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This paper describes implementations of Cuppen's method, bisection, and multisection for the
computation of all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-
memory hypercube multiprocessor. Numerical results and timings for Intel's iPSC are presented.
Cuppen's method is the most accurate of the three. Near maximal speedups are demonstrated for
Cuppen's method when little deflation occurs at intermediate steps, but speedups are significantly
reduced when deflation leads to processor load imbalance. Bisection with inverse iteration is seen
experimentally to be the fastest method sequentially and in parallel. The independent tasks com-
prising this approach lead to high parallel efficiency. The relative expected performance of parallel
multisection is shown analytically to be problem dependent with arithmetic inefficiency arising in
a wide class of problems. Moderate speedups are observed experimentally.
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1. Introduction

Several algorithms have been conceived specifically for determining eigenvalues and
eigenvectors of symmetric, tridiagonal matrices on conventional uniprocessors. These in-
clude the QR algorithm [8], divide-and-conquer strategies [11, 22], and bisection with
Sturm sequences coupled with inverse iteration [33". QR and Cuppen's divide-and-conquer
method are often used to compute all eigenvalues and eigenvectors of the matrix, while
bisection with inverse iteration is normally used when only a few of the eigenvalues and
corresponding eigenvectors are required. Of these schemes, the shifted QR algorithm alone
does not seem to have an efficient parallel implementation: the shift computation and the
application of rotations cannot be overlapped. In contrast, Cuppen's method and the
generalization of bisection known as multisection have been implemented with significant
speedups on shared-memory multiprocessor architectures and their simulators [6, 12, 23]
and on the grid-based, bit-sliced ICL DAP [1, 21. In this paper, we will investigate the suit-
ability of the distributed-memory hypercube architecture as represented by Intel's iPSC
for the parallel solution of the symmetric tridiagonal eigenvalue problem.

Three methods for solving the symmetric tridiagonal eigenproblem on a hypercube
multiprocessor will be presented. The first is a parallel version of Cuppen's method;
the second is bisection together with inverse iteration, and the third is multisection with
inverse iteration. Unlike most previous parallel eigensolvers, the present implementations
operate on a multiprocessor architecture in which each processor has direct access to its
own local memory only. Without common memory. exci:ange of data between processors
is accomplished through message passing. An algorithm is implemented in parallel, in
general, by dividing the work required into parts or tasks, some of which can be executed
simultaneously. On a shared-memory machine, tasks can be maintained in a queue and the
task at the head of the queue allotted to the first available processor. In a message-passing
environment, the assignment of one processor as a queue-manager represents a potential
bottleneck. Instead, processors can pass messages to inform one another about the progress
of their tasks and, thereby, coordinate further task allocation. In a static as opposed to
a dynamic allocation, the time of computation of and the processor assigned to each task
is predetermined. In the implementations to be discussed, tasks are assigned statically
to the processors. This strategy permits simplicity of programi.ng and reduction of
scheduling overhead. Nevertheless, the cost of communication between processors is often
non-negligible. For this reason, tasks must be apportioned so that communication does
not occupy a significant portion of the total computation time. Solution of this scheduling
problem (i.e., the partitioning of the algorithm into tasks and assigning of the tasks to
processors) is the basis for development of an efficient hypercube program.

Several properties of the hypercube enable it to simulate efficiently those architectures
whose processor interconnections form, among others, rings, meshes, and trees 17, 9, 30, 34].
Because every processor in a p-processor hypercube is connected to log 2 p others so that no
two processors are at a distance greater than log 2 p, global communication or broadcasting
of information from one processor to all others is fast. Restricting processors to access only
local memory prevents contention problems associated with the limited memory bandwidth
of shared-memory machines. The richness of its interconnection topology together with the

potentially large size of its distributed memory recommend the hypercube as a worthwhile
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device for the solution of large numerical problems.
A more detailed characterization of the hypercube and algorithms for data transmis-

sion are provided in Section 2. Cuppen's method, bisection, and multisection are outlined
in Sections 3, 4, and 5, respectively; timings for the methods on the Intel iPSC are pre-
sented in the respective sections.

For purposes of estimating computation times on the hypercube, it is assumed through-
out this paper that time # + kr is required to send a vector of length k from one processor
to one of its neighbors. 3 is the communication startup time, and r is the time to transfer
one vector element. w is the time needed for a flop which is defined as in [19] to be the
operations needed to determine

ci" = cij + aikbk,.

w thus includes the time for a floating point multiplication and addition as well as time
for some pointer manipulation. If the array elements are taken to be real, double precision

floating point numbers, then : 10 and 125 on the iPSC running operating system
release R3.0.

2. The Hypercube Multiprocessor

In order to implement Cuppen's method and multisection on the hypercube, it is .

necessary to devise efficient ways of exchanging data among processors. Algorithms are
presented for transmitting data from all processors to all others, for matrix multiplication,
and for orthogonalization of a set of vectors. e

2.1. Characterization of the Hypercube
A hypercube of dimension d, or d-cube, is a graph consisting of p = 2 d nodes, d > 0, -,

and is defined recursively as follows. A 0-cube is composed of a single node, while for d > 0,

a d-cube is obtained by adding edges between corresponding nodes of two (d - 1)-cubes.
Figure 1, for example, depicts a 3-cube. From this construction, it can be seen that a
d-cube is composed of 2 d-, i-cubes, for 0 < i < d.

Alternatively, a d-cube may be defined by associating with each node a binary label
of length d so that any edge connects two nodes whose labels differ in exactly one bit. In
a d-cube, every node is connected to d others making a total of d2d - edges. Assignment
of labels according to a binary reflected Gray code [16, 26, induces a linear order on the
nodes according to which they may be numbered 0, 2d... , _2 - 1. Embeddings into the
hypercube of toroids or one- and two-dimensional arrays are based on such Gray codes
[301.

A hypercube multiprocessor of dimension d is made up of p = 2d processors located
at the nodes and d 2d- I processor interconnections corresponding to the edges of a d-cube.
The eigenvalue codes were implemented on an Intel iPSC/d5M hypercube multiproces-
sor. This machine consists of 32 identical node processors each capable of communicating
directly with five neighboring processors. A node can communicate with only one of its

neighbors at a time and does so by issuing a send communication primitive to initiate a
message transfer or a receive primitive to intercept one. Nessages arriving at a node are
held in a queue until selected via a receive command. Each processor has 4.5 Mbytes of
local memory.
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Figure 1: A 3-cube with numbered nodes.

An additional, separate processor serves as the cube manager or host machine. It
can communicate with all nodes via a global bus. For our problems, the host is used for
downloading code onto, passing initial data to, and accumulating final results from the
node processors but does not enter into the computation in any other way. Once started,

all nodes and the cube manager operate independently unless explicitly synchronized by
communication requirements. In the remainder of the paper, a node processor is named
by the decimal value of its binary identifier, while the cube manager is known as the host.
The term hypercube refers to both graph and multiprocessor.

2.2. Data Transmission on the Hypercube
The Alternate Direction Exchange Algorithm (ADE) 129, appeals to the recursive

structure of the hypercube to bring about a total exchange of the data held by the pro-
cessors of a cube. All processors in a d-cube whose binary labels agree in the same bit
position form a (d - 1)-cube. Because there are d bits in the binary label, there are d
ways of dividing a d-cube into two (d - 1)-cubes. In the 3-cube of Figure 1, the subcubes
are defined by the node numbers. All nodes with a zero in the leftmost position of their
labels form a 2-cube (the front face) while all nodes with a one in the leftmost position
make up a second 2-cube (the back face). Similarly, the upper and lower faces are 2-cubes
with nodes having a common value in the center position. and the left and right faces are

2-cubes sharing the same rightmost value.
The process of broadcasting a vector of length A- from onec processor to all others in

3



a d-cube requires d steps of data transmission where the amount of data doubles in size
during each step.

Algorithm ADE.
For I = 0,1,...,d- 1

1. Processors form two (d - 1)-cubes So and S1 according to the value of bit I in their

binary labels.

2. Processors in corresponding positions of So and S1 exchange vectors of length 21k.

3. Each processor concatenates its own vector with the one received to form a vector of
length 21+ 1 k.

The time to perform algorithm ADE on a d-cube comes to

Td [ ) + (0 + 2k-) + ... + (0 + 2dlkr)]

= 2[d,3 + ( 1)k7-.

The factor of 2 reflects the fact that vectors are not sent in both directions at once on
a node-to-node link. The above algorithm is also used when data are broadcast within
a subcube S of dimension i < d. S is then made up of all processors of the d-cube
whose binary labels agree in exactly the same d - i bit positions. The corresponding

communication time is

T DE = 2:i + (2 1)k7l.

Broadcasting within 2 d- i i-cubes can occur simultaneously without interference.

2.3. Matrix Multiplication on the Hypercube
The parallel implementations of Cuppen's method, bisection, and multisection take

advantage of the fact that the processors along with their interconnections form a ring
within the hypercube (see Section 2.1) and that subcubes correspond to contiguous se-

quences within the ring. A matrix may be stored in the hvpercube by situating blocks

of adjacent columns in neighboring processors. For this and all other ring-oriented proce-
dures discussed in this paper, it is assumed that the ring is embedded according to a Gray
code ordering of processors so that communication takes place only between neighboring
processors in the cube. A processor is referred to by its position in the ring, i.e., the
processor with Gray code index j has left and right neighbors j- 1 and j + 1, respectively,
where all processor identifiers in a d-cube are taken modulo p = 2d

The following algorithm, Ring Matrix Multiplication (RM.AI), performs the multipli-

cation C = AB of two N x N matrices A and B both distributed by columns among the
processors of a d-cube. The order N is taken to be a multiple of the number of proces-
sors, N = k2d. RMM takes full advantage of the distributed memory on the cube and
keeps the amount of storage required per processor to a minimum. Initially, processor
j, 0 < j < 2d - 1, contains the columns jk,..., (j + 1)k - 1 of A and of B, and upon
completion columns jk,..., (j + 1)k - 1 of A, B, and C. During the formation of C, the
columns of B remain in their original places while the columns of A are passed cyclically
from processor to processor along the ring, overwriting the previously-held columns of A

in each processor.

4



Let Bij denote the k x k block-matrix in position (i,j) of B, 0 < i,j < - 1, and

be the k columns jk,..., (j + 1)k - 1 of B. Algorithm RMM proceeds as follows. Indices
should be taken modulo 2d*

Algorithm RMM.

In parallel, do on all processors j, 0 < j < 2 d - 1:
Fyor 2d  i

For i = 0,...,2
1. compute 6j = Cj + _ jif3.j_j, j

2. send flj- i to processor j + 1

3. receive Aj_i_1 from processor j - 1

The arithmetic time at each iteration comes to 2dkK, and the communication time
to 3 + 2dk 2 r, giving a total of

dRf _2dkl 2d (3 2dk 2 7).T ,. -. +

(See also [15.) This algorithm also applies to the multiplication of two matrices of order

k21 on an i-cube, i < d, whence the time becomes

Th I ='22 k.._ 2(3 - 2'k 2 ).

2.4. Modified Gram-Schmidt Orthogonalization

The modified Gram-Schmidt procedure is employed to transform a set of linearly

independent vectors into a set of orthonormal vectors. A real matrix A having m linearly

independent columns of length N is factored into the product of a matrix Q G rNxm with
orthonormal columns and an upper triangular matrix R E R"×. The kth column of Q

and the kth row of R are computed at the kth step of the modified Gram-Schmidt process

[19]. Orthogonalization is necessary when inverse iteration applied to poorly separated

eigenvalues produces eigenvectors that, while linearly independent, are not orthogonal

Algorithm MGS describes an implementation of modified Gram-Schmidt on a p pro-
cessor hypercube when n < p. Columns are assigned to processors in an embedded linear

array so that processor j has column j. The orthogonalization procedure is pipelined by

passing computed orthogonal columns along the array for use in orthogonalizing remaining

columns. The columns of A are overwritten by the orthonormal columns of Q.

Algorithm MGS (m < p).

In parallel, do on all processors j, 0 _ j < n - 1

1. for k =0,...,j - 1

Io ,



1.1. receive the kth column (alk,.. .,aNk)T from processor j -1

1.2. if k < m - 1, send column k to processor j + 1
1.3. compute rkj = akaIZ
1.4. fori=,...,N- 1, aij = aiy-azkrky

_(a 1 ,..,a AT

2. normalize column j: (al. a)' -(a 1j,..., a, ')2

3. if j < m - 1, send column j to node j + 1

Note that the processor holding column i requires access to orthogonalized columns
0 through i - 1 in order to orthogonalize column i. Thus, processor i remains idle until
it receives column 0. As m < p, processor i is delayed by the time needed for processor
0 to normalize column 0 plus the time for column zero to pass through i communication
links or i(,3 + Nr). Upon receipt of column 0, processor i orthogonalizes column i with
respec.. column 0. This receipt and orthogonalizatioi process is repeated by processor
i for columns 1 through i - 1. Note that the orthogonalization in steps 1.3 and 1.4 and
the normalization in step 2 each require approximate time 2A,. Thus, once processor i
has received and used column 0 in step 1, it must wait an additional 2Nw to account for
the time needed by processor 1 to normalize column 1. A waiting time of 2Nw is thus
accrued by processor i for each of the processors 0 ,... ,N" - 1. When 3 + Nr < 2Nw,
time for communication of vectors to processor i from processors 1,..., i - 1 overlaps this
additional idle time and need not be considered further. For the iPSC parameters given in
Section 1, / + Nr < 2NAw for all N > 5. Processor i spends time 2iNw completing steps
1 and 2. The total time for Algorithm MGS is equal to the time needed by the processor
holding the last column, and

TMGS = [2(m - 1) - 122 ,V  - (7 - 1)(3 ->), for n < p.

When m > p, a ring of processors replaces the linear array. Columns may be assigned
in any order but for the purposes of this analysis are numbered so that processor j has
columns j,j + p,...,j + vp < m - 1. Communication proceeds in a fashion similar to
that of Algorithm MGS with processor indices taken modulo p; however, column originally
held in processor j is passed only as far around the ring as needed in step 2 and does
not return to processor j. No processor spends more than (p - 1)(,3 + Nr) waiting for
column 0. Upon receipt of column k, processor j repeats steps 1.3 and 1.4 for any of the
columns j,. .. ,j + vp < m - 1 with index greater than k. As soon as step 1 has been
completed, that column is normalized and sent on; thus, one normalized vector begins the

circuit every 4Nw.
The time to complete orthogonalization is again equal to the total time required by

the processor holding column rn - 1. This time. in turn. is dependent on the number of
columns held by that processor. When m is sufficiently large, the slowest processor will
have enough orthogonalization tasks that it never need wait for additional normalization
steps performed by other processors as described above. At worst, (for example, when
m = p + 1) the processor holding the rith column. %ill ]javc to wait idik through m - 2

C)q
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normalizations. The additional communication time overlaps computation, and

TMGS < [1mm+m-1 .NW+ (p-1)(3+ A'r), form>p.

3. Cuppen's Method

3.1. Sequential Algorithm
The first scheme to be discussed is a divide-and-conquer method described by Cuppen

to find all the eigenvalues and corresponding eigenvectors of any symmetric tridiagonal
matrix [11]. The method is based on the fact that a symmetric tridiagonal matrix T of
even order N can be divided into a pair of equal-sized symmetric tridiagonal submatrices I
as follows

To T evi 2 eiT'
aeleN/2 Tl

(To + / 9 ae V/ 2eN 2 aet'/ 2 e1 T
+ A e e', 2 -'eeT (31)

= rl aele%, T  o-lje T

-(To Ti ) 0 ± ~ 0 e l N2 ( . 2  e )

where a is the off-diagonal element of T at position . is the 'th unit e oe
and To and T1 are of order 'N. The sign and magnitude of 0 are selected to ensure that

subdivision of the matrix can be performed at this position without cancellation 112]. The
original problem has now been split into two eigenprobleiis of half its order.

If the solutions 'o the two smaller eigensystems arc / 0  XoDoXTV and T1  X 1D 1XT,

then
T = Q D-tOO _ 1  (17  O - f '")  7 "

where
QX X1 D D= D i '-

0 T eT X 0 is the last ro(of X0,>and (DTo, D')
=row of X 0 , and fT = eI X1 is the first row of X 1. To solve the

eigenproblem for T, it is necessary to find the eigenvalues arid eigenvectors of the diagonal

matrix D plus a rank-one correction, D+pzzT =QTTQ wherezTL= (06 1-f )>

and p is selected so that 11 z 12 1. For the remainder of the paper, it is assumed that
T is unreduced (i.e., its off-diagonal elements are non-zero). If not. T would consist of a
direct product of disjoint, lower order matrices whose eigensolut ions could be determined
independently.

o'..I
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Computation of the eigensystem of T is accormplished via a rank-one updating tech-
nique described in [18]. Namely, if all elements of z are non-zero and if the diagonal
elements of D are distinct and in sorted order dc > d, > "" > dN _-, then the eigenvalues

of D + pzzT are the roots A,, i = 0, 1,..., N - 1, of the secular equation 118'j

w(A) = 1 + pzT(D - AI) - l z. (3.2)

This rational function takes the form shown in Figure 1 of 1101.
Note that Aj is bracketed by d, and dit so the roots of w(A) are readily found

using a rational interpolation technique given in '10'. This method is quadratically and
monotonically convergent from one side of the root thus ensuring that the root A, can be
extracted from interval (di,d,+) without need for safeguarding. Once the eigenvalues of

D + pzzT have been found, the corresponding eigenvectors are computed from

(D - AI)-< (3.3)

1(D -A, 1 z2

If U is the matrix with columns U0,V ,...,.. and A. diag(A0 .... ,AN- 1 ), the eigen-
decomposition of the original matrix may now be expressed as the matrix product

T = QU\AUTQT .

If the elements of D are not sorted in descending order as required above, it is neces-
sary to consider instead the matrix jTDJ where J is ani appropriate permutation matrix.
In addition, the above procedure is dependent on the di;rctne- of the elements {d,)}. Al-
thoug., an unreduced tridiagona] matrix of order A' doe- i,sclf have A' distinct eigenvalues,
the intermediate matrix D may not. For example. if

/ 1 0

T 1 3 1 0 then a 1, TO ( 1 ad ru7 2Both To and T,0 1 3 1 1 2 1 2 ":

0 1 2)
3 0 0

have eigenvalues I and 3, so D 0 ,ard da T dd,d 2 = d3 . ,

0 0 0 1 '

In the case of multiple values dl = d -_. d .k, the eigenvalues cannot be

determined from the secular equation. Rather, the CigCnvector basis is rotated to zero out

the elements z 1_.,. . . ,Z.ik corresponding to the mnultip~le elements d 1  ... =d+k: a

product of plane rotations G 1 is applied so that

(:!z.o,, z:.) 7  ( .. 0)7.

The eigenvalue corresponding to a zero element z', of the rotated vector remains unchanged

(A) = d,), and the corresponding eigenvector rmiay be (}:(Tc i as the appropriate unit vector
of order N (u,= e) [11I . Therefore, inultiph' va,, aiiog ilie diagonal of D result in

S
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a significant reduction in the work required to compute the eigensystem of D + pzz
In addition, small elements of z corresponding to distinct elements of D lead to similar
savings. Numerical experiments have confirmed that the increase in speed due to this
deflation is substantial [12]. Representing the product of all rotations in the matrix G, the

matrix T is expressed as

T = QJGTUAUTGjTQT = XAXT, (3.4)

where UAUT is the eigendecomposition of GJT(D - pzzT)JGT. The eigenvalues of T are
the diagonal elements of A while the eigenvectors of T are the columns of X = QJGTU.

3.2. Parallel Algorithm

The sequential divide-and-conquer technique derives from the fact that a symmetric
tridiagonal matrix T can be divided into a pair of symmetric tridiagonal m?;trices t 0 and

T 1 as in equation (3.1). But just as T was subdivided so too can be To and T 1 . Renaming
the variables T, a, and b to T20, a 20 , and b2 0 , respectively, the resulting matrix T =_ T20
has the form

Too 0 0
+ aloblob 0

0 ToI
T T20o = + a 2ob 2ob2o.

To,, 0 -0 762 0l b bT1

L 03

(3.5)
The subdivision or "tearing" process can be repeated and rank-one updating pro-

cedures applied recursively to determine the eigensysten of T. At the ith division, a

% submatrix T,, is split into

T (Ti-1,2 7'1,2 ) .- 1

It is this recursive nature of Cuppen's method that suggests its suitability to parallel

implementation on the hypercube architecture. \\i.tl this motivation, a high-level, top-

down description of a parallel version of Cuppen's method for the hypercube is given as

Algorithm CI.

Algorithm CIL: Solution of Eigenproblein of Order A' = k2d on a d-cube.

Recursively divide the matrix d times so that processor J contains the submatrix Tj of

order k, 0<j< 2d
- 1.

1. Step 0. Each processor (0-cube) independently coniputes the eigensystem of its order-k
submatrix.

2. Step i, 1 < i < d. Each (i- 1)-cube pairs with anot1,er (i- 1)-cube to form an i-cube by

exchanging information about the eigensvsten> of the matrices Ti_1,2, and Ti-1,2j+ 1

9



of order k2' - 1 computed in step i - 1. Each i-cube independently computes the
eigensystem for its matrix Tij of order-k2'. The 2 d- i-cubes at step i are enumerated

by the index j, 0 < j < 2d-i.

Note that the number of updating steps in Algorithm C1 is equal to the dimension
of the hypercube. At step i, 2 d-i i-cubes independently solve eigensystems of order k2'.
Upon completion of step d, each processor contains k of the N = k2d eigenvalues of the
original order N = k2d matrix T as well as the k corresponding eigenvectors (of length N).
Algorithm CI can now be refined to explain in greater detail the assignment of computation
to processors.

Each processor starts with the solution of an eigensystem of order k and during subse-
quent steps is responsible for updating k eigenvalues and k eigenvectors, thereby doubling
the length of the latter during each step. Thus, the ith processor in the subcube con-
tains eigenvalues Ajk, Ajk+l,... ,A(3+l)k-1 of the matrix T as well as the corresponding
eigenvectors. Figure 2 illustrates the above by depicting the communication pattern at
each step of the algorithm on a hypercube of dimension 3. The labelled squares denote
individual processors (the 0-cubes of step 0). A box containing 2' processors implies that,
at step i, subcubes of dimension i independently compute the needed eigensystems. All
processors belonging to the same i-cube must communicate with one another during the
solution step i.

7PO F__ . iT3_4__FP 7

Figure 2: Formation of subcubes for data transmission
during Cupper's method.

The division process of the algorithm can be well-illustrated by means of an example
for a 3-cube. A matrix T = T30 of order N = k2 3 is recursively divided into eight order-k
tridiagonal matrices Too, To,..... , T07, and matrix To, is assigned to processor j, 0 < j _ 7.
The allocation of submatrices to processors is given in Table 1. There, the entries Tj are
those matrices whose eigensystems are computed in step i by subcube j. The brackets
distinguish the subcubes occupied by each eigensystem.

During step 0, processor j (a 0-cube) computes the eigensystem (A0j, X 0j) of the
matrix Toj. Because each rank-one updating step requircs the eigensystems of two smaller

10



P0  P1  P2  P3  P4  P5  P6 P7
stepO: 1 TOOH T1[ 11 T02 11 h3 H1 T04 ][ T05 II T06I I T07 I

step 1: TIO T T2 T

step 2: T2 7'

step3: I T 30 - T

Table 1: Assignment of submatrices to the processors
of a d-cube during Cuppen's method.

matrices, processors must pair up in step 1 and exchange information within 1-cubes to
compute the eigensystems of the four order-2k matrices T10 ,..., T 13 . Figure 3.2 shows that

after exchanging information about the eigensystems of matrices Too and To,, processors 0
and 1 can together compute the eigensystem (Al 0 , X 10 ) of TI0 . Processor 0 is left with the
leading k eigenvalues and eigenvectors of T10 , while processor 1 holds the trailing k. The
remaining steps proceed in a similar fashion until, at the end of step 3, each of the eight
processors contains k eigenvalues and k eigenvectors of length 8k of the original matrix
T - T30 . For 0 < j < 7, processor j holds eigenvectors indexed jk,..., (j + 1)k - 1.

To begin the solution of the eigenvalue problem by Cuppen's method, each node
requires a sequence of diagonal and off-diagonal elements of the matrix T. For the sample
problem of Figure 3 on a cube dimension 3, node 0 needs the submatrix Too as well as
the off-diagonal elements a1 , a20 and 030. For the purposes of this paper, it is assumed
that each node contains the needed matrix elements. Algorithm C2 details the steps in

the determination of all eigenvalues and eigenvectors of a matrix T of order N = k2d on a
d-cube. Note that only parts i.1 and i.4 of step i, 1 < i < d, require data communication.
In Algorithm C2, italics distinguish comments from instructions.

op%.
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Step 0: Compute the eigensystems of Too, TO, ... , T0 7.
Step 1: Compute the eigensystems of

(Too T
TI° = T O l ) + a l ob l ob lT '

T13= (T 0  T 07 )+ 13b l 3b 3 "

Step 2: Compute the eigensystems offT00  *
Tll T 2 allbllbl1 )+a2b 2 bT0

and

T21 T12 bQij(To4  T05  Gt12bj 2bI 2  aC2 jb 2 jbTi
T13 ) To )i a13b13 bT)

Step 3: Compute the eigensystem of

T =-T3 0 =(T20 T2 ) X30b3obLTT21 ) .30bT .

Figure 3: Submatrices occurring during the recursive
construction of the eigensystem of T - T3o on a 3-cube.

Algorithm C2: Solution of eigenproblem of order N = k2d on a d-cube.

Recursively divide the matrix T = Tdo d times and allocate submatrix Toi and the d
appropriate off-diagonal elements to processor j, 0 < j < 2d - 1.

Step 0:
Processor j (0-cube) computes the eigensystern (A0,, X0j) of the matrix T0j of order

k, the diagonal of A0, contains the eigenvalues of T0, in descending order, and the columns

of X0 j are the corresponding eigenvectors, 0 < j _ - 1.

Step 1 < i < d:

{2
d - i i-cubes independently compute the e'gen,,ystemi (A 1, X23)) of the matrices Tij

12
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of order k2t using the eigensystems from step i-1:

T - )Ti _ 1,2j+ 1

- ( X 'i - 1 , 2 j  . _ , 2 .+  [ A i - I, 2 j  i ' Z .o j z i T . ( X i - 1 , 2 . I T .

I X-1,2j+l

Denote by S a subcube of dimension i and index j which consists of processors j2'
through (j + 1)2 i - 1. For simplicity, denote these processors by PO, P1 ... , P2j_1 and
replace subscripts of the form (i - 1,2j) with 0 and (i - 1,2j + 1) with 1. With the new
notation, processors PO,P 1 ,. . . ,P 2i_1 compute the eigensystem (A, X) of

T = (TO TI )±+abbT (x0 X ) [(AO A 1 ) + PZZT] (x X 1) T

from (Ao, Xo) and (A 1,X 1 ). From step i - 1, processor PI for 0 < I < 2'-1 - 1 contains
eigenvalues of To indexed lk,...,(l + 1)k - I and columnns lk,...,(l + 1)k - 1 of X 0 .
These processors form a subcube of dimension i - 1 called S0 . Similarly, processor PI for
2'-1 < I < 2" - 1 contains eigenvalues of T, indexed 1k,... (I + 1)k - 1 and columns
lk,..., (I + 1)k - 1 of X 1. These processors form a subcube of dimension i - 1 called S1. }

i.1 By means of algorithm ADE, processors in So and S exchange their k elements of A0
and Al, respectively, and their k elements of the last row of X 0 or the first row of X 1 ,
respectively, so that each processor in S contains A0 , A,, the last row of X 0 and the
first row of X 1 .

i.2 Each processor in S
i.2.a computes z and p from the last row of X0 , the first row of X 1, and a,,.
i.2.b determines a permutation matrix J by merging the sorted sequences diag(AO)

and diag(A1 ) so that the diagonal elements of D = jT A0  J are sorted
Al ,

in descending order.
i.2.c permutes the elements of z accordingly: z . JT2z"
i.2.d applies the product of plane rotations G to zero out the elements in z that cor-

respond to multiple elements in D.

i.3 Each processor P in S

i.3.a computes elements jk,... , (j + 1)k - 1 of A (eigenvalues of D + pzzT) and the
corresponding eigenvectors ul.,... U(+1l)kI according to formulae 3.2 and 3.3.

i.3.b updates the eigenvectors: (Vlk,..., t'(/ 1 j)A- ) = GT(ulk, ... , u(I+l)k-l).

i.4 By means of Algorithm RMM, processors in So and S1 send their columns of X0 and
X 1 , respectively, to all other processors in S so that processor j can determine its k
columns of X via

(k, X(1)kX0 X1J (vZ.....r(1-) ), 0<_ j < 2 d-i - 1.

13
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In Algorithm C2, it is assumed that the order N of T is a multiple of number of
processors in the hypercube. If this is not the case, T is recursively divided so that the
orders of the smallest submatrices Tj differ by no more than one.

3.3. Analytical and Experimental Results
A first order approximation to an upper bound on the time required to determine

all the eigenvalues and eigenvectors of a symmetric, tridiagonal matrix of order k2d on
a d-cube is obtained through examination of the steps of Algorithm C2. This section
assesses the contribution of communication and of floating point operations to the time
requirements of Cuppen's method on the hypercube. A quantitative analysis is given for a
problem in which no deflation occurs. Experimental results showing the effects of deflation
follow.

Time Requirements for Algorithm C2 (No Deflation)

This summary follows the steps of Algorithm C2, outlining at each the time needed.

Step 0:
The solution of p = 2 d independent symmetric tridiagonal eigenproblems of order k

done in parallel on p processors requires time proportional to k3W.

Step 1I <i<d:

i.1 The exchange of A0 and Al among the processors of subcube S requires time TADE
as does the alternate direction exchange of X 0 and X 1.

i.2 The computation of p and the subsequent normalization of vector z takes time 2i+lkw
plus the time for a single square root. The merging of sequences A0 and A, requires 2'k
comparisons; its contribution is not counted in the total time. Likewise, the pointer
manipulation for permutation of z is neglected. Because ao deflation occurs, step i.2.d
is not performed.

i.3 Computation of k eigenvalues using formula 3.2 requires time rq2ik2w, where the
value of ci depends on the number of iterations needed for root finding. Computation
of k eigenvectors using formula 3.3 requires time 2'k 2 _,. As it was assumed that no
deflation takes place, no time is allotted for step i.3.b.

i.4 Step i.4 involves the updating of the new eigenvectors by computing

When no deflation occurs, G = I and V = GTLu = U.

Each processor in the S has a copy of J but only k columns of the operands X°

and V. The product is thus found by using Algorithm R.IMI with A (and\ X,]
B = V. J provides the permuted column indices for A. The time required for updating,

however, is less than T,,f A: theblockstructureofA \'0 \ X providessavingsof
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both communication and computation. The columns of X 0 and X1 are of length 2i-lk,
half the length of the columns of V. Thus, communication of A is accomplished by send-
ing only X0 and X 1 (and not the zero off-diagonal blocks). Because columns sent around
the ring need not be returned to the originating processor, each block of columns need
only be passed along 22 - 1 links of the ring. This communication can be completed in
time (2 " - 1)(0 + 2"-k2 r). Furthermore, multiplication by the zero elements need not be
performed. Total time for step i.4 is then

(2' - 1)(/ + 2+ ,k2 r) 22 k1 .3

The high order terms in the total time needed for Algorithm C2 are found from sum-
ming the time requirements for both arithmetic and communication in its d + 1 individual
steps. Arithmetic is performed in all d + 1 steps of Algorithm C2. Step 0 completes in
time To = rcok 3w. Let ,c = rnaxl<i<dci + 1, then, neglecting the time for square roots,
the arithmetic time for step i, 1 < i < d, is

TA < w(k2 + 1 + k 22'r, k322i-1).

The total arithmetic time for all steps is

d d
T 3W -t- W_ ,1k>2- -1- k2 2' +,-32-

TA = T~i -t-- k

llz w k - + 2k tcp + 4k;)

Expressing the total in terms of matrix order N = k2'1 kp,

- 1 - - I,TA P : O  - 3 p P - 4N)

No communication occurs in step 0. Communication for step i, 1 < i < d, is limited
to a pair of alternate direction exchanges plus the modified RMM described in step i.4.
The time for communication at step i is thus seen to be

T = 4[,O + (22 - 1)kr -+ (2' 1)(3 - k2 2-r).

Summing over i, gives an approximate total communication time of

d "2

TC T ;- 03(2d' + 2p + d) -~(Sp - 4d)k7- + - P) k2 7..
3--t

In terms of matrix order N,

T c  3(2d- d - 2p) - - 4d) r.
3 P
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The total time for solving an order N symmetric tridiagonal eigenvalue problem on a
d-cube using Cuppen's method can then be written

NN)4N2"N(N2 2 N 2  NTA+T c ;-, W -+ 3 p + 2 2 -p + 4N) +,(2d2+d+2p)+ (3 + 8N- P 4d jr.,

The computation of eigenvalues and eigenvectors through equations (3.2) and (3.3) con-
tribute the quadratic term, while updating the eigenvectors using matrix multiplication at
each step leads to the cubic term. Sb

Algorithm C2 produces an eigenvector matrix X distributed by block columns around
a ring of processors embedded in the hypercube. An alternative design1 leaves computed
eigenvectors distributed according to a block row partitioning. In this row version, each
processor must compute N eigenvectors of D + pzz T (rather than the k vectors required

of each processor in step i.3 of Algorithm C2.) Because the matrix X° J isX1

distributed by rows and the matrix V is distributed by columns, the matrix product X = -
X0 ) J] V (step i.4 of Algorithm C2) can be computed without communication.

Each processor computes a block of k rows of X. This savings of communication at %
the expense of increased serial arithmetic, however, leads to a higher complexity for the
block row-distributed version of Cuppen's method than for the block column approach %

of Algorithm C2 for nearly all problem sizes and cube dimensions. In the portion of
the computation not involving eigenvectors, both versions require the same arithmetic S
operations and roughly equal communication.

The total time for eigenvector computation at steps 1.3 and i.4 of Algorithm C2 "'S.'

TCOL = (2'k 2 + 22 1 k3 ) (2- 1)(3 2'-lk2
7).

The same procedure for the row version takes timre

TROW =22z (k2 _ )

Defining the difference A TCOL-TRow leads to

(21 - i)/3A = (2i - 22 2),- (2 - i)(.3 -- k 2 '2-r).

Dividing both sides by (2' - 1)/ gives

2 2A =1 -k
2 22 - i(_ 2i r ,.

3 ~3

When 2w > r, as it is for the iPSC, the second term is positive. Furthermore, for most
values of k on all sized cubes, A < 0, and the column version is faster than the row version.

'E. de Doncker and J Kapenga. private communicatic:., 1:,,
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While deflation is not readily quantified in an analytical description of Cuppen's
method, its influence is evident in the experimental results. To demonstrate the effects
of deflation, two test problems are examined. The first is finding the eigensystem of the
tridiagonal matrix with all off-diagonal elements equal to 1 and all diagonal elements equal
to 2. Henceforth, this matrix is denoted [1,2,11. The structure of [1,2,1] leads to significant
deflation in the root finding step (i.3) of Algorithm C2: only half of the eigenvalues and
eigenvectors must be computed from formulae 3.2 and 3.3. The second tridiagonal test
matrix, [1,,], has the value 1.0 in each off-diagonal position and the value As x 10-6 in
the it - th diagonal position. For matrix [1,,1], the intermediate eigenvalues (the diag-

• .onal elements of D) are distinct at each step. In addition, the small diagonal elements
of [1,/,1] (relative to its off-diagonal elements) ensure non-negligible elements of z. Thus,
little or no deflation occurs at each step in the solution process. Dongarra's and Sorensen's
sequential version of Cuppen's method SESUPD [12 computes the eigensystem of [1,2,1]
in approximately half the time it needs for [1,p,1] with exact times dependent on matrix
order.

Speedup is defined as the time required to solve a problem using the fastest sequential
method on one node divided by the time required to solve the same problem on p > 2 nodes.
For Cuppen's method on the hypercube, speedup over SESUPD on one node is strongly
dependent on the problem solved. SESUPD is the fastest available sequential method
for finding to high accuracy all eigenvalues and orthogonal eigenvectors of a symmetric,
tridiagonal matrix of order larger than 50 112. On one processor of the iPSC, SESUPD
requires 8809.9 seconds, and EISPACK's TQL2 takes 28.341.9 seconds for matrix 11,2,11
of order 512. Figure 4 shows speedup for 32 processors as a function of matrix order
for [1,2,1] and [1,p,11. Speedups for 11,2,11 are marked with squares and for [1,1L,11 are
marked with circles. Data points connected by a solid line are measured at matrix orders
equal to a multiple of 32. The points recorded at other matrix orders are joined by
a dotted line. Only orders 32 through 1024 are presented graphically in order to best
display the structure of the curves. Although near maximal speedup occurs in the case of
little deflation, speedup of only about one half is seen when deflation is prevalent. This
difference does not indicate that the eigensystem of 1.p*.1 is found in less time than that
of [1,2,1] on the hypercube, but rather that Cuppen's method on the hypercube does
not exhibit the large time savings from deflation shown by SESUPD. On more than one
processor, SESUPD requires approximately the same time for i1,2,1] as for [1,p,1], but on
one processor, SESUPD runs considerably faster for '1,2,1J than for [1,/,1]. Speedup for
[1,p,1] is thus greater.

The effects of deflation are reduced by other factors related to implementation for the
hypercube. When the cube dimension is larger than one, the processors no longer solve
identical problems at each step. However, the data exchange requirements of Algorithm C2
synchronize the processors. Thus, although a single processor may encounter significant
savings when deflation occurs, the gain may not be shared by the cube as a whole. Unless
the effects of deflation are evenly distributed over the processors of the cube, any time
gained during root-finding by a single proccssor will be lost as it waits for the slower
processors during the data exchange routines. The improvemlielt due to deflation measured
for sequential or for shared memory machines. on which root-finding tasks are scheduled
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dynamically by a queue manager, is not expected for the statically-scheduled hypercube.
In addition, at some points in the algorithm, it is more efficient to allow all proces-

sors in the cube to perform the same computation than it is to communicate the data
required for parallel computation (in step i.2.d of Algorithm C2). These redundant com-
putations cause root finding to occupy a smaller fraction of the total computation time
on the hypercube than on a sequential machine. The savings in root finding are thus less-
ened. Introduction of the communication required for the hypercube implementation has
a similar effect. As total time no longer consists entirely of computation time, the savings
due to deflation are reduced.

Figure 5 shows the fraction of time spent in communication by the processors of a
5-cube while determining the eigenvalues and eigenvectors of matrices of various orders for
matrix [1,2,1]. Computation time is shown to be greater than communication time for ma-
trix orders as small as 64. For eight or more eigenvectors per processor, the communication
cost levels off at about 16% of the total time.

/

V- - -- -- -"

Figure 4: Cuppen's Method on a 5-cube: Speedup for
11,2,11 (squares) and '1,p,1: (circles) 'crsus Matrix Or-
der. Points for matrix orders that are multiples of 32 are
connected with solid lines. Other points are connected
with dotted lines.

4. Bisection and Inverse Iteration

4.1. Sequential Algorithm
The method to be described in this section is bacd on the determination of eigenvalues

of a symmetric. tridiagonal matrix from Sturin stvqut T((,- aii the subsequent computation
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Figure 5: Cuppen's Method on a 5-cube: Fraction of
Total Time Spent in Communication versus Matrix Or-
der for Matrix [1,2,1].

of eigenvectors via inverse iteration. The use of this combination is generally recommended
when a few of the eigenvalues and their corresponding eigenvectors are needed [32], but
for purposes of comparison with Cuppen's method, the following sections concentrate on
full solution of the symmetric, tridiagonal eigenproblem via bisection.

Let T be an unreduced symmetric tridiagonal matrix of order N with diagonal ele-

ments d0 ,dj,'--,dN- i and off-diagonal elements f if2,'", fy- 1. According to the Ger-
schgorin Disk Theorem, the ith eigenvalue of T is confined to a disk on the real line centered
at di with radius fj -4- lfi+,!. All eigenvalues of 'r are then known to lie within the union
of its N Gerschgorin disks. Individual eigenvalues are located in this interval by solving
the characteristic equation det(T - AI) = 0.

The sequence of principal minors of the matrix T - Al is given by the linear recurrence
Po(A) =1

P(A) = do - A (4.1)

Pi (A) = (di - A) Pi- 1 - f2,P -2 (A), i 1,. N - 1.

As noted by Givens [17], the number of eigenvalues of T less than A is equal to the number
of sign changes in the sequence {p,(A),i = 1,2,. .,}. During numerical computation,
however, the linear recurrence in equation (4.1) is prone to overflow and underflow. To

avoid these difficulties, {p,(A)} is replaced by the nonlinear recurrence {q,(A)}, where

qz()1 (4.2)
P2
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The number of eigenvalues less than A is equal to the number of negative terms in {qi(A)}
[3]. Denoting this number by c(A), the number of eigenvalues in the interval [a,b) is given

by the difference c(b) - c(a).
This Sturm sequence property is used to refine the eigenvalues of T through repeated

bisection of the initial Gerschgorin intervals and determination of the numbers of eigenval-
ues lying in the resulting subintervals. Any interval half found to contain no eigenvalues is
discarded from the search area. Occupied intervals are further bisected until single eigen-
values have been extracted to a given tolerance or until intervals containing more than one
eigenvalue have been reduced to a width smaller than that tolerance. In the latter case,
the confined intervals are considered to represent a cluster of computationally coincident
eigenvalues.

When a single eigenvalue has been isolated within an interval, its determination can
be accelerated by using an interpolation scheme 16] or a root finder such as Zeroin [14].
These methods, although faster than bisection, require use of equation (4.1) and are not
included in this discussion.

Once the eigenvalues have been computed using bisection, their corresponding eigen-
vectors are found with inverse iteration. When the eigenvalues are well-separated, inverse
iteration converges quickly and generates orthogonal eigenvectors [33". These properties
make inverse iteration the method of choice when no clusters are present. When close
eigenvalues do occur, the rate of convergence of inverse iteration decreases and the resul- -'

tant eigenvectors, although independent, are not necessarily orthogonal [33'. An additional
orthogonalization step must be included. Furthermore, if the close eigenvalues are actually
computationally coincident, standard inverse iteration, which converges to a single eigen-
vector, cannot be employed to find the eigenspace corresponding to the multiple eigenvalue
[33]. These considerations suggest that an alternate approach is needed when eigenvalues
are poorly separated.

One remedy to the difficulty is to perturb close eigenvalues to a nonproblematic dis-
tance. Wilkinson [33] maintains that a separation between eigenvalues on the order of
three times machine precision is sufficient to produce independent eigenvectors. These
vectors do suffer the loss of orthogonality associated with close eigenvalues, so the modified
Gram-Schmidt procedure is recommended for orthogonalizing the vectors. This perturbed
inverse iteration followed by orthogonalization has gained acceptance as implemented in
the routine TINVIT of EISPACK [32'.

The procedure for finding all eigenvalues of a symmetric, tridiagonal matrix using
bisection and the corresponding eigenvectors using inverse iteration is summarized in Al-
gorithm B1.

Algorithm BI: Steps in the Bisection-Inverse Iteration Procedure
Step 0: Determination of initial search area. Find intervals containing all eigenvalues (e.g.,
from Gerschgorin disks.)
Step 1: Computation of eigenvalues. Use bisection to determine all eigenvalues.
Step 2: Computation of eigenvectors. Compute the eigenvectors by inverse iteration.
Treat eigenvectors corresponding to clustered eigenvalues by appropriately perturbing the
eigenvalues in the cluster.
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Step 3: Orthogonalization of eigenvectors. Employ modified Gram-Schmidt to orthogonal-
ize eigenvectors corresponding to close eigenvalues.

In order to provide a clear extension of previous studies of bisection and multisection
[23, 32], the easily parallelized method of inverse iteration is employed for the computa-
tion of eigenvectors in Algorithm BI. Nevertheless, other methods for computation of the
eigenvectors could be considered. One method that can be useful for the computation of
eigenvectors of clustered eigenvalues is that of subspace iteration [19, 24]. This general-
ization of the power method iterates on a subspace of dimension m > 1 rather than on
a single vector and, for the iteration matrix (T - AI)-', converges to the m eigenvectors
corresponding to the m eigenvalues of T nearest to A. In typical implementations, orthog-
onalization steps are interspersed with the iterations to ensure computation of orthogonal
vectors [4, 24]. Subspace iteration thereby provides the required orthogonal eigenspace

corresponding to pathologically close eigenvalues.
In practice, some variations are needed to make subspace iteration a useful tool. For

example, the rate of convergence of simple subspace iteration is is dependent on the distance
from the cluster to the nearest eigenvalue of T ]19'. When this distance is small, a slow
rate of convergence is expected. In this instance, use of a convergence acceleration scheme
is recommended [19, 24, 27, 28]. The rate of convergence of simple or accelerated subspace
iteration is also strongly dependent on the initial subspace. In general, the dimension of
the initial and intermediate subspaces must be significantly larger than that of the desired
eigenspace [4]. We intend to examine the potential of methods other than inverse iteration
for parallel implementation in future work.

4.2. Parallel Algorithm
The hypercube version of bisection involves a straightforward partitioning of the com-

puting tasks outlined in Algorithm B1. For a matrix of order N = kp, each processor in a
hypercube of p = 2 processors computes k eigenvalues and eigenvectors. When N is not
a multiple of the number of processors, work is assigned so that no processor computes
more than one eigenvalue and eigenvector more than any other. Eigenvalue computation is
accomplished by use of the EISPACK routine TRIDIB. This implementation of bisection
allows computation of any number of consecutive eigenvalues specified by their indices
[32]. Upon input of the diagonal and off-diagonal elements of the symmetric, tridiagonal
matrix as well as the index of the first eigenvalue to be found and the total number of
eigenvalues to be determined, all Gerschgorin disks are computed. (On a hypercube where
both message startup and elemental transfer times are small, each processor should com-
pute a share of disks and communicate them to ail other processors.) An initial bisection

procedure is carried out to determine that portion of the Gerschgorin interval containing
the desired set of eigenvalues. From this reduced interval, the individual eigenvalues are
again extracted via bisection. On the hypercube, processor z uses TRIDIB to compute
eigenvalues ik through (i + 1)k - 1.

With all eigenvalues extracted, it remains only to determine orthogonal eigenvectors.
When the eigenvalues are well-separated, each eigenvector is computed in a small number
of inverse iterations. An effective load balance is then achieved by having each proces-
sor compute N of the vectors. No communication it required, and an equal number of
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eigenvectors is stored in each processor. If N is not a multiple of p, remaining vectors are
computed and stored, one to a processor as necessary.

When close eigenvalues occur, the rate of convergence of inverse iteration decreases,
and the computed eigenvectors must be orthogonalized. Although the time for the second
task is easily quantified, the additional iteration time due to slower convergence cannot be
predicted. At best, an approximate time weighting of eigenvector computing tasks can be
based on cluster size. In addition, any scheme geared toward even distribution of compu- l
tation time must also be examined from the point of view of memory allocation: solution
of large problems demands even distribution of memory resources. Three approaches to
the resulting load balancing problem are considered below. The first and third are static
schemes in whizh assignment of eigenvectors is based solely on a processor's location in
the ring. The second provides a priori distribution of work according to approximate
time requirements for computations. In all three schemes, the processors of a d-cube are
numbered in a ring according to a Gray code ordering (as in Section 2.3.)

1. Block Distribution. In this case, processor j is assigned the computation of eigenvectors
indexed jk,jk+ 1,...,(j+1)k-1, 0 << 2 d _ 1 , when N = k2 d = kp. Each processor
thus requires the same amount of memory for eigenvector storage.

Although the storage needs are well-balanced, the time required to complete eigen- P
vector computation is strongly dependent on eigenvalue distribution. If clusters of
eigenvalues are unevenly distributed across the spectrum, one processor can encounter
a heavy workload of computing and orthogonalizing the eigenvectors of many clusters
while another has the faster job of determining only eigenvectors corresponding to
well-separated eigenvalues. For example, although the smallest few eigenvalues of the
Wilkinson matrix 1V are well-spaced, for large enough order N, the largest ones occur
in computationally coincident pairs. Under the block distribution scheme, processors
assigned blocks of large eigenvalues will perform more operations for inverse iteration
on clusters and orthogonalization than those given smaller eigenvalues.

The eigenvalue distribution effects not only the load balance but also the communi-
cation requirements. If clusters are small and are confined to a single processor, no
communication is needed. Any cluster of the form \k ... , A for positive

integers 1, m, and n must be split among at least t\\o processors. After computation
of the eigenvectors, the processors must communicate to complete the modified Gram-
Schmidt process. The efficient pipelining of computations among many processors used P
in Algorithm MGS is not possible when processors hold sets of adjacent eigenvectors.
The block scheme provides a regular and even distribution of eigenvectors, but, in
the worst case, can result in severe imbalance of communication and computation.
Furthermore, extra communication requirements surface as special cases.

2. Weighted Task Scheduling. In this approach, each computational task is assigned a
weight or time value based on its expected completion tirne. The weighted tasks are
apportioned between processors according to a scheduling rule designed to give a fast
completion time [25]. As noted earlier, cluster size can be used as a weighting for
approximate load balancing.

A simple scheduling heuristic has some significar drawbacks when employed for eigen-
vector computation. First, unlike an implicit allot iinet of eigenvectors (such as the
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block distribution), creation and manipulation of' the task queue introduces compu-
tational overhead. Second, assignment of tasks to processors is based solely on time
values. Because the time required to compute the eigenvectors of a cluster of a given
size is greater than that needed for the same number of well-separated eigenvalues,
a processor given a cluster by the schedule can be required to compute many fewer %
vectors than one assigned only the eigenvectors corresponding to single eigenvalues.
While such assignment gives a balance of time requirements, it can lead to a poor
distribution of memory use if one processor is required by the schedule to compute
many more eigenvectors than another.

Splitting of large clusters into smaller pieces can solve the memory allocation problem,
but this action complicates the implementation by forcing special case task assignments
as well as introducing the need for communication between processors for eigenvector
orthogonalization. A final difficulty with weighted scheduling is that the computed
eigenvectors are arranged arbitrarily across processors according to the schedule. The
regularity of the block (or the following cyclic) distribution scheme is lost.

3. Cyclic Distribution. Like the block distribution scheme, this third load balancing
approach employs a uniform eigen"ector assignment: processor j in the ring of p = 2 d

processors computes eigenvectors indexed j, j - p,j-- 2p,. . . ,j + vp < N.
The most appealling feature of cyclic distribution is its regularity. The eigenvectors
are systematically distributed across processors and can be located without regard to
computation time requirements. By the same token, memory allocation is maximally
efficient as no processor computes more than one eigenvector more than any other
processor. Cyclic distribution is expected to provide a good balance of processor work
load. Unless a cluster is very large (including more than p eigenvalues), no processor is
required to handle more than one vector from any given cluster. Furthermore, except
in the event of small, cyclically distributed clusters, the burden of cluster handling is
spread across processors.
The biggest dravback to cyclic distribution is the extent of communication required.
Yet, while communication for orthogonalization must take place whenever a cluster
occurs, the frequency of messages initiated by one processor is independent of the
number of eigenvalues in the cluster. Furtheriiioic. an effective computational pipeline
is possible (see Algorithm MGS.) Communication for clusters in different processors
takes place simultaneously. With overlap of communication and computation, idle time
is minimized.
For the reasons of regularity, simplicity, and a good expected load balance, cyclic dis-

tribution is employed during computation and orthogonalization of eigenvectors. Because
the eigenvalues are computed according to a block distribution, the eigenvalue computation
is followed by a redistribution of eigenvalues (by Algorithm ADE) so that each processor
has access to all computed eigenvalues.

Each processor examines the complete list of eigunvalues and perturbs those too close
for inverse iteration. Processor i employs the EISI'ACK routine TINVIT [32, to com-
pute eigenvectors corresponding to eigenvalues indexed i. i - p,. . . vp < N by in-
verse iteration. If clustered eigenvalues occur. their perturbed values are employed during
the eigenvector computation. The unperturbed computcd eigenvalues and the orthogonal
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eigenvectors comprise the solution to the eigenproblem.
The exchange of eigenvalues permits a transition from the block distribution of eigen-

values to the cyclic distribution needed for orthogonalization without communication of
vectors. Computation of a cyclic selection of eigenvalues would obviate the need for ex-
change but would prevent the savings of Sturm sequence evaluations recognized in com-
puting adjacent eigenvalues. When adjacent eigenvalues are computed, the Gerschgorin
interval is narrowed initially to one containing only the T eigenvalues. This interval is
reduced further with the computation of each eigenvalue. This continuous reduction of the
initial search area is not possible when computing cyclically distributed eigenvalues.

The steps for bisection on the hypercube are given as Algorithm B2.

Algorithm B2: Solution of Eigenproblem of Order N = kp on a p-Processor
Hypercube.
Each processor has all diagonal and off-diagonal elements of the matrix. In parallel, all p
processors perform the following steps.
Step 0: Determination of initial search area. All processors compute all Gerschgorin
disks to find the interval containing all N eigenvalues and use bisection to narrow theN
interval to that containing - specified eigenvalues. Processor i finds the interval containing
eigenvalues indexed ik through (i + 1)k - 1.
Step 1: Computation of eigenvalues. Processor i uses bisection to determine the E eigen-
values ik through (i + 1)k - 1.
Step 2: Communication of eigenvalues. All processors exchange computed eigenvalues
using algorithm ADE.
Step 3: Perturbation of eigenvalues. Each processor sorts and perturbs any of the N
eigenvalues spaced too closely for inverse iteration.
Step 4: Computation of eigenvectors. Processor i computes the - eigenvectors corre-
sponding to eigenvalues indexed i, i + p,..., up < .
Step 5: Orthogonalization of eigent'ectors. All processors employ algorithm MGS to or-
thogonalize eigenvectors corresponding to close eigenvaluct-.

4.3. Analytical and Experimental Results
As noted in the preceding sections, both bisection and inverse iteration are readily

implemented on local-memory multiprocessors. The efficiency of this approach is reflected
in the plots given in Figure 6 of speedup versus matrix order for matrix 11,2,11 and for
random matrices. The speedup is calculated as the time for EISPACK's BISECT and
TINVIT combination run on a single processor divided by the greatest node time for
the hypercube bisection and inverse iteration procedures executed on a 32-node iPSC.
(BISECT with TINVIT is the fastest method for finding all eigenvalues and eigenvectors
of a symmetric, tridiagonal matrix of any order on one processor of the iPSC. For order
512 and matrix [1,2,1], BISECT and TINVIT take a total of 2340.0 seconds.) Circles
mark speedup values for matrix 11,2,1], while each square corresponds to the speedup
for a random matrix. Data points for matrix J1,2.1' measured at matrix orders equal to
multiples of 32 are connected with a solid line: points at other orders are joined with a
dashed line. Different random matrices were gencrated for each order, so no relation is
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Figure 6: Bisection on an iPSC,'d5M: Speedup for ".I
[1,2,11 (circles) and random matrices (squares) versus
Matrix Order. '-

expected between random matrix data points.
The speedup for [1,2,1' is seen to increase smoothly with matrix orders proportional

to the number of processors. Efficiencies ranging from 77% to 897 are achieved for matrix
orders above 100. Only matrix orders 32-1024 are presented in Figure 6 in order to preserve
readability. The largest problem with order equal to a multiple of 32 that can be solved
under the current operating system on the iPSC has order 3520. Comparable speedups
found for random matrices of all orders show that the results are not strongly dependent
on properties particular to matrix [1,2,1]. Efficiencies for other matrix orders fall to as
much as 127 below the smooth line of those recorded for multiples of 32. This reduction
of speedup results from the fact that some processors are required to compute one more 0
eigenvalue and eigenvector than are others. The alternate direction exchange of results
following the computation of eigenvalues (in step 2 of Algorithm B2) serves to synchronize
the processors. Those processors with a lesser workload are idle until the processors with
a greater workload enter the exchange. The orthogonalization of eigenvectors can be
similarly delayed by the uneven distribution of inverse iteration tasks. Hence, the time
to complete the parallel computation is determined by the processor with the largest
assignment of work.

The reduction of speedup is well-illustrated with an example. For matrix order 65,
processor 0 computes three eigenvalues while all remaining processors compute two. Be-
cause the processors are delayed until completion of the largest set of tasks, the order 65.•
problem takes as long as if all processors were required to compute three eigenvalues, i.e.,
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as if the matrix order were 96. The sequential solution of an order 65 problem, however,
takes little more time than the solution of the order 64 problem but considerably less than
that of the order 96 problem. Thus, the computed speedup for order 65 is appreciably .

less than that for order 64. In contrast, the order 127 problem, for which both sequen-
tial and parallel times are close to those required for order 128, has a computed speedup

approximately equal to that for order 128.
Despite the extent of the parallelism inherent in the bisection and inverse iteration

procedures, maximal speedup is not achieved. This loss of speedup results from time spent
in non-arithmetic tasks as well as from some non-parallel computation discussed below.
The contribution of this overhead is seen to be comparable in magnitude to the reduction
in speedup. Because the amount of communication in Algorithm B2 is problem dependent
(due to Algorithm MGS), the time spent in communication cannot be determined by
executing the algorithm without the arithmetic steps. Measurement of the time spent
in communication by a single processor thus includes time spent waiting for messages.
Figure 7 shows the average fraction of the total time spent idle or in communication by
one processor. Again, the points for matrix [1,2,1] measured at orders divisible by 32 define
a smooth curve falling from 20% of the total time at matrix order 32 to about 2% of the
total for matrix orders larger than 320. An increase in non-arithmetic activity, due to the
load imbalance discussed above, is noted for most orders not equal to multiples of 32. As
expected, this increase is significant for order 65 but barely discernible for order 127.

The eigenvalue computation begins with each processor independently computing all
Gerschgorin disks then carrying out an initial bisection to determine the interval contain-
ing its share of the eigenvalues. While this process could be altered to result in greater
parallelism, its present contribution to the total time is small. For a variety of matrices
including [1,2,1], the initial bisection time decreases smoothly for all matrix orders from
a maximum of about 15% of the eigenvalue computation time at order 32 to about 3%
at order 512 and 1% at order 1024. The grouping of close eigenvalues done in parallel
by all processors occupies less than 5% of computation time for all matrix orders. The
time needed for starting the pipeline of communication for algorithm MGS represents an
additional loss of efficiency amounting to less than 2 7 of the total time for all orders of
matrix [1,2,1]. Thus, at order 32, about 42% of the total time is spent in communication
and non-parallel arithmetic. This slowing of the parallel execution time completely ac-
counts for the the observed efficiency of 58%. Similarly, the 10% of the total time spent in
overhead for order 1024 approximates the observed lowering of the speedup curve below
optimal.

Figure 8 shows the average fraction of the total time spent in computing, exchanging,
and grouping eigenvalues, in determining eigenvectors, and in orthogonalizing eigenvectors
corresponding to closely spaced eigenvalues for several orders of matrix [1,2,1]. Finding
and distributing the eigenvalues to all processors occupies more than 80% of the total time,
while computing the eigenvectors occupies most of the remaining time. The low contri-
bution of the orthogonalization step confirms the effectiveness of the cyclic distribution
approach to and the use of a large number of processors for the modified Gram-Schmidt
procedure. Modified Gram-Schmidt occupies 2.6w of the total time for order 500 and
10.2% of the total for order 1000 for a similar algorithm executed on an Alliant FX/8 [23].
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Figure 7: Bisection on an iPSC/dSM: Communication
Overhead as a Fraction of the Total Time versus Matrix
Order.

As was true for the speedup and communication curves, data points for matrix orders
that are multiples of 32 lie on a smooth curve, and points for other orders do not. The
increase in eigenvalue computation time for the deviant points corresponds to the increase
in non-arithmetic time recorded in Figure 7. The increase is offset by equivalent decreases
in fractions of eigenvector computation time and orthogonalization.

While the exact time distribution among computing tasks is problem dependent, an-
alytic examination of a simple model problem can shed light on the expected arithmetic
requirements of the bisection method. Consider the symmetric, tridiagonal matrix TmodeIl

of order N = kp having eigenvalues 0, , 1  Suppose that its N Gerschgorin
disks overlap to form a continuous interval from 0 to a. In this way, the spectrum of
Tmodel approximates that of [1,2,1] which has N eigenvalues initially confined within an p

interval of length 4 for all values of N.
During the initial bisection of Algorithm B2, each processor finds an interval of length

a containing k eigenvalues. This step takes takes 1 > log 2 p iterations for a total of 1 + 1p
Sturm sequence evaluations. In subsequent steps, each processor extracts its k eigenvalues.
Finding its largest eigenvalue first, each processor reduces an interval of width 2 to one

of width b in 11 _> log 2 ' bisections. After this computation, the portion of the interval

following the first eigenvalue computed is discarded, leaving a new search interval of lengthCk 01

_ . The second eigenvalue is then extracted in 12 log, j bisections. In

the ith eigenvalue is found in an interval of width - (i - 1) in 1i >_ 10g 2
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bisections, a process requiring 1i + 1 Sturm sequence evaluations. If the time to complete
one Sturm sequence evaluation is 2Nw, the total time for the eigenvalue computation is

TB 11) + '-,- 2N wTB> 1092

. ~lo~ p + l 4klo2 - + k2N.
[102 + +k 192ak ] 2N..N6 I

The eigenvectors are computed using inverse iteration. For a tridiagonal matrix, each
iteration requires time of about 5Nw. Assuming that convergence is achieved in an average
of two iterations, computing k eigenvectors takes time T! = lONk.,. The spacing of the
eigenvalues is assumed wide enough that additional orthogonalization of eigenvectors is
not required.

The attainable tolerance 6 is related to both machine precision and the largest eigen-
value magnitude [32]. For the model problem in double precision, 6 : 10- 15a ; 2- 5 °a.

Thus, for the model problem with orders 32 through 1024 on a 5-cube, T decreases from
12 to about 11. This ratio of pure arithmetic times indicates that the eigenvalue com-
putation dominates the total arithmetic time for the model problem. The eigenvalues of
matrix [1,2,1] are more closely spaced than those of Tmcd ! and so require fewer bisections
to extract. The eigenvalue computation for [1,2,]1 occupies about four times the time of its
eigenvector computation. (As indicated by Figure 7, non-arithmetic operations contribute
minimally to the experimental result.) In addition, the predicted reduction in eigenvalue
computation time with respect to eigenvector time for increasing matrix order of Tmodel

is also reflected in Figure 8. For [1,2,1], D- falls from 7.1 at order 32 to 4.3 at order 1024.
The model problem further follows the experimental results by having a communica-

tion complexity significantly smaller than its arithmetic complexity and decreasing with
matrix order. A single alternate direction exchange of - eigenvalues per processor com-
prises the total communication requirement of Algorithm B2. Under the assumption that
,3 ; 10o and r z ' , the communication time is given by

I,,

z 2 (10 log 2 p -t- 1 N) .125p

For the model problem on a 5-cube, the ratio of communication time to computation time

Bfalls from .02 at order 32 to 3 50- at 1024. That the fraction of communication
time shown for [1,2,1] in Figure 7 is greater than the predicted value for Tnodel is again
due to the larger predicted time for eigenvalue computation for the latter. As shown in
Figure 8, orthogonalization does not greatly alter the run time for matrix [1,2,1,.

5. Multisection and Inverse Iteration

5.1. Sequential Algorithm
Bisection involves repeated halving of a search interval. A generalization of bisection

known as multisection is the division of an interval into p > 2 equal sized pieces. Through
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Figure 8: Bisection on a 5-cube: Fraction of Total

S.

Time Spent in Eigenvalue Computation (B3). Eigenvec-
tor Computation (1), and Orthogonalization (0) versus
Matrix Order.

+--

Sturm sequence evaluation at the endpoints of thc: sections, p eigenvalue counts are
obtained. Sections found to contain more than one eigenvalue are themselves multisected
in order to locate individual eigenvalues or clusters of eigenvalues within disjoint sections.

As in bisection, subintervals found to hold no eigenvalue! are discarded.
In practice, a pairing of multisection and bisection provides an effective mechanism

for eigenvalue determination [23'. Given an initial search interval, multisection is used
to separate that interval into sections containing either one eigenvalue or a cluster of
eigenvalues. When a section is found to contain only one eigenvalue, multisectioning
is discontinued regardless of interval width. In the terminology of [23], an eigenvalue
confined alone in this way has been isolated. Single eigenvalues determined to within a
given tolerance 6 have been extracted. Eigenvalues grouped within an interval of width less
than 6 are not isolated individually but rather are considered to form an extracted cluster.

As shown in [23], single eigenvalues isolated by multisection should be further refined
not by multisection but rather by bisection. Because the interval is known to contain
only one eigenvalue, it is certain that more "empty space" can be discarded per Sturm se-
quence evaluation through bisection than through multisection. For an isolated eigenvalue,
bisection is optimal on a single processor.

Once all eigenvalues have been extracted, the computation of eigenvectors proceeds as

for bisection (see Algorithm B1). Clustered eigenvalues are perturbed to an appropriate

separation, and eigenvectors are computed for this altered set of eigenvalues. Eigenvectors
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corresponding to close eigenvalues are orthogonalized through the modified Gram-Schmidt
procedure. The unperturbed eigenvalues and orthogonalized eigenvectors are returned.

The procedure for finding all eigenvalues of a symmetric, tridiagonal matrix using
multisection and the corresponding eigenvectors with inverse iteration is summarized in
Algorithm Mi.

Algorithm MI: Steps in the Multisection-Inverse Iteration Procedure.
Step 0: Determination of initial search area. Compute all Gerschgorin disks to provide an
initial search area for all eigenvalues.
Step 1: Isolation of eigenvalues. Use multisection recursively to divide intervals until each
resulting subinterval holds either one eigenvalue or an extracted cluster of eigenvalues.
Step 2: Extraction of eigenvalues. Recursively use bisection to divide intervals containing
one eigenvalue until the eigenvalue has been approximated to a specified tolerance.
Step 3: Computation of eigenvectors. Perturb close eigenvalues as necessary for inverse
iteration. Compute all eigenvectors.
Step 4: Orthogonalization of eigenvectors. Orthogonalizc eigenvectors corresponding to
close eigenvalues.

5.2. Parallel Algorithm
In Algorithm B2, bisection of a search inturval is carried out by a single processor.

Parallel multisection provides a means of using all proces!.ors to find the eigenvalues in one
interval. Algorithm Ml constitutes the basis for a paralicti multi.,ection algorithm. Multi-
section for isolation of eigenvalues entails cooperative usc of all processors. Because each
processor only has access to its own memory, communicat ion of intermediate results is nec-
essary. Bisection, multisection for extraction, and irner-e itcrat ion operate independently
on single processors. Orthogonalization of eigenvectoi it pcrformicd by all processors hold-
ing eigenvectors corresponding to close eigenvalues. Dta.aiVl of the algorithm are largely
concerned with the best assignment of eigensolving tasks to the processors. Eigenvec-
tor determination proceeds as in Algorithm B2. Th(e approacles to load balancing taken
during eigenvalue computation are as follows.

1. Determination of Initial Search Area.

Given the diagonal and off-diagonal elements of the matrix, each processor determines
the initial search area by computing all Gerschgorin disks. As noted in Section 4.2,
parallelism of this step can be increased when communication costs are low.

2. Isolation of Eigenvalues.
dd

For a cube with p = 2 processors, an interval (conglomerate of Gerschgorin disks)
known to contain more than one eigenvalue is divided into p equal sized subintervals.
Processor i determines the number of eigenvalues located in the ith subinterval. All
processors then employ Algorithm ADE to exchange their eigenvalue counts. Using the
collected numbers of eigenvalues in the p intervals, each processor then discards empty
intervals and retains for extraction intervals containing a single, isolated eigenvalue.
Each processor places in a queue all intervals requiring further parallel multisectioning.
Parallel multisection must be discontinued when the resulting sections cannot be evenly
divided among the processors. In this stopping criterion, the parallel implementation
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differs from Algorithm Mi. In that case, clusters were extracted during the isolation
phase. On the hypercube, a cluster of eigenvalues is considered to be isolated when it
has been confined to an interval of width less than p6. The width of such an interval
is not necessarily less than 6 and is dependent on the cube dimension. The isolated
cluster has not yet been extracted, and the endpoints of its surrounding interval are

listed for extraction. Thus, every processor creates and maintains an identical queue
of remaining multisectioning tasks and a list of extraction tasks.

In lock step, the processors perform multisection on the interval currently at the head of
the queue. Processor i again checks section i. Multisectioning continues until al! single
eigenvalues are isolated (and the multisection queue is empty) or until the resulting
sections are too small to evenly partition among p processors. A balanced load is
achieved through equal computation and communication. The exchange of eigenvalue
counts at each iteration ensures that all space found to be empty is discarded.

3. Extraction of Eigenvalues.

The sets of interval endpoints generated during the isolation phase define two distinct
sets of extraction tasks. Sequential bisection is used to extract isolated single eigen-
values from intervals of arbitrary length. One sequential multisection into sections of
width 6 is used to extract each cluster from its interval of length less than p6. The
simple synchronization scheme of isolation is no longer applicable.

The shared memory approach to load balancing involves use of a queue of tasks held
in common memory: an idle processor removes from the queue and performs the first
available task. All processors are kept busy with tasks selected from the queue until
all tasks have been completed. By assigning one or more processors to queue man-
agement tasks, the queue-based dynamic task scheduling procedure could be carried
out on the distributed-memory hypercube. Removing the managing processors from
computing tasks and introducing the possibility of communication bottlenecks during

task assignments, however, reduces the total possible efficiency of the cube. For this
reason, a static task assignment is chosen.
The problem of scheduling such a set of nonidentical tasks to the processors so as to

minimize completion time is NP-complete '31". In an examination of standard weighted
scheduling algorithms, the Longest Job First (LJF) schedule is seen to provide a finish
time for -y jobs on p processors no greater than than 4 times the optimal in3 31
O(Ilog-y) operations [20,. This heuristic requires that the tasks be sorted according

to decreasing time value and then assigned, in turn. to the processors. The longest
available job is given to the processor having the lightest total workload.

As each processor in the hypercube has a copy of all interval endpoints, each makes
estimates of the time required to extract the eigenvalues. Extraction of an isolated
eigenvalue in an interval of width I by bisection requires ?1ogl09' iterations for a total

of [5og2T1 + 1 Sturm sequence evaluations, NIultisection of the same interval (when
I < p6) can be completed in a single iteration with subdivision into < p section:s. No

morethan I -1 sequence evaluations are pcrfornA. While 6, as defined in bection
5.1 is actually dependent on the values of thc irt.rval endpoints, rough estimates of
the times required to extract all eigenvalues from hient intervals can be based solely
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on the intervals' widths. Every extraction task is therefore assigned a time value of
[log2T] + 1 if it is a bisection and 1 + 1 if it is a multisection. The LJF heuristic
is efficiently implemented using a heap to record task assignments for all processors.
Use of this data structure dictates a sequential implementation; therefore, the sorting
and scheduling procedure is performed by every processor. After all eigenvalues and
clusters of eigenvalues have been extracted, an alternate direction exchange ensures
that all processors have all eigenvalues.

Recall that static allocation of tasks and synchronization of processors prevents the
predicted gains from deflation for Cuppen's method. Unless each processor receives a
selection of tasks requiring an equal amount of time, some processors will remain idle
while the more heavily loaded processors complete their tasks and begin communica-
tion. In this way, the static task scheduling followed by collection of data can reduce
speedup of the extraction process. For example, the weight assigned for multisection
tasks represents the worst case time for extracting eigenvalues. In fact, the eigenvalues
may be distributed within the input interval so that all can be extracted within the
first few sections. The remaining Sturm sequence evaluations need not be completed.
Only if all processors experience such savings, however, is an overall decrease in run-
time recorded. Accelerated bisection methods [5, 13 are similarly foiled. A uniform
distribution of work among processors results only when estimated time values are

accurate.

Once the eigenvalues have been computed, they are exchanged among all processors.
- The eigenvectors are the computed and orthogonalized following the steps of Algorithm B2.

Hence, multisection on the hypercube is performed according to the procedure summarized
as Algorithm M2.

" Algorithm M2: Solution of Eigenproblem of Order N = kp on a p-Processor
Hypercube.
Each processor has all diagonal and off-diagonal elements of the matrix. In parallel, all p
processors perform the following steps.
Step 0: Determination of initial search area. All processors compute all Gerschgorin disks
to provide an initial search area for all eigenvalues. All isolated disks are added to the

extraction list. The extreme boundaries of overlapping disks are queued for isolation.
Step 1: Isolation of eigenvalues. Each processor divides the first interval in the isolation
queue into p equal sized sections. Processor i determines the number of eigenvalues in

section i. All p processors use Algorithm ADE to exchange their eigenvalue counts. Each
processor discards any of the p sections found to contain no eigenvalues, adds sections
containing one eigenvalue to the extraction list, and appends all sections containing more
than one eigenvalue to the end of the isolation queue. An interval containing more than
one eigenvalue in a width less than p6 is added to the extraction list. Step 1 is repeated
until the isolation queue is empty.
Step 2: Extraction of eigenvalues. Each processor determines its share of eigenvalues from
the extraction list according to a LJF scheduling heuristic. Each processor uses bisection

*: to extract single eigenvalues and multisection to extract clusters in its share of intervals.

Step 3: Exchange of eigenvalues. All processors exchange all computed eigenvalues using

Algorithm ADE.
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Step 4: Perturbation of eigenvalues. Each processor perturbs close eigenvalues as necessary
for inverse iteration.
Step 5: Computation of eigenvectors. Processor i computes eigenvectors i, i+p,.. . , i+Vp <
N with inverse iteration.
Step 6: Orthogonalization of eigenvectors. Each processor orthogonalizes those of its eigen-
vectors corresponding to close eigenvalues. The processors employ Algorithm MGS.

5.3. Analytical and Experimental Results
As for bisection, the speedup for multisection is calculated as the time for EISPACK's

BISECT and TINVIT combination run on a single processor divided by the longest node
time for the hypercube multisection and inverse iteration procedures executed on an
iPSC/d5M. The results are given in Figure 9. Data points for matrix 11,2,1] are marked
with circles; points for random matrices are plotted as squares.

iA:

Figure 19: Multisection on a 5-cube: Speedup on the
iPSC for 11,2,1' (circles) and random matrices (squares)
versus Matrix Order.

The speedup for matrix 11,2,1 increases monotonically from 8.5 at order 64 to 19.4
at order 1024. The slight increase for speedup at 32 over that at order 64 is an artifact
of having a problem size equal to the number of processors. Note that between orders 64

and 1024, the efficiency ranges between 26 ' and 60'( as compared to 74%-897o for the
same set of problems solved by bisection (see Figure 6). This relative lowering in efficiency
for multisection is due, in part, to increased overhead. As shown in Figure 10, average
communication and idle time account for over 4V0% of the total time for multisection at
low orders and for 5(7 of the total time at Order 1024. As shown in Figure 7, overhead
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for the same range of problems solved by bisection varies from 20% to 2% of the total

time. Non-parallel arithmetic in the multisection procedure occurs in the grouping of the
eigenvalues by all processors, in the pipeline startup time for orthogonalization, and in the
load balancing routines. These three processes contribute a combined total of less than
12% of the computation time for all matrix orders. The remaining loss of speedup can be
attributed to inefficiency in the actual isolation and extraction processes. The presence of
additional arithmetic in the determination of eigenvalues is evident in a division of total
time according to computational tasks.

7J.

I,

Figure 10: Multisection on an iPSC 'd5.I: Communi-
cation Overhead as a Fraction of the Total Time versus
Matrix Order.

@

The average fractions of the total time spent in computation and grouping of eigen-
values, in computation of eigenvectors, and in orthogonalization of eigenvectors are shown
in Figure 11. The fraction of time spent in eigenvalue computation is further partitioned
into the fractions of the total time spent in isolating and extracting the eigenvalues. The
complete eigenvalue computation is seen to take more than 90% of the total time for all.-
matrix orders. The contribution of the eigenvector computation to the total grows from
7.5%' to 11.6 between orders 32 and 1024, while the modified Gram-Schmidt procedure
occupies up to 1.4% of the total. Note that the steps of Algorithms M2 and B2 pertaining
to eigenvector computation and orthogonalization are identical and therefore take equal
time. That these steps represent about 18.6% and 1.9%_C of the total time for bisection but
only 11.6% and 1.4- of the time for multisection indicates that the eigenvalue computation
takes not only a greater percentage of the total time for multisection but also a greater
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Figure 11: Multisection on a 5-cube: Fraction of Total
Time Spent in Eigenvalue Computation (NI), Eigenvec-

tor Computation (I), and Orthogonalization (0) versus
Matrix Order. The fractions of time spent in isolation
(i) and extraction (e) sum to the fraction in eigenvalue

computation.

elapsed time. Some sample times for bisection and multisection given in Section 6 confirm
that bisection is in fact the faster.

A return to the model problem of Section 4.3 helps to explain the the curves in Figure

11. Recall that Tmodel of order N = kp has the N eigenvalues 0, , ... , N and an
initial Gerschgorin interval reaching from 0 to a. Algorithm N12 begins by isolating the

eigenvalues with multisection. The initial interval of length a is divided into p sections
of length and containing k eigenvalues. Every one of these sections is then multisected

p
in turn to create a total of p2 sections each containing k eigenvalues. In general, the

ith multisection step produces pi intervals holding N eigenvalues apiece. For the model

problem, multisectioning stops when the resulting sections are no wider than ., that is,

after j steps, where 2L_ . At each multisection step, a processor must evaluate

Sturm sequences for both endpoints of every interval examined. The total number of Sturm
sequence evaluations for the isolation phase is then

Si l = 2 p? > 2 -
L,~ -2P

p-1
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Each Sturm sequence evaluation takes time 2Naj so that

Tiso0 > 4 N - 1 Ap-1 i

Isolation leaves in every processor a total of p] < _ intervals of length each- p
containing one eigenvalue. Extracting a single eigenvalue to tolerance 6 from one of the
intervals requires I bisections, where 21 > 0_. The total number of Sturm sequence

evaluations performed by one processor is then

Sextr = k(1+ 1) > k log2 -

The total time for extraction is

Teztr >_ k (log 2  -'- 1)

For all orders, the inital Gerschgorin interval of matrix i1.2,1! covers the real axis
from 0 to 4. Thus, Figure 11 shows the variation in time distributions as an increasing
number of eigenvalues are determined from an interval of constant length. This can be
approximated analytically using the model problem with increasing N. For Tmodd, N
eigenvalues are initially confined within an interval of width a.

As for Algorithm B2, time T1 = 10Vk- is needed for inverse iteration for the model
problem. The inter-eigenvalue spacing ' is assumed large enough that none of the eigen-
vectors need be orthogonalized. The time for eigenvalue computation compared to the
time for eigenvector computation for the double precision model problem is

T - --I T - klog2 @$. - k)

falls from about 10 at matrix order 32 to about 9 at order 102-. These values are in close

agreement with those obtained experimentally for matrix 11,2,1'. The experimental results

also exhibit the predicted decrease in the ratio of eigc-iv/ue and eigenvector computation
times for increasing matrix order.

For matrix orderl below 200 in Figure 11, extraction and isolation take approximately
equal portions of the total time. As the order increases, extraction dominates. For the
model problem, the difference in the numbers of Sturm sequence evaluations for isolation

and extraction is

D =Setr - Siso--klog 2  -1 2k 0 1

D is positive whenever a6 < 1, so that more Sturm sequence evaluations are performed

in extracting the eigenvalues of Tmodel than in isolating them. The derivative of D with
respect to k is .

dD a p a
- = log 2 \6 + - log C - 2--- ; k log.
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This quantity is greater than zero when > 6 and decreases in magnitude with increasing
N. Hence, D for the model problem has the same qualitative behavior as recorded for
matrix [1,2,11.

While the model problem helps to explain some of the experimental results for [1,2,1],
it does not account for the speedups observed for bisection and multisection. For matrix
[1,2,1], the speedup of multisection is less than that of bisection for all matrix orders. For
Tmodel, TB > TM for all matrix orders, meaning that the predicted speedup is in fact

greater for multisection than for bisection. This discrepancy stems from the differences in
the spectra of the two matrices. While the eigenvalues of Tmodel are uniformly spaced, the
eigenvalues of the Toeplitz matrix [1,2,1] of order N are given by Aj = 2(1 + cos t 7r-) for

i - 1,2,...,N [21] and so are more tightly spaced at the extremes of the spectrum than
near the center. .

For a fixed number of eigenvalues, the time spent in isolation is greater for close
eigenvalues than for well-separated. Furthermore, the time to extract eigenvalues from
the narrow intervals arising from isolating close eigenvalues is less than for wider ones.
An extreme example shows that the relative numbers of Sturm sequence evaluations for
multisection and bisection are strongly dependent not only on the number of eigenvalues

in the initial search area but also on their distribution within that interval. Let T' del
be a matrix of order N having N = kp eigenvalues of multiplicity 2 uniformly distributed .5

at spacing 2 in the interval [0, a). Consider the case N = 2p. The number of Sturm
sequence evaluations needed to determine all eigenvalues to a tolerance b via Algorithm %.
B2 on a p-processor hypercube is

S' = log 2 - -2.

The number needed to find the eigenvalues using Algorithm N12 is ,.%
5%

Hence, S' 1 >> S', and the speedup of bisection is much greater than that of multisection. .

That the speedup worsens as the role of isolation grows is evident in an examination

of Figure 11. For matrix order 1024, where T is about .27, the speedup for multisection

is 67% that of bisection. For matrix order 32, is 1.3 and the speedup of multisection

is only 35% that of bisection. For the random matrices tested, the effects are pronounced
at order 1024 where 4 is .46 and the ratio of speedups is .54. The relative times and

speedups for the random matrix at order 64 are the same as for [1,2,11. For intermediate
orders of [1,2,1] and random matrices, increased isolation also leads to decreased speedup.

Matrices [1,2,1], Tmodel, and T' 0 del all indicate the trends of multisection as eigen-

values become increasingly clustered. Attempts to generalize this information by plotting
time distribution as functions of the size or number of eigenvalue clusters for a variety
of matrices of a single order were unsuccessful. Other problem dependencies mask any
structure in the curves.

6. Comparison and Conclusion
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Method Order Time Residual Orthogonality
(seconds) I'TX - AXiL IXTx -III

Cuppen's 32 1.3 9.2e- 16 7.0e-16
Bisection 0.6 9.4e-15 3.3e-14

Multisection 1.2 7.4e-15 3.2e-14

Cuppen's 100 10.5 1.9e-15 1.9e-15
Bisection 4.5 3.3e- 14 3.1e-14

Multisection 9.7 1.3e-14 2.8e-14

Cuppen's 512 611.8 8.4e-15 1.8e-14
Bisection 88.7 8.8e-13 6.0e-13

Multisection 141.5 6.1e-13 3.9e- 13

Table 2: Method Comparison for Matrix [1,2,1] on a
5-Cube.

Method Order Time Residual Orthogonality
(seconds) TX - XI: IIXTX - III

Cuppen's 32 1.1 2.7e-15 2.7e-15
Bisection 0.5 2.9e-15 3.0e-14

Multisection 1.6 5.9e-15 1.2e-13

Cuppen's 100 10.4 i 7.4e-15 8.9e-15
Bisection 4.6 3.6e-14 6.5e-14

Multisection 10.7 4.7e- 14 7.le-141 1.3e-14 :

Cuppen's 512 623.9 7.9e-15 131
Bisection 88.3 5.3e-13 2.1e-13

Multisection 160.3 i 6.5e-13 7.1e-12

Table 3: Method Comparison for Random Matrices on
a 5-Cube.

Tables 2 and 3 show the total time, the residual. and the deviation from orthogonality
for several orders of matrix [1,2,1] and of random matrices, respectively, for all three
eigensolvers. Bisection is seen to be the fastest technique for finding all the eigenvalues
and eigenvectors at all orders. Although multisection can be shown analytically to have
a lower time complexity than bisection fPlr at least one contrived problem, in practice,
arithmetic inefficiency in the isolation phase of multispction causes bisection to complete
in less time. Multisection and Cuppen's method are of comparable speed at low orders;
multisection is the more rapid of that pair for large orders.

As can be seen from the given measures of residual and orthogonality, introduction of
communication for the hypercube does not alter the numerical properties of the methods.
Cuppen's method gives the most accurate results, consistently achieving lower residual
and orthogonality norms than both bisection and multisection for all matrices tested.

Although not discussed in this paper, the sectioning algorithms are readily modified to
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permit computation of a subset of eigenvalues and eigenvectors. Cuppen's method can only

be recommended when the entire eigensystem is needed. In that event, Cuppen's method,
which requires sufficient storage for parallel matrix multiplication by Algorithm RMM, can
be used for problems only as large as order 2080 on the iPSC/d5M. Bisection and mul-
tisection, which require no matrix multiplication, can both be used for problems through
order 3520.

In preceding sections, speedup over the appropriate sequential method is shown to be
problem dependent for all three schemes. Because speedup curves for given test matri-
ces level off with increasing order, maximal speedup cannot be expected when bisection
or multisection is applied to problems of large order, neither can it be expected when
Cuppen's method encounters significant deflation in some but not all subproblems. In all
three methods, efficient task scheduling is crucial for good performance. The extensive
communication requirements of a dynamic scheduler for the hypercube and the potential
loss of computing power from processors dedicated to scheduling tasks advise the use of
static scheduling schemes. The resulting loss of parallelism at the root finding level for
Cuppen's method and the simultaneous execution of an explicit scheduler on all processors
for multisection, however, prevent full speedup.

The efficiency of solving the syrtm'etric, tridiagonal eigenproblem on the local-memory
hypercube as opposed to a shared-memory multiprocessor is dependent on the method
used. In [23], timings are presented for SESUPD (a shared-memory implementation of
Cuppen's method [12]), BISECT with TINVIT, and TREPS1 (multisection using bisec-
tion during the extraction phase) on eight processors of an Alliant FX/8. In particular,
speedups of these algorithms with respect to the time to find all eigenvalues and eigen-
vectors of matrix [-1,2,-i] of order 500 via EISPACK's TQL2 on one processor are given.
Defining a measure of the efficiency of algorithm i as compared to TQL2 by

time for TQL2 on 1 processor

p* (time for algorithm i on p processors)'

the shared-memory implementations have values ESESUPD = 3.4, EBISECT = 0.5,
and ETREPS1 = 4.0. In contrast, the equivalent algorithms for the 5-cube have val-
ues EC2 = 1.4, EB2 = 10.0, and EM2 = 6.2 for matrix [1,2,1] of order 512. These
relative efficiencies are greater than unity because TQL2 is slower on one processor than
either SESUPD or BISECT. The greatest values of Ei occur for the algorithms which are
most effectively implemented in parallel. The independent tasks of the bisection and mul-

tisection algorithms are seen to be especially adaptable to a local-memory architecture.
Cuppen's method, on the other hand, is more efficient on the shared-memory machine,

where a dynamic scheduler is supplied.
The hypercube implementations of all three methods are promising for large scale

computation. Communication time represents a small portion of the total time for bi-
section and multisection as well as for Cuppen's method. The absence of communication
bottlenecks indicates that matrix order is not an obstacle to performance on the hypercube.
The large distributed memory is available without contention problems.
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