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Preface
p.-

This Users Manual for the LogLisp Programming System (LPS), RADC
Contract F30602-84-C-0121, is to provide the user's non-ADP personnel

with the information necessary to effectively use the system.1

Documents applicable to the history and development of the LogLisp

Programming System project are specified in section 1.2 of the LPS Func-

tional Description and in section 1.2 of the LPS Test Plan. The system/sub-

system specifications for the LPS interpreter and compiler might also be of

interest. Also, in order to effectively develop LogLisp programs the user will

need documentation for Emacs.

1. Beane, J., Carciofini, J. and Colburn, T., *LogLisp Programming Sys-

tem Functional Description". Honeywell Systems and Research Center,

April 12. 1985.

2. Beane. J.. Carciofini. J., Colburn, T. and Lukat, R., "LogLisp Pro-

gramming System Test Plan'. Honeywell Systems and Research Cen-
ter, August 1. 1985.

3. Carciofini. J., Colburn. T. and Lukat. R.. "L(.gLisp Programming Sys-

tem interpeter Systemi'Subsystem Specification" . Honeywell Systems
and Research Center. December 16, 1985.

4. Carciofini. J.. Colburn, T. and Lukat, R., "LogLisp Programming Sys-

tem Compiler System/Subsystem Specification", Honeywell Systems
and Research Center. April 15, 1986.

'This preface covers Section I (General) of the documentation specification for users
manuals given in DoD-STD.7935. This specification was written more with general data
processing applications in mind; the LPS, on the other hand, is an artificial intelligence
program development tool. Therefore, Honeywell (the developer) has elected not to
follow the remainder of this specification. Instead, the presentation is organized as
indicated in the table of contents.



vi CONTENTS

5. Stallman. R.. GNU Ernacs Manual. fifth edition. October. 1986, copy-
right 1985. 1986 by Richard M. Stallmart.

The general nature of programs developed for the LogLisp Programming
System can be classified as artificial intelligence application development
tools. As such. they will be used for intelligent database management as
well as expert system development.

The sponsor of the LogLisp Programming System project is Rome Air
Development Center at Griffiss Air Force Base in New York. The developer
is Honeywell Incorporated's Systems and Research Center in Minnesota.
Both Rome Air Development Center and Honeywell will use the completed
system.

Technical terms, abbreviations and acronyms unique to this project are
defined in this manual where they are introduced.

'
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Chapter 1

Introduction To LogLisp

1.1 General Description

The LogLisp Programming System (LPS) described here is a Common Lisp
programming environment extended to provide logic programming capabil-
ities. Although the primary target machine is a VAX running VAXLisp
under VAX/VMS, the LPS may be ported to any machine supporting full
Common Lisp, for example Symbolics or Sun workstations.1

1.1.1 Lisp Environment

Since the LPS is built on top of Lisp, the full power of Common Lisp is
available. and indeed the LPS may be used only for its Lisp capability if
the user so desires. The Common Lisp environment includes tools for error
handling, debugging, pretty printing. Lisp compiling, I/0 and file editing
(using Gnu Emacs).

1.1.2 Logic Programming Capability

The LPS's logic programming capability, implemented in a language called
Logic, enables a declarative style of programming based on predicate calcu-
lus representation and Horn clause resolution. This style is similar to that of
Prolog. but it is more general in that the user can influence the direction of
the deduction cycle by specifying how the deduction tree is to be searched,
and by making calls to Lisp. The logic programming capability includes

The LPS user interface is dependent on VAXLisp and thus can only be run on the VAX.
On other machines, however, the LPS is fully accessible through direct function calling.

01



2 CHAPTER 1. INTRODUCTION TO LOGLISP

mechanisms for asserting facts in a knowledge base and deducing answers
to queries of the knowledge base. The LPS may be used as a pure logic
programming system, with no calls to Lisp from Logic. if the user so desires.

1.1.3 Interface of Lisp and Logic

The LPS provides an interface between Lisp and Logic in the following two
ways:

1. Since the Logic primitives (queries) of the LPS return Lisp objects,
they (the Lisp objects) may be used as arguments to standard Lisp
functions. In particular, since the Logic primitives are themselves in-
voked as Lisp functions. they may be embedded in other Lisp functions
which manipulate the results.

2. The goals of a LogLisp procedure clause can be interpreted for their
applicative (Lisp) meaning instead of as declarative (Logic) goals. If a
goal predicate symbol has a Lisp meaning, either as a functional form,
special form, or macro. the programmer can arrange for the goal to
be reduced according to the reduction semantics for Common Lisp.
Similarly, selected arguments, or indeed arguments of arguments, of
goals may have reduction applied to them. Thus a LogLisp program-
mer may arrange for the reduction of Lisp forms at any level of his or
her logic program. A consequence of reduction is that Logic queries
can recursively invoke Logic queries, since a logic query is itself a Lisp
function call. and can appear anywhere in a LogLisp clause body.

1.1.4 LogLisp Programming Environment 0

The LogLisp programming environment is an extension of the Common Lisp
programming environment on the VAX (or other machine running Common
Lisp) which features the familiar interactive style of Lisp program devel-
opment. along with a powerful Emacs style editor. LogLisp programming
is also interactive, with logic procedures typically asserted, tested, edited,
saved and compiled at will, just as Lisp functions are similarly defined,
tested. edited. saved and compiled. A powerful and flexible LogLisp user
interface is also provided, including a LogLisp command processor, input
editor and Lisp extensions for Emacs.

, .



1.2. LOGIC PROGRAMM4.VIING IN LISP 3

1.2 Logic Programming in Lisp

This section provides a tutorial style introduction to the concepts of logic
programming and Lisp reduction. as general background for the instruc-
tional sections to follow. We begin with a description of the primary logic

programming inferencing tool (unification). continue with the primary
logic programming data structure (deduction trees). and conclude with a
description of the primary mechanism by which logic and Lisp programming
in LogLisp interact (reduction).

1.2.1 Unification

A logic program is a collection of facts, or declarations. A logic program

is so-called because the model for representing its facts is predicate logic,
or predicate calculus. For example, the predicate logic representation of
the unconditional fact "Fred is older than Otto" is

older.than (fred, otto)

and can easily be represented in Lisp as the S-expression

(older-than fred otto)

We call older-than the predicate and fred and otto its arguments. A
formula associating a predicate and some arguments, as in (older-than
fred otto). is called a predication. In LogLisp, facts will always be rep-
resented as lists of predications. Thus to be correct the fact "Fred is older
than Otto" is really the list containing the above predication:

((older-than fred otto))

This representation is necessary since facts may be conditional. The
predicate logic representation of the conditional fact "So-and-so is older
than such-and-such if so-and-so was born before such-and-such" is

(/ez)(Vy)'born-before(z. y) - older-than(z, y)

This formula is read. "for all z and for all y, if z was born before y then z
is older than Y'". It also can be rendered in Lisp. as

((older-than ?x ?y) (born-before ?x ?y)) 0



4 CHAPTER 1. INTRODUCTION TO LOGLISP

where it is understood that (1) ?x and ?y represent universally quantified
variables (that is. they occur as objects of the "for all... specification) and
(2) the head of such an S-expression represents the consequent part of the
declaration and the tail its antecedents, or goals. As it stands. the meaning
of such an expression is unambiguous. but for clarity we will include the <-
character to indicate the direction of the implication and also the & character
to separate the occurrences of multiple goals:

((older-than ?x ?y) <- (born-before ?x ?y))

?x and ?y are examples of logic variables. In predicate logic, variables
are identified by their being objects of the quantifiers V and -=. In a logic
programming system logic variables are identified lexically. We stipulate
that logic variables are atoms whose print-names begin with a ? character.

A fact, whether conditional or unconditional, in a logic program is also
called a clause. Clauses with the same predicate constitute a logic pro-
cedure. The collection of logic procedures making up a logic program is
also called a knowledge base. The object of logic program execution is
the substitution of terms for logic variables in a given predication, or input
query. which makes that predication deducible from the knowledge base.

The process of logic program execution is a series of attempts at matching
the structure of an input query against the structure of some head predica-
tion of some clause in the knowledge base. (This process is also sometimes
referred to as backward chaining.) The original input query is a predi-
cation provided by the user of the knowledge base. Suppose the knowledge
base is composed of our clauses

((older-than fred otto))
((older-than ?x ?y) <- (born-before ?x ?y))

and the input query is

((older-than fred otto)).

Since there are no logic variables in this query, the posing of it is in essence
a question whether Fred is older than Otto. Since the query (older-than
fred otto) is matched, verbatim, against the first clause the answer to the 0
query is "yes". Thus in this case logic program execution is just a matter
of finding a duplicate copy of the query in the knowledge base.

In order for two non-variables to match, they must be o, the same type.
Thus the atom f red and the string "fred" wili not match. Numbers are

F , _%e e e' e e eC e-M0
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1.2. LOGIC PROGRAMMING IN LISP

tested using the Common Lisp - predicate. strings use ite Common Lisp
string-equal predicate. and all other atoms are tested using eql. Conses
are tested recursively on their cars and cdrs.

But the power of logic programming comes from the ability to also match
on the logic variable. Suppose the input query is

((older-than fred ?z))

This differs in that it includes the logic variable ?z. Initially this variable
does not stand for anything: it is uninstantiated. Thus it makes no sense
to interpret this query as asking whether Fred is older than :. Rather. it
is a request for an enumeration of those objects which when substituted
for z make the statement "Fred is older than z" true. Since "Fred is older
than Otto" is a fact in the knowledge base, the input query will elicit the
response "Otto'. Note that if "Fred is older than Butch" is also a fact in
the knowledge base,

((older-than fred butch)).

then the answer to our query is "both Otto and Butch'.
In this case not only must execution of the logic program do pattern

matching on a list structure, but it must also take into account the presence
of a logic variable. Although there is not a verbatim match between the
query (older-than f red ?z) and the clause (older-than f red otto) as
they stand. there is if otto is substituted for ?z in the query. This type
of pattern matching lies at the heart of logic programming and is called
unification. When an input query is selected for unificatio., we say that
the logic procedure associated with that query's predicate is called. Logic
program execution is a series of unification steps. or logic procedure calls.

Sometimes logic program execution requires the unification process to
remember a logic variable binding and use this binding in a subsequent
unification attempt. Suppose that there is no explicit statement in our
knowledge base of Fred being older than anyone. Instead. this time the
knowledge base contains only the clauses

((older-than ?x ?y) <- (born-before ?x ?y))
((born-before fred otto))

and the input query is still

((older-than fred ?z))
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The response to the query will again be "tto". but this time the action
of the logic machinery is n ore complicated. Let us call this machinery the
Inference engine.

The inference engine will attempt to match the query against the head
of th: clause (older-than ?x ?y) <- (born-before ?x ?y) and it wili
succeed. binding fred to the logic variable ?x and binding the logic variable
?z to the logic variable ?y. These bindings are temporary. however, because
they are contingent on the antecedent goal being satisfied, namely (born-
bef ore ?x ?y). Thus the matching cycle repeats, with the goal (born-
before ?x ?y). Again, we say that this goal calls the logic procedure for
born-before. This differs from the initial input query in that the logic
variables ?x and ?y have been instantiated. Thus the unification process will
find a successful match between this new query and the clause (born-before
f red otto) because (1) ?x was previously bound to f red, and (2) ?y was
previously bound to ?z which is as yet unbound and therefore matches
successfully with otto under the substitution otto for ?z.

1.2.2 Deduction Trees

Thus it is seen that the data area manipulated through logic program ex-
ecution is. in general. a growing set of logic variable bindings, also called
an environment. The successful unification of an input query against a
knowledge base clause head produces a (possibly null) set of logic variable
bindings which extends the current environment.

Sometimes it happens that an input query matches against more than
one clause head. For example, suppose we have the following clauses in the
knowledge base:

((older-than ?x ?y) <- (born-before ?x ?y))
((older-than ?x ?y) <- (born-before ?y ?x))
((born-before fred otto))

Now the input query

((older-than fred ?z))

will match the heads of the first two clauses, producing separate and inde-
pendent sets of bindings, each extending the original environment in isola-
tion from the other. In other words, the environment branches into more
than one set of variable bindings, each becoming an environment unto it-
self but sharing the variable bindings in force before the branch. In the

I I



1.2. LOGIC PROGRAMMING IN LISP 7

abstract. a logic program's main data area is a deduction tree of logic
variable bindings, embodying a separate environment for each node of the
tree at any point during the execution. The process of determining the de-
scendents of a given node in this tree is called resolution, because it uses
a rule of inference of the same name.

There are choices to be made in the concrete implementation of this idea.
The most important is to decide how this deduction tree is to be traversed,
that is, in what order are its nodes to be visited. Think of a deduction
tree node as being a list of goals remaining to be proved in a query and
the current environment. The logic programming language Prolog goes by
the policy that, once a goal successfully unifies with a clause head, work
begins immediately on the next goal of the node's goal list, rather than
attempting to unify the same input query with alternate clauses. Thus the
tree of variable bindings is contructed in a strict depth-first fashion, and
continues that way until unification fails or an answer to the query is found.
Upon failure all bindings made since the last point when alternative clauses
could be matched are thrown away and matching is attempted on the next
clause (called backtracking). Thus only a single branch (environment) of
the abstract tree is in effect at any time.

Another control policy is to match all possible clauses against an input
query before calling the goals of any of these clauses. This implementation
more closely corresponds to the abstract deduction tree described above.
At any point during program execution a number of environments are in
effect. Although only one environment is current in the sense that it is the
one currently being extended, there are a number of other live ones waiting
their turn for extension. Depending upon the criteria by which a waiting
leaf is selected for resolution, the deduction tree can grow in a more or less
balanced manner. The more balanced a tree grows, the more jumping there
is between environments (called context switching).

LogLisp offers the option of traversing the deduction tree in either of
these two modes, strict depth-first with backtracking or breadth-first with
no backtracking, as well as in any combination of them. Combinations of
these modes are effected through a limited backtracking method which
does a Prolog style depth-first search unless the programmer requests a
suspension. A suspension consists of taking the current node and placing
it on a waiting heap according to a solution cost heuristic. (In going to
the heap. this node joins other nodes which were current at some time and
then suspended. If processing is strictly depth-first. no node will ever be
put on the heap.) Then, the node from this waiting heap with the cheapest

, NY.v % VN? %I
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8 CHAPTER 1. INTRODUCTION TO LOGLISP

solution cost is selected. it is reinstated as the current node in the deduction
tree. and processing continues. The solution cost heuristic can be as simple
as a constant weight, or it can be computed using a complicated formula.
Suspension can also be conditional.

Besides being able to suspend a deduction. the programmer can also
explicitly fail a node according to any criterion he/she chooses. Section 2.5
describes how to control the deduction through programmed suspension and
failure.

1.2.3 Lisp Reduction

Reduction is the LogLisp mechanism by which logic programs can use the
power of Lisp. For example, suppose in our procedure for older-than we
want to include the fact that "a is older than b if a's age is greater than b's
age". The meaning of this fact includes the concept of numerical comparison,
the evaluation of which can be performed by a Lisp system function. In
LogLisp we can construct the following clause to embody this fact about
older-than:

((older-than ?a ?b) C- (age ?a ?nl) & (age ?b ?n2) & !(> ?nl ?n2))

This states that a is older than b if the age of a is nl, the age of b is no,
and nl is greater than n2. Notice that the last goal is prefixed with an
exclamation point (!). This is a LogLisp reader macro which expands the
last goal into

(reduce-term (> ?nl ?n2))

The reduce-term form tells LogLisp to treat its argument as Lisp would
and evaluate it. This is not exactly the same as calling the Lisp form oval
on (> ?nl ?n2), since logic variables have to be treated specially. but it is
similar. Thus if processing has reached the last goal of the above clause and
it evaluates, the value is interpreted as an indication of success or failure. If
the value is nil the goal has failed, otherwise it has succeeded.

A call to Lisp need not always appear as a clause goal in itself, but may
be embedded within a goal as in

(age ?c 1( ?nl 20))

Here the goal is a logic predication (read "the age of c is the sum of nl and
20"), which does not have a Lisp meaning. However, if ?nl is instantiated
to an expression that has a value then LogLisp will able to recognize that N.," .

.0



1.2. LOGIC PROGRAMMING IN LISP 9

the goal's last argument is evaluable. The interpreter will rewrite the goal
with the appropriate substitutions. For example, if ?nl is instantiated to 5
then the goal will be rewritten to

(age ?c 25).

In this case the goal has not been evaluated but it has been reduced, by
evaluating one of its sub-forms.

Reduction deals with predications which are syntactically the same as

S-expressions. However, there are some basic semantic differences due to
LogLisp's use of Lisp atomic forms. As arguments to logic procedure calls,
Lisp atoms are used for two purposes: logic constants and logic variables.
Logic constants are their own values. For example, the value of the symbol
fred is fred. One mentions a logic constant in a logic predication just by
using it (unquoted), as in

(older-than fred otto)

In Lisp, however, when one wants an atom rather than its value, the atom
is quoted as in

(eq 'fred (car "(fred is tall)))

because Lisp evaluates an unquoted f red by returning its lisp binding, which
may be something other than fred altogether.

Thus if a LogLisp programmer wants to use a symbol in a non-logic way
within a LogLisp clause or query, for example. to aetq a symbol to a (Lisp)

binding and later to get that binding, he must anticipate that the forms
within which that symbol is going to be used will be subject to reduction.
which assumes that an unquoted atom is a self-evaluating logic constant. In
order to access that atom's binding. eval must explicitly be called on it. 0
For example, if the Lisp binding of the symbol tall-list is the list

(otto fred bill)

then in order to access this list for membership one must write

!(member ?x (eval tall-list))

instead of just

!(member ?x tall-list)

ZN %
.. . . .. . .. .



10 CHAPTER 1. INTRODUCTION TO LOGLISP

This is a frequent source of errors in LogLisp programs which call out to
Lisp. For more on this aspect of the Logic Lisp interface, see section 2.5.2.

Note also that any Lisp atom used as a logic variable, like ?x above,
either has a logic binding at the time reduction is called on it or it does
not. If it does. the binding, and not the variable itself, is given to the
Lisp reduction machinery. Finding this binding is called dereferencing the
variable. Thus if ?x is bound to the atom fred then the form

!(member 'trod (oval tall-list))

will be given to the reduction machinery at runtime, even though the source
goal is

!(member ?x (eval tall-list))

If the variable does not have a logic binding, or it dereferences (possibly re-
cursively) to another variable, then the (last) variable is given to the reduc-
tion machinery, where it is interpreted as having no Lisp value and reducing
to itself. Thus no applicative form in which it appears will have a Lisp value
either, and such a form will be sent back, reduced but unevaluated, to the
inference machinery of LogLisp. In our example, reduction will return

(member ?x '(fred otto bill))

to Logic, and if no logic procedure for mmber has been defined, this proce-
dure call will fail.

%0
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Chapter 2

How To Use The LogLisp
Interpreter

2.1 Beginning a LogLisp Session

LogLisp is installed at VAX/VMS sites in the form of a suspended Lisp
image extended with the functions necessary for LogLisp execution. The

command for invoking the suspended LPS image is ips. In order to make
this command available, and to properly initialize VAX Lisp and Gnu Emacs,
three files are essential in your SYSSLOGIN: directory. All can be created
using the VMS CREATE command.

LOGIN.COM This command procedure file is automatically executed
each time you log in. It must contain the following lines:

$ IispextenAnit [memsizeJ

$ gnu-emacs-init [logout]

memsize is an optional parameter which tells VAX Lisp how much
working memory to use. The default is 10000 pages of dynamic space.

logout can be indicated to tell whether you want the system to inform
you of any processes (particularly Gnu Emacs processes) which are still

running when you attempt to logout. 0

LISPEXTEN-INIT.LISP This is an initialization file which is loaded
into the VAX Lisp environment each time you enter the LPS. It must
contain the function call 0

' ,I% M
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(cp :enable-c ommand-processor)

Executing this function is necessary for using the LPS command in-
terface.

.EMACS This is an initalization file required for GNU Emacs. It must
contain the function calls

(local-customizations)

(use-flov-control)

The first function makes available the extended Emacs commands
for Lisp mode. The second function is optional but should be used
when your host-to-terminal communication protocol uses control-S
and control-Q for flow control. Since Gnu Emacs does not follow
this protocol, undesirable behavior can occur when these control char-
acters are received by the host. The (use-flow-control) function
essentially tells Gnu to ignore control-S and control-Q and to replace
them with control-\ and control-], respectively.

Once this is done, the suspended image is invoked simply by typing

$ lps

The dollar sign ($) is the Digital Command Language prompt. When the
suspended image has been loaded you will receive the prompt

Ed Lisp CP>

The "Ed" and "CP" designations indicate that the input line editor and
command processor are available as part of the Lisp extensions provided.

All of the LogLisp function, macro and special form symbols are external
to the lps package. That is, you can reference a symbol by prefixing its name
with ips:, as in lps: query. However, you can make these symbols available
without the prefix if you "use" the LPS package. This is done by typing the
forr..

(use-package 'lps)

to Common Lisp. However, the shorter symbols remain available only as
long as you stay in the package which uses lps. In this manual we will
always refer to symbols with their prefixed names, with the understanding

%

%S
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that the prefix may be dropped when the lps package is used. (See Guy
Steele's book. Common Lisp, The Language. for a complete discussion of
packages.)

The LPS is now ready to use as documented in the following sections.

2.2 Individual Clause Assertion
The simplest way to enter clauses into your knowledge base is with the

1ps: assert-clause function:

(ps: assert-clause clause)

This function installs clause in the knowledge base. The syntax for a clause
is:

(head [<-I<--lif] [goal {[&Iand] goal)*J)

where head is itself a list of the form

(predicate {argument)* . [NIL I variable])

(Notational conventions for describing forms are also given in Steele.) pred-
icate must be a symbol, but not a logic variable, while argument can be any
Common Lisp object whatsoever. The argument list constituted by argu-
ment* can be dotted so long as the dotted tail is a variable, goal can be any
Common Lisp object except that if predicate is one of the special resolution
or reduction forms in section 2.5 or 2.10 it must follow that form's syntax.
Also, a goal's argument list may not be dotted.

If a clause does not conform to this syntax, an informative message is
given, a fatal error is signalled and the VaxLisp debugger is entered. The
1ps:assert-clause function is frequently called when talking directly to
Lisp. If so. the user would in this case exit the debugger, fix the line using 0
the input line editor (see section 5.1.1), and re-enter it. Following are two
examples of the use of lps :assert-clause.

(lps:assert-clause ((foo a b)))
(ps:assert-clause '((foo ?x ?y) if (bar ?x ?z) &

(baz ?z ?y)))

If a clause is asserted to a compiled procedure. the procedure must be
recompiled for the object code to reflect the change.



14 CHAPTER 2. HOW TO USE THE LOGLISP INTERPRETER

2.3 Defining Whole Procedures

We now describe a method for defining whole procedures using just one form.
The lps:def predicate macro allows you to define whole logic procedures
at once.

(ips :defpredicate name
[:mode mode-template]
[: index path]
clause*)

where name is a symbol naming a predicate, path is a valid path specifier
(see section 2.7 on indexing), mode-template is a valid mode declaration
template (used only in conjunction with the LogLisp compiler-see section r
4.3.3) and clause is a clause conforming to the syntax given in Section 2.2,
and whose head predicate is the same as name.

If an ips:defpredicate form does not conform to the syntax given
above, an informative message is given, a fatal error is signalled and the
VaxLisp debugger is entered. The lps :defpredicate macro is frequently
called when working in an editor and evaluating Lisp forms out of it. (See
section 5.2.) If so, the user would in this case exit the debugger, fix the form
using the editor, and re-evaluate it.

The ips :defprodicat. form arranges to define the LogLisp procedure
name with clauses asserted under the index path specifier given by the
:index specification. If no path specifier is explicitly given, it defaults to
(car). If clauses under the predicate name are already defined, they are
removed and replaced by the new clause assertions. The exception is where
the evaluation of the lps:delpredicate form encounters a syntax error.
in which case the original clauses are left undisturbed. Following is an
example of how to use lps:defpredicate instead of lps:assert-clause

in the previous section:

(lps :defpredicate too
:index (car)

((oo a b))
((too b ))
((foo ?x ?y) (bar ?x ?z) (baz ?z ?y))) I

" " . ," • ," " ". ' ',, - "'w ,- s, ., q-,,, , . s- ,,, - ,-. . .
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2.4 Executing a LogLisp Program

Executing a LogLisp program is equivalent to querying a knowledge base.
There is one primitive function for querying the knowledge base. Three
macros also exist that use this primitive query function. First we describe
the primitive Logic function lps:query. Then we present the three query
macros lps: all, lps: any and lps: one. Usually lps:query is used under
Lisp program control while the macros are used under Logic program control
to make recursive calls on Logic. This is because the macros make sure that
any logic variables in their goals are instantiated. The macros are also more
convenient than certain typical patterns of use of the lps:query function.

2.4.1 The LogLisp Query Function - ips:query

The primary construct for querying a knowledge base is the lps:query
function. The syntax of a call to lps :query is

(ips :query goal-list
fkey
: template
solution-limit
:ignore-duplicates)

where the parameters are described as follows:

goal-list This is a list of initial goals to be proved. It must conform to the
syntax of a clause body. that is, it is like the cdr of a clause. A goal-list
of ((too ?x)) will cause LogLisp to search for a substitution for ?x
such that (too ?x) is true. A goal-list of ((oo ?x) (bar ?x ?y))
will cause LogLisp to search for substitutions for ?x and ?y such that
both (too ?x) and (bar ?x ?y) are true.

:template This is a form typically containing logic variables which is re-
turned as an answer template whenever a solution is found. For exam-
pIe, the template consisting simply of '?x indicates that the form of
the answer is to be the binding of ?x when the solution is found. The
quote is necessary in the template since lps :query is a Lisp function
and therefore evaluates all of its arguments. The template '(?x ?y)
indicates that the form of the answer is to be the list containing the
bindings of ?x and ?y.

1Iaw
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Note that templates can be reduced. Thus the template ' ! Ox ?y)
will cause the reduction mechanism to check if ?x is bound to a symbol
with a functional definition. If so. and ?y is bound to something that
has a value, then the answer will be the result of calling that function
with that value as an argument.

The default answer template is an association list of the bound vari-
ables appearing in the goal list. where the key is the variable name
and the value is the variable's binding.

Since a query might succeed more than once, lps:query returns the
list of answers found during the deduction. If no answers are found,
ips : query returns NIL. Note that when no variables appear in goal-list
and the default template (an a-list) is used, then if goal-list succeeds
NIL will be the answer, but lps :query returns the list of answers. So
if there is one success, (NIL) is returned; if there are two successes
(NIL NIL) is returned; etc.

solution-limit (default: : infinity) This is either an integer indicating
the number of solutions requested, or the keyword :infinity indicat-
ing that all solutions (within the limits of the deduction tree search)
are to be found.

ignore-duplicates (default: nil) This parameter indicates whether du-
plicate solutions are to be ignored in the construction of the query's
answer list. If it is nil, all solutions will be collected in the answer
list regardless of duplicates. If the parameter is t. a solution will be
ignored if it is (Common Lisp) equal to any other already found. If
it is a function. it must be an equality predicate to be used for deter-
mining whether the solution is a duplicate. Mathematically speaking,
if this parameter is not nil, the answer list will be like a set; if it is
nil, the answer list will possibly be a bag. 0

Now we give some simple examples. Suppose the knowledge base con-
tains the following predicates:

(lps :defpredicat* too"

((oo a ))
Molo a c)
((too ?u ?v) (bar ?v ?u)))

t I
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(ips :detpredicate bar

((bar b a)))

Then we might have the following queries and answers:

Query: (query '((foo a ?x)))
Answer: (((x . b)) ((x . c)) ((x b)))

Query: (query '((lao a ?x)) :temnplate *?x)
Answer: (b c b)

Query: (query '((foo a ?x)) :temnplate '?x
:ignore-duplicates t)

Answer: (b c)

Query: (query '((fao a ?x)) :temnplate '?x

Answer: (b)

Query: (query '((foo a Wx) :template '(cons 57 ?x)
:solution-limit 1)

Answer: ((cons 57 b))

Query: (query '((foo a Wx) :template *!(cons 57 ?x)
:solution-limit 1)

Answer: ((57 . b))

Query: (query '((lao ?x b) (lao ?x c)) :template '?x '

:ignore-duplicates t)
Answer: (a)

2.4.2 The LogLisp Query Macros

It is an error to use the :solution-limit keyword option with the query
macros. The arguments to these macros are subject to variable instantiation
when they appear in the body of a clause, and thus are more convenient to
use than the lps -query function. Defaults for the :template and : ignore -
duplicates keyword options are the same as for lps:query. Descriptions
and examples of the query macros follow. Note that goals need not be placed
in lists and arguments need not be quoted. The examples assume the same
knowledge base as before.

10%
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(ips all goal- keyu-ord-optzori-pai'rs*)

The lps:all macro is similar to the lps:query function with the :solu-
tion-limit keyword set to : infinity. Examples:

Query: (lps:all (fao ?x b) (foo ?x c) :template ?x)

Answer: (a a)

Query: (lps:all (f00 ?x b) (foo ?x c) :template ?x:
:ignore-duplicates t)

Answer: (a)

(lps:any k goal* keyword- option -pai~rs)

The lps: any macrc is similar to the lps: query function with the :so-
lution-limit keyword set to k. Examples:

Q uery: (lps:any 3 (foo a ?x) :template Wx

Answer: (b c b)

Query: (lps:any 3 (too a Wx :template ?x

:ignore-duplicates t) 9~

Answer: (b c)

Query: (lps:any 1 (too a ?x :template Wx

Answer: Wb

(1ps:one goal * keyword opton -pairs*)

The lps: one macro is similar to the lps: any macro called with k =1

However. rather than returning a list with one answer, lps: one just returns
the answer. Examples:

Query: (one (lao a ?x :template ?x)

Answer: b%

Query: (one (foo a z))

Answer: : NO-SOLUTIONS-FOUND

Note that if 1pm : one is called with a goal for which there are no solutions,
the atom :NO-SOLUTIONS-FOUND is returned rather than NIL. This is
to distinguish it from the cast. mentioned earlier, in which a deduction
succeeds but returns NIL because no variables appear in the goal and the 4.

default template was used.
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2.5 Special Resolution Forms

The LogLisp ips:qutry function and macro- provide a certain amount of
control over the deduction process by allowing the programmer to set a

solution limit. But this is very high-level control over the set of solutions

generated and does not offer any control within the generation of any one

particuiar solution. LogLisp offers this control by providing special forms

for quitting the overall query. failing a particular branch of the deduction

tree. and suspending a node for possible resumption at a later time. There

are also three special forms which simulate logical connectives. and one for

constructing goals at run-time. All of these "special resolution" forms are

only interpreted as such when they appear as goals in clauses.

2.5.1 Quitting The Overall Query

There can be many reasons for quitting a query while it is in progress. For

example, there may be an infinite number of ways to get a solution, in which

case the query will not stop if left unconstrained. As mentioned, one way

to stop such a query is to use the : solutlon-limlt keyword when invok-

ing Logic. But. there may be other criteria for stopping an unconstrained

search. For example, the programmer might wish for the search to stop

after a certain amount of time has elapsed. or after a certain number of

deduction tree nodes have been tried. Or more realistically, there might be

a specialized criterion specific to the application for stopping the query. For
these purposes. LogLisp provides a special form which when it occurs as

a goal causes the current deduction to stop and return the list of answers
generated so far. If the current deduction is nested in another. the higher

level deduction continues.

(ps: quit)

This causes th deduction to be stopped and the current answer list returned. A

Normally. ips: quit will be invoked cond ionally, using t he lps : logic- it

form (see section 2.5.4). For example. suppose the procedure too is defined

as follows:

(ips:defpr~dicats too

((too ?X ?Y) (lpf:logic-if !(quit-ch~ck Wx ~
(lps:quit)
(bar ?y)))

((too ?x ?y) (baz ?x) (boo ?y))) 0

A %~9s~ ~ ~
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Suppose also the current goal is (too zip zap). Then if quit-check is a
Lisp function which when called with zip as an argument returns a non-NIL
value, the overall query is stopped: the second clause for too is not tried.
Otherwise. control passes to the goal (bar zap).

2.5.2 Failing Or Succeeding A Goal

Forms are provided for explicitly initiating backtracking and succeeding
goals.

(lpa:lail)

When used as a goal in a clause, this form unconditionally fails and back-
tracks in the deduction tree to the last point where alternative clauses have
yet to be tried. If there is no such point, lps :IaI will have the same effect
as ips: quit. A similar form is provided for unconditionally succeeding a
goal:

(lps: succeed)

In most cases it is more useful to be able to fail or succeed conditionally.
For example, supposo the predicate too is defined as follows:

(Ips :deipredicate too
((oo ? ?y) (lps:logic-it !(fail-check ?x)

(ps:fail)
(ips : succeed))

((oo ?x ?y) (baz ?x) (boo ?y)))

Suppose also the current goal is (too zip zap). Then if fail-check is a
Lisp function which when called with zip as an argument returns a non-NIL
value, backtracking commences and the next clause is tried. Otherwise, the 0
goal succeeds and processing continues with whatever goal is next, if any.
The lps: succeed form is for most purposes a no-op.

For a more realistic example of explicit search control, consider the fol-
lowing predicate:

(lps:delpredicate older-than 0
((older-than fred otto))
((older-than otto spike))
((older-than spike butch))
((older-than ?x ?y) (older-than ?z ?z) (older-than ?z ?y))
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Since the last clause always succeeds, is recursive, and introduces two new
goals. there will be depth-first runaway and the query

(query *((older-than fred ?who)))

will not terminate. To stop it. one can notice that the query will never
require that the deduction tree go deeper than four levels, one for the initial
query and one for each of the intermediate steps involved in proving that

Fred is older than Butch. Thus if depth were a Lisp function which returned
the current depth in the deduction tree. and the last clause is rewritten

((older-than ?x ?y) (lps:logic-if !(> (depth) 3)
(lps:fail)

(Ips :logic-and
(older ?x ?z)
(older ?z ?y))))

then the depth-first runaway would be cut off and both correct answers
returned. (See section 2.5.4 for a description of Ips: logic -and.)

Note that in order for this to work the user must have initialized some
Lisp variable to zero and defined the function depth in such a way as to
increment this variable and return its value.

As a matter of style, the use of reduction to access Lisp state from
within Logic should be avoided. A better example of how to program the
older-than procedure is the following:

(lps :detpredicate older-than

((older-than fred otto))
((older-than otto spike))
((older-than spike butch)))

(defpredicate older
((older ?x ?y) (older-than ?x ?y))
((older ?x ?y) (older-than ?x ?z) (older ?z ?y)))

This method does not cause depth-first runaway. and does so in a way
which does not require a depth check. It also requires only about one quarter
the time of the other method.

A %N FP~d2" III~iV' ' e ONNOIIII N

r4



22 CHAPTER 2. HOW TO USE THE LOGLISP INTERPRETER

2.5.3 Suspending A Node

The feature which distinguishes LogLisp the most from Prolog is that which
allows the suspending of a node. Unlike failing. which effectively aborts a
deduction tree branch, suspending gathers up the state of the deduction into
a uaiting node. saves it on a queue called the waiting heap. and backtracks
from the current point. Waiting nodes are inserted into the heap according
to a solution cost. or heuristic which estimates the cost of finding a solution
from the current point. If and when all nodes have been thus suspended.
the waiting node with the least solution cost is selected and installed as the
root of a new deduction tree.

The form for suspending deduction is:

(ips :suspend cost)

where cost is a form which evaluates to a number representing the solution
cost. It is an error for cost to evaluate to a non-number.

As an example of using the Ips: suspend form, consider a logic program
for finding a path between two nodes in a directed graph. The graph can
be represented by a connected predicate defined as follows:

(delpredicate connected

((connected a b))
((connected b c))
((connected c d))
((connected d e))
((connected a f))

((connected f e)))

Paths between any two nodes on this graph can be computed by the proce-
dure path along with its subsidiary procedures:

(detpredicate path
((path ?x ?y ?z) if

(pathrecurs ?x ?y ?z (?x ?y))))

(detpredicate pathrecurs

((pathrecurs ?s ?e (?s ?e) ?ex) if
(connected ?a ?e))

((pathrecurs ?s ?e (?s . ?t) ?ex) if
(connected ?s ?n) and

=

0
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(not-elot ?n ?ex) and
(pathrecurs ?n ?e ?t (?n . ?ex))))

(detpredicate slot
((slot ?x (?x ?y)))
((slof Ux Oh .?W) if (elof ?x ?W)),.

(detpredicate not-slot
((not-slot ?x ?1) if !(not (any 1 (slof ?x MM)))))

The procedure pathrecurs will attempt to compute the path as a list be-
ginning with ?s and ending with ?s subject to the restriction that the path
cannot include nodes from ?ex (the object being to avoid getting caught by
cycles in the graph). The procedures slot and not-slot are the Logic im-
plementations of list membership and non-membership, respectively. Note
the use of the recursive call to Logic in not-elof.

The query

(all (path a * ?path) :template ?path)

will return the list of paths

((a b c d *) (a t e)),

which is the correct answer. But if what is desired is the shortest path,
this procedure is inefficient since the longer path is computed first. We can
guarantee that the shortest path is found first by keeping track of the length
of the path computed so far and suspending the current deduction tree node
according to this length. Thus path and pathrscurs can be replaced with
path-smart and pathrecur-smart:

(dotprsdicate path-smart 0
((path-smart ?x ?y ?z) it

(pathrocurs-smart ?x ?y ?z (?x ?y) 0)))

(depredicate pathrscurs-smart
((pathrecurs-smart ?s ?e (?a ?e) ?ex ?length) it 

(connected ?a ?))
((pathrecurs-smart ?a ?e (?s . ?t) ?ex ?lsngth) if

(connected ?a ?n) and
(not-slot ?n ?sx) and

.
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(z ?nev-1.ngth M(* ?length)) and
(suspend ?new-length) and
Cpathrecurs-smart ?n ?e ?t (On . ?ex) ?new-length)))

(detpredicate ==
((== ?X ?X))

The procedure == simply unifies its arguments. If neither of the arguments
is a variable they must be equal for =- to succeed. If one of them is a
variable it will be bound to the other. If both are variables then the first
will be bound to the second.

Now the query

(all (path-smart a e ?path) :template ?path)

will return the list of paths

((a I e) (a b c d e)).

and the list Ca f e) will have been found first. To make sure that it is all
that is found, the query

(one (path-smart a It ?path) :template ?path)

will return the single answer

(a f e),

and no further processing will be done.

2.5.4 Other Special Resolution Forms

LogLisp provides four more forms which have special meaning as predicates.0
The first three are somewhat akin to the logical connectives and, or and

w. if .. .then. .. .dee. To distinguish them from their Common Lisp counterparts,
they are called lps: logic -and. lps: logic -or and lps: logic -if.

(lps:logic-and conunct*)

When this form appears as a goal it succeeds only if each of the conjuncts
succeeds. Thus, for example, the clause

((bachelor Wz (lps:logic-and (unmarried ft) (male ft)))

%w* %I No 4 % .- *
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is equivalent to

((bachelor ?x) (unmarried ?x) (male ?x))

If there are no conjunct,. lps: logic-and automatically succeeds. The
lps:logic-and form is useful whe more than one goal are involved in

a branch of the lps:logic-if form (see below).

(lps :logic-or disjunct*)

This goal succeeds only if some disjunct does. Thus, for example, the clause

((organic ?x) (lps:logic-or (animal ?x) (plant ?x)))

is equivalent to the pair of clauses

((organic ?x) (animal ?x))
((organic ?x) (plant ?x))

If there are no disjuncts, lps: logic -or automatically fails. ,-,

(lps:logic-ilf test then [else)

When this form appears as a goal. an attempt is made to prove test. If

successful, then becomes the new goal and the lps:logic-if form succeeds
only if then does. Otherwise. if all attempts to prove test fail. else becomes
the new goal and th- lps:logic-if form succeeds only if else does. If test
fails and there is no else alternative, the lps:logic-if form automatically
fails.

The last special resolution form allows the run-time construction of goals. 0

(lps:call expression)

expression must be something which. when instantiated, can be interpreted
as a goal. For example. if ?x is bound to (foo bar) then (lps:call ?x)
will invoke the goal (foo bar). But expression need not be a variable; it

can be a structured object which contains a variable. Suppose the source
goal is (lps:call (?y 13)). Then if ?y is bound at run-time to baz. the
invoked goal will be (baz 13). If expression does not instantiate to a valid
goal. an error is signalled. just as though the goal had failed to parse at
clause input time.

0
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2.6 Overflowing The Node Stack

Although much of LogLisp's run-time memory management is handled by
Lisp. the primary run-time data structure, called the node stack, is not.
The node stack is a preallocated array used to represent the state of a Logic
deduction in much the same way that the control stack is used by Lisp to
represent function calling. If the node stack is used up before a query is
finished a continuable error will be signalled:

Node stack overflow.
If continued: deduction will resume with a larger stack.

2.7 Indexing Clauses for Efficiency

2.7.1 The Value of Indexing

A clause indexing facility is provided for run-time efficiency. The most
fundamental level of indexing is at the predicate level. That is, given a
query

(lps:query '((foo ?x)))

unification will only be attempted against clauses in the ko'ic procedure
too. But indexing is also desirable within logic procedures themselves. For
example. suppose the following clauses are asserted for the procedure older-
than:

(defpredicate older-than
((older-than fred otto))
((older-than otto spike))

((older-than spike butch))

Suppose also that this group of clauses is not indexed in any way. Then if
we pose the query

(query '((older-than spike ?who)))

three unifications will be necessary to obtain the correct response

(((?who. butch)))

-6m='I~
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To eliminate unnecessary unification attempts. LogLisp by default will orga-
nize the clauses of the procedure in a hash table which is keyed on the atoms
tred. otto and spike. that is. the first arguments of the clause heads. The
value of each table entry then is the (list containing the) clause for which
the key is the clause head's first argument. At run-time,, the first argumen;
of the goal. in this case spike. will be recognized as the ke%. and the bash
table value for spike. namely the list containing the clause ((older-than
spike butch)). will be retrieved. Thus only the clause with a chance to
unify will be tried, rather than all three.

It is sometimes desirable to index procedures on some element other than
the first argument. For example. suppose the procedure for older-than is
as above, but the query instead is

(query '((older-than ?who butch)))

Then despite indexing the procedure on the first argument, all three clauses
of the procedure will have to be tried, since the first argument of the goal
is a variable, and a variable can unify with anything. In this case it is more

desirable for the procedure to be indexed on the second argument, for again
only the one clause with a chance of unifying will be retrieved.

2.7.2 Specifying and Finding Indexing Keys

Indexing keys are specified through constructs called path specifiers. A
path specifier is a (possibly null) list of symbols each of which is either car
or cdr. This list specifies a path into a clause head's argument list, ending
at the desired indexing ke%. Following a path specifier proceeds as follows.
The first car or cdr accessor function in the path specifier is applied to the
argument list. producing a value. The next car or cdr accessor function _

in the path specifier is then applied to this value, producing a new value.
This process continues until each of the functions in the path specifier has
been applied to the result of the previous application. The last value is the
indexing ke,%.

Lisp users will recognize these path specifiers as performing a task similar
to the car and cdr composition functions such as cadr. The difference is -- ,.

that path specifiers are followed naturally from left to right, while car and ,

cdr composition functions perform the applications from right to left. For
example. the path specifier (cdr car) is in some sense equivalent to cadr.
But composition functions are not used. both because they can only go up

N
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Clause Head Path Specifier Index Key
'i(too a b) (car) a
i! (too a b) (cdr car) b
I. (too a b) (car car) undefined
(too (a c) b) (car car) a
(too (a c) b) (car cdr) (c)

,i (too (a c) b) (car cdr car) c
(too a . b) (cdr) b

(too a b c 4) nil (a bc d)
(too a b ?x) (cdr cdr car) ?x

Table 2.1: Index Keys

to four levels of application, and because it is necessary to do list bounds
checking to prevent run-time errors.

Table 2.1 gives examples of clause heads, path specifiers for those clause
heads, and the resulting index key. Remember that the path specifier is
applied to the clause head's argument list, and not the whole clause head
itself. There are a number of remarks to be made about the use of path
specifiers.

1. This method allows indexing on keys which are inside of structured
arguments. This is particularly useful when it is desired that clauses
be indexed on functors or functor arguments.

2. It is possible that the application of a path specifier to an argument
list is undefined, that is, the path of car's and cdr's cannot be com-
pleted. LogLisp makes provisions for this situation. such that the
input /output behavior of a program is not affected. However, the per-
formance of the program may be degraded. due to the fact that clauses _
for which the path specifier is undefined must be handled in a general tillway. N

3. Index keys need not be logical constants. They may also be Lisp atoms
which are not symbols. for example, arrays or structures. Clauses
which are keyed on such objects are also stored in the hash table.
Other non-constant objects are logical variables and conses. Clauses
which are keyed on objects such as this are not stored in the hash
table. They are simply kept on lists, one for those clauses keyed on
variables, the other for those keyed on conses.

-W 11: l 111 1111 1 iilil: i i 1L0IM 0M
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-4. The ilixing met hod harndles dot ted struct ures in the clause head just
as an% (it hier si ructure.

2.7.3 Setting a Path Specifier for a Procedure

The default path specifier for ever * procedure is (car). To use anything
else one must define the procedure using ips :def predicate with the :index
keyword. For example. the formi

(lps:delpredicate tall
index (car cdr car)

((tall (father a)N)

((tall (father W)
((tall (father 0))N
((tall (lather d)))

((tall (father e))))

will optimally inidex its clauses.

2.8 Modifying the Knowledge Base

2.8.1 Modifying Clauses within Procedures

The lps:def predicate form car) be uised in conjunction with an emacs-
style editor in Lisp mode. so that the programmer may Lisp-evaluate com-
plex lps:def predic ate formns from within the editor, and modify them as
required (see section 5.2.) WVhen a changed lps: del predicate form is re-
evaluated, the effect is to delete any. changed clauses and assert new Ones in
their place.

One may also surgicaill remove (retract) a clause fromn its procedures

structure. This is done through the lps: retract -clause function, whose
syntax is

Ulps: retract -clause clause)

where clause is the clause to be retracted. verbatim. For example,

(lps:retract-clause '((older-than spike butch)))

removes the clause ((older-than spike butch)) from the older-thank proce-
dure. If clause is not in the knowledge base. lps: retract -clause returns
NIL. otherwise T is returned. If clause happens to be the only one in the

~ SNIP le
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procedure. thu procedure will still exist but it will be empty. If a clause is
retracted from a compiled procedure. the procedure must be recompiled for
the object code to reflect the change.

2.8.2 Deleting Whole Procedures

While lps:assert-clause can and lps:defpredicate does add new whole
procedures to the knowledge base, procedures can also be deleted using the
lps delete-predicate form:

(ps : delete-predic ate predicate-specifier)

where predicate-specifier is either

* A symbol naming the predicate of the procedure to be deleted,

* A list of symbols naming predicates to be deleted, or

* The keyword :all, meaning that the entire knowledge base is to be
cleared

lps delete-predicate not only removes all the clauses from the procedure;
the procedure itself is deleted from the knowledge base.

2.9 Viewing the Knowledge Base

If the user routinely asserts clauses through 1ps:defpredicate. then the
method for viewing his knowledge base is simply to view the file in which
the Ips:delpredicate forms reside. But if the knowledge base was not
defined with lps:defpredicate forms, there are two options for viewing
the contents of procedures.

First. the contents of a particular procedure (or procedures) may be L

viewed through the lps:pprint-predicate function, which pretty-prints
a form for the procedure at the user's terminal, or, optionall). on ome other
designated stream. The syntax for lps:pprint-predicate is

(ps: pprint -predicate predicate-specifier &optional stream)

where predicate-specifier is as for lps:delete-predicate and stream is an 0

optional i/o stream, which defaults to the value of the Common Lisp system
variable *terminal-io*.

Second, an actual lps:defpredicate form (not just a format string) for
a procedure can be returned using the lps:get-predicate function: , % .

L
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(ips :get-predicate predicate)

where predicale is a symbol naming the predicate for which an lps:def-
predicate form is desired.

If all the user wants to see is the names of the predicates currently in
the knowledge base. the function call

(Ups:list-all-predicates)

returns a list of them.

There is also a function which returns the clauses of a predicate as a list.
The form of this function is:

(lps:get-predicate-clauses predicate)

where predicate is a symbol naming the predicate.
Finally, the function

(Ips : list-all-c2auses)

returns a list of all the clauses in the knowledge base. :

2.10 Reduction

Reduction is the method by which LogLisp programs invoke the power of
Lisp. In the following sections we will define how the LogLisp interpreter
reduces an expression in terms of its reduction and value. There are three •
rules which govern the reduction of an expression:

1. Only arguments to the lps:reduce-term form are reduced.

2. An expression must be reduced as far as possible. 0
3. If an expression has a value, it must be equivalent to the value of the

reduction of the expression.

The syntax of the Ips :reduce-term form is .

(1ps: reduce -term expression)

It is an error if lps:reduce-term does not have exactly one argument. As Nor%
a matter of convenience, the reader macro '!. can be used instead of 1ps: - % -
reduce-me. Thus, (lps:reduce-term expression) is abbreviated by -'. -

0
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expression

Rule 2 above is to ensure that. for example, the logic goal

(foo (4 (- 10 3) 17) bar) ,"P

is reduced all the way to

adntmerely to
a (doo 24 bar) ofa hv ovle

(fOO (4 7 17) bar).

The third rule will be explained in the following sections.
The classes of expressions for which reduction is defined are atoms, ap-

pticative forms, macros. Common Lisp special forms and reduction special
forms,.l

2.10.1 Atoms

An atom in Common Lisp is any. Lisp object which is not a cons. The value
of an atom is the atom itself except for logic variables which have no value.
All atoms are reduced. that is. an atom's reduction is the atom itself. Note
again that in order to obtain the binding of a symbol a this scheme requires",
that (eval a) be written rather than just a as in Lisp.

a has value a and reduction a
36 has value 36 and reduction 36 "
"Hello" has value "Hello" and reduction "Hello"
?x has no value and reduction ?x

2.10.2 Applicative Forms

Let us call a proper identifier any symbol that is not a logic variable. An
applicative form is an expression of the form 'e

where f is a proper identifier that does not name a special form or macro.
Such an expression has a value if f names a function and all of the arguments
el. e2 ..... e, have values. If the expression does not have a value (that is.

either f does not name a function or at least one of e,2 ..... e, does not '."

-,6.%.%-: .- % , .
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have a value) then its reduction is (f e' e' ... e.) where e, is the reduction
of ej. Otherwise let v1 ov 2 .  , ', be the values of el, e2 ..... e" respectively
and let r be the result obtained by applying f to the values V1. V2 .. v..
Then the value of the expression is r and the reduction is (quote r)

To understand the need to quote r recall that an expression and its
reduction must have the same value. Now if an expression evaluates to an
atom there is no problem, because in that case its reduction is an atom and
we have already seen that an atom which is not a logic- variable has itself
as a value. In general, however, if an expression has a value it need not be
atomic. For example, the value of (list a b c) is (a b c). But we do not
want to say that the reduction is also (a b c), because this form is non-
atomic and can be interpreted as an applicative form itself with value, say,
frobboz. Thus we would have a situation in which a form, namely (list a
b c), and its reduction, namely (a b c), would have values which are not
necessarily equivalent, namely (a b c) and frobboz, respectively.

We can guarantee that a form and its reduction have the same value by
quoting the reduction and formulating reduction semantics for the special
form (quote k) which are intuitive plus give the results we seek. According
to these semantics, the value of (quote k) is k and its reduction is itself. -:

Thus in our example we have that the reduction of the form (list a b c)
is (quote (a b c)), and we find that the value of the form is the same as
the value of its reduction. namely (a b ). 4

(C 4 2) has value 6 and reduction 6
(4 ?x (4 4 2)) has no value and reduction (+ ?x 6)
(f ( x (+ 4 2))) has no value and reduction (Q (4 ?x 6))
(list a b c) has value (a b c) and reduction '(a b c)

2.10.3 Macros

The value and reduction of a macro call are simply the value and reduction
of the expansion of the macro call. In most cases macros can be called . -
in LogLisp clauses with no problem. However, caution is required when
using macros which exiand into forms which contain Common Lisp special
forms having no useful LogLisp reduction semantics (see section 2.10.4).
For example, although cond is a Common Lisp macro. it is implemented in

VAX Lisp using the special form let. Since there are no special LogLisp
reduction semantics for let, using cond in a clause will not generally produce
the desired behavior. Care should be taken so that, if a macro expands to a

II
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block it progv
catch labels quote
compiler-let let return-from
declare let* setq
eval-when macrolet tag-body
flet multiple-value-call the
function multiple-value-progl throw
go progn unwind-protect

Table 2.2: Common Lisp Special Forms

form containing Common Lisp special forms, they are limited to it, progn,
quote and setq.

2.10.4 Common Lisp Special Forms

A special form is an expression of the form (f el e2 ... e,) where the
arguments are not necessarily evaluated and, although they always return
a value, they are used primarily for control and for their side effects. The
special forms of Common Lisp are listed in Table 2.2.

As far as contributing to the Logic-Lisp interface, we desire only the
following capabilities over and above the normal applicative Lisp evaluation.
We need to (1) conditionally evaluate Lisp forms, (2) serially evaluate Lisp
forms. (3) quote Lisp forms, and (4) assign new values to Lisp symbols.
For these purposes. we need to define special reduction semantics for just
four of these special forms, respectively: if,. progn, quote and setq. Many
other common forms like cond. and and or are implemented as macros
in Common Lisp that expand into these special forms. Thus these forms
will also be available to the LogLisp programmer. subject to the provisions
mentioned in section 2.10.3.

The rest of the special forms can not easily be given meaningful reduction
semantics. If the LogLisp reduction mechanism encounters any of them it
will be considered to be reduced and have no value. Thus using it as a goal
or part of a goal is generally not useful. unless the LogLisp programmer
has given the special form name a Logic meaning. These forms can not
be given meaningful reduction semantics either because they do not make
sense in the context of Logic. or because of implementation problems. Most K:
of these forms have a body part which is evaluated in a locally modified Lisp
environment. The forms which fit this description are listed in Table 2.3.

1 6
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block labels macrolet

catch let progv
compiler-let let* unwind-protect

I let

Table 2.3: Special Environment Forms

For example. let introduces bindings during the evaluation of its body.
Thus for it to have meaningful reduction semantics a modified Lisp environ-
ment must be simulated during the reduction of the body. This would not
be impossible to implement, but (1) the demand for this sort of capability
is slight, and (2) it would be computationally expensive.

Following we give both the Common Lisp semantics and the LogLisp
reduction semantics for the four Common Lisp special forms which have
LogLisp meaning.

if test then [else]

Common Lisp Semantics This special form corresponds to the if-then-
else construct found in most procedural programming languages. First the
test form is evaluated. If the result is non nil, the then form is evaluated
and its result returned. If the result is nil, the else form is evaluated and
its result returned. In the latter case. if the else form is missing, nil is
returned.

LogLisp Reduction Semantics First the test form is reduced. If the
value of the reduction is non nil then the then form is reduced and its

reduction result (i.e.. its reduction-value pair) is returned. If the value of
the reduction of the test form is nil then the optional else form is reduced
and its reduction result is returned. If there is no else form then nil is S
returned as the value and reduction. In the case where the test form does
not reduce to a value then the if form has no value and its reduction is
obtained by replacing the test form with its reduction in the original if
form.

progn form*

Common Lisp Semantics This special form evalutes the forms. in order
from left to right. The values of all the forms but the last are discarded; the

0
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value of the last form is returned b. progn.

LogLisp Reduction Semantics Each form is reduced, in order from left

to right. If all the forms have values then the reduction result of the last
form is returned. If a form f with no value is found, then the progn form
has no value and its reduction is a progn form with the reduction of f as
its first form and the (unreduced) forms to the right of f as its remaining
forms.

quote object

Common Lisp Semantics This special form simply returns object, which
is not evaluated.

LogLisp Reduction Semantics The form is reduced and has value ob-
ject, which is not subject to instantiation. That is, any logic variables ap-
pearing in object will not be recognized as such.

setq f{var forin)"

Common Lisp Semantics This special form is the simple variable as-
sigiment statement of Lisp. The forms are evaluated and the results stored
in the variables, one at a time. irom left to right. The variable names are
not evaluated. setq returns the last value assigned.

LogLisp Reduction Semantics Each pair (var form} is handled one at
a time from left to right. It is an error for var to be anything but a symbol Ir
or a logic variable. If var is a symbol and the reduction of form yields a
value, then the value is bound (in the Lisp sense) to vat. If a pair {var-i
form-i} is found such that either var-i is a logic variable or form-i does not
not yield a value, then the setq form has no value and its reduction is a
setq form wnose first pair consists of var-i and the reduction of form-i, and
whose remaining pairs are the unreduced pairs to the right of {var-i formi}
in the original setq form. Otherwise, every pair (var-i form-i} results in
a Lisp binding and thr reduction result of the last form is returned as the
reduction result of the setq form.

IN, IN
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Remaining Special Forms

For the remaining Common Lisp special forms we define no special LogLisp
reduction semantics. That is. if encountered by the reduction machinery
these forms are assumed to be fully reduced and have no value.

2.10.5 Other Reduction Special Forms

There are six other reduction special forms that have no Common Lisp
counterparts but nevertheless are handled specially by the LogLisp reduction
machinery. They can only be used in clause bodies.

(lps:logic object)

Intuitively, (ips: logic object) specifies that the result of the evaluation of
object is to be interpreted as a logic expression rather than a Lisp object.
The most obvious effect of this is to suppress the quoting of non-atomic
values.

If object has the value v then the value and reduction of lps:logic
object) is the value and reduction of v. Some examples:

" Suppose a has no function definition. Then (ps:logic (list a b
c)) has no value and reduction (a b c)

" (ps:logic (list + 1 2)) has value 3 and reduction 3

" (lps:logic (list cons a r)) has value (s . r) and reduction
"(s . r)

Notice that the first example illustrates how the ips: logic form can be
used to suppress the quoting of non-atomic values.

When object has no value the expression (lps:logic object) has no
value and reduces to (lps:logic r) where r is the reduction of r. For
example. if a does not name a function. the expression (Ips:logic (a b

)) has no value and reduces to Ups: logic (a b )).

(lps : irred object)

This form has reduction object and no value. It is typically used for suppress-
ing reduction of a form that occurs within the scope of lps :reduce-term.

(ps: quasi-quote object) 4". 0
.ieTz ,M

INMW "1 =MOil 11111 1 ,



3b CHAPTER 2. HOW TO USE THE LOGLISP INTERPRETER

The expression (ps: quasi-quote object) is reduced and has value object.
The difference between lps:quasi-quote and quote is that any variables
in object are instantiated by lps:quasi-quote but not by quote.

(Ups: ground object)

The lps:ground form is similar to lps:quasi-quote except that (ps: -
ground object) has the value object only if object contains no unbound logic
variables. Otherwise the form has no value. As with lps: quasi-quote,
(lps:ground object) is reduced.

(Ups: logic -ground object)

The form (lps: logic-ground object) is equivalent to (ps: logic (ips: -
ground object)).

(lps :variable object)

This special form can be used to determine whether or not a logic variable
is bound at runtime. If object is an unbound logic variable then the form
(lps :variable object) has value and reduction t. Otherwise the form has
value and reduction nil.

NS
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Chapter 3

The LogLisp Tracing Facility

The two macros lps:trace-logic and lps:untrace-logic control the
trace facility. The macro lps:trace-loglc allows the user to specify par-
ticular predicates to be traced or that all predicates should be traced. The
syntax of the lps:traco-loglc macro is:

Ulps:trac*-logic [:all I predicate.I)

When the :all keyword is used all predicates are traced, otherwise only the
predicates specified will be traced. If all predicates are being traced, this will
continue to be true even if new predicates are subsequently defined. If no
arguments are given to lps:trace-logic it returns a list of the predicates
currently being traced or the keyword :all if all predicates are being traced.

The lps:untrace-logic macro can be used to turn tracing off for spe-
cific predicates or for all predicates. The syntax of this macro is:

(ps:untrace-logic [:all I predieate*J)

When the :all keyword is used all tracing for all predicates is turned off.
otherwise only the predicates specified will stop being traced. If no argu- %

ments are given the function turns off all tracing.
The tracer displays information about the flow thru invocations of logic .

procedures, A logic procedure consists of a group of clauses all with the
same predicate name in their head. As the system searches for the solution
to a query various events are displayed for those predicates that are being
traced. These events are as follows: "

Call This event indicates a new invocation of a logic procedure. Thus
a unique integer is assigned to this invocation and all future events SS. S.

.. % e5
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involving this invocation will reference this number. This number is
called the invocation identifier.

Exit This signals the exit of a logic procedure. When a logic procedure has
succeeded this event is signaled. In other words some clause in the
logic procedure has been successfully used by resolution.

Redo When a goal has failed and backtracking ensues, logic procedures are
reentered to see if there is some other way to satisfy their goals. This
event is signaled for each such procedure as it is backtracked into.

Fail This event is signaled when a logic procedures fails. This happens
when resolution has exhausted all ways of using the logic procedures
clauses to satisfy the goal that caused the invocation. An invocation
can fail without ever exiting, or after exiting and redoing several times.

Quit When the resolution special form ips quit is processed the quit event
is signaled for all of the currently active invocations of thne current
query.

For all invocations there will be only one call event and either one fail
event or one quit event. But there may be many exit and redo events for
the same invocation.

The following example will be used used to explain the tracer output in
more detail.

Ed Lisp CP> (lps:deipredicate true-list
((true-list nil))

((true-list (?h . ?t))))
TRUE-LIST
Ed Lisp CP> (lps:trace-logic :all)
All predicates are now being traced. •

Ed Lisp CP> (lps:all (true-list (a b)) :template yes)
>1 Call: (TRUE-LIST (A 3))
>.2 Call: (TRUE-LIST (M)
>..3 Call: (TRUE-LIST NIL)

>..3 Exit: (TRUE-LIST NIL)

>.2 Exit: (TRUE-LIST (M))
> Exit: (TRUE-LIST (A 1))
>* Solution found: NIL
>* Looking for another solution 0 0

' %
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(YES)

Each line of the tracer output begins with one or more > characters.
The number of these characters indicates the nesting level of queries. In
other words it shows how man% recursive calls to the query function art
active. Next a series of dots is printed to provide an indentation pattern
that indicates which invocations are within others. Then for normal events
the invocation number appears followed by the event name and the instan-
tiated goal. There are several special events that are not associated with a
particular invocation. These begin with a - character and are followed by a
description of the event.

* *1
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Chapter 4

How To Use The LogLisp
Compiler

4.1 What the LogLisp Compiler Does

The LogLisp compiler translates source LogLisp procedures into code which
executes faster than the LogLisp interpreter can run. The compiler accom-
plishes this by taking into account the types of head and goal arguments.
by unwinding much of the recursion involved in structured terms. and elim-
inating much of the run-time memory management overhead incurred by
the interpreter. Compiled LogLisp object code is modeled on the abstract
Prolog instruction set created by D. H. D. Warren. extended with additional
instructions expediting reduction.

4.2 Calling the Compiler

The smallest unit of input to the compiler is a procedure. Typically. clauses we
are asserted, using lps:assrt-clause or lps:defpredicate. and then
the procedure is compiled using the lps:compile-predicate function. The
syntax is:

(Ips:comple-predicate predicate.specifier)

where predicate-specifier is either

* A symbol naming the procedure to be compiled.

* A list of symbols naming procedures to be compiled, or

%
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9 The keyword :all. meaning that the entire knowledge base is to be
compiled

If an indicated predicate is not a symbol. or it does not have a LogLisp pro-
cedure definition, an error is signalled. The user may return a procedure to
interpreted form simply through the lps :uncompile-predicate function:

(ps :uncompil-predicate predicate-specifier)

where again predicate-specifier is as before.
For compiling files, the ordinary Common Lisp compile-file function

can be used on files containing lp&:de*predicate forms.

4.3 Mode Declarations

4.3.1 The Purpose of Mode Declarations

The purpose and benefits of mode declarations are best explained using the
example of concatenating two lists:

(Ips:defpredicate concat
((concat nil ?x ?W))
((concat (?a . ?x) ?y (?a . ?z)) (concat ?x ?y ?z)))

Declaratively, this procedure simply states what must be true for entities to
stand in the relationship of conea*. Procedurally. it shows either (1) how to
concatenate two lists, or (2) how to construct a list such that it and another,
when concatenated. result in a third. To restrict the procedural semantics
of concat to either (1) or (2) requires input from the user of concat. There
is no way that LogLisp can selectively apply restricted procedural semantics
without this input. This input is given in the form of mode declarations.

If the user intends to use concat to always accept two list structures and
create a third list structure that is the concatenation of the first two (pro-
cedure (I) above), the compiler can use this information to more efficiently
classify variables within structures and also to eliminate type checking code.
Thus the user may declare that the first two arguments to concat are to
be regarded as input (read-only) arguments. and the last is to be output
(write-only). In this way the user guarantees to the compiler that the first
two arguments to concat will never be variables and the third will always w. ,,
be a variable. A mode declaration thus always applies to a predicate's argu- " '

ment list. In the present case the mode declaration for concat would thus
be

Z Z
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(READ READ WRITE)

This form is called the mode template for concat.

4.3.2 The Formal Syntax and Meaning of Mode Declara-
tions

A mode declaration is either structured or unstructured. An unstructured
mode declaration is any of the symbols

* READ

* WRITE, or

" UNDECLARED

A structured mode declaration is a cons tree structure whose leaves are
unstructured mode declarations (except that the cdr of the last cons may
be NIL). Following are some valid mode declarations:

* (READ)

" (READ (UNDECLARED WRITE))

* WRITE

" (READ. UNDECLARED)

The meaning of mode declarations is given recursively as follows:

WRITE The corresponding procedure argument or argument element is
guaranteed to be or dereference to an unbound variable.

READ The corresponding procedure argument or argument element is guar-
anteed to not be an unbound variable and. if it is a cons. to not have
an unbound variable in its scope. That is. the argument is fully in-

stantiated.

UNDECLARED The corresponding procedure argument or argument eie-
ment might be anything at all.

(mdi ... md ) The corresponding procedure argument or argument element
is guaranteed to be a cons. whose car and cdr are guaranteed according
to the mode declarations mdj,..,, md,,. For example.

NN
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(READ) guarantees the argument or argument element will be a cons
whose car is a non-variabie and whose cdr is NIL.

(UNDECLARED (WRITE)) guarantees the argument or argument
element will be a cons whose car is undeclared and whose cdr -
is a cons whose car is a cons whose car is a variable ....

(WRITE UNDECLARED) guarantees the argument or argument el- /
ement will be a cons whose car is a variable, and whose cdr is
anything at all.

4.3.3 Using Mode Declarations

Typically. a user declares modes for a procedure when evaluating an ips: -
defpredic ate form (see Section 2.3). Like an indexing path. a mode decla-
ration for a procedure is keyworded. only one mode declaration is permitted,
and it must appear before any clauses. If no mode declaration is given, the
default is UNDECLARED. The mode declaration given above for concat
would therefore be specified within a lps :defpredicate as follows:

(lps:defpredicate concat .

:mode (read read write) .

((concat nil ?x ?x)) ."
((concat Oa . ?x) ?y (?a . ?z)) (concat ?x ?y ?z)))

Note that in general a clause's "argument list" is usually a cons, but it
mnay also be an atom (suppose the clause head is (foo . ?x)). Where a
procedure's mode template does not match the structure of its argument
list. the following rules apply:

1. If the template is not structured and has mode mode. that is, mode is
READ. WRITE or UNDECLARED. but the argument list is a cons.
the car and cdr of the argument list are given mode mode also. 0

2. If the template and argument list are both structured, but the argu- e%
ment list is "longer" than the template (that is, there are more top- Poe
level elements in the argument list than in the template), the "extra" ..
elements are given a mode of UNDECLARED.

3. If the template and argument list are both structured. but the template 0
is "longer" than the argument list (that is. there are more top-level
elements in the template than in the argument list) the "extra" modes
are discarded.

% %
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4. If the template is structured and its car or cdr is also structured.
the above rules also apply between the embedded structure and the
corresponding argument list element. &A

Usually. a mode declaration is given for a procedure using the lps:defi-
predicate form as shown above. Occasionally. however, a user may wish to
change the mode declaration of a procedure which has already been defined.

This is accomplished with the ips: set-mode-declaration function: k .-. W

(lps:set-mode-declaration predicate mode-template)

An error is signalled if predicate is not a symbol. if predicate is not a defined

LogLisp procedure, or if mode-template is not a valid mode declaration. In

order for the new mode declaration to take effect, predicate must now be
recompiled.

The function call

(ps : show -mode -dec larat ion predicate)

returns the current mode declaration for predicate. The same restrictions
on predicate are enforced as with lps:set-mode-declaration.

.7V
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Chapter 5

The LogLisp User Interface

The LogLisp user interface includes extensions to both the Vax Lisp environ-
ment and an Emacs environment along with code which makes it possible
for the two environments to cooperate with each other much as their coun-
terparts do in the Symbolics Lisp machine environment.

On the Vax Lisp end, the extensions consist of

1. an "input editor" which allows the programmer to perform Emacs-like
operations on the command or data that is currently being entered,

2. a "command processor" which allows the programmer to invoke Log-
Lisp features as commands rather than by calling them as Lisp func-
tions, and

3. an extended function definition facility to enhance function documen- 0
tation. debugging and editing.

The first two extensions are much like (in fact are modeled after) similar

features in the Symbolics ZetaLisp environment. The third extension came % %-%

about during several years of Lisp program development at Honeywell and 0
has been found to be generally useful. ,

The Emacs extensions comprise a set of commands and key bindings
tailored specifically for the editing of Lisp code. These include ways to
evaluate or compile all or part of a source file into the Lisp environment.

NN
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5.1 VaxLisp Extensions

5.1.1 Input Editor

The input editor allows the programmer to perform Emacs-like editing ol-
erations on the input (which could be more than one line) in the LogLisp
environment. Most of these operations are invoked by the same keystrokes
and perform the same operations as their Emacs counterparts, facilitating
the user's perception of an integrated system.

A history of the user's top level commands is maintained and a mech-
anism provided to invoke earlier commands. The commands are retrieved
and displayed on the screen (by using the hisory manipulating commands
Esc-P, Esc-N, and Esc-Esc) in such a way that the user is given a chance to
modify the command before it is executed.

A complete description of the key bindings available in the input editor
follows. The up-arrow (,) symbol stands for the control key, while Eac
stands for the escape key. This information is available online by typing !H.

Null Set-Mark-Command. Sets the mark at the current position of the dot.

'A Beginning-Of-Line-Command. Moves the dot to the beginning of the
current line.

.B Backward-Character-Command. Moves the Dot backward one charac-
ter. No action is taken if Dot is already at the beginning of the buffer.

C Return-To-Top-Level-Command. Terminate any pending input, and re-
turn to Lisp top level

'D Delete-Next-Character-Command. Deletes the character immediately
following the Dot. If the Dot is at the end of the buffer, then no
action is taken.

'E End-Of-Line-Or-Enter-Editor-Command. If the input buffer is empty,
enter the editor. otherwise move to end of line.

'F Forward-Character-Command. Moves the Dot forward one character.
No action is taken if Dot is already at the end of the buffer.

BELL Illegal-Operation-Command. Signals the user that an illegal opera-
tion was attempted. No message is printed.

'i. •
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Backspace Describe-Bindings-Command. Usually prints a list of the cur-
rent key bindings, with a numeric argument also gives documentation
for each. During command entry, prints a list of acceptable inputs.

LINEFEED Newline-Command. Inserts a newline character into the buf-
fer.

TK Kill-To-End-Of-Line-Command. Characters following the Dot on the
current line are killed.

L Redisplay-Command. Clears the terminal display. then refreshes.

Return Newline-Command. Inserts a newline character into the buffer.

,N Next-Line-Command. Moves dot to *PREFIX-ARGUMENT*'th next
line, attempting to maintain same column position.

TP Previous-Line-Command. Moves dot to *PREFIX-ARGUMENT*'th
previous line, attempting to maintain same column position.

IT Twiddle-Characters-Command. Transposes the two characters around
the Dot. If at the end of a line, then the preceding two characters are
twiddled.

*U Argument-Prefix-Command. Provides the prefix argument to the next
command. If followed by digits, will repeat the number of times spec-
ified by treating the digits as a decimal number.

TW Wipe-Region-Command. Kills the characters between the Dot and the
Mark. I.e. they are deleted from the input buffer, and placed in the
kill buffer.

TX-TX Exchange-Dot-And-Mark-Command. Exchanges the Dot and the
Mark

TY Yank-Command Inserts the contents of the kill buffer before the dot, the
mark is set to the previous location of the dot. Most commands that
delete more than a single character, place the text that they delete in
the kill buffer.

Esc-TB Backward-Sexp-Command Moves the Dot to the beginning of the
sexp immediatly preceeding the Dot if the Dot is between expressions,
or the beginning of the current sexp if the Dot is inside an sexp.

A-
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Esc-*F Forward-Sexp-Command Moves the Dot to the end of the sexp
immediatly following the Dot if the Dot is between expressions. or the
end of the current sexp if the Dot is inside an sexp.

Esc-'K Kill-Next-Sexp-Command Kills the sexp following the dot.

Esc-*P Toggle-Pretty-Print-Command. Toggles the setting of "PRINT-
PRETTY*. With numeric argument sets *PRINT-PRETTY * to T.

Esc-Esc List-History-List-Command. Lists the contents of the history list.

Esc-Space Complete-From-History-List-Command. Attempt to find an
entry on the history list that matches the input typed so far, and
replace the entire contents of the input buffer with the matching en-
try. If there is no matching entry, an input editor error is signalled.

Esc-( Backward-Paren-Command. Move backward to matching open pa-
renthesis. With numeric argument, moves over prefix-argument num-
ber of open parentheses.

Esc-) Forward-Paren-Command. Move forward to matching close paren-
thesis. With numeric argument, moves over prefix-argument number
of close parentheses.

Esc-. Edit-Definition-Command. Insert an EDIT-DEFINITION form into
the input buffer. See section 5.2.

Esc-< Beginning-Of-Buffer-Command. Moves the dot to the beginning of
the buffer.

Esc-> End-Of-Buffer-Command. Moves the dot to the end of the buffer.

Esc-B Backward-Word-Command. Moves the Dot to the beginning of the 0
word immediatly preceeding the Dot if the Dot is between words. or
the beginning of the current word if the Dot is inside a word. Word
characters are defined by the current *SYNTAX-TABLE*.

"a.
Esc-D Delete-Next-Word-Command. Deletes the next word in the buffer.

Word characters are defined by the current *SYNTAX-TABLE*

Esc-F Forward-Word-Command. Moves the Dot to the end of the word U--'

immediatly following the Dot if the Dot is between words. or the end , -
of the current word if the Dot is inside a word. Word characters are
defined by the current *SYNTAX-TABLE*.

• - ...~:~ . - - -:- . . .. -

5,* .



5.1. VAXLISP EXTENSIONS 53

Eec-N Get-Next-Input-Command. Replace the current input with the next
input in the command input queue. You can repeat this to get up to
*MAX- HISTORY- LIST-SIZE* commands. Prefix arguments can be

used to skip intervening command lines.

Eaec-P Get-Last-Input-Command Replace the current input with the previ-
ous input in the command input queue. You can repeat this to get up
to *MAX-HISTORY-LIST-SIZE* commands. Prefix arguments can
be used to skip intervening command lines.

Esec-b Backward-Word-Command. Moves the Dot to the beginning of the
word immediatly preceeding the Dot if the Dot is between words, or
the beginning of the current word if the Dot is inside a word. Word
characters are defined by the current *SYNTAX-TABLE*.

Esc-d Delete-Next-Word-Command. Deletes the next word in the buffer.
Word characters are defined by the current *SYNTAX-TABLE*.

Eec-f Forward-Word-Command. Moves the Dot to the end of the word
immediatly following the Dot if the Dot is between words, or the end
of the current word if the Dot is inside a word. Word characters are
defined by the current *SYNTAX-TABLE*.

Esc-n Get-Next-Input-Command. Replace the current input with the next
input in the command input queue. You can repeat this to get up to
*MAX-HISTORY-LIST-SIZE* commands. Prefix arguments can be

used to skip intervening command lines.

Esc-p Get-Last-Input-Command Replace the current input with the previ-
ous input in the command input queue. You can repeat this to get up
to *MAX-HISTORY-LIST-SIZE' commands. Prefix arguments can
be used to skip intervening command lines.

Esc-Delete Delete-Previous-Word-Command. Deletes the word preceding
the Dot in the buffer. Word characters are defined by the current
*SYNTAX-TABLE*.

Spawn-Dcl-Command. Creates a new DCL process and attaches the 0
user's terminal to it. Logout is used to return. Current command line
is lost.

Space..( Self-Insert-Command. Inserts *LAST-KEY-STRUCK* immedi-
ately before the Dot. 14 N N

P .0
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) Paren-Flash-Command. Inserts a close parenthesis. then flashes the cursor
on the matching open parenthesis.

.. / Self-Insert-Command. Inserts *LAST-KEY-STRUCK* immediately
before the Dot.

0..9 Digit. If specifying a prefix argument, determines the prefix argument,
otherwise inserts itself into the buffer before the Dot.

.. Self-insert-Command. Inserts *LAST-KEY-STRUCK* immediately be-
fore the Dot.

Delete Deiete-Previous-Character-Command Deletes the character imme-
diately preceding the Dot. if Dot is at the beginning of the buffer,
then no action is taken.

5.1.2 The LogLisp Command Processor

In most Lisp environments the user interacts with the system by typing Lisp
forms to be evaluated by the interpreter. The result of the evaluation is theni
printed back to the user. Naturally. since the input is Lisp, there are a num-
ber of parentheses in the input, which some users find a nuisance. We have
extended the input processing of LogLisp to support a command oriented in- p'

teraction. That is, the user may invoke any of a number of LogLisp functions
by simply typing the function's name. Arguments (if any) are prompted . ,
for and entered in a similar manner. Full input editing (as described pre-
viously) is supported on the commands. and help is available during the
command by typing TH (or backspace). The forms of these commands are
listed here. along with the pages in this manual where they are described.

#
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Command Page
all goal' keywordoption -pairs* 13
any k goal* kceyword-option -pairs*1
assert-clause, clause I~
compile-predicate predicate-specifier I~
delete-predicate pre'dicate-specifier is
get -predicate predicate 29
get-predicate-clause predicate 30
list-all-clauses 30
Iist-all-predicates 31
one goal* keywordoption -pairs* 31
pprint-prodicate predicate -specifier &optional stream 31
query goal-list keyword-option -pairs* 31
retract-clause clause 39
set -mode -declaration predicate mode-template 39
show -mode -dec larat ion predicate 43
trace-logic [:all I predicate*] 44
unc ompi le -predicate predicate-specifier 47
untrace-loglc [:all I predicate*] 47

In addition to the LogLisp commands, commands for several Lisp func-
tions are availaible. As with the LogLisp commands, prompting for argu-
ments is done, and help is available by typing 1H. These commands follow:

Select-Editor Choose among the set of allowable editors listed in the vari-
able input-editor: Sallowable-editors*. The currently allowable editors
are Gnu emacs. and the builtin NIAXLISP editor. Both editors are
capable of doing Edit- Definition, and evaluation, however most of the
advanced editing functions such as select -system-as-tag-table, are only
supported in Gnu.

Show-Editor Prints the name of the currently selected editor.

Set-Package Change the current package to the one named.

Show-Package Print the name of the current package.

Use-Package Use the named pack-ige.

Load-File Load the named file. Keyword arguments available are ver-
bose (which defaults to the value of 'load-verbose*), print (which
defaults to nil), and if-does-not-exist (which can take the values
error or :ignore and defaults to error).

0k
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Load-System Load the named system. Keyword arguments available are
condition (which can take on the values :always. :never. or :newly-
compiled and defaults to :newly-compiled. query (which defaults
to t). silent (which defaults to nil). and simulate (which defaults to
nil).

Compile-System Compile the named system. Keyword arguments available
are condition (which can take on the values :always. :new-source.
or :never and defaults to :new-source), query (which defaults to t).
silent (which defaults to nil). simulate (which defaults to nil). and
load (which can take on the values :everything. :newly-compiled.
or :nothing and defaults to :newly-compiled).

Compile-File Compile the named file. Keyword arguments available are
listing (which defaults to nil). machine-code (which defaults to
nil), output-file, verbose (which defaults to the value of *compile-
verbose*), warnings (which defaults to the value of *compile-warn-
ings*), optimize-speed, optimize-space, optimize-safety, and
optimize-cspeed (each of the latter four can take on integer values
from 0 to 3 and defaults to i).

Apropos Prompts for a string and a package and finds and prints all symbols
in that package which contain the string.

Trace Turn tracing on for named functions. Keyword arguments available
are debug-if, pre-debug-if. and post-debug-if. during, print,
pre-print, post-print, step-if. and suppress-if (all of which de-
fault to the value of co-trace-ignore).

Untrace Turn tracing off for named functions.

5.1.3 Extended Function Documentation Facllity--defun+

We have extended the semantics of Common Lisp's defun macro to allow (I) A

more complete function documentation, (2) better argument type checking
for debugging purposes, and (3) simplified function editing through Emacs.

This does not mean that we have redefined defu: rather, we have made 0
these features available through another macro called defun.. This macro
allows the programmer to document individual aspects of a function such as *

arguments. return values and side effects in such a way that the documenta-
tion can be extracted easily by other programs. It works by parsing a def un+

V, R
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form. extracting docunentation information and building a standard doflu
form to be evaluated. The documentation information is packaged into a
structure and placed on the property list of the symbol whose function is
being defined. We have extended the Common Lisp docuentation func-
tion to access this structure and pretty-print a string with this information.
The syntax of dofurn is:

or/

II~ I
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(detun* name
( (var [doe-string] I

(var (:TYPE type-spec] (doc-string])).
[OPTIONAL

(var (doc-strin g] I

(var [intfor. (svar]] [:TYPE type-spec]
(doc -string])).]

[WREST var (doc-string]]
[allY

(var doc-string] I
((var I (keyword var))

[inittor. (ovar]] [:TYPE type-spec]
(doc-string])).]

(hAUX (var I (var (initform lsar]
[:TYPE type-spec])).])

[:DESCRIPTION doc-string]
[ : SIDE-EFFECTS doc -string]
[:RETURNS (type-spec (doc-string).)
1:INLXNE {t I nil)]
(:HISTORY (("date name doe").)]
(declaration)*
(torm).)

As an example, consider the following defun+ form:

(defun+ too
((n :type fixnum "This arg better be a fixnum")
(some-cons :type cons "And this a cons"))
:description "This is a mysterious function."
: side-effects aPlenty."
:returns

(simpl*-string
"This declares the first return value type"

hash-table
"This declares the secoad")

:inline nil
:history ("03-29-82 Jack Hack Created"

"04-30-86 Jill Hose Nodified")
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<function body>

All of the documentation strings in this definition will be stored and
accessible via the extended documentation function. In addition. if this
form is loaded into Lisp from a file. the name of the file will be stored on
the property list of f oo. making it possible for the Lisp:edit-dofinition
function to retrieve the file name and hand it to Emacs when the user
requests that too be edited. See section 5.2.

Finally, note that the foo function example declares the first argument
to be a fixnum and the second a cons. This will cause the appropriate •

declarations to be inserted before the body of the function in the resulting
def n form. However, VAX Lisp does not check the types of these argu-
ments at function invocation time even though they have been declared.
Therefore. defun+ puts explicit type checking code in the defun for all

arguments. You can turn off this checking only for compiled code, and
only for functions compiled with the compile-file function. This action
is controlled by the global variable * include-type-checks- in-compiled-
defun-code*. If you do not wish to have type checking performed for a
group of functions, you must set this variable to T. then compile the files
that include the functions, and load the compiled files. The rationale is that
normally you will want type checking performed until you have debugged a
system. at which time would recompile the whole system with optimizations
on. and this variable bound to T.

5.2 Emacs Extensions .,'

The particular Emacs editor we have chosen for LogLisp program develop-
ment is GNU Emacs. GNU runs on a large number of differnet computer 0
systems. and may be freely distributed. GNU is a very powerful and well
documented editor with a built-in mode for editing Lisp programs (see the
GNU Emacs Manual). We provide a set of extensions to the standard Lisp
mode which further facilitate editing Lisp code within Emacs. The following
is a list of the commands making up these extensions, along with their key
bindings, if any, and a short description of the use and importance of each. .

comment-out-region (binding: 'C-:) Comments out the current region. .

that is, puts semi-colons in the first column of each line in region.
With an argument. takes the semi-colons out.

4 1-
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compile-buffer (binding: !C B)
Compile the current buffer, and then load it into LogLisp.

compile-dafun (binding: tC ID)
Compile the current top level form, and then load it into LogLisp.

compile-region (binding: IC TR)
Compile the current region, and then load it into LogLisp.

edlt-definltlon (unbound).
Edit the definition for a given symbol. When the user asks to edit
the definition of a symbol, Emacs will temporarily pause back to Lisp
(which must be running, and have the definition loaded using defun*),
to get the source file information. Once the source file information has
been retrieved. Emacs is automatically restarted, and the file contain-
ing the definition is visited, and the definition located and displayed.

electric-lisp-semi (binding: ;)
Inserts the appropriate number of comment characters (semi-colons)
given the current indentation. With a numeric argument, inserts that
many semi-colons. Correctly handles semi-colons within strings, corn-
ments and wrapped lines.

evaluate-buf er (binding: TC B)
Evaluate the current buffer.

evaluate-df un (binding: !C D)
Evaluate the current top level form.

evaluate-region (binding: TC R)
Evaluate the current region.

f ind- unbalanced-parens (unbound)

Finds any unbalanced parentheses in the current buffer.

hasp-indent-line (binding: TAB or 11)
Indent current line appropriately.

reenter-after-eval Variable
If true, emacs will be reentered after doing evaluates. If specified as
the symbol :silently. emacs will assume that the screen did not change
and as a result will not redisplay the screen. This can make evaulation

20
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faster. but can occasionally cause the screen to appear incorrect. The
default value is nil.

setup-defuri-documentation (binding: Esc-- I
Inserts a defun+ form template into the file. See section 5.1.3.

update-attribute- list (unbound)
Inserts default values for the file attributes Mode. Package, Base,
and Syntax. The file attribute list appears at the beginning of a file
and is delineated by the characters "-*-". To keep Lisp from getting
confused when it loads the file, the line appears as a comment A typical
attribute list is:

-*- Package: User; Mode: Lisp; Base: 10;
Syntax: Common-Lisp; -*-

Emacs uses this line to determine what package in which to put forms
when they are VaxLisp evaluated. If the package specified in the at-
tribute list differs from the package specified by an in-package form
near the top of the file, then forms evaluated from Emacs will be in
different packages than the same forms loaded directly from a file. 'e d
update-attribute-list makes sure that these package specifications
are the same. Gnu checks to make sure that the files attribute list is
consistent with any in-package forms appearing in the file whenever
the file is read into emacs.

Complete o-iline documentation is provided for all Gnu extensions and
is accessable via the Gnu help command tH. Good places to start are with
the key bindings (TH B), and lisp mode description (TH M). Both of these
commands should be executed from within Gnu after visiting a ".lisp" file.

w -_-w, .-1
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Index

*LAST-KEY-STRUCK* 54 Backward-Paren-Command 52
*load-verbose* 55 Backward-Sexp-Command 51

Backward-Word-Command 52, 53
:ignore-duplicates keyword to ips :query Beginning-Of-Buffer-Command 52

16 Beginning-Of-Line-Command 50
:index keyword example 29 breadth-first search 7
:index keyword to 1ps: deipredic ate

14 call special resolution form 25

:mode keyword to lps:delpredicate clause 4
46 clause goal syntax 13

:solution-limit keyword to ips :query clause head syntax 13
16 clause syntax 13

:template keyword to ips:query clause syntax error handling 13 1 N" I
15 command history 50

all macro 18, 55 command processor 12, 49
an), macro 18, 55 comment-out-region Emacs Lisp mode I

applicative forms. reduction seman- function 59
tics for 32 Common Lisp 1. 2, 34

Apropos 56 Common Lisp special forms, reduc-

argument to predicate 3 tion semantics for 34

argument to predicate, syntax 13 compile-buffer Emacs Lisp mode
argument type checking 56 function 60

Argument-Prefix-Command 51 compile-defun Emacs Lisp mode func-

assert-clause function 13, 43, 55 tion 60
atom 9 Compile-File 56 I .
atoms. reduction semantics for 32 compile-predicate function 43, 55

compile-region Emacs Lisp mode

backtracking 7 function 60
backtracking, limited 7 Compile-System 56
backward chaining 4 compiling LogLisp 43
Backward-Character-Command 50 compiling LogLisp files 44
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Complete-From-History-List-Command eval. Lisp function 8
52 evaluate-buffer Emacs Lisp mode

context switching 7 function 60
controlling search 19 evaluate-defun Emacs Lisp mode

function 60
deduction tree 3, 7 evaluate-region Emacs Lisp mode
defpredicate macro 14. 43 function 60
defun+ 56 evaluation 8
defun-- macro example 58 Exchange-Dot-And-Mark-Command
defun+ macro syntax 57 51
Delete-Next-Character-Command 50
Delete-Next-Word-Command 52, 53 fail example 20, 21

delete-predicate function 30, 55 fail special form 20

Delete-Previous-Character-Command failing a goal 20

54 file attribute list 61

Delete-Previous-Word-Command 53 find-unbalanced-parens Emacs Lisp

depth-first runaway 21 mode function 60

depth-first search 7 Forward-Character-Command 50

dereferencing 10 Forward-Paren-Command 52

Describe-Bindings-Command 51 Forward-Sexp-Command 52

Digit 54 Forward-Word-Command 52, 53

Digital Command Language 12 function documentation 56

documentation function, extended Get-Last-Input-Command 53
57 Get-Next-Input-Command 53

edit-definition Emacs Lisp mode func- get-predicate function 30, 55

tion 60 get-predicate-clauses function 31,

Edit-Definition-Command 52 5

editing functions 56 Gnu Emacs editor I

editing Lisp code 59 goal 4

electric-lisp-semi Emacs Lisp mode goal-list argument to ips: query

function 60 function 15 " "
Emacs editor 0, 2, 49 ground special form 38

emacs editor 29 Honeywell Systems and Research
Emacs extensions 59 Center 0 V. 0

End-Of-Buffer-Command 52 Horn clause 1 V..
End-Of-Line-Or-Enter-Editor-Command

50 if, reduction semantics for 35
environment 6, 7 Illegal-Operation-Command 50
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index path specifier 27 logic-if special resolution form 25
indexing clauses 26 logic-or example 25
indexing on structured arguments logic-or special resolution form 25

28 Loglisp/Emacs interface 14 -

inference engine 6 LPS Compiler System,'Subsystem
input editor 49 Specification 0
Input Editor 50 LPS Functional Description 0 .y
input line editor 12, 13 LPS Interpreter System/Subsystem
input query 4 Specification 0
input-editor:*allowable-editors* 55 LPS Test Plan 0
instantiation of logic variables 5 lps:all macro 18, 55

lps:all macro, examples 18
Key bindings 50 lps:any macro 18, 55
Kill-Next-Sexp-Command 52 ips:any macro, examples 18
Kill-To-End-Of-Line-Command 51 lps:assert-clause function 13, 43, 55
knowledge base 4, 13 lps:call special resolution form 25

lps:compile-predicate function 43,
Lisp Commands 55 55
lisp-indent-line Emacs Lisp mode lps:defpredicate example 14

function 60 lps:defpredicate macro 14, 29, 43
list-all-clauses function 31 lps:defpredicate syntax error han-
list-all-predicates function 31 dling 14
List-History-List-Command 52 lps:delete-predicate function 30, 55
Load-File 55 lps:fail example 20, 21
Load-System 56 lps:fail special form 20
loading LogLisp 11 lps:get-predicate function 30, 55
loading the LPS on a VAX 12 lps:get-predicate-clauses function 31,
logic constant 9 55
Logic language 1 lps:ground special form 38
Logic language. nested calls 2 lps:list-all-clauses function 31 •
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Chapter 1

General

1.1 Purpose of the Computer Operations Manual

The objective of this Computer Operation Manual for the LogLisp Pro-
gramming System (LPS) RADC Contract F30602-84-C-0121, is to provide
computer control and computer operator personnel with a detailed descrip-
tion of the operations and command sequences required to bring up, from
source files, a working instance of the LPS under the VAX/VMS operating
system.

1.2 Project References

Documents applicable to the history and development of the LogLisp Pro-
gramming System project are:

1. Carciofini. J.. Colburn. T. and Hadden. G., 'LogLisp Programming
System Users Manual". Honeywell Systems and Research Center, April •
1, 1987.

2. Beane, J.. Carciofini, J. and Colburn, T.. "LogLisp Programming Sys-
tem Functional Description. Honeywell Systems and Research Center,
April 12, 1985.

3. Beane, J., Carciofini. J., Colburn. T. and Lukat, R.. "LogLisp Pro-
gramming System Test Plan" , Honeywell Systems and Research Cen-
ter, August 1. 1985.
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4. Carciofini. J.. Colburn. T. and Lukat. R.. "LogLisp Programming Sys-
tem Interpreter System'Subsystem Specification. Honeywell Systems
and Research Center. December 16. 1985.

5. Carciofini. J.. Colburn. T. and Lukat. R.. "LogLisp Programming Sys-
tern Compiler System 'Subsystem Specification'. Honeywell Systems
and Research Center, April 15. 1986.

1.3 Terms and Abbreviations

Technical terms, abbreviations and acronyms unique to this project are de-
fined in this report where they are introduced.

%I
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Chapter 2

System Overview

2.1 System Application

The LogLisp Programming System (LPS) is a total Lisp programming en-
vironment extended to provide logic programming capabilities. The general
nature of programs developed with the LogLisp Programming System can
be classified as artificial intelligence applications.

2.2 System Organization

The LPS implementation consists of three parts. The three parts are:

1. VAXLISP Version 2.1 - This is Digital Equipment Corporation's im-
plementation of Common Lisp for VAX/VMS.

2. LISP Extensions - The LISP Extensions consist of several extensions
to the VAXLISP programming environment. A list of the major facil-
ities provided follows: S

* The LogLisp interpreter and compiler.

* A facility for maintaining a collection of lisp source files.

" An input editor so that commands lines may be edited using
Emacs-like key bindings. S

" A command processor that interprets commands as well as eval-
uating Lisp expressions.

* Support for communication with GNU Emacs.

6.
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* An extended documentation facility.

3. GNU Emacs - GNU Emacs is a free editor developed by the Free
Software Foundation. GNU Emacs is not in the public domain: it
is copyrighted, but the restrictions of the copyright are intended to
keep GNU Emacs free and prevent commercialization of any part of
the software. The GNU Emacs we are distributing contains several
extensions we have developed to enhance the LPS development envi-
ronment. These extensions are written in the GNU Emacs extension
language. These extension provide aids for the creation editing of
Common Lisp/LPS code.

This document assumes that VAXLISP Version 2.1 has been acquired
from Digital Equipment Corporation and installed according to the instruc-
tions received with the installation kit. If you have not installed VAXLISP
you will need to install it before you are able to run the LPS.

N.'
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Chapter 3

Installation

This chapter describes the steps necessary to load the LPS from tape and
to install the LPS on a VAX/VMS system. First the prerequisites for the
installation are presented, then the installation procedure itself.

3.1 Prerequisites

The prerequisites for installing the LPS on a VAX/VMS system are listed
in this section. Please be sure that all the prerequisites have been satisfied
before attempting to install the LPS.

First you must be running VMS version 4.4 and have VAXLISP version
2.1 installed on you system.

You must have the LPS installation kit. This kit consists of this docu-
ment. the LPS distribution tape and the GNU distribution tape.

You will also need 70000 blocks of disk space. This space does not have
to be on one disk. The system can be divided across disks as follows:

* 40000 blocks for the Lisp Extensions.

* 30000 blocks for GNU Emacs.

In summary. the prerequisites that must be met before attempting to
install the LPS are: 0

* VMS version 4.4

* VAXLISP version 2.1

* LPS installation kit. 0
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* 40000 blocks of disk space for the Lisp Extensions.

* 30000 blocks of disk space for GNU Emacs.

3.2 Detailed Steps

This section provides an overview of the installation procedure. Each of the
high level steps described here will be expanded in detail in the following
sections. Assuming the prerequisites have been met the steps for installing
the LPS are:

" Restore the Lisp Extensions from tape.

" Restore GNU Emacs from tape.

" Install the Lisp Extensions and GNU Emacs.

3.2.1 Restore the Lisp Extensions from Tape

You must first decide where the 40000 blocks of Lisp Extensions will reside on
your system. For the rest of this installation procedure we will assume that
the Lisp Extensions directory tree is rooted at LISPEXTEN-DISK: [LISPEXTEN].
The Lisp Extensions distribution tape is written in VMS backup format at
1600bpi. Now load the Lisp Extensions tape on an appropriate tape drive.
Then enter the following commands to restore the tape contents, substi-
tuting your tape device name for TAPE: and the appropriate pathnames
for LISPEXTEN-DISK: [LISPEXTEN]. It is not neccessary that these files be
owned by the user SYSTEM; they can actually be owned by anyone at your
site.

$ allocate TAPE:

$ mount TAPE:/foreign
$ backup TAPE:LISPEXTEN.bck/select=[LISPEXTEN.. ]*.*. * -

LISPEXTEN.DISK:ELISPEXTEN... ] .* -"* *

/verify/onerfsystem >
$ dismount TAPE:r %

. $ deallocate TAPE:

You can now remove the tape from the tape drive. The Lisp Extensions , 6A

code has now been restored from the tape to your system.

I;
I•

" '0 ;3; , / , ' ', ,- 'v r~ " ,0



A-7

CHAPTER 3. ENSTALLATION

3.2.2 Restore GNU Emacs from Tape

You must now decide where the 30000 blocks of GNU Emacs will reside

on your systerm. For the rest of this installation procedure we will assume

that the GNU Emacs directory tree is rooted at GNU-DISK: EGNU). The Lisp
Extensions distribution tape is written in VMS backup format at I600bpi.
Now load the GNU Emacs tape on an appropriate tape drive. Then enter

the following commands to restore the tape contents, substituting your tape ItjA "

device name for TAPE: and the appropriate pathnames for GNt-DISK: [GNU].
It is not neccessary that these file b) owned by the user SYSTEM: they can

be owned by anyone at your site.

$ allocate TAPE:
$ mount TAPE:/foreign

$ backup TAPE:GNU.bck/select=[GNU. . .J..
GNU-.DISK:[GNU...].*
/verify/ownersystom :

$ dismount TAPE:
$Sdeallocate TAPE:

You can now remove the tape from the tape drive. The GNU Emacs

code has now been restored from the tape to your system.

3.2.3 Install the LPS

The logical name LISPEXTEN must be defined to be rooted at LISPEX-
TEN-DISK: [LISPEXTEN. .. I *.~ Modify the system startup file,
SYS$MANAGER: SYSTARTUP. CON. to contain the following lines.

$! LogLisp Programming System (LPS) global definitions

$ define lispexten LISPEXT...N-.DISK:[LISPEXTEN.) ]
/translation.attributesconcealed/system

You should also type this command to VMS now, so that it takes effect.

Now we need to define two symbols in the system login. Add the following
two lines to your SYSSMANAQER :SYSTARTUP . COM file.r

$ lispexten-init : = LISPEXTEN: (BUILD .VMSJ lispexten-init

$ gnu..emacs..init := GNU.DISK:CGNU.EMACS~omacs - '
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The Installation procedure is now complete. To use the LPS system setupyo iitaiztin ie- a dcmete i heLP Ues lElai
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Chapter 4

Recompiling

This section describes the procedures for compiling the Lisp Extensions.

There are several conditions that may require you to recompile. The more

common ones are:

After installing a new release of VMS.

After installing a new release of VAXLISP.

9 After modifying an LPS system source file.

The installation notes for a new version of VMS or VAXLISP should indi-

cate whether or not you need to recompile lisp files or remake any suspended

images. The following sections describe the procedures for recompiling the

LPS and the LISPEXTEN.

4.1 Recompiling the LISPEXTEN

We have provided a DCL command procedure that will start a batch job

to compile the Lisp Extensions from sources and create a new suspended

image. The command procedure is LISPEXTEN: [BUILD. VMS] make -all. com.

The first argument to the command procedure specifies whether you want

to recompile, compile or load the Lisp Extensions. The options are:

" recompile - Compile all sources then load the binaries and create a
new suspended image.

" compile - Compile only those sources that have changed then load

the binaries and create a new suspended image.

.. .. . e- ' -- . ,- • - .. -~
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e load - Just load the existing binaries and create a new suspended
image.

Any legal parameters to the VMS SUBMIT command can be used when
invoking this command procedure. For example. to recompile the whol
system after 10:00pm today enter the following command.

$ *LISPEXTEN: [BUILD.\IY.S]r.ake-all recompile /after=22:00

When the batch job finishes it will send a mail message to the user that
executed the command procedure indicating success or failure of the run.
The default log file is LISPEXTEN: (BUILD.VMS)make-all.log. If the run
fails look at this log file to determine the problem. After correcting the
problem simply execute the command procedure again.

Running this command procedure may create new versions of binaries
and suspended images. To purge these files execute the following command.

$ purge LISPEXTEN:[000000...]*.faa.*.sus

The suspended image files are quite large (- 6000 blocks), so it would
be wise to be sure to purge these files with the above command.

_ •
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