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ABSTRACT

‘, kg‘his research memorandum describes a queueing model
2 used to analyze a sparing decision for a part with general
? probabilistic demand. It also describes an extension of the

model to include discriminating treatment of the repair and
0 resupply pipelines. The final section applies the model to an
A illustrative example,
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INTRODUCTION

QOccasionally. when a sea-based aircraft is being repaired or inspected. a certain
part needs to be replaced A prevailing assumption 1 and 2 1s that the number of such
occurrences during a specific time period can be approximated with a Poisson probability
distribution. An underlving assumption leading to this probability 1s that the expected
number of failed parts depends only on the number of flight hours in that time period.
Recent research at the Center for Naval Analyvses (CNA) suggests that this may not be
the case 3. 4.and 3.

Another characteristic of the Poisson probability distribution is that there is a posi-
tive probability that a very large (theoretically: infinite) number of parts will fail during
a large enough time unit. In practice, however. the probability that the number of failed
parts will be greater than the total number of parts (used or spared) equals zero.

This paper provides a tool for analvzing a sparing policy for a part for which the
demand 1s not necessarily Poisson and for which there is a limit on the number of parts.
This tool can be used as the single-item. single-echelon statistical analysis component
of a more complex optimization model. The next section formulates a queueing model
with exponential service. ample servers. and finite capacity. The model's general appli-
cation. extension to hvperexponential service. and application to a numerical example
are considered in the subsequent section. and the last section contains some concluding
remarks.
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MODEL

When an aircraft 1s being repaired or inspected and a -ertamn part i~ found 1o have
failed. it is replaced immediately. if a spare part 1~ avatlabie The avanatihty of spares
15> determined by (1) the number of spares imually <tocked on st 21 the number of
"new’ spares. that is. the number of parts repaired on ~lip ur ordered and recenved
from shore: and (3) the demand for spares aiready sat:sfieq. that 1~ the number of parts
already used to replace falled parts. Simultaneous with the rise of the cemand for spares.
the removed part enters a queueing svstem (figure 1)

In queueing theory terminology 6 and 7 . the removed parts are customers and they
arrive to receive service provided by servers. A five-part descriptor. 4 B C F K. is
used to summarize symbolically the information regarding a queueing system: 4 is the
interarrival-time probability distribution. B is the service-time probability distribution.
C 1= the number of servers. F is the system’s capacity. and A is the size of the customer
population. 4 and B take on values from. among others. the following set of symbols
whose interpretation is given in terms of distributions within parentheses: Af (exponen-
tial). E, (n-stage Erlangian). Hy (N-stage hyperexponential). D (deterministic). and G
(general). C. F. and K are either integers or infinity. with infinity () symbolizing the
fact that whatever the actual number is. it is large enough to yield a certain attribute
of the system.

In this notation. the currently used model—the single-item. single—echelon compe-
nent of the Multi~-Item Multi-Echelon (MIME) inventory model—is an M M x o x
queueing system. That is. the interarrival and service times are exponential: the number
of servers is large enough so that no customer has to wait for service to begin: the svstem
is uncapacitated: and the size of the calling population is iarge enouch for the demand
rate to remain constant. regardless of the number of customers already in the syvstem
The number of customers. i.e.. failed parts. present in this system has a non-zero proba-
bility of being larger than the total number of parts. To remedy this situation. one can
use the M A > m oc queueing system. with m denoting the totai number of parts

It is of interest to note that the fimite-number-of-parts i1ssue was addressed by a
finite-svstem-capacity model rather than by a finite-calling-population-size model. The
reason for this action is that the model needed to reflect the fact that the demand rate
remains constant. regardless of the number of customers already in the system. Aithough
the main reason for a constant demand rate is that operable aircraft mus=t also complete
missions of inoperable aircraft. it is. perhaps. enhanced by cannibalization—an issue not
explicitly addressed in this paper.

Although the M M o m x finite-capacity system i= an improvement over the
M M x ¢ > uncapacitated syvstem. it still lacks the generality to accommodate any
interarrival-time distribution Thus. the G M o m > queueing svstem 1= considered
next. Because no more than m customers can be present in the system. there is no

loss of generality in assuming that only n servers provide service as iong as n assumes

n
-

w e ¢ . - Cpr e

P e e o g




"',"'.'\ ot s 1l 4t Aty Ry 9490, * gRaVal o8 (ot 808 ol hod da 0D '8, 02 2 4 80" a5R AN 2N o e,

“ ’-_

a Aircraft repairs/Inspections

Q Removed parts Demand for Spares
. spares

Queusing system

LS LA

-~ 5

New spares

Available spares = Initial
spares (AVCAL) - Immediately
> satisfied demand + New spares
D)

; FiG. 1: MODEL SUMMARY
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a value from the set {m.m — 1.....xc}. In particular. when n = m. the result is the

G M m m < queueing system.

This system. along with its special cases. 1s well solved for the exponential (G = M)
case 6 and 7. The only explicit attack on the G M m m o¢ system is by Takacs
{see the chapter on Telephone Traffic Processes of his book &). Although his result is
significant 1n the theoretical sense. its use 15 limited by the fact that 1t is given as the
Laplace transforms of the probabilities of interest. That is. 1o obtain the probabilities.
the Lapiace transforms must be tnversed. This cannot be done in a mechanized manner.
The work described in this paper follows the solution approach to the infinite-capacity.
Results are expressed. as a matter of convenience. in terms of
Laplace transforms of the interarrival time density. but they do not require inversion.
The appendix shows that the solution here reduces in the exponential case to the well-
known results. The remainder of this section is devoted to a solution procedure for the
G M m m o queueing system.

n-server case 6 and 7 .

Because the exponential service time 1s memoryless. at each arrival instance the
systemn starts from the beginning. in the sense of statistical behavior. Thus. the arrival
instances constitute the regeneration points of an imbedded Markov chain. The states
of this chain are the number of customers found in the system. and the probability of
transition from state i to state j is the conditional probability of the n~1°! arrival to find
J customers in the system. given that the n*" arrival found i customers in the system.
If .. is the number of customers found in the system by the n'® arrival. then {g.} 15 a
discrete-state Markov chain and its transition probability p,; is defined by equation 1 as

py = Prignoi1 =) g =1} . (1)

This transition probability is nothing but:

. = Pr{(i' = ) customers are served during an interarrival time (2)
,l, J =} !

H

x
/ Pr {{i' - j) customers are served during an interarrival
Ot

time of length t} dA(¢)

which equals

f‘,’{(:')(l—f u)' e Mg Aty =001 me =000 ! (2)
Py, = . v
Y 0 otherwise .
where (' = min{/ — l.m} and the integration is Riemann-Stelijes It should be noted

that pm, = pm_y, forall ;.
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Figure 2 presents a diagram with the transition probabulities into and out of state 1.

by . o . RO B LS O
:l: Replacing (1 — ¢ #')" 7~ with its binomial expansion X7} 7 ( ‘ J ) (- 1)%(e m),
y v

n and noting that [ (e #)*72d.4(t) is the expected value of € #“¥72" with respect to
! random variable t (that is. the Laplace transform of d 4if} evaiuated at plh— 1. 4" u(k -

J 1 i.equation 3 can be rewritten in the following. computationally tracrable. form

otherwise .

where. as before. '

= min{i = 1.m}.

Let r, — L‘Tr Pr{q, = k} denote the (steadyv-state. unconditional) prebability of
a random arrival to find k& customers in the sy<tem. [t should be noted that finite
system capacity ensures that steady-state equilibrium is attainable. Having found the
{one step. conditional) transition probabilities given by eguation 4. r, can be found by .
solving the following (m — 1) by (m — 1) linear-equations system:

:' re = Z TPk k 1.2 m ()) )
o o=k ] D
:' m '

] .
> o= 1 i6) .
- n-i

Toward this end. equation 5 can be rewritten as.

K

[ ]

¢
N ¢
‘

\|
~
~ ]

_ - . a -

s Tk 1 = re - Lr,,p.‘k Pk 14& - A=1.2....m . (A)

S nooK .
N ‘ -
.r: 3
7 If. based on observations. theoretical knowledee or computational instabihity r,,

) \

equals O (or is small enoughl). m can be replaced by m - 10 thus. there 1x no loss of

- generality in assuming r.. - 0 and the following ratio can be defined:
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fy . . .
1 A< mnphied by equation €. r,,, must equal 1 N. ¢, therefore equation 8 can be rewrit-

—k=

ten as

w Th = Cmoe 0o k=010 m (9)

‘
3

e That 1s. given the transition probabilities p, calculated in the previous step. the system
4 of linear eyuations can be solved by finding ¢,: & = (.1.. ..m. This i1s done by the
s following recursive formulae:

" . 1 (10)

-
[a)
in

i
N Cig~1 = Ck — anpm—n m-k Pm-ik-1'm-k
=t
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APPLICATION

An application of the model developed in the previous section must address the
following issues:

e What are the queueing system’s characteristics. or what can be said about service?

e What is the input to the queueing system. or what can be said about arrivals?

e What is the significance of the queueing system’s output to decision makers?

SERVICE

Because the model presented here uses queueing theory. the information about the
number of customers served during a specific time period is conveyed as information
about the time it takes to serve a customer. Because a customer is a removed part and
service includes off-ship resupply (when on-ship repair is not possible). it is natural to
consider service time in calendar time rather than. for example. flight hours or number
of flight:. Average service time equals average on-ship repair time weighted by the
probability of repair aboard ship. plus the average off-ship resupply time weighted by the
probability of off-ship resupply. For example. in the case of a pulse decoder. 5 percent of
the removed parts can be repaired aboard ship. but the remaining 95 percent must be sent
off ship. The average on-ship repair time is 4 days. while the average off-ship resupply
time is 44 days. Thus. the average service time equals 42 days (.05 - 4 - .95 > 44 = 42).
This holds true for any probability distribution of service time. To facilitate numerical
comparison with the currently used model and for the sake of ease of exposition. service
time is assumed to have an exponential distribution (with parameter p that equals the
reciprocal of the average service time). Such a combination of on-ship repair and off-ship
resupply implicitly assumes that a part repaired on ship is identical to a shore-supplied
part.

ARRIVALS

The information pertaining to the number of arrivals is conveved again as informa-
tion about interarrival times. The choice of interarrival times to be in calendar time is
not a natural one. because it necessitates “stretching” flights into calendar time: how-
ever. that choice iz dictated by the need to be compatible with service times and to
allow consideration of factors contributing to the rise of demand for spare parts—that
is. arrivals—that do not depend only on flight hours. Two approaches to determining
the probability distribution of interarrival times are possible. parametric and nonpara-
metric. In the parametric case. a probability distribution is determined by theoretical
knowledge of the underlying processess or by closeness of shape to the shape of real-life




data: the parameters are estimated using real-life data. In this case. the Laplace trans-
form of the appropriate (theoretical) probability density function. with the appropriate
:: parameters. s used in equation 4. In the nonparametric case. an explicit consideration of

a probability distribution and 1ts parameters is by-passed. and the data are used directly
¢ to calculate the Laplace transform in the following way. Assume that n observations of
! interarrival (calendar) times are available. frcm either real life or a simulation. Denote
..tn. The Laplace transform in this case is:

| 2}

! these observations by ty.ta, ..

n

' . ‘ 1
R A (k=g = Y e~ (11)

) n
“ 1=]

If n 1s too large a number. observations can be grouped together. creating an empirical
distribution. and in equation 11 replacing t, by the middle of the group’'s range. n by ,
the number of groups, and }1 by the proportion of observations falling in that group. (It
should be noted that information can be lost while grouping.)

G T e

ouTPUT

’ Probabilistic knowledge of the number of parts found in the queueing system allows A
for probabilistic knowledge of the number of parts available for operational use. In '
- particular. the r s can be used to calculate. for a given outfitting level s. the expected )
number of back orders found at arrival points B{(s). and the probability that demand N

can be fulfilled immediately upon arrival. i.e.. the fill rate F(s):

; Before proceeding to the numerical example. let us revisit the assumption that service
' time—which includes on-ship repair and off-ship resupply—has an exponential distri- y

3 bution. For the currently used model. this issue i1s purely theoretical: its results hold X

) ‘ regardless of the actual distribution of service time. For the model proposed here. the

" matter is crucial: only because of the memorylessness of the exponential distribution 5

.: were we able to find regeneration points. an embedded Markov chain, and to complete

Y P the analysis. In a queueing systemn with two types of servers. each type having an expo- .
:

nentia! service time {with different parameters). the combined service time is exponential p
only when all servers are busy. In this case. there are two Poisson outputs of completed
services. whose combination is a Poisson output. In this model. in general. not all servers

A e M N M N Mg g 0 0, S R L N



are busy. Assuming thar each type of service {on-ship and off-ship) can be approximated
as having an exponential distribution. the combined service can be viewed as having a
iy two-stage hyperexponential distribution. This approach is similar to the one taken in
‘s

' 9.

Let p' be the probability of repair aboard ship. p' is estimated by p. which equals the
* number of parts removed that can be repaired aboard ship. divided by the sum of the
. number of removed parts that can be repaired aboard ship and the number of removed
4 parts that cannot be repaired aboard ship. Let u, denote the reciprocal of the average
X on-ship repair time. and u; denote the reciprocal of the average off-ship resupply time.
& The density function of the combined service time is given by:

ho(t) = puje™ ' — (1 - pluge™H:t | (14)

Equation 14 can be interpreted as a conditional density. Thus. the resulting G H;
queueing system can be analyzed in the following way:

. Replace u of equation with u;.

2. In equations 5 through 10, replace r, with r}.

. Repeat steps 1 and 2. this time with g2 and r}

KX 4 Letrg=prl—(1-p)r}: k=0.1..... m.
¥
.: To illustrate the subject. consider the following numerical example. There are four
Ny atrcraft. each using one unit of the part of interest. Each aircraft flies once a day for

; four hours. The observed average failure rate is two units per 100 flight hours. With an

average flight length of four hours. this translates into eight failures per 100 failures are 6

. to 3 to 1. respectively. for equal times. The proportions of time spent in each environment \
:-3 are 0.5 24. 19.'5 24, a.nd 4 24 respectively. The observed average service time ‘is five '
N days for on-ship repair. which happens 20 percent of the time. In the remaining 80 d
percent of the time when the repair cannot be done on ship. the average resupply time )
d 1s 20 days.
D

: Four ways to model demand for spares are considered here:

; .
¥ !
. ¢ An infinite number of parts. exponential interarrival times. dencied INEX. This is )

the currently used model and is considered in order to facilitate comparison.

[

e A finite number of parts. (4 + 1 — 2 = 6). expanential interarrival times. denoted
FINE.

e Demand derived from four flights per day. 8 100 probability of failure per flight.
denoted LEVY 3.

i
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5
a:', e A finite number of parts and hyperexponential interarrival times (a mixture of
three exponentials. each representing one environment of failure). denoted HYPE.

:
R .
‘.: ' Two ways to model service times are considered:
A
]
j - e Exponential with parameter (0.2 - 5~ 0.8 - 20)~' = 1771, denoted by EXPO.
)
o o Hyperexponential (a mixture of two exponentials. one with parameter 571 the
D other with 2071), denoted HYEX.
e f

The results for all eight cases are summarized in terms of expected back orders and
z'r; fill rates in table 1. It should be noted that in spite of mean rates being equal. different l
::‘ distributions (for demand or service) vield different results. (For INEX. the service !
£ distribution does not affect the expected back orders.) The infinite-number-of-parts case ’
;‘ vields the largest number of back orders and the smallest fill rates. This is not surprising.
) since “parts’ keep failing after all real parts have failed.
',: The closeness between FINE and LEVY can be explained by recalling the Poisson
¥ approximation to the Binomial. The better results produced by HYPE are somewhat
:l. surpricing. and they hint to the value of having a better understanding of the failure X
N, process.
..l
N TABLE 1 i
>
> NUMERICAL RESULTS
¥

Demand

"
E Service INEX FINE LEVY HYPE
>
N Expected back orders {
:‘ EXPO 3472 2265 2263 1.986 )
R HYEX 2472 2108 2104 1878 ‘
) )
Fill rate
7 ©
‘ EXPO 0279 0402 0384 0783
ot HYEX 1148 1233 1241  .1549
- 4
q \
L)
v‘:
o 1
.l
.l
)
U
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e CONCLUSION

o

! In summary. the model presented in this paper can analyze the consequence of an .
il »
¥

)

a nitial outfitting level for a part with general probabilistic demand. a two-step hyperex-
o, ponential service. and a limit on the number of parts. The two-stage service is readily
extendable to any -integer-stage hyperexponential zervice.

X I terms of continuing research, a critical area 1= the programming of the method
oy presented 1n this paper and its incorporation into a multi-item multi—echelon inventory
model. These areas will be reported on in a future research memorandum.
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THE EXPONENTIAL CASE
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it APPENDIX

B THE EXPONENTIAL CASE

ot When the distribution of the interarrival times is exponential with parameter A. A(t)
N equals 1 — ¢ * for t - O and vanishes otherwise: the Laplace transform. A, evaluated

N at {k - j)u s given by:

A
ﬁ
" | |

A k= = (a-1)

h Dividing the numerator and denominator of the right hand side (RHS) of equation
'|: A 1 by u and denoting A u by p vields:

N A (k= = = . (A-2)

Substituting the RHS of equation A-2 for 4" {k - j}u in equation 4 of the main text
vields the following transition probabilities for the exponential case:

A

LYY

t

! ".”I-y_.~ p 1
TS Y -
& P (1),‘: R A A S |

[}

Equation A-3 (and its successors in the sequel} isvahid fort = 0.1.....m: y = 0.1, 1"
) ‘ . .
- where i' = mun{i - 1. m}. and vanishes otherwise.

. Now. let us concentrate on the rightmost part of equation A-3.
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1)
M
A
o
::f, Replacing the rightmost component of equation A-3 with the RHS of equation A-4
and moving T to the left of the summation yields:
o3 ‘
i ~
o v
\ [ ~ Nj : 1 k
i 1 - !
‘ P:] ot ( )LZ( k] )( I)k/ (ri‘ ) d_r (.x_-j)
J p - .] =0 " 4
N ;! P) 1"‘_“1(11_]) . ik
l:’ = ( ) —t—/ ’ (—1) (I‘- ) d.r
\ VAV R VR Dol
'.‘f
L3
o -
W The bracketed expression is the binomial expansion of (r'ﬂ‘ - 1) . S0 equation
o A-5 reduces to:
3]
Y
R
)
D)
('.’ ) 2 [N o1) (4-6)
1y = . . v=i — I . A-
o o=\ )e=7l
]
1]
"
:: Upon substitution of (1 —y)*~7 for r. and (p— j)(1 - y)*~?~!dy for dr. equation A-6
! vields
.\
N
-
N .
-“ ,-o ) v v ) o -
o PxJ:( : )—/ y = -y Ny (A-7) \
J -1/ ,
I ‘ . . .
. Replacing y with — (1 - z) and dy with dz. noung that {(p - j) —= equals p and that
s i' - jequals {¢' - ) — 1) - 1. equation A-7 can be rewritten as:
p3 ' N l’ e - L
Al p, = (_)p/(l—:) LY Yd:
» J -
3
» L )
. = . JeBll -3 —-1.p—-
(5]
. . - . ) '
W, B (z')pl"(z'—]—l)r(p-_]) ;
v A T VI (2 :
S _ (") (-5 (p=-J) oo
(- j)?jfp a'—1-p)
; N
U K
) )
L) .
:' A-2
:|
; ;
; -
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or:

"_ . , .
(') Tlp-y)
P = P (A-2)
RSV Y
€
B( ) aud T'( ) are the standard Beta and Gamma functions
Substituting the RHS of equation A-8 for p,, in equation 10 of the main text yields
the following result for the exponential case:
C, = 1 (A-9)
k ftm-nj'" Fo-m-k
C = Ce = Ln=r Cn fm-kr PT < im-ny=1 k=0.1 1
k=1 — {m—ik}) Fip-m-k T e m -
mkr P T y~m—k=1)
where {m - n) = min{m - n—1,m}.
Using the fact T(p~m-k=1) = (p- m- k)T {p~ m - k) and cancelling out =%
and E——::Lm‘:—{— equation A-9 may be rewritten as:
C. = L (A-10)
Co- Tho o2l lizmey
Ceor = - ‘,‘ LommonlZl f =01, .m-1
f-m-k
For k = 0. equation A-10 vields:
c. = 1. (A-11)
a % !—"—m ~m- 0 m-0
¢, = m‘v -m-1 _ (P B I)C -0
. Tm N 4 P
A-3
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', Combining equations A-10 and A-11 yields

" c. = L (A-12)

~ Tk ot r,-m-k
Ce —ri= Ca P e L
Ci-r = = .

—_ +
f-m-k

k=1.2....m-1

A The summation of expressions involving I' p — (m = n)’ = 1 is analytically difficult.
{ therefore. the following approach 1s taken:

) m-(k=1)"'"= (m=-k)-1'=(m-k-1)m-k)

Therefore:

ALy

-

Sats

X

k)= —— , (A 132)

Ll
3
3
kOl
t

‘I
L Sn N

Similariy

Fp-m-(k-1)

Ti(p-m-ki—1
= (p~-m-k)iTip-m-k)

L =R

Therefore:

L"..'f'."n'l'-";‘

“

Fp-m- (k-1)
p-m- k

K

T(p~m-k) = (A 14

YN

-

sing equations A-13 and A-14. the summation compunent of equation A-12 can be
rewritten as



ey
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o YK‘(' (m - n)"! ] [(p—m - kj o A-15
”~ ._"" (m— k) pr(m‘n)'*l-P - (A-13)

. p-m-ki‘i“r‘ (e - k) pF(rm—n)'—-l:p

™ -k-l\-p (:r)An)f_‘ Fp-m-(k-1)

d Serutinizing the RHE of equation A-15 with the help of equation A-% vields:

k : k
o (m-n) [(p-m-k) m-k -1 )

Z(n Y ) = . chpm—n m~{k-1) - (-"‘_16)
o ft (m-k) "T(m-n)-1-p p~m -k

n=J

In order to transform the summation component in the RHS of equation A-16 into
a more useful form. let us rewrite equation 10 of the main text as:

RN

- I

Coo= 1 (A-17)
C‘k-] - Skil,c"'p'n—rz mo-ie- ]

n=-

C, = = ke
Pm~km- k-1

1
—~
!J
3

[ :'.:‘;'?"I‘

Multiplying both sides by po_ oo ,_),. adding n = k to the summation range. and
moving the summation 16 the other side. equation A-17 vieids:

b

v

L

)

X
N Capmvmei-1, = Cooyt k= 1200 om (A 1%)

"~

I f P
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Unithzing equations A-16 and A-IR. equation A-12 can be rewritten as
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If m = 0. the system is of no interest at alt. If m = 1. the system 1s completely
described by C and Cy. If m > 2. equation A-19 with k = 1 reduces to:

Co = 1
-0
C] = m C';.
P
C, - 2l —m-1 -0
c: = T Ao RN o
s=m=1 p p
-m-1 m— 1
= P m Cl -'Cl = Cg
p P

Again. if m = 2. the system is completely described by C:. C;. and Co. If m 2> 3.
equation A-19 with & = 2 reduces to:

Clrl = 1
0
c, = 2 "¢
p
-1
e o= ¢
p
Cy - 222250
Cs = ‘,A
p-m-
-m-2 -1
= P m Cg—-——m Cl
P p
—_ —_ _ 9
- p—m :C2~C-_::L—'C2
P [y

C.;. = 1 (.-\—20)

Cpoy = Co k=0.1.. .m-1

A-6
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f:' Assume that equation A-20 holds for & = 0.1, ... k* — 1 for an arbitrary k. To
complete the induction process. it must be shown that equation A-20 holds for k = &~
2 If & = m. the process 1s complete. If &° < m - 1. equation A-19 with k = k~ yields:
-
..‘
Y
" Ci - 2
. Ceoo1 = E (A-21)
o p—-m~k’ m-— (k" -1) .
.ﬁ = —————Ck~ e — Ck -1
: P p
\.'

Because it is assumed that equation A-20 holds for k = k° - 1. that is. Cy- =

\J D

::: -'"—_L:—-”Ck-_l. equation A-21 can be rewritten as:

Y

‘t

N

3

A ; .
p—m-—k m - k

Ck.-l:———-——-ck.—ck.: Ck'

-ﬂ‘

B

s which completes the induction process.

W

-

. Having established the validity of the relationship given by equation A-20 for all &<

in the appropriate range. it should be noted that an equivalent form is:

k
Ceoy = k=01, .. m -1

or:
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Substituting the RHS of equation A-23 for the Cs in equation 9 of the main text
vields the following steady-state probabilities for the exponential case:

m' ] m,’
m—‘m—k)‘,‘""" POAD
S T A-24)
k = m T ( -
—n=:im-on, " on=l Tmoe
Ek=0.1..... m
Cancelling out 7 and . looking at (m - n) as one index. and reversing its order
of summation vields:
u
LA '
o~ k! . ,
Ty = ;_:—,'n-——n—‘ll\':().].‘...HT . (‘.-\—20)
Sun=0 P n.
which are the steady-state probabilities for an M M m m oc queueing system.
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