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'property uncertainty' and 'category uncertainty' are combined through a free
parameter that reflects the goals of the observer. Natural categorizations are V

shown to be those that are stable with respect to this free parameter. The
evaluation function is tested in the domain of leaves and is found to be
sensitive to the structure of the natural categories corresponding to the
different species.

We next develop a categorization paradigm that utilizes the categoriza-
tion evaluation function in recovering natural categories. A statistical
hypothesis generation algorithm is presented that is shown to be an
effective categorization procedure. Examples drawn from several natural
domains are presented, including data known to be a difficult test case for
numerical categorization techniques. We next extend the categorization

paradigm such that multiple levels of natural categories are recovered; by
means of recursively invoking the categorization procedure both the genera
and species are recovered in population of anaerobic bacteria.

Finally, a method is presented for evaluating the utility of features
in recovering natural categories. This method also provides a mechanism for
determining which features are constrained by the different processes present
in a multiple modal world.
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Natural Object Categorization

Aaron F. Bobick

Abstract

This thesis addresses the problem of categorizing natural objects. To
provide a criteria for categorization we propose that the purpose of a cat-
egorization is to support the inference of unobserved properties of objects
from the observed properties. Because no such set of categories can be con-
structed in an arbitrary world, we present the Principle of Natural Modes as
a claim about the structure of the world.

We first define an evaluation function that measures how well a set of
categories supports the inference goals of the observer. Entropy measures for
property uncertainty and category uncertainty are combined through a free
parameter that reflects the goals of the observer. Natural categorizations
are shown to be those that are stable with respect to this free parameter.
The evaluation function is tested in the domain of leaves and is found to
be sensitive to the structure of the natural categories corresponding to the
different species.

We next develop a categorization paradigm that utilizes the categoriza-
tion evaluation function in recovering natural categories. A statistical hy-
pothesis generation algorithm is presefited that is shown to be an effective
categorization procedure. Examples drawn from several natural domains are
presented, including data known to be a difficult test case for numerical cat-
egorization techniques. We next extend the categorization paradigm such
that multiple levels of natural categories are recovered; by means of recur-
sively invoking the categorization procedure both the genera and species are
recovered in a population of anaerobic bacteria.

Finally, a method is presented for evaluating the utility of features in
recovering natural categories. This method also provides a mechanism for
determining which features are constrained by the different processes present
in a multiple modal world.

Thesis Supervisor: Dr. Whitman Richards ,'

Professor, Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

1.1 The Problem: Object Categorization

Let us travel back to the jungle of our ancestors. We see an object in the
distance, moving slowly on four legs. The object has black stripes on a beige
coat of fur, a large appendage in front (the "head") with sharp serrations in a
hinged opening, long whisker-like hairs in front, and a narrow, elongated rear
appendage that oscillates. Suddenly, we notice the object has turned and
two round, black objects, recessed in the front appendage, are now pointed
in our direction. As it begins to move toward us, we quickly decide that this
is an appropriate time to leave, and with due haste.

If analyzed only casually, the above scenario appears to be an example of
simple and rational behavior. We view an object which we perceive to be a
tiger, we know that tigers feast on people, and thus we decide to run for our
lives. But let us examine the scenario in greater detail. Our first (perceptual)
act is to encode some stimulus information: an object' with four downward
pointing appendages, translating across our visual field, endowed with certain
physical characteristics. Our last (behavioral) act is a decision to flee, based
upon knowledge of the potential behavior of that object. But, somewhere in
between those two events, we make the critical inference about unobserved
properties of an object from the observed properties. Given only a sensory
description of an object, we are able to make inferences about unobservable

'For this example, and in fact for the entire thesis, we ignore the question of how we know
S that some part of the visual stimulus comprised an "object," a single entity.

10
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properties such as the intentions of an animal. How is such an inference
possible?

The obvious, in fact seemingly trivial, answer is that sensory informa-
tion available is sufficient to determine that the object is a tiger; thus, our
knowledge about the behavior of tigers allows us to predict the behavior ofJN

the object. That is, given the sensory information, we conclude that the
object is a member of the "tiger" category and thus we expect the object
to behave in a manner consistent with the behavior of other objects of the
same category.

But this answer to the question of how the observer makes predictions
about the behavior of objects is not adequate. Simply announcing a category
to which an object belongs does not provide the observer with the necessary
predictive power. For example, suppose we view the previously described sit-
uation, but decide that the object in question belongs to the category "large
fuzzy thing." In this case, our ability to make inferences about the behavior
of the object is limited, and our response might not be appropriate for the
situation. The large fuzzy thing would partake of an early supper. Although
the category asserted is correct, "large fuzzy thing" does not support the
inferences that are necessary for observer to interact successfully with his
environment.

However, the intuition that the observer accomplishes his inference task
by determining the "correct" category of an object is strong. The only diffi-
culty with the previous example was that some categories (like "tiger") are
more useful for inference than others ("large fuzzy thing"). Therefore, if the
observer is to predict the important behavior of objects by determining the
categories to which they belong, then those categories must be matched both
to the goals of the observer and to the structure of the world. In particular,
these categories must satisfy two requirements. First, using only sensory
information, the observer must be able to determine the category to which
an object belongs. Second, once the category of an object is established,
membership of the object in that category must allow the observer to make
important inferences about the behavior of the object. Which inferences are
important depends upon the goals of the observer.

As we will discuss in the next section, we have no a priori reason to •
believe that a set of categories exist that permits the observer to both identify
the category of an object from sensory information and predict unobserved . :
properties as well. And if such categories do exist, how would the observer

11%



come to know them? The goal of this thesis is to understand and provide a
solution to the problem of discovering the useful categories in the world.

We can decompose the object categorization problem into the following
three questions:

" What are the necessary conditions that must be true of the world if
a set of categories is to be useful to the observer in predicting the
important properties of objects?

* What are the characteristics of such a set of categories?

" How does the observer acquire the categories that support the infer-
ences required?

These problems follow one another directly. By identifying the structure S
in the world that must be present in order for the observer to be able to
construct a set of categories that supports important inferences, we are able
to specify the characteristic structure that such a set of categories must h

exhibit. Once we have identified these characteristics we can attempt to
recover categories that satisfy these conditions.

1.2 A Necessary Condition: Natural Modes

We have stated that goal of categorization is to permit the inference of impor-
tant properties of objects. Often, however, many of the important properties
of objects are not directly observable. There is no direct sensory stimulus
for "tends to eat human beings for dinner." Thus, if the observer it to ac-
complish this categorization task, then he is required to predict unobserved
properties from observed properties. How is this possible? Certainly, one
could construct a world in which the inference task was not feasible. If the
important (unobserved) properties of objects are independent of the prop-
erties available to the observer through his sensory mechanisms, then no
useful inferences could be made. No set of categories could be constructed
that would allow the observer to predict the behavior of objects. There-
fore, if we assume that useful categorization is possible, if we accept human •
perception as an existence proof that the goal of making reliable inferences
about the properties of objects can be achieved, then it must be the case
that our world structured in a special way.

12 "
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To capture this structuring of the world, we propose the Principle of
Natural Modes, a claim that the world does not consist of arbitrary objects,
but of objects highly constrained by the processes that create them and the
environment that acts upon them. Natural modes - clusterings of objects
in properties important to the interaction between objects and their environ-
ment - cause objects to display large degrees of redundancy; for example,
most objects with beaks also have wings, claws, and feathers. Because ob-
jects within the same natural mode exhibit the same behavior in terms of
their important properties, the natural modes are an appropriate sets of
categories for the recognition task. Once the natural mode of an object is
established, important properties of that object can be inferred. Stated suc-
cinctly, natural modes provide the basis for a natural categorization of the
world.

The goal of the observer, then, is to recover the natural mode categories in
the world. Our task is to develop the theoretical tools necessary to allow the .
observer to accomplish achieve his goal. In the chapters that follow, we will
develop more fully the concept of natural modes, derive a measure sensitive
to whether a set of categories corresponds to natural clusters, and generate
a procedure by which the observer can recover the natural categories from
the data provided by the environment.

1.3 Thesis Outline

The thesis is logically divided into three parts. The first part develops the
philosophical groundwork for the recovery of natural categories. Chapter 2
begins with a discussion of the goals of categorization and how those goals
require an appropriately structured world. The Principle of Natural Modes
is then developed as a characterization of the structure of the world and
as a basis for categorization. The philosophical, physical, and psychological
implications of the claim of natural categories are explored; in particular
we reconcile formal logical arguments against natural categories with the
physical and psychological evidence supporting their existence. Chapter 3
examines some of the previous work in the fields of cognitive science, clus-
ter analysis, and machine learning that is relevant to recovery of natural
categories. .

The second part of the thesis, consisting of chapter 4, addresses the prob- : _:m.

13

~ -is-.%



.I.

WNe

lem of measuring how well a set of categories reflects the structure of the
natural modes. We develop a measure, based on information theory, that
assess how well a set of categories supports the goals of the observer: the re-
liable inference of unobserved properties from observed properties. Because
it is the existence of natural modes that permits the observer to accomplish
this inference task, we argue that a set of categories - a categorization -
that supports the goals of the observer must reflect the natural modes. The
behavior of the measure is demonstrated in the natural domain of leaves.

Finally, in chapters 5 and 6, we address the issue of the recovering the
natural modes from a set of data. In chapter 5, we define a categorization
paradigm inspired by the formal learning theory work of Osherson, Stob,
and Weinstein [1986]. Within the context of this paradigm, we develop a dy-
namic categorization algorithm which makes use of the measure developed 5
in chapter 4 to evaluate hypothesized categorizations. The performance of
this algorithm is tested in three natural domains, including a set of data that
have served as a test for other categorization systems. The results indicate
that the categorization algorithm is an effective method for recovering nat-
ural categories. An analysis of the competence of the algorithm is provided
and predicts the observed behavior.

In chapter 6, we extend the analysis of the categorization algorithm into
domains in which there are multiple natural clusterings. Such domains are
formed when more than one level process constrains the properties of objects.
For example, we will consider the domain of infectious bacteria where there
is structure at both the genus and species level. We develop a procedure
by which the observer can recover both levels of categories. Furthermore,
we provide a method by which the observer can determine which properties
of objects are constrained by each level of process. This same mechanism
enables the observer to evaluate the utility of a property for performing the
categorization task. .

In the conclusion of the thesis, chapter 7, we summarize the results of the
previous sections, once again consider the utility of recovering the natural

g.1 categories in the world, and discuss potential extensions to the work.

14
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Chapter 2

Natural Categories

We begin our study of natural object categories by examining a task that 41explcitly makes use of such categories: object recognition. By recognition

we simply mean the act of announcing some category when an object is
presented. Our first consideration will be the goal of recognition, which we
will propose to be the inference of important unobserved properties from
observed properties. If recognition is to be performed by announcing the 1
category to which an object belongs, what kinds of categories would per-
mit the observer to attain this goal? Under what conditions is such a goal
possible? To help achieve these goals, we will propose the Principal of Nat-
ural Modes: a claim - about the world - that there exist sets of natural
categories ideally suited to the task of making u~seful inferences. This claim I
will need to be reconciled with philosophical and logical arguments against '"
the ontological existence of such categories. In support of natural modes "-

and their use for recognition we will present evidence from both the physical."-
world and the psychologies of various organisms. Finally, we will be able to ,.-
pose the categorization problem as the discovery of natural mode categories 4
in the world. -,

2.1 The Goal of Recognition "

Suppose we wish to construct a machine (or organism) which is to perform -

object recognition by announcing some category for each object encountered. :
What set of categories would be appropriate? Certainly we cannot answer ":''

0,a
"*
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Figure 2.1: A canonical observer viewing a canonical object. The Oi'sg and Ui's.-,
represent observed and unobserved properties, respectively. The goal of the observer
is to infer the Uj's from the Oi's.

this question without placing further constraint on the output of this ma-..,
chine. Otherwise, any arbitrary categorization would be valid, e.g. "announce ,'.
category 1 if the the object is less than 100 feet away; announce category -

2 otherwise." Therefore we need to provide an additional constraint as to
what makes a suitable or useful categorization. ,,

To provide such a constraint, let us propose that the object recognition ...
task - and therefore object categorization - has as its goal the following: .i

Goal of Recognition is to predict important unobserved prop- ,Q

erties from observed properties.

This goal requires that when an object is "recognized," which we have de-
fined to mean when some category is announced, it should be the case that Ir
inferences about that the unobserved properties of the object can be reliably
asserted. Properties of particular interest are those that affect the object's .,,
interaction with the environment, of which the observer is a part. .-.

% %

SJ r

SO d

' .." ' .-,, "-. " ",, " '. ", ". , ' " ". . .. ., , . . .,.. , .. . _ .. . .. ,.. , ,,' . .., - . .. -. -- -, - -. . . • . . , . . ,° V .'



I

To illustrate the goal, consider our observer in Figure 2.1. While viewing
some object the observer measures certain observable properties 0i. The ob-
served properties may include very simple quantities such as dominant color
or overall length, or they may be more complex measures such as a descrip-
tion of the basic geometric parts of the object [Hoffman and Richards, 1985].
From these properties, the observer wants to infer the unobserved properties
U3 . These unobserved properties may include function ("something to sit
upon") or behavior and affordances [Gibson, 1979] ( "something which moves
and will try to eat me"). This basic inference is really the basic problem of
perception, and we can use this goal of recognition to provide criteria for an
appropriate set of categories.

Notice, however, that being able to make reliable inferences about an
object's properties from its category is not sufficient to satisfy the goal of
recognition. Recognition requires using one set of properties (observed) to.
make inferences about another set of properties (unobserved). Thus, we
need not only the ability to infer reliably an object's (unobserved) proper-
ties from its category, but also the ability to infer an object's category from
its (observed) properties. For example, the validity of the predictions should
degrade gracefully as less observed information is provided; it will often be
the case that the observer only recovers a subset of the observable proper-
ties. Also, the observer should be able to make predictions about objects %
not previously viewed. That is, the observer must be able to generalize ap-
propriately such that the predictions about the non-observed properties of a
novel object tend to remain valid.

As an aside, we should address the (skeptic's) question of why use cate-
gories at all to satisfy the goal of recognition. If one's goal is only to make
predictions about unobserved properties from the information provided by
observed properties, then a more direct strategy would be to recover the ,
relationships between the two. For example, one could estimate all the con-
ditional probabilities (of every order) and use these estimates to make predic-
tions. One response to this argument is that we have not (yet) claimed that .

categories are the best mechanism for solving the inference problem. Rather,. .0 %
if given the problem of constructing categories for the recognition task, then
reliable inference is one means of defining suitable criteria. However, we S
actually do wish to make the claim that categories are an efficient and ef-
fective means of achieving the goal of reliable inference about unobserved
properties. We must postpone the defense of this claim until we discuss the
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principle of natural modes, to be presented in the next section.
Given the goal of constructing a set of categories consistent with the

proposed goal of recognition, is it possible for an observer to perform such
a categorization of objects? Will his categorization permit the inference of
unobserved properties? The answers to these questions clearly depend on
the domain in which the recognition system is to operate. If there is no
correlation between the sensory data and the behavior of an object, then
no such inference is possible. If every object in a world (including witches,
bicycles, and trees) is spherical in shape, blue in color, and matte of surface,
then such visual attributes would be useless for inferences of unobserved
properties important to the observer. Under such circumstances a visual
recognition system which performed useful classification could not be built.
Therefore, if we are to claim that the goal of the recognition system is to place
objects in the world into categories that permit the prediction of unobserved
properties, then for such a system to be successful it must be the case that
the world is structured in such a way as to make these inferences possible.
This is a strong claim, and one which is fundamentally different from stating
that the only structure present is that which is imposed upon the world by a
the observer's interpretation.

2.2 Natural Modes

If we take the human vision system as an existence proof that it is possible
to define a categorization of objects that permit inferences about an objects
unobserved properties (e.g. I can visually categorize some object as a "horse" .. ,.

and predict many of its unobserved properties based upon that categoriza- s'-.

tion), then it must be the case that the natural world is structured in some
particular way. What would be the basis of such structure?

To gain insight into this question, consider the Gedanken experiment of
giving a grade school art class the assignment of drawing pictures of imag-
nary animals - animals the children have never seen and about which
nothing has been said. The results are as varied as the children who produce
them: multiple-headed "monsters", flying elephants, and other composite _
animals are produced. Completely bizarre-looking creatures also emerge.
There seems to be no limit to the the number of animals that one could
imagine. Yet, they live only in the mind, and in the world of children's toys %
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which produce creatures such as Bee-Lions.
If these animals could exist, (i.e. we could physically construct them) why %

don't they? In some instances, the laws of biological physics simply preclude
their feasibility. Flying elephants would require a weight, surface area, and
muscle relation that cannot be created from the biological hardware used to
make an elephant [McMahon, 1975]. Other animals, although feasible, may
not exist because such creatures were either never formed by mutation, or, if
formed, they were made extinct by forces in the environment. In this latter
case and in the case of impossible animals, we can view the situation as an
entity (the animal) which did not satisfy the environmental constraints in
effect at the time. In fact, given the complexity of the natural world and
the extensive pressures brought to bear by Nature on an organism, most
arbitrarily-designed animals would perish, because the chance of creating
arbitrary organisms which would be well-suited to the environment is almost ,1_

zero. Unlike the world of the imagination or children's toys, the natural world A
cannot contain objects of arbitrary configurations.

As such, the existing species are special in an important way. The species
represent finely tuned structures, Nature's solutions to the constraint sat-
isfaction problem imposed by the myriad of negative environmental con-
straints. "Survival of the fittest" may be interpreted as simply the statement

p that the surviving species satisfy the environmental constraints better than
any other species competing for the same resources. Because of the extent
of these constraints, each of the solutions must be highly constrained; that
is, there is no small set of properties of an organism which is sufficient for its
survival. Stream-lined contours, fins, eyes on opposite sides of their body -
these attributes combined with a vast set of internal structures permit fish
to survive in the aquatic environment.

Also, these solutions tend to be disparate. [Mayr, 1984; Stebbins and Ay-
ala, 1985]. Because species of similar construction will be competing for the
same resources, variations in properties important to the organism's survival

are removed, unless the variations are large enough such that the organism
is now in a different niche. The pressure of natural selection moves the evo-
lution of species to a discrete or clustered sampling along those dimensions
relevant to a species survival. We refer to this clustering as the "Principle of
Natural Modes," and because it is central to our development of a natural
categorization we restate it as follows:
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Principle of Natural Modes: Environmental pressures force
objects to have non-arbitrary configurations and properties that
define object categories in the space of properties important to
the interaction between objects and the environment.

We do not live in a world of randomly created objects and visual scenes, but
in a world of structure and form.

To refine our claim about natural modes, we let us make explicit the
claims that are being made, as well as those that are not. First, the existence
of natural modes implies that objects do not exhibit uniform distributions
of properties. Rather, objects display a great deal of redundancy, redun-
dancy created by the complex sets of constraints acting upon objects. For
example, we do not see the mythical Griffin (half eagle, half lion). Objects s
with beaks also (tend to) have feathers and wings and claws. Redundancies
such as these make it "easy" to recognize an object as a bird: a few clues
are sufficient. Second, we do not intend to restrict the claim to only natural
objects; in section 2.4.1 we will discuss constraints acting on man-made ob-
jects as well. Finally, we are not claiming there exists a unique set of object -
categories. We allow for the possibility that the clustering of objects along ',
dimensions important to the interaction between objects and the environ-
ment may be "scale" dependent: clustering occurs at different levels of the
object hierarchy. For example, consider the division between mammals and
birds, and then the separation between cows and mice. The clustering which
separates mammals from birds occurs at a level of biological processes much
"higher" than that which separates cows from mice. We will further develop
the concept of levels of categorization in chapters 4 and 5 when we consider
matching the goals of the observer to the structure of the world. For now we "-
can assume that "natural mode categories" refer some selection of categories
corresponding to a natural clustering at some level.

In the interest of completeness, two important comments need to be
made. The first is that we are not stating that there exist objective cate-
gories in the world, independent of any categorization criteria. Rather, we
are stating that there exists a clustering along dimensions which are impor-
tant to the interaction between the object and its environment. Therefore,
if some sensory apparatus is encoding properties related to these important
dimensions, then there will be a clustering in the space defined by that sen-
sory mechanism. The reason for making this point here is that there is a
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large body of work by both philosophers and logicians arguing that there do
not exist objective categories in the world. By restricting the claim to con-
sider only those properties important to the interaction between the object
and the environment we can finesse the problem of objective categorization.
In section 2.3.1 we will provide a brief review of the arguments against the
ontological status of natural categories and we will discuss how those ideas ."""

relate to the claim of natural modes.
The second point is that the Principle of Natural Modes is similar to

Marr's "Fundamental Hypothesis" which argued that if a collection of certain
observable properties tended to be grouped, then certain other properties
(unobservable) would tend to group similarly [Marr, 1970]. The principal
difference is that Marr did not provide a motivation for why one would
expect to find certain observable properties grouped in clusters. In fact, the
claim of natural modes by itself is not sufficient to provide a clustering of
objects in the feature space of observable properties. Therefore we extend
our claim with the following addition:

Accessibility: The properties that are important to the inter-
action of an object with its environment are (at least partially)
reflected in observable properties of the object. .' "

Fortunately, this claim is easily justified. For example, the basic shape of .: .

an object usually constrains how the object interacts with its environment.
The legs of an animal permit it mobility. The color of an object is often
related to its survival: plants are green and polar bears are white. As such.
the important aspects of an object tend to be reflected in properties which
are observable. Therefore, the Principle of Natural Modes taken together
with claim of Accessibility provide a basis for why one might expect to find
a clustered distribution of objects in an observer's feature space.

Finally we can combine the goal of the observer - to construct a set of
categories which allow the observer to predict important unobserved prop-
erties of objects - with the claim of natural modes. We make the following
claim about the appropriate set of categories for recognition: "

Natural Categorization: If an observer is to make correct in-
ferences about objects' unobserved properties from the observed
properties, then he should categorize objects according to their
natural modes.
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This claim follows naturally from our goal of recognition and the proposed
Principle of Natural Modes. Given that the observer is seeking to infer
the properties which describe how an object interacts with its environment,
and given that these properties cluster according to natural modes, then
the observer should attempt to categorize objects according to their natural
modes. Accessibility states that this goal can be accomplished using sensory
data.

Before proceeding to the next sections, let us return to the skeptic's
question of why one should use categories to accomplish the proposed goal
of recognition - the inference of unobserved properties from observed prop-
erties. Now that we have presented the Principle of Natural Modes we can
argue that the world contains categories of objects which support generaliza-
tion. For example, suppose one believes that a certain set of objects forms
a natural category, and that one of those objects exhibits a certain (in gen-
eral) unobserved property, e.g. it attacks human beings. Then, one would
make the prediction that all objects of this category would exhibit the same

P. property. If one were using standard conditional probabilities, one could
not make this assertion without some particular a priori probability state-
ment about h gw to generalize over objects of "similar" observed properties.
But such a statement is equivalent to believing in the existence of natural
categories. Thus, a more natural (and more efficient) method of using this
knowledge is to explicitly represent the categories themselves.

In the next three sections, we will consider arguments against and ev-
idence for the existence of natural modes. The primary argument against7:
natural modes stems from the work of philosophers and logicians considering %

the abstract implications of natural categories. The favorable evidence, how-
ever, is derived from consideration of the physical world, and the organisms
that inhabit it.

2.3 The Philosophical Issue of Natural
Categories

2.3.1 Questions of ontology

Ontology may be described as the branch of philosophy that concerns what
exists (Carey, 1986). As mentioned in section 2.2 there has been considerable . '. -
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attention paid to the question of whether categories can really be said to exist
in the world, rather than being constructs in our head. In this section we
will provide a brief review of the logical argument against the existence of
objective natural categories. Then, we will reconcile this argument with the
principle of natural modes.

The basic issue at hand is do categories exist in the world independent of
some observer? Would "rabbits" be a more natural category than "round-
or-blue-things" if there was no organism to perceive them? Prima facie, the
principle of natural modes would argue for the existence of such categories.
However, we will see that natural categories can only be said to exist if we
provide constraint external to objects themselves; an outside oracle will be
required to restrict what aspects of an object may be considered as relevant
to categorization. Only then is it reasonable to consider one categorization 0
of objects as more natural than another. -.

Perhaps the most complete discussion of the subjective nature of cate-
gories is provided in Goodman [1951]. There it is demonstrated that, by
the appropriate choice of logical primitives with which to describe objects,
any similarity relationship between objects can be constructed. Thus, if a
natural set of categories is defined by some measure on a similarity metric,
then any categorization may be selected. Though thorough, Goodman's pre-
sentation is quite dense and difficult to recount. As such we will provide an
alternative form of the argument as given by Watanabe [1985]. This formu- .
lation - referred to as the Ugly Duckling Theorem - makes the issues of
categorization quite clear.

Let us state the theorem directly and then sketch the proof:

Ugly Duckling Theorem: Insofar as we use a finite set of pred-
icates that are capable of distinguishing any two objects consid-
ered, the number of predicates shared by any two such objects is
constant, independent of the choice of two objects. [Watanabe,
1985, p. 82]

We will provide a proof of this remarkable result for one special case; through

it we will be able to see why an external source of constraint is required if
we are to consider one categorization more natural than any other. V

To prove the Ugly Duckling Theorem, let us consider a world of objects V..
that are described by only 2 binary predicates, A and B (Figure 2.2). In
this case the predicates are unconstrained in the sense that A and B carve

%
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Figure 2.2: A world with two independent starting predicates A and B. ..

the world up into four different object types, al ... C4, corresponding to the--
the logical descriptions of {(A n B), (A n -B), (-A n B), (-,A n -B)}. Now
let us consider the question of how many properties are shared by any two
objects.

First, one must realize that although there are only two starting pred-
icates, there are many composite predicates, and each such predicate is a
property in its own right. In fact, every combination of the atomic regions
ai is an allowable predicate or property. Let us define the "rank" of a predi- .
cate to be the number of regions or object types (ai) which must be combined .- :
to form that predicate. For example, the predicates of rank I are exactly, :'
those logical combinations given above., t, defines the predicate (A n B)
which is said to be "true" for the object a, and "false" for objects a2, a3, ."
and a4. An example of a predicate of rank 2 is (--,A) formed by the union .'-(
(a3 U a4). An interesting predicate of rank 2 is given by the union (a2 U Q3): .. :
the logical equivalent is the exclusive-OR (AOB). The exclusive-OR must ,.
be an allowable predicate: if A corresponds to "blind in the left eye" and B
corresponds to "blind in the right eye," then (A®&B) is the predicate "blind
in one eye," a perfectly plausible property. Since all possible combinations ).-
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Figure 2.3: Predicates arranged in a lattice layered by rank and connected such
that a straight line indicates implication from the lower rank to the higher rank.

of regions are permitted to form predicates (if one allows the null predicate
which is false for all objects, and the identity predicate which is true for all ..

objects) there are 2' = 16 possible predicates defined in our simple world of
two starting predicates.

We can arrange these predicates in a "truth" lattice as shown in figure
Figure 2.3. The lattice is layered by rank and connected such that a straight
line indicates implication from the lower rank to the higher one. For ex-
ample (A n B) implies A which in turn implies (A U -B). Notice that the
rank 1 predicates correspond to each of the different possible objects. The
properties which are true for an object may be found by following all up-
ward connections from that object's node; similarly, any node in the lattice
accessible from two different objects represents a property shared by those
objects.

Now, the important question is how many properties are shared by any
two objects. Given the symmetry of the lattice is should not be surprising
that each of the objects shares exactly 4 properties with each of the other
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objects.' If we consider the complete set of possible properties, then any two
objects have exactly the same number of properties in common. Thus any
similarity metric based upon on the number of common properties would
assign an equal similarity to all object pairs. Given this state of affairs, it
would not be plausible to consider any one categorization of objects, any one
grouping of instances according to some similar properties, as more natural
than some other.

Yet, most observers would agree that a dog and a cat are more "similar"
than are a dog and a television. How can we resolve this intuition against
the theorem of the Ugly Duckling (so named since it states that the Ugly
Duckling is as similar to the swan as is any other duck)? The answer must lie
in somehow restricting the set of properties which can be considered. In our
simple world of two base predicates there were 1.4 non-trivial properties which
were considered. Under this description all objects were equally similar. If,
however, we remove certain properties from consideration, then it will be the
case that some pairs of objects will share more properties than others, and a
similarity metric base upon shared properties will yield distinct categories.
How, then, can we decide which properties to remove from consideration? .I£

Unfortunately, it is impossible to decide which properties to discard sim-
ply on syntactic grounds, that is without consideration to their meaning. %
Both Goodman [1951] and Watanbe [1985] provide persuasive arguments %

that no property can be regarded as a priori more primitive or more ba-
sic than any other; a redefinition of terms which preserves logical structure
but changes the basic vocabulary can always cause syntactically complicated
properties to become simple, and simple ones to become complex. 2 Also, as
with the example of "blind in one eye," unusual or disjunctive concepts may
be just as sensible as those defined more simply in a given vocabulary. Thus,
if we are to weight some properties more than others, we must have an ex-
ternal motivation for doing so. This source of information is referred to as

'Watanabe [1985] extends the discussion to include any number of predicates. In general
if there are m atoms, where an atom is defined by an indivisible region ai, then there are
2" predicates and any two objects share 2(m- 2) of them. This result is valid even if the
starting predicates are constrained, e.g. the predicate B includes A such that A implies B.
The only critical assumption is that the vocabulary used to describe the objects partition 0
the world into a finite number of distinct classes.

2 Though see Osherson [1978] on some syntactic conditions which should be met by "nat-
ural" properties. This claim, however, is controversial. (see [Keil, 1981; Carey, 1986])
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"extra-logical" by Goodman.

Let us once again consider the principle of natural modes. We state that
objects will tend to cluster along dimensions important to the interaction
between objects (organisms) and the environment. That is, we claim that
if we restrict the properties of consideration to those only involved with an e

object's interaction with the environment, then there will be a clustering
of objects which will define natural categories. Thus our external source of
information, our oracle which decides what properties should be considered,
are the laws of the physical and biological world. The physical constraints
imposed upon objects and organisms select the properties of objects in which
natural categories are defined.

2.3.2 Induction and natural kinds

A related problem of philosophy is the issue of natural kinds. As an illus-
tration, consider an example similar to that described by Quine [19691: An
explorer arrives on an uncharted island, and meets natives never before vis-
ited by "civilized" men. Being an amateur linguist the explorer attempts to *1
compile a dictionary of the vocabulary of the natives. One day, while ac-
companying the explorer on a trip through the forest, a native points to an
area where a rabbit is sleeping beneath a tree and utters the word "blugle."
The explorer writes in his dictionary that "blugle" means "rabbit." Quine
asks how does the explorer know that the native is referring to the rabbit
and not the situation rabbit-under-a-tree. Even if the explorer could test --

this distinction (say by pointing to another rabbit, perhaps cooked, and an-

nouncing "blugle" and awaiting the response) he could never test all possible
meanings consistent with the situation.

Yet, we believe the explorer is probably correct in his conclusion, and

even if he is not correct on his first attempt, we believe that he will probably •
be correct on his second or third (perhaps "blugle" means "sleeping" or
"cute," but surely it does not mean "small-furry-leg-shaped-piece-within-ten-

meters-of-that-particular-tree"). After considering how it is possible for the
the explorer is likely to be correct, and related problems such as why people
tend to agree on the relative similarities between objects, Quine concludes
that people must be endowed with an innate "spacing of qualities" [1969, p.
123]. Such a spacing would provide people with a standard of similarity that
permitted convergence of their descriptions of the world. An innate quality
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space is an example of extra-logical constraint being provided to the observer
for the formation of object categories.

2.4 Natural Object Processes

In this section we provide a brief discussion of the physical basis underlying
the natural modes. In Bobick and Richards [1986] the construct of an object
process, is proposed as a model of the processes responsible for the creation
of natural modes. An object process represents the interaction between some
generating process (which actually produces objects) and the constraints of
the environment. For the discussion here we consider some of the physical
evidence for natural object processes responsible for the natural modes and
relate those processes to the claim of Accessibility. £

2.4.1 Physical basis for natural modes

We have made a claim about the structure of the natural world: objects
a'

cluster in dimensions significant to their interaction with the environment. it

If this is the case, then there must be underlying physical processes which
give rise to these clustered distributions, and produce these natural modes
of objects. Therefore we should be able to find evidence in the world of such
processes.

Fortunately, such evidence is quite abundant. In the world of biologi-
cal objects, the fact that structures must evolve from previous structures
places a strong constraint on the forms present [Dumont and Robertson,
1986; Thompson, 1962]. An interesting observation supporting this claim"
is provided by Stebbins and Ayala [1985] who noted the non-uniformity in
the distribution of the complexity of DNA. As Pentland [1986] has noted,
"evolution repeats its solutions whenever possible," reducing the number of
occurring natural forms; this conclusion was also reached by Walls [1963]
in his discussion about the repeated evolution of color vision. Additional
support for principle of natural modes comes from the field of evolutionary
biology. Mayr [1984] states:

[The biological species] concept stresses the fact that species consist
of populations and that species have reality and an internal genetic
cohesion owing to the historically evolved genetic program that is
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shared by all members of the species. ..,
The objective existence of species represents a structuring of the world in-

dependent of any particular observer.
Structure in the physical world can also be discovered by examining the

physical processes responsible for the existence of many forms. Steven's anal-
ysis of patterns [1974] is an example of constraint imposed by the physics K-.
of matter in the formation of structure; the fact that "interesting" patterns r..
emerge is an example of natural modes. (See also Thompson [1962].) The V

work by vision researchers to model different physical processes so as to con-
struct representations for different types of objects is plausible only because
there are limited ways for nature to create objects [Pentland, 1986; Kass and
Witkin, 1985; Pentland, 1984]. Even chaotic systems have modes of behavior
[Levi, 1986].

It should be noted that man-made objects are also subject to constraints
upon form, although the environmental pressures are different. For example,
a chair must have certain geometric properties to be able to function appro-
priately. It must allow access and stability, placing significant constraints on
its shape. A table must have a flat nearly horizontal surface with a stable
support to function as a table. An even more complicated set of constraints
related to ease of manufacturing and peoples' aesthetic interests operates
on most constructed objects. Why is it that most books have similar as-
pect ratios? The common visual scene of "row houses" is an example of
structure imposed by man mimicking the type of natural modes produced %
by nature. For a more extensive discussion about constraints on the shapes
of objects and the non-arbitrary nature of objects see [Winston, et al., 1983;
Lozano-Perez, 1985; Thompson, 1961].

a' d

2.4.2 Observed vs. unobserved properties

It is important to relate the existence of natural object processes to the claim
of Accessibility. The claim of Accessibility states that some of the proper-ties important to an object's interaction with the environment are reflected

in observed properties; the importance of this claim is that it permits us -

to attempt to recover the natural categories from the observed properties. _
In light of the discussion about natural object processes, we can view Ac- ,
cessibility as independence between the sensory processes and the processes
responsible for the structure of an object. Because the distinction between
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observed and unobserved properties occurs only because of the sensory ap-
paratus, we can look for natural modes in only the observed properties and
assume that the modal behavior of the unobserved properties will follow.
Because most of the data provided to the observer are observed properties,
this dissociation between observed and unobserved properties is essential for
recovering natural categories.

2.5 Psychological Evidence for Natural
Categories

Until now, our arguments for the existence of natural modes have rested
on evidence from the world itself. In particular we have claimed that the V-

physics of our world, including the evolutionary pressures of the environment,
K, cause objects to have non-arbitrary configurations. However, if it is the case

that it makes sense to describe our world as having natural categories, and,
as we have claimed, that describing the world in terms of these categories 0 0

permits one to make useful inferences about objects, then we might expect
these categories to be manifest in the psychology of organisms that make .
such inferences. That is, we should be able to detect the presence of natural
categories in the mental organization of the world used by different perceiving
organisms. Notice that the existence of mental categories does not imply the
existence of categories in the world, only that the world is structured in such
a way as to permit the formation of visual categories which are useful to
observer. Therefore the ability to create such a categorization is a necessary
condition for the expression of natural modes in observable properties.

In fact, a wealth of literature exists attesting to the psychological real-
ity of natural categories. Evidence may be found in both cognitive science
and animal psychology. In particular the interaction between natural cat-
egories and perceptual recognition tasks has been extensively investigated.
We present a brief review of the relevant literature, especially as relates to
object perception.

2.5.1 Basic level categories

In 1976, Eleanor Rosch and her colleagues published what has become a clas-
sic paper in the field of cognitive psychology [Rosch, Mervis, Gray, Johnson,
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and Boyes-Braem, 1976)."-_,:1
The principal finding of that work was that people tend to categorize ob-_. V._"_:jects in the world at a one particular abstract taxonomic level. This level is -

operationally defined as the level at which categories have many well defined
attributes but at which there is little overlap of the attributes with those of
other categories. As an example consider the simple taxonomic relation of.:--'
"fruit -- apple --+ Mclntosh- apple" where x --+ y means x includes y. In this
case, Rosch et al. demonstrated that the preferred level of description is "ap-
ple." The reason for this was given to be that few attributes can be assigned i

UG2.

to "fruit" relative to the number of attributes assignable to "apple," while the
lower level category "McIntosh-apple" is a category whose atrributes overlap
extensively with other lower level categories such as "Delicious- apple." The
basic level, in this case "apple", is that taxonomic level at which category
members have a well defined structure (in Rosch's concrete noun examples .,
we explicitly mean physical structure) and at which there were no other cat-....

",% %¢

egories that significantly share that structure. Perhaps the most important.,. .
aspect of the work by Rosch, et al. was the demonstration that categories at ,,
the basic level appear to be more accessible for a variety of cognitive tasks "'''
(presently we will consider the interaction between basic level categories and .41I.
the perceptual task of object recognition), indicating that these categories """
enjoy some special psychological status. That is, is there strong evidence .- ,
that these categories have some degree of psychological reality. '.-t

Several attempts have been made to formally define basic level categories " "
in terms of attributes and categories; this thesis implicitly contains one sucE J
attempt. Let us postpone the discussion of these theories until chapter 3'.0-.
where a review of the various disciplines which have addressed the catego- :'''
rization problem -- these include cognitive psychology, pattern recognition :-'
and machine learning - is presented. For now, the important point is that~t """
there exists empirical evidence of a particular set of categories being used to 40

11Y :

describe objects in the world. ,
One of the cognitive operations in which basic level categories show a - -

marked superiority is that of object recognition, whether the actual task be a.-' -
speed of naming task [Rosch, et al. 1976; Murphy and Smith, 1982; Jolicoeur,.-.hGluck, and Kosslyn, 1984;1 or a confirmation ask where the subject is primed
with the name of a category and has to decide whether a picture of an obect,
belongs to that category (see the analysis of Potter and Faulconer [1975
given in Jolicoeur, et al. [1984]). These findings are of particular interest here
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because the principal problem addressed by this thesis is that of categorizing
objects into classes suitable for the recognition. Specifically, we would like
to know whether basic level categories are special in a perceptual sense as
opposed to simply being more easily accessed as concepts by some cognitive
process.

To address this question, Murphy and Smith [1982) designed an axtifi-
cial world in which to test the perceptual superiority of basic level cate- % %
gories. By using artificially created superordinate, basic, and subordinate
categories, they were able to control factors such as word frequency, order
of learning, and length of linguistic description (real basic level categories
tend to have simple one word labels). These factors were considered to be v:.
possible confounding factors in the results originally reported by Rosch, et X1
al. [1976]. Murphy and Smith did indeed replicate the finding that objects
can be categorized fastest at the basic level. They attributed this superiority It
to the fact that basic level categories have more perceptual structure than -
superordinate categories, while at the same time having many discriminat- ".

ing attributes from other basic level categories. Because these were artificial
objects, Murphy and Smith were able to claim that the advantage demon-
strated by the basic level categories in the task of recognition was caused by
a purely perceptual mechanism.

Jolicoeur, et al. [1984] extended the work of Murphy and Smith. Mur-
phy and Smith [1982] postulated that categorizing objects as belonging to
superordinate categories was difficult (slower) because of the disjointedness
of the perceptual structure. For example, to test if an object is a fruit would
require matching the incoming stimulus to a highly disjunctive perceptual
model (something that would match either a banana or an apple). Jolicoeur,
et al. make the stronger claim that that superordinate and subordinate cate-
gorizations are slower because object recognition first takes place at the basic
level, and then further processing is required to determine the superordi-
nate or subordinate category. For example, if the task requires determining
whether an object is a fruit, then when presented with an image of an ap-"
ple, the subject would first recognize the object as an "apple," and then use
semantic information to conclude that it is indeed a "fruit." Similarly, if
attempting to categorize at the subordinate level, the subject would again
first determine the basic category and then compute the necessary addi-
tional perceptual information required to determine the subordinate level,
e.g. "McIntosh."
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~To test this hypothesis, Jolicoeur, et L. considered the correlation be-
ii tween latencies in both perceptual and non-perceptual tasks. In one exper-

iment they discovered that the time to name the superordinate category of
an object when presented with its image correlated well with the time to

. name the superordinate category given the word describing an objects basic'3" "
,, category. For example, the latencies measured when subjects were given the.",
,? ~word "apple" and required to aninounce "fruit" behaved similarly to those .:'

latencies recorded when subjects were presented with a picture of an apple. I
One possible interpretation of this result is that that some words are inher-
ently easier to access than others. To rule out this possibility, correlations
were checked for items within the same superordinate category; both "apple" ,
and "banana" require the response "fruit." For each such item the correct.
superordinate response is identical, allowing us to remove the effect of the
degree of difficulty in making the response. Here too the latency of the per-

ceptual task correlated well with the latency of the linguistic task, Thus the
superordinate categorization data support the claim that perceptual access
does indeed occur at the basic level.

Jolicoeur, et al. [19841 performed a second experiment to test the claim .pit
¢,- that objects were accessed at the basic level. Recall that under this hy- .

pothesis additional perceptual processing beyond basic level is required only,?

:,e. for subordinate categorization. Superordinate identification required only ..
semantic information (e.g. knowledge that an apple is a fruit). Thus one %'
would expect a differential effect between the latencies (and error rates) of ,!.,
identification for subordinate and superordinate categories as one varied the

~the duration of exposure to the perceptual stimulus. In fact, such a dif-

~~ferential effect was found: reducing exposure times from 1 sec. to 75 nisec.,.
~~~~produced no effect on the latencies to name superordinate categories but."i ', ,.

produced a large increase in the time required to name the subordinate cate-
~~gory. Thus, the subordinate categorization data also support the claim that 7-
• ~object recognition first occurs at the basic level. '?
, ~In summary, cognitive psychology provides evidence that people make,"-, .

,• ~use of a particular categorization of the world in a variety of cognitive tasks.,''-
, These basic level categories occurred at the taxonomic level at which objects -
;' possessed a high degree of structure while minimizing category overlap; this

.::: condition is equivalent to stating that knowledge of an object's basic level :-
• ". ~category would permit many inferences about the objects properties, while .-
.! ~ ~identifying an object's category would be reliable given the minimal overlap ,."
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with other basic level categories. While the existence of these categories does PN

not necessarily (in the logical sense) imply the existence of natural categories

in the world, it does support the view that the world is structured in such

a way as to make a categorical description useful a variety of tasks. The
work demonstrating that object recognition first takes place at the basic

level supports our claim in section 2.2 that categories which would be useful

for making reliable inferences about objects are the appropriate categories

for recognition.

2.5.2 Animal psychology

If the structure of the world is such that there exists a categorization which
is naturl for recognition (would permit reliable inferences about objects)

then it should be the case that other organisms in the same world would .

also exhibit such a categorization in their psychologies. Therefore let us

consider the work performed with animals in trying to establish which set of

categories they possess. Unfortunately one is limited in the types of tasks one

can require an animal to do, and most conclusions about animals' categories ./.'

are based on how well and how quickly they learn to discriminate various

sets of stimuli. Nevertheless, interesting results about the categorization of

objects used by animals have been reported. Hernstein [1982] provides an

excellent review of the studies of animals' categories.
Cerella [1979] studied tbe ability of pigeons to learn to discriminate white-

oak leaves from other types of leaves. After learning to perfectly discriminate

40 white-oak leaves from other leaves, the pigeons were able to generalize is'

to 40 new instances of white-oak leaves. Such results suggest that the pi-

geons acquired a "category" corresponding to white-oak leaves. Cerella then

trained pigeons using 40 non-oak leaves and one white-oak leaf, repeated

many times; he then tested these pigeons with probes including 40 differ- 0

ent white-oak leaves. Still, with only having seen one white-oak leaf, the .

pigeons were able to successfully discriminate between white-oak leaves and

other leaves. This remarkable finding suggests that not only do the pigeons

form a category corresponding to the white-oak leaves, they also extract
the attributes necessary to distinguish the "natural" category white-oak leaf

from other leaves. This type of learning provides powerful evidence that

the world is clustered in recoverable natural modes: an organism's percep-

tual processes are tuned to be sensitive to the attributes of objects that are
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constrained by the processes responsible for the object's formation. As in
the experiments reported by Gould and Marler [19871 concerning the role of
instinct in animal learning, these results underscore the importance of pro-
viding the organism with the necessary underlying theory of structure if the
organism is to successfully interact with its environment.

" Hernstein and de Villiers [1980] tested the ability of pigeons to learn the
"natural" category of fish. One of the reasons they chose fish is that fish are
not part of the natural habitat of pigeons and thus their prior experience
could not influence the results. Their training stimulus set consisted of 80
under-water photographs, 40 which contained fish (in various orientations
and occlusion relations) and 40 which did not; the negative examples did
contain images of other creatures such as turtles and human divers. Pigeons
rapidly learned to discriminate between the two sets of images, reaching
a rate of discrimination comparable to that of experiments using objects
normally found in the pigeons habitat such as trees and people [Hernstein,
Loveland, and Cable, 1976]. When tested on novel pictures, all the pigeons
generalized in at least some of the tests. Another set of pigeons was trained
using the same stimuli, but, in this case the pictures were divided randomly. .t. -
The pigeons were unable to achieve a discrimination ability comparable to -21

the fish versus non-fish group and any ability they did acquire took longer to %
achieve. Thus we may take these findings to suggest that pigeons developed
the "natural" category of "fish." The interesting aspect of this result is that %
fish are not part of the environment normally experienced by pigeons nor
have they been so for 50 million years. Therefore it is unlikely that the
genetic experience of the species would encode the category "fish." Thus
we can assume that there is something about the general perceptual process
of the pigeons which makes "fish" a natural category. This is analogous
to Quine's [1969] innate quality space mentioned in section 2.3. The fact
that the innate quality space of pigeons - an organism unfamiliar with the 0
aquatic environment - would lead to the formation of a category "fish" is

. additional evidence that natural modes exist in the world and that they are
perceptually recoverable.
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Chapter 3

Previous Work

Although the problem of categorization addressed in this thesis is one of
psychology - how do people organize their representation of objects with
respect to recognition - the general problem of discovering "natural" or

important classes in a collection of instances can be found in many branches
of science. Particularly relevant here are the following three disciplines: 1)
cognitive science, in which several attempts have been made to formalize
the concept of basic level categories; 2) cluster analysis, the study of the
automated partitioning of numerical data into meaningful classes; and 3)
machine learning, a subfield of artificial intelligence which considers the is-
sues involved in producing a machine which can learn about structure in its

environment. The scope of this chapter precludes giving a thorough descrip-
tion of all the relevant work contained in these disciplines; several complete
books have been dedicated to each. As such, we will present a brief de-

scription of the important contributions which relate directly to the problem
addressed by this thesis: discovering a set of categories that are useful for

recognition in terms of permitting reliable inferences about an object's prop-
erties. The reader is referred to [Smith and Medin, 1981], [Anderberg, 1973],

- and [Michalski, et al., 1983; Michalski, et al., 1986] for references giving more

detailed analyses.
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3.1 Cognitive Science

In section 2.5.1 we referred to the work on basic level categories as evidence
for the existence of natural categories in human mental representation; we
now consider that work in terms of its theoretical development. Cognitive
scientists have attempted to formalize the definition of basic level categories
in terms features and their distributions. Because these categories display
the desirable properties discussed in chapter 2 - they are highly structured
permitting many inferences to be made about the properties of objects con-
tained in those categories, and they are quite dissimilar to one another mak-
ing classification more reliable - it is important to understand these prior
attempts to specify basic categories. We will then draw upon some of them
in our own development of a categorization metric in chapter 4.

In the original work of Rosch, et al. [1976] basic level categories are
described as the taxonomic level which maximized the cue validity of a cat-
egory. As used by Rosch, et al., the cue validity of a feature for a category
is a psychological quantity which measures how indicative a certain feature
would be of some category. The cue validity of a category is defined to be
the sum of the cue validities of the various features or attributes true of the
objects in that category. For example, the cue validity of feathers would be
very high for the category "birds," but less so for "ducks" since many ob-
jects which have feathers are not ducks. Likewise for the features "wings",
"beaks", and "lays eggs". To consider whether basic level categories can be
defined in terms of cue validity we need to provide a formal description of
that psychological quantity.

The most common formal definition of cue validity is that of conditional
probability.' That is, the cue validity of some feature fi for a category C, is

Unfortunately, the term "cue validity" has more than one formal definition in the cognitive

science literature. Cond:.ional probability is the interpretation taken by Smith and Medin
[1981] and Murphy [1982], though the formulation provided by Smith and Medin (p. 79) is
mathematically incorrect. The c.,.validity to which RIosch, et al. refer is probably based

'I upon the definition provided by Beach [1964] and Reed [1972]. In their formulation, the
cue validity of a feature for a category is calculated by considering both the frequency of
occurrence a feature (averaged over all categories) and its diagnostic value in identifying
that category. Let p be inversely proportional to the over-all frequency of occurrence
(,f some feature fi. Then, in this formulation, the cue validity of feature fi for some
category C, is equal to p. (prior probabilityCj) + (1 - p) . (conditional probability CIf).
This formulation was provided to explain the psychological phenomenum that subjects
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taken to be the conditional probability that some object is a member of C if
it is known that feature fi is true of that object. (We assume for now that a
feature is either true or false for any given object.) A simple formula for the
conditional probability can be given in terms of the frequency of occurrences

* of a feature in different categories. Let us assume that N is the number of
objects in the category C. for which some feature fi is true. Likewise for
Nb, and for now we can assume that there are only two categories. Then,
if we assume that the number of occurrences can be used to estimate the
underlying probability distributions, then simple probability theory yields:

Cue validity of =P(CIfi) N.
fi for category C. .NI. + Nb

If there are more than two categories, then the additional occurrences of
the feature in those categories are simply added to the denominator. The
denominator is simply the total number of objects in the world exhibiting the
feature; it remains constant regardless of the number or type of categories _
into which the world is partitioned. With this definition in hand, we can
now consider whether basic level categories can indeed be defined in terms
of cue validity. ft

As Murphy [1982] has noted, maximizing cue validity cannot be the basis
for basic level cateories. A simple example will quickly demonstrate this
fact. Following Murphyl et us consider the taxonomic hierarchy of "physical-
object", "animal", "bird", and"duck", and let us examine the cue validity of
the feature "has-wings" with respect to this hierarchy. Again, define Nphli"

to be the number of "physical-objects" for which the feature "has-wings" is
true. Similarly for Nanimal, Nbird, and Nduk. By definition, Npah, > Nanimai >

Nbird > Nduck. Therefore, since the denominator in the expression for cue
validity remains constant regardless of the partitioning of the objects, it must
also be the case that the cue validity for "has-wings" increases as one moves
up the taxonomic hierarchy. This agrees with the intuition that if p is the
probability that some object is a "bird" given that one knows some feature
about that object, then the probability that it is an "animal" should be at
least p. Since the cue validity of any feature for a category increases as the -'

tend to weight the true conditional probability of feature by how often the feature tends "
occur. However, this formulation must be considered ad hoc, motivated only by a desire
to fit the data. See Kahneman and Tversky [1980] for a detailed discussion about the
relationships between probability theory and people's predictive judgments.
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category becomes more inclusive, the most inclusive category would be the
level which maximized total cue validity. The basic level categories would
possess lower cue validities than the most general category "thing."

The underlying reason that cue validity cannot be used to define basic
level categories is that cue validity contains no consideration of the density of
a feature within a category. That is, only the conditional probability of the
category given the feature is measured, ignoring the likelihood that a given
category member contains that feature. This extra component is included in
the collocation measure proposed by Jones [1983]. Using the above notation,
the collocation of a category and a feature Kcf.I, is defined by:

g¢,,, = P(CjIf1 ) " P(fi Cj)

The first term is the conditional probability corresponding to the cue va-
lidity discussed above. The second term, however, reflects the density of a
feature in the category. Because the collocation is a product of these two
probabilities, it's value can be large only when both terms are large. Though
the first term (cue validity) grows as categories become more inclusive, the
second term is diminished when a category becomes less homogeneous. Thus
the maximum of this function will occur at some intermediate depth in the
taxonomic hierarchy. Jones argues that the basic level categories occur at
the taxonomic level which tend to maximize the collocation as measured over
all the features.

A simple example will illustrate the properties of the collocation measure
and how it relates to basic level categories. After Jones [1983], suppose
we have the feature can-fly and the hierarchy "duck", "bird", "animal".
Suppose there are 10 instances of "duck", all of which can fly, 90 other
instances of "bird", 80 of which can fly (allowing for some non-flying birds)
and 900 additional instances of "animal" of which 10 can fly (for animals
such as bats). If we assume that the occurrences can be used to estimate the
probabilities, then we can compute the following collocations: Kduck,can -fly =
.10, Abirdcanfy = .81, Knimai,can-fly = .10. Thus, the collocation measure

attains a maximum at the basic level ("bird").
Jones [19831 proposed a particular method for converting raw collocation

measures into an index measuring the degree to which a category is basic.
This construction can only evaluate one category with respect to the other
categories of some categorization. It does not readily permit one to compare
one set of categories to another, making it inadequate for the task of selecting
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an appropriate set of categories. Also, there is a question as to whether the p- %

"degree to which a category is basic" is a meaningful quantity. However, the
basic principal of combining two terms reflecting the diagnosticity of features
and the homogeneity of categories (here expressed as conditional probabil-
ities) is consistent with the goals of categorization proposed in chapter 2.
A high degree of homogeneity in a category permits an observer to infer
features (properties) of an object once its category is known, and a high di-
agnosticity of a feature for some category makes correct categorization easier
and more reliable. In chapter 4, where we develop a measure of the utility of
a set of categories for recognition, we will return to this discussion of these.',
two, in some sense opposing, goals.

It should be noted that in terms of being useful for our purposes of creat-
ing a categorization which is suitable for recognition, there is a fundamental
difficulty with the collocation measure: the relative weights of the two prob- IL
abilities are arbitrarily set to be equal. To examine this issue more closely,
consider the following modified version of collocation:

KC). ' = P(Ci,' • P(ii) -

In K', the exponent A, (0 < A < 1) reflects the relative contribution of the
ability to infer an object's category given its features (expressed as the condi-
tional probability P(Cj If) ) as compared to the ability to predict an object's
features given its category (P(fICj)). Such a relative weight is necessary if
we are to use this measure to help select a categorization appropriate for
recognition. The observer needs to be able to trade-off how much informa-
tion about an object he needs to infer from the category against how difficult
it is to identify an object's category from its features. Without such a pa- '.
rameter, the categories that the collocation measure will select as basic or
fundamental will be completely determined by the distribution of features
which the observer measures; the goals of the observer cannot be used to
constrain the selected categories. In chapter 4 we will introduce an explicit
parameter which represents this trade-off.

Finally, we should mention the work of Tversky [1977]. In that seminal
paper, Tversky constructs a contrast model of similarity; it is so termed be-
cause the similarity between two objects depends on not only the features
they have in common, but also the (contrast) features they do not. By
further introducing an asymmetry in the manner in which two objects are
compared, Tversky is able to explain the empirical finding that similarity
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is not psychologically symmetric. For example, most subjects rated North
Korea as more similar to China than China was to North Korea (Remem-
ber these data were recorded in 1976!). The aspect of the contrast model
theory which is relative to our discussion is Tversky's proposal of using his
similarity metric as a measure sensitive to the basic level categories. Tver-
sky realized that a measure which only considered the similarity between .-

members within a category would select minimal categories (the opposite of
cue validity); categories would tend to become more homogeneous as they
were refined. To compensate for this deficiency Tversky suggested creating U
a measure to select basic categories by multiplying the average similarity
between objects in a category by a weighting factor which increased with
category size. This product would then behave in a fashion somewhat anal-
ogous to that of collocation. However, a weight based upon category size
must be viewed as an ad hoc solution; the number of objects contained in a
category should not determine whether that category is at the basic level in
a taxonomy.

We should note that cognitive science has not addressed the question of
how basic level categories are acquired. That is, even if one has a measure
which is sensitive to the basic level of a taxonomy, one cannot recover the U
basic level categories unless a taxonomy is provided. Arguing that a taxon-
omy is provided through instruction (objects are placed in a hierarchy by
teachers) seems to be an untenable position; otherwise, one would have to .
believe that in the absence of instruction basic level categories would not be
formed. Also, the fact that animals form "natural" categories about objects
with which they (and their ancestors of 50 million years) have had no expe-
rience [Hernstein and de Villiers, 1980] argues against taxonomies provided
by instruction.

In summary, we can conclude that a measure which is sensitive to basic
level categories must contain at least two components. These components
should reflect not only the similarity within a category, but also the dissim-
ilarity between categories. (In the next section we will see that these two
components are key to many cluster analysis algorithms.) However, provid- A.
ing a measure which can indicate basic or natural categories is only part of
the categorization problem. The issue of how one discovers these categories, _

of how one hypothesizes about which categories are natural, must also be
addressed.

41 -

?-. .-5

lm ll' m~l.jl~ aJ +l l llpI J J s~l ~~ l"il l" Ji"-
" "

M " I" " 
•

'" ••- lp ~l +lp alo ,I + 01'P'$l+ ~li+]t t * k I- -I -- -i a,"l -l4-/ -l

"[r "m'qr_ .F+ , '-.s s ' l .+. .,+. a ,. '+.. k . - + .,._ , ,, w "r+ , " + , ,',:: " " " t'" '"' +" +'+'' + S '



iN.

V .

3.2 Cluster Analysis

One of the common problems encountered in science is that of generating a
reasonable interpretation and explanation of a collection of data. Whether
the data consist of various astronomical recordings [Wishart, 1969] or of the
descriptions of several diseased soy bean plants [Michalski and Stepp, 1983b],
a basic step in the analysis of the data is to appropriately group the data
into meaningful pieces. In the case of the astronomical data, the spectral-
luminosity profiles are grouped in such a way so as to identify four classes of S
stars: giants, super-giants, main sequence stars, and dwarfs. This grouping
process - segmenting the data into classes which share some underlying
process - is often the most important and yet the most difficult step in any
experimental science.

Cluster analysis (sometimes referred to as unsupervised learning) is the
study of automated procedures for discovering important classes within a set
of data. Traditionally, data are represented as points in some d dimensional
feature space, where each dimension is some ordinal scale. Such a represen-
tation allows one to construct various distance metrics, and then to use those
metrics to define "good clusters." Algorithms are then developed to discover I.
such clusters in the data. We present of brief analysis of common metrics
and methods used in cluster analysis, and will relate these comments to our
current question of object categorization for recognition. The presentation
here is drawn in part from Duda and Hart [1973] and Hand [1981].

3.2.1 Distance metrics

At the heart of every clustering algorithm lies a distance metric which defines '

the distance between any two data points. Most of these metrics require
that the data be represented as points in an d dimensional space, and that
distances along each dimension be well defined.' Standard numerical axis are -"

2 Some approaches to cluster analysis have defined distance metrics on representations
which use binary (as opposed to ordinal) dimensions (see for example Jardine and Sibson
[1971]). The distance between two objects is defined to be the Hamming distance: the
number of dimensions on which the objects take different values. The similarity between
two objects - the logical inverse of distance - is referred to as the matching coefficient.
These metrics, however, have difficulties similar to those associated with traditional dis-

tance metrics (see text). Problems of scale become problems of resolution and relative

42

%~~~~~ % % % %% NN

- A. , Z



% 10

typically used in real applications [Hand, 1981]. The notation we will adopt
is each object or data point is represented by a vector x = {xl, x2 ,... Xd

where xi is the value for x in the ith dimension.

An important question in designing a distance metric for such a system is
whether the measure should be scale invariant. For example, one can assume
that the values along each dimension are normally distributed; scaling would
then consist of a linear transformation of each dimension to yield unit vari-
ances. The difficulty in deciding whether such scaling should be performed is
illustrated in figure Figure 3.1. Here, a rescaling of the dimensions changes
the apparent clusters. If a measure were scale invariant, it would not be able
to detect the differences between these two data distributions. Whether this
behavior is desirable depends on the domain and the semantics of each of the
dimensions. That is, one cannot decide on the basis of the data alone whether
scaling is appropriate. This requirement for outside information is similar 4L
to Watanabe's argument against naturd categories presented in chapter 2:
knowledge of which features are important cannot be determined by looking
only at the data itself without additional information being provided.

Ignoring the issue of scaling, we can consider several distance metrics
which assume that the dimensions are appropriately scaled.3 One common
distance metric is the usual Euclidean metric:

d 1/2

d (xy) = -

By using the Euclidean measure, one is making the assumption that different
dimensions are compatible and that distances along a diagonal are equivalent
to distances along a dimension. Often, such an assumption is unreasonable:
combining years-of-education and height yields no meaningful quantity. In
such cases, the city block metric is more appropriate: %

dd %
d2(x,y) = - Yd

In this case the dimensions are weighted equally, but no interpretation is
given to the interaction between dimensions.

importance; other issues concerning the use of such metrics remain the same. ,
3 As such we will not describe such classic measures as Mahalanobis's distance, which

assumes the data are sampled from a multi-variate normal distribution and scales the
data by the inverse of the estimated cross correlation matrix. %
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Both dland d2 are special cases of the general Minkowski distance:

dS

.i.i

pd 3(x, y) -" lxi - tIl"

By varying r one can control the degree of interaction between dimensions.
When r = 1, The Minkowski measure equals the city block metric; r = 2
yields the Euclidean measure. As r --+ oo, the Minkowski distance converges
to

d4(x,y) = maxlx, - YJ

which represents "total" interaction: the dimension along which two data
points differ the greatest completely dominates the other dimensions.

There are two fundamental assumptions in distance metrics such as these
whose validity is questionable if the task is one of categorizing objects into
categories suitable for recognition. The first of these is the assumption that
there are no (or at most few) dimensions that are unconstrained in the data.
If there are many such dimensions, then the distances between objects in
these dimensions will act as noise, making it difficult to detect the important
distances along the constrained dimensions. When attempting to categorize S
objects for recognition, the important properties - properties which are
indicative of an object's category - are as yet unknown. Thus, it is likely
that some of the properties measured will be unconstrained in the objects.

The second basic assumption is that the same distance metric is appli-
cable throughout all of feature space. Normally, these distance metrics are
insensitive to the absolute values of the feature vectors being compared; the
distances between data points are determined solely by the differences along
each uhniension. Thus, these metrics do not alter their behavior as a function
of a feature vector's position in feature space. With respect to categorization,
this assumption requires that the properties that are important for measur-
ing the distance between some particular pair of objects must be important

for all pairs of objects. This requirement does not seem reasonable for a
world in which the constrained properties of objects vary from one object
type to another.

Finally, most clustering algorithms require being able to specify not only
the distance between two data points, but also the distance between a data
point and a cluster of data points; the distance between two clusters is often

.-0 required as well. Because the measure of distance between clusters is often

45

A

"11 . . . . . . . . .. . .. .. €'.

'., .4. - • a, ---



constrained by the algorithm used for discovering clusters, we will present
the inter-cluster measures in those sections discussing clustering methods.

3.2.2 Hierarchical methods

Most cluster analysis programs can be described as being one of two types
of algorithms, or as being a hybrid of the two. The first of these consists of
hierarchical methods which automatically produce a taxonomy of the data a

samples. In divisive clustering, the taxonomy is constructed by starting with
all data points belonging to a single cluster and then splitting clusters until
each object is its own class. Agglomerative methods begin with each sample
as a separate cluster of size one and then merge classes until all samples
are in one category. Since similar issues underlie both techniques we will%

consider only the agglomerative methods. Our discussion will follow that of
Duda and Hart [1973].

a' For this discussion, represents the number of clusters; Xi is the Ii"

cluster, a set of data points; x1 is the jeh data point, represented as a feature
vector; n is the number of data points. The basic algorithm for agglomerative

%,-

cluserg cand w it a a, si le tetion d oop: me

2. If~=1,.stop

'a 5. Go to step 2.

When executed, this procedure produces a dendrogram such as that in Fig-
ure 3.2. The vertical axis measures the distance between the clusters as they
are merged. At a distance of 1, objects C and D were combined to form a
new cluster; likewise at a distance of 1.5, A and B were combined. Finally at
a distance of 2.5, the cluster {A, B} and the cluster IC, D}I were combined
to yield a single cluster. In a moment, we will show that the dendrogram
does not always yield a tree structure which is consistent with increasing
distance.
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Figure 3.2: Dendrogram (b) of the clustering of the data in (a). This dendrogram

would result for mny inter-cluster distance metrics including nerst- neighbor ad "-'
centroid-distance."'.:
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To execute the agglomerative procedure, one must define the distance
between two clusters. Many measures have been proposed, but we can sep- A

arate them into those which find a minimal or maximal distance between all
possible pairing of objects in the two clusters, and 'hose which compute some
average distance. An example of the former group is the nearest-neighbor
metric in which the distance between two clusters is defined to be the dis-
tance between the two closest points, one from each cluster. Because of the
ability of a single data point to dramatically affect the distance between two
clusters, this class of measures exhibits the undesirable behavior of being
sensitive to outlying or "maverick" members in a cluster.

To remove this undesirable behavior, measures based upon either average
distances or the distances between average members are used. However, these
metrics can cause clusters to be formed that are "closer" to each other than I-1
the sub-clusters from which they were originally formed. An example of
this is shown in Figure 3.3a. In this case we assume that the distance metric
used between two clusters is the Euclidean distance between the (arithmetic)
average of each cluster. In this example, data point A is merged with data
point B because they are the closest pair; the distance between them is 2.2
units. (Note that A, B, and C could be the average of previous clusters
found as opposed to being single data points.) Next, data point C is merged
with the new cluster {A, B} as they are the only remaining two clusters.
But, the distance between these to clusters is only 2.0 units, less than the
original distance between A and B. Thus, the dendrogram displaying this
agglomerative clustering might be drawn as in Figure 3.3b; the taxonomy is
no longer consistent with distance. .

For the task of partitioning objects into categories suitable for recogni-
tion, hierarchical methods have a serious deficiency: they require the com-
plete data set be present at the start of the procedure. The addition of a new
data point can radically alter the structure of the dendrogram by providing a
new link between previously separated clusters. This is especially a problem
for methods which rely on an inter-cluster distance metric such as nearest
neighbor. Such a system must recompute the entire dendrogram when new
data are observed. Because the observer in the natural world will often en-
counter new objects, a hierarchical approach would not be appropriate for -
creating natural object categories.

We conclude our description of hierarchical methods by commenting on
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Figure 3.3: (a) Data points A, B, C with Euclidean distances between them as9
indicated. The distance between the average of (A, B) and C is less than the
distance between A and B. (b) The resulting dendrogram.
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Figure 3.4: A hypothetical dendrogram. If there is some physical significance
to the distance measure, one could infer that this data was generated by several 5

S. discrete processes. In particular, while a description of the data as having 6 groups
or 2 groups seems reasonable, a description which claimed there were 5 groups
present seems arbitrary. This requirement that the description of the clusters be
stable with respect to the distance metric is analogous to Witkin's discussion of
the scale-space description of image intensity profiles [Witkin, 19831.
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the utility of the dendrogram. Suppose one were to hierarchically cluster
some data and that the resulting dendrogram was that of Figure 3.4. Notice
that as the distance between clusters is increased the objects are quickly
clustered into 6 groups. Then, after increasing the distance sufficiently, 3 of
the groups are merged in quick succession while the others clusters remain
separate. The process repeats for the other set of 3 clusters. Eventually, the 2
clusters are combined to form one global category. An intuitive interpretation
of such a dendrogram is that there are discrete processes reflected in the data
and that any valid category description would reflect these processes. For
example, description D 2 which partitions the objects into 5 categories seems
less valid than either description D, or D3 because of the sensitivity of D2

to the distance metric. If one thinks of the distance metric as the scale at
which the data are observed, then D1 and D3 are stable with respect to small
changes in that scale, whereas D2 is not. Zahn [1971] used a similar principle
in recovering clusters by dividing a minimal spanning tree graph of the data
at edges whose length were inconsistent with the other edges in the tree.
The notion of a description be!ing stable with respect to a scale parameter
is reminiscent of Witkin's [1983] scale space description of image intensity
profiles. In chapters 4 and 6 we will return to this question of stability of
description with respect to the "scale" of the observation. .

3.2.3 Optimization methods

The second basic approach to cluster analysis is category optimization. In
these methods, one assumes that there exists some known number of classes .

c. The data are first partitioned into c classes (either randomly or by some
hierarchical method), and then some suitable clustering criterion is optimized
by transferring data samples from one cluster to another. An example of such
a method is the k-means method which can be written as (following Duda
and Hart [1973]):

1. Choose some initial values for means it,... it ,

2. Classify the n samples by assigning them to the class of the closest
mean. (This is equivalent to clustering the objects to minimize the
sum of the squares of the distances of the data points to the cluster
means i.)

51

..- ..

r 5" .'- " '.' -W €€ ,-, - . ,-, , " -' :, >" ,' ' % " " " "" : " " '...""""'0"



.4%

3. Recompute the means i1,, it as the average of the samples in their
class.

4. If any mean changed value go to Step 2; else STOP.

Each iteration improves some measure (in this case the sum of the squared
distances from the data points to the cluster means) of the "goodness" of 'S

the clusters.
As in all optimization procedures, there are two important components to

the algorithm. The first component is the criteria used to measure the quality
of clusters. Most criteria are based on the scatter matrices W and B, repre- .

senting the within-cluster scatter and between-cluster scatter, respectively.
The formulas for these matrices are unimportant for the discussion at hand;
they may be found in Duda and Hart [1973, p. 221]. Their basic purpose is a
to measure the compactness of each cluster and the inter-cluster separation.
Several cr;teria which attempt to "minimize" W (in terms of either the trace
or the determinant) and "maximize" B have been proposed. The above al-
gorithm which attempts to minimize the squares of the distances between
the data points and their cluster mean is equivalent to minimizing the trace
of W. The use of these matrices reveals the underlying assumption of these
measures that "good" clusters are those which are tight hyper-spheres in
features space, separated by distances that are large with respect to their
diameters. Whether such measures are appropriate for a given task depends

upon the validity of the distance metric. Almost all analyses using such scat-
ter matrices assume a Euclidean metric; as discussed in section 3.2.1 such a
metric may be inappropriate for object categorization.

It is important to note that categories which can be represented as tight .f, ' f'
hyper-spheres in feature space begin to satisfy the criteria for a categoriza-
tion proposed in chapter 2. If categories exhibit little within-cluster scatter,
then knowledge of an object's category permits a detailed inference about
that object's features. Also, object categorization becomes less sensitive to
measurement noise when categories are well separated in feature space; the
inference of an object's category from observable features becomes more reli-
able. However, if the degradation of an object's description is caused by the
omission of features as opposed to being caused by noisy measurements, then
separated clusters do not insure reliable categorization. Separation in fea-

52

• _%--

*%t -'

,, g-:0



V,
ON.;A

ture space is not equivalent to redundancy in feature space.4 As discussed in
chapter 2, categorization for recognition requires being able to determine an
object's category from only partial information. Thus, while the optimiza-
tion criteria used for cluster analysis are related to the proposed goals of
categorization and recognition, they are inadequate for producing a suitable
set of categories.

Given a clustering criteria, the problem of finding the best set of classes ,

is well defined. Because there is only a finite number of data points n, there
is only a finite number of partitions of the data into c classes; clustering
reduces to finding the best partition. Unfortunately, the number of possible
partitions is on the order of c'/c! (when n > c, see Rota [1964]), making ex-
haustive search impossible even for a relatively small number of data points.
Therefore, the second component of the optimization procedure is the search %

algorithm used to find good clusters.
One approach is to use a pruned complete search, a form of branch-

and-bound [Winston, 19771. Even this method, however, quickly becomes %
combinatorially intractable. (Hand [1981] provides an example with n = 20, -
c = 3, where the pruning reduced the search by a factor of 1000, but still left
almost one million partitions to be considered.) A more common method of
search is that of gradient descent, where objects are incrementally transferred
from one cluster to another to improve the clustering criterion. In the k-
means method, clusters are modified by transferring each point to the cluster a..
whose mean is closest to that point. However, such a method is sensitive
to the initial hypothesis and, as with all gradient descent algorithms, may
terminate at a local minimum. One radical approach to search is to try
random partitions in an effort to find one of the best m partitions by testing N.,

a set of M partitions. [Fortier and Solomon, 1966]. Simple probability theory ~ a %-
can determine how large M must be in order to be likely to discover one of
the m best partitions. The difficulty with this approach is that Al grows too
quickly with n for some fixed probability of success. In chapter 5 we will
develop a similar strategy for recovering classes of objects, but will apply the ,a

random search to only small subsets of the n samples. By restricting the the .
random search to small sets, we can maintain a high probability of success -'.

without testing arbitrarily large numbers of partitions. •

4In chapter 4 we will provide a formal definition for redundancy. For now, let us as-
sume redundancy measures how easily one can categorize an object given only a partial

description of that object. .
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As a final comment we note that the use of optimization methods usually
requires the a priori knowledge of the number of clusters present; often, such
a priori information is not available. One solution to this problem is to
augment the search procedure with the ability to split or merge categories
at "appropriate" times; such a capability also allows optimization methods
to cope with the addition of new data points. The well known ISODATA
program of Ball and Hall [1967] provides such a mechanism in a clustering
program which uses the trace of W presented above as the optimization
criteria. If the sum of the squared distances between the data points and a
the mean of any cluster becomes greater than some user specified threshold,
then the cluster is split into two clusters. Likewise, pairs of clusters are
merged if their means are separated by a distance less than some other user
specified threshold. This method is successful for limited domains where such
thresholds can be specified. However, a more consistent approach to cluster
splitting and merging is to do so whenever such a change will improve the .
criteria measure. Such a procedure is possible only if the clustering criteria
is not biased towards having many or few clusters. For example, the sum
of squared distances is always reduced by splitting a cluster and thus would -
bias the procedure to find many (in fact n) clusters. Because the measure
of the quality of a categorization we will develop in chapter 4 is not biased
to having many or few clusters, we will be able to split and merge clusters
according to the improvement of the clustering measure. *J.

3.2.4 Cluster validity

An alternative to adding a cluster formation and deletion ability to opti-
mization methods is to simply execute the same optimization procedure for

a range of c, and then to compare the results. However, to select one c
over another requires being able to assess the validity of a clustering of some
data. Likewise, when generating a taxonomy with a hierarchical method,
one is guaranteed that there exists a clustering of the data into c classes for
all c, I < c < n. To determine which of these descriptions represents "struc-
ture" in the data requires some method of determining whether a particular '

clustering is an arbitrary grouping of the data imposed by the algorithm, or
a grouping robustly determined by the data themselves. Unfortunately, few
methods for answering this question exist, and most of these are weak.

One formal method of assessing cluster validity is based on statistical
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assumptions about the distribution of the data. As an example, consider an
optimization method which seeks to minimize the sum of the squared within-
cluster distances. Because c + 1 clusters will always fit the data better than
c clusters, we cannot use the absolute measure to determine which clustering
is to be preferred. However, suppose we assume that the underlying data
are sampled from c normally distributed classes. Then, one can derive an
expected value for how much the clustering criteria would improve by using N
c + 1 clusters instead of c. (For details of such a derivation see Duda and
Hart [1973].) By comparing this value to the actual improvement obtained
by splitting the c clusters into c + 1 clusters, one can determine the validity
of the new cluster. This method is only applicable when some underlying
distribution of the data can be assumed and thus has limited applicability
to domains where one is attempting to discover the structure of data. Be-
cause cluster analysis is usually used as a tool for such discovery, statistical
measures of validity are highly suspect.

A simpler, intuitive approach to the validity problem may be referred to N_
as "leave some out" methods [Hartigan, 1975]. In these methods either some
of the data points or some of the dimensions used to describe the samples
are omitted while executing the clustering procedure. After a set of clusters
is generated (or, in hierarchical methods, selected from the taxonomy) the
additional data points or dimensions are checked for consistency. A stan-
dard, though weak, method of checking is to test the statistical distribution
of the additional sample points or dimensions. For example, the distribution
of values along a previously omitted dimension would be checked for statis-
tically significant differences between clusters. If such a difference is found,
then the belief that the discovered clusters reflect structure in the data is
strengthened. The weakness of this method is that not finding a significant
difference only determines that some particular dimension is not constrained
within the clusters discovered. Assuming a sufficient quantity of constrained
dimensions, one would test other omitted dimensions, hoping to find con-
strained dimensions that supported the clustering discovered. Because of
the qualitative nature of these methods, little formal analysis is possible.

The problem of whether an unconstrained dimension disconfirms the be-
lief that a particular clustering is valid brings to light a fundamental short-
coming of cluster analysis: there is no a priori criteria for success. Let us
assume that we have arbitrarily fast computing machinery and that we se-
lect the optimal partition of some data according to a particular clustering
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criteria. It makes no sense to ask whether these clusters are "valid" classes,
because by definition the groups which minimize the metric are the right 7
groups. Therefore, if one wants to be able to say that the recovered classes ,

are "valid" for some task, then it must be the case that the criteria used"..
directly measures validity of the classes for the task at hand. In chapters :'

1 and 2 we defined the categorization task to be that of creating a set of :"

categories that permitted robust categorization and the reliable inference of "

an object's properties from its category. Thus, if we are to create such a -

set of categories, will need to create a metric which directly measures these

aspects of a categorization. ,

3.2.5 Clustering vs. classification ,.

It is important to note the difference between cluster analysis as described l_

above and pattern claisification [Hand, 19811. The term "classification" usu-
ally refers to the problem of deciding to which of a known set of categories a ,:'

novel object belongs. Most of the pattern recognition and classification liter- " 
%6 

''

ature does not address the problem of discovering categories in a population It ''

IL

of objects. It is assumed that a data analyst will provide a representative set.

of known instances; the problem of classification is to determine a measure

or procedure by which new objects can be correctly classified.

However, one aspect of classification theory does relate to the problem of

is build a decision tree that provides an algorithmic decision sequence that
will correctly classify new objects [Quinlan, 1986; Breiman, et. al. 1984].

In constructing such trees, a trade-off exists between the mis-classification
rate and the total complexity of the decision function, often measured by

2the number of nodes in the decision tree. Breiman et. al. [1986 a suggest a
gpruning mecth tat combines the two criteria using a free parameter

oja. This combination of opposing criteria is similar to that proposed by

Tversky [19771 for determining basic level categories and is thus subject to ,

y the same criticism: the complexity of the description -- for Breiman, et. al. :

¢',. the number of nodes, for Tversky the number of categories -- should notbe confused with the utility of a set of categories. However, the principle

of trading ease of category inference for a more powerful set of categories is

important and will be central to the theory developed in this thesis. % N.
-r
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3.2.6 Summary of cluster analysis

Let us summarize the aspects of cluster analysis relevant to the task of ob-
ject categorization. Three serious deficiencies in cluster analysis techniques
were identified. First, the use of a distance metric which requires constraint
in all dimensions and is applied uniformly throughout feature space is inap-
propriate for natural object categorization. Different processes in the world
constrain different properties of objects and one must expect that each class
of objects will have unconstrained dimensions. Second, methods of category q
formation that require the entire set of data be available initially (such as
hierarchical methods) are not applicable in the natural world where new ob-
jects are often encountered. Third, optimization criteria are only useful if
they directly measure the utility of the categories for a particular task. Cri-
teria based only on distance in feature space cannot guarantee the formation
of categories which permit the inferences required for the recognition task.

4...However, two positive aspects of cluster analysis were also noted. First,
the dendrogram formed by hierarchical methods provides a method for test-
ing the stability of a clustering with respect to the distance between clusters.
We argued that it might be possible to test the validity of a categorization a
if the "distance" axis was sensitive to different processes involved in the cre-
ation of the data points (objects). Second, the tight hyper-sphere categories
preferred by the criteria based upon scatter-matrices begin to satisfy the
goals of a categorization established in chapter 2: the reliable inference of
an object's properties from its category, and the reliable inference of an ob-
jects category from its properties. Better categories can be chosen only if .

the clustering criteria directly measure how well the categories support these
goals.

44%
., ...

3.3 Machine learning

The last field of research we must consider is that of machine learning. Ma- y 14
chine learning is concerned with the issues involved in constructing a machine

(program) that can discover structure in the world by examining specific in-
stances. Whether the problem is to "discover" the laws of thermodynamics
by "observing" experiments [Langley, Bradshaw, and Simon, 1983] or to e-
learn the rules integration by being shown examples [Mitchell, 1983], the
basic learning step requires induction: the formation of a general conclusion

4.
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based on evidence from particular examples. Unlike deduction programs
which derive conclusions known to be true, induction programs are con-
structed such that the conclusions they derive are likely to be true.

For example, the BACON program [Langley, Bradshaw, and Simon, 1983]
is able to discover scientific laws such as F = m a, V = IR, and PV = nRT.
The reason BACON is successful in these cases is that the program explicitly
seeks relations formed by simple additive and multiplicative manipulations.
That is, embedded within the program is the belief (on the part of the
programmer) that if relations of this form adequately describe the data, then
these relations are the correct natural laws. Furthermore, there is the belief
that laws of this form exist, thereby justifying a search for these relations.

3.3.1 Conceptual clustering
One focus of machine learning which is relevant to the task of categorization
is in the area of conceptual clustering [Michalski, 1980; Michalski and Stepp,
1983a,bl, a paradigm similar to the cluster analysis methodology presented 'A
above. As in cluster analysis, the task at hand is to categorize a set of data
points into "good" classes. However, in conceptual clustering the notion %
of "good" is not (solely) based upon a distance metric, but also on an a
priori belief as to what types of cluster descriptions are "natural." Similar
to the discovery program BACON which makes an assumption about the %
form of a natural law, conceptual clustering programs make an assumption
about the form that descriptions of natural clusters should have. We shall
need to relate the particular beliefs about the desired form for descriptions
of natural classes to the goals of categorization and the principle of natural "
modes presented in chapter 2.

As an example of conceptual clustering, let us consider the work of
Michalski and Stepp [1983a,b]. In their system - CLUSTER/2 - data -
points are represented as feature vectors, but the the dimensions are not
necessarily ordinal. Typical features would be "shape" or "color" which
could take values such as "red" or "round," respectively. Convex subsets'
of data points are described by conjunctive combinations of internally dis-

'Convex is not exactly the correct description since the nominal features (e.g. "color") are
not metric. However, if they were, and they were arranged (just for this conjunction)
such that the internal disjunctions (e.g. red V blue) were sequential, then the sets would . %
be convex.
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junctive feature selectors; these combinations are referred to as conjunctive
complexes. For example,

[shape = round][color = red V blue][size > medium]

would describe the set of all red or blue round things that are at least size

medium. Arbitrary clusters can then be represented by the union of such '.'.,

conjunctive complexes; these unions, which are made as simple as possible by '
eliminating any redundant complexes, are referred to as stars. When a set of .

clusters is finally chosen, the stars may be used as conceptual descriptions of
the clusters. Unlike standard cluster analysis, conceptual clustering produces
a description - claimed to be conceptual - of the recovered classes.

Michalski and Stepp describe a procedure for clustering similar to the
k-means method of cluster analysis described in the previous section. An .1 del

initial set of c "seed" data points are chosen and "good" clusters described
by the unions of conjunctive complexes are built around those seeds. Then, ,
an iteration loop is executed in an attempt to select new seeds that yield
better clusters. The details of how seeds are selected, and of how clusters
are constructed are not important for relating this work to the problem of
categorizing objects for recognition. Of interest are the criteria used to judge
the quality of a clustering, and how those criteria relate to the proposed goals 4

of categorization and the principle of natural modes.
.:,Iichalski and Stepp describe four component criteria relevant to the

present discussion. Each represents a different, intuitively desirable prop-
erty for "good" clusters. The first two - commonality and disjointness -
resemble the scatter matrices of cluster analysis. Commonality refers to the
number of properties shared by data points within a cluster; if sharing of
properties is used to define a distance metric, then commonality resembles
the inverse of the within-cluster scatter. Likewise, disjointness measures
the degree of separation - how little they overlap - between each pair ,v>
of complexes taken from different stars; this measure is analogous to the
between-cluster scatter. As previously mentioned, clustering criteria based
upon these scatter matrices favor categories that are tight hyper-spheres in
feature space. Also, as discussed, such categories begin to satisfy the criteria
of categorization proposed in chapter 2.

The next component of the clustering criteria reflects an assumption
about the goal of categorization. Discriminal ;lity6 measures the degree of

6Michalski and Stepp describe different versions of discriminability in two presentations %
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ease in determining the cluster to which an object belongs given only a par- ,
tial description of the object. As a clustering becomes more discriminable, "-"
less information is required (on average) to identify an object's category. a
This criteria corresponds to one of the goals of categorization outlined in
chapter 2: reliable categorization when provided with partial information. '.''

The final element of the clustering criteria of Michalski and Stepp is,.'.
simplicity, and it is an assumption about what constitutes a "meaningful" ""
category in the world. Simplicity is defined as the negative of the complexity, "
which is simply the total number of feature selectors in all the cluster de-
scriptions. This criterion reflects the assumption that the most meaningful '
categories are those that can be described by a small number of properties., ,.
Let us consider the validity of the simplicity criterion in light of the prin-
ciple of natural modes In one respect, simplicity is consistent with a modal
world: if natural classes are highly clustered in the space of important en- ;.
vironmental properties, then only a small number of these properties need :.:.
be described to classify an object. However, when posed in this manner, ,'
this criterion is equivalent to the discriminability criterion above. The more."_
fundamental meaning of simplicity is that the clusters are defined by a small
number of properties; this is the view of simplicity intended by Michalski .,
and Stepp, as they refer to the conceptual description of the clusters as the "'-
"meaning" of the classes. In this light, simplicity is at odds with the principle '2.:

of natural modes, which posits the existence of highly structured, complex ,."
classes. These categories are discriminable because their complex structures-:"
are highly dissimilar; complex environmental pressures cause objects' config-
urations to be different from one another in a large number of dimensions. '%%
Thus, simplicity - an intuitively appealing criterion - cannot be regarded ,-
as consistent with the goal of categorizing objects according to their natural '
modes. '

of their clustering procedure [Michalski and Stepp, 1983a,b]. The discrimination index is .Udefined to be the number of dimensions that singly distinguish all of the clusters - they
take on a different value for each cluster. Dmensionalty reduction is defined to be thenegative of the number of dimensions required to uniquely identify the cluster to which
an object belongs; the negative value is used so that the value increases as a clustering
becomes more discriminable. If the discrimination index is greater than zero (at least
one dimension singly distinguishes all ofie as thethe dimensionality reduction

imust be -1. We can define dscrmiabilit to be the sum of these two values: the greater -
the value, the less restricted is the information that will uniquely determine an object's
category.t b c b mb fi
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In summary, conceptual clustering represents an improvement over stan-
dard cluster analysis. Besides the the advertised extension of providing a
description of the created clusters, conceptual clustering utilizes criteria that
consider the goals of the observer -- discriminability improves reliability -

S. and an a priori belief about the structure of natural classes - simple classes
are preferred. However, we have argued that the assumption that simple
descriptions are the right descriptions is not valid for the task of catego-
rizing objects in the natural world; natural objects are highly constrained
and thus complex in structure. Furthermore, conceptual clustering faces the
same category validity problem as cluster analysis. The categories recovered
are those which optimize the particular set of criteria chosen; the criteria
were not chosen according to some task requirement. Thus it is difficult to
assess the utility of the recovered classes for a specified task such as that .,.

proposed in chapter 2: the reliable inference of an object's properties from
its category.

We have not presented the method used by Michalski and Stepp to find _
possible clusters (they use a form of a bounded best-first search) as it re-
sembles search techniques used in standard cluster analysis. The procedure
is iterative and not well suited to a system which must dynamically gener-
ate categories as new data are observed. Also, the computational expense of
forming these good, but certainly not optimal, clusters is almost prohibitive.'

3.3.2 Explanation-based learning

We stated that the criteria of simplicity used by Michalski and Stepp [1983a,b] ..
reflected an assumption about the structure of categories in the world. As 4.

with all similarity-based methods, the vocabulary on which the syntactic
operations are performed (operations such as measuring the complexity of a
cluster by counting the number of feature selectors used) implicitly embodies
a theory about the world. As demonstrated in the proof of the Ugly Duck-
ling Theorem in chapter 2, a different set of predicates can cause previously
"simple" categories to become "complex." Unfortunately, the theory embed- Z
ded in similarity based techniques always remains implicit in the vocabulary.
Thus it is difficult (if not impossible) to improve one's theory through ex-
perience, and it is difficult to evaluate the correctness of a theory except by

7 For a critique of the conceptual clustering work see [Dale, 1985].
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the actual execution of the similarity-based algorithm. VA

Recently, a new form of machine learning - referred to as explanation-

based - has been developed in an attempt to incorporate an explicit theory
about a domain into the learning process. For example, the LEX program
of Mitchell [1983] uses a priori information about mathematical relations to
learn the rules of symbolic integration from examples provided by a teacher.
Instead of just using syntactic rules for comparing one formula to another,
the program uses its knowledge about mathematical functions to form its
generalizations. For example, part of its theory includes the fact that sin
and cos are both trigonometric functions. Therefore, when it is told that the
integration of x sinx can be accomplished by integration-by-parts, the
program hypothesizes a generalized rule that states x trig x can be integrated
by "integration-by-parts." This rule is maintained unless a counter example
is provided by the teacher.

Certainly, an explanation-based approach to categorization would be
a more powerful technique than simple similarity-based methods [DeJong,
1986]; s at present we are unaware of any such attempts. Such an approach
would require an underlying theory of physics of natural objects. The pro-
gram would have to know what types of equivalence classes can be created
by different object processes. Evidence for such a strategy existing in organ-
isms may be found in the work of Cerella [1979] in which pigeons were able
to form a natural category for "white-oak-leaf" from the presentation of just "_s. *

one instance. The pigeons must have an underlying theory that determines
which aspects of the physical structure of the leaf are likely to be important
in determining its natural class. In chapter 7 we will consider some possi-
ble extensions to the work presented in this thesis; the most interesting of
these incorporates knowledge of physical processes into the mechanism for
recovering natural object categories. %

0
% " %

8 Though see Liebowitz [1986] for a discussion of the relationship between similarity-based ".:'
and explanation-based methods. '"-
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Chapter 4

... er

Evaluation of Natural
l Categories

In chapter 2 we argued that the goal of the observer is to form object cat-

egories that permit the reliable inference of unobserved properties from ob- -.

served properties; we claimed that to achieve this goal the observer should""
categorize objects according to their natural modes. To accomplish this task, I
the observer must be provided with two separate capabilities. First, he must :be able to identify when a set of categories corresponds to a set of natural
clusters. This ability requires that the observer be given criteria with which

to evaluate a particular categorization. The second capability required is,,"
that of being able to make "good guesses." Chapter 3 included a section

Or the search strategies used by optimization methods of cluster analysis;

such a search strategy is necessary because of the enormous number of pos- :- -'

.

sible partitionings of a set of objects. Likewise, to discover "the correct set"

of categories, the observer must consider that paticular set as a possible

candidate. In this chapter we develop a measure of the extent to which a
categorization allows the observer to make inferences about the properties -

of objects. We defer the problem of generating suitable hypotheses until the "?''
following cabetdhapter.3icue

We proceed by first considering only the goals of the obserr, alid de-
riving an evaluation function which measures how well a particular catego- posibl

rization of objects supports these goals. We then describe the behavior of

this measure in both a structured (natural modes) and unstructured world.
Finally, by means of an example drawn from the natural domain of leaves. -
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we demonstrate the the ability of the measure to distinguish between natural
and arbitrary categorizations.

_-

4.1 Objects, Classes, and Categories

First let us define some necessary terminology. We assume there exists a
fixed set of objects, {

9
i, 02, .. . , 0,}; 0 denotes the set of all possible objects.

As mentioned in chapter 1, we will not provide a definition for "object,"
though at the conclusion of the thesis we will consider using the construct of
a category to define criteria for being an object. A categorization, Z, is sim-
ply a partitioning of this set of objects, with each equivalence class defined
by the partition being referred to as a category. Notice, that in this termi-
nology (and for the remainder of this thesis) categories and categorizations
are mental constructs, hypotheses and conclusions made by the observer. In "Y
section 4.3.1 we will develop a formal notation for deriving expressions in-
volving categories and categorizations. The goal of the observer is to create
a categorization of objects that support the goals of inference established in
chapter 2. £

When we need to refer to the structure of objects in the world, we will %..-

refer to object classes. Thus the principle of natural modes states that ob-
jects in the world are divided into natural classes; these classes are produced
by the natural object processes discussed in section 2.4. Because the discus-
sion of this chapter will focus on the evaluation of the observer's proposed
categorizations, we will not provide a more extensive definition of classes; for
a more formal discussion about classes see Bobick and Richards [1986]. "

4.2 Levels of Categorization

We begin our development of a measure of how well a categorization supports
the goals of the observer by considering object taxonomies, such as that
pictured in Figure 4.1. (As is often the case, trees in computers grow upside-
down: the root node TILING is at the top; the leaves, e.g. "Fido", at the
bottom.) Each non-terminal node represents a category composed of the •
union of the categories below it. The terminal nodes - the "leaves" of :'.'¢
the tree - are categories containing exactly one object. Given a set of
objects, one may create a large number of taxonomies. For the purposes of .
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developing a measure of the utility of a categorization we will assume that
some particular taxonomy has been provided.

Notice that the set of categories at any level of the taxonomy constitutes
a partitioning of the set of objects and is thus a legitimate categorization.
Suppose our task is to select the level which best allows the observer to satisfy
his goals of making reliable predictions about unobserved (and observed)
properties.' Let us assume that the observer will make these predictions
based upon the category to which he assigns some object and the properties
of other objects known to be of that category. Therefore, to select the best
level of the taxonomy, we have to consider how the depth of the categorization
affects the ability of the observer to correctly categorize an object and the No
ability to make predictions about an object once its category is known.

For the remainder of this chapter, we will be considering only observed
properties, since we assume that those properties are the only ones avail- %I!
able to the observer for evaluation of a categorization. As discussed in sec-

_".P.tion 2.4.2 the unobserved properties should behave similarly to the observed
properties. Therefore, we assume that a categorization that provides good ."6

performance in terms of predicting observed properties, and that allows reli-
able categorization based on those properties, will also be good for predicting 4
unobserved properties.

4.2.1 Minimizing property uncertainty

First, consider moving down the tree from the root towards the leaves, mov-
ing from TilING to "Fido" (Figure 4.2). In doing so, the categories become
more specialized: knowledge that an object belongs to the category provides
more information about the object. For example, knowing that some ob-
ject is a dog allows the observer to predict many more properties (e.g. has
teeth, has hair, has legs) than if he only knew the object was an animal. At
the extreme depth of categorization, each category contains only one object.
Let us assume the observer knows everything there is to know about each

'We should point out that it is somewhat artificial to require selecting some particular ,'
level. This presupposes that the same level is the best level across the entire taxonomy
tree. A more appropriate task would be to pick the best set of spanning nodes, since .
the "best" level in one part of the tree may be lower than that of another part. For
the principles to be developed here, however, considering a fixed level of categorization is
sufficient
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Figure 4.2: A single path from THING to "Fido" in some proposed taxonomy tree. " "
As the depth of categorization increases, more predictions about unobserved (and...-..
observed) properties are possible; however, classification of an object becomes more,"-.
difficult and less reliable, and the ability to categorize novel objects will degrade.
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instance (e.g. "Fido"). Then, at this finest level of categorization, knowledge

of the category to which an object belongs allows complete prediction of its
observed and unobserved properties.

We can describe the process of increasing the depth of categorization as
minimizing property uncertainty, which we denote as Up(Z). This uncer-
tainty decreases as objects in a category becomes more "similar" to each
other. Thus property uncertainty measures the inhomogeneity of each cat-
egory and expresses the difficulty the observer has in attaining his goal of
being able to predict properties of an object once its category is known.
Later, we will propose an explicit measure for Up which is claimed to be
appropriate for perception. For now we simply note that Up decreases as we
move down the taxonomy hierarchy.

There is, however, a price to be paid for increased categorization depth 4
and the reduction of property uncertainty. As categories become smaller and
more refined, the differences between categories becomes smaller, making the
task of categorization more difficult and less reliable. For example, to de-
termine that an object is a Siberian Husky generally requires more property
information than to determine that it is a dog. Furthermore, the categoriza-
tion of novel objects becomes less reliable since different categories are now
more similar to each other; deciding whether some new object is a Husky or
a German Shepherd is more difficult than deciding whether it is a Dog or a
Horse. Thus, increasing the depth of categorization facilitates some goals of
the observer while hindering others.

4.2.2 Minimizing category uncertainty

Now, let us consider climbing the taxonomy tree, with the categorizations
becoming coarser as we move from the finest categories to the root node
THING. Now the categories become more general: knowledge of the category
to which an object belongs provides less information about the properties of
the object as we get closer to the root node. At the extreme, where there
is only the one category TILING, knowledge of an object's category permits
almost no predictions about any of its properties. Therefore, decreasing the
depth of categorization decreases the ability of the observer to satisfy his
goal of being able to make important predictions about objects based upon e.:

their categorization.
As to be expected, the sacrifice of the ability to make predictions about
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the properties of objects is accompanied by a compensatory increase in the
ease of categorizing an object. In general, less property information is re- F'

quired to know that an object is a dog than to know that it is a Siberian
Husky.' In the case of the depth zero categorization, where the only category
is THING, minimal information is required to make the correct classification.3

Likewise, the ability to categorize novel objects also improves with decreas-
ing categorization depth since the categories become more encompassing.
Climbing up the taxonomy tree reduces the category uncertainty which we p
denote as Uc(Z). As with increasing categorization depth, decreasing depth
facilitates some of the recognition goals of the observer and hinders others.

To further refine our definition of UC, we need to make the categoriza-
tion process more explicit. Let us assume that the process of categorizing
an object is performed by looking at the current categorization of objects
and finding the category whose objects "match best" - an operation which %
we will currently leave undefined - the object in question in their observed
properties. If given a complete description of an object, and if that object
matches only objects in one category, then there is no uncertainty in the
categorization process. However, in perception it is often the case that many a
of the potentially observable properties are not provided in an object's de-
scription or that an object matches no object in the current categorization

I ,.or that it matches objects in several categories. Therefore let us loosely de-
fine the category uncertainty as the uncertainty of the category of an object %
given some of its observed properties. This definition also accounts for ob-

2 Note there may exist some unique identifying property which will indicate membership in
some low level category. For example, if one knows that an object has one blue eye and
one brown eye, then there is a high probability that the object is a Siberian Husky. Thus,
for that particular property, identifying an object as a dog is no easier than identifying it %
as some particular type of dog. However, two points help eliminate this concern. First,
by definition, any property which helps to categorize an object as a Siberian Husky also
helps to categorize that object as a dog. Therefore determining an object is a dog can
be no more difficult that determining it is a Husky. Second, if we assume the difficulty ..

of categorization is measured not only by the number of properties required to categorize
an object but also by how restricted those properties must be, then the existence of some ,. -
unique identifying feature does not make the Husky categorization easier. Later in this
chapter we define a formal measure of the uncertainty in categorizing an object that is
consistent with this assumption.

,We say "minimal" information as opposed to none because some information might be
required just to know something is a "Thing." For example, is sand in a sandbox a thing?
This problem cannot be resolved with defining what constitutes an object.
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jects that don't match any previous object since they presumably do match
other objects in some of their properties. In later sections where we derive
a particular evaluation function, we will make more precise the idea of some
observed properties.

-- '-" :

4.2.3 Uncertainty of a categorization

In the previous two sections we noted that as a categorization becomes either
finer or coarser, some of the goals of the observer are made more difficult to
achieve while others are made easier. Therefore, if the observer requires some
degree of success in all his goals, then the appropriate level of categorization
must lie somewhere between the two extreme granularities of categorization.
However, the question as to what level is appropriate can not be answered
until the desired relative achievement of the conflicting goals of the observer
is specified. _

For example, consider an organism that has both simple perceptual needs A.
- the properties he needs to extract about objects are few and quite crude
- and a primitive sensory apparatus - the extraction of complicated infor-
mation is quite difficult and time consuming. Such an organism would desire-.
a set of categories relatively near to the top of an object taxonomy. Choosing
such a set corresponds to sacrificing the ability to make precise predictions
about the properties of objects in exchange for reliable and time effective
categorization. Inversely, an organism with great perceptual demands and
refined sensory mechanisms (e.g. primates) would make the opposite choice:
a set of categories that required encoding more sensory information but af-
forded more precise predictions.

Let us propose a categorization evaluation function that makes explicit
the trade-off between these two conflicting goals of the observer. We assume
we have a candidate categorization - a partitioning of the set of objects
into a set of categories - and that our task is to evaluate how well the
categorization satisfies the goals of the observer. We require an evaluation
function that combines Up and Uc in such a manner as to make explicit
the trade-off between the two uncertainties. Let us introduce the parameter
A to represent that trade-off, and let U(Up, Uc, A) be the total uncertainty
of a categorization, where 0 < A < 1. We will view U as as measure of
poorness of a categorization; the less total uncertainty a categorization has
the more it is to be preferred. A is to be interpreted as a relative weight
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between being able to infer an object's properties from it's category and ,-,m

being able to infer an object's category from its properties. When A = 0
only the ability to infer properties is considered; thus the best categorization
is that which is the finest. Likewise when A = 1, only the ability to infer the s-,

category is important; in this case the coarsest categorization is preferred. . . W

The important questions that arise are what are the preferred categorizations
as A takes on intermediate values and how does the setting of A interact
with the actual classes present in the world. We will have to postpone the -,

discussion of these issues until after we derive suitable measures for Up and
Uc..:.,

4.3 Measuring Uncertainty

4.3.1 Property based representation

The observer does not directly categorize the objects in the world. Rather,
he can only operate on a representation of those objects. We define a rep-
resentation to be a mapping from the set of all possible objects, O, to some
finite set ®.. Note that even though we required that each object 0, be a

member of only one category (the categorization is a partition in the math-
ematical sense) two distinct objects may have the same description in the
representation used by the observer. The representation of object 6i may be
identical to the representation of object Oj, but since it is a different object,
it is permitted to be in a different category. Of course, if one is propos-

ing that the categories of some categorization correspond to natural mode
classes, then this situation would either be a violation of the Principle of Nat-
ural Modes or simply a representation insensitive to the differences between
classes.' However, as a potential categorization it is certainly permissible.
Furthermore, a single category may have many objects with the same de-
scription, which corresponds to the situation where the representation does
not discriminate between two objects assigned to the same category.6

'The finite restriction is included to agree with the intuition that there is some limit to
information encoded by the observer.

'In chapter 5 we will further consider the competence of a representation.
'A problem with allowing distinct objects to have identical descriptions is that it becomes

impossible to distinguish between the case of two different objects being so similar that
they map to the same point in the representation space and the case of two instances of
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For our derivation of the quantities Up and Uc we will utilize a property . -
based representation. Though commonly referred to as feature space repre-
sentation [Duda and Hart, 1973], we prefer the term property description to
emphasize the fact that these properties are of the objects themselves, not
of an image or some other sensory representation. The term "feature" will
be used, but to refer to a predicate defined on objects and computable from ,
sensory information. We should note that the form of the representation is -

not critical to the qualitative results derived about the evaluation function.
If one prefers some other representational form, for example the volumetric
primitive approach of generalized cylinders, then such a representation may
be used as long as a method for computing Up and Uc is also specified.

The terminology of our property based representation is defined as fol-
lows: the term feature refers to a function or predicate computed about an
object; the term value, to the value taken by a feature; the term property,
to the valued feature. For example, "length" is a feature, "6 ft." is a value,
and "having length 6 ft." is a property. Each feature, f,, 1 < Z < m, has
an associated set of values {vil, v 2,... ,vi,} referred to as the range of the
feature. We require that the range be a finite set but the cardinality of the
range can vary from one feature to the next. F denotes the set of features
{f,, f 2,.. . ,f} Using these features, each object 9 is represented by an m-
dimensional property vector P = (vla, V 2 ,..., VIm.Y) where vii is the jth value
of the range of the it h feature. "

As defined at the start of this section, a categorization is a partitioning of
the population of objects, with each equivalence class defined by the partition .

being referred to as a category. The symbol Z will continue to be used to
represent some possible categorization; often, however, the operations being .-

discussed will only be meaningful with respect to some categorization and
the explicit use of Z will be omitted. In the sections that follow we let c be A
the number of categories in a categorization, and let Ci be the i h category. %
Also, we need a category function, %P which maps an object onto its category 0
in the current categorization: '(Ok) is the category to which the the object
Ok belongs. We denote 41 (0k) as Ok. The size of a category is expressed by
* CiJJ or by J41'&I depending on whether referring to the i th category or the
category to which object Ok belongs. %

Finally, when we need to refer to the structure of objects in the world, '.- . '

the same object. For now, we assume that somehow we know that each object is distinct.
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we will need to refer to the natural classes present. Recall that a class

is distinguished from a category in that a class represents structure in the
physical world, where as a category is part of a categorization proposed by l_
the observer. We will use the symbol lj to represent the lh class.

4.3.2 Information theory and entropy

In our discussion about the ability to make inferences about the properties
of objects, we have been using the term uncertainty without having provided
a suitable definition. If we are to propose a measure of the utility of a
categorization based upon uncertainty of inference, we must have a formal
definition of uncertainty consistent with the representation of objects and
categories.

In information theory, uncertainty is the amount of information which
is unknown about some signal [McEliece, 1977]. It is measured in terms X
of the probabilities of the signal being in each of its possible states. For
example if some signal A can be in one of two states, each with probability
.5, and signal B can be in one of 4 states each with probability .25, then '
there is said to be more uncertainty about signal B, and signal B is said
to convey more information. Shannon, in his original work on information
theory [Shannon and Weaver, 1949], derived an information measure H based
upon the entropy of a probability distribution: .-.

m
H = E- pi logpi (4.1)

i=:I

where pi > 0, and E' 0 pi = 1. One of the elegant results of that work
was the demonstration that any measure of uncertainty must use a plogp
formulation if it is to satisfy several desirable and intuitive constraints about
information and communication. As such, entropy has become the standard Fr ,.
means of measuring uncertainty [McEliece, 1977].

The question we need to consider is whether it is appropriate to consider
the uncertainty in the perceptual process to be similar to uncertainty in
the theory of communication. If so, then entropy is a natural measure in i"

which to express uncertainty. Perhaps the simplest answer to this question
is that perception Is communication. We can view the perceptual process

a.. as communication between what is being observed and the observer. The
channel consists of the sensory apparatus; the coded message, the sensory
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input. It is the task of the observer to decode the actual message from sensory
input. As such we claim that the traditional measure of uncertainty in
communication theory is an appropriate measure of perceptual uncertainty.'

Also, the particular form of the uncertainty measure is not critical to
the work described here. In fact, an implementation not reported in this
document made use of a measure based on the probability of making an .'-

error if the observer made his best guess about an object's category. The re-
sults of that implementation were similar to those achieved with the entropy
measure.

When deriving the uncertainty measures of the next sections it will be
useful to keep in mind three properties of the entropy measure H that are
consistent with one's intuition about measuring uncertainty. First, H = 0
if there is only one possible state, i.e. pi = 1 and for all j : i, p = 0. 1
Thus, when only one alternative exists (say, about the category of an object)
the uncertainty measure equals zero. Second, for the case when all the
probabilities are equal, pi = pi for all i and j, H increases as the number ,I
of choices increases. The greater the number of alternatives, the greater the
uncertainty. Finally, for a fixed number of alternatives m, H is a maximum -
when all of the probabilities are equal, and that maximum value of H is
log m. Uncertainty is the greatest when one has no reason to prefer one
alternative over another. -

4.3.3 Measuring Up

In this section we will derive an entropy measure for the property uncertainty
Up. We proceed by assuming that the observer knows that an object belongs

S. to some particular category C. The question we want to answer is how much
uncertainty does he have about the object's properties?

There are two ways to think about the properties of objects. The first
is to consider the property vector as a whole, and the uncertainty of the
properties of an object is the uncertainty of the entire property vector. The
second is to consider each component independently. To decide which way
is appropriate for measuring Up, we must consider the tasks of the observer
for which the property information is useful.

'The recent work by Bennett, Hoffman and Prakash [1987] on "observer mechanics" sup- %

ports the view of perception as an encoding (and projection) of the state of the world.
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Figure 4.3: Two categories with their objects and associated property vectors.
If the components of the property vector are considered independently then the
uncertainty of Cb is greater than that of C.; otherwise they are equal.

One such task is simply needing to know some particular property. For e

example, the fact that something is hard (therefore can be stepped on safely)
or that something moves (therefore should be kept at a safe distance) are

properties the observer might want to know directly. Another task, and one %
which may be critical for a reliable perceptual process, is the ability to make

predictions about as yet unobserved but potentially observable properties;
these predictions are necessary for the verification of the identity of an object.
In both of these cases, it is the separate uncertainties of the components of .

the property vector that are important. Figure 4.3 illustrates this point. For S

the perceptual goals of the observer, knowing that some object is a member

of category C8 provides him with more useful information than knowing that

some object is a member of Cb. However, for the uncertainty of the properties

of an object given its category to be greater for C6 than for C., then it must

be the case that we consider the properties independently. If the property -

vectors are considered in their entirety, then the property uncertainties of

C, and Cb would be equal.
We now construct a measure of property uncertainty considering the -

%'%

75

.'. . . . .

4 1-...I 
%



-b

uncertainty of each of the features independently. First, we need to define %
the uncertainty of a feature in a category. To reduce the complexity of **'

the notation, we define H(D) to be the entropy of any finite probability
distribution D:

H (D) = - 10Plog2 P (4.2)

where D = {pi,p2,. .. ,p,}, pi 0, and E1=0P, 1. For the remainder of
the thesis the base of the logarithm will be omitted from the expressions; we
will always assume it to be 2.

Now let us define the distribution of a feature f, in some category Ca.

Let pi be the fraction of objects in C0 whose value for feature f' that is
equal to the jt value in the range of fi. s Then the dist(fi) in Ca is the set S

.~ {pa oP,...P }where q is the number of values in the range of fi. Using

this distribution we define the uncertainty of feature fi in category Ca to be

H(dist(fi) in C).
Having defined the uncertainty of a feature in a category we can define our

property uncertainty of the category as the sum of the feature uncertainties:

Up-of-c(Ca) = H(dist(fi) in Ca) (4.3)

-f. EF

The above equation provides a measure to answer the question of how much
uncertainty about an object's properties remains once that object's category
is known. To compute Up(Z) we must extend that measure to provide an *

evaluation of the property uncertainty over the entire categorization. Let 71
be the total number of objects, n = Ei IICil. Recalling that 'I(0,) represents-
the category to which object 9i belongs, we define Up as the average of
Up-of-C as summed over all the objects in the categorization Z: 0

Up(Z)= - Up-foc(OP(Oi)) (4.4)? n 0,~O in Z ...

Since Up-, f-C is only a function of 'IP(0i) and not of Oi itself, we can sum over
the categories instead of the objects, weighting each category according to 0
its size:

S 'We do not have to exclude the case where p 0 because, by L'Ilospital's rule,

lim n-0p log P 0.
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Up(Z) = - IlC, Up-ore(C,) (4.5)
n CiEZ

This second form is computationally less intensive and is the form used in the
implementations discussed later in this chapter. We postpone discussion of
how Up behaves in ideal, noise, and real conditions until after we derive Uc
and can apply a total uncertainty function to both artificial and real data. %
Later, we shall also discuss how Up compares with some of the distance R

metrics discussed in chapter 3.

4.3.4 Measuring Uc

Having proposed a measure for Up we must now rovide a measure for Uc, %

the category uncertainty. In section 4.2.3, we stated that Uc was the uncer-
tainty of the categorization of an object given some of the object's properties;
we must now make that loose description precise.

To begin, let us assume that "some" of the observed properties means
exactly what it says: we are given only some of the components of the
property vector describing some object. This situation would arise if some of 6
the (potentially) observable properties could not be recovered in the current -.

sensing situation. Consider the uncertainty of categorization if we are given
this incomplete description of the object and our task is to decide to which
category that object belongs. To determine the correct category, the observer
would check each category in turn, noticing whether there are objects whose
property vector matches the components that are piovided for the object
in question. If only one category contains any objects that match, then
there is no uncertainty of categorization. If, however, there is more than
one category, we need some way of measuring the uncertainty as to which
category the object belongs. 9

We will design a measure of category uncertainty by assuming that the
percentage of matches that a partial description of an object makes to a
category is representative of the probability that the object actually belongs
to that category. For example, suppose a given partial description of object

9We do not need to consider the case of an object not matching any of the objects in the
categories. The uncertainty measure is designed for the evaluation of a categorization in
which all objects of the population have been categorized. Thus every object is guarantee(d. .

to match at least one object, namely itself. J,
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Ok, matches 4 objects in category Ca, 12 objects in category Cb, and no
objects in any remaining category. Then we say the probability that Ok

belongs in Ca is .25, and in Cb is .75. This suggests that we measure the
uncertainty of categorization for an object with the entropy function H.

Let F' be some subset of the set of features F. We define MATCH(Ok, Ca, F')
to be the number of objects in category Ca whose property vectors match
that of 0 k in the components contained in F'. As such we define the match
probability PM(Ok, Ca, F') of Ok in Ca on F':

MATCH(0k,, F')PM~l (0k, C., F') (4.6)
pM(k,ECa,F) = -CMATCH(k, Ci, F') (4.6)

where the denominator is simply the sum of the matches over all the cat-
egories. Given the match probabilities, we define the match distribution
of (8k, F') to be the set of probabilities {pM(Ok, C1 , F'), pM(Ok, C 2 , F'),...,

pM( 9 k, C, F')}. Finally, we can define the category uncertainty for a given
object with a given feature subset description:

t net Uc-he eo(ij, F') = H(match ditributionof(9, F')) (4.7) )

If an object 9i matches onl objects in one category in the features of F' then
the uncertainty U¢-of-,g will be zero. :,

Having defined the category uncertainty for one object over one subset of
the features, we can compute the category uncertainty Uc for a categorization
Z by averaging over all objects and over all possible subsets of F. However,
to compute such an average we must take into account the probability of
having a particular feature subset F' available for a particular object 9i. For
a given object one set of properties may be highly salient and thus likely to
be viewed, while for another object a different set of objects may be more . .,-

likely available. Thus, we define the quantity ps(F', 9j) to be the Salience
probability, where ps(F', 19i) 0, 2i ZF/PS(F, 9i) 1. This probability is
intended to reflect the likelihood of having some particular subset of features
(and only that subset) available for a given object. Let p(F) be the power
set of F - the set of all subsets of F. Then, using the salience probability as
the appropriate weight for averaging the individual category uncertainties, 0
we get the following expression for Uc(Z):
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Uc(Z) = l Z Z ps(F',8i) H(match distribution of(0i,F')) (4.8)
n 9. in Z F'P(F)

A special case of the above equation occurs if one assumes that the salience

probability is equal for all feature subsets and for all objects. In this case,
since the cardinality of p(F)equals 211F11, Uc(Z) reduces to:

1 1
Uc(Z) H(match distribution of (0,, F')) (4.9)Uc(Z)-n 211F'II 0, in Z ,£Ep(F)

The above equation is used in the implementation discussed later in this
chapter and in subsequent chapters. This special case was employed instead
of the more general formulation because without a model of the sensing
apparatus we have no basis for assigning the salience probabilities.

As a final comment about the computation of Uc, we note that the size : *.Nip

of the power set V(F) grows exponentially as the size of F increases. As
I FJI becomes only moderately large (only 15 or so), 211Fll becomes compu- .
tationally unmanageable, since each of the subsets would be evaluated for
each object. To alleviate this problem, an algorithm was implemented in
which not all possible subsets of F aie considered for each object. Rather,
for each different object 9k, a different set of subsets of features is randomly W
chosen for the computation. The number of feature subsets used per object
can be varied, trading speed foi accuracy. In the examples shown in this
thesis, the sampling method was used exclusively. A comparison made be- .

tween the sampling method and the exhaustive method yielded no significant a.

differences.
We should note that the strategy of sampling the feature subsets is only 0

valid when most features are constrained by the natural classes. Otherwise,
there is a high probability that the sampled subsets will contain no useful
information about the category to which an object belongs; the computation
of Uc' will produce erroneous iesults. If we require that such a sampling
strategy be available to the observer, then we have placed an additional 0
requirement on the representation: the representation must not contain too r. e
many unconstrained features. Without such a representation, the sampling '.'-.

strategy observer cannot recover the natural modes.

-'
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At the end of the next section, after defining the total uncertainty of a
categorization, we will analyze the behavior of UC and compare its properties
to the distance metrics criticized in chapter 3.

4.4 Total Uncertainty of a Categorization

Having proposed measures for both Up and Uc, we must now introduce the
parameter A - the relative weight of the two uncertainties - and construct
a measure for the total uncertainty U(Up, Uc, A). We proceed by examin-
ing how the two measures Up and Uc behave under both ideal and pure
noise conditions. By combining those results with some necessary or desir-
able properties that the uncertainty measure should exhibit, we restrict how
U(Up, Uc, A) may be constructed. We then show that a simple weighted sum
satisfies these constraints.

4.4.1 Ideal categories

Our first consideration is how Up and Uc behave in an ideal world where
there are purely modal classes and features. By purely modal we mean
that for each class, each feature takes on a distinct value.' Therefore, the
features are completely predictive: knowledge of one feature is sufficient to -

correctly identify the class allowing the prediction of all other features. One

101f the current definition of a modal world appears awkward, it is because we have just
confronted Watanabe's Ugly Duckling Theorem. Notice that we cannot define a purely
modal world without making reference to the features. Given the discussion of natural
modes in chapter 2 one would like to be able to say that some world is modal, independent
of the features used to describe it. Unfortunately, as demonstrated by Watanabe, this is

impossible without restricting the properties of the objects that may be used to describe S
the objects. For example, suppose we arbitrarily partition the world into two groups, C.
and Cb. Then, let us define a set of features F such that for every fi E F, the objects
in category Ca take on the value 1, and every object in category Cb takes the value 0.
(A trivial example of such a feature is "1 if Oi E Ca, 0 otherwise.) Then, as described
by this set of features, the world would be purely modal. The only method by which we
can say there exist classes in the world is by restricting the properties of consideration
to be those that are of importance in the natural environment. Ve will return to this P,.

point later when considering how the evaluation function proposed in this section - an
evaluation function derived from the goals of the observer relates to the structure of %

the natural world. %
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Figure 4.4: An ideal tax€onomy. The hierrchy preserves the class structure

exctly. At level 2, the categories of the taonomy correspond to the classes f/, in ...-
the world.
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possible taxonomy of such a world is shown in Figure 4.4. In this case there ",are four classes of objects in the world: Qa, Qb, Q,, Qd. The taxonomy

is constructed such that at level 2, the categorization formed by the four
categories corresponds exactly to the 4 classes in the world. At that level, all-' .",
objects in a category have the same property vector, and across categories :'3::.
each feature takes on a different value. Because the features, fi, used to Z:::
represent the objects are purely modal there are 4 values for each feature, ",'
one value corresponding to each class. !

The graphs of Figure 4.5 are the results of evaluating Up and Uc for .
each of the different categorizations corresponding to a different level in the

taxonomy. In these and subsequent graphs, the abscissa indicates the depth (6

in the taxonomy. A depth of zero corresponds to the root node, where the
~categorization contains only one category, TILING. The depth of d (where d

is the deepest level of the taxonomy and d = log n) corresponds to the case
~when each object is its own category. Notice that Up decreases (linearly)
~from the root node to level 2. At the root node, all the objects are in one

category, and each feature can take on one of four values; therefore Up =
m log 4 = 2m, where m is the number of features. At level 1, there are only
2 possible values for each feature in each category; thus Up = M . log 2 = ra. :.'
Finally, at level 2, each feature is fixed to some value (in this perfectly modal "-..
situation) and there is no uncertainty about an objects properties once its--."
category is known. Therefore, at level 2 and all subsequent levels Up 0 . ".-

The behavior of UC may be viewed as the inverse of Up. UC measures .__
the difficulty in identifying an object's category given some of its properties. .'" ;,'.
In a perfectly modal world however, if no two categories contain objects--_:.-"
belonging to the same real class, then knowledge of any property of an object . -,
is sufficient information to recover the category. This can be seen at levels :'.
0, 1, and 2 in the graph of UC. At level 0 all objects are in one category and•
therefore there is no uncertainty as to an objects category. At level 1, the::"'..
two categories do not contain any elements of a common class: fta and ftb.'_ ::
are in one category; Q, and 2d, another. Thus knowledge of any property.-..
of an object is still sufficient to recover its category. Similarly for level 2,"''-
each class is in its own category and there is still no uncertainty about the
category. It is only when level 3 is reached, where the classes are split among ....
two categories, that any uncertainty arises. As the members of each class are :?''
divided among more and more categories, UC continues to increase (linearly). .'"'"

At the finest categorization, at depth d, each object matches an object in ,7
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" Figure 4.5: The graphs of Up and Uc for an ideal taxonomy with four modal 0"
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n/4 categories. Thus the maximum value for Uc is log(n/4) (d - 2).

Before proceeding to the next section, we should note that by defining the
"ideal" category case we have implicitly defined natural classes to be those "
that are highly redundant and non-overlapping in the space of "important"
properties. We will return to this point when we consider how the evaluation
function derived in this section relates to the structure of the natural world.
For now, we note that the discovery of categories that behave similarly to .),.
these ideal categories would permit the observer to accomplish his goals Z
of inference. The set of categories corresponding to level two in the idealti
taxonomy supports the reliable categorization of objects as well as strong
inferences about the properties of an object once its category is known. The '

measure we construct of the total uncertainty of a categorization should be ,,-sensitive to categories of this form. v

4..2 Random categories

We refer to a set of categories in which the features are completely inde-
pendent of the categories as a random categorization. A simple way to con- .

sider random categorizations is to construct a random taxonomy, where the
grouping of objects into a hierarchy is achieved arbitrarily (Figure 4.6). If
we evaluate Up and UC a erit t levels of this taxonomy, we would '
get the graphs of Figure 4.7. Ui remains constant until the number of cat-
egories becomes larg t herei each category no longer contains a statistical
sample of the different classes of objects in the world. Similarly, Uc increases

monotonically, though the rate decreases as the sampling is spread too thin. ..
These graphs were derived experimentally through simulations. '

The reason it is important to consider the random taxonomy is that such ' ,a set of categorizations represents no structure in the data. The categoriza-

tion is useless for making any predictions. Recall that one of major criticisms t

I

of the standard cluster anal sis paradigm is the inability to determine the

cluster validity. Even if there are no clusters present in the data, the cluster - ,analysis programs are obligated to "discover" categories. By requiring that

our uncertainty measure have a certain pathological behavior in the case",'€
where there is no structure in th i the will provide a mechanism by
which we can determine when discovered categories are indeed valid. Note

the particular form of random categorizations used here is only one (rather e
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Figure 4.6: An r-andom taxonomy. The taxonomy is created by creating a random...hierarchy of objects drawn from the four classes 1. - fd. -
85I

% N Nw

a. - - - -% - " " - "." , ." ."" .% "' """""% % "." . " ,% % % % % % '. ".N
--.-1- ? i " b I " - I - : " " I i 

' '



P-

Depth

U

Depth .T 2 3 4 5.

68

%I % j



restrictive) model of the absence of structure. In chapter 6 we will con-
sider an alternative form in which the observer has attempted to form the

best taxonomy possible in a world which has uniformly and independently

distributed features.

4.4.3 Defining U(Up, Uc, A) %

To construct the uncertainty function U, we will first present several con-

straints that U must satisfy. Then, we will propose a simple measure con- or.I.
sistent with these constraints. All of the constraints are expressed in terms

of evaluating the levels of a taxonomy; the term "preferred categorization"

refers to the set of categories selected when the taxonomy level that yields
the lowest value of U is chosen." Two of the constraints will be based upon

the behavior of Up and Uc as described in the previous section.

The first two constraints describe the behavior of U at the extreme values
of A:

1. When A = 0, the preferred categorization should be the finest, with each

object in its own category. This should be true for all possible tax-
onomies. %

2. When A = 1, the preferred categorization should be the coarsest, with /
all objects in one category. Again, this should be true for all possible ,a-

taxonomies.

Another way of expressing the first constraint is that when A = 0, the mea-
sure U should have no Uc terms, and the preferred categorization would be

that which minimizes Up. The second constraint would correspond to U be-

ing independent of Up when A = 1. These constraints also combine to give A

the intuitive meaning of being a relative weight between the two component

uncertainties.
The next constraint expresses the desired behavior of U under the purely

modal conditions:

3. In the purely modal taxonomy, the preferred categorization for 0 < A < 1

should be that which corresponds to a separate category for each class

of objects in the world.

" If there exists more than one level of the taxonomy with the same minimum value of U.

then by "preferred" level we mean that the level be one of those with the minimum value.
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For example, in the taxonomy of Figure 4.4, the preferred categorization
should be level 2, where each Qi is in its own category. This constraint " :-states that level 2 should be preferred for all A not at the extremes. If both

~Up and U¢ have a non-zero contribution to U, then, in an ideally modal

world, the best categorization is that which selects the modal classes.!.,

We also wish to constrain the behavior of U in the random condition of
the taxonomy of Figure 4.6. Intuitively, we desire that the behavior of U in..-."
the random condition be predictable so that we can determine when we are O
evaluating a non-structured set of categories. We will impose this restriction

in the following way:

4. In the random taxonomy (which contains no useful categories), the pre- '

ferred categorization should be either the finest or the coarsest, de- "

~pending on A.

That is, for each A, the value of U should be a minimum at one of the .v

extreme levels of categorization. Unfortunately, this constraint can not be "-_.0 .

: ~ ~fully discussed until we present the concept of lambda-space in the next sec-,..*-

tion. At that time, we will provide the intuition behind this constraint. For .__

N

now we only state that a random taxonomy contains no useful intermediate ..

structure and thus no intermediate level should be preferred. ..."

Finally we include an constraint which allows us to compare one catego-.. .

rization to the next in a meaningful manner and which allows us to interpret -,.

)as a relative weight between Up and U¢: ...

5. U should be normalized with respect to the number of objects contained ...

in the categorization. ..

If we were strictly adhering to the definitions provided at the beginning of "

this chapter we would not need to be concerned with normalization: every .

categorization is a partitioning of a fixed population. However, in the next

chapter we will utilize the measure developed here in a dynamic, incremental ..::.

rcategorization method. Thus we need to be able to normalize for the number .:

objects contained in a categorization. Also, to interpret A as the relative :/":

weight between Up and UC we must make their scales commensurate. .:

Combined, these onstraints restrict the functional form of U; we shall

propose a simple measure for U which satisfies these five constraints. Af- ,:::

terwards, we will compare this measure with some of the category metrics --

discussed in chapter 3. ->

882

X ~



We first need to introduce a normalization coefficient which will make
the measure independent of the number of objects in a categorization. Note
that given "enough" objects per category, Up is independent of the number
of objects in a categorization, since it depends only on the entropy of the
properties. Uc, however, may depend critically on the number of objects:
given more more objects we can create more categories and make the num- 0 A

ber of possible category matches of an object be arbitrarily large. Therefore
we need to scale Uc appropriately for the number of objects. Also, though q
by design both Up and ETC are unitless (or sometimes said to be in units of
information referred to as bits), they are not of the same range. The maxi-
mum value for Up is unrelated to the maximum value for Uc. Therefore to
make them commensurate we will scale the normalized Uc by the maximum
Up.

We compute the normalization coefficient as follows: Suppose we are
given some categorization Z to evaluate. Let us construct two new catego-
rizations from Z. Define Coarsest(Z) to be the categorization formed by
placing all the objects of Z in one category. Analogously, define Finest(Z)
to be the categorization formed by placing all the objects in Z into separate

categories. We define a normalization factor 77(Z):

= Up( Coarsest(Z)
* Uc ( Finest(Z))

By dividing by Uc(Finest(Z)) we compensate for the number of objects;
the numerator makes the scale the same as that of Up.

Finally, we can propose our measure for the total uncertainty of a cate- %
gorization:

U(Z) = (1 - A)Up(Z) + A (Z) Uc(Z) (4.11)

The total uncertainty of a categorization is simply the weighted sum of Up .

and Uc, where Uc has been scaled to be of the same range as Up; the
parameter A controls the relative weights.

It is easily shown that equation 4.11 satisfies the behavioral constraints
1-4. Constraint 1 holds because when A = 0, U(Z) = Up, and Up is at
a minimum (in fact zero) at the finest categorization where each object is
in its own category. Constraint 2 follows analogously. Constraint 3 is also
satisfied: if 0 < A < 1, then U is at a minimum (zero) when both Up and
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U0 are zero. As shown in Figure 4.5, this occurs only at the desired natural
class categorization. In fact, since zero is the absolute minimum for U, in
an ideally modal world, the categorization which corresponds to the natural
classes is the best possible categorization, not simply the best level in some
taxonomy.

Constraint 4 holds because of the concavity of both Up and Uc in the
random condition. Because the linear sum of two concave functions is also
concave (Luenburger, 1986), U is guaranteed concave for the random case. -

Therefore, for all A, the minimum of U is at one of the extreme levels of the
taxonomy.

Of course, one could construct a more complicated measure; given that
the proposed measure satisfies the imposed constraints and that it is similar
to standard functionals for combining constraints, there is no apparent reason a
to do so. In the next section we will compare the properties of U(Z) with
some of the distance metrics discussed in chapter 3.

4.4.4 Uncertainty as a metric

Having provided a formal definition for the uncertainty of a categorization,
we can now compare this function to the distance metrics discussed in chapter

3. Specifically, we should address the criticisms raised concerning the use of
distance metrics to define object categories.

First, notice that although we do not explicitly define the distance be-
tween two objects, the property uncertainty functions do provide an implicit
measure for comparing two objects. In particular, the entropy function im-
poses a Hamming-like distance between objects since the entropy measures V.
are sensitive to the exact matches between feature values. As mentioned
in chapter 3 such measures are sensitive to the resolution of the features.
For example, if a feature is continuously valued (e.g. "length") and is his-
togrammed into fine-grained buckets, then all objects will take on a different
value. In this case the feature will be able to convey no information about

classes in the data. Thus, using these entropy measures requires that some "
of the features of the representation be suitably chosen to convey the dis-
tinctions between different classes of objects. 0

For two reasons, the above restriction does not significantly reduce t'
utility of the categorization evaluation function. First, it is necessarily true
that the observer must encode relevant sensory information if he is to dis-
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cover natural classes of objects. If the only properties of objects used for
categorization were those completely independent of the "type" of object,
then no interesting properties could be predicted from those observations. If
we invoke the power of evolution in the design of the observer, then we expect
that the observer would be provided with a set of features sufficient to deter- " "3
mine the true class of the object and thereby granting him the ability to form
an appropriate set of categories. In chapter 6 we will demonstrate how the
observer could use an initial set of useful features to evaluate the predictive
power of a new feature. But, a sufficient initial set must be provided.

Second, the nature of the entropy measures is that not all of the features
need be constrained. Unlike standard distance metrics where long inter-
object distances in a few dimensions can mask clustering in other dimensions, N
entropy measures are statistical in nature and and can detect structure in
separate dimensions. Up was designed to treat the features independently, •
and Uc considers object matches along different subsets of features. We can,
demonstrate this behavior by reconsidering the ideal taxonomy of Figure 4.4.
Let us assume we have the same taxonomy of objects and the same modal
features. However, this time we shall include several noise features - fea-
tures whose values are independent of the object class. Figure 4.8 displays
the results of evaluating Up and Uc for the different levels of a four class tax-
onomy. Notice that both uncertainties are no longer zero at the modal level:
the increase in uncertainty is caused by the noise features. However, there
is still a significant change in the behavior of both Up and UC at level two.
As the the number of noise features is increased the change in the slope of
the curves diminishes; when there are many more noise features than modal
features the graphs approach those the random taxonomy in Figure 4.7.

The ability to still detect structure in the presence of unconstrained fea-
tures also allows the entropy measure to be used when different features are
constrained for different classes of objects. Therefore, there is no require- B
ment of using only features constrained in all classes. Metrics based on the .

within-class and between-class scatt-r matrices are unreliable in the presence
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of unconstrained dimensions. Furthermore, the need to modify the distance
metric as one moves from one region of feature space to another becomes
less pressing since the measure can respond to one set of properties for one
class, and another for a different class. Thus using entropy functions elim-
inates several of the difficulties associated with using distance metrics for
categorization.

We should note that the total uncertainty evaluation function derived in
this section is analogous to the modified measure of collocation discussed in
chapter 3. Had we combined the measures Up and Uc via an exponentiated
product (UY(- A) UA) we would have produced a measure directly related to
the extended collocation function: 12

K1,,t,= P(CjSfi) • P(f, iCi)(-A)

Thus, we have incorporated the lesson of basic level categories in our measure
of uncertainty: a measure designed to evaluate basic categories must consider
both the cue validity of the features and the internal similarity of categories.

Finally, we note that the category evaluation function derived in the
previous section explicitly measures how well the observer can accomplish
his goals of inference. Recall that one of the criticisms of the cluster analysis
paradigm was that it made no sense to consider the utility of the recovered
classes. By definition the classes recovered were those which minimized the
particular evaluation function. Whether these categories were appropriate
for some task depended on how well the requirements of the task mapped
onto the clustering criteria used. In our case, we have constructed a criteria
that directly measures the utility of a categorization for the task of making
inferences about objects. If one believes that the goal of object recognition is WIN

to make inferences about objects, then the set of categories selected by the
categorization criteria U(Z) is appropriate for recognition.

4.5 Natural Categories
*.

The evaluation of a categorization proposed in the previous section is based
upon the goals of the observer; a categorization which has a "low" measure
12Since both Up and UC can be zero, this particular expression would be ill-defined unless

other parameters or constants are added.
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of uncertainty U should permit the observer to perform his necessary infer-
ence tasks successfully. Furthermore we have constructed the measure such
that in an suitably defined ideal world, the measure prefers a modal cate-
gorization over any other. However, we have yet to mention the world of
objects which the observer is going to categorize. In section 2 we introduced
the Principle of Natural Modes as the basis for the categorization process.
The claim was made that the reason it is plausible that the observer could
predict unobserved properties from observed properties was that there were
constraints acting in the world which caused redundancies between observed
and unobserved properties to be present. How do we incorporate the idea of
natural classes into our evaluation of categorizations?

4.5.1 Natural classes and natural properties

The first question to be considered is how does the proposed evaluation
function behave if the categorization being measured does reflect the natural
modes present in the world. Recall that U was constructed such that in an
ideally modal world, the categorization corresponding to the natural classes
would be the preferred. In the modal world, each feature was completely t
diagnostic. Whether the proposed evaluation function will be able to capture ,.
the structure present in the natural world will depend upon the diagnosticity
of the chosen representation. That is, the representation must be chosen such
that the constraints imposed by the natural object processes are reflected in
the properties measured.

An example will help to illustrate this point. Consider the case where we
have some class of objects where the aspect ratio (ratio between the length
and the width) is fixed by the process which generates that class. Suppose
that both "length" and "width" are features measured about the object, but
that aspect ratio was not. Our measure of total uncertainty would not be
sensitive to this constraint being present in the class. If, however, aspect
ratio was a feature, then this constraint would be reflected in the measure
of both property and category uncertainty; categorizing that particular class
of objects separately would reduce the uncertainty measure. Thus we rely
on the choice of features (which define those properties which are observed)
being appropriate for measuring the constraint that is found within classes.

Note, that we although require that the representation be sufficiently
restricted so that the differences between classes are made explicit, we do
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not require that irrelevant information be prohibited from the representation.
Recall the graphs of figure Figure 4.8. These results demonstrate that the
uncertainty measure can still detect the ideal modal structure evwn when a
significant portion of the property description is generated randomly. When
we test the evaluation function on real data in the next section, we will
discover that real property descriptions behave in a manner similar to those
produced with modal and noise features.

4.5.2 Lambda stability of natural categories

One might consider a sufficiently low measure of total uncertainty U to be
simple indicator of a correct natural mode categorization. Unfortunately,
this requires having some absolute metric of uncertainty for categorizations.
For example, consider again the taxonomy of Figure 4.1, and recall that we
are considering the categorization-- which correspond to the different levels
in the tree. Let us assume that for some A = A0 the third level yielded the
least total uncertainty U. How can we know whether this level reflects modal
structure in the objects of the taxonomy, or if this is simply some arbitrary
categorization which just happens to evaluate to the lowest uncertainty for
the given A? This question is analogous to the question of cluster validity
raised in chapter 3.

Let us assume that we have been given a taxonomy such as Figure 4.1
and that for some discretized range of A, 0 < A < 1, we have selected the
categorization corresponding to the level in the taxonomy which minimizes
the total uncertainty. We can plot the results of this procedure in a lambda
space diagram as illustrated in Figure 4.9. Notice that for A = 0 the best
categorization is that which places all the the objects in their own category.
Likewise, A = 1 selects the top level, where the only category is TiiING. ,

The question we must consider is how does the selected level change as A
varies? By design, we know that in the ideally modal case the categorization _

corresponding to the modal classes will be preferred for all A, 0 < A < 1.
But what about "real" natural classes?

In Figure 4.9 the hypothetical behavior is that over some (wide) range of
A, the preferred categorization remains the same. We refer to this behavior
as A-stability. The occurrence of A-stability indicates that the categories se-
lected for that range of A are robust with respect to deviations in the relative
weight between property uncertainty and category uncertainty. Therefore,
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Figure 4.9: Stable A-space diagram. For each A in some discrete range between 0 - -

and 1, the level of the taxonomy is selected which minimizes the total uncertainty. ";

96%'

_S__N7A 'h A %%.



they represent an actual structuring of the objects, not an arbitrary min-
imization of the uncertainty function. If the categorization was just the
arbitrary minimum, we would expect that the preferred level would change
as variations in A drive the minimum solution toward either of the two ex-
tremes. In chapter 6 we will consider the question of A-stability in greater
detail and will consider how one can use the measure of stability as a tool to
accomplish other important tasks related to the categorization process, e.g.
evaluating the utility of a new feature.

Another possible behavior as A varies is illustrated in Figure 4.10. In this
case, the only stable points are the two extreme categorizations. Recall that
the fifth constraint on the construction of the total uncertainty function U
was that if there was no internal internal structure of a taxonomy, then the
categorization which should be preferred should be one of the two extremes.
The intuition behind this constraint is the following: Consider a taxonomy
which is created randomly. Therefore in terms of the uncertainties measured,
each level of aggregation represents the same trade-off between category ho-
mogeneity and category overlap, between property uncertainty and category
uncertainty. Now let us describe A as a pressure to move up the taxonomy.
The larger A gets, the easier it is to trade the gain in property uncertainty
for the reduction in category uncertainty which occurs when categories are
merged. When A starts at 0, the preferred categorization is the finest par-
tition, with each object in its own category. As we initially increase A the
preferred level of categorization does not change because there is insufficient
pressure to overcome the increase in property uncertainty which occurs by
randomly combining objects. Eventually, however, A is great enough that
the first level of merging takes place. But, as stated, in a random taxon-
omy each level of merging is the same amount of trade-off between property
uncertainty and category uncertainty. Therefore once A is great enough to
prefer level d - 1 over level d, it is great enough to prefer level d- 2 over
d - 1, continuing until level 0 is reached. Therefore, at some critical A the
preferred level of categorization moves immediately from the lowest level to
the highest level.

As mentioned earlier, the noise taxonomy is only one possible null hy-
pothesis about the absence of structure in a set of categories. In chapter 6
we will again return to the question of category validity, and compare the
results of ideal (purely modal) worlds, real worlds, and a different case of a
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noise world. At this point we have a certain degree of confidence that the
total uncertainty evaluation function will be useful for measuring how well a
categorization reflects the natural mode classes. Let us now test the function
on some real data taken from the domain of leaves.

*" *.

4.6 Testing the measure

To test the behavior of the uncertainty measure U of equation 4.11 we need
a sample domain of objects which satisfies the criteria of having well defined
natural classes. Of course, this criterion implies a previously agreed upon
method of categorization which produces natural categories. Therefore we
must make the a priori assumption that the science which studies the domain
establishes a baseline to which we compare our evaluation. The validity of V
this assumption depends upon how well the science understands the processes ".

which determine the structure of the objects in the domain.

4.6.1 Properties of leaves

The sample domain used is that of leaves. The categorization of trees ac-
cording to their leaves is a well developed discipline, and there exist agreed
upon categories. The source of the leaf data is Preston's North American
Trees [Preston, 1976].

In order to apply the uncertainty measure to our domain, we must create
a property based description of the leaves. But which properties should be

'U.' used? Are arbitrary features permissible, or should our choices be somehow
restricted? To proceed we must delineate some criteria by which to choose
our feature set.

The first restriction we will impose is (well-defined) computability. By
this restriction we mean that if some property is going to be included in
the representation for leaves, then one must be able to provide a plausible
method for computing this property directly from the the physical structure .*'

of the leaf. The reason that this restriction is important is that otherwise the
property "oak-ness" - how much the leaf looks like an oak leaf - would be
an acceptable property. If such features are permitted, then categorization N .
reduces to providing such features which are characteristic functions for each
category. As Fodor has commented: "if being-my-grandmother is a legiti-
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mate feature then it's pretty clear how to do object recognition." [Personal
communication.] In our leaf example we will further restrict our properties
by requiring them to be computable from information recoverable from an
image of the leaf, precluding features such as stickiness or scent. Our reason
for doing so is simply that visual categorization is of primary interest.

We note here that in the following examples, we did not actually pro-
vide the system with a sensory input (e.g. images). Rather, after deciding ,

which features were to be used, property vectors were given directly. The
motivation for eliminating the property computation step is that we are not
interested in how well we can provide algorithms capable of measuring the
properties. Our interest lies in seeing how well these properties can be used
to measure structure in categories.

Having restricted our properties to being well-defined computations, we
still have to choose which of these properties should be used. For our first
examples we will use the features normally used by tree entymologists to
classify leaves. By using this set we are guaranteed to have a set of fea-
tures which contain sufficient information to distinguish between the classes
of leaves. Of course, these features tend to be highly diagnostic as they are
used by botanists for the express purpose of classification; however, some of A
the features overlap the species considerably (e.g. "length") . Also, we will
consider the case of adding some noise features to the descriptions: features
whose values are independent of the type of leaf. Those results will demon- , .,
strate a graceful degradation in the ability of the uncertainty measure to
detect the correct categories.

Table 4.1 is a list of features used to describe the leaves, the values in
the range of each feature, and a brief description of how they would be
computed from an image. One of the features normally used by botanists to
describe leaf categories is "shape," where several distinct shapes types are
used as primitives. Since this feature bordered on not being a well defined
computation, it was replaced with the three features of width, length, and
flare, where flare is the direction and degree of tapering of the leaf.

Using these features, we can descrioe several leaf-specifications. A speci-
fication is a set of values for each feature which would be consistent with the ,. .,
description of a leaf species found in Preston [1976]. Table 4.2 provides the
set of specifications used for the examples used here. Several points should
be made about the features. First, there are features which are not highly
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Feature Values Method of Computation
Length {1,2,3,...,8,9} Measure directly
Width {1,2,3,...,6,7} Measure directly
Flare {-2,-1,0,1,21 Fit best ovoid
Lobes {1,2,3,.. ,8,9} Filter and count

Margin {Entire, Crenate, Serrate Fractal dimension of edge
Doubly Serrate} 'I>

Apex {Rounded, Acute, Accuminate} Curvature of tip
Base {Rounded, Cumeate, Truncate} Curvature of base

Color {Light, Dark, Yellow} Measure green component of color

Table 4.1: Leaf features and values.

constrained by the specifications and which have high inter-category overlap,

e.g. length and width. Second, the specifications are disjoint; no leaf could be 41
constructed which satisfies more than one specification. Finally, there is no

small subset of features (less than 4) which would be sufficient to distinguish

between the species.
A "leaf generator" has been constructed which takes as input a leaf spec-

ification and produces a property vector consistent with the specification.

These property vectors are the "objects" used for all of the experiments.

4.6.2 Evaluation of taxonomies

To begin our testing of the behavior of the uncertainty measure U, let us

consider the task of evaluating levels of a taxonomy. Although this presup-

poses being provided a taxonomy to evaluate, we will be able to check that
the measure U behaves as predicted. We will be able to compare the situa-

tion in which there is structure in the taxonomy to that when a taxonomy is

created randomly. Later, we will address the problem of discovering natural

categories in an object population.

Figure 4.11 is an example taxonomy. At the bottom of the taxonomy

are the leaves; in this case there are the four types of Oak, Maple, Poplar 0
and Birch. These single object categories are combined to form the next .

level of categories, continuing on until all the leaves are in one category.

The letters written in each node indicate the types of leaves contained in

101

-A 00 00 A Asf: op %;C..



S

.V21

AL.

01 P4A N sO e tB i0

Fiur 4.1 ube aooyo aMpe olr n ic evs

.

2 10

N,, li,

d="00 00 00 00 '
..... .I I .I

o! P4Ira J M~ BitOI P OJ Mt Ps BS BS. P 04

I I.°I.I I
I I I I

Figre .11 AIube txnm ofOkMpe Polr n irhevs.-

Leavs ar radoml cobine to ormhighr ctegoy. '.'-S

% %'S

1800 002 uuuu000



S

Depth

O.M ReP.

d=8 0000 ... 0000 ... 0000 ... 0000'-?
O 4 UJ A& MS45 PI PS PS P4 BI BE BS 84

., ~Figure 4.12: An ordered taxonomy of Oak, Maple, Poplar, and Birch leaves. --.

"., "'- '.

i t103

t

--. ,

-Z oo.Z J, M J '



--.

{r%-

Length Width Flare Lobes Margin Apex Base Color
Maple {3,4,5,6} {3,4,5} 0 5 Entire Acute Truncate Light

Poplar {1,2,3} {1,2} {0,1} 1 Crenate, Acute Rounded Yellow
Serrate

Oak {5,6,7,8,9} {2,3,4,5} 0 7,9 Entire Rounded Cumeate Light
Birch {2,3,4,5} {1,2,3} 0 19 Doubly-Serrate Acute Rounded Dark ..0 ".r

Cottonwood {3,4,5,6} {2,3,4,5} 2 1 Crenate Acuminate Truncate {Light.Dark,
Yellow}

Eln {4,5,6} {2,3} {0,-1} 1 Doubly Accuminate Rounded Dark
Serrate

Table 4.2: Leaf specifications for several species of leaves. A leaf generator was
designed which created property vectors consistent with the different specifications.

U . . l

that node. The bottom nodes (the leaves of the tree, if you will) represent
single instances of leaves. Figure 4.11 is a random taxonomy, where the
leaves were arbitrarily combined to form higher categories. There is a total -

of 9 levels (0-8) indicating 256 leaves, 64 of each type. For comparison,

Figure 4.12 is an ordered taxonomy of the same leaves in which the nodes

have been constructed so as to preserve the natural classes of the species.

The first question we will consider is how the two components Up and UC of
the total uncertainty measure behave as we evaluate different levels of these _.
two taxonomies.

4.6.3 Components of uncertainty

In the graph of Figure 4.13 the quantities of Up and normalized Uc are plot-
ted as a function of depth in the taxonomy. A depth of zero corresponds to r

the top level of the taxonomy with only one category; a depth of 8 (because
there were 256 leaves in this example) is the finest categorization. Both %
curves are monotonic in depth as predicted when the quantities were de-
rived. Notice that both curves vary smoothly, indicating no special level in
the taxonomy. Because the taxonomy was created by randomly combining
leaves, no level contains any more structure than any other level.

Now let us consider the taxonomy in Figure 4.12. In this case the taxon-
omy segregates the different types of leaves at level 2, with the finer divisions
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Figure 4.13: The evaluation curves for the jumbled taxonomy. Plotted are Up "r.
and the normalized UC as a function depth. The normalization factor causes the
scales of the two graphs to be the same. Both curves change smoothly, indicating
no special level within the taxonomy.

below that level being made randomly. The evaluation curves for this taxon-
omy are plotted in Figure 4.14. Now the curves no longer vary smoothly, but
have a distinct break at the second level where the different types of leaves
are segregated into different categories. Let us trace each of the curves. As
predicted, the property uncertainty starts at a maximum at level 0. Split-
ting into two categories, each containing two types of leaves, significantly
reduces the property uncertainty since knowing which of the two categories
a leaf comes from restricts its properties to being of one of two types of
leaves instead of four. The next split into four categories (at level 2) causes ."

a similar decrease in property uncertainty. However, after level two, there is
no significant decrease in property uncertainty because a category which has
32 'Leaves of one type has not much less property uncertainty than a category ."

which has 64 leaves of that type. The property uncertainty remains almost
constant until end effects occur and there are few leaves per category.

The category uncertainty UC also markedly changes its behavior at the

second level. As expected, at level 0, where all objects are in one category, %
105
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Figure 4.14: The evaluation curves for the ordered taxonomy. Plotted are Up
and the normalized UC as a function depth. For the structured case of the ordered
taxonomy the level at which the species of leaves are sepaated - level 2 - shows =l
a marked break in both Up and Uc.

there is no category uncertainty. Splitting the leaves into two categories
which do not share leaves of the same type produces only a marginal increase
because the categories are quite distinct and partially described leaves are
stil.1 easily categorized. Splitting into the four leaf types similarly adds little i

category uncertainty. However the next split causes an abrupt increase in .category uncertainty. This is caused by the fact that now there are two
categories containing leaves of each type. Therefore a partially described
leaf will often match leaves in more than one category, yielding a high value

rin category uncertainty. As the categorization gets finer Ut continues to

• : ~~~increase. '.'-.-'
.: ~It is important to notice that the graphs of Figure 4.14 are similar to,,,

those of Figure 4.8. In that example we evaluated a taxonomy of purely
modal classes and features, but witint adation of several noise features.
This similarity indicates that features which are not purely modal - they le
do not perfectly discriminate between classes - but which do have some
diagnostic power may be viewed as the combination of modal features with
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2 - the level corresponding to the separate species - but the curves are becoming-
more like those of the jumbled evaluation.

Bib,

noise features. To further illustrate this point, we can add more noise to the ,

leaf example by including pure noise features. Figure 4.15 displays the resultsof using the same ordered taxonomy of Figure 4.12 but with the addition of 4

noise features; for each leaf, each of the noise features was randomly assigned
one of 4 values. There is still a definite break in both the Up and the U

curves, but they are becoming more like those of the jumbled evaluation of
Figure 4.13. This graceful degradation with the addition of noise is essential

if the category evaluation function is to be included in a robust method for trecovering natural categories.

To summarize, we have empirically shown that the evaluaition o
ois indeed sensitive to the structure of natural classes w-- in this case differ-

ent leaf species. This sensitivity is indicated by the marked change in the
behavior of the quantities Up and U at the depth of the taxonomy which

corresponds to the "correct" categories. Also, the components of the evalu-
ation function behave predictably in the absence of natural categories; this

ltpoin su aie, e have eical ho w hat the evaluation function eoe
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natural categorizations we must be able to distinguish between a minimum
caused by structure and a minimum which occurs at some arbitrary level of
categorization. To explore this question further let us investigate how the
parameter A affects the evaluation of the taxonomies.

4.6.4 A-space behavior

Let us return to our task of selecting the best level of a taxonomy for a given
A. Figure 4.16 shows the graphs of the total uncertainty U = (1 - A) Up +
A 7i Uc for the jumbled taxonomy of Figure 4.11 with A equal to .2, .4, .6,
and .8. Selection of the best level for a given lambda is simply finding the
depth which has the lowest value of U. In the case of the jumbled taxonomy,
only the two extremes of depth are ever the minimum, with the trade-off
occurring at about .5. From the graphs for Up and Uc of Figure 4.16 we can
construct the A-space diagram of Figure 4.17. The complete lack of structure
in the taxonomy is reflected in this degenerate A-space diagram; we have
empirically demonstrated the predicted noise behavior of section 4.5.2.

Next let us consider how the total uncertainty U varies with A for the
ordered taxonomy. Graphs of U as a function of taxonomy depth for four
different values of A are shown in Figure 4.18. Notice that for all four values
(.2, .4, .6, .8) the second level has the lowest total uncertainty; the second
level corresponds to the categorization which contains four categories, each
containing all the leaves of one species. Although we know that by design a A
of 0 will select the finest depth (8), and that a A of 1.0 will select the coarsest
depth (0), for this data a A in the interval of approximately 0.1-0.9 will select
the categorization containing four categories. In Figure 4.19 we construct the
A-space diagram for these data. The existence of the large stable region is an e
indicator that the categorization selected in that region contains categories A
that are highly structured in terms of the way they minimize the uncertainties
of the inferences about an object's properties and its category. it should be
noted that the categories selected are those that correspond to the classes of
leaves as defined by the botanists.
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Figure 4.16: Graphs of U =(I A) Up + A rUC for the jumbled taxonomy. Top
plot is original vales of Up and normalized UC. The four panels a-d are for A of
.2, .4, .6, and .8 respectively. 4
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Figure 4.19: The A-space diagram for the ordered taxonomy. The categorization
composed of four categories, each representing one type of leaf, is stable preferred
over a wide range of A, approximately 0.1 to 0.9. This stable region indicates that • .
the four categories are structured in a manner consistent with natural classes.
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Chapter 5

Recovering Natural Categories

We have defined the task of the observer to be that of discovering categories -
of objects in the world that correspond to natural modes; these modes are the
natural clusters of objects formed by the interaction between the processes
that produce objects and the environmental constraints that act upon them.
Because objects of the same natural class behave similarly, establishing a v_
natural categorization - a natural set of categories - permits the observer
to make inferences about the properties of an object once the category of
that object is determined. The question we address in this chapter is what ..
are the necessary capabilities that must be provided to an observer if he is
to accomplish this task? .

We can divide the object categorization task into two components. First,
if the observer is to ever succeed in generating a natural categorization, then
he must be able to determine when a categorization reflects the structure
of natural modes. Given a set of alternative categorizations, the observer .
must be able to select the most likely. Thus, he must be provided with a

categorization evaluation function. Second, the observer needs a method of
producing categorization proposals. As objects are viewed, the observer must
be continually refining his current categorization, attempting to recover the
natural categories present. The categorization generation method must be
constructed such that the observer will eventually propose a categorization
corresponding to the natural modes.

We begin this chapter by developing a categorization paradigm that makes
these two components explicit and that agrees with ones intuition about the .4_-

categorization process; our development of the paradigm is inspired by work ',

113

%

@p

,:' 

,€ .'"

%. *.~*b.-%...



AMUA

in formal learning theory [Osherson, Stob, and Weinstein, 19861. Then, we 06
will present a categorization algorithm based upon this paradigm, that has .

been implemented and tested; the operation and performance of the algo-
rithm is demonstrated by examples drawn from three domains. Analysis of
the competence of the algorithm provides insight into the effectiveness of the
categorization procedure as well as the types of errors that may be expected.
In particular, for certain ideal cases, the algorithm is shown to be guaranteed
to converge to the correct categories. Finally, possible modifications of the
algorithm to improve its behavior are discussed.

5.1 A Categorization Paradigm

Consider the leaves pictured in Figure 5.1. To most observers there are three e
groups of leaves present: ACH, BFG, DEJ. In fact, botanists would state that
there really are three classes of objects present, and that an observer who
identifies those three classes has categorized the leaves "correctly." Using
these leaves as an example let us develop a paradigm for categorizing objects
that is not only consistent with our intuitions about categorization but also
permits us to precisely define the object categorization problem.' We view
the categorization task as a learning problem: the observer attempts to
learn natural object categories as he inspects the world of objects. Thus, the -
categorization paradigm we present closely resembles the generalized learning -

paradigm developed by Osherson, Stob, and Weinstein [1986], based upon
the language acquisition paradigm originated by Gold [1967]. Our paradigm
consists of four components; each is necessary to define the categorization
task precisely. " . Z

The first requirement is that the goal of categorization be stated clearly. P
We define a categorization to be a partition of the objects in a population;
the equivalence classes of the partition form the categories. Thus, for Fig-

ure 5.1, any possible grouping of the leaves constitutes a categorization,
and the groups are the categories. However, if the observer is attempting

'In Bobick and Richards [1986], a formal description of the categorization paradigm is

provided. The terminology developed there permits a formal statement of the categoriza-

tion problem. However, most of the important issues developed there can be discussed

informally, by considering an example problem. The reader is referred to Bobick and "' :\-N

Richards [1986] if further detail is required.
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',, Figure 5.1: A set of 9 leaves. According to the botanists these are 3 instances
each of 3 diffferent species of leaves: White Oak, Sugar Maple, Poplar (common . .

, names). The categorization problem is to find the natural grouping of these leaves.
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to discover the "correct" categories than we need a basis for determining
a natural categorization. To provide such a basis we require the Principle
of Natural Modes: environmental pressures interacting with natural object
processes cause the world to be clustered in the space of properties impor-
tant to the interaction between objects and the environment. We refer refer
to these clusters as natural classes. In Figure 5.1 the natural classes cor-
respond to the different species of leaves: White Oak (BFG), Sugar Maple

(DEG), Poplar (ACH). The goal of the observer is to recover these natural
classes since they represent instances of objects which share common proper-
ties; they were generated by the same natural object process. Thus, natural
classes serve to define a testable goal of the categorization procedure: pro-
duce categories of objects corresponding to natural classes.2 These natural
categories are the first component of the categorization paradigm.

Three difficulties arise if we consider the recovery of "natural categories"
as an objective goal for the categorization task. Two are philosophical. First,
how can we independently judge if the observer is successful? To do so, we
require independent identification of the natural classes, an omniscient ob-
server or an oracle. Second, as demonstrated by Goodman [1951], Quine
[1969], and Watanabe[1985], natural categories may only be said to exist if
we restrict the properties of objects that are considered important. Oth-
erwise, all objects are equally similar. (See section 2.3.1 for a review and
proof of Watanabe's Ugly Duckling Theorem, a theorem that explains this
counter-intuitive claim.) How then can we say that one set of categories ';.

is more natural than another? To resolve these problems, we rely on the
sciences that study the domains in question to provide an independent as-
sessment of the natural classes. Because botanists have categorized the leaves
in Figure 5.1 into three species, and because botanists study the processes
that create leaves and environments that constrains them, we will assume %

that the categories constructed by botanists represent "true natural classes."
The third difficulty in using natural classes as a baseline against which to ,,.

judge the competence of the observer is computational in nature. We have

2We have purposely avoided using the phrase the natural classes because we do not wish to
claim that there is a unique clustering of objects corresponding to a natural partitioning.
As discussed in chapter 2, both the division between mammals and birds and that between
cows and rabbits represent natural clusterings. Thus, two observers could both "correctly"
learn the natural categories of the world and yet have different categorizations. WVe will 'C,

return to this issue in the next chapter. '.
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defined a categorization to be a partition of the objects in the world. But, %
there is an uncountable infinity of possible objects.' Thus, the number of
partitions is also uncountably infinite. Even if there are only denumerably
many objects (an assumption that would be valid if objects are produced by a
countable number of "computational" construction procedures) there would
still be an uncountable set of partitions. How can the observer ever hope to
discover the correct set of categories if the space of potential categorizations
is unsearchable? p

We can remedy this situation by placing a constraint on the categorization

environment - the third component of the categorization paradigm - and %

by modifying the goal of observer. When an observer views an object (such
as one of the leaves in Figure 5.1), he cannot make use of the object itself .

as input to a categorization procedure. Rather, he must operate on some -*
a

sensory description of the objects. Thus, let us construct a categorization .

environment that consists of objects as described in some representation.
As in chapter 4, we define a representation to be a mapping from the set
of all possible objects onto to some finite set O°.' Each element of 0"
is referred to as an object description. Because the observer is no longer
operating on the objects themselves, but on their description as expressed :

in some representation, we alter the definition of an object categorization:
a categorization Z is a partition of the set of representational descriptions
corresponding to the objects in the world. Now, because there are only a
finite number of object descriptions in the representation, the set of possible -5
categorizations is not only countable, but also finite. Thus, one can construct
computational procedures capable of searching the space of solutions to the
categorization problem.

One may view a representation as a generalization or abstraction mech-
anism: an infinite number of objects are mapped onto a single point in the -

representation. Thus an important question arises as to whether a given rep- .
resentation is sufficient to permit correct categorization. Let us (informally)
define a class preserving representation to be one in which disjoint natural

'A quick proof: How many squares are ther( having an area less than one square foot?
4If one is uncomfortable with the concept of "the set of all possible objects" then one can
simply define a mapping function, and then -,t the domain of that function (the scope of
the representation as defined by Marr and Nshihara [19781) become the set of possible
objects. -.%
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classes of objects in the world map into disjoint sets in O'. If two objects Nto%
of different natural classes map into the same point in the representation,
then the representation is not class preserving and the observer will not be

able to correctly categorize the objects. Therefore, for the observer to be
successful in his task, the representation must be constrained to match the
structure of classes. Once again we encounter the Ugly Duckling Theorem ,,,

9.r
of Watanabe [1986 and require that the representation be chosen so that
important properties, in this case those constrained by the natural classes,
are made explicit. We refer to the description of classes of objects in terms
of a representation as the projection of the classes onto that representation.

Having defined a class preserving representation we can now modify the
component of the categorization paradigm corresponding to the natural cat- %
egories. Instead of recovering the natural classes directly, the task of the
observer becomes the recovery of the projection of the natural classes in
some class preserving representation. The categorization proposed by the
observer - the hypothesized partition of representation space - must be %

constructed such that if two objects in the world are mapped by the rep- %

resentation into the same category (equivalence class) of the partition then

those two objects belong to the same natural class.
To complete the definition of the categorization environment, we must %

specify how the observer comes to experience the objects. In the example
of the leaves in Figure 5.1, the observer may simply view all of the objects
"simultaneously." For a large or infinite world, a parallel observation of all
objects is not possible. Thus we define an observation sequence to be an in-

finite sequence of objects, each described according to some representation:
this sequence is viewed serially by the observer. We require that the sequence "
be infinite so that the observer always has data available as input to a cate-
gory recovery procedure. However, there are only a finite number of distinct '

object descriptions. Therefore we will require that any object description
that represents some object in the world must appear in the observation

sequence an infinite number of times. This property of the observation se-
quence will be important when we discuss the error correcting capability of
a categorization procedure. Note that our definition of observation sequence
guarantees that there exists a point in the observation sequence at which the

5 Bobick and Richards [1986] provides a formal definition of a class preserving
representation. .*.
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observer will have viewed all the object descriptions representing objects in
the world.

After encoding some information about the objects in the world, the
observer must propose some candidate categorizations. In our categorization
paradigm, we require that the observer announce a categorization hypothesis
after each presentation of an object from the observation sequence. We
can decompose the task of announcing hypotheses into two components:
hypothesis generation and hypothesis evaluation. These tasks form the last L

two components of the categorization paradigm.
Hypothesis generation refers to the method used by the observer to pro-

pose candidate categorizations. One simple approach would be to simply
check all possible partitions of the objects viewed so far: there are only a
finite number of object descriptions and thus only a finite number of possible
partitions. By our definition of of the observation sequence, we know that
the observer only need to wait some finite amount of time before he will
have viewed all the object descriptions present in the world. Assuming that
the observer's decision criteria - the evaluation procedure to be discussed
presently - are capable of selecting the natural class categorization, then
an exhaustive enumeration is guaranteed to find the correct categories.

Unfortunately, the combinatorics of an exhaustive search make such a
procedure impractical. For the 9 objects of figure Figure 5.1, there are over
20,000 possible partitions. If there are 15 objects, the number of partitions
(categorizations) grows to 1.4 billion! Also, an exhaustive partitioning strat-
egy is not well suited to a sequential presentation of objects provided by the
categorization environment. When a new object is viewed, the previous hy-
pothesis is irrelevant because an exhaustive search would again be executed
and the best partition selected. In a world with thousands of objects, the
discarding of previous hypotheses, and the work associated with producing
them, is unacceptable.

An alternative to the exhaustive search is a dynamic, data-driven method
of hypothesis generation. This is the approach used in dynamic classification
(see, for example, Duda and Hart [1973]). At each presentation of an object,
the observer considers some (usually small) set of candidate hypotheses based
upon the previous hypothesis and the new object. Because one can limit
the degree to which any new object may alter the current hypothesis, the
incremental strategy has the advantage that the computational complexity
of computing the new hypotheses can be restricted.

119

N, 0 V, 0 1r. r r Ife e eII.



-X% 'A-1-W-~7. - F -.. . . . . ~
t". - ,e

... P.

I .

The use of an incremental approach raises some issues that are not rel-
evant when employing an exhaustive strategy. In particular, one must con-
sider whether the observer will ever converge to some particular hypothesis.
Even though we know that there are only a finite number of partitions, it
may be the case that the observer never converges to some particular hy-
pothesis; for example, the observer may continually cycle through all the
possible partitions. Also, because the observer is not considering all possible
hypotheses, we must consider whether he will ever propose the "correct"
one. In the next section we will describe an incremental hypothesis gener-
ation method that has been successfully demonstrated in several domains.
It will be shown that in certain ideal cases, the method can be constructed
such that it will converge with unit probability to the "correct" hypothe-
sis; experimental results will demonstrate the method's effectiveness on real
data.

Finally, given a set of candidate categorizations, the observer needs to
be able to select the one most likely correct: the one which is the most
"natural." To accomplish this task, the observer requires a hypothesis eval-
uation function. This function must be constructed such that categories
corresponding to the natural classes are preferred over categories that ignore
class structure. Like the representation, which is required to make explicit
the properties of objects constrained by natural processes, the hypothesis
evaluation function must be matched to the structure of the natural world.

Having defined the four components of categorization we may now state

the categorization problem more precisely. We assume the following are
given: a set of natural object classes, a class preserving representation in
which objects are described, an observation sequence in which all the object
descriptions are presented, a hypothesis generation method to produce can-
didate categorizations, and a hypothesis evaluation function which provides -

criteria as to which categorization should be chosen. Ve say that the ob-
server has successfully categorized the world of objects on some observation
sequence if and only if 1) he announces some categorization hypothesis after
every presentation of an object description, and 2) the observer eventually
converges to a hypothesis which is the projection the natural classes in the
class preserving representation. By "converge" we mean that the observer .

eventually announces the correct hypothesis and that he never deviates from
that hypothesis as he continues to view the observation sequence.

Notice that any particular categorization of objects is learnable. A strongly
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nativist theory of object categorization would claim that the observer always
announces a hypothesis corresponding to one particular categorization Z0,
where Zo has been selected by evolution to appropriately categorize the
world. That is, the observer would completely ignore the data of the obser-
vation sequence. However, it is unreasonable to expect evolution to provide
for an object category such as "refrigerator." A more plausible theory of cat-
egorization, and that which has been proposed here, is that evolution equips

the observer with the necessary tools - representation, hypothesis genera-
tion method, hypothesis evaluation function - for the recovery of natural
object categories.

5.2 Categorization Algorithm
I

In this section, we will present a categorization system that reflects the
paradigm developed above; this system has been implemented and tested.
Because the representation (the most important aspect of the categorization
environment) and the hypothesis evaluation function are described in detail
in chapter 4, we will only provide a brief description of these components of
the categorization system. The hypothesis generation method, however, will
be presented in detail. We will evaluate the performance of the algorithm by
examining the results of tests conducted in three domains. In the following
sections, we will consider the competence of the categorization algorithm,
the types of errors likely to arise, and possible remedies.

5.2.1 Categorization environment

The representation - the first component of the categorization environ-
ment - used by the categorization system consists of property vectors. Our
terminology is defined as follows: feature refers to a function or predicate
computed about an object; value, to the value taken by a feature; property,
to the valued feature. For example, "length" is a feature, "6 ft." is a value,
and "having length 6 ft." is a property. Each feature, fi, 1 < i < m, has
an associated set of values {vil, vi 2 , ... ,i, } referred to as the range of the
feature. We require that the range be a finite set but the cardinality of the
range can vary from one feature to the next. F denotes the set of features
{ fi, f2,-.. , f} Using these features, each object is represented by an m-
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dimensional property vector P = (vla, v2 ,.., v.,) where vij is the jth value e-

of the range of the ith feature.
To complete our specification of the categorization environment requires

the generation of an observation sequence. Normally, the world itself pro-
vides a set of objects that can be sampled to form the sequence. However,
to test the categorization algorithm we need to generate property vectors
corresponding to objects. Furthermore, to evaluate the performance of the
categorization system these property vectors must be constructed such that a
natural categorization exists. To satisfy these criteria, property specifications
-- a listing of acceptable property values - are provided for several classes
of objects. An object generator then creates property vectors consistent
with these specifications. We will describe the specific features and values
of the property specifications when we present the examples illustrating the
performance of the categorization procedure in different domains.

5.2.2 Categorization uncertainty as an evaluation
function

The hypothesis evaluation function provides the criteria by which proposed
categorizations are selected. Because the categorization task requires recov-
ering the natural categories, the evaluation function must reflect the natural
structure found in the world.

The evaluation function is based upon the categorization uncertainty mea-
sure U. It is defined by:

U(Z) = (1 - A)UP(Z) + A-q(Z)UC(Z) (5.1)

where Up is the uncertainty about the properties of an object once its cat-
egory is known, Uc is the average uncertainty of the category to which an
object belongs given a subset of the properties describing the object, ?7 is a
normalization coefficient between Up and Uc, and A is a free parameter rep-
resenting the desired trade-off between the two uncertainties. (See chapter 4
for complete definitions and derivations of these terms.) For the remainder
of this chapter we will assume that A is set to some particular value which
satisfies the goals of the observer. In chapter 6 we will consider the effect of
A on the categorization procedure and its interaction with the natural object
categories.
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We use the total uncertainty of a categorization U as an evaluation func-
tion because this measure reflects the degree to which a categorization per-

mits the observer to accomplish the recognition goal of making reliable infer-
ences about the properties of objects. Thus a categorization which minimizes
U is guaranteed to be useful to the observer: the evaluation function directly

measures the utility of a categorization. This desirable property of the evalu-
ation function is absent in the standard distance metrics employed by cluster
analysis techniques. Furthermore, the Principle of Natural Modes supports
the claim that if a categorization supports the goals of the observer then
that categorization reflects a structuring of the objects consistent with the

natural modes. As such, this function is well suited for the evaluation of K

proposed categorizations.

5.2.3 Hypothesis generation

The hypothesis generation method we present has been designed to be con-
sistent with the categorization paradigm. First, the algorithm is guaranteed
to produce a hypothesis at each point along the observation sequence. Thus,

the observer will never halt and refuse to announce a categorization. Sec-

ond, categories are permitted to continually split and merge making every
possible categorization fall within the scope of the algorithm. Finally, the

algorithm takes advantage of the infinite observation sequence by correcting
"mistakes" only when viewing an object previously placed in an incorrect

category. Because the observer is guaranteed to view each object repeatedly,
this form of data driven error correction is appropriate.

The method may be described as a hybrid of divisive and agglomerative

clustering techniques [Duda and Hart, 1973; Hand, 1981]. (See chapter 3

for a discussion of these methods.) The basic steps of the algorithm are as
follows: ...

1. Construct an initial categorization consisting of a single category by
randomly selecting a small number of objects from the population.

2. View a new object' from the observation sequence.*@

3. Given a current categorization hypothesis, select the category to which

adding the new object results in the best new categorization ("best" %

6The term "object" refers to an object description in the property space representation.

123

e %

%*% x % % % % % . % % .. % ,* % % * % %* . * %



%A

in terms of lowest total uncertainty U.). Add the new item to the "'
"selected" category.

4. Test if merging the selected category with any other category yields a

better categorization. If so, merge the selected category with the best
of those, and make the resulting category the new selected category. e,,

5. Delete any objects identical to the new object which were previously ,
in~~~~ategorizedti tetoninto a category different than that which was selected dur- I

6. If there are "enough" objects in the selected category, attempt to split
the category into two new categories such that a better categorization .

is achieved.

7. Go to Step 2. ,-'_

We postpone examining the competence of the algorithm until we present •

examples of its operation. _ .l

~5.2.4 Example 1: Leaves"-F''

a', ~The first domain in which we illustrate the performance of the categorization ,.,,
', ~algorithm is that of leaves, like those in Figure 5.1. For several species of '¢

leaves, property specifications were generated according to descriptions pro- ""

~~vided by Preston [1976]. (Table 5.1) The properties chosen are known to be .,'-

diagnostic of leaf species and thus are sufficient for the categorization task."2-,
Note that for these classes of leaves the representation is class preserving: %-,7'

' no property vector can be constructed that satisfies more than species spec- %-.

: ~ ~~ification. For this example, the free parameter A of the evaluation function ,O..Q

" ~U has been set to a value of 0.6... ,
i ~ ~Let us trace the categorization process by examining the dynamic output 2.i

, ~ ~~of the program shown in figures 5.2 and 5.3. As each new object is viewed, ".'"'
~~a new row is added, showing the categorization proposed by the system in '.-.

,,. response to that new object; the new object is shown on the left. In these •

• - ~examples, the object's names are used to indicate (to the programmer) the .,o

.:,. true classes to which the leaves belong, e.g. COTTON-145 is a cottonwood
::,. ~leaf. The program, of course, uses only the property vectors of the objects as ¢:..
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Length Width Flare Lobes Margin Apex Base Color

Maple {3,4,5,6} {3,4,51 0 5 Entire Acute Truncate Light
Poplar {1,2,31 {1,2} {0,1} 1 Crenate, Acute Rounded Yellow

Serrate
Oak {5,6,7,8,9} {2,3,4,5} 0 7,9 Entire Rounded Cumeate Light
Birch {2,3,4,5} {1,2,3} 0 19 Doubly-Serrate Acute Rounded l)ark
Cottonvood {3,4,5,6} {2,3,4,5} 2 1 Crenate Acuminate Truncate {Light,Dark.

Yellow")
Elm {4,5,6} {2,3} {0,-1} 1 Doubly Accurninate Rounded Dark

Serrate

Table 5.1: Leaf specifications for several species of leaves. A leaf generator was
designed which created property vectors consistent with the different specifications.

input. The circled numbers to left indicate the significant events that we will r
discuss. In this example, the population consists of 150 leaves, 25 examples
of each of 6 species.

Event 1 is the start of the categorization algorithm. Because step 3
of the algorithm requires a current categorization, we begin with an initial
categorization consisting of a small random collection of objects forming
one category. In the next section, when we analyze the performance and
competence of the hypothesis generation method, we will place bounds on
how large this initial category may be. "

Event 2 represents viewing a new object, in this case the leaf COTTON-
145. Step 3 of the algorithm selects the category to which adding the new
leaf produces the best categorization. As there is only one category in the %"%
current categorization, COTTON-145 is added to that category. Because -,

there are as yet no other categories, the merging step (4) and the deletion
step (5) are skipped. Next, the splitting step (6) is executed. It is ;mportant
to understand the details of this step because the spb' ting procedure is the
only means by which a new category can be created ai, thus is most critical

in determining the competence of the system.
Because the evaluation function U is statistical in nature, based upon

probabilities and information theory, it does not vield reliable results when
appli'd to categories that are too small. We restrict its application by requir- . 1
ing that any category forined by splitting contain some minmmn inumber of

*: objects; for this particular example, a category was re ,uired to contain at
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-' continues to the next page.
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IWESM6 MR-I? IW-SICTTCNS-14S IMALE-Z PLWU~-21 IP011*-7B POPL*-Si CMR-Il CMK-41 CM-4%
IELM-7i ELMI-IS ICOTTOM-iji 11.E-d4 MNU-15 IuxMa-us POPL-$# IOCM-dI CM-2U 0C-41
MAPL-I? [Lo-So ICsrrO-aa I IP091-S3 PO011*-S JOCM-37 CM-ag

11WM-44 ICOTTC-137 I IPP1*-SI POPIA-9S ICOTTC.-1a
I ICOTT..-1h2 I ISMzfo-ua1 BIRCH-I? I
I I carT..- 1s I IPWW91- ELS-4 I

I I IPOPIM-9SI CH-R 12 1
I I I 1IM0-112 1WM-sI I
I I I IBIRCH-106 I

COTT-44:IIW)-3I 11L3-71 1W-?SICSTTON-1aa MAlE-IS MAPLE-S IPPL*R-92 BIRCH-144 JOCM-d CMK-32 W-40
JELW-Si EL-63 ELW-S7ICOTTOW-136 MPOLS-i 006LE1 10WL-78 POPLR-&t JOCM-39 CM-41 CM-a45
1"L-IS9 ELP-73 1W-ICQTTCN-IaS IMMPLE- MAPL-Il 1513CM4-lOS POPLAst-se OAM-46 CMK-H OCM-47
IMALE-17 1W-NW ICQTTO-133 I IPOILAR-Si POPLAR-SS OCM-37 CMK-49
ELIO-" IC4TTON-Ids I IPOPLAR-44 POPLAR-911 I -

IICOTTON-137 I IsIRC-21 BIRCH-l1? I
I COrTO-142 I IP091*-H uW-s I
I ICOTTON-u 13 POPLAR -O 30-U I

I I I iBIRCH- IR51CH-10S

KAPL-I:IELW-$I ELM 971 IW-7SICOITTN-1ad MAWP-17 MAPLE-IS IPOPLAR-Si BIRCH-1l OAKC-3d CM-12 CMK-al
EL0-S2 LWS46 I-7, COTTON-3 9MALE- AL- Ipu-? PPOP-LAM-SRMalCMa

11W-SO "1.-73 IW-OgICCTTCN-1aS IMlAPL-ZI MAPL-4 IgIRCH-16S POPLAR -44 CM-al CM-21 CMK-a?
ELM-IS 1WO-44 ICOTTON-1SS IMADLE-13 POPLAR-8U POPLA-CS 9CMK-37 CM-4S

IICCTC-laS I IPOPLAR-es POPlAR-91I I
0 IC0TTOS-iS? I BI*C-Ill BIRCH-11? I

I ICCYTON-laS I POPLAR-H WS
ICOTTOhN-S 3 POPLAR-9S GIRC-il) IP

1"-6d Us-IS3 EIW-44ICCTTON-12S MNAPLE-1s MAPLE-IS I POPL.AR-l7g POPLAR-gi CMA-3S CMK-al CM-27 P' 0r
11Wl-SI 1119-71 EIW-7ICTTOSO-134 IMPE-21 MAPLE-Il 913CH-16s POPLAM-7S CMA-SO CM-42 CMt-I
911.-6i "-LM- -iCOTTOW-lM IMAPLE-Il MALE-li POPLAR-4i BIACM-ISS IOCK-U CMK-49 CM-IS
91WL-St ELW-7i e(U-9-ISC0TTU-la IMAPLE-S MAPLE-1 IPOPLAR-SB POPL*R-6i ICM-41 CMK-S CM -as
91W-Is 1WM-6s ICCTN-ISS MNAPLE-il MAPLE-a IPOPLAR-S POPLAR-I 9CM-U CMr M
I ICOTTO-14S MPLE-Il IPOPLAR-9S BZRCH-1I 9CM -4ag1
I ICOTTON-133 I 1313CM-Ill POPLAR-"e I
I ICOTTON-las I IPCPLAA-g5 5130-123 I
I ICCTTCI-II? I BIRtCH-1l 31*0-106 I
I ICOTTWNI42 I I I
I ICOTTSS-134I

%' Figure 5.3: Continuation of the output of the categorization program. ..
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least 4 objects. Therefore the algorithm does not attempt to split a category
unless it contains at least twice the minimum number of objects (8 in this
example).

Assuming a category is large enough to be split, as is the case at event
2, candidate partitions must be created. Because the number of partitions
of a category is huge (even when partitioning a set into only two subsets),
not all partitions of a category into two new categories may be attempted.
Therefore, only some (randomly chosen) divisions are tried. Thus, if there V
exists a split of a category that yields a better categorization than the cur-
rent hypothesis, the probability of discovering that partition is proportional
to the number of partitions attempted. In the current implementation the
number of partitions considered is proportional to the size of the category;
when we discuss the convergence and correctness properties of this algo-
rithm, this sampling rate will become important. At event 2, none of the ?
partitions considered yielded a categorization with a lower uncertainty than .

the categorization consisting of only one category.
At event 3, however, a partition is accepted. As before, the new leaf

(COTTON-148) is added to the only category in the current categorization. .
However, in this case a split of that category was discovered which yielded
a better categorization than the single category. Event 4 is another instance
of successful splitting.

One of the dangers of an algorithm such as this is that it is possible to
cause two categories to be created which should be one. Event 5 is an exam-
ple of such an occurrence. In this case, the addition of the leaf MAPLE-4,
caused a category to split, separating maples from oaks. But a previous split
had already created a category containing oaks. If the algorithm is to suc-
cessfully categorize these objects, then these two categories must eventually
be merged. That is the purpose of step 4 in the algorithm. At event 6,
the leaf OAK-40 was initially added to the category with the 6 oak leaves.
This category was then merged with the category containing the two other- ,
oak leaves. Even though this second category contained two leaves that are
not oak, the merging of the two categories yielded a better categorization.
Merging assures that splinter categories that are created because of the order
of presentation of the objects may later be reclaimed.

One more form of error correction is necessary. Although merging can
combine categories mistakenly separated, it cannot remove isolated errors
that result from previous mistakes. To correct this type of error, we add
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the deletion step of the algorithm (5). Examples of this step are shown at .
events 7 and 8. At event 7, the leaf COTTON-138 was viewed for the second %
time, and placed in the category containing only other cottonwood leaves.
Notice that there were two cottonwood leaves present in the oak category,
one of which was previous instance of COTTON-138. Because the current .
instance was placed in a different category, the program can correct an earlier
"mistake"' by deleting of the previous instance. Event 8 is a similar event
where MAPLE-17 was corrected.7 '

The last categorization shown in Figure 5.3 represents the steady state
categorization produced by the algorithm; at this point the program was
interrupted. Notice that the categorization procedure recovered the natural
classes, except for the one category consisting of poplar and birch leaves.
Thus, the algorithm converged, although not quite correctly. -

The first observation to be made is that the algorithm performs quite a
well. Most tests performed on the leaves domain yielded results as good
as those shown, or better, where the solution was exactly the (botanically)
correct categorization. The fact that an evaluation function based upon the %
goals of an observer and an incremental hypothesis generation method could-,
produce a natural and correct categorization provides empirical support for
the categorization principles embodied in the procedure.

However, as shown, the algorithm does make errors, even in a domain
where it sometimes generates the correct solution. After presenting another
example domain, we will discuss the competence and behavior of the algo-
rithm, the predictable errors, and possible remedies.

5.2.5 Example 2: Bacteria

To further illustrate the behavior of the categorization algorithm, we test the
procedure on a domain comprised of infectious bacteria. For these examples,
property specifications for six different species of bacteria were encoded.
Table 5.2 displays the specifications for these species; the data are taken
from (Dowell and Allen, 19811. Because most of the "real" features take on
only one value per species (unlike the leaves where features like "length"

TA note about the implementation: Because the categorization evaluation function requires
that the categories be sufficiently large, categories that grow too small because of this
deletion step are themselves deleted. The infinite observation sequence guarantees that
these objects will be viewed again.
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BF BT BV FM FN FV
bacteroides bacteroides bacteroides fusobacterium fusobacterium fusobacterium

fragilis thetaiotamicron vulgatus mortiferum necrophorum varium
foc GI GI GI OR OR OR
gram neg neg neg neg neg neg
gr-pen R R R {RS} S {RS%
gr-rif S S S R S R
gr-kan R R R S S S
dole neg pos neg neg Pos pos
esculin pos pos neg pos neg neg
bile E E E E I E
gl Is Is Is none none none S"'

rham neg Pos pos {neg,pos} {neg,pos} {neg,pos}
nfl {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} %
nf2 {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} .

Table 5.2: The property specifications for six species of bacteria. Because most of
the real features have only one value (unlike the leaves where features like "length" -
and "width" varied greatly) two noise features are added (nfl and nf2). .. '

and "width" varied greatly) two noise features were added (nfl and nf2).
These features prevented all objects of the same class from having identical

property descriptions.

Of the six species, three are from the genus bacteroides; these are abbre-
viated as BF, BT, and BV. The other three - FM, FN, and FV- are from

the genus fusou'acterium. Notice that several of the features of the speci-
fications are determined by the genus, while others are determined by the
species. For example, all members of bacteroides have the property "gr-kan

= R" (coding for "growth in presence of Kanamycin is resistant"). Other
properties, such as "dole," vary between the species, ignoring genus bound- 1
aries. These data were chosen as an example of a population in which there

is more than one natural clustering. In this chapter we are only concerned
illustrating the operation of the categorization algorithm. In the next chap-
ter we consider the issue of multiple clusterings, and the interaction between
A and the categories recovered.

Figure 5.4 displays the results of executing the categorization procedure
with A set to 0.65. Notice that the bacteria have been categorized according
to their genus. Is this the "correct" solution? As mentioned in chapters 2 and
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4, the natural clustering of objects in the world occurs at many levels. Main-
mals and birds represent one natural clustering; cows and horses, another.

%,

That the categorization procedure recovered the different genera is another
demonstration of the ability of the algorithm to recover natural categories.
These two genera consist of two distinct types of bacteria: the bacteroides
are only found in the GI tract and the fusobacterium are located in the oral
cavity. Thus, the categorization recovered in Figure 5.4 is a correct solution.

5.2.6 Example 3: Soybean diseases

The last domain in which we demonstrate the effectiveness of the categoriza-
tion algorithm is that of soybean plant diseases. These data are of interest
because they have been used by previous researchers to demonstrate the
competence of clustering algorithms. Michalski and Stepp [1983b] make use
of these data to demonstrate the effectiveness of their conceptual clustering
technique (see discussion in chapter 3); at the same time they demonstrate
that several standard numerical clustering techniques are not capable of re-
covering the correct categories. Thus, these data provide a means by which *~-

to measure the performance of the categorization algorithm relative to other
clustering procedures..

Table 5.3 displays the property specifications for each of four different
soybean plant diseases;' these data are derived from the data presented in
Stepp [1983]. In their original form, the data were listed simply as property
vectors of several instances. In order to provide a population large enough
for the application of the categorization algorithm, a property specification
for each species was derived by taking the union of the values of the features
for all instances of that species. For example, the "time" feature for disease
Rhizoctonia Root Rot has the specifed values of f{3,4,5,61; thus, each of these
values occurred in at least one property vector for an instance of that lisease.
Notice that these properties contain much more noise and are less mnodal
than either of the two previous examples of leaves and bacteria. Successful

rThe letters A, B, C, and D of the top line are used for display in the program out put.
'Another modification was the deletion of constant, features -features that took the same

value for all instances. In chapter 6 we showv that constant features have no effect onl the
WI categorization uncertainty measure U and thus can be removed from considerat ion. Re-

moving extra features reduces the number of feature subsets and makes the categorization
algorithm more efficient.

4i
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categorization of this domain requires that the algorithm be insensitive to
unconstrained features and robust in its category evaluation.

Figure 5.5 displays the results of executing the categorization algorithm
with a A of .5. Notice that the correct categories, those corresponding to
the species, have been recovered. We should emphasize that the algorithm is
not told how many categories are present, unlike that of Michalski and Stepp
[1983b). Rather, the algorithm discovers the appropriate number of classes in
its search for natural categories, The fact that the categorization procedure

* is capable of recovering the correct categories in this complex domain - a
domain in which other clustering techniques have failed - validates the
algorithm as a useful categorization technique.

5.3 Categorization competence
% %

We have demonstrated the effectiveness of the categorization algorithm in
several domains. However, as shown in the leaves example, the algorithmdoes not always converge to the correct solution, even in a domain where

it sometimes does produce the correct categorization. To understand the -S
behavior of the categorization procedure we need to analyze the competence
of the algorithm. The case we consider is when there are only two clkisses of
objects in a population. The study of this problem will also provide insight
into the behavior of the algorithm when there are more classes present. We

assume that the representation is class preserving, making the categorization
task possible. The issue is whether the algorithm will recover two categories '..

corresponding to the two classes.
Because we start with a categorization consisting of one category, the

"0 To be compl,:-. we should mention how the categorization of the soybean diseases varies "

as we changc A; the value of A can affect the categories that are recovered. In fact, 
unlike the leaves or the bacteria exampie, there does exists another categorization that
is reliably recovered by the categorization algorithm. When the value of X is .65, the
recovered categorization consists of the three categories A, B, and {C,D}. This situation
indicates that there are two natural levels of categorization in this domain. In chapter
6 we explore the issue of multiple modal levels, where more than one level of constraint
is operating in a population. Our primary example in that chapter will be the bacteria
where the genera and the species provide multiple levels of constraint. However, because
we do not have any objective evidence of multiple levels within the soybean domain, we
present 'Ae multiple categorizations of the soybean diseases in Appendix B.
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A B D D
Diaporthe Charcoal Rhizoctonia Phytophthora .

Stem Canker Rot Root Rot Rot 1
time 13,4,5,6) f{3,4,5,6) f{0,2,3,4} 10,1,2,3}

stand 0 0 {1,0} 1
precip 2 0 2 2 JP
temp 1 {1,2} 0 {0,1)e "'
hail 0 f{0,1} 10,1} 0 ,1.01-

years j 1,2,31 f{0,I1,2,31 f{0, 1,2,3} {0,1,2,31 :. .

damage {0,1} 12,3} 1 1 .,..
severity 11,2} 1 11,2} {1,2} "¢ :

treatment 10,1} 1Ol 0,1} f 0,1 } :,",'
germ 10,1,2} f 0,1,2} f 1,2} {0,i,2}

height 1 1 1 1 .
cond 1 1 0 1..

lodging 10,1} {0,1} 0 0 ""%.
cankers 3 0 1 R 1,2}

color {0,41} 3 1 245.'.}12
fruit 1 0 0 0-0
decay 1 0 1 O,

mycelium 0 0 {0,1} 0
intern 0 2 0, 01 0

sclerotia 0 1 0 0{1,2

gpod 0 0 3 3

froot 1 0 0 1

~Table 5.3: The property specifications for four species of soybean plant diseases. -Pu

i ~ ~~These data are derived from Stepp [1985]....''.
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Figure 55: Execution of the categorization algorithm in the domain of soybean e,- .
plant diseases described in Table 5.3. For this example, the value of A is .5. The , i

categoriza tion algorithm successfully recovers the species. .
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answer to the above question depends upon whether the algorithm will ever
split a category containing both classes into two categories approximating the
natural classes. By "approximating" we mean that the two new categories
formed are such that any new objects seen will be categorized according to
their true classes. Any mistakes caused by an inexact split would be corrected
when the objects are viewed again at a later time; because the observation
sequence contains an infinite number of repetitions of each object description
we know that every object will be encountered again. We refer to these ap-
proximate categories as captivating categories: they capture all new objects
presented that are members of the appropriate class. Notice that whether a
category is captivating depends upon the hypothesis evaluation function (in '

this case the uncertainty measure U) as well as the other categories present:
the evaluation function determines to which category an object is assigned.

For the moment, let us suppose that the only partition of the category
containing two classes that yields a better categorization than the original
is the partition that exactly separates the two classes. We wish to know %
whether that one partition will be discovered. We assume that the original
category is formed by viewing an observation sequence which is unbiased in
its distribution of objects from the two classes. Thus, we assume that we
have a current categorization consisting of one category of size 2n and that ."*-.."

contained in the single category are n objects of each of the two classes.'1

We also assume that only partitions of two equal sized categories are consid-
ered as possible split categorizations; there are (n)/2 such partitions. If the
hypothesis generation method proposes only a fixed number of partitions at
each iteration, then the probability of finding the one categorization corre-
sponding to the correct categories rapidly decreases as the single category .5..

size (2n) increases. Because (n)/2 > 2', the probability of finding the cor-
rect split during the current iteration quickly vanishes to zero as new objects

are added to the single category. The exponential rate of increase in the
number of partitions guarantees this is true even if the number of partitions
considered increases polynomially with the size of the single category. (In
the current implementation the number of partitions considered increased
linearly with the size of the category.) Thus, having a high probability of

discovering the correct class-separating categorization requires doing so be-

"At the conclusion of the analysis we will briefly consider the case where the single category
contains an unequal number of objects from the two classes..""....
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fore the single category becomes "too large."
To further refine our analysis of the combinatorics of category formation,

it is necessary to make some stronger assumptions about the objects being
categorized. Let us consider the case of a modal world. Here, the object
classes and features are such that every feature takes on a different value for
each different class. Let F be the number of features in the current repre-
sentation. We continue to assume that there are only two natural classes
present; thus each feature takes on only two values over the entire popula-
tion. The uncertainty measure U has been constructed such that in a modal
world, the best possible categorization was that which separated the modal
classes. The question we wish to consider is what is the probability that
the categorization procedure presented above will indeed separate the two
classes present.

Let us define a k-overlap partition of a two-class category as a partition .
where k objects of each class are in the wrong category. That is, both
categories of the partition contain n - k objects of one class (called the -
primary class) and k of the other. Thus, k < (n/2). Because each category
contains k objects that are members of a class of which there are a total of
n objects, there are (k)2 k-overlap partitions of a category of 2n objects. 2

The importance of k-overlap partitions is their role in following propo-
sition, whose proof we postpone until we derive analytic expression for the
total uncertainty U of a k-overlap partition:

Proposition 5.1 In a modal world, the categories of a k-overlap partition
are captivating for their primary classes if k < (n/2) and if the uncertainty
measure U is used as the hypothesis evaluation function.

.%

This proposition implies that the creation of a k-overlap partition of a modal
world is sufficient to guarantee that the modal classes will be recovered by
the categorization procedure: once the categories become captivating, all new
objects are categorized correctly and previous mistakes are corrected when
the incorrectly categorized objects are viewed again. Thus the probability of
correctly categorizing the modal world is equivalent to the probability that
a k-overlap partition is created by the splitting step of the categorization
procedure. To determine this probability we first need to derive an expres-

'2 If k = (n2) then the number of k-overlap partitions is (k2/2.
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sion for the total uncertainty of a k-overlap partition relative to the total
uncertainty of the single category categorization.

The total uncertainty for the single category categorization is simple to
derive. Because there is only one category, there is no category uncertainty:
Uc = 0. Because each of the F features takes on only two values, and
because they are evenly distributed, the property uncertainty Up is equal
to F (- log 1 - 1 log 1) = F. Thus the total uncertainty U of the single J.

category categorization is (1 - A)F.
The expressions for the k-overlap partition of the modal, two-class world

are more complicated. First, because Uc is non-zero when k 0 0, we need
to compute the normalization factor 77 - the ratio between the property
uncertainty of the coarsest categorization (a single category) and the cate-
gory uncertainty of the finest categorization. We have already shown that
Up(Coarsest(Z)) is equal to F. It is easy to show that Uc(Finest(Z)) =

log n: If each object is its own category, then in this two class, modal world
there are two sets of n identical categories. Because objects of modal classes
have identical properties, all subsets of features are equally diagnostic; each
subset is consistent with membership in n categories.'" Thus the category
uncertainty is log n for each subset of features, yielding an average category a
uncertainty of the same value: Uc = log n.

To develop the expressions for Up and UC for a k-overlap partition, we will
explicitly derive them for the case k = 1. The case k > 1 follows analogously. "-.'

First, consider the property uncertainty of the 1-overlap partition. For each
feature, there are two, --dues present in each category; one value (that of the
primary class objects) occurs n - 1 times, the other value, only once. Thus
the property uncertainty (for each category, and therefore for their average)
is given by:

Up' F. -!log - log (5.2)-

or

L p 1lg(n) +-n,-
U-F. logn log (n (5.3) .

"3 For the analysis presented here, we assume that the null set is not an allowed subset of
features. Otherwise, for that one subset, the number of categories consistent with the e,
(null) property description would be 2n. ,
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The derivation of Uc is similar. Because we are considering a 1-overlap
partition of a modal world, any subset of the properties of an object (as before

we exclude the null set) is consistent with n - 1 objects in one category (the
correct "category") and 1 object in the other. Thus the category uncertainty
remains constant for all objects and for all subsets. Its value (and also the
value of Uec for the 1-partition, because Uc is simply the average of this -, P"
constant value) is given by:

UC In log 1 n nlog (5.4)

The argument is the same for the general k-overlap partition, where k < A
n/2. The complete expressions are:

Upk [ M +log ( nlg f(55)

uCk log (n) + n - k log ( ] (5.6)

Two properties of the above expressions are worth noting. First, Up = Uc = N
0 when k = 0." This situation is equivalent to an exact partition of the
single category into the two modal classes. By design, the total uncertainty
of a categorization that separates modal classes is zero. %

Second, by taking the derivative of the above expressions with respect
to k, one can show that both of the above quantities achieve a maximum
at k = n/2; also, the total uncertainty increases monotonically as k in-
creases from zero to n/2. Thus, unsurprisingly, the total uncertainty of a .
k-overlap partition increases as the class overlap of the categories increases
and is maximized when exactly half the objects of each class are contained
in each of the two categories. However, stated in a different form, this result .
becomes important. Suppose we have a k-overlap partition where k < n/2;

,_ the inequalitv assures that each category has a primary class to which it

P ," corresponds. Next, suppose we view a new object. The fact that the total ..
uncertainty increases as the degree of overlap increases implies that if we .

add that object to the incorrect category - the category whose primary
class does not correspond to the class from which the new object was drawn

l4 More precisely the limk_0 k log () 0.

1 3 9 - .

*%PP ',... U'

igj'l'.,,%. ,'l .% .. %,. "%" . . ,, % .* ., %" " '% %,' .,- .. ,, ..- ,2- r. . .,' 4 . .- , . . . . . .- .- .- .- - . . . . . ."'_* ."

.r .. r,,rl i ~o ll ~t_ _ ./'",p "", " .. .. • ,.. .- o °,Z .r ..- = ,.'.- . d,- ,, _.- - .% ,% .,.' ... ... . . .. - - ,,. , %- . .- - .. - .- ,., , .



=* V

- then we will increase the total uncertainty U. Similarly, adding the new
object to the correct category will reduce total uncertainty. Therefore, to
minimize total uncertainty we will always add new objects to the category
corresponding to their primary class. As such, we have now proven proposi-
tion 5.1: the categories of a k-overlap partition of a modal world form a set
of captivating categories if k < n/2 and if the total uncertainty measure U
is used as the hypothesis evaluation function.

Using the above results we can now determine the probability that k-
overlap partition will be formed when categorizing a modal world. Let us ,
compute the ratio between the total uncertainty the split (the k-overlap par-
tition) and single category categorizations. Combining the above results and
including the necessary normalization term yields the following expression
for this ratio (referred to by p):

[1 + ( I[logn- ogk n - (5.7)
P[1 ( 1  jJl~ logk log (n - k5\ d:] ~1- onn n

p represents the decision function used in category splitting step (6) of the ft
categorization algorithm for the restricted case of two modal classes. If p
is less than 1.0 then the uncertainty of the split categorization is less than
the single category categorization and is thus to be accepted. Notice that
p increases with A. That is, it is more difficult to split a category when
the value of A is high. This behavior is to be expected. Higher values of A -L.I

cause the uncertainty measure U to weight the category uncertainty Uc more ,

heavily than the property uncertainty Up; coarse categorizations with few
categories are preferred over finer categorizations. Thus a higher value of A
makes it more difficult to accept a split categorization over a single category.

Using equation 5.7 we can compute the maximum k such that a k-overlap .
partition has lower total uncertainty U than the single category categoriza-
tion. Table 5.4 lists the maximum k for different values of n and A; the
fractional below is the proportion of equal size partitions of a set of 2n ob-
jects that are k-overlap partitions for k less than or equal to the maximum.
For example, when there are 16 total objects (n = 8) and A = .4, the maxi-
mum acceptable value of k is 2. Thus, k-overlaps of k E {0, 1, 2} have a lower
uncertainty than the single category categorization. As indicated, this set of
partitions constitutes 13% of the all partitions of 2n objects into equal-sized
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a-4 S is 1 1 20
Lambdas

6.16 1 1 2 3 3 6 6
•.40571 0. 20M 6.56716 0.6192? 6. 115 0. 46" 4.34360

0.26 1 1 1 2 3 S 1
9.40571 8. 2063 6.060 0.12153 a.1I16t6 6.14311 9.11293

6.36 1 1 1 2 2 4
8.48571 6. 26"3 0. 9~6 6. 1312 6.1780 6.69268 4 .62564 .

6.40 1 1 2 2 4 5 F
9.62G37 9.2635 S. 6.13153 9.62261 6.62U4 6.0I315

6.50 0 2 1 1S
6.62057 a.so?" 6.6 6 • 6.0162 6.2301 6.36201 0. 625

0."8 6 a a 1 1 3 4
6.I2957 6. W794 I.6216 6.6106 0.66109 6.662ni 6.00036

6.70 a 6 6 1 1 2 3
9.0 5? 6. 669"4 8.66216 6.61616 0.0109 0.00015 0.00002

. 6 a • 6 6 1 2
• .62I57 6.66754 8.06216 G. 06I 6 0.001 0. 6000 0. W0

0.56 0 S • 6 • S 1
6.62057 6.06P14 6.66216 0.6"1 0.00001 0. 0000 0 .000

Table 5.4: Maximum k such that the k-overlap partition has a lower uncertainty U ''

than the single category categorization. The fractional number below represents the
proportion of equal sized partitions of the 2n objects that are k-overlap partitions
with k less than or equal to the maximum value. o

categories. Notice that for n > 15 the percentage of acceptable partitions is
almost zero for all but the lowest values of A. Thus, we begin to see that
category formation must occur before the initial category size (2n) becomes a
greater than 20 or so.

Using the maximum k values, we can compute the probability of success
of the splitting step (6) of the categorization procedure. This probability
depends upon how many partitions of the population are evaluated in each
iteration of the algorithm; we let 1A represent the number of attempts. We %

compute the incremental probability of success (incremental because it refers
to only one iteration of the procedure) by computing the probability that N.
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Incern.nt.al S .c, Prob4o6biit, ta1e

n: 4 5 s 0 15 20
L on4a:

6.3. 0.96402 0. ,5 2 0. 400 0. ,,200 0.626 ,6 0.915662 0.G ,55

0.20 0.96402 0.435i2 0.34123 0.50?10 0.626?6 0.53002 0.45043

0.30 0.96402 0.60512 0.34123 0.50?10 0.62656 0.12116 0.32101

0.40 0.13492 0.60512 0.34123 0.5010 0.109011 0.1211 0.0101

0.50 0.13492 0.03106 0.34123 1.04"0 0.1,09 0.0139, 0.01909

0.60 0.134 2 0.03906 0.0WS 0.04950 0.00545 0.01399 0.0010

0.1O 0.13492 0.03906 0tO0• 0.04950 0.00545 0.000i 0.01o

0.00 0.13492 0.0396 0.0013 0.000PI 0.00005 0.00003 0.00000

0.90 0.13492 0.03906 fl.0tnp O.0000 0.00005 0.00000 0.00000

-
Hyp0th@ee Per itretiuf 103

n: 4 5 6 3 20 15 20

0.30a: 0.91012 0.16305 % .9
0.10 t . 9.Pl 0.9d. 0.9:F? 0.9"4 0.06061 0.93563 a

0.20 0.9991 0.96005 0.56602 6.15105 0.96069 0..-651 .619

0.30 0.1111 0.90005 0.56602 0,5POS5 0.36069 0.23013 0.223P9

0.40 0.25164 0.10015 O.56602 OF5105 0.201,71 0.23010 0.03102 £

0.50 o0.25164 0.01659 0.56602 0.09654 0.201M3 0.021M1 0.63?2

0.60 0.25164 0.01659 0.02144 0.09654 0.01003 0.02119 0.00359 ,*

.10 0 25164 0.01659 0.02144 0.09654 0.01006 0.00145 0.00019 % %

0.30 0.25164 0.01659 0.02144 0.00155 0.0001 0.00003 0.00003 % f

0.10 0.25164 0.01659 0.02144 0.00155 0. 0001I 0.00000 O0.nono0 %

Hypotheses er iterati": 0

4 5 3 0 10 I5 20 %

0. 10 . 00000 . 9101 3.00000 3.00000 0.93059 1.00000 0.99970 J,.,p

0.20 1.00000 0.99011, 0.91166 0.94091 0.90059 0.95445 0.9090 % P

0.30 3.00000 0.9901? 0.91166 0.94091 0.90059 0.41963 0.40523

0.40 0.439% 0.9031 0.91166 0.9409 0.31229 0.41163 0.0?420 .

0.50 0.43996 0.14131 0.31166 0.103,P6 0.31220 0.05401 0.01420

0.60 0.43916 0.14131 0.04241 0.10396 0.02164 0.05401 0.90F "' .

0.10 0.43996 0.14131 0.04241 0.3036 0.02164 0.00210 0.00039

a 0.00 0.43996 0.14P31 0.04241 0.00310 0.00022 0.00006 0.0000-

0.90 0.43996 0.3413 0.44124 0.0,310 0.330022 0.00000 0.00000

Table 5.5: Probability of a successful split if 5, 10, or 20 attempts are considered.
'" This probability is for a single iteration.
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none of the attempted partitions is a k-overlap partition of a sufficiently ._..
low k. Assuming an independent sampling of partitions, the probability of .,
failure is simply the proportion of partitions that do not satisfy maximum k- ' -

overlap condition multiplied p times. The probability of success is then one ..

minus this failure rate. Table 5.5 lists values of the incremental probability ".:%"",

of a successful a split as a function of n, A and p. For example, if there are,..%

n = 8 objects in each class, if A has been set to .5, and if M = 10 partitions €''''

are attempted, then the incremental probability of success is 0.0965. It .z,
is important to note that because the probability of failure is the repeated l

product of a number less than one - the percentage of partitions that overlap~j.:,'
too many objects of the modal classes - the incremental probability of , -

success can be made arbitrarily close to unity by increasing P. :
To determine whether a single category categorization will at any point k

be split into k-overlap partition of two categories, we compute the prob- :-

ability that every iteration through the algorithm fails to split the single -

category. Let us define pf(n, ,,p) to be the probability of failing to split

a category in a given iteration; p! is equal to one minus the probability of' "*;.

success. Then, assuming independence between iterations, the probability".,%
of never succeeding in splitting the single category categorization is simply ,I

the product of the probability of failing at each step. Because the number of ,% ..

objects increases by one with each iteration of the categorization procedure, -
but our equations are only defined for an even total number of objects (2n) :'.",'

we approximate this product as follows:'",

, ..

Prob. of success rotitio [pf ( n ,  , y) pa(n + 1, suffic(5.8)

where no is the initial n, equal to half the size of the initial category. It can

be shown that this approximation is conservative in that it under-estimates
the probability of success. Thus, we can finally compute the probability

that the incremental hypothesis generation method will correctl categorize
a modal world of two classes. h b st , i 1p t

Equation 5.8 allows us to compute the probability of a successful cate-

gorization for given starting no, , and p; the results are displayed in Table

5.6. Several observations should be made about about these results. First,
when the starting no is small, and when -equals 10 or 20, the probability of
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S~cces Probbilit fabl

Mpth..., per* IteratEfan 5

Start n: 4 5 6 0 10 is 2,

0.10 8 .6606 10000 1.0000 1.00000 1.00000 1.o0000 0.96393

0.20 1.00000 1.00060 1.00000 L.00000 1.00000 0.99841 0.602P6 9.-%7..

0.30 1.0000 1.00000 1.00000 0.99966 0.99859 0.90314 0.17564 .5...-

0.40 0.9"93? 0.99768 0.96893 0.95377 0.01115 0.49557 0.07944

0.50 0.19540 0.0741? 0.80123 0.51333 0.4?636 0.14445 0.02029

0.60 0.56400 0.4995? 0.47356 0.24P4? 0.1?659 0.03409 0.00250

0.70 0.3360 0.2019, 0.16040 0.10193 0.01733 0.00220 0.00013

0.60 0.22030 0.07176 0.02353 0.00635 0.00511 0.000I0 0.00000 .%
5

.

0.90 0.22449 0.06709 0.01660 0.00134 0.00009 0.00000 0.00000 '. '" "

Hypotheses per Iteration. 10 -

1 
Sttn 4 5 6 6 10 15 20L...bda.

0.10 1.000 0 1.00000 1.00000 1.00000 1.00000 1.00000 0.9960p0
0.20 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 0.64220

0.30 1.00000 1.00000 1.00000 1.00000 1.00000 0.99062 0.3207?

0.40 1.00000 0.99999 0.99906 0.99706 0.96434 0.74555 0.15257

0.50 0.98906 0.9641? 0.96049 0.81795 0.72789 0.2603 0.053644b

0.60 0.82695 0.4957 0.72286 0.43371 0.32200 0.06656 0.00499 Z

0.70 0.55990 0.36314 0.29521 0.19346 0.03436 0.00439 0.0002?G

0.60 0.40460 0.1340 0.04650 0.01266 0.01020 0.00020 0.00001

0.90 0.39859 0.12969 0.03686 0.0026 0. 000 19 1.00000 0.00000 %'

Nvoothoses per ttertlan: 20

Stirt n: 4 5 6 6 10 15 20
Lambde:

0.10 1. 0000 1. 0oe 1.00000 1.80000 1.00000 1.00000 1.00000

0.20 1.66000 1.0 I.000 1.00000 1.00000 1.00000 1.00000 0.91 510

0.30 1.0000 1.00000 1.00000 1.00000 1.00000 0.99991 0.53064

6.40 1.00000 1.60000 1.00000 1.00000 0.99073 0.93526 0.20196

6.50 0.99960 0.99975 0.99044 0.94686 0.92596 0.46423 0.10479 a
0.60 0.97005 0.%3729 0.92320 0.67931 0.54031 0.13242 0.00995 %

0.70 0.00632 0.59441 0.50327 0.34950 0.06754 0.0007 0.00052 %

0.80 0.64556 6.25765 0.09064 0.02515 0.02030 0.00040 0.00001 "

0.90 0.63029 6.24256 0.07235 0.00533 O.0003? 0.00000 0.00000

Table 5.6: Probability of successful categorization of the two class modal world, "for different starting values of n and different values of A and .. "V
%" .%
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success is quite high for most A. (In the current implementation, no =4 and ".
pi averages about 10.) Second, the success probability increases with i, con-
firming our earlier statement that the probability of success can be raised by
increasing p. Finally, as no becomes large, the probability of success drops ...-.

rapidly. For example, for A = .6 and p = 10, the probability of success drops
from 32% to 7% as no increases from 10 to 15.

To conclude our analysis, we consider two cases that deviate slightly from
the previous conditions. First, is the case of more than two modal classes.
Suppose there are 3 objects of each of four different classes (A, B, C, D) for
a total of 12 objects. In the previous analysis, this situation corresponded
to the case n = 6. Referring to table 5.4, we note that for A = .6 only the 0-
overlap partition is acceptable; there is only 1 such partition, for a probability %
of .002. In the new case of 4 classes, however, there are 3 possible partitions

{AB, CD}, {AC, BD}, {AD, BC}) that cause no overlap between classes.
Each of these partitions yields a reduction in the property uncertainty with
no corresponding increase in category uncertainty; each has a lower total
uncertainty than the single category categorization. Thus, with more classes
present the task of initially forming categories is easier.

The second variation is the case where the single category contains an
unequal number of objects from the two classes; say n of one class of objects
and m of another, where n > m. In this case the question arises of whether
the observer attempts to form unequal sized partitions. Although doing
so will permit him to possibly recover the exact partition, the increase in
the possible number of partitions - the number of partitions is now on
the order of 2 '+m as opposed to the previous case of 2" - makes such a
strategy unlikely to succeed. If, however, the observer only attempts equal -,'..

sized partitions, then even the best possible partition will result in n - rn,*
objects being in the wrong category. Thus, a smaller percentage of the
partitions will be preferred over the single category than the case where
there is an equal number of objects from each category. Recovering categories
corresponding to the natural classes is more difficult when the objects are
unevenly distributed in the initial categorization.

To summarize, we have determined the theoretical competence of the cat-
egorization procedure for the ideal case of a two-class, modal world. In par-
ticular, we have shown that the probability of successful categorization can .'.- :

be made arbitrarily high by increasing the number of partitions considered at
each iteration (p). Also, for values of yi used in the current implementation
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and for a wide range of A, the probability of success has been shown to be
quite high. Finally, we have argued that if more than two classes of objects
are present, the formation of categories is easier (for the same number of
total objects) because a larger percentage of the possible partitions satisfy
the k-overlap conditions.

5.4 Improving performance: Internal
re-categorization

In the previous section we demonstrated that given a modal world, the prob-
ability of a successful categorization is high. However, often the probability
is less than one. Also, real data is not purely modal, making categoriza-

tion formation ir rL Jifficult; noise features mask category structure. Thus
we can expect errors of the form shown in Figure 5.2: two classes grouped ,
together in one category. % %k

The results of the previous section show that we can reduce the proba-
bility of this type of error by increasing p -- the number of category splits
attempted during each iteration of the categorization procedure. However,
the evaluation of a partition is an expensive computation.'" Also, as n be-
comes large, the proportion of acceptable partitions is so small that we would
require / to be huge before a reasonable chance of success was attained. This '

sparse distribution of helpful partitions in the combinatoric space of possi-
ble partitions resulted in the poor performance of the random partitioning
algorithm of Frotier and Solonion [1966]. Thus we would prefer a better
solution.

% One such possibility is simply re-categorizing each category in an incre-
mental fashion. Consider again the last categorization shown in Figure 5.3.
Let us assume that no split of any of the single class categories would be ac- 0
cepted, as is always true in the modal case. If we were to re-categorize each
category independently, forming a new observation sequence for each. then

1SI5n the current implementation the decision as to whether split a category is made locally..

The program considers each category as its own population, and evaluates the proposed
split relative to the single category categorization. The normalization factor used, how-
ever, is the one in based upon the total population. Otherwise, it would have the effect
of scaling A. This local decision can be shown to be approximately equivalent to deciding -

each split by considering the entire categorization of objects.
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there is some (empirically shown to be high) probability that the poplar and
the birch leaves would be properly separated. By repeated application of
this procedure, the probability of a correct classification can again be made

arbitrarily high.

Figures 5.6 and 5.7 illustrate an example of the implementation of such
a re-categorization procedure. Figure 5.6 displays the result of executing

the categorization procedure on a population of 80 leaves, 16 each of the '4,.

species oak, maple, elm, birch, and poplar. The last categorization listed
shows the resultant categorization formed after sequentially viewing the en-
tire population.'" In this example, the birch and the elm leaves have not beel,
separated into distinct categories. However, we can re-execute the catego-
rization procedure using the combined category to form a new observation
sequence; when we do so, the categorization procedure correctly separates
the classes (Figure 5.7).7 Though not shown, we should mention that at-

tempts to internally re-categorize the other categories do not yield any new
divisions. The species categories approximate modal classes; any partition
of the species produces a categorization with greater total uncertainty.

At this point we conclude our discussion of methods of improving the
performance of the categorization procedure. There are two reason not to

continue exploring methods of improving the statistical performance of the A
algorithm. First, the efficiency issues involved are not directly related to the %

question object categorization, but are more questions of statistical sampling;
for example, the current implementation was improved by cycling through

the objects sequentially, instead of generating an observation sequence by
randomly sampling the population. Second, and more importantly, improv-
ing the behavior of the categorization procedure by increasing its efficiency '.-,.

does not address the fundamental question underlying object categorization:
what information can be provided to the observer to facilitate the recovery of '4-

"5Notice (',at several oak leaves are missing. To make the implementation of the categoriza-
tion procedure more robust, categories that become too small are deleted. Because every
object is guaranteed to be repeated in the observation sequence, these deleted objects .
will be categorized again. Also, one birch leaf is contained in the poplar category. This
particular object was mistakenly categorized early in the observation sequence. When
it is viewed again, - the infinite observation sequence guarantees that it will be seen
repeatedly - the mistake would be corrected.

"7 The normalization coefficient is not re-computed when re-categorizing the single category. r
Its purpose it to normalize Up and UC with respect to entire population.
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Figure 5.6: Another example of the final categorization yielding a category con-
taining two classes.
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Figure 5.7: Re-categorizing the single category containing the birch and elm
Iv leaves of Figure 5.6.
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natural object categories. In the conclusion of this thesis, when we consider .OP
potential extensions to this work, we will return to the issue of recovering
natural categories.
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Chapter 6"----

Multiple Modes

i ~The Principle of Natural Modes states that objects in the natural world .E

~cluster in dimensions important to the interaction between objects and their

environment. However, clustering may occur at many levels: mammals and % .,,.
birds represent one natural grouping; cats and dogs another. This hierarchy, ._-.
of clusters -multiple modal levels - occurs because of hierarchical pro- X,,
cesses involved in the formation of objects; a "dog" may be described as ai

" ~~composite of the processes that create mammals and those that distinguish '--'
;'.. ~a dog from other mammals. Each process imposes a regularity on the ob- : 5
., jects, making inferences about the properties of these objects possible. For %/
_ ~~example, all mammals are warm-blooded and have hair. ,-'"'

We have claimed that the goal of the observer is to recover categories of _-i
"2 ~objects corresponding to natural clusters. But this task is complicated by the ':
'. ~~presence of multiple modal levels. The properties constrained by one process,...,
-" ~~may be independent of those constrained by another. Thus, if the different _-_,"°

".' ~~properties of objects encoded by the observer are constrained by different -.-,...
processes, then the category structure reflected in one set of properties is ,O_.

~masked by other sets. The purpose of this chapter is to explore these issues.
. V~~~~'e present a solution of the multiple mode problem that first entails iden- ,-.''

! tifying when multiple modes are present, and then incrementally segregating

the population according to processes. We will continue to assume that ob- ....-'
~jects are represented by property vectors and that the total categorization

uncertainty U is used to measure the degree to which a categorization reflects.-'-,,
' ,-: ~the natural m odes. U is defined as follows:.-.-.,

.%

, -'. -. '."
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,., Chapter.-6
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U(Z) =(1 A) Up(Z) 77Z uc(Z) (6-1)

where Up is the uncertainty about the properties of an object once its cat-
egory is known, Uc is the average uncertainty of the category to which an
object belongs, 77 is a normalization coefficient between Up and Uc, and A is a ":;:-..'

free parameter representing the desired trade-off between the two uncertain- .
"" ties. (See chapter 4 for a complete definitions of these terms.) In this chapter d

we will consider the interaction between A and the categories recovered by I
the observer. Also, the behavior of the incremental categorization algorithm
presented in chapter 5 will be used to validate the theory developed here.

Our first step is to identify a null hypothesis, a case in which no modal
structure is present. Being able to detect an unstructured situation will *,~
permit us to develop a strategy that relies on searching for sub-processes
until no further structure can be found. Next, using both a simulation and
a real example of a multiple mode population, we will examine the results [:

of attempting to categorize such a set of objects; these results will suggest a "~

method for separating modes according to processes. Finally, we will develop '
a method of evaluating the contribution of a feature to the recovery of a

i

particular modal level. '.3

6.1 A non-modal world i

Natural modes are an appropriate basis for categorization because they rep-
resent classes of objects which are redundant in important properties. That ,..
is, from the knowledge of some properties of an object, the observer can infer
a natural mode category that per ut in o th ences about other

object properties. In an ideally modal world, the properties of interest to the
observer - those he encodes about an object - are completely predictive:
knowledge of one property permits predictions about all others. tiscape.

.- ~In this section, however, we wish to define an unstructured world, a world •- '
ewith no natural modes. In such a world, the properties of objects are indepen-

;':: dent. Knowledge of some properties about an object provides no information -"'about any of the other properties. e refer to this world as a non-modal

world. Our goal is to identify such non-modal worlds and to understandcsnw

lVe are assuming that te properties encoded by tie observer can be independent A %
trivial counter example is when one property is the length of an object and another is
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the behavior of the categorization algorithm and of the total uncertainty
measure U when operating in such a world. %

6.1.1 Categorizing a non-modal world: an example

We begin with a simulation of a non-modal world. We construct a population -
of 64 objects, described by six, independent, uniformly distributed, binary %
features. In this world an object is referred to as NULL-8, NULL-24, etc.; .,2
the property vector attached to each object is generated randomly from %
the the 26 = 64 possibilities. These objects and features satisfy the non-
modal condition in that knowledge about some of the properties of an object
provides no information about any other properties. Next, we categorize . ,i
these objects using an incremental categorization procedure that implements a'

the total uncertainty measure U as a categorization evaluation function. (For 19
a detailed discussion of the operation of the categorization algorithm see
chapter 5.) The dynamic output of the categorization system is displayed in
figures Figure 6.1 and Figure 6.2.

Figure 6.1 presents the results of executing the categorization algorithm
with a value of A of .55. Notice that categories continue to split into smaller
categories as new objects are added; the last categorization shown contains
only categories yet too small to be subdivided by the categorization algo-
rithm. In the limit, the finest categorization - the categorization in which %

each object is its own category - would be selected. Because reducing the
value of A causes the categorization algorithm to produce only finer cat-
egorizations, we know that for all A < .55, the finest categorization will
be recovered. Figure 6.2 displays the results of running the categorization
algorithm on the same population but with a A of .6. Now, the stable cat-
egorization is one in which all objects are in a single category, the coarsest
categorization possible. Reasoning as before, we know that for A > .6 only
the coarsest categorization will be recovered.' Thus, for this simulation of a

square of the length. A more subtle case is when one property is the area covered by an
object, and another is the perimeter. (The perimeter must be greater than or equal to".'..
2-/'/A.) An interesting question is how the observer determines whether redundancy is
caused by natural modes or logical dependence. A simple, though unexplored, solution 0
relies on the fact that logical redundancies must be true for all objects, whereas modal
dependencies hold only within the particular mode.

'For .55 < A < .6 an intermediate categorization may be recovered, but it is unstable in
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Figure 6.1: The output of the categorization system when categorizing an inde-
pendent world. For this execution the value of A is .55. The categories generated
continually split once they are large enough to be subdivided by the categorization
algorithm. In the limit the preferred categorization consists of each object being . -

its own category.
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Figure 6.2: The output of the categorization system when categorizing an inde-
pendent world. For this execution the value of A is .6. In this case the categoriza-
tion produced consists of a single category.

"%W



.-."- ..

4,..,

non-modal world, no structured categorizations are recovered.
The fact that the categorization algorithm found no intermediate struc-

ture in the simulation of a non-modal world is encouraging: the algorithm
should not impose structure on a world that contains none. A brief analysis
of the non-modal world will demonstrate that in general the categorization
algorithm will not recover structured categorizations when no natural clus- "
ters are present. e
6.1.2 Theory of categorization in a non-modal world

Our goal is to explain the behavior of the categorization algorithm observed .
in the simulation of a non-modal world. To begin, let us consider the best -
categorizations one could construct in such a world. For example, what a
would be the best set of two categories one could form in a non-modal world
described by binary features? The most structure one could impose would
be to sort the population according to one feature. Because all the features
are independent, members of a category would not have any other proper-
ties in common. Note that if there are m features, then there are m possible
categorizations keeping one feature constant. Likewise, the best set of four
categories would be one in which two features are held constant within each
category; there are (2) such possible categorizations. We refer to the number 44 4'

of features held constant in a categorization of a non-modal world as the level
of the categorization. Figure 6.3 displays the different levels of categoriza- -

tions for a non-modal world containing only 8 objects. Within each category
is a property vector describing the members; an "x" indicates either a 1 or
a 0. To indicate that there are several possible categorizations at each level,
the feature held constant at level 1 is not held constant at level 2. .,

To understand the behavior of the categorization algorithm in such a non-
modal world, let us consider how the two components of the evaluation func- ,2 *. "

tion U - the property uncertainty Up and the category uncertainty Uc -

vary as we change categorization level. Let us expand our non-modal world
to contain 128 objects described by 7 independent, uniformly distributed,
binary features; we evaluate Up and Uc for each possible categorization level 0
0 through 7. Panel (a) of Figure 6.4 displays the results of the evaluation; Uc

that it is not repeatable and a small change in A will force the system to either of the two ..- ..

extreme categorizations. "- .'-. -
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Figure 6.3: Different categorizations of a non-modal world of 8 objects, formed
by varying the number of features held constant. Inside each category is a property
vector describing the members; an "x" represents a feature that varies within the
category.
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has been normalized by 77 to be of the same scale as Up. Panels (b-d) display
the value of U for A equal to .3, .5, and .7. Notice that as level increases
- as more features are held constant in each category - the value of Up
decreases linearly while UC increases, also linearly. Because both curves are
linear and because they are normalized to be of the same scale, the change
in Up is equal to the negative of the change in Uc. As illustrated in panels
b-d, the net change in U depends upon the value of A. If A is greater than
.5, total uncertainty increases with level; for A less than .5, total uncertainty
decreases. The value of U is constant when A equals .5. -7

The linearity of the graphs of Up and Uc is predicted by analysis; these "-%
graphs were actually generated by simulating an independent world and eval-
uating different categorization levels. Each increase in categorization level
is formed by keeping one more feature constant. Thus the property uncer- %

tainty is decreased by an amount reflecting the uncertainty of that feature. - .

Because all the the features are binary and uniformly distributed, the de-

crease is log 2 = 1.- The initial value of Up, at level 0, Up is 71log 2 = 7;
the final value is zero. Similarly, with each increase in categorization level,
the number of categories is doubled, and a greater number of properties is O-
required to determine the category to which an object belongs. It can be ._
shown that the increase in category uncertainty for each increase in cate-
gorization level is log v- = .5. Thus, the value of 77 - the normalization
factor between the two uncertainties - is 2. Let L be the the categorization
level, and let Lkf,, be the maximum possible level; in our simulation with -

128 objects LM,,, = 7. Combining the above results for the two uncertainties
and letting L be the level of categorization yields the following equation for
the total uncertainty U:"%

U = (1 - A)(1.0)(LMa= - L) + (2.0)A(.5)L = (2X - 1)L + LMax(1 - X) (6.2)

-, That is, U is linear in L, and the slope is determined solely by A. When "
A > .5 the slope is positive; when A < .5, the slope is negative.

The implication of the results in Figure 6.4 is that for an independent
world the best categorization is either the coarsest partition, where all objects
are in one category, or the finest, where each object is its own category.
Which is preferable depends on the value of A; for a value of .5 the decision
is arbitrary.3  Thus, we have explained the behavior of the categorization

3The simulation generated a critical A greater than .5 because of an implementation mod-
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v algorithm displayed in the previous section. We have also demonstrated the
;' ~competence of the incremental categorization algorithm in the non-modal '"":

world: the algorithm generates the correct solution. -"

The importance of the above result is that it allows the detection of the - [

attempt to categorize a non-modal world. Because such a world contains
no structure, there are no natural clusters, and no attempt at recovering
modal categories should be made. In the next section we will make use of

% ..

thisdiag ostc c abilty.-, ...-.

6.2.1 Categorization stability
A ideal modal world is one in which all the properties are predictive of the

natural classes and all the classes are predictive of the properties. The to- -":,
tal uncertainty measure U has been constructed such that categorizations %: -.:

~~~exhibiting a high degree of modal structure will produce low values of un- ,
certainty. Because the incremental categorization algorithm developed in" .

chapter 5 makes use of U as a categorization evaluation function, the algo- '.
rithm recovers categories corresponding to modal clusters. To overcome the,"'.:i.'
combinatoric problems in generating possible partitions of a population, the " ..
algorithm is stochastic, and thus is not guaranteed to find the correct modalsolu

solution. -
However, thne ofemodal a population - the closer the classes in the

population approximate modal classes - the more reliable and repeatable is x.'.the categorization process; the modal categories will be recovered more often.

This increase in reliability occurs because approximate categorizations, those ,' ,
that nearly separate the natural classes, accepted during the incrementalsearch for the best solution. Also, given an approximately modal world, a

relatively wide range of A will result, with high probability, in the incremental
categorization algorithm discovering the modal categories. We use the termcategorization stability to refer to the degree to which the recovery of a set

ification to the categorization algorithm. Specifically, merging occurs only if a mergedcategorization is sufficiently better than the split categorization, where "sufficiently" is
determined by threshold. Using a non-zero threshold imparts some hysteresis to the
system and overcomes instability caused by numerical inaccuracies. Tooeroe h

~ll

• % .%
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Length Width Flare Lobes Margin Apex Base Color
Maple 3-6 3-5 0 5 Entire Acute Truncate Light
Poplar 1-3 1,2 0,1 1 Crenate, Acute Rounded Yellow

Serrate
a'Oak 5-9 2-5 0 7,9 Entire Rounded Cumeate Light

Elm 4-6 2,3 0,-i 1 Doubly Accumninate Rounded Dark
Serrate

Table 6.1: Leaf specifications for four species of leaves. A leaf generator creates
property vectors consistent with the different specifications.

of categories is repeatable and insensitive to changes in A. V.

As an example of a population exhibiting categorization stability we ;S
present the example of categorizing leaves. For this example, the property 01a
specifications for four species of leaves are generated according to descrip-%

",''

tions p)rovided by Preston [1976]. (Table 6.1) The properties chosen are
known to be diagnostic of leaf species and thus are sufficient for the catego-
rizat ion task. (For an explanation of the details of object generation using A
property specifications see chapter 5.)

When categorizing a population of objects generated according to these .,

specifications, the correct categories are reliably recovered for .5 < A < .75.,
Figure 6.5 displays the results for two such executions of the algorithm; for
these examples A was set to .6 and .55. In both cases the correct categories,V
those corresponding to the species, are recovered.

Outside this stable range, however, the correct categories are not recov- V
ered. Values of A near one cause the uncertainty measure to prefer coarse cat-
egories, with high property uncertainty but lowv categorization uncertainty.
In the case of the leaves, values of A greater than .75 make it unlikely that

the categorization algorithm will discover a partition into two categories that
has a lower uncertainty than having the entire population in only one cate-

gory. Thus the recovered categorization contains only one category. (For a

'An implementation detail: A A of .75 is only successful when recovered categories are
internally re-categorized, as discussed. The re-categorization, however, does not involve
the re-computation of the normalization coefficient i. Doing so would have the effect of

reducing A because decreases as a population is reduced, and its value directly multiplies-'.
the Uc term in U.
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Figure 6.5: Correctly categorizing four specie of leave. For these executions
of the categorization algorithm the value of A was set to .6 (a) and .55 (b). The

identical results indicate the categorization is stable.
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more complete analysis of the competence of the categorization algorithm, .,
see Section 5.3.) Conversely, for A below .5, the algorithm produces cat-
egories that are continually split, in the limit yielding the finest possible
categorization. As shown in the previous section, this behavior is indicative
of no useful internal structure; within each species, the property variations
are independent.' This result is "correct" because the method that generates
objects from property specifications does so by generating each property in-
dependently, and there is not structure present below the species level. This
world of leaves has only one modal level of structure.

To summarize the leaves example, we have one region of A that produces
a stable categorization. Also, values of A outside this range produce no
useful category structure and the behavior of the categorization algorithm
mimics the case when the world is independent. Recall that the setting of A is
established by the observer according to his goals. The value must be selected
such that the categories provide a balance between the property uncertainty
and categorization uncertainty which satisfies the inference requirements of
the observer. If the A of the observer lies within the stable range for the
leaves world, then the correct categorization for him to recover is exactly the _
four species. If, however, the observer's particular value of A lies outside this S
range then there exists no natural clustering of the objects that adequately
supports his goals.

6.2.2 Multiple mode examples

We began this chapter by noting that the Principle of Natural Modes does
not imply the existence of a unique clustering of objects. Rather, clusters
which occur at different levels mirror the different levels of processes acting
upon the objects. In this section we will explore the behavior of the catego- ..

rization algorithm in the case of multiple levels of modal processes. First, we
examine the results of attempting to categorize a real domain in which two
levels of processes are apparent; these results will suggest that the proper-
ties constrained by the higher level process prevent the discovery of the lower
level process. A simulation of an idealized two-process world will produce1-S _ ____ _____ ____

'The behavior that is expected is the continual splitting of categories. The fact that it
occurred around .5 is not significant and is purely a function of the data. The critical -,.

value of .5 derived in the previous section only applies when the entire population is ..
independent.
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BFBT BV FM FN FV 'W.
bacteroides bacteroides bacteroides fusobacterium fusobacterium fusobacterium

fragilis thetaiotamicron vulgatus mortiferum necrophorum varium
loc GI GI GI OR OR OR
gram neg neg neg neg neg neg
gr-pen R R R R,S} S R,S} '."
gr-rif S S S R S R
gr-kan R R R S S S.
dole neg pos neg neg pos pos
esculin pos pos neg pos neg neg
bile E E E E I E
glc Is Is Is none none none
rham neg pos pos {neg,pos} {neg,pos} {neg,pos}
nfl {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}
nf2 {1,2,3,4} {1,2,3,4} {1,2,3,4} 11,2,3,4} {1,2,3,4} {1,2,3,4}

Table 6.2: The property specifications for six different species of bacteria. Because
most of the real features have only one value per species, two noise features are
added (nfl and nf2).

similar behavior in the categorization algorithm, confirming the masking of. ,
the lower level modes by the higher level properties. *'.'"-

The domain of infectious bacteria will serve to illustrate the behavior
of the categorization algorithm in a two-process world. Property specifi- .'.-.

cations for six different species of bacteria are encoded according to data
taken from [Dowell and Allen, 1981]; Table 6.2 displays the specifications for
these species. Because most of the real features take on only one value per r
species (unlike the leaves where features like "length" and "width" varied
greatly) two noise features are added (nfl and nf2). These features prevent 0:0?,..0

all objects of the same class from having identical property descriptions. .0 111

Of the six species, three are from the genus bacieroides; these are abbre-
viated as BF, BT, and BV. The other three - FM, FN, and FV- are from
the genus fusobacterium. Notice that several of the features of the speci-
fications are determined by the genus, while others are determined by the
species. For example, all members of bacteroides have the property "gr-kan =

R" (coding for "growth in presence of Kanamycin is resistant"). Other prop-
erties, such as "dole," vary between the species, ignoring genus boundaries.
Still others, such as "gr-rif," are confounded between levels. These property
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specifications are used to generate 12 instances of each type of bacteria.
Figure 6.6 displays the results of categorizing this population with val-

ues of A of .65 and .7. Notice that in both cases the bacteria have been
categorized according to their genus. This categorization is stable: repeated
application of the algorithm consistently discovers the two genera. Further-
more, for .6 < A < .75 the recovered categories correspond to the genera. If
the A of the observer falls within this range, then the natural categories cor-
responding to the genera satisfy the inference requirements of the observer.

Suppose however, the value of A does not fall within this range. Figure 6.7
displays the results of of two executions of the categorization algorithm with
a A of 0.5. In this case the recovered categories do not correspond to either
the genera or the species, but to a composite of the two levels. For example,
in the first execution, ( Figure 6.7a) the category on the left corresponds to
a single species. The next category to the right is comprised of two species
of the same genus. Finally, the last two categories are mixtures of two or 4%
more species, although they only contain instances of one genus. Also, if
the categorization algorithm is repeated, different composite categories are
recovered: the categorization is unstable. Furthermore, if the value of A
is decreased (say to 0.4) the categorization algorithm produces the finest
possible categorization, indicating no modal structure for A less than 0.5.
That is, decreasing A will not permit the categorization algorithm to recover
the species. 6

Compare this example with the leaves example of the previous section,
When categorizing the leaves with a A outside the stable range, the catego-
rization algorithm produces either the coarsest or the finest categorization.
This behavior is similar to that observed when the features in the world are
independent and no natural classes exist. Thus we concluded that there ex-
isted only one modal level in that population. In the case of the bacteria,
however, a A outside the stable range produces (unstable) categories that are
composites of the classes. Thus, the existence of these unstable categoriza-
tions indicates that competing structures - different modal levels - may
be present in the population.

'We should note that internal re-categorization - without re-normalization - is not
sufficient to resolve the problem. The difficulty in recovering the species lies with the
masking of the species structure by the genus constrained properties, not in the statistical
failure of the categorization algorithm. In the next section we will consider the case of
internal re-categorization with re-normalization.
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Ia1

GS11 GS12 GS13 GS21 GS22 GS23
genus-l genus-1 genus-1 genus- genus-, genus-S

species-1-1 species-I-2 species-1-3 species-2-i species--2 species--3 -
!I 1 1 1 2 2 2
gf2 1 1 1 2 2 2

-" 1 1 1 2 2 2
gf4 1 1 1 2 2 2
gf5 1 1 1 2 2 2
sf1 1 2 3 1 2 3
sf2 1 2 3 1 2 3
nfl 1l,2,3,41J {1, 2,3,4}1 f{1,2,3,41 f 1,2,3,41 J{1!2,3 ,41 { ,2,3,4J
nf2 {1,2,3,4} {1,2,3,4} {1,2,3,4) {1,2,3,4} {1,2,3,41 {1,2,3,41

Table 6.3: The property specifications for a simulated two process world. Five
features are modal for the genera (gfl - gf5), two are modal for the species (sfl , _
and sf2), and two are noise (nfl and nf2). e,%

To test the validity of this diagnostic inference, we simulate an ideal
"two-process modal" world. In such a world, some of the features used to

describe the objects are constrained by one modal "process," while others
are constrained by a second modal process. Also, some noise features are

included. Table 6.3 lists the property specifications for such a world. By"two-

process modal" we mean that each feature is modal for the level at which it
operates. For example, gfl (for "genus-feature-l") is modal for the different

genera; it takes on a different value for each of the two genera. Likewise,
sf1 is modal for each species within the genus. For this particular example
there are five features constrained by the genus and two by the species;7 two

noise features are also included. The importance of this simulation is that
we know no features confound the two processes. In the bacteria example

certain features (such as "gr-rif") appeared to be affected by both genus and

species. If the categorization algorithm produces unstable categorizations in
this simulation we know that such confounding properties are not required
to produce this behavior and that unstable categorizations are an indicator
of competing modal levels.

'a- In the next section we will explain why we created an imbalance between the number of
features constrained by the genus and the number constrained by the species.
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Figure 6.8: The categorization of the simulated two-process modal world yields
unstable categories when A equals .5 The genus of each object is indicated by the
first digit in the name; the species, by the second.
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Apopulation of 60 objects, 10 per species, is generated according to the '.
specifications of Table 6.3. The population is then categorized for a wide
range of A. For A greater than .8, the categorization algorithm produces '-only single-category categorizations. For .7 < A < .8 a categorization cor-responding to the simulated genera is recovered. This categorization was" " ,.:,highly stable in that it was recovered on almost all categorization attempts;''"for A within this range. However, for .5 _<5 A < .6 unstable categorizations.,'' " ..are formed; the categories recovered are approximately the union of some of 2-the different species. Figure 6.8 displays the result of two executions of the
categorization algorithm with A equal to .5. The algorithm was interrupted
after each of the objects had been viewed once. In Figure 6.8a, the four' resulting categories closely correspond to the those that would be formed by' combining the GS21 species with the GS23 species (both are of the samegenus) as well as combining GS11 with GS13. s 'In the other categorization I

attempt (Figure 6.8b) a different set of categories is generated. Finally, for
A < .4 the algorithm produces the finest possible categorization, yielding no
stutrdcategories 

(not shown).

The results of this simulation support the conclusion that multiple modallevels yield unstable categorization behavior. Unfortunately, we cannot in-voke the power of evolution to prevent this situation from arising. The
observer must be able to recover the natural categories corresponding toa sufficiently structured process level to support necessary inferences. For
example, if the differences in the species of bacteria are important to theobserver then he will need to encode properties that discriminate between
genera as well as properties that can distinguish the species within the genera.Thus, the observer requires a method of recovering the natural categories at-'.each process level in the hierarchy until the appropriate level is achieved.In the next sections we will describe a possible method for recovering the
natural categories at each level, and for determining the processes associated

. Theresultfwith each property encoded by the observer. cyoV the algorithm were permitted to continue, subsequent viewing of the objects would help
correct prior mistakes. p s v o p n a f c r
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6.3 Process separation
6.3.1 Recursive categorization

~Let us continue the simulation example of the previous section. If the goals

' of the observer require that he recover more than just the genera, then he
needs a method by which to separate the species. We know that reducing

the value of A below the stable value that recovered the genera will not cause •
the categorization algorithm to reliably recover the species; the interaction I

between the species and genera cause composite categories to be formed. . -
objects. In that case, the world contains only three classes of objects, namely :

the three species. Unlike the entire population, which contained more than
one modal level, there is only one level of structure present in this world. If

~the observer can recover the modal structure within this population, then, g-
by applying the procedure to both genera, he would be able to recover the .'

%;" categories corresponding to the species. %
In this world there are three types of features: modal, where each feature V_

takes on a different value for each class; noise, where the value is inde- O€lt
pendent of the class; and constant, where the value never varies. The only ,.

differences between this world and previous examples in which there was only ,.
oemodal level are the constant features. For example, the leaves domain. '"

contained several highly diagnostic (almost modal) features (such as "apex" _
and "base") as well as mostly unconstrained features (such as "length"). We .
know that the categorization algorithm can successfully categorize such a '

population. However, we need to consider the effect of the constant features
on the category recovery procedure. In particular, how does the presence of .:

the constant features affect the components of the categorization evaluation .-.

function U?
I . ~It can be shown that constant features have no effect on either Up or ... :-

I '. :" ~UC.9 Therefore, if we treat the genus members as separate population, we :: :.

,"9 9First, consider Up. Constant features have no uncertainty: I • log I = 0. Thus, Up is
",u7: unaffected by the addition of constant features. Next consider Uc. At first one might.-'

expect the addition of constant features to add to category uncertainty: constant features
;I ~~are structure shared by all objects, leading to category confusion. We can show that this .. €.

, is not thecae
', Let us assumne we have a world c classes, and that objects are described by ?r modal ---
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Figure 6.9: Recursively categorizing the first genus of the simulted popultion :--.

described in Table 6.3 with A equal to .65.The species will be correctly recovered. ,...
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expect that the categorization algorithm to be able to recover the species.
We test this conclusion by executing the categorization algorithm on the
members of the first genus of the simulation example of the previous section;
Figure 6.9 displays the results of two categorization attempts, with A set to
.65 in both cases. Notice that the correct species categories are recovered; the
isolated errors would be corrected in subsequent viewing of the incorrectly
categorized objects. Repeated application of the categorization algorithm
shows this categorization to be stable. Thus, the observer can reliably recover 0
the species categories once the genera have been separated. 4'

We can test this procedure in the domain of the bacteria as well. Figures
6.10 and 6.11 display the results of re-categorizing the genera bacteroides
and fusobacterium, respectively. For the bacteroides the value of A is .6; for
fusobacterium, .5. (In a moment, we will discuss the effect on A caused by
recursively categorizing the genera.) In both of these cases the categorization
procedure reliably recovers the species. In the previous section, we demon-
strated the ability of the categorization procedure to recover the genera.
Thus, using a recursive categorization strategy, the observer could recover
both the genera and the species.

Conceptually, there is a problem with performing recursive categoriza- . .

features (which take a different value for each of the c classes) and by x constant features.
Now, let us evaluate the category uncertainty Uc for the categorization corresponding to -
the modal classes, the "correct" categorization. To do so requires computing the category *+ -
uncertainty of each object for each possible feature subset description. We know that
there are 2

' +r possible feature subsets (for this analysis we must include the null set).
Because the m features are modal, if any of those features are included in the description
of an object, then there is no category uncertainty. If however, there are no modal features
in the description, then the object may match any category and the uncertainty is logc.
The number of feature subsets containing no modal features is 2'. Thus the average ...

category uncertainty of each object (and thus for complete average) is:

2z 1".".
Uc= .2 logc - log "

That is, Uc is independent of x. The intuition behind the result is that the same propor-
tior of feature subsets contain no modal information, regardless of the number of constant
features. When there are no constant features, then only the null subset produces cate-
gory uncertainty. As constant features are added, the number of possible subsets increases -
by the same ratio as the number of non-modal subsets (namely 2 '). This is true for any
categorization we evaluate; we used the correct modal categorization only to make the an
analytic computation of the category uncertainty possible.
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Figure 6.10: Re-categorizing a population of the bacteroides bacteria. For these
executions, the value of A was 0.6. When the population is restricted to only the
genus members, the categorization algorithm reliably recovers the species. ft
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Figure 6.11: Re-categorizing a population of the fusobacterium bacteria. For 0
these executions, the value of A was 0.5. When the population is restricted to only e
the genus members, the categorization algorithm reliably recovers the species.
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tion, and that difficulty is hidden within the computation of the normaliza- "

tion factor 77. By restricting the population to only one genus, the property

uncertainty of the coarsest categorization - the categorization consisting of-
only one category -is greatly reduced, thereby reducing the value of 17. As--'"./

shown in the equation for U:

u(z) A) (- Up(z) + A?()uc(z) (6.3)

77 directly multiplies the Uc term, and thus controls (along with A) the rel-

ative contribution of the two uncertainties. 10 Thus the effect of A on the
relative contribution of Up and U¢ to U is modified when 77/is recomputed.

This change in the effect of A complicates the interpretation of A as being

a tradte-off between uncertainties established according to the goals of the
observer. -A

Perhaps, then, within the present context of categorizing objects we

:v should view A as a parameter controlled by the observer and used by him '
to probe the category structure of the population. If he can discover cate-

.' ',; gory structure that is stable over a range of A, then he can assert that these _
Im ~categories are more likely to correspond to natural processes. As yet, the -.

question of directly relating the goation observer to the categorizationcostigf

process has not been satisfactorily resolved. The intuition that the goals of..'"

the observer specify the trade-off bewteen property uncertainty and cate-.. .gory uncertainty is strong; more work is needed to re-examine the form of

equation 6.3 to resolve this issue.

6.3.2 Primary process requirement",

drecover the species structure only ant recovering (aogenera. erel-

categorization to be effective, there must be a primary process that can be %

recovered at each step. In the case of the bacteria, the genera represented

ThUnlike decreasing A, lowein g the value of cm reduces the weight accorded UC, without

increasing the weight of Up. Normally, reducing A increases the weight of Up making the

~~categorization evaluation function more sensitive to property variation. This difference, _
,.. ~along with some implementation details about local category formation, is the reason that .'reason that simply lowering A will not accomplish the separation of the species, but that
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a strong modal structure that could be recovered immediately. In the sim-
ulation, we provided more modal features for the genus categories than for
the species. This imbalance provided a primary process that could initialize
the recursive categorization procedure. Therefore, if the observer categorizes
objects in a multiple modal world by applying the categorization algorithm
recursively, then he must be provided a with a representation that permits
him to discover a primary process at each level.

6.4 Evaluating and Assigning Features

The emphasis of this chapter, indeed this thesis, has been on the recovery
of natural object categories. We have demonstrated that the observer must
be provided with a representation that reflects the modal structure present i_
the world. However, it would be desirable for the observer to be able to
improve his representation as he categorizes the objects in the world. By
"improve," we mean make the representation more sensitive to the natural
categories present. In the context of property vectors this process would
include "growing" new features that are constrained by the natural modes, as U
well as assigning computed features to the correct modal level. In this section
we provide a mechanism by which the observer can evaluate the effectiveness
of features in terms how well they support the recovery of natural mode
categories. .. "

6.4.1 Leaves example

Let us return to the leaves example introduced at the start of the chapter.
We assume that the categorization algorithm has been executed and the

correct natural mode categories - the species - have been discovered. Fur-
thermore, we assume that the observer has determined that no other modal
levels exist. Now, we wish to develop a method by which the observer can ." ' -

determine which features are most sensitive to the species categories.

We proceed by creating a short taxonomy of the leaves shown in Fig-
ure 6.12. The only levels present are those which correspond to solutions to
the categorization algorithm. The middle level corresponds to the species,
and is the "natural" level of the taxonomy. This level has as its super- ,
ordinate the single-category, which is the recovered solution for A, near 1.0.
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The level below the species consists of the finest possible categorization, the -P
solution for A near zero. We construct this taxonomy for the purpose of
evaluating the categorization uncertainty measure U for a range of A and
for different subsets of the features. That is, for a given subset of features,
we will measure the range of A for which the species categorization is the
preferred level of the taxonomy. We refer to the extent of this range as the
A-stability of the features for these natural categories. We will use the A-
stability of the features to evaluate their utility in recovering the category
structure.

Tables 6.4 and 6.5 display the A-stability values for different subsets of
the features. (Not all subsets are displayed.) For example, panel (a) of the
first table reveals that if only the feature "apex" is used to describe the
leaves, then for a range of A of .87, the species level of the taxonomy is
preferred over the other two levels. Notice the inclusion of the feature nfl, a
noise feature. This feature, whose value is assigned randomly for each object,
provides a baseline against which to compare other features. Panel (a) shows
all 1-feature subsets, and the A-stability value associated with each subset.
Notice that "apex," "base," and "color" have a relatively high stability,
indicating they are the best individual features. This does not mean that U
each of these features is sufficient for the recovery of the species categories; %-%
for example, poplar and elm both have a rounded base. Rather, given the
particular taxonomy of Figure 6.12 these features are highly selective of the
species level. Notice that "width" and "length" have low A-stability values,
indicating little diagnosticity for the species.. Finally, the noise feature has
no (significant) A-stability.

Panel (b) displays some of the 2-feature subsets, including some pairs ! p

formed by combining a good single feature with noise. First, notice that the
best pair is in fact the combination of the two best single features. This does
not have to be the case. For example, suppose the two best single features a
provide redundant information, and that two other feature are orthogonal
in their separation of the population. In that case, the combination of the .

two orthogonal features would provided a greater separation of the classes
and thus a larger A-stability value. The less the features in a domain dsiaply
this form of interaction, the easier it is to evaluate addtional features. The
reason for this is that the combinatorics of (k) normally preclude evaluating
all possible subsets of features. If the features combine independently, small
subsets of features can be tested and then combined. %
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Table 6.4: Selected A-stability measurements for different subsets of features in *

the leaves example; subsets of length 1, 2, and 3 are shown. By comparing the

* addition of a new feature with the addition of a noise feature (nfl) one can judge
the utility of the new feature. .V'
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Second, note that the subset (width, apex) has a much greater stability
value than (apex, nfl). This result demonstrates that although the "width"
feature by itself provides little support for the recovery of the natural cate-
gories, it does not act as destructively as pure noise. The highly destructive
action of the noise feature can be further demonstrated in panel (c) of Ta- •'"""-

ble 6.4. Compare the triplet (apex, base, nfl) with both the first triplet of
(apex, base, color) and with the top pair in panel (b) of (apex, base). The
extreme reduction in the stability caused by the noise is an indication to the Sr

observer that the feature "nfl" has little use and should be removed from his
representation. By using this comparison to noise strategy, the observer can
also evaluate the addition of new features. Given a proposed new feature,"
this mechanism provides a means to evaluate its utility.

The panels of Table 6.5 show that the maximum value of A-stability re-

mains quite high (about .9) until the inclusion of the last 3 features "width,"
"length," and "nfl." Including either "width" or "length" reduces the A-

stability to .78, and the inclusion of the noise feature reduces the stability to
% "-S

a value of .71. Thus, most of the leaf features are relatively uniform in their
sensitivity to the species structure of the leaves.

6.4.2 Bacteria example

The fact that the different features of the leaves do not exhibit large differ-
ences in their diagnosticity for the species is not surprising; these features
were chosen from a leaf identification reference [Preston, 1976]. There is only
one modal level and each of the features was chosen to be useful in identifying
that level. For the bacteria example, however, there are two modal levels.
Some features are sensitive to the genera, others to the species. Therefore
let us consider evaluating the features of the bacteria domain. O

The taxonomy we construct resembles that for the leaves example, but
it includes both natural levels (Figure 6.13). In this case we will evaluate
the A-stability for each natural clustering. Panel (a) of Table 6.6 displays
the A-stability values for several feature subsets for the genus level of the

"An important, and open, question is how does the observer propose new features? The

literature is quite sparse in addressing this question, with most attempts being confined N
to arithmetic combinations of previous features (for example see Boyle [19??]). Recently,
Michalski and his colleagues have explored the issue of the logical manipulation of features * %
[Michalski, 19??].
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Table 6.5: Evaluation of features for the separation of the (a) bacteria genera g."f) 06
and of the species (b) bacteroides and (c) fusobacterium..%
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bacteria taxonomy; included are the best feature subsets of length 3,4, and
5. Notice that the best subset of length 3 (location, gr-kan, gic) has a A-
stability value of 1.0; this maximum value occurs because these features are
modal for the different genera (see Table 6.2). The best subset of length 4
adds the feature "gr-pen," but this lowers the stability value to .86. Notice
that second best subset of length 4 reduces that value to .71. Finally, the %
best subset of length 5, generated by including "gr-rif," is only marginally

better than a subset generated by adding a noise feature to the best length 4
subset (.72 as opposed to .66). These results demonstrate that the features
(location, gr-kan, glc, gr-pen) are the features most constrained by the pro-
cesses associated with the genus of the bacteria, and that the other features

provide little useful genus information.
Next, we evaluate the separation of species within the genus. For the .

genus bacteroides, the features "gr-rif" and "bile" are constant, providing no
information about the species. Thus the only remaining features are "rham,"
"esculin," and "dole." Since each of these take on one value for one of the
species and another value for the other two, and because they each single out .J.

a different one of the three species, these three features behave identically £
with respect to A-stability. This behavior is indicated in panel (b) of Table

6.6. For the fusobacterium genus, however, the features do have a differential
effect. As shown in panel (c), the A-stability remains quite high (about .9)
for the best feature subsets of length 4 or less. However, the best subset
of length 5 requires the addition of feature "gr-pen" and the A-stability is

greatly reduced (.76). As "gr-pen" was one of the features discovered to be
important for the separation of the genera, we know that this feature crosses
the modal levels, and thus is a weak feature for the species clustering.

We can summarize the results of the bacteria example by displaying an
annotated taxonomy of the domain (Figure 6.14). The features tied to the
branches represent the properties of the objects constrained by the natural
processes responsible for that particular natural division. In essence, the
observer has learned not only to identify the natural categories, but also to
relate the properties of objects to to the natural processes in the world.
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Chapter 7

Conclusion

7.1 Summary
We began this thesis with the following three questions:

* What are the necessary conditions that must be true of the world if
a set of categories is to be useful to the observer in predicting the -

important properties of objects?

" What are the characteristics of such a set of categories?

" How does the observer acquire the categories that support the infer-
ences required?

Let us consider each in turn. 0

The first question is about the world. What needs to be special about the
world if the observer is to be able to make inferences about the important
properties of objects? As an answer, we proposed the Principle of Natural 6
Modes: the interaction between the processes that create objects and the
environment that acts upon them causes objects to cluster in the space of
properties important to their interaction with the environment. The impor-
tance of this claim is that without such a constraint, many of the perceptual
inferences that are necessary to the survival of the observer cannot be made.
This statement is true even at the lowest levels of perception. For example,
consider the method by which a tick finds a host. The tick climbs onto a
branch or blade of tall grass, waits until it detects the presence of buteric acid.
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(a chemical produced by warm blooded animals), then releases the branch

(or jumps) and falls towards the ground. If no host is underneath, the tick
starts again. Now let us consider the tick's strategy in terms of natural
modes. All mammals have many biological processes in common that are
unique to mammals; as such, mammals form a natural mode. The tick's
strategy is an effective one because the presence of buteric acid is strong
indicator of the proximity of a mammal. Although one can view this infer-
ence simply as a high correlation statistic, the underlying reason why the
strategy of the tick is successful is because buteric acid is a good predictor
of an object belonging to the natural mode of mammal.

Although the inferences that must be made by a human observer may be
more varied and more complex than those of a tick, the principles underlying
the predictions of unobserved properties are no different. Given an apple,
we know we can eat it. Given a tiger, we know to run. The necessary
requirement for being able to make these inferences is that we must be able
to determine the natural mode to which an object belongs. The categories
we use to describe these objects must be consistent with the natural mode
structure of the world.

The existence of natural modes allows us to define the problem of cat-
egorization, namely the recovery of object categories corresponding to the ,
natural modes important to observer. Our solution to this problem required
decomposing the task into two components. First, the observer must be able.,"
to identify when a set of categories corresponds to natural classes, and sec-
ond, he must be able to recover such set of categories from the available
data. These two components provide the answers to the second and third
questions this thesis sought to address.

We constructed a measure of how well a set of categories reflected the
natural modes by measuring how well the categories supported the inference

4" requirements of the observer. We argued that if a set of categories satisfied
the goals of the observer and permitted him to make the necessary inferences
about the properties of objects, then that set of categories must capture the
structure of the natural modes.

In our analysis of the goals of the observer and of the characteristics of
a set of categories that support those goals, we identified two conflicting
constraints. First, the observer requires that knowledge of the category of
an object be sufficient to make strong inferenccs about the properties and
behavior of that object. This requirement favors the formation of fine. ho-
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mogeneous categories. Such categories are highly structured ond thus convey
much information about the properties of their members. Larger categories
have less constrained properties and thus the observer has a greater property
uncertainty once the category of an object is known. Second, the inferences
made by the observer must be reliable; thus, he requires that the assignment
of an object to a category be a robust process. Such a constraint favors the
formation of coarse categories, where few properties are needed to determine
category membership. The coarser a set of categories, the easier it is to de-
termine category membership of an object; there is less category uncertainty
for given object.

Therefore, the observer is faced with a trade-off between the ease of mak-
ing an inference about an object and the specificity of the inference. To make
this trade-off explicit, we derived a measure for each of the two uncertainties
(based on information theory) and combined them using a free parameter
A as a relative weight. This combined measure - referred to as the total
uncertainty of a categorization - allowed the observer to explicitly control
the balance of uncertainty. If the observer requires precise inferences, a low
value of A selects tightly constrained categories; these categories provide the
necessary inferential power, but at the expense of requiring detailed informa-
tion about an object to determine the category to which it belongs. Likewise,'". Z\9
if the observer requires a robust categorization procedure even when little
sensory information is provided, a high value of A causes coarse categories
to be preferred; they are easily accessed with little sensory information, but
they permit the observer to make only weak inferences about the properties
of objects.

The measure we derived is based solely on the goals of the observer; sets
of categories which support the goals of inference of the observer yield lower
total uncertainty than those that do not. But how do we relate this measure
to the natural modes? As argued above, we know that the goals of inference
of the observer can only be accomplished if he recovers the natural categories.
It is the structure of the modes that permits the inference of unobserved %*,'

properties from observed properties. Thus, by directly measuring how well :',
the observer accomplishes his goal, we are measuring how successful he has - -

been in recover the natural categories.
Having constructed a measure capable of evaluating the degree to which

a set of categories captured the natural mode structure, we next considered
the problem of recovering the natural categories from the data provided
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by the environment. Based upon the learning paradigm of formal learning
theory, we defined a categorization paradigm that allowed us to identify the
components of the categorization process. This paradigm was developed
to be consistent with our intuitions about the categorization procedure; for
example, objects are viewed sequentially, with the observer modifying his
current categorization of objects as each new data item is viewed.

There are three critical components in the paradigm. First, is the repre-
sentation, the information encoded by the observer upon viewing an object.
If the representation does not have the power to distinguish between objects
in different natural modes - if the representation is not class preserving -
then the observer can not hope to recover the natural categories. Second,
is the hypothesis evaluation function, which provides the criteria by which
the observer chooses a particular categorization. The last component of the
paradigm consists of of a hypothesis generation method. This component,
which is responsible for producing categorization hypotheses, is also critical
to the success of the categorization procedure. Because of the combinatorics
of partitioning problem, one can not attempt all possible categorizations in
a world of many objects. Therefore, one needs to develop a procedure that
will eventually converge to the correct set of categories.

Using the paradigm as a model we constructed a categorization proce-
dure. This procedure implements the total uncertainty of a categorization as
the hypothesis evaluation function. The hypothesis generation method we
present is a dynamic, data driven procedure. Upon viewing a new object,
the observer produces a new set of categories by modifying the previous hy-
pothesis. Although the algorithm is statistical in nature, and not guaranteed
to produce the correct categorization, we have demonstrated its effectiveness
in several domains. One of these domains consists of the soybean data of
Michalski and Stepp [1983], which have been shown to be challenging for
standard clustering techniques. The algorithm successfully recovered the
four species of diseases present and did not require the a priori knowledge of
the number of classes contained in the population. !;

Finally, we considered the case of a multiple mode domain, a domain
in which there is more than one level of natural structures. The example

we used was that of infectious bacteria, where there is structure at both ..

5. the genus and species level. We first demonstrated a technique by which
".5 the observer could recover the different levels present. This technique re- ''

lies on the observer being able to detect a primary process level; once the
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observer discovers these categories he can then recursively categorize each
sub-population in search of additional structure. To support such a pro-
cedure we analyzed the case of attempting to categorize a world in which
there is no modal structure. By determining the pathological behavior ob-
served in such a situation, we provide the observer with the necessary halting
conditions for the recursive strategy.

An important aspect of the multiple mode analysis was the development
of a method for evaluating the utility of a feature for recovering the natural
categories. In the single mode world, this technique provides the observer
with the means for evaluating new features, and thus permits him to learn
a better representation. In the multiple modal world this technique also
provides a mechanism for assigning the different features encoded by the
observer to the different process levels present in the domain. This technique
begins to address the fundamental problem of recovering natural processes
as opposed to recovering only the categories formed by the processes.

7.2 Clustering by Natural Modes

One of the contributions of this work is a new method by which to measure
the quality of a set of categories. The measure U - the total uncertainty
of a categorization - reflects how well the categories support the goals of y:.
making inferences about the properties of objects. How does this method
compare to other clustering techniques?

First, we again mention that the categorization procedure based upon
the uncertainty measure was capable of successfully categorizing the soybean
data of Michalski and Stepp[1983]. In their work, they report experiments in V

which they attempted to categorize those data using 18 different numerical
clustering techniques. Of these, only 4 were successful. Thus, for at least
this set of data the performance of the categorization technique is at least
comparable to other clustering algorithms. Because the uncertainty measure
has the desirable property of being insensitive to unconstrained features, it
provides a robust method of recovering categories in a domain in which ..- -

irrelevant features contaminate the data. Furthermore, we have provided a
technique by which the relevance of a feature can be assessed once the correct
categories are known.

But more important than the performance of the algorithm is the basic.OR
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design of the categorization evaluation function. This function explicitly
measures how well a particular set of categories supports the goals of making
inferences about the properties of objects. Unlike standard techniques that
use a distance metric which is assumed to bear some relation to the desired
structure of the categories, the uncertainty measure directly evaluates the
utility of the categories in terms of the inferences that can be supported.
By directly measuring the degree to which a categorization supports the
performance of the task of interest (namely that of making inferences), we
are more likely to discover a useful set of categories.

7.3 The Utility of Natural Categories:
Perception and Language

Throughout this thesis we have motivated the categorization problem by con-
sidering the inference requirements of the observer. However, other problems
of cognitive science are made less severe if the cognitive system can recover
the structure of the natural world. In particular, let us return to Quine's
question of natural kinds ([Quine, 1969] and section 2.3.1). Quine theorized
that intelligent communication between individuals is possible only if the
individuals share a common description of the world. That is, the similar-
ity space - the qualia - of the individuals must be identical, or at least
approximate. Without a common descriptive space, the individuals would ,t
not be able to resolve the problem of reference: determining the extension in
the world of some vocabulary term used or of some gesture made by another N.
individual. In light of this requirement the ability to recover the natural
structure in the world provides a basis for communication between individ- ,
uals. By recovering categories that correspond to natural classes - classes
defined by processes in the world - different observers can be assured of
convergent world descriptions. If two observers are categorizing a popula-
tion of objects using identical categorization evaluation functions, and if the
categorization function is appropriate for recovering natural categories then
the two observers are guaranteed to recover similar categories. Therefore, #
these observers will be able to develop a common description of objects to
serve as basis for a mutual vocabulary.
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7.4 Recovering Natural Processes: Present
and Future Work

The motivation we have presented for this work centers on the task of making
inferences about objects. In particular we have argued that the observer must
be able to make inferences about unobservable properties of objects given
only sensory information. This task led us to the Principle of Natural Modes
and to the task of recovering natural object categories.

But making inferences about objects is only a sub-goal of a much more
general perceptual goal: understanding the world. The purpose of our per-
ceptual mechanisms is to convey information about the world that is impor-
tant to our survival. One implication of this goal is that we can improve
upon the goal of recovering the natural categories in the world. We know
that the natural modes are caused by the interaction of natural processes.
Therefore, a more complete understanding of the world is achieved if we
recover (discover) the natural processes that are present in the environment.

The last section of chapter 6 - the chapter concerning worlds with multi-
ple natural modes - demonstrated a technique by which the observer could
assign the different features to the different process levels present in the do-
main. In the case of the bacteria, certain features were identified as being-,:
constrained by the genus, and others by the species. This capability begins
to give the observer an understanding of the natural processes responsible for
the natural modes. He does not only acquire the modes themselves, but also
gains the knowledge of how the natural processes constrain the properties of
objects.

One of the potential extensions to this work is to make explicit the con- %,

cept of natural processes and attempt to recover the processes directly. We
would still assume that classes exist in the world - natural modes. How-
ever, we would associate a generating process with each class, responsible for
producing all the objects in that class. Now, we change the categorization
task by requiring that the observer propose generating processes to explain
the observed objects.

An example: Suppose the observer has seen 100 different objects, and his
task is to propose generating processes to account for them. As before he ,. ..

could propose a single category, which encompasses all objects. This would
correspond to the universal Turing machine process capable of producing
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all objects. Alternatively, the observer could propose 100 different gener-
ating processes each capable of producing only one object. Just as with
the hypothesizing of categories, the observer will want to propose those pro-
cesses which correspond to the natural modes, which permit him to make
inferences about properties of objects. In this case however, the observer
has a vocabulary of processes; he must know (or somehow learn) about the
types of physical processes that can occur. In other words, he is measuring
his uncertainty about properties of the object's generating process as op-
posed to uncertainty about the properties directly. This approach has much
greater power than a simple property vector scheme because the categories
are formed by constraint on their physical processes as opposed to constraint
on particular properties. And, in the real world, it is the processes that are
constrained.

By searching for processes directly, we would reduce the dependence on
the property representation. This is a desirable goal given the common belief
that no simple set of properties is going to be sufficient for recognition;
the general failure of standard pattern recognition techniques supports this
opinion. Thus an alternative approach is necessary, and we need to be able
to incorporate the ideas and principles developed in this thesis into a more . ..

general framework.

-. ;
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::: These e Nw pecficaftlons for Ow eoaf examples. Values are generated by random selection from valueslist. Some values are repeated to yield non-unform distrbution .-I

(defvar CLZRra-UI (make-instance I species-specification
I genus 'poulus-
.pecies * tremuloides

s oommon-name * poplar
: feature-choice-liit
'((length (1.0 2.0 2.0 3.0 ))

(width (1.0 1.0 2.0 )
(flare (0.0 1.0))
(lobes (1.0 ))
(margin (crena4te secrate))
(apex (acute))
(base (rounded))

(color (yellow )))).

(detvar aE-3I (make-instance 'species-specification %
:genus 'quercus bo
:species 'alba

scosumon-name 'oak
:feature-choice-list

'((length (5.0 6.0 6.0 7.0 7.0 8.0 0.0 9.0))

(width (2.0 3.0 3.0 4.0 4.0 5.0 ))
(flare (-1.0 -2.0))
(lobes (7.0 9.0))
(margin (entire))

(apex (rounded))
(bese (cumeate))
(color (light)))))

(defvar COC-$130 (make-instance 'species-specification
:genus 'populus
ispecies 'daltoides
,conmon-nam. 'cotton % ,N
:feature-choice-list
'((length (3.0 4.0 4.0 5.0 5.0 6.0 ))

(width (2.0 3.0 3.0 4.0 4.0 5.0 )
(flare (2.0))

(lobes (1.0))

(margin (crenate))
(apex (acuminate )6

(ba e (truncate)) _ _e

(color (yellow light dark )))))

*%
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(defvar MDZZ-SC (make-instance 'species-apecification i really sugar maple
.genus '&cer

apcies msaccharum
ceomon-name maple

ifeature-choice-l 1st
'((length (3.0 4.0 4.0 6.0))

(width (3.0 4.0 4.0 5.0))
(flare (0.0))

(lobes (5.0))

(margin (entire))
(apex (acute))

(base (truncate))

(color (light)))))

(defvar ZDXR-DIC (make-instance 'specios-specification ,z really paper birch

:genus •betula

:species 'papyri fera
common-nme 'bicch

feature-choice-list
• ((length (2.0 3.0 3.0 4.0 4.0 5.0))

(width (1.0 2.0 2.0 3.0))
(flare (1.0))

(lobes (1.0))

(margin (doubly-serrate))
(apex (acute))
(base (rounded))

(color (dark)))))
£

(defvar ZM-3SC (make-instance 'specios-specification

:genus lulmus
:species *americana

:commn-ame 'elm
:foature-choice-i i at
'((length 44.0 5.0 5.0 6.0))

(width (2.0 3.0 3.0 ))

(flare (0.0 -1.0)!
(lobes (1.0))

(margin (doubly-serrate))
(apex faccuminate))

(base (rounded))

(color (dark)))))

%
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Soybea speclflcafns.

(defvar WT-&-I1, (make-instance soy-specification -
:common-name 'a
ifeature-choico-list

i(tims (3 4 5 6))
(stand (0))
(precip (2))
item (1))
(hail (0))
(years (1 2 3))
(damage (0 1))
(severity U1 2))
(treatment (0 1))
(germ (0 1 2))
(height (M)
(cond (1)
(lodging (0 1))
(cankers (3))
(color (0 M)
(fruit (1))
(decay II)
(mycelium (0))
(intern (0))
(solerotia (0))
(pod (0))
(root (0)))))

(defvar S I M-IU (make-instance 'soy-specification
Ilceumn-name *

ifeature-choice-list
((time (3 4 5 1)
(stand (0)
(precip (0)) A
(temp (1 2))
(hail (0 1 )
(years (0 1 2 3)) p
(damage (2 3))
(severity (1)
(treatment (0 1))
(germ (0 1 2))%
(height (111~ '
(cond (1)
(lodging (0 1))
(cankers (0))
(color (3))
(fruit (0))
(decay (0))
(mycelium I0)
(intern (2))
(aclerotia (1)
(pod (0))
(root (0)))
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(defvar UO-C-UC (make-instance 'soy-specification
common-nt fll * c

:feature-choice-list

M((time (0 0 2 2 3 4))

(stand (1 1 1 0))
(precip (2))
(temp (0))
(hail (0 0 0 1))

(years (0 1 2 3))
(dlaage M1)

(severity (1 2))

(treatment (0 1))
(germ ( 1 2)1
(height (1))
(cond (0))
flodging (0 0 0 1)) 60
(cankers (1))

(color 1))

(fruit (0)) 4

(decay (1))
(mycelium (0 1))
(intern (0))

(sclerotia (0))
(pod (3))

(root (0)))))

(defvar 80T-D-SUUO (make-instance 'soy-specification
comon-name Id*

:feature-choice-list

I Mtime (0 12 3))
(stand 1)

(precip (2))
(temp (0 1))

(hail (0 0 0 1))

(years (0 1 1 2 3 3))

(damage (1)) 

(severity (1 2))
(treatment (0 1)) %

(germ (0 1 2)) 
-*P

(height (1)) %

(cond (1)) -

(lodging (0))

(cankers (1 2)) -5m

(color (2))

(fruit (0))

(decay (0 0 0 1))

(mycelium (0))

(intern (0))
(sclei'otia (0))

(pod (3))
(rot (1)))))

% '.~ . J
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Cdefvar 3&CT!RA-V-S13C (make-instanco ' bacteria-speci fication
:geflus *bacteroidea,

species 'fragilia
:common-nam 'bf
feature-choice-list

((location (OX)
(gram (NEG))
(gr-pon (R))
(qr-rif MS)
(qr-kan (R))
(dole (nag))
(exculin (pasn))
(bile (a))
(gIG (12))
;(sailcin rnag))

"1 (arab Ineg))

(rham (nag))
(nfl (1 23 4))))

(defvar M&CTRZL-&-S- C (make-instance 'bacteria-specification
:genus * bacteroidos

species 'thetaiotamicron
:common-name Ibt
foaturo-choico-list

*((location (01))
(gram (MEG))
Igr-pen IR))
(gr-rif CS))£
(gr-kan (R))
(dole (porn)) -

(esculin (po*n))
(bile (a))
(gic (18))
:(Saaicln (nag poxn))
:(arab (Poo))
(rham (porn))
(nfl (1 23 0)1
(nf2 ( 1 2 3 4)))))

* (defvar f1CT!RZX&-VC (make-instance 'bacteria-specification
:genusn *bacteroides

:species 'vulgatus
, Conmnon-name b
feature-choice-liat
((location (01))
(gram (NEG))
(gr-pen (R))
(gr-rif (5))
(gr-kan (R))
(dole (neg)) 

b.*

eaculin (nag))P
(bile (e))
(glc (Is))

(fsailn (nlaq pas))

;(arab (pas))
(rham (porn))
(nfl (1 2 3 4))
(nf2 C1 2 3 4)))))
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(dofvar 3ACTZ3Z&-YX-S13C (make-instance 'bacteria-specification
:genus Ifusobacterium
:species Imortiferum
:common-name 'fm
feature-choice-lint
,((ocation (OR)?

(gram (NEG))
(gr-pen (R S))
(gr-rif MR)
(gr-kan M5)
(dole (neg))
(esculin (pas))
(bile We)
(gic (non*))

(msalicin (nag Pas))
(arab (neg p0*))

4(rhant (neg pas))A
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))

Cdefvar BACTZRX-rV-S9EC (mak-instance 'bacteria-specificstion
:genus *funobacterium
species * necrophorim

:common-name ' fn
feature-choice-list
((location (OR))
(gram (MEG))
(qr-pen CM)
(gr-rif M5)
(gr-kan MS)
(dole (pos)) j3
(esculin (neg?)
(bile MI)
(qlc (none))
(Salicin (flog))
(arab (neg p09))

(rham (nog p01)) .
(nfl (1 23 4))
(nf2 ( 1 2 3 4))

Cdefvar X&CZR&-FY-W3.C (mak-instance* 'bacteria-specification
:genus 'fusobacterium%
:species 'varius
:common-name INf

feature-choice-list

(gram (REG)) % %
(gr-pen (R S))
(gr-rif MR)
(gr-kan (M)
(dole (poe))
(esculin (neq))
(bile 0))
(.slc (nn))
(gslci (non ))

(drab (nag POW)
(rham (neg pos)?
(nfl (1 2 3 4))
(nf2 C1 2 3 4)))))
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ScfcatlonS for Me simuhWatiwo process wodd.
(defvar OSlI-IU (make-instance aspecios-specification -

$genus one

scomman-name -GS1 1
feature-choice-liat

*((qfl (1)
lgf2 (1)
(qf3 M13
(qf4 M1)

(sf2 (M)
(nfl (1 2 3 4 5))3
Wn2 (1 2 3 4 53)

(dofvar 6812-4IZC (m~ake-instance 'epecism-specification
:genus 'one
:species 'one-twoa
s comn-name IGS12

, feature-choice-liat
((gfl ( 1))

fqf2 (M)
(qf3 (1))
WQ4 (1)
WSf (1)

(afi (2))
Wa2 (2))

(nfl (1 2 34 533.

(nf2 (1 2 34 5))N

(defvar 0213-@UC (make-instance 'specie-apcification
:qenue 'one .-I

species one-three.

sfesture-choico-list ni
'((qfl (1)

(qf2 (1) o
(qf3 (M)% ".

(qf4 (1)%
(Qt5 (1)

(sf2 (3)%

(nfl (1 2 3 4 5))
Wn2 (12 3 45)1

0
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(dofvar G021-429C (make-instance * species-specification
:genus *two
species 'two-one

:common-namo * GS21
:feature-choice-liat
((gfl (2))

(qf2 (2))
(qf3 (2))
(qf4 (2))
(qf5 (2))
(sf1 (1))
(sf2 M)
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

(dofvar QS22-zV3C (make-instance 'species-specification
:genus 'two
:species 'two-tWa s;I
:common-name IGS22
:feature-choice-list

((gfl (2))
(gf2 (2))
(qf3 (2))
(qf3 (2))
(gf5 (2))
(sf1 (2))%oi

(nfl (1 2 3 4 5))

(nf2 (1 2 3 4 5))

(dofvar GS23-83C (make-instance 'specie-specification
:genus 'two
species 'two-three

:common-nae, * GS23
feature-choice-list

'(49fl (2))
(qf2 (2)) -
(qf3 (2))

*(qf4 (2))

% (qf5 (2))

(s2 (311
(nfl (12 3 45))
(nf2 (1 2 3 4 5))
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Appendix B

Lambda Tracking

In chapter 6 we described a recursive categorization procedure capable of

recovering natural categories in a multiple modal world. We illustrated the

technique using the example of anaerobic bacteria; both the genera and

species levels of categories were recovered. In this section we provide an al-

ternative mechanism for recovering multiple stable structures within a pop- -

ulation. This technique has the desirable property of providing an explicit

measure of the degree of structure contained within each separate category.

Recall that for A near zero, the finest possible categorization - a cate-

gorization in which each object is its own category - yields the lowest total

categorization uncertainty U. As A is increased, coarser, less homogeneous "

categories are preferred. When A is close to 1.0 the best possible catego-

rization consists of only one category. Thus, we can design an agglomerative

clustering technique [Duda and Hart, 1973, also chapter 3] which forms new

categories by merging previous categories.
The algorithm we use is identical to that introduced in chapter 5 except a'

that A is no longer constant. We begin by categorizing a population of ..

objects with A set to some low value. Such a setting causes categories to be

continually split, yielding a categorization of many, highly similar categories.

Then, as new objects are observed, we slowly increase the value of A. For each "-

value ofA , the algorithm is permitted to execute until a stable categorization

is achieved. As the value of A increases, categories begin to merge. Finally, as

A approaches 1.0, the categories are merged into a single category. Because

we can track the categorization as the value of A changes, we refer to this

algorithm as V-tracking.
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To illustrate the behavior of the algorithm, we will use the soybean dis-
eases introduced in chapter 5 and re-presented in table B.1. A population of
20 examples of each species of disease is generated. Because the value of A
changes over time, this technique can only be applied to a fixed population;

when the algorithm terminates at A equal to 1.0, there is only one category
and the introduction of a new object would be meaningless.

Normally, agglomerative techniques produce a dendrogram, a diagram of
reflecting the dynamic change in category structure as the distance between
categories is increased (as defined by some metric). For the technique de-
scribed here, we will display the results of the execution in the form of a
A-space diagram (Figure B.1). For each value of A a qualitative description
of the categorization produced is illustrated. For example, at A of .55, the
categorization produced consists of three categories corresponding to dis-
eases A, B, and C, and several smaller categories each containing members
of disease D.

We begin with a A of .35. This value of A was found to be sufficiently
low to cause the categorization procedure to continually split previous cate-
gories. When A increases to .40, the separate categories containing members
of disease B coalesce to form a category corresponding to that disease. No-
tice that this category remains until A is raised to a value of .95. We refer to
this duration as the A-stability of the B category. This version of A-stability
is different than that presented in chapter 6 which referred to the stability of
the categorization as a whole. In this case, A-stability permits us to consider
the stability of each category individually. In Figure B.1 the four natural cat-

egories corresponding to the four diseases display a (relatively) high degree
a A-stability indicating that these categories correspond to natural structure
in the population.

Notice, however, that the category {C, D} exhibits the same degree of
A-stability as the D category. Such stability may indicate that there exists a A

common structure shared by these two diseases that qualifies them as being
a natural mode. However, without independent verification from botanists
we cannot confirm this hypothesis.

Experimental evaluation indicates that the A-tracking algorithm is not
as powerful a technique for recovering multiple modal levels as is recursive *, -

categorization. One explanation for this result is that the algorithm always

considers the entire population as a whole, without limiting its attention to
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A B D D
Diaporthe Charcoal Rhizoctonia Phytophthora

Stem Canker Rot Root Rot Rot

time {3,4,5,6} {3,4,5,6} {0,2,3,4} {0,1,2,3}
stand 0 0 {1,0} 1
precip 2 0 2 2
temp 1 {1,2} 0 {0,1}
hail 0 {0,1} {0,1} 0
years {1,2,3} {0,1,2,3} {0,1,2,3} {0,1,2,3}
damage {0,1} {2,3} 1 1
severity {1,2} 1 {1,2} {1,2}
treatment {O,1} {0,1} {0,1} {0,1}
germ {0,1,2} {0,1,2} {1,2} {0,1,2}
height 1 1 1 1
cond 1 1 0 1
lodging {0,1} {0,1} 0 0
cankers 3 0 1 { 1,2}
color { 0,1} 3 1 2
fruit 1 0 0 0
decay 1 0 1 {0,1}
mycelium 0 0 {0,1} 0
intern 0 2 0 0
sclerotia 0 1 0 0
pod 0 0 3 3
root 0 0 0 1 :

Table B.1: The property specifications for four species of soybean plant diseases.
These data are derived from Stepp [1985]. %
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Figure B.I: The A-space diagram produced by executing the A-tracking algorithm

on a population of soybean diseases. For each A, a qualitative description of the
categorization is illustrated.
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finding modes within one particular category. Thus, only small ranges of A
are available for each stable categorization. For example, if there are four
stable categorizations, then the maximum A-stability range for each catego-
rization would be .25. Thus, although A-tracking allows the assessment of
the degree of structure present in each category, it is not a robust mechanism
for recovering multiple modal categorizations.
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