and throughout Section 7. "consistency" is used in its usual

mathematical statistical sense and is not to be confused with its special usage

as given by Definition 3.2.) Only rarely however, is it possible to provide an

explicit formula for the MLE as a function of U M oreover, the MLE is usually

a highly non-linear function of U Thus in the known IRFs case it seems-N'

desirable to seek alternatives to MLE that are based on linear formula scoring

and for which explicit formulae are available. We now propose a family of such

estimators, using the results of Sections 3 and 6.

Recall from Theorem 3.2 that when (UN) is essentially unidimensional with-N

-" respect to G then for each given 9 9,

U - A (9) -0

N N

in probability as N - . This suggests estimating 9 by {AN(UN)} and also

suggests for each given 0 = 9 that

-N N

in probability as N should hold. Moreover, recalling Theorem 6.1 and its

notation, this result should generalize to nonsparse admissible linear formula

scoring with, for each 6 9,

A -1(U (-9
VN N

0
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U " -
o ,

in probability as N - Theorem 7.1 below states that this is true provided

local asymptotic discrimination holds. Definition 7.1 is the appropriate

analogue of Definition 3.3.

Definition 7.1. Let a sequence of tests be essentially unidimensional with

N
respect to ability 9. Let A (9) = E. a P (9) be formed from a nonsparse

N =I ni i

admissible sequence of linear formula scores. Suppose for every fixed eI such

that 9 is in the range R of 9 that there exists el > 0 and an open

neighborhood H of a 1 such that for all a2 e H and in the range R of
190

9 with 92 > e 1 that
"".;7 N '7N

a P(9) a P (a
"i(=1 i 2 Li=I iN i 1 > C (0 - 9 ) for all N.9 9 1

2 1 1

Then {U 9, A (9)) is said to be locally asymptotically discriminating (LAD)-N' N

with respect to 9.

Usually AN(9 ) is continuous in applications, thus making its inverse well

defined over its range. However, in order to have a theory that allows for

discontinuities, the following definition of N (u) will be used

--1
AN (u) = inf 9 0: AN(G) u).

Here R denotes the range of 0. Note that AN(u) - or m is possible; e.g.,

if u 1'5 and AN(9) 1 1'4 for all 0.

N

Theorem 7.1. Let {u . 9) be essentially unidimensional with respect to 9.

Suppose A (9) ZN a . (9) is formed from a nonsparse admissible sequence'  N i l an i i
N

. of linear formula scores UN  z i I ani Ui Suppose { N' 9, AN (9) is LAD with

respect to 9. Then. for each given 9 = 9,,..- I
(7.2) A (U )-

N N

in probability as N
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Proof. Fix 9. By Theorem 6.1, given 0

(7.3) UN - AN(a) 0

in probability as N -. It is an elementary lemma of probability theory that

XN - X in probability as N if and only if each subsequence XN(i)

contains a further subsequence XNj )  X with probability one as k - w.
N(j(k))

Thus to prove the theorem, it suffices to select an arbitrary subsequence

(N(j) and then prove there exists a further subsequence N(j(k)) such that

*-1
AN (j(k)l(UN(j(k) 1) - 6

with probability one as k - Choose {N(j)). Then (7.3) implies that

U -A'j(6) -00
N(j) N(j)

in probability as j - . Then, using the above mentioned lemma, there exists a

0
further subsequence N(j(k)) for which

(7.4) UN(j(k)) AN(J(k)) (9) 0

with probability one. By (7.1) and the definition of the inverse, for all

2 - A2 N (a) sufficiently small in magnitude and satisfying j-i2 > inf6 AN().

there exists K < such that

(7.5) 1A ( 2 ) -9 K li2  - ANl( )I for all 9.

Fix a typical point in the probability space. Now, it may be that for some

arbitrarily large k

(7.6), < inf O AN  ().
(7.6) UN(j(k)) - 6 N(j(k))

By (7.4) and LAD, there exists ek 1 0 such that for all large k

UN(j(k)) >AN(j(k))( -k

Thus UN(j(k)) > inf AN(j(k))(@) for all sufficiently large k using LAD.

Hence (7.6) cannot hold for arbitrarily large k.
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Thus, combining (7.5) with (7.4),

JA N(j(k)) (U N(j(k))) - 1 : K 0IU N(j(k)) A -.~))(~ 0

with probability one, as required.0

Remarks. (1) Theorem 7.1 provides a large class of sequences of estimators of

I~l -l -

". including JA( based on linear formula scoring. In practice, one
N N

needs lN and)) its ines -oUl ) -Ajk)(l'-O

needs to compute AN (} and its AN-(9) to make use of one of these

estimators.

(2) It is to be noted that Holland, Junker, and Thayer (1987) have

proposed using (AN (U )} to estimate the distribution of 0 and have proved a
N. N

convergence in distribution result to justify this. Their motivation for

1-
'"-..," suggesting JA, (UN)) is different from ours.
l

(3) It is elementary to show that (7.2) holding for all 0 implies
#- °1

(7.5) A N (U N

in probability as N -# o. Given the IRT context. (7.2) is perhaps a more

interesting formulation than (7.5). It does of course follow from (7.5) that

A (U ) can be used as a method of estimating the distribution of 0.
N N

.4.' (4) Note that (7.2) states that convergence in probability to individual

* - ability holds regardless of which of a large class of estimators is used. That

is, convergence in probability to individual ability holds for every nonsparse

admissible sequence of linear formula scores.

8. Discussion and Summary of Results. The purpose of the paper is to argue

that a successful approach to certain fundamental test measurement topics such
O."

as bias requires multidimensional latent modeling. The paper provides a new

conceptualization of latent dimensionality, essential dimensionality. This

conceptualization depends on the replacement of local independence by the weaker

9m'

-48-

'J, %
."e.



and, in our opinion, psychometrically more appropriate notion of essential

independence. Essential dimensionality, designed to mesh with the empirical

reality of multiply determined items, attempts to count only the dominant

"*'. dimensions. Theorems 2.2 and 2.3 present conditions that guarantee that

- essential unidimensionality holds.

In Section 3, essential unidimensionality is shown in Theorems 3.2 and 3.3

to characterize the consistent estimation of a unidimensional latent trait.
,.

Here the "consistent estimation of 0" is defined precisely in Definition 3.2.

In order to facilitate this, the concepts of marginal item response functions

and intrinsic ability scale are presented. This theory is applicable to

single-test applications and does not require that the IRFs be known (i.e.,

0 calibrated).

Theorem 3.3 shows that essential unidimensionality guarantees, under the

- mild regularity condition of local asymptotic discrimination of {UN) , that the

latent ability is unique up to monotone transformations. That is, essential

-. unidimensionality, an empirically testable condition, guarantees that the latent

trait of the model is "well defined" in the sense that it is completely

specified, up to a monotone transformation. Loosely stated, the "data"

(distributions of UN s) determine the latent trait when essential

e ,'unidimensionality holds. The above results, as with most of the results of the

paper, requires an infinite item pool formulation. It is the author's position

C-% that such a formulation facilitates the study of many foundational IRT issues.

Example 3.3 shows that the concept of essential d dimenionality for some

dE < c is not vacuous by showing that test sequences exist that could be

intuitively described as essentially o-dimensional. It is pointed out that
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essential unidimensionality, when other (minor) dimensions besides the ability

ofhe interest are present, does not rule out non-random pre-asymptotic bias in

the estimation of a for short tests.

In Section 4, the uncritical acceptance of the centrality of the role of

item parameter invariance is challenged. In particular, Example 4.1 shows that

. invariance (precisely, unidimensional invariance) can hold and yet pervasive

bias against a particular group still exist. It is shown that unidimensional

invariance is equivalent to traditional unidimensionality holding. Essential

d-dimensional invariance is defined by replacing local independence by essential

independence in the definition of invariance. Then essential unidimensional

invariance is shown to be equivalent to essential unidimensionality. These

results motivate a simple latent trait based definition of validity, namely that

validity holds if (i) essential unidimensionality holds and (ii) the (unique by

"-" "Theorem 3.4) essential trait 9 is the ability intended to be measured.

Section 5 addresses the issue of test bias in a single-test two group

setting from the viewpoint of consistent estimation. Essential unidimensional-

ity is shown to guarantee consistent estimation of ability in both groups. Thus

the issue of test bias can be analyzed assuming that essential d dimensionality
E

holds for some d > 1. The test bias problem is then characterized as the
E

estimation of the intended to be measured e for a two-group latent model with

essential d dimensional latent ability (9, 0 ) , where the "nuisance" ability
E2

S2is d - 1 dimensional. Test bias for Groups B and C is defined as the

B eB C . C
conditional distributions of 6 given = 9 and -2 given = 0

differing for at least one value of 9. It is stressed that the marginal

B Cdistributions of 0 and 0 play no role in the definition. Example 5.1

* demonstrates the role that test bias as herein defined plays in the attempts to

0' 5-50-
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estimate 9 in Groups B and C. Finally, Theorem 5.3 shows, recalling thatt -B an OC
d " 1 assumed. that the lack of test bias implies that U B n  are
E N N

equally inconsistent in their attempts to estimate 0; that is, neither

population B or C is favored over the other.

Section 6 demonstrates that the theory of Sections 1 - 5 need not be

presented only in the context of the behavior of U but that admissible
N

linear formula scoring can be used as a basis for Sections 2 - 5 with only minor

alterations required. This development is largely left to the reader. Here an

admissible linear formula score l a N 1 is one where 0 a 5
1i =l1 i,N i' I i,N

K N for all i and some fixed K < m. It is noted that most linear formula

scores of interest are admissible.

Section 7 addresses the problem of estimating 9 on the 0 scale in the

multiple-test multiple-population problem with known IRFs assumed. Theorem 7.1

establishes that 9 can be consistentely estimated on the 9 scale by a large

class of sequences of estimators in the sense that for each such sequence,

A (UN) 9
N N

'" ., in probability as N - . Each such sequence is computable, has an explicit

formula, and is based on an admissible linear formula score in an intuitive

natural way.
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