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ABSTRACT

4 his research memorandum describes a queueing model
used to analyze a sparing decision for a part with general
probabilistic demand. It also describes an extension of the
model to include discriminating treatment of the repair and
resupply pipelines. The final section applies the model to an
illustrative example,
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INTRODUCTION

Occasionall. when a sea-based aircraft i- being repaired or inspected, a certain

part needs to be replaced A prevailing assumption I and 2 is that the number of such
occurrences during a specific time period can be approximated with a Poisson probability
distribution. An underlving assumption leading to this probability is that the expected
number of failed part - depends only on the number of flight hour- in that time period
Recent research at the Center for Naval Analves (CNA) suggests that this may not be
the case 3. 4. and 5

Another characteristic of the Poisson probability distribution is that there is a posi-
tive probability that a %ery large (theoretically: infinite) number of parts %kill fail during
a large enough time unit. In practice, however, the probability that the number of failed
parts will be greater than the total number of parts (used or spared) equals zero.

This paper provides a tool for analvzing a sparing policy for a part for which the
demand is not necessarily Poisson and for which there is a limit on the number of parts.
This tool can be used as the single-item, single-echelon statistical analysis component
of a more complex optimization model. The next section formulates a queueing model
with exponential service, ample servers, and finite capacity The model's general appli-
cation. extension to hvperexponential service, and application to a numerical example
are considered in the subsequent section. and the last section contains some concluding
remarks.

S.
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MODEL

When an aircraft is being repaired or inspected and a terrain part j. found to ha~e
failed, it is replaced immediatel.N, if a spare part i, aitaLPe Ti. aaniatil* of !pare-
is determined by (1) the number of spares iitiall' zitocked , ,hir 2! the number of

"'new" spares. that is. the number of parts repaired in -h:p or (,r(IeredJ anr rece: ed

from 4hore: and (3) the demand for spares aireadx sat:tfieo that i the number of parts
already used to replace failed parts Simultaneous with the r'e of the demand for spare-.
the removed part enters a queueing sysi em (figure 1)

In queueing theory terminology 6 and 7 .the removed parts are cu.toners and they
arrive to receive service provided by serrers. A five-part descriptor. .4 B C F K. is
used to summarize symbolically the information regarding a queueing system: .4 is the
interarrival-time probability distribution. B is the service-time probability distribution.
C is the number of servers. F is the system's capacity, and K is the size of the customer
population. .4 and B take on values from. among others, the following set of symbols
whose interpretation is given in terms of distributions within parentheses: .1l (exponen-
tial). E, (n-stage Erlangian). H.v (N-stage hyperexporiential). D (deterministic), and G
(general). C. F. and K are either integers or infinit.. with infinity (:c) symbolizing the
fact that whatever the actual number is. it is large enough to yield a certain attribute
of the system.

In this notation. the currently used model-the single-item. single-echelon compo-
nent of the Multi-Item Multi-Echelon (MIME) inventory model-is an .1l VI x cc cc
queueing system. That is. the interarrival and service time*- are exponential: the number
of servers is large enough so that rio customer has to wait for service to begin, the s\ stem
is uncapacitated: and the size of the calling population is large enou Lh for the demand
rate to remain constant. regardless of the number of customers alread. in the system
The number of customers. i.e.. failed parts. present in this system has a non-zero proba-
bility of being larger than the total number of parts To remedy this situation. one can
use the Al .A1 )c m cc queueing system. with rn denoting the totai number of parts

It is of interest to note that the finite-number-of-parts issue was addressed by a
finite-s *stem-capacity model rather than by a finite-calling-population-size model. The
reason for this action is that the model needed to reflect the fact that the demand rate
remains constant. regardless of the number of customers already in the s? stem. Although
the main reason for a constant demand rate is that operable aircraft must also crnplcte

missions of inoperable aircraft. it is. perhaps. enhanced by cannibalization-an issue not
explicitl. addressed in this paper.

Although the Al Al :c tr oc finite-capacity s~stem is an improvement over the
A AI cc x c uncapacitated s.stem. it still lacks the genieralit. to accommodate any
interarrival-time distribution Thus. the G A Dc m cc queuemng system is considered
next. Because rio more than m customers can be present in the s.stem, there is no
loss of generality in assuming that only n servers provide service, as long as n asuines

.We

6 d6:V



Aircraft repairs/inspections

Removed parts Demand for Spares
spares

New spares4 _ _

EAvailable spares - Initial
spares (AVCAL) - Inmmediately
satisfied demand +New spares

FIG. 1: MODEL SUMMARY



a value from the set {m.m- 1..... x}. In particular. when n = m. the result is the
C .I m m x queueing system.

This syv ,em. along with its special cases, is well solved for the exponential (G = Al)
case 6 and 7 . The only explicit attack on the G Al m m oc system is by Takics
(see the chapter on Telephone Traffic Proces-es of his book 8). Although his result is
sisnificant in the theoretical sense. its use is limited bN the fact that it is given as the
Laplace transforms of the probabilities of interest. That is. to obtain the probabilities.
t he Laplace t ransform- must be in r- r-d. This cannot be done in a mechanized manner.

The work described in this paper follows the solution approach to the infinite-capacity.
n-server case 6 and 7. Results are expressed. as a matter of convenience, in terms of
Laplace transforms of the interarrival time density. but they do not require inv rsion.
The appendix shows that the solution here reduces in the exponential case to the well-
known results. The remainder of this section is devoted to a solution procedure for the

S.\I m ?n x queueing system.

Because the exponential service time is memoryless. at each arrival instance the
sNstem starts from the beginning, in the sense of statistical behavior. Thus. the arrival
instances constitute the regeneration points of an imbcdded Nlarkov chain. The states
of this chain are the number of customers found in the system, and the probability of
transition from state i to state J is the conditional probability of the n- Y" arrival to find
j custkmer, in the system, given that the n" arrival found i customers in the system.
If q, is the number of customers found in the system by the n, " arrival, then {q., is a
discrete-state .Markov chain and its transition probability p,, is defined by equation I as

p?) = P r qr- I = J q, = i} 1

This transition probability is nothing but:

p, Pr{(i'-j) customers are served during an interarrival time} (2)

= Pr {(i' - i) customers are served during an interarrival

time of length t} d.4(t)

which equals

JX ( 1 - W). td4(o).i = ).1 . 5i , . i

P ( 0 
othervise

where i' = min{i- I. r and the integration is Riemann-Stteltjes It -h,)tuld be noted

that p,,= p.,.._ for allj.

4%
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Figure 2 presents a diagram wxith the transition probabilities into and out of state 1.

Replacinga (1 - e with its binomial expansion § ( '7 )-k(
an(I noting that f,'(t _' ) --d(t) is the expected value of -"fl-' with respect to

randrn variable t (ta .the Laplace transform of &AW evaluated at p( k-) .- p~k -
r j . ~eq uat ion 3 can be rex~ ritten in the fol lowin R. coii irinlvtractable, form

I ( 11) ZI1 - (,j-) . 4 ' (k- j),u i (. m: 1(4

1 0 :otherwise

where, as before. 1" = min~i - Lyrn).

Let rk Ii"n Pr~q, k} denote the (steady-state, unconditional) prrobability 4f

a random arrival to find k customers in the system-. ft should be noted that finite

s\stem capacity ensures that steady- state equilibrium is attainable. Having found the

(one step. conditional) transition probabilities giv-en b\ equation 4. rk can be found by

01\v Irig thfe follow\ing ( m- 1 by (mr I liiiear-equat, ions sN Q't em:

rp. k :

kI r k r, P = p k - 1.2.m.. n 7

equoard h oIs end. l enoat on n ae e reit ed s. . h heei o oso

1%%
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A- irnpiied bN equation 6. r, must equal I rc therefore equation 8 can be rewrit-
ten as

That is. giv-en the tranfition probabilities p,, calculated in the previous step. the systemn
of linear equacions can be solved b% finiding c,: k . . rn. This is done by the
following recursive formulae:

C. E 1(10)

2C.k-PnI Ck -k]

Pm-ik-l rn-

k .

'PLJ



APPLICATION

An application of the model developed in the previous section must address the
following issues:

" What are the queueing system's characteristics, or what can be said about service?

W What is the input to the queueing system. or what can be said about arrivals?

" What is the significance of the queueing system's output to decision makers?

SERVICE

Because the model presented here uses queueing theory. the information about the

number of customers served during a specific time period is conveyed as information
about the time it takes to serve a customer. Because a customer is a removed part and
service includes off-ship resupply (when on-ship repair is not possible). it is natural to
consider service time in calendar time rather than. for example. flight hours or number
of flighta. Average service time equals average on-ship repair time weighted by the

probability of repair aboard ship. plus the average off-ship resupply time weighted by the

probability of off-ship resupply. For example. in the case of a pulse decoder. 5 percent of
the removed parts can be repaired aboard ship. but the remaining 95 percent must be sent
off ship. The average on-ship repair time is 4 days. while the average off-ship resupply
time is 44 days. Thus, the average service time equals 42 days ( 05 4 - .95 , 44 = 42).
This holds true for an% probability distribution of service time. To facilitate numerical
comparison %ith the currently used model and for the sake of ease of exposition. service
time is assumed to have an exponential distribution (with parameter p that equals the
reciprocal of the average service time) Such a combination of on-ship repair and off-ship
resupply implicitl assumes that a part repaired on ship is identical to a shore-supplied
part.

ARRIVALS

' The information pertaining to the number of arrivals is conveyed again as informa-
tion about interarrival times. The choice of interarrival times to be in calendar time is
riot a natural one. because it necessitates "stretching" flights into calendar time: ho'A-
ever. that choice is dictated by the need to be compatible with service times and to
allou consideration of factors contributing to the rise of demand for spare parts-that

is. arrivals-that do not depend only on flight hours. Two approaches to determining
% the probability distribution of interarrival times are possible. parametric and nonpara-

metric. In the parametric case. a probability distribution is determined by theoretical

knowledge of the underlying processess or by closeness of shape to the shape of real-life

I ' "."-':, 7..::;..'-. .,;....:-. ....-.-. ,..,.; .;....:..-..-.-,-...,.... .< . ,8
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data: the parameters are estimated using real-life data. In this case. the Laplace trans-
form of the appropriate (theoretical) probability density function, with the appropriate
parameters is used in equation 4. In the nonparametric case. an explicit consideration of
a probability distribution and its parameters is by-passed. and the data are used directly
to calculate the Laplace transform in the following waN. Assume that n observations of
interarrival (calendar) times are available, from either real life or a simulation. Denote
these observations by ti. t. ..... t, The Laplace transform in this case is:

.4..(k_ ~ ~ j~ I = - _(k-jlat' 1 (1

n
1=1

If n is too large a number. observations can be grouped together. creating an empirical
distribution, and in equation 11 replacing t, by the middle of the group's range. n by
the number of groups, and - by the proportion of observations falling in that group. (It
should be noted that information can be lost while grouping.)

OUTPUT

Probabilistic knowledge of the number of parts found in the queueing system allows
for probabilistic knowledge of the number of parts available for operational use. In
particular. the rks can be used to calculate. for a given outfitting level s. the expected
number of back orders found at arrival points B(s). and the probability that demand
can be fulfilled immediately upon arrival. i.e.. the fill rate F(s):

M

B(s) = (k - s)rK (12)

F(s) rk : s > I F(1) 0 (13)

Before proceeding to the numerical example. let us revisit the assumption that service
time-%Nhich includes on-ship repair and off-ship resupply-has an exponential distri-
bution. For the currently used model, this issue is purely theoretical: its results hold
regardless of the actual distribution of service time. For the model proposed here. the
matter is crucial: onl. because of the memorylessness of the exponential distribution
were we able to find regeneration points, an embedded Markov chain, and to complete
the analysis. In a queueing system with two types of servers. each type having an expo-
nential service time (with different parameters). the combined service time is exponential
only when all servers are busy. In this case. there are two Poisson outputs of completed
services. whose combination is a Poisson output. In this model. in general. not all ser'ers

"-. .a l Z . , _ " " " "' %' " % ' ,-e ,' ' ,." , - ,- .- -..- ,.,. . . ., -



are busy. Assuming that each type of service (on-ship and off-ship) can be approximated
as having an exponential distribution. the combined service can be viewed as having a
two-stage hyperexponential distribution. This approach is similar to the one taken in
9.

Let p' be the probability of repair aboard ship. p' is estimated by p. which equals the
number of parts removed that can be repaired aboard ship. divided by the sum of the
number of removed parts that can be repaired aboard ship and the number of removed
parts that cannot be repaired aboard ship. Let p, denote the reciprocal of the average
on -ship repair time. and p2 denote the reciprocal of the average off-ship resupply time.
The density function of the combined service time is given by:

h2(t) = pPe""- (1 - p)M2  (14)

Equation 14 can be interpreted as a conditional density. Thus. the resulting G H2 oc m :c
queueing system can be analyzed in the following way:

1. Replace p of equation with pi.

2. In equations 5 through 10. replace rk with r[

3. Repeat steps 1 and 2. this time with p2 and r2

rk~prk

4. Let .p)r2: k=0 ....

To illustrate the subject. consider the following numerical example. There are four
aircraft, each using one unit of the part of interest. Each aircraft flies once a day for
four hours. The observed average failure rate is two units per 100 flight hours. With an
average flight length of four hours. this translates into eight failures per 100 failures are 6
to 3 to 1. respectively, for equal times The proportions of time spent in each environment
are 0.5 24. 19.5 24. and 4 24. respectively. The observed average service time is five
days for on-ship repair. which happens 20 percent of the time. In the remaining 80
percent of the time when the repair cannot be done on ship. the average resupply time
is 20 days.

Four ways to model demand for spares are considered here:

* An infinite number of parts. exponential interarrival times. denoted INEX. This is
the currently used model and is considered in order to facilitate comparison.

" A finite number of parts. (4 -1 - 2 = 6). exponential interarrival times, denoted
FINE.

* Demand derived from four flights per day. 8 100 probability of failure per flight.
denoted LEVY 3

10
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* A finite number of parts and hyperexponential interarrival times (a mixture of
three exponentials. each representing one environment of failure), denoted HYPE.

Two ways to model service times are considered:

* Exponential with parameter (0.2 . 5- 0.8 - 20)- = 17-', denoted by EXPO.

* Hvperexponential (a mixture of two exponentials. one with parameter 5 - . the
other with 20-1), denoted HYEX.

The results for all eight cases are summarized in terms of expected back orders and
fill rates in table 1. It should be noted that in spite of mean rates being equal. different
distributions (for demand or service) yield different results. (For INEX. the service
distribution does not affect the expected back orders.) The infinite-number-of-parts case
yields the. largest number of back orders and the smallest fill rates. This is not surprising.
since --parts" keep failing after all real parts have failed.

The closeness between FINE and LEVY can be explained by recalling the Poisson
approximation to the Binomial. The better results produced by HYPE are some%%hat
surpriing. and they hint to the value of having a better understanding of the failure
process.

TABLE 1

NUMERICAL RESULTS

Demand

Service INEX FINE LEVY HYPE

Expected back orders

EXPO 3.472 2.265 2 263 1.986

HYEX 3.472 2.108 2.104 1.878

Fill rate

EXPO .0279 .0403 .0384 .0788

HYEX .1148 .1233 .1241 .1549

"1



CONCLUSION

In summar., the model presented in this paper can analyze the consequence of an
initial o|tfitting level for a part with general probabilistic demand, a two-step hyperex-
p, ient ial service, and a limit on the number of parts. The two-stage service is readil.
extendable to an. -integer-stage hyperexporiential service.

I terms of continuing research, a critical area is the programming of the method
presented in this paper and its incorporation into a multi-item multi-echelon inventorv
model. These areas will be reported on in a future research memorandum.

12
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APPENDIX

THE EXPONENTIAL CASE

W\hen the distribution of the interarrival times is exponential with parameter A. .4(t)

equals I - - for t and vanisher, other-w ise the Laplace transform. A. evaluated
at (k - jp is given bN

A
.4 (k- j)p -((A-i)A- (k - )

Dividing the numerator and denominator of the right hand side (RHS) of equation
A 1 by p and denoting A p by p yields:

P p 1.4 (k-j)lp p- -A--2)L-

p - k J - j

Substituting the RHS of equation A-2 for .4 (k-j). in equation 4 of the main text

.ields the following transition probabilities for the exponential case:

-k -PI; ' k p ) ' j k A-9)

Equation A-3 (and its successors in the sequel) is valid for i 0.1.. m: j 0. 1. i'.
lhere i" - rmn{i - . m}. and vanishes otherv% ise.

Now. let us concentrate on the rightmost part of equation A-3.

.0.
x,-d X )cx A4

.4%



Replacing the rightmost component of equation A-3 with the RHS of equation A-4
and moving , to the left of the summation yields:

( P ' "'- f lx (( )k

1 ' -k

The bracketed expression is the binomial expansion of ( - ) , q so equation
A-5 reduces to:

'1 P '(X -1-  - 1) dx (A-6)

Upon substitution of (I - y)"-J for r. and (p- J)(1 - y)P-:- dy for dx. equation A-6
yields

=t J, - ', - p - A)( - y)-, -1d (A-7)

Replacing y with - (1 : and dy with dz. noting that (p - ),__ equals p and that

i - j equals (i' - j - 1) - 1. equation A-7 can be re%%ritten as:

( ,, ) , zy, Z ,, i
=p (1 -:

i' ,. " j m -= r PB , 1-j- 1.P-j)

( (j)r(i'-j- 1)-(p-j)

(i')! (i' - j)!r(p - j)
(i' - j)Ij!P r(i'- 1 - p)

A-2

"p
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or:

(,)' r(p - j)
" J P(p - 1" 1)

B( ) and [( ) are the standard Beta and Gamma functions

" Substituting the RHS of equation A-8 for p,. in equation 103 of the main text yields
the following result for the exponential case:

C,, = 1. (A-9)

CK- vk-' r',r--k-n'' Cn -k
C- n-k ! - -kT' r, - k =0.1. m - I

(rn-k)'y rprk

where (m n)' mln{m - n - 1, m}.

U'sing the fact r(p- m - k- 1) = (p- i - k)(p- m - k) and cancelling out
r,---k

and r equation A-9 may be rewritten as:

C - i. (--I)

-C 'k c (m-n)'' ri,- -'

Ck-- k 0.1. .r- 1
i-rn-k

For k 0. equation A-10 yields:

S=1. (A-ll)

C- C'. r i p - n C) n-
- -(---=--= - 1)C' - ~c% C

'A'

A-

.% F I o *..4.'



Combining equations, A-iC0 and A-11 Nields

Ck, _____ ,

The summation of expressions involving [ p - (yr - n)' - 1 is analytically difficult.

therefore. the following approach is taken:

m-(k - I) :2(m - k) -1 (m - k - I (m k)'

Therefore:

(m - )' -rn -(k- i

r_ kF( rn-; - ICAlC

:(p -rm-k) r(P- rn-k)

Therefore:

*~~ p -k

I sing equations A-13 and A- 14. the summation component of equation A-I2 Call he -

rexxritten as

A -4

%~~~~~~9 - ' 0 .-- ' .



(rn-,)' [ (p-r- - (A-k)
-k) F (rn i) Y p

- k-I i n)' F p- rn - (k- 1)p-_n,_ ," -kr E n-n)'- pk , ' F (,ro - n -1= p

-,crutiniZifl the RHS of equation A-15 , Ith the help of equation A-k yields:

\ k C', (M -F1 r(p- m - k) m - k- I k

(nk) r U(m-n)'--p p -rn- k Znlr<.i~ -

In order to transform the summation component in the RHS of equation A-16 into
a more useful form. let us rewrite equation 10 of the main text as:

C =1. (A-17)

-7 I . --I, - - 1 . 2 . . n

Pm-k k k-I

\iltip).ine both sides b% p,- k- --. adding n k to the summation range, and

rnoir g the summation toj the other side. equation A-17 Icids:

-I..
in(-'P -. - -l =

i (- .-i ' k 1.2. .. .n (A l'~)

[-1i!izins equations A-16 and A-I . equation A-12 can he rewriten as

C 1. (A-19)

%M
-C,.

p
PC,

C' k IAC .- - - , 1.2. . -- 1

A
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If rn = 0. the system is of no interest at alh. If m = 1. the system is completely

described by C and Cl. If m > 2. equation A-19 with k= I reduces to:

1

I, = - 0

C1C-1 C> ,1 rp

C - - - p - rn -- --
S=- C 1  C-,

-rn-I

p- rn- C C1 m- C

p p

Again. if m 2. the system is completely described bN C,.. Cl. and C 2 . If m 3.

equation A-19 with k - 2 reduces to:

C,, I

m 0

C2  rn- I 1
U,' pC2 - '__

- ry-2-1 '
C3 =

t"C 3 - _

p p

p- m-2 m-_
- -'C. -C., -C>

p p

By now. the following recursive relationship is suspected:

C,. I (A-20)

C'k- -I Ck: k 0.1.. - 1
p

A-6

-,,2 , 4F F ~ * *.% V . % V w



%'.,N WW; w w r. rV1FV-Zm. W.

Assume that equation A-20 holds for k = 0.I ..... + - I for an arbitrary k. To

complete the induction process. it must be show-n that equation A-20 holds for k = k.

If k' = m. the process is complete. If V _ m - 1. equation A-19 with k = k- yields:

- -I-k'-i .

Cp m +-= k -- -k 1) -t-

!)C'._1 =___ (A-21

p-rn-k" mn-(k" - 1)
-C, . - _ _.___ _

P P

Because it is assumed that equation A-20 holds for k = k- 1. that is. Ck.
equation A-21 can be rewritten as.

p-m-k" rn-"

C._ =- m Ck. C- Ck.
P P

Which completes the induction process.

Having established the validity of the relationship given by equation A-20 for all ks
in the appropriate range. it should be noted that an equivalent form is;

_'a'

C. =I (A-22)

nk n m - nT ...
Ck-I - = :k0.1. n- 1

or:

. 1 (A -23)

4# C- --- - ')- . M
(mn k),.Pk

A-7

- ..- %-k.
L :  

1.2 .... % ......
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Substituting the RHS of equation A-23 for the Cs in equation 9 of the main text

yields the following steady-state probabilities for the exponential case:

r k) r( )
rk 

M" 
.-

k -O .1 ..... m

Cancelling out and / " looking at (m - n) as one index. and reversing its order
of summation yields:

p k!
rk k- p k 0.1 ... (A-25)

P"n,

which are the steady-state probabilities for an A Al tn m oc queueing system.
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