
,AD-f±93 M1 CONFIGURATION CONTROL IN COMPILER CONSTRUCTION(U) 1/1
COLOAO UWI V RT BOULDER SOFTWARE ENGINMEER ING GROUP

UNCLASIFIE N NAITE ET AL. SEP 67 NeM14-06-K-0294 /215 M

II'di

36
U. 0

1.1.8
IiL2 IIII 14 1.6

MICROCOPY RESOLUTION TEST CHAR1
IRF t.U TANrnkRtr, 1961 A

----- - - - ----- -- 0 -

1f~FILE CAP~

CONFIGURATION CONTROL IN

COMPILER CONSTRUCTION

W. M. Waite
V. P. Heuring
U. Kastens t

Department of Electrical ad

.AiF . Universityof Colorado ___

Bouder,'C61ord~ D IC

*~~~~r. 4.. -ill * ~ *Z f~

ONSTATzm".!f A j
A* ~ ~ h* ~ -Avvn"h1 puf *4cw"

Vifiui S 88. 1 ro

Software Engineering Group Report No. 87-1-4

CONFIGURATION CONTROL IN

COMPILER CONSTRUCTION

W. M. Waite
V. P. Heuring
U. Kastens t

Department of Electrical and Computer Engineering
University or Colorado

* Boulder, Colorado 80309-0425 -

USA

MA I U 1988

compiler@boulder.csnet-
compiler.boulder@csnet-relay.arpa

f seismo'hao,decvax!su nybcs,ucbvax!nbires)!boulder!compiler

September 1987

t Present address: Universitit-GH Paderbors, 4790 Paderborm, West Germany

September 28, 1987 Ell

Configuration Control In Compiler Construction

W. M. Waite
V. P. Heuring

U. Kastens t

, - + Department or Electrical and Computer Engineering
University of Colorado

Boulder, Colorado 80309-0425
USA

S

ABSTRACT: A compiler is made up of a large number of individual components. Some or
these components are generated from formal specifications, some result from band adaptation of
general algorithms, and some are standard modules from a library. Configuration control is a
serious problem in compiler construction: How do we subdivide the compilation task into corn-
ponents, solve them individually, and then re-integrate the solutions into a consistent product.
We have successfully used the Odin object manager to solve this problem for a particular com-
piler architecture. The resulting system illustrates many of the complexities of configuration con-
trol in an envir nment of compiler construction tools., - I ,- ,

ACCe Oiri For

r~iS
CRAP4lDTIC TA8 - S

i:

""00e0

DiA '*~ i j:or

t Preseat address: UaiversIt.OH Paderbee, 470 Paderbora, West Oermay

;V

S Ell September 38, 1987

1. Introduction

Tool support is currently available for the majority of compiler subtasks. Existing tools
were developed individually, and often little thought was given to how each tool might interact
with tools supporting other subtasks. The overall result is that the same information must
appear in specifications for several different tools, and the modules or code fragments produced
by distinct tools do not work together smoothly. Moreover, the code generated by many tools
has significantly poorer performance than the equivalent code produced by hand.

Despite these disadvantages, generation of a compiler from formal specifications is impor- S
tant because those specifications can be machine-checked for consistency. This means that,
although a tool-generated compiler may not behave as desired, it will not crash. In effect, the
product is a correct compiler for a language or machine that differs from the one intended. Such
errors in specification are generally easier to find and correct than errors due to inconsistent data
sti uctures or incorrect algorithms.

The disadvantages of compiler generation fall into two broad classes:

* Inadequacy of individual tools.

* Complexity of the generation process.

Problems in both classes must be solved if generation is to become a common method for con-
structing compilers. Significant progress in tool improvement has been made, and is reported
elsewhere1' 2'3 '4 ' . Managing the complexity of the generation process is a configuration control
problem, and this paper presents our efforts in that area.

We have built a compiler construction system called Eit, which employs off-the-shelf tools
that generate compiler components from formal specifications. Eli accepts a non-redundant
specification of the desired compiler, derives appropriate tool inputs from that specification,
applies the tools, and then combines the generated modules or fragments with code from a
library to produce a complete compiler.

We are not concerned here with the tools employed by Eli, but rather with the manage-
ment of the specifications, tools and partial products. Nevertheless, we begin by outlining the
process of compiler construction, listing the specification mechanisms normally used for tool
inputs and giving references to more detailed discussions of their implementation. Then we
present Eli's configuration control problem, and indicate the facilities needed to solve it. Finally,
we discuss the implementation of Eli using OdinG and RCS?.

2. A Brief Outline of Compiler Construction
A rather stable gross design for a compiler has evolved from experience during the last

twenty years. This means that compilers for a wide variety of source languages and target
machines can be described by supplying "parameters" to a single design model. The parameters
consist, for the most part, of non-procedural specifications that define the behavior of compila-
tion subtasks. Many different descriptive techniques are used for these specifications, as illus-
trated by Table 1.

The relationships among the subtasks listed in Table I can be described non-procedurally
by an attribute grammar ' . Mechanisms for dealing with the individual subtasks are also well- S
known; references for the various descriptive techniques are given in the second column, and the
necessary algorithms can be found in most texts on compiler constructions-'$. The third column
of Table I indicates how a compiler designer normally obtains a description of the corresponding
subtask. Several of the subtasks, such as the mapping of identifiers to internal representation
and the analysis of the source language's scope rules, are carried out by standard algorithms that
can be used unchanged. These algorithms are embodied in abstract data types whose operations ,
are invoked at appropriate points during the compilation by using them to compute attributes.

M

September 28, 1987 Ell 3

Table 1
Subtasks of a Typical Compiler

Subtask Descriptive technique User action

Scanning Regular expression. 33 Adapt
Identifier table Abstract data type2 0
Denotation conversion Abstract data typeso Adapt
Parsing Context-free grammar 0 ,'1 Create
Scope analysis Abstract data type12,13 -
Type analysis Patterns 14 Create
Storage mapping Abstract data type0

Operation mapping Patterns is Create
Control mapping Schemata 14 Create
Peephole optimization Register transfers16 Adapt
Assembly Formats' Adapt

Since a wide variety of languages have similar lexical structures, descriptions of the scanner
and the conversion of denotations (constants such as "1234") can usually be adapted from
previously-existing descriptions. Register transfers and the formats that govern the treatment of
the target machine can also be adapted in many cases. Descriptions of parsing and type analysis
depend sensitively upon the source language, and the descriptions of operation and control map-
ping define the relationship between the source language and the target machine. These descrip- 0
tions almost always must be created anew for each compiler, but there will be many similarities
with existing descriptions.

Given a coherent model of a compiler and a set of techniques to describe the various com-
ponents of that model, the obvious next step is to automate the constrdction of the compiler
itself". Tools have been developed for generating most of the components from formal
specifications (see the references quoted in Table 1). Moreover, programs to control the com-

* ponents' interaction can be generated from attribute grammars20 21. A complete compiler can be
created if the outputs of all of these tools can be combined into a smoothly-functioning product.
A recent paper describing the ACORN system14, developed at Brown University in the early
1980's, gives a good overview of the problem of creating a complete compiler.

S
3. The Configuration Control Problem

Eli's configuration control problem can be briefly characterized as follows:
* There is a fixed set of relationships among specifications, tools and partial products that

define the way in which a compiler must be built. In the terminology of DSEE22, these rela-
tionships constitute the systcm model.

" The system can manufacture a large number of products, many of which are are important
but rarely-used diagnostic aids.

* Consistency can only be checked by testing the specifications. The consistency of the pro-
ducts must be guaranteed by guaranteeing a consistent derivation; no test for consistency
can be applied to the product.

1 After Eli Whitney, who wau the int US mausfacturer to make extensive use of isterchugeable pats.

* ,

4 Ell September 28, 1987

* A "version" is defined by a particular set of specifications in association with a particular
set of parameters to the generation process. It is necessary to be able to re-generate a
specific version.

" Several people may be working on a single compiler. In general they will be working on
different parts of the specification, and each will want to have access to the latest versions
of the others' work.

The system model for Eli can be described by a derivation graph - an acyclic, bipartite
graph whose node classes are objects and processes respectively 23 . Arcs from object nodes to pro-
cess nodes indicate that the object is accessed by the process, while arcs from process nodes to
object nodes indicate that the object is created by the process. Every process node in a deriva-
tion graph must have both predecessors and successors; an object node must have either prede-
cessors or successors or both. A variety of data formats is modeled in the derivation graph by
associating a type with each object. Two objects have the same type if and only if they contain
the same kind of information and have identical formats.

Figure 2 is a derivation graph that describes a simplified version of Eli's system model.
Many products are omitted, standard compilers and the linker are not explicit, and internal
derivations carried out by the tools have been suppressed. The omitted portions of the graph do
not introduce any new configuration control problems. Rectangular boxes represent tools, oval
boxes represent specifications, and unboxed text represents derived objects. Currently Eli does
not include tools that process peephole optimization and assembly specifications, so these sub-
tasks are implemented by abstract data types. Also, type analysis is currently handled within the
attribute grammar.

The dotted area at the top of Figure 2 delimits the part of the derivation not under Eli's
control. CAGT2 4 is an interartive tool that establishes a relationship between the roncrete syn-
tax used to describe the input program as written and the abstract syntax used to describe its
semantic structure. This relationship is captured by an additional object that Eli treats as an
extra specification. During the derivation of the compiler, CAGT is used in a "reverse" batch
mode to combine the concrete syntax with the connection points that describe the abstract tree
structure. The result is a parsing grammar.

The content of a derived object in Figure 2 is completely determined by the contents of the
specifications and the parameters supplied to the derivation. Thus it is theoretically possible to
manufacture a product directly from the specifications whenever it is requested. In many cases,
however, the manufacturing effort can be reduced by re-using derived objects. This is particu-
larly important when several closely-related products are manufactured without changing the
specifications or parameters.

Most configuration control systems maintain a cache of derived objects, and re-derive an
object only when "necessary". The simplest rule for determining that re-derivation is necessary
is that some predecessor of the object in the derivation graph has been changed since the object
was last derived2 s . This rule sometimes leads to more re-derivations than necessary, and more
complex rules have been proposed in special cases".

Cache placement and access strongly affect the properties of a configuration control system.
The objects in the cache should be invisible to the user because derived objects that are not pro-
ducts are of no concern. This is a simple application of the principle of modularity. On the
other hand, the cache itself should be a visible object associated with a particular project. Peo-
ple working on the project should be able to share a particular cache, thereby making the results
of their work available to each other.

4. Implementation

Eli is implemented as a set of off-the-shelf compiler construction tools managed by Odins .
Odin accepts a request for a certain product, carries out the steps necessary to obtain that

v , - III,* u *,'Jh '

September 28, 1987 Ell 5

I

, PCAOi

SSimplified Derivation Graph for Eli

mPa

product, and delivers the result to the requestor. It maintains a cache into which it stores every
* derived object that it constructs. If a requested object is not in the cache, Odin uses the deriva-

tion graph to decide how to construct that object. It then constructs the object by following a
, path in the derivation graph, invoking the necessary processes and storing intermediate objects in

e, the cache.
The objects manipulated by Odin are normal Unix files. Each process node in the deriva-

tion graph is associated with a Unix shell script. When a process is to be run, Odin modifies the
shell script by filling in the names of the files that represent the associated objects, and then
invokes the normal shell to execute the modified script.

A shell variable in the user's environment is assumed to specify the path name of a direc-
tory containing the derivation graph and subdirectories for the process nodes' shell scripts and
the cache. There can, of course, be many such directories that link to the same derivation graph
and shell scripts but have separate caches. Each member of the project group can therefore use
a private cache or one shared among a set of colleagues, as appropriate. In any case, the

-~- r T... W,.. 1*, - 7 J'* .4 k

6 Eli September 28, 1Q87

products requested are guaranteed to be consistent with the specifications used to derive them.

Because Odin objects are arbitrary Unix files, and because processes are defined by arbi-
trary Unix shell scripts, Odin provides the necessary flexibility to accommodate off-the-shelf tools.
Odin is also in the public domain, and is easily transported to any Unix system. Unix itself
simplifies the task of building processes that split, filter and merge data.

Users interact with Eli via the Odin query language. The derivation graph that defines Eli
allows the user to derive any one of a number of objects from z specification, and these deriva-
tions may be parameterized. A "query" is a request for a particular derivation. Each query
begins by stating the specification from which the derivation is to start, continues with a
sequence (possibly empty) of keyword parameters and their values, and concludes with the object
to be derived. Keyword parameters are introduced by the character "+", and an object to be
derived is introduced by the character ":". For example, a Pascal compiler called "mypc" might
be created from a specification called "pascal.g" by the following query:

pascal.g + name-mypc : compiler

Here the desired object is of type "compiler", and "mypc" is to be used as the value of the key-
word parameter "name" in the derivation.

Queries can be obtained from files or presented interactively, and there is a history mechan-
ism that allows one to modify and reuse interactive queries. Each query must specify a single
object from which a product is to be derived. This object may be a list of file names, however. -

An object of type ".g" is a list of the file names that contain all of the specifications in the dotted K
part of Figure 2 except the abstract data types. Abstract data types are introduced into the
derivation as values of keyword parameters, because the set of abstract data types varies from%
one compiler to the next.

We use RCS' to provide version control for the specifications. If the files mentioned by the
.g" object from which the derivation begins are not available in the working directory, they are

sought in a subdirectory of the working directory named "RCS". When no parameters have
been given, the latest revision is accessed. A version parameter can be specified in the query, and
will be passed to RCS if it is present. Thus all of the version naming facilities of RCS are avail-
able.

An Odin query corresponds to DSEE's configuration thread22: Objects derived from queries
with different parameter values are considered by Odin to be potentially distinct. (When Odin
derives a new instance of an object it compares that instance with any existing instance. If they
are identical, it marks the object as unchanged by the derivation.) Thus a query that contains a
version parameter can be saved and used to regenerate a particular version of any product at
any time.

5. Conclusions

Eli has been successful in improving the productivity of compiler constructors. One gradu-
ate student at the University of Colorado constructed a complete compiler for Whetstone
ALGOL27 in six weeks. He had previously taken the graduate compiler construction course
(which was not based on tools) and had had industrial compiler experience. He had studied the
ALGOL 60 Report in a graduate programming languages course, but had no other experience
with ALGOL. His compiler did not follow the design given in Randell and Russell's book, since
that design does not fit the Eli model, so the six weeks included a complete redesign. An experi-
enced software engineer, who had worked with the Whetstone compiler on the ICL KDF9,

estimated that he could carry out a new implementation of Randell and Russell's compiler in
twelve weeks 2 .

Odin was an appropriate mechanism to use in constructing Eli. The concept of a derivation
graph captures the designer's intuition precisely, making it easy to understand and modify.
Odin's implementation, although somewhat obscure in certain details, is flexible enough to

% N *o N0

* 9 V - -,

September 28, 1087 Ell 7

incorporate off-the-shelf components. This greatly simplifies the development of the system. It
also increases the system's lifetime, because individual tools can be replaced by better technology
without seriously disturbing the entire environment.

Acknowledgement

This work was partially supported by the Army Research Office under contract DAAL 03-
86-K-0100 and by the Office of Naval Research under contract N00014-86-K-0204.

References

1. W. M. Waite and L. R. Carter, 'The Cost of a Generated Parser', Software-Practice @
Experience, 15, 221-239 (March 1985).

2. W. M. Waite, 'The Cost of Lexical Analysis', Software-Practice & Experience, 16, 473-488
(May 1986).

A' 3. V. P. Heuring, 'The Automatic Generation of Fast Lexical Analyzers', Software-Practice e
Experience, I, 801-808 (September 1986).

4. R. W. Gray, 'Generating Fast, Error Recovering Parsers', M.S. Thesis, Department of
Computer Science, University of Colorado, Boulder, CO, April 1987.

5. M. L. Hall, 'The Optimization of Automatically Generated Compilers', Ph.D. Thesis,
Department of Computer Science, University of Colorado, Boulder, CO. 1987.

5. G. M. Clemm, 'The Odin System - An Object Manager for Software Environments', Ph.D.
Thesis, Department of Computer Science, University of Colorado, Boulder, CO, 1986.

7. W. F. Tichy, 'RCS - A System ror Version Control', Software-Practice & Experience, 16,
637-654 (July 1985).

S. M. E. Lesk, 'LEX - A Lexical Analyzer Generator', Computing Science Technical Report
39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

9. W. M. Waite and G. Goos, Compiler Construction, Springer Verlag, New York, NY, 1984.

10. S. C. Johnson, 'Yacc - Yet Another Compiler-Compiler', Computer Science Technical
Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

11. P. Dencker, K. Dirre and J. Heuft, 'Optimization of Parser Tables for Portable Compilers',
ACM Transactions on Programming Languages and Systems, 6, 546-572 (October 1984).

12. J. V. Guttag, 'Abstract Data Types and the Development of Data Structures',
Communications of the ACM, 20, 396-404 (June 1977).

13. S. P. Reiss, 'Generation of Compiler Symbol Processing Mechanisms from Specifications',
ACM Transactions on Programming Language. and Systems, 5, 127-163 (April 1983).

14. S. P. Reiss, 'Automatic Compiler Production: The Front End', IEEE Transactions on
Software Engineering, SE.13, 609-627 (June 1987).

15. R. Landwehr, H. Jansohn and G. Goos, 'xperience With an Automatic Code Generator
Generator', SIGPLAN Notice#, 17, (June 1982).

16. J. W. Davidson and C. W. Fraser, 'Automatic Generation of Peephole Optimizations',
AY SIGPLAN Notice*, 10, 111-116 (June 1984).

17. K. Riihi, 'Bibliography on Attribute Grammars', SIGPLAN Notice*, 15, 35-44 (March
1980).

18. A. V. Aho, R. Sethi and J. D. Uliman, Compilers, Addison Wesley, Reading, MA, 1986.

Vg

* ' w i- "* "- '" ' , ,, .

8 Eli September 28, 1987

19. S. Rosen, 'A Compiler-Building System Developed by Brooker and Morris', Communications
of the ACM, 7, 403-414 (July 1964).

20. K. Riihi, M. Saarinen, E. Soisalon-Soininen and M. Tienari, 'The Compiler Writing System
HLP (Helsinki Language Processor)', Report A-1978-2, Department of Computer Science,
University of Helsinki, Helsinki, Finland, March 1978.

21. U. Kastens, B. Hutt and E. Zimmermann, GAG: A Practical Compiler Generator, Springer
Verlag, Heidelberg, 1982.

22. D. B. Leblang and R. B. Chase, Jr., 'Computer-Aided S tware Engineering in a Distributed
Workstation Environment', SIGPLAN Notices, 19, 104-112 (May 1984).

23. E. Borison, 'A Model or Software Manufacture', in Advanced Programming Environments,
vol. 244, R. Conradi, T. M. Didriksen and D. H. Wanvik, (eds.), Springer Verlag,
Heidelberg, 1986.

24. A. Bahrami, 'CAGT - An Automated Approach to Abstract and Parsing Grammars', MS
Thesis, Department of Electrical and Computer Engineering, University of Colorado,
Boulder, CO, 1986.

25. S. I. Feldman, 'Make - A Program for Maintaining Computer Programs', Software-
Practice 8 Eiperience, 9, (April 1979).

26. W. F. Tichy, 'Smart Recompilation', ACM Transactions on Programming Languages and
Systems, 8, 273-291 (July 1986).

27. B. Randell and L. J. Russell, ALGOL 50 Implementation, Academic Press, London, 1964.

28. B. K. Haddon, ", Personal Communication, December 1986.

9

.1'*

S.

.e,.

.6,R

l- IV;

% -P le overt e

