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Abstract. The usual way of computing partial correlations is based on the formation of the
covariance matrix, that amounts to squaring the data matrix, thus inviting a potential loss of
numerical accuracy. This paper recommends the determination of partial correlations from the
data matrix: the QR decomposition of the data matrix is computed and plane rotations are applied
to the resulting upper triangular matrix, which is the Cholesky factor of the covariance matrix.
W-show that if rotations are applied to the triangular matrix so as to leave the number of its
zero entries invariant, the sines of the rotation angles are partial correlations. Different ways of
organizing the computations are presented for extracting any set of partial correlations.
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1. Introduction

Classical texts [1] on multivariate statistics suggest the computation of partial correlations by

first forming the empirical covariance matrix -L(A - A)T(A - A), where A is the m x n data

matrix, whose ith column is associated with random variable A., and A = -eeTA is the empirical

mean matrix (e is the m x 1 vector of ones). Substantial loss of numerical accuracy is incurred

by squaring the data matrix thus resulting in errors in the computed partial correlations (one can

easily construct examples where a full-rank matrix A- A leads to a numerically indefinite covariance

matrix). This loss of accuracy is inherent in the use of the covariance matrix and independent of

the formulas and recursions employed to compute the partial correlations.

These shortcomings may be avoided with a method working directly on the data matrix and,

in addition, employing orthogonal transformations. Our approach consists of two steps: after the

QR decomposition of the matrix A - A the resulting upper triangular matrix U is transformed to

lower triangular form L via plane rotations. The rotations are executed in a specific order which

exploits the zero structure of the upper triangular matrix, and the values of their sines constitute

the partial correlations between variables A. and A,, for i < j, holding variables A+, ... Aj_

fixed.

By effecting the rotations on only a submatrix of U, the partial correlations between A, and

A, where variables A, ... A.-, and A.+1 ... Ai_. are held fixed are efficiently computed, without

having to reorder the columns of either the data matrix A or the upper triangular matrix U. In

general, we will present ways of organizing the computations so as to determine any set of partial

correlations while keeping arbitrary collections of variables fixed.

2. Partial Correlation Coefficients

The column vector of m observed values aki, 1 < k < m, of a real random variable A, is

denoted by
ai

a2,[1
ami

The centered, or zero-mean, data vector is a, = ai - di, where the barred quantity denotes the

mean vector 4'

1eeT a), -
m

and e is the column vector of m ones.

I'
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The empirical correlation coefficient pii of two random variables A, and Ai is defined as the
cosine of the angle Pi" between the centered data vectors oi and aj:

cos -i = - ___ .

VC , 3

The correlation between two variables A, and Ai can arise, in part, from the fact that both

A. and A, show a correlation with a third variable Ak. The 'partial correlation between A, and Af

given Ak' then represents the correlation between A, and A, after the dependence on Ak has been

removed. Formally, the empirical partial correlation coefficient pk between variables A. and A"

given (conditioned with respect to) variable Ak is defined to be the cosine of the angle P. between

ci and where

-~ ~ (ck)cck'ck, Ot Ea - (CITak)(4ck) 1 Qk,

are the respective projections of cei and c* onto the subspace orthogonal to the vector Cq (note

that superscripts here denote conditioning rather than powers). Substituting this into the formula

for the cosine
kk T

yields ar a T cT)(a T1- T a

aa- (&!ak)(4C'k) - (a,) Tfcac (CITC'k) (4Ck k)l (a a)

Note that all quantities in the expression for pk are of the form cjor.. This means that in the

general case of n variables A. with m observed data values each, the partial correlations p -can be

computed from the elements of the n x n empirical covariance matrix

B =(bj)=-(- )T(A -A),

where A - A is the centered m x n data matrix, and the data matrix A and its mean matrix A are

defined by

A= [a ... an $A= A e(eTA)

(the empirical covariance matrix is usually defined as (m - 1)- 1 B; since partial correlations are

normalized quantities, independent of the scaling by (M- 1)-i, we shall use here the more convenient

unscaled expression). Denoting by

.- bTkb-bk, = -

2
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the elements of the Schur complement in B with respect to bkk [2, 3] one has

P.

In general, the conditioning may occur with respect to more than cne variable, for instance,

with respect to Al, Ak and Am or with respect to a sequence Ak... Ak+i. In that case the involved

vectors ao and aj are projected onto a subspace orthogonal to the subspace spanned by a,, a,

and c.. or by ak ... a l, respectively. Denoting by biJtm and bA'|k| the elements of the respective

Schur complements of [bkk bkl bkm. bkk .. bkk+g

bik bil bi. andI

bmk: b b.. I -bk+i,c ... bk+1,k+L 1
in B, the partial correlation between A, and A, given Ak, A , and Am isL b, bnub,,m _~ L b+, .. bm,+

and the partial correlation between A- and Aj given Ak, Ak+, Ak+1 is

p 3  = 
Sk+ 

= 1

Our notation automatically incorporates the so-called quotient property for Schur complements
[2], which essentially states that the effect of conditioning with respect to variables belonging to a

set S can be accomplished by first conditioning with respect to variables that belong to a subset of

S, of S followed by conditioning with respect to the remaining variables in S - S1, the complement

of S, in S. The quotient property for Schur complements yields readily recursive formulas for the
computation of Pk!'l' or p,, + and these formulas are the ones generally used to compute the partial

correlation coefficients [1, 3]. An inconvenience with such formulas, that rely on the computation

of Schur complements in the covariance matrix, is that construction of the covariance matrix itself
implies squaring up the data, A - A, and thus a doubling of the dynamic range and potential loss

of accuracy as the subsequent example shows.
.3.

Example. Suppose that the following zero-mean data matrix is given,

A- A [:ii]2 'E

A--

3 ,".

,' ", " .. .. . .'"2.'" ." ." '-.-" o..' ",' "..'_" . ." - .i" '. '.'°. ' " "-.-.','2':- ".--'.' •:€-'-' , 
'
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where c is non-zero, and that the partial correlation

2Pbs

is to be determined. The corresponding covariance matrix is

S1+C2 -1+C2 2c

L 2c 0 1 + C2 J

and in exact arithmetic, one has

b 2 1 +C 2)2 +C

b 3 = 2e, b 1 + C 3 +1+£2 'b~ 1(

so that

Ps = sign() -{1 0
However, in finite precision floating point arithmetic and with c chosen to be sufficiently small (e.g.

cis the largest number so that the computed fl(1 ± 4c2) = 1), the computed quantities turn out to

be I - 1 2e

fl(B) = -1 1 0
2c 0 1

and

b13 =2c, b 1 =0, b2 3 = 1

so that pis is not a finite number.

The next section introduces a numerical method that achieves much higher accuracy by working

directly on the data matrix A - A.

In order to avoid squaring the data matrix one may try to work with the Cholesky factor of B.

Indeed the n x n upper triangular Cholesky factor U can be obtained without squaring from the

QR factorization of the scaled centered data matrix since, if A - A is decomposed into the product

QU where Q has orthogonal columns,

B = (A - A)T(A - A) = (A - A)TQQT(A - A) = uTu.

It is known that the elements of the Cholesky factor can be represented in terms of elements

of Schur complements with respect to the leading principal submatrices of B:

*4
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Lemmna 2.1. The non-zero elements of the Cholesky factor U of B are of the form
(b:i- 1)- 1/2/l~-

Uq = wb 0 - , > -

Proof. Let U be an upper triangular matrix with elements fj -- (b- 1 /2  , > i. The

(i,j)th element, j > i, of the symmetric matrix UrTU is

fi.kifiki = E (b~- )-1b~-('"-1~ - =Zbl:k-1cbl:k- ) lbl:k-1

k=l k=1 k=1

i iZ" blk-l(bl Vl-,3-I_ i lklk~-l-k~-bii - (bii - bil(bil)-lbli) + E , kb1k-)'1;' be-j- - b!. + E b,, :wk, , A-1)-b' -
'3ik kk ' kj - j '3k kk kk=2 k=2

i S

b,, - (b!, - bj 2(b 2'21:) : 12 + Zblk-I l:k-1)-,bll-I 1
k=3 k=3

= bii -(b! :'- 1- bl:- (bil" 1)-10'-1 bi j b

where the telescoping of the sum is achieved by making use of the quotient property of Schur
complements. Hence &T& - B, and the uniqueness of the Cholesky factor implies U = U.

The partial correlation between A. and Aj given the intermediate variables A,, I At-, can

be expressed as
p1:- 1  (bl-I )- 1 / 2 1:;-1 (b;l)- 1 / 2  

- )-1/2

Thus it seems that the partial correlations may be computed as simple functions of the elements

of the Cholesky factor. Yet unfortunately the desired quantity (b:- 1)- 1 /2 differs from -'

(b 1'- )-1/2 . Moreover, it is hard to see how to determine the quantities (bl 1 h/ 2 without the

use of squaring operations.

The next section introduces a numerical method that gets around this difficulty by applying

plane rotations to the columns of the Cholesky factor.

3. New Algorithm

From the previous section it is clear that one must think of more subtle means to employ the

Cholesky factor: our method determines partial correlations as cosines evaluated through inner

products but instead as sines of rotations that zero out components of certain column vectors. The

key idea for the new algorithm is based on the fact that the data vectors are initially represented

by a triangular matrix, the Cholesky factor; and that the partial correlations may be computed by

<;" """---' " ""5
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Figure 1: Angles in the 2 × 2 Example.

applying plane rotations in a particular order to the columns of the Cholesky factor. To see that

consider a simple 2 × 2 example.

Let

be the upper triangular factor (with positive diagonal elements) in the QR decomposition of a
m x 2 matrix A - A. The (partial) correlation P12 between A1 and A2 is the cosine of the angle 12
between the two columns of U. Because of the triangular structure of U its first column, [ Ull 0 IT,
is a positive multiple of the first canonical vector ex = [ 1 0 ]T while its second column is a linear
combination of el and the second canonical vector el -- [0 1 ]T*

The columns of the matrix U may be rotated in such a way that the second column becomes

a positive multiple of e2 thereby turning the first into a linear combination of e1 and e2:

r 10

Suppose the angle between e1 and e2, denoted by/L(e,e 2), is +ir/2 then the angle between the two ,
columns can be defined as 912 -(ul,u2). The fact that the first column is a positive multiple of 'el implies L(ei, u2) = 912. To turn the second column into a positive multiple of e2 requires that

It

all columns of U be rotated by the angle .-

L(u2, e2) = L(ei,e 2) - L(e,,u,) = /2 - 12, "

see Figure 1. Hence the angle between the two columns of U is preserved under the rotation, and6 Ii
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ItIN



the angle of such a rotation

E) [c -8]

completes 012 to a right angle: c cos (,x/2 - 012) and

s - sin (7r/2 - 012) = cos 012 = P12.

Consequently, the desired (partial) correlation is the sine of the rotation E.
The above suggests that, in general, certain partial correlations may be computed from the

plane rotations that transform the upper Cholesky factor to the lower Cholesky factor. The tri-

angular zero-structure of U makes it possible to rotate columns in a manner illustrated above and

determine a partial correlation from the sine of a rotation.

'brief look at the 3 x 3 case
U1 1 U 12 UlS 1

U U2 2 U23

0 0 U33 J

illustrates the above.

At first, because the second column has only one more non-zero element than the first, the f"

'

columns of U can be rotated in the (el, e2)-plane so as to make the second column co-linear with

e2,

C12 -812 0 U1 1 U1 2  U~13 0 *iF ii.1
812 C12 0 0 U2 2 U23 *-- * 1]

0 0 10 0 U3 0 0 U3
and P12 = 812. Here, 'co-linear' is used to mean 'a positive multiple of and * denotes terms that

are non-zero in general.

Next, to achieve conditioning of A1 and A3 with respect to A 2 , the first and third columns

are projected onto the subspace orthogonal to the second column. Due to the triangular structure

of U and the effect of the previous rotation the second column is co-linear to e2, and the subspace

orthogonal to it is just the plane (el, e3). The partial correlation P1s can then be determined from

that rotation that makes co-linear with e3 the projection of the third column onto (ei,es). Since "

this rotation takes place in a subspace orthogonal to the second column it does not affect the second

column, and the zero element introduced by the previous rotation is preserved:

Cs 0 031 0 *1 l 0-

1130 C13 JL0 0 ~ U33 0 i
7



and p23 =13. Note that another non-zero element is introduced in the first column.

Again, because of the triangular structure of U and the effect of the second rotation the zero-

structure of the second and third columns is the same save for one element, the second column

is co-linear with e2 while the third is a linear combination of e2 and e3 . Thus the columns of

the matrix can be rotated to yield P23 by applying a rotation that makes the whole third column

co-linear with e3, and turns the second column into a linear combination of e2 and es.10 0 °1[liiOO°  11 1001
0 C23 -823 * * = 121 122 01

-0 823 C23 J 0 L131 132 133

and P23 = 823.

Theorem 3.1. If the elements in the Cholesky factor U of the covariance matrix B are eliminated

in the order
* 1 2 ... n-1

• n 2n - 3

Sn(n- 1)/2

L*

that is, proceeding row after row from top to bottom, and within each row from left to right, then the

sine of the rotation that eliminates element (i,j), j > i, is equal to the partial correlation p'+1 '1 .

Proof. The proof proceeds by induction.

The indu-tion basis comprises the computation of partial correlations between A, and all other

variables. To start with, the matrix U is of the form

• . -, * * * ... ,*

* * * ... *

* * ... *

* ... *

From the 2 x 2 case one can see that elimination of element (1,2) in the upper triangular matrix U

by a rotation in plane (e1 ,e2) provides P12. The second column of the resulting matrix becomes

co-linear to e 2 while the first column becomes a linear combination of el and e2. Hence, there is a

8



new non-zero element in the first column and a zero has been introduced in the first row:

*, * * . *

* * * * "" * '

* .* * a

L *

2*

The 3 x 3 case showed that the correlation p33 between A1 and A3 given A2 could be computed by

rotating the first and third column and thereby introducing a non-zero element in position (3, 1)

and a zero in position (1,3): S,

* * *

*• * *. *S'S

* Continuing this argument, the partial correlation pl' 1 between Al and A,, given A 2 , .. ,A,.. 1 is

computed by peforming a rotation in plane (ei,e,) thereby creating a zero element in position (1,j).

Thus, once all correlations involving A, have been computed the first column of the matrix has

totally filled in, and the first row is zero except for the first element:

*j

* * * * *,

** .o. *s

Assume that the partial correlations pjIl .h ealead been computed for k A s ~
4

** S * •5I~~ * .... *.~:



k < 1 < j. The corresponding matrix is of the form

Lo***

*Vii Vi,,

* Vi+l,i i+1,i+1 .. vi+l,j- vi+j *

* _ vI,'7j1,ij v- 1j *

* VjVj *

* Uo

where L0 is lower triangular and U0 is upper triangular.

By induction hypothesis the entire lower triangular part of the leading i - I columns is non-

zero, and the ith column has j - 2 non-zeros in its lower triangular part due to the computation of
i+1:$'-2 + :- '

Pii+l, ... • P- In order to compute the next correlation PO" the corresponding columns

vi..., v3 of the current matrix must be projected onto a subspace orthogonal to the subspace

spanned by A.+,, ... , Aj._1. Due to the initial 'nesting' of the column subspaces (i.e. the original

upper triangular structure of U) the trailing components j, ... , n of vi+1 , ..., vi-p are zero; and

due to the rotations performed in order to retrieve previous partial correlations (i.e. the appearing

lower triangular structure of L) the leading components I, ... , i of vi+, ... , vi. 1 are zero.

Hence the subspace spanned by A,+,, ... , Aj_1 is the space spanned by ei+, ... , ep-1, and the

space orthogonal to it is the space spanned by el, ... , ei, ej, ... , en. Similarly, components

1, ... , -1,j, ... , nof vi andcomponents 1, ... , i- 1, j+1, ... , nof vi arezero; and the

projections of vi and v, onto el, .. , ei, ej, ... , en are respectively co-linear to ei and a linear

combination of e, and ej. Thus, p'+1:j - I is obtained by applying the rotation in plane (ei, e,) that

makes the projection of vi co-linear with ei; p';':t - l is the sine of that rotation. After the rotation

the matrix has the form

L0
* vii *

* vi+li Vi+1,i+ 1  ... 'i+i,- "  * '

* V i v.I_ _j1 v _1j *"

* U

10
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Remark. If the matrix L is not needed about half of the arithmetic operations can be saved by

applying the rotations merely to the trailing principal submatrix of interest.

Returning to the example of the previous section it becomes clear that the new method can

avoid the loss of accuracy associated with the explicit formation of the covariance matrix.

Example. Performing a QR decomposition of the matrix A - A yields 4 x 3 matrix Q with

orthonormal columns and a 3 x 3 upper triangular factor

I 2-1+ C2  2c 1
U =0 2k1, sign(c)(1 - C2)J

0 0 0

in exact arithmetic and P

[1 -1 2E]

fl(U) = [ 21cl sign(c)

0 0

in finite precison arithmetic with the same choice of c as before. The first rotation with fi(812) = -1

and fl(Ci2) = 21e1 yields [21c1 0 sign(e)]
fl(U') -1 1 0

0 0 0

and the second rotation gives c21 = 0 and s3 = sign(c) so that f1(P 3 ) = sign(c) indicates a linear

dependence between the three columns of A - A as in the true computation.

4. Computation of Arbitrary Partial Correlations

Subject to a certain inital ordering of the random variables A,, ... , A, our algorithm computes

the partial correlations pi+:3- between A. and Ai given Ai+i, ..., A,_. by completely reducing

the upper triangular matrix U to a lower triangular matrix L.

Other partial correlations may be computed by performing only a partial reduction. For

instance, consider the following 6 x 6 example

Uii U12 UIS U14 UIS U16'

U22 U23 U2 4  U25 U26 K

U33 U34 U35 U36-

U 4 4  U45 U 4 6

U55 U56

U 66 -

11 ""
",R
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The leading three columnns of U span the subspace of A,, A2 and A3, and this is equal to the space

spanned by the first three canonical vectors C1, C2 and e3 due to the triangular structure of U. The .

space orthogonal to it is the one spanned by e4, es, e6 and is, because of the triangular structure,,.

equal to that of columns 4 through 6 of U with components I to 3 set to zero. This means that ,.

the correlation p1:3 between A44 and As, given A,, A2 and A3, can be computed by a rotation of U "

in plane (e4, es). The resulting matrix has a new zero in column five and a fill-in in column four: .

U11 U12 U13 U14 UI5 U16 ,,

o. ,

U22 U23 U24 Ut25 U26".,

U33 U34 U 35 U3 6 ,-

V=V
S.,

Ug66

1:3,5The next correlation that can be computed is p46 with a rotation in plane ( , e6), the subspace

orthogonal to A t, As, At and AS:

U11 U1 2 U 13 U14 UIS U16' %

U2 2  U23 U24 U2 5 U26

U33 U34 U35 U36 a-%

The last correlation pa is determined by completing the transformation of the 3 t 3 trailing"

principal submatrix to lower triangular form:

U11l U12 UIS U14 UIS U16"-

U22 U*23 U*24 U*25 U26

U33 U34 U36 U36

Th enera, s correlation i indfor > c and i < j th n can be determined be preserving

the leading a rows and columns of U and transforming the trailing principal submatrix of order n-a
12S



*~~V v. IV . YA x .- a: - .. - t S t S.4 S

to lower triangular form La by appropriate plane rotations:

... ... '... ... ... ... ..... ..... *

* ... *t *

*t *t ... *o

Similarly, the computation of p+ , for j < n -,6 + 1 and 1 < i < j is accomplished

by transforming U to lower triangular form L (or obtaining directly a QL factorization of A - A)
and then transforming the leading x f principal submatrix of L to upper triangular form U6:

*'a *t *, ... *
... .. .. .....

*. ......... * * ... .. *

*t ... * *...........* *............*

.. *............... *. ...............

Combining the two above strategies makes it possible to determine p1a 'i+l :j- l n- +1:n for

< i . " < n - P + 1 by transforming the trailing (n - a) x (n - a) principal submatrix of U to

block lower triangular form La (see the sketch below) and subsequently transforming the leading

- ) x ( - a) triangular submatrix of La to upper triangular form Ua,P:

*.. .. .. ... ...

* . . ... .... ...

... . . . . ... ... ... ... •

* ..... ... . ... .

.. . . . . . .

......... ...

L .... ....

13..
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If it is known in advance which partial correlations are to be determined then the columns

of the m x n data matrix may be ordered so as to minimize the number of arithmetic operations I

succeeding the computation of the Cholesky factor.

For instance, a lower bound on the number of arithmetic operations in the computation of

Xi where S is a subset of k > 0 numbers in 1 ... n not containing i and j, is O(n - k) since

our method requires at least one rotation to compute a partial correlation and the dimension of

the space involved is n - k. This lower bound is attained by ordering the columns so that the

set S represents the leading k columns of the data matrix followed by columns A, and Ai. The

correlation p .can then be determined by one rotation in the plane (ek+l, ek+2) that, due to the

triangular structure of the Cholesky factor, involves O(n - k) non-zero element pairs.

Not only the ordering of the columns is important but also the sequence in which particular

correlations are computed. Consider the computation of a partial correlation between two variables

A, and A, with successively more variables fixed: p, p , where Sc... C Sit and i, j .
.en.

It seems that the following order of rotations constitutes the simplest way of determining the above

correlations. It is illustrated by means of a 5 x 5 example for the computation of P12, P12 , p12 , and

P"'5 . At first the columns of the data matrix are ordered so that i and j represent the first two

columns followed by the columns of S1, the columns of S2 - S1, the columns of Ss - S2 - S1, etc. In

the example this amounts to the 'natural' ordering A, ... As of the variables. The first correlation

P12 can now be computed with one rotation from the Cholesky factor U. To compute ps2 columns

two and three of U are exchanged and a rotation in plane (e2, es) results in the Cholesky factor U'

corresponding to the data matrix with variables in the order A1 , A3 , A2 , A4 , As . Since A3 is

situated between A, and A2 two rotations suffice for the computation of pS. The effect of these

steps on the matrix is depicted below:

Ull U12 U13 U14 U15 "Ull U13 U12 U14 U15 Ull U13 U12 U14 U1S ..

U22 U23 U24 U25  U 2 3 U2 2 U24 U25 U 2 2  U23 U2 4  U2 5

UL33 U34 USS U33 U34 U35U3 U 3 4 tL35 %

t 4 4  U 4 5 U 4 4 U 4 5  tU44 U4 5

U 5 5  j55 U55

14

2C.
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* * * * , * ** * * ;-,

U 3 3  U 3 4  U 3 5  -

U 4 4 U 45 UL4 4 U45

U55 U5

Similarly, exchanging columns three and four of U', performing a rotation in plane (es, e4) to get

the Cholesky factor U" of the data matrix corresponding to the ordering A,, A3 , A 4 , A 2 , As, and -

performing three more rotations on U" results in the extraction of p34. In general, if the sets S,

differ by more than one index, more columns of the Cholesky factor must be exchanged to ensure

that all fixed variables are situated between A, and Aj.

As for arbitrary sequences of partial correlations, the determination of the column ordering of

the data matrix as well as the computation sequence of the partial correlations so as to minimize

the number of arithmetic operations seems to be an NP-complete problem. The use of heuristics,

such as the following greedy approach, might lead to acceptable operation counts: the random -F

variables are ordered so that as many partial correlations as possible can be determined from the

resulting Cholesky factor. Repeatedly, the columns of the Cholesky factor are then re-ordered

according to the same strategy, the matrix returned to upper triangular form, and appropriate

rotations performed until all correlations have been computed.

5. An Open Problem

Adding a row a T to the m x n data matrix A results in a rank-two update to the Cholesky

factor U of A - A. Suppose the QR-factorization of A - A, A - A = QU where Q is m x n with

orthogonal columns is available. At first the rank-one n x n matrix QTe(!eTA - m.(eTA + aT)),

which can be computed in O(mn) operations, is added to U and then the row a- (eTA T )  .

is appended as the (n + 1)st row. The so augmented Cholesky factor can be reverted to upper k
triangular form U' by means of rotations in 0(n 2 ) operations. The quantities of interest, the partial

correlations of the updated matrix, can be computed from U'. However, instead of starting all over

from U', a more effective approach could be to use the augmented Cholesky factor as starting point

in order to 'update' the partial correlations computed from U. A similar problem arises after the

deletion of a row from the data matrix.
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