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Notations A .,:-.

DD problem a Distributed detection system with local

inference 14
DDF problem a Distributed detection system with data fusion

DPEF problem a Distributed parameter estimation system with

fusion ( cL.

4
MED a Minimum equivocation detection

Y= (yTy yT,...,yNT) T M Total observation vector

y, = (yt,,y, ,...,y,")T = Observation vector at sensor i,

i = , , . ,

x (ueU,...,U) T a Decision vector

y = (yiT,ya"r ..., y,- " y,, " ... ,yN r *

X = (Ux 9Un .... ,U - 9,-&.-i . . . pI-4) T

X)= (ultua..., uM=j j ,...,"), i =M-I

P(YIHj) = Conditional density function of the observation

vector Y given H,, = ... ,M-1

Pn a Probability of detection of the overall system

Pw E Probability of false alarm of the overall system

Pm Probability of miss of the overall system

Pot -Probability of detection at detector i, i = 1,2,...,N

P.., Probability of false alarm at detector i, i =1,2,...,N

Pm, = Probability of miss at detector i, i = 1,2,...,N

M= DX = P(xIH)

F= P(x Ho)



Pkx - P(u-kl. k -Oplo...PM-1

Pxs.- P(H,,), J =091,...,M-1

So a Set of all s such that us is an element of x and us - 0

S, 0 Cui J - 1,2,...,N and, uS - O}

S, a cue. k - l,2,...,N and, uk - 1)

Mx - Dx- P(xbIHx)

ba

-F - P( xIHo)

04 s.

Pk Px I ki, - 1,9,...,M-1
Iuj.-j

ba

So =cu., I = l,2, ...,MP-Il~P ...,YN and, u,, - 0)

S, -Cu.. I k - 1929...,PP-l1ji+l,... 9N and, usa m 1)

E a Summation over all possible values of x

E x Summation over all possible values of x except x,

CL, a Cost of deciding u - i when H3 is present

ij - OI...M-1 A

G . 1 0

AK"0 X P(u-I Ix"a) - P(u-lI x b)

4(.)/Sx a Partial derivative with respect to the varible x

Rms a Minimum mean-square-error function 'S

3,., a Minimum mean-square estimate

R.. • Minimum absolute error function

L = a Minimum absolute error estimate

R.&r 0 Minimum uniform cost function

IL.&. 0 Minimum uniform estimate
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I. Introduction

1.*1 Introduction

Classical signal detection and estimation involve

centralized signal processing. Traditionally, a single

sensor is employed for observations and the data is

processed at a central processor. More recently,

surveillance systems are employing multiple sensors for

observations to improve system performance parameters such

as reliability and speed# and also to increase the coverage

and the number of targets under consideration. If there is

no constraint on communication channel and processor

bandwidths, complete observations may be brought to a

central processor for data processing. In this case, the

signal processing Is still centralized in nature as shown in

Figure 1.1. The theory of centralized signal detection and

estimation is very well understood and the solutions to

problems such as optimum Bayesian detection, Neyman-Pearson

detection, minimum equivocation detection and many

estimation problems are available in standard textbooks C1].

The goal in this report is to consider some signal

detection and parameter estimation problems when the signal

processing is not centralized in nature. Multiple sensors

which may be spatially distributed or located at one
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location arm employed for making observations. The iensors

have signal processing capabilities and some or all of the

processing is done at the sensor itself. Therefore, such

systems perform distributed computation as opposed to

centralized computation. In the fully distributed system

shown in Figure 1.2, all the signal processing is performed

at the sensors and the inference is available locally. In

some other distributed sensor systems, where a global

Inference is desirwd, partial results are transmitted to a

data fusion center where they are appropriately combined to

yield the global inference as shown in Figure 1.3. Some

other distributed sensor network topologies which involve

hierarchical structures have also been studied in the

literature C63. It should be pointed out that there are

many practical reasons for deploying multiple sensor

surveillance systems with distributed computation. These

include cost, reliability, survivability and limitations on %

comounication bandwidth. As pointed out previously, the

classical approach to signal detection and estimation has

dealt with centralized problems and analytical solutions are

readily available. The classical theory needs to be

extended to be able to solve distributed hypothesis testing

and estimation problems. The goal of the work, reported in

this report, is to consider and obtain analytical solutions

to several distributed detection and parameter estimation

problems. In the next two sections, we introduce the

notation and terminology and set up the distributed

3
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detection and distributed parameter estimation problems

respectively. We also briefly discuss the relevant

literature on the subject.

1.2 Distributed Hypothesis Testing
* .5,

1.2.1 System Description and Terminalpgy .

In this report, we shall consider two different

distributed hypothesis testing configurations. The first

one is the fully distributed system shown in Figure 1.2. In

this system, all the signal processing is performed at the

sensors and the inference is generated locallv. We will

refer to this distributed detection configuration as the DD £
problem throughout this report. In the second system of

Figure 1.3, partial results from the sensors are transmitted

over bandlimited channels to the data fusion center where

they are combined according to a fusion rule to yield the

global inference. This distributed detection with fusion

configuration will be referred to as the DDF_. ?roblem

throughout this report. It should be pointed out that the

DDF problem can be reduced to the DD problem by a suitable

choice of the fusion rule and cost functions.

In Figure 1.4, we present the basic block diagram of a

distributed detection system. This block diagram includes

both the DD problem and the DDF problem. The bzsic

6
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components of the problem are as follows,

1. A source which generatm an output. The output

could 'be one of M possible choices. These choices arm

referred to as hypotheses, and are denoted by

I69Hy ... PHP-,. The a priori probabilities of the

hypotheses are denoted by P4 - P(H4), S - O,l,...,M-l.

2. A probabilistic transition mechanism that can be

viewed as a mechanism which, based on the knowledge of the

true hypothesis and some probabilistic law, chooses a point

in an observation space.

3. An observation space, consisting of points in an

n x N dimensional space. Each point is represented by an

observation vector 'X,

where ya, is the observation vector at the detector i,

i - l,2,...,N. Each y, in turn is given by

y * ( ytym,...ys"i ,-,) i ., N

where n is the number of observations at each detector. I

Without loss of generalltyp we have assumed that the number

of observations Is the same at each of the detectors. The

observation vector has a known nN-dimensional conditional
a%l

density function p(YIHJ), J - Oplo...,M-1.

8
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4. A decision rulep us - g(X,), for each detector it

i - l,29.•9N. After observing the outcome in the

observation spacep each detector uses this rule to guess as

to which hypothesis Is present. Each decision maker will

assign the points In Its own observation space to one of the

hypotheses. The vector consisting of the local decisions

will be denoted by 9 i.se., X - (uatU...-oUN)T.

5. A data fusion rule u - f(l ) which Is used by the

data fusion center to declare as to which hypothesis is

present on the basis of the vector . Note that the data

fusion rule does not exist In the DD problem.

The block diagram and the notation introduced above

will be used In Chapters 2, 3, 4 and 5 where we wIll solve

some distributed detection problems. Next, we review som

of the reported work on distributed detection.

I-C

1.*2.*2 Previous Work

Some recent work on the detection problem with multiple

sensors has been reported in the literature (e.g.C 3-183). V

Tenney and Sandell C33 extended the classical Bayesian

decision theory to the case where they considerwd the DD

problem . This extension does not follow from the classical

theory In a straightforward manner because the decision
41

rules at the Individual detectors are coupled. Sadjadi [43,

treated the problem of optimum detection with N

decentralized sensors selecting among IM possible hypotheses,

9
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with no data fusion. Further work along these lines has

been performed in C5,63. Lauer and Sandell £52, considered

the Bayesian detection of signal waveforms in the presence

of noise. Ekchian and Tenney E62, formulated the detection

problem for various distributed sensor network topologies.

Kushner and Pacut E72 conducted a simulation study of a

specific distributed detection problem. Teneketzis E8,93

has also solved some interesting decentralized detection

problems, namely a version of the Wald problem and the

quickest detection problem. Tltslklis and Athans E103,

have considered the computational complexity of

decentralized decision problems. Their results point to the A

inherent computational difficulty of the problem and suggest

that optimality may be an elusive goal. Conte, D'Addio,

Farina and Longo [112, have considered the design and

performance evaluation of optimum and suboptimum multistatic

radar receivers. Their suboptimum structure is a special

case of the DDF problem that we shall be considering in this

report. Stearns £122 considered different combining schemes

in order to determine as to which achieves the best possible

.4 receiver operating characteristic (ROC). Some related work

which has been reported from a control standpoint has been

reported. Sandell and Athans £132, and Radner £143,

considered the decentralized static linear quadratic

Guassian (LQG) problem and derived appropriate decision

rules. Other information structural problems were studied

by Ho E15,16,173. Sandell, Varalya, Athans and Safanov
I0I

10
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C183, have surveyed the decentralized control methods for

large scale systems.

In the next section, we introduce the notation and

terminology for the distributed parameter estimation

problem. We also discuss the relevant literature on the

subject.

1.3 Distributed Parameter_Estimatiqn

1.3.1 stPecitinaderinggy

A detailed block diagram of a distributed parameter

estimation system with fusion rule is shown in Figure 1.5.

i%

Local parameter estimates are obtained at the individual

sensors and are transmitted to the fusion center where they

are combined to yield the global estimate. We will refer to

this distributed parameter estimation with fusion structure

as the DPEFwrob-le.m. The basic components of the problem

are as follows

1. A parameter space, consisting of points which

correspond to the random parameter, a, to be estimated. For

the single parameter case, it corresponds to segments of the

line -. ( a < *. The probability density function of the

random parameter, a, is denoted by p(a).

J-%

2. A probabilistic transformation which maps the

parameters to an observation space.

I .

*, ' . , . . . _ : ./. 5 5- . . . . .* . .. .* .. . . . . . . ., . . .
5,j V. dV.,V V
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3. An observation space consisting of points in an

n x N dimensional space. Each point Is represented by the

observation vector, Xy which is 1

where y, it the observation vector at the estimator i. Each

X,q in turn is given by ysm (yllpyjeq...qy&,.)7p where nPa

Lis the number of observations collected by each estimator.

Without loss of generality, we have assumed that the number

of observations Is the same at each of the estimators.

The observation vector has a known conditional density

function

P(YIA) - p(Ya,YM,...,Y,.1a)

4. An estimation rule a& - hj~y,) at each estimator 19

1 - l,29,...,sN. Each estimator uses its owen estimation rule

to map Its observation to an estimate. We will assume

that estimator I, I - lp2p ... N, dos not have knowledge of

the observations at other estimators jo j +mit 5 ,,..

The vector consisting of the local estimates will be

denoted by

h-(ha(y,)ph=(y=), ... h(yme)).

5. A combining rule a - faCI) -fa(3a,vant...,306)

I' w"hich, based on the values a,9 369,..., and ato, gives the '

global estimate of the parameter a.

13 5
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The block diagram shown in Fig. 1.5 and the notation

introduced in this subsection will be used In Chapter 6

where we will solve some distributed parameter estimation

problems. Next, we briefly review some reported work on

distributed estimation.

1.3.2 PErevpLus Work

Most of the work reported in the literature has dealt

with decentralized state estimation problems. Borkar and

Varaiya C193p considered asymptotic agreement in distributed

estimation problems. In their case, each of several agents

updates Its estimate and transmits it to a randomly chosen

set of the other agents. They showed that the common limit

which ring members agree upon depend upon the order in which 1

estimates are transmitted. Teneketzis and Varalya C20],

studied the consensus problem in distributed estimation with

inconsistent beliefs. They considered the case when two

people's estimates of the same random variable are

available, and discussed convergence of the estimates to the

saem value. In E213, Chang and Tabaczynski considered
1

multisensor state estimation with applications to the target

tracking problem. Willsky, Bello, Castanon, Levy and

Verghese C2219 considered combining and updating local

estimates and regional maps. The estimates may be generated

at different locations or at different times. They

emphasized the conceptual similarity between many problems

in decentralized control and in the analysis of random .

14
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fields. In E2339 they developed a framework for the study

of centralized estimation problems where the decentralized

estimation problem is imbeded into an equivalent scattering

problem. In E24], they derived algorithms for different

mapping problems in a unified framework. Castanon and

Teneketzis E253, obtained a distributed processing algorithm

which recovers exactly the centralized conditional

distribution when only the sufficient statistics are F
communicated. Washburn and Tesketzis in E2&] analyzed the

performance for hybrid state estimation problems. Varshney

and Varshney CE73, have considered recursive estimation with

uncertain observations in a multisensor environment.

In the next section, we present the report

organization.

1. 4 Roprtg~izIg

In this report we consider some distributed detection

problems as well as distributed estimation of random

parameters. Optimal decision rules and fusion rules are

derived for the distributed detection problems considered.

Similarly, for the distributed parameter estimation

problems, optimal local estimators and combining rules are Y

obtained.

In Chapter 2, we present the distributed Neyman-Pearson

detection problem where we design an optimum decision

system. First, when the fusion rule is known, the decision

15 S
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rules at the individual detectors are derived so as to %

minimize the probability of miss (or to maximize the

probability of detection) under a constraint on the .4C'.

probability of false alarm. Next, when the decision rules

at the individual detectors are known, we derive the optimum

fusion rule using the same criterion. We also discuss the

overall solution where we simultaneously obtain the optimum

fusion and decision rules.

In Chapter 3, we treat the problem of distributed

Bayesian detection with data fusion. The optimum decision

rules at the sensors and, the optimum fusion rule are

derived. Several special cases such as the independent

observation case and the identical detector case are

discussed in detail.

In Chapter 4, we present two schemes to be used for

distributed postdetection decision making.

In Chapter 5, we solve the minimum equivocation

detection problem for the DD and the DDF systems. Optimal *

decision rules at the individual detectors for both systems I

and, optimal data fusion rule for the DDF problem are

derived. Our criterion is to maximize the mutual

information (or equivalently to minimize the equivocation)

between the input and the output.

In Chapter 6, we consider the distributed parameter

estimation problem when multiple estimators are used and a

161



combining rule is employed to obtain the global estimate.

Optimal combining and estimation rules are derived.

In Chapter 7, we summarize the results and also present

some suggestions for future research.

17
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11. Neyman-Pearson Detection Using Multiple Sensors

2.*1 ~fitr1Quct-ion.

The theory of signal detection using a single radar 1'

very well understood E1,2. The Bayesian approach to the

optimum detection problem requires the knowledge of the a

priori probabilities and the costs. An optimum detection

rule is then obtained which minimizes the average cost of

detection. For most radar detection problems, the Bayesian

approach is inappropriate because the required information,

i.e., a priori probabilities and costs, may not be

available. For this reason, the Neyman-Pearson criterion,

which does not require the above knowledge, is employed

extensively in radar detection systems. Under this

criterion, a constraint is placed on the probability of

false alarm and, the probability of detection Is maximized

(or the probability of miss is minimized). The detection

rule thus obtained is used for signal detection.

In this chapter, we develop the Neyman-Pearson decision

theory for signal detection using multiple radars. We

assume the structure shown in Figure 1.3, i.e, individual

decisions from the radars are fed to a data fusion center

which yields the global decision. A constraint on the

18

I N N ... ,- .. .
2 A , P, . -- . . . . .



-.- F h~w T. V. V.

A probability of false alarm of the overall system (global

decision) Is placed and the probability of miss of the

overall system Is minimized.

In Section 2.2, we formulate the problem and define the

notation and terminology. In Section 2.3, we develop the

Neyman-Pearson decision theory when multiple sensors are

used for surveillance. We consider the problem of binary

hypothesis testing using multiple detectors. Firsts when

the fusion rule is known, decision rules at Individual

detectors are obtained. These rules are functions of the

data fusion scheme being employed and are, In general,

coupled. Secondly, when the decision rules at the detectors

are given, the optimum fusion rule Is derived. The overall

solution to the problem is also presented. Special cases of

"8AND" and "OR" data fusion rules are considered. A specific

example Is presented In Section 2.4. Finally, the results

* are discussed in Section 2.5.

2.2

We consider a binary hypothesis testing problem with

the following two hypotheses,

Ha i Target Is absent, and

H, s Target is present.

19
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We consider the system structure shown In Figure 1.3 where a

data fusion cantor is used along with the distributed

sensors,

The observations at the 1*11 detector are denoted by y,,,

irn1,25...,ON. We further assume that the joint conditional

probability density function p~iyp-yH) J-0919 is

known. Each detector employs a decision rule giyt) to make

a local decision us , i-1,2,...,N where

0 If detector I decides Ho

U&2-)

I If detector I decides H,

I -1,2P ...,ON

ML
The data fusion center determines the overall or global

decision for the systoe up based on individual decisions,

U~. 20fS$n . u)

As an example of data fusion rules, we present the "AND" and

"OR" data fusion rules for the special case of two detectors

(N-2) In Table 2.1. The global decision u Is simply a

Boolean AND or OR of the Boolean variables us and urn. Other

data fusion rules Involving other Boolean operations on

variables Cut)# can be formulated, e.g.# majority logic. "

Later In this chapter we will consider "AND" and "OR" fusion

rules as examples. It should be pointed out that these

20
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V
' Is

5.

Uz Usn u u

0 0 0 0

0 01

1 0

Table 2.1. "AND" and "OR" Fusion Rules
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fusion rules are not necessarily optimum. The derivation of

optimum data fusion rules for multiple sensor detection

systems is also considered In this chapter.

The goal of this chapter Is to develop the

Neyman-Pearson decision theory for detection systems with

multiple sensors. For this# we define the probability of *U

false alarm Pw, the probability of miss P.,, and the

probability of detection Po of the overall system

P. - Prob(u-l Ho)

P, - Prob(u-OH) (2-3) C.

Po - Prob(u-lIH.).

The probability of miss and the probability of .false alarm .

for Individual detectors can be defined In a similar manner

and are denoted by P,, and Pw.a i-lo2, ... ,N, respectively.

Two problems are considered here. In the first one,

assuming the fusion rule Is known, we find the decision

rules at the Individual detectors which minimize the

probability of miss PM, under the constraint that the

probability of false alarm satisfies Ppnla. In the second

one, when the decision rules of the detectors are given, we

derive the fusion rule to satisfy the same condition on Pv

and minimize Pm. In the next section, we employ the

Lagrange multiplier method for the solution of the problems.

22

p. 5 % %=%.So'CS. %f p . p~..-" .. . . ......... . ..



a .3 gjWrUted Neymn-Pearson Dtection

i2.3. tiaum mi __aton Rui

We consider the binary-hypothesis Neyman-Pearson

detection problem with N sensors. In this subsection, we

first assume that the observations at the individual

detectors arm statistically independent ande that the

conditional probability densities p(C&IHj), i-i1,2...,N,

J-091 and the fusion rule f(u,9ui,...9u.,) are known. We

wish to maximize Po (or equivalently minimize Pm) under the

constraint that PW satisfies the inequality Ppw_.

Following the approach taken in classical Neyman-Pearson

analysis, we form the function

r - P. * L EPw - a3 (2-4)

where L is the Lagrange multiplier.

We assume that the fusion rule is not necessarily

deterministic. In order to be able to express Pw and P. in

terms of the probability of false alarm and the probability

of is of the individual detectors, i.e. Pwils and Pms','

we define the following quantities

- Cuum..,.*,t) T , a vector whose elements take

values zero or one, representing the decisions of the

individual detectors.

23

[ %,F~.''. ..T',,e:',,' ..., r,,.,.,, .., .' ,. '.,'.... ,. ' . . ,. .-.. .., .-.. ,... . .. ...... %-%. ,% %; - _ -%-.- S,, -,



S.&

Fa - g -1 - P..'- P.,. -P (A HO)I (2-5-b)
S. S

and

Pk& - Prob( u-kj X) k - 0,13 (2-5-c)

where,

So = set of all j, 1 - 5 N and u3 - 0 (2-6-a)

S, - set of all k, 1 k -< N and uk - 1 (2-6-b)

Then, we may express PM and Pw as follows

PM E Pox fl (2-7) "%4

.%

a n d , "

Pw E Z Pi Fx (2-8)

where

Z U summation over all possible vector* x.

Substituting P. and PM in (2-4), r can be expressed as 4a

r E Pox Mx L CE Pin Fx a) (2-9)
X N

24
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Expanding (2-9) In terms of P.,.. and Pwo-9 the probability of

miss and the probability of false alarm of the p*" detector

respectively ( '-1929...,N), r becomes

r -r~ P. z Po.. f: + (I -PM"q,) E PaL0 MU
X X

0 4 A4 I '
*L M( - P..-) Z P"SE Fa Pp", E Plax F& - ) (2-10)

X X

where

04

0'4

84 8

*Fx (I pw) I PWWc P(xPIHa) (2-11-b)

0.44

PCA inP*CL MJj 0,1 (2-11-c)

-(U A~N P ... PU.-aslu....a... P Lk4) T  (2-12-&)

60 Ga where u,. is excluded (2-12-b)

and,

-1 S, where up. Is excluded. (2-12-c) 5

25
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We can write (2-10) an N

P0 6141 P P41 9

r Pp.., Z ( Po - Pol) Mx Z Po Mi o
X X

141 140I 14 14 0 14.%.

• L (Pw,. E (Pazx - Pix) Fm - a * T_ P1  F,) (2-13)
X X

Then, r can be expressed as

r - Cm,. Po, +" Ki,. + L E C.w,. Pw,. a Ks,.] (2-14)

where

14 140 141

C."" - E MA(Po5 - Pa.) (a-15-a)
X

Ki14  E MM Pox (2-15-b)

14 941 4

C.rm E Fn (P1 1 - Pin) (2-15-c)

and,

Kam. E " Fx Pin (2-15-d)

It should be noted that in the above formulation system-

wide performance Is being optimized rather than the

performance of each individual detector. The decision rules

obtained in this manner will not, In general, be the same as

the ones obtained when the detectors are treated

Independently of each other. In fact, the decision rules at

the individual detectors and their computation will be %

coupled. Now we proceed with the solution of the problem.

26
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While deriving the decision rule at one detector, it would

be assumed that the decision rules at all other detectors

have already been obtained. The decision rule at this

detector will be obtaind in terms of the decision rules at

the other detectors. A simultaneous solution of the N

equations obtained in this manner will yield the desired

decision rules.

Assuming that C.. and CP. are not zero, we may rewrite (2-

14) as

r LCw,. a_- Kn, Kim ._

,'.m M 4-------- --- ----- ] +4- -0,..O

Note that Cr-*op C.o and K,,/Cmj- are all functions of the

fusion rule and the other detectors and are thus independent

of the P*' detector. Since KL./Cq. is independent of

detector j', we can ignore it during minimization. Also, we

* let,.4

r

C.4..

---- I.. (2-17-&)

,.4.

L
C.~.-L" (2-17-b)

and,

a -Ka".
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We then have

r ... L. 1P,.-0. ] p - ,2 ... IN (2-18) 10

Minimization of ro. yields the following likelihood ratio

test (LRT) at the P't detector

P(Y.IHI) > L COS
-- L, O -------- t.(-9

P(ysijH0) < CM..
HO

where t" is the solution of

* 4/
P. - p(lIHo) d.. S . p - 1,2,...,N (2-20)

t".

Observe that the threshold of the Pa%" detector is a

function of the fusion rule and also the probability of

false alarm of the other detectors and thus, the other

thresholds.

Repeating this procedure for all the detectors, we will

get N nonlinear equations in N unknowns. A simultaneous

solution of these equations yields the set of thresholds

which minimize the probability of miss of the overall system

under a constraint on the probability of false alarm of the

overall system. It should be noted that in the special case

when the minimal solution Is at the end point of the

28
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i observation Intervals the Lagrange multiplier method fails. !

~In such a situation the above procedure must be modified.

For Illustration purposes* we present the quantities

defined previously for the case of' two detectors andp we '

obtain specific results for the fusion rules "AND" and

Two -D e tec t or _ N~ _y@ n -!Re a _ s n__DV& 1L l q .

Pk. Prob(u-klu."i, uO-J) isjok-O91

Moo -P.i PM-

p

M016- PM1-( I - P040)-.

MixI ( 1 - P~ft) (1- P"O 
/

%%

V..

Fi~e - Pw- (I - Pwa)

pc, P000 Pr, P,,m + PoQAPPS(I -P"W) + Po1" (1- PMO PMM

Po"(l PMO(1 PMM)

lp

41..
-. r.

2 9 .

obsevatin inerva, th Lagangemultplie metod-fils

In" much a situatio th above procedure must" be- modified %. "%"" " "
• " " -- a I I i I i . . . ." • 9 '



nj~~~j6-~~ -K 7rk'rWAA T# 'A

Cqa- P 0 . (1o - Po)(l - PoA) 41 P1o 1 Cl pa" )w a"

C., M PWO(Plea P...i- - Pax"0 + POi") *(Pa" - Pea)

Ki - Poi-0 P1 m + PO&L(I - P.4.)

Kai (Pao, Piao)Pw PIoM

C..-P., (Pem~ Po.1. P01.o +. Pa"1 ) + (PaA. 0  POAAn)

-W P.,1(P1 9 0  Pzcka -P11 " +. P1 1 .&) +(PIan - Pa*)

Kos P, 0 0 (i-Pwa) + PtILPwa (PILO0  Pscm)Pwz +. P290

This rule requires that

Pi" 0 Pi 1.

P1 0 9 - 0 P 1 0 -

-ZIP



The two LRT's and the corresponding equations for the

threshold* are

Hi

L----- t. 2s1a

<

and,

P (OI~o)dQL +J ij-.0

Inv tios cule

P o e 
%

F'2 -
'.5 ~j1 J 19

PKos - 1 -

.31-
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The two LRT's and the corresponding equations for the

thresholds for the "OR" fusion rule are

H,

(y) L -------- t (2-22-a)

.9
Ho

and,

a PWj -
p (01(Ho) dDL - (2-22-b

t

2.3.2 Optimum Fusion Rule

In the previous subsection, we derived optimum decision

rules at the individual detectors when the fusion rule is

initially specified. The optimization criterion was the

minimization of the overall probability of miss under a

probability of false alarm constraint. In this subsection,

we obtain the optimum fusion rule when the individual

detectors (decision rules) are specified, using the same

optimization criterion. We consider the binary hypothesis

problem as stated before.

We consider the system structure of Figure 1.3. We

assume that the conditional joint probability density

function p(yly.,ya,...yNeHJ), j - 0,1 is known. Each

detector employs a decision rule gl(yL) to make a local

32
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decision u i-,2# ... Nq where
1b

0 if detector I decides 14 I.

u- (2-23)

If detector I decide H,--

The data fusion center determines the overall or global

decision for the system. up based on individual decisions

i .e.,

1.0.9

U. fltpu g ... gum) (2-24)

* Assume that the decision rules for the Individual .,

detectors are known. As before, the probability of

miss, the probability of detection and, the probability of

false alarm of the overall system may be written as

P" E POX Pal(-
x

PO " E PoX Pas (2-25-b)

and,

m

-f E PI1 I Pseo (2-25-C)
x

where """

P m P(umkl .) k 0 0,1 (2-26-a)

and

PAS P(IHj) 0 m 01 (2-26-b) 45
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An before, the function to be minimized is

r - Pm + L C P. -*3 (2-27)

or equivalently# the function to be maximized is

F - Po - L C P.. - s3 (2-29)

where L is the Lagrange multiplier. Substituting for PD and

Pw in (2-289 we got

F - E Piz Pxi - L EE Piz, Pno -a 23229
X X I

Now, expanding F as a function of a specific value of

*9 fl* -(in(~puwmv... pum )v we may rewrite (2-29) as

F -Pi 1  Px"1 - L E Pix' Px'o 0 3'2 K(x-) (2-30)

where

a~~- -
"az x

K 6 - E PIM P 0  (2-31-b)

ands

a.4

E a summation over all possible values of x except x-. a

we wish to maximize F by varying Pixal when the probability

of false alarm satisfies P.. 1 a. This problem is equivalent

to maximizing PIK- PS-1 under the constraint Piz,* PK4*o lam'.

34
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Dividing (2-30) by the constant Px' we have

F- Plx" - L' E Paz' - 3t 2 * K'(n') (2-32)

where

F- F / Px, (2-32-a)

L- L PK°o / Pjz1  (2-32-b)

-" " i / Ps°o • (2-32-c) .

and,

K'(x-) -K(xl) / Px (2-3.2-d)

K'(x ) is a constant in P 1 ,. Equation (2-32) represents

the equation of a straight line in Pix'. The maximum is

achieved by setting Paz as follows A, ,

Pix" - min C*4,l)

1 (2-33-a)<";i

PX 0 N

o r -,

Pix" " min C a',1) -
pa .I >

L (2-33-b)

%

PaL'o < .

.0-4.
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For each value of M" we get one equation. Therefore, we

have a total of 2" equations. This set of equations

specifies the optimum fusion rule so as to minimize the

probability of miss under the probability of false alarm

constraint Pw .I a.

Now, we present an efficient search procedure to

implement the above result.

Search Procedure

1- Compute the quantities Pz / Pao for all possible

values of . Arrange these quantities in a decreasing
S

order. Denote this ordered sequence by CS..), a - 19, ... , N2

where 4.. m Pxm, / PX'o. Define a sequence Ca.)

corresponding to CS.), where r. - Pa', / S.

2- Get k - 1.

3- Form the sum I- Zr..

4- Compare Ok to U.

If 16c ( a, set k - k 1 and go back to step 3.

5- Set p,-m for all m I k-1,

0
- a, and,

Paz- m 0 for all m > k
le,

36 ,,
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where

This procedure is illustrated with an example in the next

sect ion.

Now, If we assume that the observations at the

individual detectors are conditionally independent, the

solution to this problem is given by

P&N - min C a,l)
Mz °  >

L (2-34)

PSx -'*0 0" %

In the next section we present two examples, where the

case of two detectors is considered. In the first one, We

assume that the fusion rule is known and we solve for the

optimum decision rules at the two detectors. In the second

one, we solve for the best fusion rule when the detectors

have already been designed. 40

Let us assume that the observations at both detectors under .

the two hypotheses are exponentially distributodo i.9.-I"-

v. .

%7 ° % %
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ptYSINO) e *p(-Yt) YIZO 1-1,2 (2-35-a)

0 otherwise

p(yit1H) (1/Ok) exp(-y6/Ok) Y&ZO 1-1,2 (2-35-b)

0 otherwise

where the signal to noise ratio (SNR&) 1-1,2 is given by

SNR% 9, 0 1 i-102

ando

92, >1

We should note that the above is an approximate model for

several radar problems. e.g., If a square law envelope

detector Is used for narrowband Gaussian signal and noise,

the output follows the exponential law C28, P.15-103. The

likelihood ratios at the detectors ar-e given by

P(y&/H1 ) (1/91) exp(-Y&/VN)
chYk ---------- m-----------------------

P(Y%/H0 ) exp(-yk)

-(1/00) exp~y'(l-(1/Ok))3 1 1,2 (2-36-a)

The LRT Is

(1/Ok) exp(yt(1 (1/00))) t 6

38
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P%

or

yt~l - (1/03) lnlttes)

<V

HO

or
H& 1

HHe

> 9%

s. ---- 1n(ttek) -t' 1  1.,2 (2-36-b)

< 1

where ta can be expressed as a function of tot as

tt - (1/01) expCt'1 (1 - (1/90)) 1-1.2 (2-36-c)

The probability of false alarm and the probability of miss

for the two detectors are given by

Poo 26 dy, " .I.

t t1

r 1 (01/(1-Ok)) ,"

mxp- -------- n(, t ) - (, tO)

1-1,2 (2-37-&)

ando N

39 'r
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P-, - (1/00 exp(-y&/i0 dy& I - exp(-t./-t)-

ftl-.xp[ - -- n(G, ta)l 1 - (O).tO

!*)4-I

1-10m2 (2-37-b) *

From (2-17)9 the two thresholds also satisfy the following

sets of equations

a. -Ks,

c..5

L Cw,1t 1 = il t--] -1 (2-39)

r*11

A smultaneous solution of the above equations yields the
desired thresholds. The solution requires the knoledge of

the fusion rule. Next# we consider the "OR" and "A ND"
fusion rulesi

In this case,

CW, 1 - PWj I -exp(-t 4) t

C, i P.1 I - (xp(-t2,/-3) i 9 ),j 1,2

a anL " P. exp(-t ,)

4%

L%, C.., i %

4 i-la (-39

C.,.... .: ..-V
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We substitute the above Into (2-38)p pe get

1 - K

L (I - P-)A

t' ----- i iui i.Jml,2 (2-40-a)

1 P.,,

' %

Solving (2-40-b) for L (for =1I) and equating the results

Po-- -- - , , -- - -- 2- 1

PMO PM ,.

Sosit(utng for ti Pw and Pnt i tin t (-e) and

(w-40-&)o w gt

1 1 - exp(-t'&) 4D
-xPt'(l-(l/)) -----------

Ow I - sxp (-t "tr) ,

1 P - exp(-t)"
t-----------pt")) (24---) 0

Susiuin o 1 .P,. an P-. ip( in (2-41) and

41
%,

41
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and,

a - exp(-t'o)
exp(-t',) - - (2-42-b)

I - exp(-t'm)

Next, let exp(-t's) - A and exp(-t'i) m Am, and substitute

in (2-42-a) and (2-42-b), we have

I - Am I - A,
---- --- --- ------- --- --- --- (2-43)

(1-lie.) (1-1/9k)

OI(Ai - Am) *,(A, - A)

and,

As A, - --- - - (2-44)
I - Am

As a numerical example, let e,-2, Om"4, and a - .25 and

solve for An. We get the value of An that corresponds to

the optimum solution such that

Am - 0.175

and, the value of A, Is b

A, 0.0909090

which lead to the following values of t', and t'm

V, - 1.742969

tm - 2.397953

42
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with a value of P., 0.24671711. We show the ROC for this

problem In Figure 2.1. Next, the "AND" case is presented.

In this case we have a situation where the threshold is at

one of the end points.

F aF

In this case, we have

C,- P. - exp(-t*,) iuj it ljl2 (2-45-a) V

C~k- 1 - P..,. - exp(-t',/9j) i~uj iqjinl,e (2-45-b)

From (2-39) we have

I C., tz C qW to "

or -.

V.

(1 - P,.m) (1 - p, 1 ) (-

P,1 te PU'5' t 1.

5%

Substituting (2-36-c) and (2-45) into (2-46), we obtain '

exp(-t'a/9W) G exp(-t'1 /01 ) 01 .:
------------------------------------ ---- m----------- ----------- --------------

oxp(-t'.) exp~t'l(1-l/0.)3 ] xp(-t') exp~t'(11/9)]

(2-47)

which leads to the condition ,-%.'

Since in general, Op. 0 Ga, we conclude that the minimum

e:orresponds to the end points. Solving this problem we find

43 ''~
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that P, - P.. and, Pw - Ppm from where we can solve for the

value of t', (and t'.) . We show the ROC for the case when

Oz-2 and 46-4 In Figure 2.1.

Assume that the probabilities of false alarm and miss p.

of the two detectors with independent observations, which

have already been designed, are given by

Pw, - 0.3, Pwa - 0.4, Pm, - 0.2 and# Pma - 0.25.

We wish to find the optimum fusion rule which minimizes the

probability of miss of the overall system when the system's

probability of false alarm satisfies Pw - 0.21. a

For this example, using FF F F~t F", Moos IMcs

M1 .0 and M , (the quantities defined previously), the %

ordered sequence (B.) and the corresponding x- are tabulated -

as follows

.8 x .75 0.6

.3 x .4 0.12

.8 x .25 0.2
-------- ------ 1.111, _ (10)0

.3 x .6 0.18

.2 x .75 0.15 .

--------- ------- 0.535, X 1 (01)',
.7 x .4 0.28

45
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.2 x .25 0.05
------- - ------ 0.119 and, X' = (00) ,
.7 x .6 0.42

where x- = (i,-,ie-)T We then have

= 0.12,

= 0.18 and,

= 0.28.

Since the value of P, that we want is 0.21, from the

procedure outlined in the previous section we conclude that
S

0.21 - 0.12 " .

P131 = 1, P115 = 1, P2.,., = 0 and, P1 -., = ---------- = 0.5.
0.18

This fusion rule yields the value of Pm to be 0.3.

2.5 Discussion

In this chapter, we have considered the signal

detection problem when multiple sensors are used for

surveillance and a global decision is desired. Local

decisions are fed to a data fusion center where a global

decision is obtained based on a given fusion rule. The

Neyman-Pearson criterion for signal detection is used for

system optimization. A constraint is placed on the

probability of false alarm and the probability of miss of .-

the overall system is minimized. When the fusion rule is

given, the decision rules at the individual detectors were

46
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derived. The decision rules and their computation at
-lb

individual detectors are coupled. We have considered the

special cases of "AND" and "OR" fusion rules. We have also

presented two examples for illustration. While computing

the decision rules, one may obtain multiple solutions. Only

the feasible solutions are to be kept. The optimum fusion

rule, when the decision rules of the individual detectors

are known, was also derived. It should be pointed out that

solving equations (2-19) and (2-34) simultaneously, in the

case of independunt observations, solves the problem of

finding both, the optimum fusion rule and the optimum £

-' decision rules at the individual detectors. A solution of

similar equations, in the case of dependent observations,

yields the overall solution to the problem with dependent

observations.

%- %
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Ill. Distributed Bayesian Hypothesis Testing

3.1 Introduct ion '

Bayesian hypothesis testing problem for centralized

systems has been dealt with extensively In the literatur.e"

[ 13. Given the a priori probabilIities and conditional 'i

densities of the observations for each hypothesisst fixed

costss are assigned to each possible course of action. Thong

optimum decision rules are derived so as to minimize the

average cost. The resulting decision rule is a likelihood .

ratio test.'-..

There has boon some recent effort to extend the "

Bayesian hypothesis testing formulation to the cae of

distributed sensors. Tenney and Sandell1 33, have solved .

the binary DD problem for the cae of t o sensors i.e.

they hve treated the distributed detection problem without

Sfusion center. The cost assignment may reflect the effect .,.

f fusion but the design of a fusion rule has not bion

considered. The work has been extend'ed by Lauer and Sandell )

to detection of signal wavefores In noise In 153. They have-',

also briefly considered some more general situations such an _

the dependent observations case. eadjdI Ei, extended

Tenney and Sgandel s works i33 to Include multiple

hypothesecs and more thanr o deeso a tohe DD problem.

48
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The contribution of the work reported In this chapter Is to
I.,

present a generalized layesian formulation of the

distributed detection problem. The formulation may be used

to obtain solutions to both the DD problem as well as the

DDF problem. Thus, previous work becomes a special case of

the work reported here. In addition, we consider some

special cases such as the case of independent observations

and Identical detectors in detail.

In Section 3.2, we formulate and solve the binary

Bayesian hypothesis testing problem for the DDF system. In

Section 3.3, we extend the study to the case of M

hypotheses. In Section 3.4, we present som special cases.

In particular, we present the solution for the case of

Independent observations. Special attention is paid to the

case of binary hypothesis and identical detectors. Examples

and some numerical results are presented in Section 3.5.

Section 3.6, contains-a discussion of the results obtained

in this chapter.

3.2 Distributed Binary Hyoothesis Teting with Data Fusion

3.2.1 Problem Statement

In this section, we consider the binary Bayesian

hypothesis testing problem where we have two hypotheses H.

and H. We consider the system shown in Figure 1.3. which
.5 %'

is also reproduced as Figure 3.1. Each detector I, based on

its observation vector y a (yaytyI, .. ,yan)y makes a
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decision usp I -192p ... 9N. Each decision, uSO May take

the value 0 or 1, depending on whether the detector I

decide* Ho or Ha.

The probability of false alarm and the probability of

detection of detector I are denoted by Pwa and Pot

respectively. The overall probability of false alarm and

the probability of detection are denoted by Pp, and Po

respectively. The global decision, up Is made, knowing the

decision vector containing the Individual decisions, i.e.,

M -(URUN.,... qu".)V. We assume that the global decision,

up depends only on the decision vector ?1, and does not

depend on the observations at the individual detectors.

The goal of this section Is to develop the theory of

Dayesian hypothesis testing for the DDF system, i.e., design

the optimal system (obtain both the fusion rule and the

decision rules at the individual decision makers) so as to

minimize the average cost. The Dayes risk function that a.

we wish to minimize can be written as .

I I
Ra X Z CIA. P., P,-(decide H..IH., is present) -1

irn0 im0

where Ca., is the cost of deciding H,. when H4, Is present and

P4, is the a priori probability of hypothesis Hap iuij - 0,.

Throughout this chapter, It will be assumed that CIA. and P,

51
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a

are known. We can rewrite (3-1) as

Ro- CO* P. Pr(u-OIHO is present)

CIO P. Pr(umlIHo is present)

Cos P1 Pr(umOIH, is present)

Ca P1 Pr(U-lIH& is present), (3-2)

ort

Roo PoCoo(1 - Pw) * CIOP,-) PI(COj(1 - PD) * C1 1 P0)

(3-3)

Substituting 1-Po for P1  and rearranging (3-3), we have

WIN

Rm - Pw ( Po(Cao - C.o)) + PD ((1 - Po)(C1  - CO))

4 Ca1 (1 - Pa) * COOPo (3-4)

oro

Rm - Cw P. - Co Pa * C (3-5)

where

ando

C,- - Po. C 1o -C.o) (3-6-a)

C.) -= C - Po)(Co1 - C1 •) (3-6-b)"--

p..

C -Co (1 -PO) *COO P0. (3-6-c)
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Throughout the discussion, we will assume that making a

wrong decision Is more costly than making a correct decision

i ,e.,

C10 > Coo

and, (3-7)

Chos > b11

which imply that Cp. > 0 and Co > 0. Before we continue, we

need to define the following two sets of conditional

probabilities,
wp

P(xlH,) - P(uau,,...,UNiH3) (3-9-a)

which is the probability of deciding u, at the first

detector, um at the second detector,..., and um at the N"
".

detector when H, is present, juaUm,...,uft m 0,. "

1%

P(u-IjAx) - P(uU~IU,M,...,PUN) (3-8-b) .
.

which is the probability of making a global decision i, when ..

the individual detector decisions are ulum, ... ,uf, where

I$USpump...p . 0,..

Thus, the probability of false alarm can be expressed as

P. - : P(u-llx) P(xIHo) (3-9)
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an the pr----------- of detectionI

PO -E NU11M)P(-KHI) 3-10

J%.

CD -Z(-1M PPum1IO P(IC (3-11)
Nx

Subtttn w3-e pr ned w3-th in slto o to5) we hav pobem

3.~~. 2.2 t

First, we assume that the detectors have been designed

and we obtain the fusion rule which minimizes Re. The

result Is presented in Theorem 3.1. Then, we assume that '

the fusion rule Is known and we derive decision rules at the w

Individual detectors which again minimize Re. This result

Is presented In Theorem 3.2.

Given the decision rules at the Individual detectors

the following fusion rule minimizes the risk function for

the binary DDF problem

P~xIH P > Co

---- for all x (3-12)
P(xIlHo) < CO

P(uml Ix)in0

54 1
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The minimum risk, F6.,., Is .

R.., = C - -Co P(xlH.) CW P(xilHol ON

S

',

S m x [C- P(xH ) - Cm P(xlHo)- >0C) (3-14)

and C, Co and C. are as defined before.

We asm that the detectors in Figure 3.1 have already

been designed, i.e., for a given observation vector Y,

the decision vector x - (u#vies...U.)r, and the conditional

probbilitly densities P(xlHI), j - 0,1, are known. Let

- u " (U at .. • u-m) be one out of the 2N possible

decision vectors. Then, Re from equation (3-11) can be

expressed as

Re - P(u-lx) CC.. P(x*lHo) - CO P(_xIH)f 3 K(x-)

SS.

where

55 14
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K(x*) - E P(u-ljx) CCw P(RIKo) - Ca P(xIH*) +C

X~bX X

(3-19)

(3-17) is the equation of a straight line in P(u-1I1) where

the slope Is (C. P(1-' o) - Ca P(NIHo)) and, K(ej) Is a 5

constant in P(u-lllx). Since we have assumed that the costs

Cis are preassigned and the detectors have already been

designed, the quantities C, P(ly°Ho), Co and P(x-IH:)are

known. P(u-lJM0) is a probability# and it takes values in

[0,13. In order to minimize Re, we must have

P(umlIx O) - 0 if the slope is positive and,

P(umlt x*) - I if the slope is negative.

-'.5

Ore

Pu- 1 5.)-

CW P(R-IHo) - Cn P(NOIH0) 0 (3-19)

.

Using the cost assumption given in (3-7)p (3-19) is

equivalent to

P(RIIH) > Cv.
)  -- (3-20-a)
P(uIHO) < CD

P(uinl I e)-
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oro

-u

((x°) (3-20-b)
< CO

uin0

which represents the fusion rule for any decision vector K.
°'

Now, we obtain the value of the minimum risk, Ra...

Substituting from (3-20) Into (3-11), the risk function can

be written as

Re..- C + Z (Cw P(ilHo) - Co P(xlHa)) (3-21-a)

or,

Rm,.m C - E (Cn P()iH 1 ) - CW P(XIHo)) (3-21-b) AL

S

where

S -C uQ(X) > C,./C. )

We remark that for all g in S CCzP(jIHi)-C€ P(NIHo)) is

nonnegative and therefore, Rzo.,. 1 C.

Q.E.D.

ThMgrem.2

Given the fusion rule u - f(uium,...,uN) and the

conditional densities p(y3,qyw•,VN9H4)P J - O,1, the

decision rule at the PO" detector, p - 1,29...,N, which
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minimizes Ra is given by

Y'. u,.-1

(Y- Hc.. H1  dyb JdX" Pm P(b4~ C

where

1 0 YP4

An P(uin1xLt.) - Pum1x9,1-2-c

and,

X.* -(uipuin,... pup.ij,...u). 3-22-d)

Proof

We can expand Ro given in (3-11) In terms of u"P the

decision of a specific detector Ps P~ - l,2t... PN. We then

have

Ra - C. +E... X((P(umlju....u.MlP..PuM) X
Us .... 

except u' A

CC,-P(u1 ,.. ,u..ml,. .*.u..jHo) - Cc0 P(u1,9. . u"nlr. . PU~..H0

+(P(uml 1jlu",.,.OV...UP) X

CCWp(u.. .Pu""O, . .q ugHO) - CDP(ui,. . u"inQ, . . H ) )) '
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Let

Ax"- P(u-lg") - P(u-Ix..) (3-26-a) -*

and,

C,. -_, P(u-IJ.) lC P(?X"fHo) - Co P(x"IH0)3 C
X04

Thent Rn may be written a,

Ra- t : ANEC. P(x-rcHo Co P(x."IH*)3 * C" (3-27)
WA"

But

Pk%

P(xIH,) - P(xIY). p(YIHj) dY (3-28) .

Y-l

where

is the integral over all possible elements of Y .

(3-29)

41

Recall our earlier assumption that the decision of each

. detector depends only on its own observation. Therefore, we

may write

* N
P(Xg ijuyy) (330a Nua S..

60
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and,.

P(x8.Y) -P(uomjjy.). P(X'*IY'A - 0,1 (3-30-b)

Substituting (3-28)o (3-29), and (3-30) Into (3-27)p we have

Re -y.Pu-jo E d"A"Pxl-

4 I4

MC, p(YIl~o) CD YHI3

At this point, we assume that all the detectors except the

p*" detector have been designed and obtain the decision rule *

* at the $p' detector so as to minimize Re. This procedure

will be repeated for all of the N detectors. A simultaneous

solution of the resulting N nonlinear equations will yield

the desired result. From (3-31), we obtain the decision

rule at the P*" detector as

P(u,-1 YM(

E IAgo P(x"IYP)C P(YIHa) -CD p(V.IHI)3 dY" 0

yeP(uo-11 P

611

%But
% %

P(YIHJ) ~ ~ ~ ~ ~ ~ ~ 4 4'."yj) PYIj 3..3 *.
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Substituting from 13-33) into 13-32)1 w e get the following 2_

I-I

.-

ro

_Yba ( 3-.34)

It it clear from 3-3) that P(u3-y) can be either 0 or 1.

ihus, we have a non randomized deciion rule for each,

detector.

Q .(.D.

Corollary 3.1I -

The overalIl io lut ion to the b inary Bayei an DDF )

problem, i .e., obtaining the decision rules at the $

individual detectors and the usion rule which jointly

minimize R., is obtained by solving N equations of° the form-'*
.,"(3-3Y) and 2N equations of the form (3-1() simultaneously. 0

WI remark that the above equations bre coupled and

nonlinear. It in a difficult task to solve them when N

becomes large. The case of independent observationsl is
discussed later in Section 3.. In this case, the equations

are easier to deal with and the decision rules at the

individual detectors beco clafsical likelihood ratio

q~ ~~ .. .'%-"minimize Rat Isobtained by s g N e

, , ..'' C'. . (3-34)L".L",\ and''.. " eq a i n of. the' form (3-12 simultan . , _ "7 . , . "%"" """.". " ' " e ously " '. ." ; " . . . ," . . .-_
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In the next sections we generalize the results to the

case of N detectors and M hypotheses.

3.3 r-_rAo-IAP~tAgn_t_9 M-ary HYRothesI LToting

In this section, we consider the Dayesian DDF problem

illustrated in Figure 3.1, with N decision makers and M

hypotheses, H.oH,,...Hm-i. Each decision maker it uses its

observation vector y, to make a decision ut, imlo ... 9N.

Depending on whether the I*" decision maker decides H., 9S

Hi,..., or Hm-i, uk may take the values 0,1,..., or M-1

respectively. Knowing the decision vector x, which contains

the decisions of the Individual decision makers, i.e., 9 -

(u 1 qu....,um),y the global decision, up Is made. This

global decision may again take the values 0@192, ..., or fl-i.

It does not depend on the observations at the individual

decision makers. Here, we develop the theory of Bayesian

hypothesis testing for the generalized DDF system, i.e.,

obtain both, the fusion rule and the decision rules at the

individual decision makers so as to minimize the average

cost Ra. Now, we state a lema that we will use for the

solution to our problem in the next subsection.

%.°

fl-1
Let F E E PL C, where C& are known positive constants

63
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and P, satisfy Z P, 1 and, P, Z 0. The minimum value of
1-0 -.

F, F.a.,, is equal to C.,., where

Min CC~C~q ...q.14-..

This minimum F.,. is achieved by setting

for C, - C..,.

0 otherwise

3.3.2 Optimum SyStem .

The generalized result is stated in the following

theorem

Theorem 3.3
.U.%

Assume that the costs C,, i, - Ol,... ,M-l and the a

priori probabilities are known. For the Bayesian DDF system

of Figure 3.1, the optimum fusion rule and the optimum

decision rules at the detectors are obtained by solving the

following sets of equations simultaneously

1 if Cm'<C&.' for all I, imOl,...,M-1 "

and i + m.plu-m x° ) -

0 otherwise. 0

for all x °, x" (u- ',ua',... p )7 ,  uk °  - 0,1,...,M-l

64 ,.
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and,

1 If 114(h) 1 Ip(m) for all at such

that hiom and hom - 0,1, ... PM-1

P(u..mhly..)-

0 otherwise

192 -i2... 9N

where

Ckm Z Cis P(x,* H3) P(Hj)
iMO

and# 114(h)im given by

I"(h)- E E p(yp Ha) JdY" PsCss
1-0 J-0

yo-

E Pu- np-~uI~j) N.ly)pv"Ysqs

V.

Pre~

Roo- E Z C..,, H4) Pr (dcide HIIJ pe5nt
1-0 J-0
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where &gains C,3 is the cost of deciding H% when H4 is

present and, P3 Is the a priori probability of hypothesis

HSP 191 091,...OM-1. Recall our assumption that the--i

global decisions up does not depend an the observations. It

only depends on .Therefore, we may write

P(u-iJH) E Pr(u- ) Pr(l).

X 
1 j

Substituting (3-36) Into (3-35) p we have

M-1 M-1
R, - E: E: Z P(U-ilN) P(X 1H3) P(H3) C.3 (3-37)

i 10 j-0

Next# we proceed with the solution to our problem. '

First, obtain the optimum fusion rule which minimizes Re.

While deriving the fusion rule@ we assume that the :

decision makers have already been designed. Therefore p

P(_ IH") is known for all possible decision vectors x,

',

X"(u,,uat .. ,UN)7 . Lot x ° " (u °, p .. UN4°)r be one of I.

the reN possible decision vectors. Separating the terms

which depend on x h in f3-37, Re may be expressed as ..4.4

M-1 M-1
Re E I P(u-IIxO')  E: C(umi,H4) P(x-lH,,) P(H.,)

M-1 M-1 "
u Z P(u-mll) E CIS P(XlH.) P(H()

(S3-38)

%r %

% .4%
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In equation (3-38), Cis, P(H3) and P(xIH3) are known

for all Ij such that ij - 0,1,...,M-1 and all vector* x.

Therefore, the second term does not depend on P(umIlx) and, ie

minimizing Ra ° with respect to P(u- Ix') minimizes Ra, where 0

M-1 M-1

- P(u-i x) E Ct , P(x-IH,) P(H3) (3-39) %.%

Now, applying the result of Lemma 3.1 to our problem,

where

M-I

Ct E Ci P(*'IH3) P(H3) (3-40)

Rss.%, is achieved by setting P(u-mx-) 1 for the value m

of u for which Ck- is minimum. In this case the value of £

Rs.%. is equal to C.-. Thus, the optimal fusion rule is
r'.%

I If C 1 Ck for all i such that

I - 091, ... #M-I and i+ 4m

0 otherwise (3-41)

.

a
This last equation states that, for any decision vector

X* M(U1,UN,... ,O), the fusion center decides that H. is

present where C.- mIn(Co-,CeP...m-i,).
0

Next, we obtain the decision strategies at the

individual decision makers. We obtain the decision strategy

at the P*" detector, p - I,2,...,N. While deriving the

decision strategy at the P"* detector, s - 1,2,...,N, we At
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assume that all the other detectors have already been

designed.

Recall that Ra is given by (3-37). We reproduce it

here

M-1 rM-1 .-

Ra - Z X P4 Cas E [P(u-ijx) P(41HA)] (3-37)
iO J-O x

In terms of Ps the P " detector, Rn may be rewritten as

,M-1 M-1 M-1 %

Rn E E I P4 CL4 E E MPu-11M.b) P(I.jb4IHs)] (3-42)

i-O J-O k-O

where

x" m (aUseU ---.. k--oUm7..*N) (3-43-b)

apd

kk

-l (alu,,um...,pui-,up....,)'r (3-4t3-a) *

E a summation over all possible values of x... (3-43-c)

KjA.

Recall the assumption that, each detector's decision"

~depends only on Its observation and that It does not depend•'

" on the hypothesis present. Therefor, we write

% . %

Na -(ux,) - . ,u,.Y),p(Y ,) d' (3-4b)

and8

,r ',P''. ,,'' '"."-" ,P. Z,," ,," . ,"..,"' ' ,." "*, " "' " *,,.' ,,"*., %" ." . "" "" °" "" "" "" "- "."'-""-""- " . .' ." ." '- "' " ." " . s.",,,"' a
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U .! .. . t -. 4_ . 4, -p ......... .. ' ,..-,-.. . .. j .j _ .r Etl

,IP

'%i~

which, using our earlier assumption that decisions at

different decision makers are independentp becomes

MA-

, (.xIH) - P(u.Iy.) p(Y1H3) dY (3-45)

Y

similarly,

IN) .. dy. P(um-kIYp)p(Y.IH3)

ye

Y".

%* ,C

rr

where Y.Y and, were defined in (3-2) and (3-29)

Y".

respectively and,

'I.-27F

P(XbaIY) - P(U. I Y.) (3-47)

Substituting from (3-46) Into (3-42) and interchanging
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summation and Integration over y,., we may rewrite Rip as

M1-1 Mi :~
R- E IP(um.kjYs.) p(Y-IHs) "'

J-0 k-
Yi..

E P3, C&, Z PNum114.)
1-0

yo.
(3-48)

We have the following relationship,

Jdy4 P(u"smklys.) P(Yb.IHs)J dYM P(*' 4
1 y") p(Y I y..H.I)

YYe

iP(ue.iky) P(Y.IH,)JP(x"IY"'9~f
y04 Yo. if k4j

(1 E P(upmhly.)) P~,I, ("YpY1y.H)dY
h-0 Ijl

Y" hmJ Y if Icij

(3-49)

Using the above equation, Re con be expressed as

Re K(h) *Rw(h) (3-50)

70
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where

K(h) X p (Y" H3) E PA, CLS Z P(U-igi-no.
j -O 1-0

Yh4

J dY PCx'IY') P(!'Yaa ,P4j) (3-51-a)

V.4

ands

Rw(h) E P(u..mhly) p(Y-1 H3) E P3 Ce.,
J-0 h-0 J 1-0

h~sj y.4

x1 I Pun~~)Puix,~ dY P~,IY" P(Y"IY.4,H&)

(3-51-b)

We remark that, K(h) to a constant Independent of

P(u,.mhly.J. Than, minimizing Ra with respect to P~uainhlysa)

Is equivalent to minimizing Ro~h). we define 1"(h) as

1-0 J-0
Y04
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Substituting from (3-52) into (3-51), we have

11-1
RI(h) dy,. E P (uh y,) Ip(h) (3-53) .

h-O -.

Y,- hjm

Therefore, it is possible to minimize Rw(h), and

consequently Rat by choosing the following decision strategy

for the decision maker P, PaI,92, -.. vN"

I if I,.(h) - 1,.(m) for all m such that

P(u,.-h y -,) hu and hm m O,91...,9M-i

( 3-54 )

0 otherwise

Repeating this procedure for all of the N decision

makers, a total of N equations is obtained. Simultaneous

solution of these equations yield the decision strategies at

all decision makers which minimize R.

Again, note that these decision strategies are

nonrandomized. The equations are coupled and highly

nonlinear. Therefore, the solution is not straightforward.

This problem becomes easier if we assume that observations

at all decision makers are independent of each other. This

latter case Is discussed in the next section.

_~~~Oy#ra 1.. iQ1.+o_! t _on

The overall solution to the M-hypothesis Bayesian DDF

problem with N decision makers, ie., obtaining the decision
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rulem at the Individual decision makers and the fusion rule b

which minimize Ra, is obtained by solving N equations of the

form (3-54) and MN  equations of the form (3-41)

simultaneously.
Q.E.D.

In the next section, we consider the Bayesian DDF

problem when the observations at the decision makers are

Independent of each other, and some other special cases.

3.4 Sp-ejc _S..qrn

In the previous section, we obtained the solution to

the DDF problem with M hypotheses and N decision makers so

as to minimize the Bayesian risk. The solution consisted of .i

WN + N equations which must be solved simultaneously to 60_-

yield the decision rules at the individual decision makers

and the fusion rule. We noted the computational difficulty

in obtaining the solution due to the coupling and

nonlinearity of the equations. This computational
.

difficulty Is reduced considerably by Invoking the .

independence assumption on the observations I.e.,

P(Y1Hj,) - (SIt (3-55)
WA

A ,%.,-

Next, we present the solution to the Bayesian DDF

problem with Independent observation.
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If the observations at the decision makers are

Independento the detectors become threshold detectors and S.

the solution to the problem requires solving the following

equations

1 if C.° < C,° for all i such

that i+m and mi O,19...PM-1

P(u-mIKX-) -

0 otherwise (3-56-a)

for all x*, x ° - {u*P . .o.um) Y)v uk ° -- O,1,..., OM-1

and,
4." i

if I"(h) - I.(m) for all m such that

h.m and hm -o,1...,M-.

Pluo.-h Y-p(u,.mhly.4 )- -,

0 otherwise

P. H - lo,2...N (3-56-b)

where

c.-- E C / P(u.-Ia H,) P(H.) (3-57-s)

JWo Ul
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and,

M-1 M-1 -b
Im(h) ,, E p(y,.IHj) P, C,,

A t A

ZfP(uilx.) -P(u-ix,.)]jl 3 P(U.mym) p(y..H3) dy-
XM

rn-i y,

(3-57-b) -.

Bin&y Case

In the case of binary hypothesis testing, we may use

the procedure developed in Chapter 2 and get, the following

likelihood ratio tests
-a *.-

H,
p(y,.IH&) >

p(Y,.IHo) < C,.
HO

P l2,..N (3-58) .%4

and,

PuI> C'x)"l

for all x (3-59)

Fx < CD
P(U1 x)0O

"here

SC Ia I Po (Cio- COO) Z FxbA (Pix - P1K) (3-60-a)

PAO M1

Con" P, (Co, - CI) E MXb" (PON - POX) (3-60-b)
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F.- - (1 - P p) TT P. (3-60-c)

So $1 -b

o Sa

Dx - (Il-PO)''PO (3-60-0)

IU
Fx (1 - Pp.) P.. (3-60-f) V

PIN - probability of deciding j when the decision of

detector P is k and x is given, ktj - 0,1 and,

P l,2,...,N (3-60-g) %

ande, -
. %.

Sot Si. So and S. are given by (2-6) and (2-12)

Note that the solution of the binary Bayesian DDF

problem requires the solution of 2N N equations. There

are 2 0 possible fusion rules and we must select one

out of these. It Is clear that the number of fusion rules

grows very rapidly with N. In order to make the problem

tractable, we next obtain the solution for the case of

identical detectors with independent observation i.e.,

P(Yj H.) -jP(yLIHJ,) (3-61-A)
•,~ .:.....
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and,

p(YkIH3) -p(y.IHO) for &l h,kI h,k o ...,N

( 3-81-b )

3.4.2 mnilqutw

In this subsection, we continue with the binary

hypothesis testing problem. We assume that the detectors

are identical with independent observations (3-61-a)

and (3-81-b) and obtain the optimum decision rules at the

detectors and the optimum fusion rule so an to minimize R.

Since the detectors are identical, it Is obvious that

all of the detectors should have the same thresholds and,

consequently, the same values of probability of detection

and probability of false alarm. i.e., Pot " Poj and Pwk -

Pw. for all ij such that ij - 1,2,...,N. Thus,

Pi - P 1 j for all xt and M such that _g, and x,

have the same number of ones.

For notational convenience, we define

0 -m Prob( decide u-llx contains j ones) j 091yI...,N"

YI %
( 3-83 )

Therefore, for a given value of the threshold at the tJ.

detectors, the fusion rule is given by the following set of

' P
77 77 , ,
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equations,
Qo mn 1

N > 
m

C( -pD)/(I-p.) 3 L (stage 0)

Go=O

Q~iml %-

(N-i) >
(pD/p.) [(1-pD)/(1-p)] L (stage 1)

I (N-i) >
(pD/p') [(-pD)/(-p.)3 L (stage N-i)

,g~~.0 d

N >
(pD/pw) L (stage N)

(3-64)

where pD and p are the probability of detection and the

probability of false alarm of the individual decision makers

41-'P respectively, and L - (C../CD). .

Since we assumed that the threshold Is known, po and p.. P

are also known. We claim that the optimum fusion rule in

this special case reduces to a "K out of N" fusion rule.

Next, we Justify this choice of the fusion rule and obtain

the optimum value of K.
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It is well known that the receiver operating N

characteristic curves (ROC's) of optimal detection systems

are convex C123. The ROCqs of the individual detectors in

an optimal system are also convex. Moving down in the set

of equations describing the fusion rule, (3-64) i.e., from

stage I to stage I 1, I - O,1,...,N-l, we notice that we are

multiplying the left hand side term by (po/pw)(-p.)/(-pD).

From Figure 3.2-a, we se that (PD/p) a 1, and from

Figure 3.2-b, we observe that (l-pO)/(1-pW) 1 1.
'L

Therefore, (pn/p)E(l-pw)/(l-pn)] Is always greater than or

equal to unity. Thus, if the left hand side term becomes

greater than the right hand side term at any stage i,

1-O,l92t...,N-1, the left hand side term will remain greater .

than the right hand side term for all further stages, i.e., .'

for all j such that j i. Therefore,

121m 1 mQI... m .m 0- 1 (3-65) -

which Is clearly a "K out of N" fusion rule.

Next, we obtain the optimum value of K, K.c, which

minimizes Ro for the "K out of N" fusion rule.

Using a "K out of N" fusion rule, the probability ofUmft ft.
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detection Po Is given by

N N I N-i
P Z ( ) (Pb) (1-pD) (3-66-) -.

I-K Ia

and the probability of false alarm Pwa.

N N I N-i
PW- " x (pW.) (I p W-) (3- "6-b) .

I-K I.

where

N NI
(3-66-c)t i ! (N-i) !

and,

ni -n(n-l)(n-2)...(2)(l) (3=66-d)

Substituting (3-66-a) and (3-66-b) Into (3-5)o for any value 0%

K' of K the risk functions denoted by R&(K') is given by

NN I N-i I N-i
Rw(K') - E C ) EC-(p,.) (1 - pw) - CO(pO) (1 - PD) 3

lImK' I

+ C (3-67-a)

Similarly, R.(K'+I) can be expressed as

N N I N-i I N-i
R-(K'+I) Z Z C ) [Cw(pw) (1- p.-) - Co(po) -1 pot]

C (3-67-b)

First, we will show that F6(.) has a single minimum.

If It In a decreasing function or an increasing function,
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points. Otherwiseq It remains to be shown that It has '.p'.

exactly one decreasing part and one Increasing part Implying'
that it has a single minimum. To shoo thnm, we examine the

sign of (R.(K'+I) - R=(K'))} or equivalently, the sign of

F(K')p where

N K' N-K' K' N-K"
RP(K'+I) - Rm(K')- C ) [Co(po)(1- p9) - Cw(pw)(1-pw) 3

K' ( 3-69-a )

and_

K' N-K' K' N-K'
F ) [C(pn) (1 - po) - C.-(pW) ( 1 - p.) 3

(3-68-b)

The function F(.) can be used to express the nature of the

function Rs(.) as follows

RsCK') < Rs(K' I)

>

FK') 0 (3-69) 0

<

RoCK') > Rw(K'+I)

Now, let

K' N-K'
QCK') - (pn/pw) C(1 - p9) / (1 -p.) 3 (3-69-a)

.% j%,

Then, (3-69) is equivalent to
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Ra(K') < R6Kl*I)

A('(Ce/CD) -L (3-70)

Ro(K') > R.(K'4-1) -

Let K" be the first value of K (K increasing from 0 to

N-I), where Q(.) 1 L. Theng using arguments similar to ,

those used previously# we conclude that A(K) > L for S

all K > K". This means that R.(.) has a single minimum

and K" Is the value of K which minimizes Rn(.). Let us

denote this value of K by K.. 

Now, we find the value of K..*. We compare Q(K') to

L. We rewrite (3-70)

Ra(K') < R(K'+.l)

K' N-K' > .
, D(K') - (pD/p.) [(--pD)/(i-p,.)] L (3-71)

('-.,' :*
RaCK') > R.(K'+1) ff

Taking the log of both sides, (3-70) becomes

log((po/pw) [ (l-po)/(I-pw) ] log(L} (3-72)'.,R.CK') C R.lK'*1) .t.'-.

Rn(K') > RO(K'4-l)

.- -AA MY 0I "CI



Rearranging (3-72)p we have

K'log((po/pw)(I - pw)/(l -pD)) -
Rs(K') < Rw(K'.1)

4N logC(l - PD)/i - pw)) logCL)

Rn(K') > Ro(K'+l)

(3-73)

which may be written a

Rs(K') < RnCK'4i)

> Nh

K'logf(po/p.)(l-p.)/(l-pn)) logCLE(l-pw)/(I-pn)3

R*CK') > R.(K'4.l)
(3-74)

Since PD Z pw. and I-pD I1-pw.- log((po/pw.)(l-pw)/(l-pn)) is r

nonnegative and therefore, we can divide both sides by this

term without affecting the sign of the inequality. Then,

(3-74) becomes

Rs(K') <Ro(K'.1)

>log CLE~i - pw)/(l - po)3N)
K'----------------------------------------- (a-.75)

< log C(po/pw)Cl -WM p)/1-PD))

R&(K' >R.(Kg41)

Let

logCLE(I - pw)/C1 - po)3-)
-------------------------------------------------- (3-76)

lOOC(PD/p.)(1 -WM pw/ -pD))

V.V
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Thus, K.,* is given by 
4

[r~ if N- 20

K..,. m (3-77)

0 otherwise

where is the coiling function.

The solution to the overall problem i.e., optimum

decision rules at the detectors and optimum fusion rule, can

be obtained by solving equations (3-58) and (3-77) S

simultaneously.

In the next section, we present an example.

3.5 Examjple .

In this section, we consider a binary Bayesian

hypothesis testing problem using two detectors for

illustration. As in Example 2.1, we assume that the

observations at both detectors are independent and

exponentially distributed, i.e.,

exp(-yl) if YLI10 ,: .-. '

p(y,IHo) - i-,2 (3-99-a)

0 otherwise

85

% %

, .,-

%4 .4. P.-. .N~ ~.



(1/9t)exp(-yL/eL) if ylz-O
F'4.

p(ySIH 1 ) - 1-1,2 (3-88-b) -1b

0 otherwise .

Here, we will design the DDF system, 1.9. obtain the

optimum fusion rule and the optimum decision rules at the

detectors, so as to minimize the Bayesian risk Ra. Recall

from (2-36-a) that, the likelihood ratios at the individual

II

detectors are

ply" lH,) 1

(y) ----------------- ---- exp Cydl-(1/e,))) il,2
p(yIHo) e,

(3-89) " ".

and the likelihood ratio tests (LRT) are

H, £> G, , .,

y& -n-t- ) t," i 1,2 "- '
< l-e".

(3-90)

The probability of miss and the probability of false alarm

at the individual detectors are given by, .

( 1/( 1-0 ) )

P 1 - (e, tO I - le2 (3-91-a)

and,

Pe/,1  (O tt 1 i - 12 (3-91-b)

The thresholds and, the inequalities describing the fusion

86 p



rule &at .

PWm(PIQQ -PICA - Pvao2- +P 1 1 ) +(Plzax - P1 0 0 ) .

to L --- - - - - - - - - - - - - - - - - - - - - -

P"I PO - po.. - P0,1_ + Po&L) +(PO", - Pox&)

(392)

PI. P 9  oi - P 01 I o 3 )4 P, - Po 

---- -- - ---- - L(3-93-a)

Il-PD, lPoo
- - - -- - -L (3-93-b)

I1 PWr1 1 P . <

PDI I-PD
- -- - - -- L (3-93-b) f

1-, P.1  P <

PI jQ 1
PDI iPoo

-- -- L (3-93-d)

CW~~. PO(CO CO

L -- = - - - - - - - - (3-9 4 ) .

Cu. P0 (Cc, - CIO)
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In Figure 3.3, we present the ROC curves for this ,

example with 91 - 2 and G. - 4 for the two known fusion
76

rules "AND" and "OR". Note that the ROC curves are the same ,.,e 0

ones as shown in Figure 2.1. It is clear from these curves

that the "OR" fusion rule Is better. For the same example

as above, Figure 3.4 shows the ROC curve for the optimum DDF

system. Each point Is obtained by deriving the optimum "

decision rules at the detectors and optimum fusion rule. ___

The optimum ROC Is the same as the one obtained bu using the

"OR". Then, it Is clear that, for this example,"OR" is the

optimum fusion rule. Figure 3.5 shows the ROC curve for the
S

optimum DDF system with 9,-6 and On-8.

It should be noted that, in general, the optimum fusion

rule Is not necessarily the "OR" fusion rule. It can be any

nonrandomized fusion rule, e.g., for the case when e, - 2,
'% .%

On- 40 and high value of Po, the optimum fusion rule is the

decision of the second detector i.e., u - un. The same is

true for the case when (9,99) - (2,998).

Next, we obtain the optimum value of K for the "K out
m

of N" fusion rule which minimizes Ro. In this example, 20 -V

detectors are used (N-20). These detectors have independent

identical exponential distributions. For different values

of 0, we plotted R' (R='- R-C) as a function of K and -,A

obtained the value of K at which Ru Is minimum. Then, we

compared it with the value of K obtained using equation

(3-77). In all cases, the two results agreed with each -V
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other. For examples in Figures 3.6, 3.7, 3.9, and 3.9 we

show the Rol vs. K curves for Po - 0.6 and It',e) - (2,2),

(6,2), (7,4) and (10,4) respectively. In Figure 3.6,

K.O 4 - , in Figure 3.7, K..w - 1, in Figure 3.89, Kp* - 3

and, In Figure 3.9, Kop l 2.

3.6 Discu ssion"

In this chapter, we have presented a generalized

9' approach to the problem of distributed Bayesian hypothesis

testing with data fusion. It should be noted that with a

proper cost assignment and a proper fusion rule, the DDF

system can be reduced to the DD system which is thus a

special case of the problem considered In this chapter.

Minimum probability of error is widely used as an

optimization criterion in the design of optimum detection

systems. For this criterion, we can obtain the results by

simply setting the costs appropriately. It is to be noted

that, in general, the fusion rule does not have to be "AND" ,
'.9

or "OR". The fusion rule may be any nonrandomized rule.

In the next chapter, we apply the results obtained in

this chapter to an interesting problem in radar signal %

detection namely, double threshold detection. "-.S

92 1.
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IV. Double Threshold Detection With Distributed Sensors

]-s

4. 1 Ltroduc._

A postdetection integration technique known as double

threshold detection is often employed for target detection

in radar systems. Greater detectability can be achieved by

using predetection Integration. But due to simplicity and

cost, postdetection integration is often implemented even

though its performance is slightly poorer.

A block diagram of the double threshold detection system

is shown in Figure 4.1, E23. Out of N waveform envelope

samples coming out of the matched filter corresponding to an

N pulse train, the number of signals that exceed a first

threshold, T', at the sampling instant is counted . If this

number is equal to or greater than a second threshold , K, 

the target is declared present. For single sensors, this

technique has been analyzed in EB, 31-363. The system

optimization criterion used is the Neyman-Pearson criterion.

It should be observed that the double threshold detection 6

system and the binary DDF system with identical detectors

. considered in Section 3.4.2 are analogous and the results

obtained in Section 3.4.2 can be employed to obtain the 0

results for the double threshold detection. From our

results in Chapter 3, the values of the two thresholds,

namely, K and T (T is related to T' through the likelihood

ratio), are given below ..'.
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Let

1-p N

r0 1log IL ------

W - -- (4-1)

lo [ PD (lI-pp.)

PP- (I-PD)

* wvhere

p.. - the probability of false alarm of an element of

the observation vector

pD - the probability of detection of an element of the

observation vector

and,

L is the Lagrange multiplier.

Thene the optimum value of K is given by,

[ if N Z 0f,

K "(4-2)

0 otherwise

The value of the threshold, T, in the likelihood ratio test

for any sample is obtained by solving the equation obtained

after taking the derivative of equation (2-e8), setting

(SPD/&Pw) - T, and setting the derivative equal to zero.

Than, T is given by

99
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T L -------- 3)
Cr%

Nm N (4-3)N-iI) b
where

N N (i-I) (N-i-I)
Cr - - ( ) Cp ( 1 - pw) ( i - N p)]3 (4-4-&)

lI-K I

N N (i-i) (N-1-1)
co E ( ps, I - PD) Ci- N po) 3 (4-4-b)

i-K I

The probability of false alarm for the detection system is

equal to c, i.e., 

~~Recall that the probability of detection and the probability .7...

- ~of false alarm of the detector were given in (3-66).,-•

. .. .

Next, we extend the above result to the case when

multiple sensors are employed alon ith a data fusion

, center. Two schemes are proposed and system parameters are -_

:-, obtained for each of the schemes.

1,'- .

" ~.2 PoStdatection ILAt ration With.Dis rjj ytpdSsens~qrj '.

In this sectony we propose to alternate schemes for

post detection integration when distributed sensors are

eeployed. These schemes differ In the bandwidth required

for channels connecting the sensors and the fusion center.

100 r
ct T
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,I
The block diagram of the first scheme is shown in Figure -

4.2. Each detector Is receives an observation vector yi,

i l 129 ... IN. Each observation vector consists of n U
components. We assume that each detector compares each

element of its observation vector, y3, - 1,2,...,N,

,. l ... ,n, to a threshold TI. If the j*h element of

the observation vector at the i"" detector exceeds the first

threshold w we set the the JO" element of the decision

vector of the i*" detector equal to 1, i.e., u,3 - 1,

I - 1,2t...pN, J - lp2s...,n. Otherwise, we set u& - 0.

Thus, each detector it i - 1,, ... IN has an n-dimensional '.. J
N"%

decision vector 49 Y1 (ull Ua... U,,.,)T, associated

with it. Note that without loss of generality , we have

assumed that each observation vector y, consists of the same

number of elements. Each individual detector sends its

decision vector, u, to a data fusion center where a global

decision# u, Is made using a fusion rule. The global . ..

decision Is based on a decision vector x which is obtained

by concatenating the decision vectors us, i - 1,2,...,N,

(4-6)
0

Next, we present the thresholds at the Individual

detectors and the fusion rule. The results are obtained

directly from the results of Chapters 2 and 3. We treat the

101 I
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.0

problem as a system with nxN detectors. The goal here is to

design a system which minimizes the probability of miss,

when the probability of false alarm Is constrained by

PW - I 1 a'. In this case* the optimum fusion rule is given

by

pK- mmin (a',l)

1L (4-7)

PIK* - 0

and, the threshold in the likelihood ratio test Is s.

T L (4-8)
C .... 

..

where

00° - a - E PIK PNo (4-8-a)_.°.

and, Px, Pso are given In (2-5). C.m. and Cw.p are given

In (2-15) except that the subscript rj corresponds to the

'"1  element of the decision vector of detector P, ,q,

ml, ,N and, j- l,..,n,
*1% %

The block diagram of the second scheme is shown in

Figure 4.3. In this scheme, each detector act* as a double

threshold detector. Dased on its own decision vector

103 A
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D.F I D.F 2 D.F 3 ro D..N-1

u Ut2  TU3* es ..

Data Fusion Center

Ua• A..

Figure 4.3 Postdetectlon Integratton t'ging Distributed Senqors, Scheme 2
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W,. 1P - U,,,UM,...PUIV Y1f it uses a second threshold

to make a decision us, I - 1,2,...,N, which I% sent to the

data fusion center "here a global decision , u, Is made.

The function to be maximized in this case is the following

r - Po - L EP. - a3 (4-9)

or equivalentlyv

r - E PIK DK L E E Pxx Fx 3 (-0
X X

M

where PD and P. are the global probabilities of detection

and false alarms respectively. Pump Dr, and Fa were defined

earlier in (2-5). For any specific decision vector x, the
.4-

fusion rule is given by

PIK- min Ca,1) a

where

a -E PAO PIK411a
X"j

and
I

L *L (4-11-b)
PIL4, a

The second threshold K". for detector 2, I,2,...,N is

IN

%0p..,

% .

% . % %.. , . . . . ,.. . , . ... - . . . . . ,



given by

rM-1  i -f N 0 -%

K, -

0 Otherwise

where

in Ii,

I -p

m-N m 4-12-a)

p . I -p,.§ ]
logl ---- 1 ---

PI

.....

p,. - probability of folse alarm of any element

of the observation vector of detector p

po. probability of detection of any element of

the observation vwctor of detector i ...

Pw. probability of false alarm of detector pA

n n (i) (n-i)
Pg., - Z ( ) pW. (l-pp ) ..

i-Km I

a -Ka".

-- -. P 1,2 ... N (4-13)

,IN,

100
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'".,,',U

% 4

PD.. " probability of detection of detector P

-b
- n (i) (n-i)

LPD"' (1-pob) (-4

liK. I j • p , .o

L -L - (4-15)
COS.

~~0 a.

C'... E Fx (PIK Pax) (4-16) '."

Dx

S,

(4-21)

Sz sellt of all k, much that uk is an element of x and -'-'

(4-22)

So - S- whFre up is excluded (4-23)

S, - S, (here up i[ excluded. (4-24)

."'- .
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The first threshold, t;o, of detector is given by ]

to, Lo. (4-25 ) i',"
C ".

where

n in) 1 (n-i-1)

C -p' I-P") - n wo 3 (4-2- a)

1 "K, I

n n (i-l)(n -) i

C'no - ( ) [pop (I - Poo) (i - n pop)3 (4-26-b)

and,, ppr aind pop are the probability of false alarm and the e,.

.%

probability of detection olf an element ofr the observation "' -

vector of detector

The overall solution to the problem is obtained by,

solving ( -11)p 4--1 and (4-25) simultaneously. In the

s pecial came where the detectors are identical, we could I

view it as a triple threshold detection system, where the

equations become easier to solve. ,

C %D

Nr

'a'

• ,, ., ,, ,,.:,e,. '. .. ,.". ,," . .. ..) ,,. 1 (-1._._. _. -p...,.)-, . -.,., ,- ,,, . ,.,) (4 . " - 26,. .,.,.-) ,,..,.,....-.,.'.
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5. .1

V. Distributed Minimum Equivocation Detetion 
cs is

m In statistical decision thery s voity oar criteria

are used for the optimiztion of detectors. 
For example, in

the Bayesian formulation a fixed cot is assigned to each 
L.

~~posible course of action and then, the average cot s l

minimized. In applications where such costs are available

and are meaningful, Bayesian cost formulation provides an

excellent choice for system 
optimization. However, this may

not be the case In all applications. In some applications, "5--

our interest may be the amount of information that we are

able to transfer, e.g., in telephone channels we are .5

concerned with the amount of information transmitted rather

than the nature of the information itself. In such 5.

situations, cost may be a variable and entropy-based cost

functions may be more meaningful.

In this chapter, we shall use entropy based cost "'"

functions and derive optimum multisensor detection 
systems. S

For single sensor detection problems, Middleton E2939 used .-

such a criterion for the design of an optimum decision

system where he minimized the equivocation between the Input 0

and the output. In the next section, we will review some

basic information theory definitions. We will also show the

correspondence between the classical binary detection system

.. .u
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and, the binary communication channel. Thant we present the

results for the single sensor case. In Section 5.3, we J

solve the minimum equivocation detection problem for the DDF

system. In Section 5.4, we present the solution to the

minimum equivocation detection problem for the DD system.

In Section 5.5, we present a numerical example.

5.2 Prliminaries

5.2.1 Basic Information TheoryDefinitions

In this section, first we briefly present some

definitions from information theory E41p 423, which will be

$used in the rest of this chapter. Let x and y be two

discrete random variables taking values from the sets

(x%#xe9 ... xm-) and Cyawyep ... ,y#) respectively. Let P(xm.)

and P(y,.) denote the associated probability measures and

P(x~~ly,,) and P(xm,.y,,) denote the conditional and joint

distributions respectively. O

The entropty h(x)p which measures the uncertainty about ...

x Is defined by

h(x) -E Clog Cl/P(x).J) - P(x) log C1/P(x))
x

(5-1)

The conditional entropy (equivocation) h(xjy)P which

measures the uncertainty about x given y, is given by

h(xjy) -E Clog C1/P(xly)3) - E E P(x~y) log t1/P(xjy)J
x y

(5-2)

110I
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The mutual Informations I(xly), is the amount of information

provided about x by y and Is defined as
-b

I(xly) - h(x) - h(xly) (5-3) %

Also, we have the following relationships

I(xly) - I(ygx)

- M~y) - h(ylx)

- h(x) + h(y) - h(xqy) (5-4) ,/,?
where h(xy) Is the entropy of x and yp defined as

h(x,y) - E (log [l/P(xvy)]) - E 1 P(xvy) log [I/P(x,y).

(5-5)

5.2.2 Correspodence Between Detection Teory ad.

Inforemt ion Theory

Block diagrams of a classical binary detection system

and a binary communication channel are shown In Figure 5.1.

We observe the correspondence between the two problems as

follows. The source in the detection problem can be viewed %

as the Information source in the Information transmission

problem. The boxed part of the detection problem

corresponds to the channel of the Information transmission

system. The decisions In Figure 5.1.a) may be looked at as

the output of the channel in Figure 5.l.(b) The probability

of detecton, Po, the probability of miss, Pm, and the

probability of false plarm, P, in the detection problem are

.. ~~~ ~ ~ ~ ' %P % p ,

*V % S r%% % % I. % % %.*-. evPf.
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equivalent to the transition probabilities for the

information transmission problem as indicated in Figure 5.2.

16
In this case, the input Is a random variable H which may

assume one of the two values 0 or 1t ( H - I corresponds to .

the hypothesis H, being present I - 0,1). The output is the

decision random variable u which may again assume the value

of 0 or 1. Therefore, the transition probabilities are

given as follows.

The probability of deciding "0" when a "0" is sent,

P(umOIH-O)o is

P(ulOIHiO) I 1--p. (5--a)

Similarly,

P(umnj HinO) a P. (5-6-b) _

P(umOIH.I) - P" 1 Pa (5-6-c)

and,

P(u-1lH-l) pC (5-6-d)

As indicated earlier, in this chapter we will consider ,

detection problems where we minimize the equivocation

between the input and thoo output. Throughout this chapter,

we will denote this problem by the MED problem. In this

case, we are Interested in minimizing an average cost, where

the cost is not a constant but, is a function of the a

113 tN
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posterior i probability of H given u. This cost function is

C(uPH) - --- (5-7)
P(HIu)

Recall that, the average Bayesian risk Is defined as

Ra E(C(u,H)) (5-8)

where C(uvH) Is a constant for a given pair u and H. For

the lIED problem, the average cost Is the conditional entropyor0

of H given u, i.e.,

h(Hju) -E Clog E 1I P(Hlu)J) (5-9)

Knowing Pa and Pat our problem is to obtain decision rules

so as to minimize the average cost h(Hlu) which Is

equivalent to the problem of maximizing the mutual

information ... ju. This Is obvious from the expression

which relates I(Hou) and h(HIu), i.e.,

I(Hlu) - h(H) - h(HIU) (5-10)

and, realizing that h(H) is constant when the a priori

probabilities Po and P, are known. Thus, the minimization

of equivocation is equivalent to the maximization of I(Hiu).

Later on in this subsection, we conclude that the point
1W

*(PD,-) corresponding to the detection system which

maximizes the mutual Information# lies on the receiver4C

operating characteritic curve, (ROC), of an optimum Bayesian

% %
a%



detector. In order to prove this resulto we first need to

prove the following theorem.

Theorem 5.1

Given the a priori probabilities P. and Pi, then for

each value of the probability of false alarm P. (or

probability of detection PD), the minimum mutual information

I.L.(Hiu) is achieved at the point where Po - Pw.

Proof

For the channel model shown in Figure 5.2, the mutual

information I(Hlu) Is given by

P(HIu)
I(Hlu) m Z E P(H,u) log C (5-11) £

H u P(H)

and the a posteriori probabilities are the following

P(u-O) Po (1 - P.) + (1 - Po) (1 - PO)

1- (5-12-a)".."

and,

P(usl) PoP (1 - PO) PO
-.-.

m a1  (5-12-b) .

where Po and P1  are the a priori probabilities, P(Ho) and

P(HO) respectively. In Figure 5.3, we show a typical sketch

of the mutual information as a function of Po and P for
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given a priori probabilities. Substituting from (5-12) into

(5-11) and cancelling terms, we got

I(Hlu) - (1-P.) log ---------------------------
P0 (I-P.) + (1-Po)Cl-Pa)

P1.
* PO PV. log - - - - - - - - - - - - -

PO P + (1-PO) PO

I - PD

* (L-Po)U(-PD) log --------------------------
Po (I-PW) + (l-Po)(l-PO)

PD
* I-PO) PD log---------------------------- fPO Pe. (1-Po) PD ,-A.

(5-13)

Depending on the value of Po, It is known that the maximum

of I(Hou) is achieved by setting both Pm (P, - I-PD) and Pp

to be either "0" or "I"s i.e.p Po. - P, - 0 or PP. - Pm - 1.

I(Hlu) is a concave upward function in the transition

probabilities P(uIH) (refer to Theorem 1.7, [4139 for

details). Thus, for a fixed value of P. (or PD), I(Hgu) is

concave upward function in Po (or P.), as shown in Figure 01

5.4. Therefore, for a given probability of false alarm P. w..

of P. (or a given value of probability of detection Poi of %

PD), if a minimum exists and is interior to the interval .

(O,1), the value of PD which minimizes the mutual

information I(PwiPD) is obtained by setting the derivative

of I(.) with respect to PD equal to zero. Taking the

derivative of (.) with respect to Po we have

.- - -0
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%

which yields -.

Po EPn - P..2 - 0 (5-16-a)

Since Po + O, we have

PD M P. (5-17)

O.E.D

Now we show that the ROC of the optimum detector which ""

maximizes I(Hlu) Is in the shaded area of Figure 5.5, which

Is the region between the ROC corresponding to the optimum

ayesian detection rule and the Pa - P. line.

We use the following properties of the receiver S

operating characteristic curves (ROC) of optimum detectors

1. The ROC curves for optimum Bayesian detection

systems, lie In the area above the line PD - P., and 1-

B. These ROC curves are always convex cap.

In Figure 5.6, we show some typical ROC curves

associated with different decision rules for a given

detection system. Curve (1) represents the ROC

corresponding to the optimum detection rule (using the

Bayesoian formulation). Curve (2) is the inverted ROC C123, ;..

which corresponds to the worst detection rule. Therefore,

the ROC corresponding to any detection rule for the system

has to be within the region encircled by curves (1) and (2).

For all detection purposes, for a given value of P we

would like to maximize the optimum probability of detection
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PD. Mutual information is a symmetric function in its

transition probabilities, i.e., the value of I(HIu) at any

point A, with coordinates (Pwl,PD%), such that A, is above

the Po PP line, is also achieved at a point An with

coordinates (I-Pwil-PDI) below the Po - Pw line, i.e.,

I(POPO) - I(I-Pwul-PD). Therefore, we restrict the study

to ROC curves above the Po - Pw line, i.e., the ROC curves

lie in the shaded region of Figure 5.5.

ROC's corresponding to nonoptimum decision rules will

have all or a part of the curve below the ROC corresponding

to the optimum decision rule as shown by curves (3) and (4).

Therefore, for any given probability of false alarm P, -.

such that Pw, C (0,1), the corresponding probability of

detection on curve (I), PD,, (on the optimum ROC) and the "

one on curve (4), Pot.. (on a nonoptimum ROC) satisfy the

following

for all Pw, such that Pp.1 C (0,1), PD% 1 Pn-

Finally, since I(Hju) is a concave upward function in PD for

a given value Pw, of Pr, and the minimum value of I(Hju) is

achieved by choosing PD - pa,, then for values of Po such

that PD Z Pw', X(Hju) Is an increasing function in PD.

Therefore, if PD, _ Pow then I(Pw,PD4) Z I(PP,,Po,) i.e.,

for a fixed value Pw,, tie corresponding value of P0  .'

obtained using the Neyman-Peerson criterion maximizes

I(Hlu). Therefore, the pair (P0 ,Pw) which maximizes I(Hlu)

lies on the ROC of the optimum Bayesian detection system.
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likelihood ratio test

H,

P(YIH,) >

1(y) - ------- t (5-18)
p(XjHo) <

IHO

Also Pa and Pw are given by
1

PO - P(UlIH) - P(QIHO) dD (5-19-a)

and,

Pow P-"=sI°)" P(QlHo) d (5-19-b)

t

% .% .,

The mutual information Is given by (5-13)9 or equivalently

I(Hlu) - Po (1 - P.) log (1 - P.) - Po (1 - Pw) log So

- (1 - PO) (1 - P) log SO + PO Pe. log P.

-(I -PO) PO log a, + (I - PO) PO log PD

S(I- PO) (1- PD) log (- PD) - PoPW logo&

(5-20) 0

where so and a, are the a posteriori probabilities, given In .

, (5-12). Taking the derivative of I(Hlu) with respect to Ps.,
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and setting

--- t(5-)

and rearranging the result, we get

I(HOu) I - P..
- - - - -- P log .... P-4 t (1- Po)3log o.

I - PO

1PD- t (1 - Ps) lo--------Po + t C1 - Pfl~log 61 '"

Setting this derivative equal to zero and, solving for t, we -1

get

- PC log(lo/a 1 ) - log((l-Pw)/Pw)3
t ---------------------------------------------

(1 - Po) C log(so/as) - log((lI-PD)/Po)"

Since Po and PP depend on t, the right hand side Is also a

function of t. After solving for t, PD and Pg. can be

obtained. It can be shown that the value of t In (5-23) Is

the same am obtained by Middleton E93 and Sabrialle C371. S

Next, we solve the MED problem for the DDF system.

5.3 D It rkh ImIJmunem Eaivocation Detection with Data

. %J"

In this section, we consider the binary hypothesis

testing system shown In Figure 1.3. We assume that the p
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observations at different detectors are independent. We

find the optimum fusion rule and the optimum decision rules

at the individual detectors which maximize the muzual

information I(Hou).

Again we assume that the global decision, up depends

only on the present decision vector x and that the decision '

ut of detector I depends only on its own observation y.

i-l,2,...,N. We will use the result obtained in Section
S

5.2, i.e., Po and P. for the system which maximizes the .. .

mutual information correspond to a point on the ROC of an

optimum system with minimum Bayesian risk
0

Using the results of Section 3.4 for independent

observations, we conclude that the detectors used are

threshold detectors. First, we assume that Z(Hlu) i a -

function of a variable v, belonging to an interval (amb)

and, we find an equation in v which can be solved to yield

the maximum of l(Hlu) with respect to v. Then, we assume

that the detectors have already been designed and we obtain

the optimum fusion rule which maximizes I(Hlu). After that,

we assume that the fusicn rule is known and we obtain the

optimum decision rules at the individual detectors so as to

maximize I(Hou). Finally, we obtain the overall solution,

i.e., we obtain the optimum fusion rule and the optimum

decision rules at the detectors which maximize I(Hlu).

As we mentioned earlier, before we proceed with the

solution to the problem, we present the following theorem. -
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Theorem 5.2 -*

Lot I(Hou) be the mutual information between the random -%

variables H and u. Let v be a variable such that v E (apb).

and I(Hlu) - f(v), (the mutual information is a function of

v). The extremum (maximum or minimum) of I(Hlu) is obtained

by solving p

I is increasing in v

>

P-(CI- C01 ) - Po(Coo - Co) .. 0 I has an a
Lv Lv extremum ,

I is decreasing in v

(5-24) -

where

C,. - log ----------- i, 0,1 (5-25)
P(u,) P(H,)

Proof .'J

The mutual information I(Hou) is given by (5-4). The

* logarithmic cost function is given in (5-25). Rearranging

I(Hju) and substituting C, , i,j - 0,1, into (5-4), we get

I(Hlu) - Po (C,., - Coo) P, - P1 (Co - Cis) P0 + Pa Coc"

" P, (5-26) .,'
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.4

Let v be a variable such that V E (arb), and I(Hju) is a

function of v. The value vm.* of v, where the mutual

information has an extremum ( If the extremum exists and

E(avb) )p Is obtained by setting the derivative of l(H;u)

with respect to v equal to zero. Taking the partial ,.

derivative of I(HIu) with respect to v and rearranging the

result, we get

6I (H;u) SP.. SPI
- - F(Lv) Pa (C1 o - Coo) P1 (Cos - Cas) ---
Sv 6v 6v

(5-27)

where

SCIC o coo $Cos S C • S

F(Sv) - Po (----- ------ ) P- P (----- - ----- P
&v Lv &V &v

+ Po - - - - - + P1  (5-28)
6v &v

or equivalently U.

6coo SCo I .

'(Sv) - - PCU r - P E[ P1 (1 - P)]

4 Iv

------ Po P ------- Ps P (5-29)
SV 6v RU

130

,, , .U ,, ,,- U .,.+* .. ,p ,' , ,i., . ,, .,a./-. .,, ,,- ',,- . . . . .U * l ,U . . . ..i:. . . , . .... . . ., ,. ,,, U'.* . ..
as**** % 1. % % . ~4%' -*.-..-. .. U U. U J*, .''*a



But i
4

SP.. SP,. CPD -

6Co0 0  6v 6v 6v *

--------------------------------------------
&V U1 - P.) P0> (I - Pw.) + P, (I - PO)

sc 10  6v &v Lv V
-- -- - -- - - - - - - - - - - - - (5-30-b)

6v PP. Po P.. + Pi PD

lP0)- - - - - - - - - - P1

SC<X I v 6v &v
---- --- -- --- ---- --- --- --- --- (5-30-c)

iv (I - PV) PO (I - P..) + P1 (I - PD)

* and, i

-------- P0 ------- P,

---- = ---- -- -- ---- --- ---- --- --- (5-30-d)
6v PO PC.Pw + PPD

Substituting (5-30) Into (5-29) and rearranging, wo have

SPW~.* SS...OCP

IP.. CP Po(ILPD- P D
+Ev)o------o---- E--------- -----------------

4P. LPD Po (1 - Pp.) + P1 (I - PD)

*C--~~~~~ P* -P 1  ---------------------- 

Po P.. P1 PD
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6I (HIu)

which in equal to zero. Then, - becomesI
4v

SI(HOu) P, SPD
------.- - P 0 (C. 0 - Co0 ) - P1  CoC1 -C 1 1) -

6v Sv 6v

(5-32-a)

or .' ,N
,C.-'_.J

4 L(HOU) SPO JP. V
-p1 (C- - Co1 )-Po ( Coo -C 0 )--- --

L'v Lv 6v

(5-32-b)

* %C%*.,-%.IL

But, the following is always true

Va

I(Hlu) is an increasing function in v

SI(Hlu) > %IM

---- 0 I(Hou) has an extremum
Lv <

I(Hlu) is a decreasing fu-ction in v

(5-33)

and thus, we have the desired result.
Q.E.D.

Now, we proceed with the solution to the problem.

First, we solve for the optimum fusion rule.

-.. _iA__nw, Fusion Rule .9'.-.."

Figure 1.3 shows the system under consideration. We

assume that the detectors have already been designed. We

'Iv.'

.- 
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further assume that the final decisionp u, depends on the

decision vector x and not on the observations. The

objective Is to obtain the fusion rule, i.e., find Pam, the

probability of deciding u - 1, when the present decision

vector is x- - (uiwuw,...,u.. )l, a specific value of x. %

Recall that the probability of detection PDp and the

probability of false alarm Pw are given by

Po M E Pam Pm, and Pp - Z Pm PNo (5-34)

Let the variable v, defined earlier, be the probability

PiK41, and (ab) be the interval (0,1). Then, (5-32) becomes

SI(HIu) SPD LP,-
"--------- P1 (CI1 - CO) ------ PO (COO -C 0 ).-----

E"p1s '° Pax °  '

Substituting from (5-34) into (5-35)p we have

S1(Hlu)
-------- P (C 1 - CIO) pm.- - PO (C 0 -CIo) P-o,

(5-36)

which is in general non zero. Thus, we have the following

decision rule

Set PIK - 1 -

>0
P, (C1 - COO) Pg , - PO (COO -CIO) Px10  0 6N

Set P," 0

(5-37)
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We assume that

COG, a CIO (5-38-a)

and,

cis z COI (5-38-b)

which Is equivalent to t
P(u-I IH )

log--------0 (5-39-&)
P(u-i IH. )

or i+39 IJ- 011.

P(umiIx)
---- (5-39-b)
P(u-I IH,)

Therefore,

PX-S > PO (Coo - CIO) ".

S.U, (5-40)
P -,OCC COO'

P(u o11) - 0

Next, we find the optimum decision rules at the

detectors.

0PIMk- cDetel tctors
.. . * _

We again consider the system shown in Figure 1.3. We

assume that the fusion rule is known and we find the
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decision rules at the Individual detectors. While deriving

the decision rule at detector pt p m 1p,3,... pN9 we &ssue

that other detectors have already been designed. Using the

same approach used in finding the fusion rule and, setting

v - Ppwa and (atb) -(091), the derivative of I(Hju) with

respect to P.-, Is given by

-------u ) Pm ( C I S - C o ) --- -D P 0  ( C 0 0  C o, ) -----

(5-4.1)

Using the chain rule, we have

JPD SPD

a ----- t, (5-42)

where we have used the result obtained previously, i.e., the

detectors are threshold detectors and the fact that

ta4 - sPDn.IEPwo

Substituting (5-42) Into (5-41) 9 we have

il(Hlu) SPIM £P.
---- ----- - P1 (CIS COS.)-------t.. P03 (COO CIO)

1' (5-43)

41 Setting (5-43) equal to zero and solving for too we get

Po (CI 0  COO)

Spa.

P, (Cos Cis)
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As expected, the expression of t. obtained here has the

same form as the one we found in the Bayesian case, except

that here C&3 i,j m 0,1 are not constants. We get N

coupled, nonlinear equations, which aould be solved

simultaneously to yield the desired result. V

The overall solution to the problem, i.e., finding the

optimum decision rules at the individual detectors and the

optimum fusion rule which maximize I(HIu) (or minimize

h(HIu)) can be obtained by solving 2" equations of the form

(5-40) and N equations of the form (5-44), simultaneously.

Many solutions may result. Only the ones which correspond

to the absolute maximum of I(Hou) (or minimum of h(Hju)) are

to be kept.

~~~5.4 Q Dim t[_ Pmtu nw p LLm v S;& voNLn Det ect i "-
:. .- ! -:5LiHjNu..::

5.4.1 Introduction

In this section, we find the optimum decision rules at
in in.'.% %

the individual detectors which maximize the mutual.'.

information, I(Hjx), for the system shown in Figure 5.7.

The binary hypothesis testing problem is considered and, the

observations at the Individual detectors are assumed to be
mn ' in *

Independent I.e.,

N
. p(YI H.,) - p(Y.IH,) (5-4)" %

1 36 .''-
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We recall that In this case, x is the decision vector and is

given by A -(U,,uWV,... ou"4
T where u, is the decision of

detector I, i-1,2,. ...,No and the decision of each detector

only depends on Its own observation.

First, we will show that, each detector should use a

likelihood ratio test (threshold detector). Then, we will

derive the expressions which yield the optimum threshold at

the individual detector. Later on In this section, we will

I.., present a suboptimum solution to the problem considered In

Section 5.3. In the suboptimum solution, we will solve the

problem of optimizing the mutual information in two separate

stages, i.e., in the first stage, weo maximize I(Hjx) and

then In the second stage, we maximize I(x;u).

Next, we will show that for the detection system shown
WNW

criterion, the detectors are threshold detectors. Before we

consider the general case of N detectors (N > 2) ,we

consider the case of two detectors.

Two-Detector Case

In this case, we use an approach similar to the one

used In the previous section. First, we show that If Prwa,

P.. and Pow are given, the value of Po, which minimizes '

I(Hjx) is equal to P.... Then, we use the convexity property

of X(Hjx) to show that the pair (P,.',P0,&), i - 1,2, which

maximizes 1(H;x) in a point on the receiver operating

.0 "Re J '
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characteristic curve (ROC) of the optimum threshold

'detector, using the Bayesian formulation. Then, we find the

thresholds which maximize I(Hx).

Consider the channel model shown In Figure 5.8. The

transition probabilities are

P(u,-Our-nOIHo) I ( - Pw,) (1 - Pwr) (5-46-a)

%

P(U&rO,ULlOIHa) - (1 - Po) (1 - PO) (5-46-b)

P(u10,uWr1IHo) - (1 - P.,) P.m (5-46-c)

P(u1-0PuWrlH .) - (1 - PD,) Pow (5-46-d)

P(ulrlum-01HQ) - PW, (1 - PW.) (5-46-1)

P(u1 -,u.O- Ho) - Po, (1 - P-,) (5-46-f)

P(um.uW-l1Ho) - P.. Pa (5-46-h)

and,

P(usIrnluftmlHi) Pot Pow (5-46-h)

The output probabilities P(x - 0), P(x - 01), P( - 10) and

p -x - 11) are denoted by soa *<:, *o and a,& respectively. a

"'. '1

They are given by

aoc - Po (1 P.,)(i - Pp-) Ir) ( 1 -P( PD,"(' - P )

(5-47-&)

G -a Pa U1 P..,) P...t + (I PC.) (I Pot) Pown

(5-47-b) .

W"

V. %a
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ip bp

o "0 Po P, 1 (I1 PM) ( I PC) Pot (1 - PDW)

(5-47-c) .

and, 
-

G111 PO PW. P.. + (1 -PO) P0 1 Po.
(5-47-d r

The joint probabilitis are 
-

P~uOpu&OOHO POI PW (I WW)(5-48-a)

P(u 1=0,um0,Ho) Po( - PW ( - Po) (5-4-b)

P(uIOu"0QH 1 ) = (1 - P)( - P) (1 - Por) (5-48-b) IL

P(u,-lOuwr0lo) - Po P 1 - PW.) (5-48--)
,, .

P(u O, uwiOnH) " (1 - Po) Po (I 1 - Po) (5-48-f) -
%,,, .

P(u 1-lvua-0,Ho) - P P.1 (1-.. (5-48-9)

and,

5- S ' -.'

Ptua-lous-19Ha) (I -Po) Po1 Pow (548-h)

where again Po and P1 are the a priori probabilities, and

SP., and Pot are the probability of false alarm and the

probability of detection of detector It I M 1,2.

Substituting (5-46)p (5-47) and (5-48) into (5-4), I(Hjx)

IN
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becomes

N I(HIx) -- Pe0 E log(Po) *PwzPw.rlog(PaPw,P,..)

* P,. 1)-P,..)lgCoP 0j(1-P,.)(1P,3 )

* 1-,. P..moPWog( P,.1 PD~p~w

-

4(1-PP) (P )(l-PW) log( (lPo>)P (PIP)P

+ (1PDalg()PDulg(1Po)-P09a)P-P) 3lo

- Ctcclog(5 0 0a) +atoilogaoai) + aiolog(oti)

4 ~ log(us) 3

(5-49)

Taking the derivative of I(H;x) with respect to P,.j, we got

LX (NIX) 1 - P, KOC>
------- Pa l0gC----------) PO (I -PW.) log-------

P0 PWm log ---- (5-50)
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, %

Setting P.w - P0 1 and cancelling terms, we have

61(HIX) 1 - Poa I - P,"
- -PC log(-) + Po Pre log( --------

P"0  PD1
! LP.. ~~~P. . P • P) ,. :.J:-'

S + P0 (1 - P.=) lo I - Po

---------------------- --------- )
PD. I

1 -PtI

[ [log {--------- )3 E- P0 + P0 - Po Pere Po Pre]

-0 (5-51)

We conclude that the point P. 1 - Po1 corresponds to at

least a 1o-ai minimum for given values of Pp,, Pre an Pe.-

Sirce I(Hjx) is convex in Po. (Theorem 1.7, [413), this

minimum is the absolute minimum of I(H;x) for given Prq, Ppe

and Poe. Similar argument is valid for the second detector.

Using this result and an argument similar to the one in the ...

previous saction, it can be shown that the maximum I(Hjx) is

achieved by setting the (PP. and Po,) iil,2 as points on the

ROC of the optimum threshold detectors of detectors I and 2

with Bayesian criterion.

The same argument may be used for the general case of N

detectors, N 1 2. We conclude this subsection by saying

that the detection system which maximizes I(HIK) has its -

operating point (PV,PP) on the ROC of the optimum Bayesian

,1 %

P. ". % ,,. .- % % ,- %,% " . . % ".% ' % % % % -% % " " -. ..-. ' -. ., . .- • .. ,, -.- . ,- .. " - -
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detector and in the case of independent observations the
-S

detectors would be threshold detectors.

5.4.2 ptimum DD System

In this subsectiont we find the thresholds which

maximize I(HK) for the DD system shown in Figure 5.8. - -'

-

We recall that for the threshold detectors, the

probability of detection Po, and the probability of false

alarm PL i-1,2,...,N are respectively given by

PI - p(Q1 ~ Ho) dQ, IP2 -l2... ON (5-52-b)

ta

and, t

U

P,. =p, - Ho) dn, I * l,2,...,N (5-52-b)

likelihood ratio defined as

QA(Yi) - I - 192,...,N (5-53)
p(Y, IHo) %

For each detector the likelihood ratio test is the following

" 'N

%. %... ................ .............. % % %......
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t1 I - 1,2,...ON (5-54)

HS

ands

- --- 1,29... ON (5-55) U5

Th9 etetorCast

In this casep I(HIx) is given by (5-49). Taking the

derivative of IH ). with respect to Pw, we have

SI(H,) 1 - P:I I
-- PC, log( --------- l

5 .5.',

Spot 1 - Pot
I(1 P 0 --------log(---------

[- @1Goo 10 aoo Sao 1og clo

*1c.1 log Goa + all log Q&& 3

(5-56) *'5

5-'.

Rearranging (5-5 )p setting the result equal to zero and

solving for ti, we get

. F e :. -

L.0
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P- Clog --- P- -- p --- g--........ .] )3
4XLO Qoo a I P"'

OeC so azo 1 - Pol

(l-Po)log(---) 4 Polog ----- -- log( ----- )3

4XVoo Sol 01a I - P1.0 ...,Pa Clog( --- Sc P .. . ..---- log( - ...... ]3

to - --- - - - - - - - - - - - - - - - - - - - - - -

GLoC Cl a ca I - Pow "*

(l-Po)Clog---) * P log- . -) - log( ------ )3

(5-57-b)

Solvirg (5-57-) and (5-57-b) simultaneously yields the
'

optimum threshold% which maximize the mutual information.

Thrn~ etetorCase

In the case of 3 detectors, we may use the some

procedure. Defining ax - ctj..,= as the probability of the a

output vector x - (u, LMMUM)T the expression of ti is then,

P 0  K,
ti"-() (5-58-a)

i- Po Ka
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where

K - log C--------)-( Pwn)(l -Pwo) log------

U- PW PW.. log ---- 4P... (I P...) log --
CKaO a I o

-PWM Pro= 1og ---- (5-58-b) Q~
@111o

and,

Ka -log ----- PI -(1- Pow)(1 -Poa) log -----

Pnl 011oo -

- (I - PD.) Pow log ---- - Pne (I PD.) log ----

- Pon Po. log ---- (5-58-c)

Similar expressions are available for to and to. Solving

the resulting three equations simultaneously yields the

optimum solution.

general "mot

In a similar manner, for the case of N detectors shown

In Figure 5.7, we get the following expression for the
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threshold of the Pft detector, P - Ip...,N.

L ,.2

1 - P . 490 91- Po E log C ------- ) - F log C a / ax )]3"

1 - PO', PC 8 40 a41
(1-Po) C log C ------- ) - D log a nx /an )"

(5-59)"... ,

where F& and DR are defined in (2-11) and E is the

summation over all possible decision vectors x. Therefore,

we have N nonlinear coupled equations. Solving these

equations simultaneously yields the optimum solution, i.e.,

optimum decision rules at the detectors to maximize I(Hgx)

(or minimize the equivocation h(HIx). We may got many .

solutions, only the feasible solutions are to be kept.

5.4.3 S9p t muSoflutkqn fp the DDF_ ystem

When we considered the DDF system with N sensors in

Section 5.3, we concluded that a simultaneous solution of 5%-:.-.

N + 2" coupled nonlinear equations is required. This is a

difficult task especially when N becomes large. In this
.%

section we consider a suboptimum solution where we optimize
-.5%

the system In two stages , i.e., first we maximize I(HI?_)

and then, maximize I(xlu).

Maximization of I(Hi_) has already been considered in

Section 5.4.2. While maximizing I(xou), we assume that the

detectors have already been designed, i.e., the
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• It

probability of x - (ut,•U•... uI,)t is known for all x_ which

makes h(x) a constant. We wish to maximize I(x,u) (or

minimize h(xlu)) for the system shown in Figure 5.9. We use

the following expressions of I(xlu) and h(elu)

I(xlu) - h(x) + h(u) - h(xu) (5-60-a)

and,

h(xlu) - h(x,u) - h(u) (5-6O-b) '

Minimizing the equivocation is equivalent to -a-,

simultaneously minimizing h(xu) and maximizing h(u), if .

possible. We recall that h(x,u) is a convex downward (cap) .

function in P(x,u). Thus, for a given value of P(x) the .a.Ja,
absolute minimum for h(xu) is achieved by setting P(ulx) to

be either "0" or "1. A corresponding maximum of h(u) is T

possible by choosing the values of P(ulx) which set P(u0)

and P(u-l) as close as possible to 1/2, because the absolute 'A

maximum of h(u) is I for P(u=O) - P(u=l) - 1/2. Note that

it is desirable to set u - 0 when x - (0,...,O)y and u - I

when x ( I1 1 )"

Let us consider the question if it is possible that the

maximum value of I(x;u) (or minimum value of h(u)) is .

achieved at points where P(ulx) are not met to be O's or

*" l's, e.g. by setting P(u) such that P(u-0) - P(u-I) - 1/2

which maximizes h(u), and set P(ulx) accordingly, or any

other possible combination. In answering this, we refer to

the fact that since h(xlu) is convex downward function in

% % a% %, %

a- - .- a a?,aa a a , % . <
) = '*a.~ a a ~ a. . . . . . .. a .a.a
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the transition probabilities, it has to achieve its maximum ".

at a point where the transition probabilities form a

combination of "O's" and "I's". Therefore, P(ujM0 can take

the values zero or one only, (for all possible combinations,

(0,1) h(4au) is the same).

5. N~ ~ AA~hP E

Kamp .-..5.1

In this example, we consider the same system as

considered In the example of Section 3.5. The system has

two detectors with independent observations given by (3-88).

We will design the system (both DD and DDF) so as to minimze

the equivocation between the input and the output. ..

Recall that In this case, the detectors are threshold

detectors. In Figure 5.10, we present the ROC curve for

this example (DDF system) when 9, - 2 and On 4. Again, in

this case the "OR" fusion rule is superior to the "AND"

fusion rule. We also show the curve of I(Hlu) versus Po in

Figure 5.11. Figure 5.12 shows the curves of ts' and t"n'

versus Po, where ti', I - 1,2, is the value of the threshold

at detector i, i- 1,2 as defined (3-90).

For the DD configuration, when (e.,en) - (2,4), the

curve of I(H5 ) versus Pa is shown in Figtire 5.13. The

curves of ti' and tn' are shown in Figure 5.14. When

(O~,O) - (3,6), the curves of t.' and ta" are shown in

A'dd
151 ?%
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Figure 5.15. When (OGm) - (2,2), the curve of I(H;x)

"P versus Po, is shown in Figure 5.16 and the curves of ti' and

tm" are shown in Figure 5.17. -e

,'v. . I.

For the one-sensor case and 0 - 5, the curve of I(Hlu)

is shown in Figure 5.18 and the curve of t' is shown in

Figure 5.19.

N.

Now, let us assume that it is desired to maximize '.'

I(x;u), for the system shown in Figure 5.9. We are given
- .L

the following probabilities ,

P(utiOuwmO) = -- , P(uaiOue-l) --- p P(ul=,uwO) ---

5 15 5 "

and,

P(u,"lugm'1) - --.

3 .'

We maximize the mutual information l(xju) by setting

the following probabilities which set the output <"1
probabilities close to 1/2

P 0 0 0 - 1, Po. 1, P0 x" 0 and, Pox L 0 j
Phis Implies that
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Plu) 16/30".

Thereforep the maximum, I..., of I(*xlu) is

. . - (7/125) In (15/7) + (8/15) In (15/8) f.0.69.

In t;his example# we have Illust:rated t;he op!timization :

procedure outlined in the previous ect;ion. s expected t he .-...

procedure yields t;he maximum mut;ual information. -,<

% t
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VI. Distributed Bayssian Parameter Estimation

6.1 Introduction

The Bayesian approach to the estimation of random

parameters in a centralized framework is well known [11. In

this chapterp we consider the same problem in a distributed

framework. Local parameter estimates are obtained at the

individual sensors and are transmitted to the fusion center

where they are combined to yield the global estimate.

Almost all of the work reported in the literature on

distributed estimation, deals with decentralized state

estimation problems E19-263. Here we develop the theory of

decentralized random parameter estimation.

In Section 6.2, we formulate and solve the Bayesian

estimation problem for the DPEF system. Three different .

criteria are consideredl the minimum mean-square-error

(MMSE) criterion, the absolute error criterion and the

uniform cost criterion. In Section 6.3, we present the

solution for the case when the combining rule is assumed to

be linear. Section 6.4 presents a simple numerical example.

In Section 6.5, we present a brief summary of the chapter. .5
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6.2 DiotribuedJ..ytjan Paraetgr Estimation with Estimate -

Cobiin 2 t tkfk.itD

In this section, we consider the Dayesian DPEF problem,

-~ where the objective Is to estimate a random parameter "a"

with a known density function p~a). The parameter a is

defined on segments of the real line. We consider the

system shown In Figure 6.1. Each local estimator receives a Nr

set of observations denoted by an observation vector.

IN"

where n is the number of observations at each estimator and

N is the number of local estimators. Then, based on Its

4.observation vector, yto the i*" local estimator estimatesP

the parameter a, by assigning a point, Z& - hi(y,) In the

-. parameter space. The estimate combiner at the data fusion

center collects the estimates from the individual (local)

estimators and generates a global estimate as of the

parameter a. This global estimate 2 depends only on the

estimate vector h - (h1 (yl),h=(yw)9...oh.(ym))'.

The goal of this section Is to develop Bayesian

estimation theory for the DPEF system, i-e., design both the

optimal combining rule and the estimation rules for the

local estimators so as to minimize the Bayesian risk* R9
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.1 * .

.. .p-d

given by

R " ECC(a,&)) (6-1)

whereZo

C(a,3) is the cost of estimating a as A.

The risk R may also be written as ..- 'I

R " da dY C(a-Z(hl(y&)qh-(y=),.. vhNN(l)) p(aY)

(6-2)

where

p(asY) is the joint density function of the parameter a

and the observation vector Y. -

The cost functions that we will consider in this

chapter will be functions of the error# ac(Y) defined by

ae(Y) - a-A. Three different cost criteria will be

considered. The first one is minimum mean-square-error

(MMSE) where

C(a0)"(a-i)O (6-3-a) '-

The second one is the minimum absolute error criterion,

where .

1 6 7 .'.
C(aa) -I-l(6-3-b)%

167

.*.r.- '? .1 .- . 1

.% .. - . ... ,..,:, ,;$ .: , , ,,., -, %._. % .-.,.,,.%. ., > .,.,,..,...,.., ..... ..,... ,A,., , ' , ,: ..-,. . -,, ,-,



D%

Finally, we will consider the uniform cost criterion# where

% " . % /0 if -ae *1.

C(a) - (6-3-c)

'.. ,,

,, ' ..

and, T is a suitably small interval.

The risk function can be expressed as

...,, -,,-
R - do dh CEa-.Y)] p(aY) (6-4)

? %

~~~The objective Is to obtain the solution to the DPEF "v'

~problem so as to minimize R. We obtain the cobinig rule .

-f(h) and, the estimation rules h(y, f e

rm ) I .eahe

ot function to one of the functions discussed above. Next.

Te proceed ith the solution for each ot functons.

poem sastmiiieR We oi the combnit ul .

" 168
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'v,

Given the probability density p(a) of a random

parameter a, the optimum DPEF system which minimizes the

MMSE, i.*.o the optimum combining rule and the optimum

estimation rules at the local estimators, is obtained by

solving the following equations simultaneously. w.

--M(h) a a p(alh) da (6-6)

and

ElC(a.---- y&3= iE[(.---- .3l29 ,. PN (6-7) £

where

Smm= the minimum mean square error estimate.

The risk function for this problem Is

Re., =Ida dY [a-Z(h(Y))]* p(Y) (6-8)

which may be written as a function of the local estimates, '' A.
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hi (y ) 9 1 1 . ..

w ,.. --

.p4-.0 +-0

estimation rulass atm ht.y), i 1,29...,No are known.

The joint density function of a and h may be written as-

p -ash) J phdp alb) (6-10)

6 .

': -. --. -

Whil deriving 1(h) wea~3 pasmlhat the -lo1a

Since the inner Integral and p(h) are nonnegat ieo

minimizing the inner Integral for any value of h minimizes

l~Rm. We denote the minimum mean square error estimate, by -
pFa(h). Next, we will show that (-(0) is given by)

ann.' p)ap(ah,

which Is the conditional mean of a given.

,. ,,

% v%,% %.P
;

r.,-".
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'p J .

Taking the derivative of the Inner Integral of (6-11), ___0

we got ",-,

----- da Ea - Ilh)]e p(alh) - -e a p(alh) da

1h -J

+2 ~h) plh) da "
-"-

(6-13)2 s

Setting the result in (6-13) equal to zero and using

p(alh) da = 1 .

we obtain the result given in (6-12). Note that this ,

corresponds to a minimum (not a maximum), because the 2-1 ..

derivative is equal to 2. .''

i Next, we solve for the estimation rule, at the local "

estimators.

', Loc al Es titm-.tlon_RulesU:'"

° Nowo we assume that the combining rule in known and, we I

obtain the optimum estimation rules h(y) i = 12,...,N at ..

the local estimators so as to minimize F ". While deriving ..-

the local estimate at estimator 1, 1,2..N we assume ..
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that all other estimators have already been designed, i.e.,

3, - hs(y,), i + Ji J - 1929...,Ne are known. -.

The Joint probability density of a and y may be expressed as

p(a9Y) - P(Y) p(aPyIM, .-.. VL-YI-- ... O )

(6-15) ""

Substituting from (6-15), into (6-8)v we have

+0 +0 4-1

R. 4.- dy~p(y,) Jda JdYL Ca-Z(hi(y,)Ph=(yn)v..

OhN(y,4))] p(aYJIY ) '" -

where " .'

.... 'r Y.r .. Y.-r) -

'€: 4 C-17) '

and,

+0 "

dY1 is the integral over all elements of Y1

( 6-189) ""-

Let

+0 40

". - da dY1 Ca-(h)]" * (6-19)
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In (6-16), it is obvious that p(yt) and It are nonnegative.

Therefore, minimizing the inner integral It with respect to

at minimizes Rmw. Taking the deriyative of It with respect

to at and setting it equal to zero% we have

---- M---- I da dYa-(Z,3m,...a. Z)3p(a,Y'jy&)

(6-20)
W

~5* Interchanging the two operations, namely differentiation

with respect to 3,,, and integration over a and Yly (6-20)

becomes

P.+0 +0

0 jdYlJ da p(aY-jy,) --- C Ea-Z(atpawo ... 9aN)J }

which In equivalent to

EC(a.---)1 YL3 E(a.---) yL3 i -1v2,...,N (6-22)

63 Ja 0

Wreetthis procedure for all of the N estimators. A

simultaneous solution of the resulting N equations yield*

the desired local estimation rules at, hi(YO i 199.,
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The overall solution to this problem is obtained by

solving (6-12) and (6-22) simultaneously, which Is the

desired result.

Q.E.D.

Spffig asl Case ofTwo Estima&tors

In the case where the system has only two local

estimators, the equations to be solved are

EC(a.---) y,3 EE(2.---) IyiJ (6-23

E~a.---) YeJ EEUI.---) y&3 (6-24) V

d and,

Z E~aI3i,AeJ (6-25)

Solving (6-23)s (6-24) and (6-25) simultaneously, yields the

optimum solution. These equations are complicated to solve

due to the coupling and nonlinearities. Later in Section

5.3, we solve the problem when the combining rule is linear.

Next, we solve the problem for the absolute error

criterion.
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Given the probability density p(a) of a random

parameter a, the optimum DPEF system which minimizes the

absolute error functions i.e.. the optimum combining rule

and the optimum estimation rules at the local estimators is

obtained by solving the following equations simultaneously.

A- t,, (h ) + 0 
,

Jda p(alh) da p(alh) (6-26)

-.. 1. (h

and, o%

'IC I

dY1 da( - ) p*a'y-lys) -dY
• da( ----- ) p(aY t IYt) .

i i,2s ... N (6-27)

The risk function for the absolute error criterion is

- '..*:-

R.. ECla-l (6-28)

For the cost function defined in (6-3-b), the risk function "

is given by

'+I

-. J dh p(h) I dat a-a(h)J) p(alh) (6-29)

1 7S

-- iN --..- - , N.

to - a



*~~. . . . . . .. . . . ..

Firsts we obtain the optimum combining rule.

PtiMum Comb in ing Rul.

In (6-29), we define I(h) as being the inner integral ~

which can be written as -:

Z(h) 4

1(h) -J da CZ(h)-aJ p(alh) + C a-Z(h)3 p(alh)
-. V

(6-30)

Again, we assume that while deriving the optimum combining

rule which minimizes R~ftft, the estimation rules

ha(y1 ),h&(yw),... Pand hN,(ym) are known. If a minimum exists f

and Is interior to the parameter spaces we obtain the

minimum by differentiating 1(h) with respect to 3(h) and

setting it equal to zero. Therefore, Af

-Jda p(alh)- da p(alh) -0
Sa(h)

where 1~..h) is the optimum estimate. Solving (6-31)o we *.

see that, JL..(h) which minimizes R.f., is the median of the -

a posteriori probability density of a given L .e.p
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do6JJ da p (alh da p(alh) (-2

a.~(h~

Next, we obtain the estimation rules at the local

estimators. ~

Local &IEstimation Rules

At this point, we assume that all but estimator is have

been designed and, that the combining rule In known. We

obtain the estimation rule for the i*'% estimator which 5

minimizes Rft.. Using (6-28)o we may rewrite (6-4) as

-~t dY Jda Ela & (Zigzag ... 9ap4)13 p(aY)_
-0% %

(6-33)

Using (6-15)w (6-33) becomes

-~t Jdyt p(y,) (I dYICJ da (a a) p(&PY1IIY,)

da (a 11 -oX I L

(6-34) ..

% 4 0



whores Y1 is given by (6-17) Let

4. •a

As um n tha a"-im m ex s s'n s n er o t h

lmi,.(z) - I dy da (-a) pa,Ytiw) o

a,.

1- . -4.N

da( )p(aY jY,) - (a- )p(a Y( , )
a

paaee sae h vle a whic miimze I..(y,

( 6=36 ) : ,

Setting the derivative T ak t h der iv ave oqual to zeros ww thve

d Y•  d a -----. )p (a ,Y &Iy ) - ~ d a ( -----) p (a ,Y &I l ) - .

i 19I, P,...,PN (6-37) '"
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This procedure is repeated for all of the N estimators The

resulting N equations are solved simultaneously to yield the 
N-

optimum local estimation rules which minimize Rtwh..

overIUSolo 11 p

The overall solution to this problem is obtained by

solving (6-37) and (6-32) simultaneouslyo which Is the

desired result.
Q.E.D.

For the two-estimator system, the equations to be

solved are £

+0 L.+0 0

dye da( ----- ) p(a,pymy,) J dya. da( ----- ) p(aiymyi) £

-a -a -m -]."'

(6-38)

dy, da( ----- ) p(a,yly.) Jdy da( ----- ) p(a~y,1 ye)
-. -u-. Lb

* ~(6-39) cA

N% .-.

ands

Ia.t.( h) a

J da p(a I&aa) J da p(a3ai,3.J (6-40)

-. Lb.(h)
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Solving (6-38)p (6-39) and (6-40) yield the desired result.

Next, we study the case of uniform cost function.

6.2.4 MInljmUnliform Cost Function *

We consider the problem of finding the optimum

estimation rules at the estimators and the optimum combining

rules which minimize the average cost in this case for the

DPEF system.

Theorem 6.3

For the DPEF system, the optimum combining rule and the a

optimum estimation rules at the local estimators which

minimize the uniform cost function for a given p(a), are %

obtained by solving the following equations simultaneously .

S In p(alh) -(- )-. ." .

0 ( a-4 ) F

and, J...

J --- p(a - r45, Y'IY&)dY,_-. .-. p(a- -'+a, Y'lY&)dY_ %%

-6 -0....

i = 1,2,...,N (6-42)

The risk function in this case is given by

1190
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V. -,

- dh p(h) El- p(alh) da 3 (6-43)

. . ..... t l* -?

Ja
which is equivalent to

Ii I I_
-J J jI dyt pny,1  -J' -,P&Y&YL (-4

-. -. -'r43 .

First, we derive the optimum combining rule.

We assume that all estimators have known estimation

rules and we obtain the optimum combining rule so as to "

minimize R, 1.&. The risk function is

RIA.t [ dh p(h) Ei- [ p (ath) da 3 (6-43)

We also assume that a minimum exists and, is interior to the ';

allowable range of a. Let

(h) - p(alh) da (6-45)

Then, maximizing 1(h) minimizes R.&.r and this is achieved
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by taking the derivative of I(h) with respect to 2&,lun and,

setting it equal to zero. This results in

S p(alb)
= 0 (6-46-a)

LaL

or

Ln0 (6-46-b)

&a asa5"r0h)

Having obtained the optimum combining rule, next, we obtain

the optimum estimation rules at the estimators so as to S
minimize Rn* -

Estimation Rules

We assume that the combining rule a(h) is known. We
also assume that while deriving the estimation rule

[,,h,(y,) at the 16" estimator, i 1,2P...#No the other

estimators have known estimation rules.

In this case, I.,tr can be expressed as

4.0 +0 -r+a

S - dy, p(y,) dY da p(ay Y%) (6-47)
"S -- -. -i+a"8-

Let

++a

IAy,) dY, da p(a,Y'Iy,) (6-48)
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Then, if a minimum exists and In interior to the range of a,

% minimizing RL..&. with respect to at- hL(yO) is equivalent

to maximizing I,(y.). Taking the derivative of It(yi) with

respect to at and interchanging the derivative with respect

to a, and the integral over Y1, we get

----- dY& --- { da p(a.Y*Iy)) (6-49)

6 63

This may be written as

+ 0. 
. .

I )- - -

------- =-d' da (0) -- }------- p(a_+ Y )
6 1 J J63

-- -- - -r-T+pYXy )

(6-50)

or 5

6z, (y,) f 63 .1)
- - dY1C-- Cp(a-Ta+2,Y ly) - p(a--7+3Yty1)])

-,-.. -..

Setting the right hand side of (6-51) equal to zero arid

183 ,
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rearranging the result, we got _

--- p(aT . Yklyt) dY' " p(a--'r+ YIyt) dY%

-.. ,,%

obtain N equations of the form (6-52)- whose solution yields

the estimation rules at the local estimators which minimize %

aR"

OveralI Solution oml n

th The overall solution to the DPEF problem with minimum

RL ,. criterion is obtained by solving (6-46) and (6-52) , -

simultaneously, which yields the desired result. S....
Q .E.D.",

_SVqjcij Case of Two Estimators

Again, In the case of two-estimator DPEF systems the .'. :

equations to be solved tre m

&Iln {p(alh)} -')T]
a0 (6-53) """

aa ichyils te eirdlreu)lt

dnp(a= O y-ly,) dye p(a=-+a, ya.y,) dy..

--e- 0 (6-54)

_% % e%%.% V

'r'e

% % 4-%
U-"" " --- p °-r.1, ") dy."". -L J_ -R- ",", %Z. yi) dyi"

... • .- - , ," .- 1-,- ,. 611' - ,"'.. . ,'_.".. - . '-' %. - . '. "3' ,. ;,''''%._ '_ '.-
', '" .r'" , # , " " 0 " ," .' j " .' '. v • ." " .- " . " "U -. ____-. ,~,.r ,.= . ..- -- . -. ,% .,- ..- = = -
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and,

J- ---v~-~,Y1Iv.) dy pa-aoy&IYNJ dy,

-, (6-55)

6.3 SubOlpt_num Solution- Linear Combining Rule

In the estimation problem studied in section 6.29 the

1*%

optimum design requires the simultaneous solution of (N . 1).,

coupled nonlinear equations. These equations are hard to

solve. Therefore, it is desirable to consider some

suboptimum solutions. In this section, we restrict the

estimation combining rule to be a linear one, i.e.,

N
a(h) l E bt h,(yl) - C (6-56)

.- i

where b, and C are constants to be found, i - 1,2...,N.

This combining rule may be simplified further by

incorporating bt in the estimate hL(Y0 itself, ie•,-

N
1(h) - E ht(y,) + C (6-57)

The use of linear combining rules reduces the

computational difficulty considerably. In the rest of this
" section, we present results for the DPEF problem using the

three cost criteria for the linear combining rule.
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6* 3* 1! mla~iar ~sxnEror Cr1iter ion

For this criteriono substituting (6-57) in (6-8) the

"ean square error becomes

-e r dY da E a -(a hs(y,) + C)3= p(aY) (6-51)
Jml

-. -. i:y

Substituting (6-15) in (6-58)g we get

.4. - Jdy.p(y.) dY" da Ea - Z h3(,C )- C30 p(a ,Y y.)

(6-59)

We follow the same procedure as used in Section 6.2 to

minimize R.., i.e., we set the derivative of the inner

integral in (6-59) equal to zero and solve for the

estimation rule, ht(y,), of estimator to I w 1,2...,N. The

resulting h,(y,) is

h&(yj) -E (alyt) -ZE ((h3s(ys))Ily&) -C

J-1

i -1,2... 9N (6-60)

Now, we only need to find the value of C. Taking the

derivative of Rmw with respect to C and setting it equal to

zero, we obtain the desired result.

C - E ([a - E h(y,)3) - E(a) - EChj(y)) (6-61)i-i Jinl,
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Nexts we present the above result for the case of two

estimators. In this case, equations (6-60) and (6-61)

become

hiya ECalys) - Et(h=(X=))1Yi) - C (61-62)

hn(xm) - ECalym) - E((h&(yi))IYm) - C (663)

and, -

C - E(a) - E~h1 ) - E(h) (6-64) -.

Substituting (6-63) in (6-62)9 we get

h1 (y1 )- ECalYz) - EC(ECAy.))lY*) +E((E(h,(y,)j-y)) y, )

(6-65)

Now, w solve the DPEF problem when a linear combining

rule is used at the fusion center and the absolute error

criterion is used for optimization. Substituting (6-57) in .

(6-8) and using an expression similar to (6-12)v we may

rewrite R. as ,: .*
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mdy Ply,) dY'

N
Eh, (Y ) +C

N

x J daCEE h3(y3)+C-a] p(aY 1 IYl)

i-i

NN

Zh3 ( y,)+C. (6-66)

J-U

We use the same procedure asl used In Section 6.2 . We -L'

minimize the risk function with respect to h, (y, by t

minimizing the inner integral It(In bracket). Wke take the

.1

derivative of It with respect to h, and set the result equal

to zero. We got i'

N N
) h((-6)+C

W- u dY C dae procdur d i(Yl o.2. W

NN N

Z h,(y.,)+C
i-i

(6-67)
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out

h ,(i hCy,)JdY" J da p(atYljxL) -Jda p~ajY0 (6-69)

Rearranging (6-67) and substituting (6-68) Into the

resulting equations we got

N

2 jda p(alyt) + 2 dY' J da p (avYlIyl) -1 (6-69)

-. -. h1 (y,)

or equivalently, 0

N

h&(y,) +0 j=nl

da p(alys) + d I' da P(aPY 11Y) 1/2

-. -u ~hk(yO)in,,.N

(6-70)

Now, we obtain the optimum value of C. We assume that all

estimators have already been designed. R~p may be

rewritten as ".

N
E h,(y,)+C

4-a Joel +6 *
NII ' N- -i

- 'dY( daEEh(v)+-C-ap(a9Y)+Ida~a-C-h(y3)p(aPY))

E h.,(y3)+C
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Taking the derivative of Rtb. with respect to C, we get -

N
Eh j (y )+C

-- J dY J da p(a,Y) - da p(aY)) (6-72)

-.I -.l N

Eh,(y, )+C
j=1

Rearranging (6-72), and setting the derivative equal to

zero, we can write

N N

+" j'l + 0 j1l

------ dYC da plaY) - da p(a,Y)) + 2 dy da p(a,Y)

'C

-.-. N -. N

j=1 ,tml' '.

M 0 (6-73)

Or equivalently, C in obtained by solving the following

N N
Eh (yj)+C Eh (y3 )

+0 jil * jil

dY da p(a,Y) J dY da p(aPY) , 1/2 (6-74)

Eh.,(y.)

.=-

The results obtained by solving N equations of the form

(6-70) and one equation of the form (6-69) simultaneously

minimizes R.b,.."
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In the special case of two estimatorm the combining

rule becomes

a(ft) - h1ity) + ho(y.=) + C (6-75-a)

The following net of equations need to be solved to yield

the desired result

h,(y) +0 hd•(ys)+h-(ya)+C

J do p(alyx) *Jdya J do p(apyejys) - 1/2 (-5b

-. -. hi (yL)

ho(yo) h%(y,) + ho(yo)*C

Ida p(aly.) + d.4 da p(a,ys ya) - 1/2 (6-75-c) ,

+e +el hIL(Yi)+h (ya) +C 4-0 +0 h, (ye)+hw (y=) %jd j i y do. o , o.  , , .., .., ., .id I d mIo d.o: p , .., .., ., -1/2
- - h(y.)h.(y.)

( 6-75-d ).

6 .3.3 Minimum -U-niform Cost Function

L " ~In this section, again we use the same approach as used .

da ",, .yzY

In SubMectiom 6.2. . Substituting (6-57) in (6-52)p th

equation describing the estimation rule hx(y,) of the i" h

estimator, I 19 2, ..., No becomes

: ~191 . -
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r N
dYl p(&- 7 + E h(y3) * C, YkIY))

j-l

4-

r N
- dY1 p(a- -r + E h,(y,) + C, _Ylly))

i . ,2, .•,N (6-76)

We solve for C by taking the derivative of R..,.1 . with

respect to C and setting the result equal to zero. Thent we

get

N k1.<

dY p(ai X h(y3) * e Y) - 0 (6-77)
i-i

(6-76) and (6-77) describe the complete solution to the

prob lem.

,0%

In the case of two estimators the equations are

Z. ".%-1%

( 6-78 ) "-

5- 9y ~-~~.Cy x~n d 2 "resh.Cysy)'.
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dye p(ai-h,+h=+Cyvix,)i dye p(am-_+ht+h=+Cgyni'l)

S- "-U
(6-79)

and,

+0 *
ir

dy, dye p(a-h,(y,)+h.(y-)+C, yap yi) - 0 (6-80)

For illustration purposes, we present a simple example in

the next section.

6.4 ExAmple

In this section we consider the system shown in Figure

6.2. Two local estimators are used along with a fusion t "

center which employs a linear combining rule. It is desired

to estimate a parameter " a "whose density function Is

1 ale

p(a) - ---------- exp(-) (6-81)

Each estimator I receives a single observation yap I m i, 2,

corrupted by additive Gaussian noise na, i - I, 2. Noises 0

at the sensors are assumed to be independent of each other

as well as independent of the parameter a. The two VV

observations at the estimators and their conditional
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densities are

y- a + n, (6-92-a)

ym- a + rm (6-82-b)

and,

l(yI--&) %
p(y, a) M 1 .------- i-lI2 (6-83)

0.-, (2w) 1' e  2 a",,
V

Our goal is to obtain the optimum local estimation rules

h1 (yi) and ho(yo) so as to minimize Rim when a linear

combining rule is used at the fusion center.
.'1' 

When the combining rule Is known to be linear 3 3 is

1 k hi(yi) - hemyu,) + C (6-84)

hi(y 1 ) and he(ya) arm obtained by solving the following set

of equations

h,(y1 ) - E Valy23 - E ,h(yw)1y,3 - C (6-95-a)

h-(ym) - EEaly=] - Ethi(y,)y.. - C (6-85-b)

C E(a) - EEh%(y 1 )] - Ehi-(y.)] (6-85-c)

Substituting (6-85-a) into (6-85-b), we get

.1 h1 (y1 ) - Elaly,3 - E[E(aly.)Iy] - ECECh,(y,)Iy.]lyi"

(6-86)
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V Vm

For this example the conditional density function of a given

yap I 19 2, is given by

1

( 27r) tr,-ff-y - a

p (y ) + ---- 3)

1i-12 (6-87)

or

p(aly) = kx(y,) exp(-(1/2) -------- a - ------- y%30)
~I

iw102 (6-88)

which is the probability censity function of a Gaussian

random variable. The meati an-d the variance for the ."- -"

conditional distribution are [303

mean -------- (y.) (6-89)

variance - -------- - (6-90)

Since Y, and y. ar" *ointl' , al&',, -r±',ble , the

mean of ft, E(yt), and the cav'riar , of y *ird yL. and the

variance of yt are given hy

E(y 1 )- E(M) - E i.) (6--91)

E(y~ye) -E(&") " 6-92)

16 W r % r r% r C e% % %



K..-. - 1L-L-~ 
I- V- -

andr

fIl
m - Cr. + or (6-93)

The correlation coefficient between the two random variables

Yi and yap is

W .. . . . . . . . . . . . . . ( 6 -9 4 )

Therefore,

p(y 1 I4 ---------------------------------

---------------- .!,

a~-

- exp ----------------------- )
C~~q. + 2a.R)

---------------
+*W

(6-95)

which yields

E(aly,) --------------------------------(-6a *

* and,

I'r

E~alya) ----------------------------------- (6-96-b)

Substituting (6-95) and (6-96) Into (6-65), we have

19~6
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.I. p.l

h1 (y) ---------- --ECE ------- y=3jY+E(CE(h(y)lY=3ly&)

(6-97)

which may be rearranged as

h(Y)-- - y, ECE(hu(yi))IymJlya) (6-98)
(C.0 + 0 ,e)-

In order to attempt a solution to this problem, we make a

simplifying assumption that h 1 (y,) is a linear combination

of yt, namely h(yi) = k, yi. This assumption is appealing

because the centralized solution is of the same form. Thus,

we only need to find the coefficient of y, in the linear

function.

f.e 
.

dy- ply,,ly) ky- ply ly-) dy, (6-99) .

k i --4 - '

which becomes':

Cr.%e

(C0+ff"O

Eliminating y, and solving for k , we got ,.

or.

Jk , - 1 / 2 -------------- ( 6- 1 1 )

:: .= + (w,0/2) ,-,
which beco1me7s

V. ,"., ., ,l.,* v.."." '.v ;, '," .... ,.,..,,-',.,..','. ,.. :."-,."-"."-',.'.-:v-, , .-.-.. .-,
""" ° "." a''-, "# e e "e", =I J r .- r/ r= F ,~ r. W -
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b,,

Similar expression can be obtained for k. Then,

C - EEa - h1 (y1 ) - ho(ym)3 - 0 (6-102)

and the optimum estimate Is N'

(ysIyrM) - (1/2) -------------- (y, + ya) (6-103) 'S.

.t

which is the same value as obtained for the centralized '.

Case.

Next, we obtain the estimation rules for the DPEF

problem so as to minimize R.", .

UL

Minimum Uniform Error Functiogn ..

- In this cameo the density functions p(y,oywoa), and

p(ysalya) j .g i+ i 1, 2 are given by
.%ft-

p(yIPymP) -- - - - exp( .. . .. .-- -- -- -- - -- -- -- -

ft..

'I. 
. -t

Ea -C(yX+e)- y-------- 3
p(yy ) ----------- ,- ------------------------

C.'a +ea.

[a -~~( -15 Jy.=) . . .. . .]

@ , * B .*p(yI,ajyh) = k(ys~expC --------------- ) ''

%" %
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and for T very small,

p(yj,,9&h&+hm+CIy' I

C ht+hm-C-(yseyo) -]

Vk(yt)oxp C --- - - - - - - -- - - - - - -

rfern

E2 --- - - - - 3

i~j J 1in2 (6-106)

where k(y') is a function of ys.

Note that the exponential term may be easily rearranged to

maximize P(y3qaIyi). Its maximum to obtained by setting the

following

hi(y) - y-----------y, 1192. (6-107)

ando

C -0 (6-108)

Then,

VV

LAr- - -- -- --- ---- (y& +yN) (6-109)

which Is the desired result.
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VII. Summary and Suggestions for Future Work

7.1 Summary

In this report, we have considered the problems of

hypothesis testing and parameter estimation when multiple

sensors are used and a global decision (or estimate) is

desired. For the hypothesis testing problem, we have

considered Neyman-Pearson detection, Bayesian detection and

minimum equivocation detection. In all cases, local

decisiuns are fed to a data fusion center where a global

decision is obtained. When the fusion rule is given, the

decision rules at the individual detectors were derived.

When the decision rules at the individual detectors are

known, we derived the optimum fusion rule. We also derived

the overall solution to the problem, i.e., obtain both the

optimum fusion rule and the optimum decision rules at the

detectors simultaneously. We obtained the results for the

general problem of distributed hypothesis testing with data

fusion. With an appropriate choice of the fusion rule and

the cost assignment, the DD problem becomes a special case

of our problem. For the Bayesian formulation, we have

considered the case of identical detectors with independent

observations and obtained the value of K in the "K out of N"

fusion rule. Distributed postdetection integration has
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also been considered where two schemes were proposed. The

corresponding optimum rules have been obtained.

We have also considered the distributed Bayesian

parameter estimation problem, when local estimators transmit

their estimates to a combiner where a global estimate is

obtained. Optimum estimation rules at the local estimators

and optimum combining rules have been derived for three

different cost critera.

In all of the above cases, the equations that specify

the solution are coupled and highly nonlinear and are

therefore hard to solve. The level of computational

difficulty increases rapidly with the number of decision

makers (or estimators), especially for the minimum

equivocation and parameter estimation problems.

7.2 Sugg.stni ons forFuture _Work

One area of research that should be pursued is to find

efficient ways to solve the set of highly nonlinear coupled

equations that are characteristic of the decentralized

detection and estimation problems.

Other fertile areas will be to solve signal detection

and estimation problems in an uncertain environment in a

distributed framework. Knowledge based approaches to

multisensor integration and data fusion can also be

considered.
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