
UNCIASSIFID F/G 12/6 O.

II * ~1.8

,&..,.

1;" '~, ~.

* ~

00
(

00
(II) -,

1 2 ~'

'-U .~

F

I
0

~

.- ~. ,-

~ ~V*~'

.,~;

-- ~'-. -~
~

~A

.- ,. ~4.

-A-

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4126

Title The SMITE Computer Architecture
uthor Simon R. Wiseman & Hugh S. Field-Richards

Date January 1988

Summary

The SMITE computer architecture is being produced as a
base for computer security applications. This paper
describes the instruction set level of SMITE, which is
based upon the Flex capability computer architecture.

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry
of D efe nc e ' I C R

DTIC TAB U
UrannoY.:ed

Copyright Jist.fiCdb

Controller HMSO London Py19 8,-"ta,! qrI

...-.777

1. Introduction
/

The SMITE project aims to provide Secure Multiprocessing of InFormation by Type
Enforcement (Wiseman86]. To achieve this the software ensineering techniques
of type abstraction and object oriented programming will be used [WisemanB8I.
However to set the best out of these relatively new techniques for building
systems a sympathetic computer architecture is required.

Such an architecture has been developed at RSRE. It is called Flex
(Fosteret.ai.8Z] and has been available for a number of years, the latest
implementation being for the ICL PERO II workstation, though with new microcode
and software (Currie.t.al.85). Flex is a high level language oriented capability
computer but is not specific to one particular language.

For the SMITE project a new hardware base is beins produced to provide
adequate performance and functionality for applications such as secure
databases. The implementation is based on Flex to allow the TentS software
engineering environment [Core&FosterB6] to be used, but has additional
functionality for security and performance reasons. This paper describes the
instruction set level architecture of SMITE and the hardware structure that
supports it. -

2. Overview

The main store of SMITE is organised as a heap and capabilities are used for
addressins. The address space of the heap is common to all software in the
machine, which facilitates sharing of data. Basic protection is afforded by the
capabilities, but hisher levels of protection can be created usins the type
abstraction mechanisms Iiseman88I.

The SMITE instruction set is organised around a stack and a single resister.
Data can be treated as booleans, characters or words and may be organised
into records or arrays. Procedures are "first class" objects because they are
treated like any other data, in that once they are created they can be called
in any context and still remain valid [CurrieB2]. Instructions support
constructs for prosram control within a procedure, including FOR loops and CASE
statements as well as various conditionals.

To provide a family of computers, offering a wide variety of processor, I/0 and
memory configurations, the SMITE computer has a multiprocessor architecture.
This is centred around the IEEE Futurebus standard [IEEE87], a high
performance asynchronous backplane bus. To give sufficient performance, each
processor is equiped with its own private memory in addition to the shared global
memory. However the microcode ensures that the software only observes a
single uniform address space which spans all these memories. This allows
software to be constructed independently of the multiprocessor configuration.

Each SMITE CPU is a flexible micro engine which is microprogrammed to emulate
the hish level SMITE instruction set. The hardware is designed to be
comparatively simple to microprogram, by handling all timing constraints in the
hardware, and yet should be relatively fast. For increased performance
accesses to the local memory are cached and an instruction fetch unit prepares
instructions for dispatch, in parallel with program execution.

The I/O subsystem of SMITE utilises standard backplane buses so that
proprietory peripherals may be used. However to sive the necessary protectiom
all accesses to the bus are Soverned by capabilities. DMA and interrupt
requests are mapped into the capability environment of the local memory on a
per peripheral basis. These mappings are handled by an I/0 CPU which is
closely coupled to the main CPU.

2. Memory Orsanisation

2. 1 Capabilities and Blocks

The primary memory of a SMITE computer is organised as a heap store. It is
divided up into many, relatively small, blocks of various sizes. Unlike
sesmented memories the blocks are addressed by capabilities and no order is
imposed upon them. A capability is the protected address of a block.
Possession of a capability is all that is required to access the block it refers
to. Conversely, no access to a block is possible without a capability that
refers to it.

-44-2

32
1024 64

128
256

Fi 9Z. 1: The memory is divided into blocks which can
contain both scalar data and capabilities, which
refer to other blocks.

Blocks may contain a mixture of capabilities and scalar data. The distinction
between them is maintained by the microcode, using a hidden bit on every word in
the memory as a flag. The microcode ensures that it is not possible to treat
scalar data as a capability, thus it is not possible to gain access to a block by
guessing its address. This use of tagsed memory gives software much greater
flexibility in creating data structures than the method of partitioning used in
other capability computers [Wiseman82].

When a block is accessed, the microcode ensures that all locations read or
written are wholly within the bounds of the block. It is not possible to read or
write beyond the end of a block, thereby 9aining illegitimate access to another,
by using, for example, an out of range index.

visible

hidden pc&sf dump
Sreturn link

11orkspace bock

Fi 9 2.2: Some types of block have words which
are used by the microprogram in
special ways and are hidden from the
software. -

There are eighteen different types of block in SMITE, which used to hold
instructions and data and to represent objects such as processes and
semaphores. The operations that may be performed on a block depend on its
type. For example it is not possible to raise a data block or read from a
semaphore block. A summary of the various types is given in an appendix.

2

Some block types have words which are used only by the microprogram and are
completely hidden from the software. For example the procedure call return
link in a workspace block is only manipulated by the procedure call and return
instructions and cannot be accessed directly by software. In some types all
the words are hidden, for example closures and peripheral blocks. They may
only be accessed by specific instructions which manipulate the hidden words in a
particular way.

2.2 Heap Memory Implementation

Capabilities are implemented using a level of indirection. That is, the capability
contains an index into a table which contains the physical address of the block
in memory. The table entries also contain the block's size, its type and flags
for garbage collection purposes. The indirection table is managed by the
microprogram and is completely hidden from the software.

A SMITE computer is a multi-processor with several separate memories (see
figure 4.1), therefore another field in the capability indicates which memory
the block resides in. If this is the local memory of some other processor, it
must first be moved to the global memory, as described in section 4, before it
can be accessed.

capability

Type Size b c o

FlagsI Address I

l/ store

indirection tabl

FiS2.3- Capabilities address a block via an indirection table, which
also holds their type and some garbage collection flags.

To access a word within the block referred to by a capability, the microprogram
first extracts the index field from the capability. This is used to read the
indirection table entry that describes the block. The type of the block is
checked to ensure that the access is allowed and the offset is checked to
ensure it lies within the bounds of the block accessible to software. The
address and offset are added together and the physical memory is accessed.

Translating capabilities into addresses is a comparatively lengthy process,
however it is not done for every memory access. The capabilities which make up
a process' context, for example the current instructions block and current
expression stack, are translated once on procedure call and exit and process
switch. The base and limit addresses are then kept in hardware registers where
they can be accessed very quickly. Also, because the instruction set is high
level language oriented, an instruction tends to move data in large quantities,
such as whole arrays and records. Only one address translation would be
required for each move.

The SMITE instruction set does not provide a means of deallocating a block.
Instead a garbage collector [WisemanS5] is used which finds all blocks that are
inaccessible and recovers them. This relieves the programmers from the burden
of keeping track of references to variables in order to deallocate them only
when they are no longer required. This is difficult to do well and causes errors
which are hard to find. The use of a garbage collector therefore makes
programs easier to write and maintain.

The garbage collection is performed by the microcode and is relatively fast. It

3

is invoked by software using the garbage collect instruction, but operates
incrementally. That is, the instruction is interruptable by processes of a
higher priority. Usually a process running at the lowest priority will execute
the instruction in a infinite loop, effectively giving a background garbage
collector. If the free store starts to run low other processes may also
execute the garbage collection instruction to ensure garbage is recovered more
quickly.

Perhaps rather surprisingly SMITE does not provide a paged memory system. All
blocks in the address space are found in physical memory, none are pushed out
onto disc. Paging is usually necessary because processes running in the same
computer are self contained and contain their own copies of code and data. They
may also preallocate large amounts of space for stacks and private heaps. A
much better utilization of memory is achieved in SMITE because code and other
unalterable data is easily shared by all software in the system. This is made
possible because all software operates in one capability based address space.
The provision of an efficient system wide heap also removes the need to
preallocate data space, instead space is allocated in small pieces as it is
required.

The SMITE system also reduces memory requirements by providing dynamic linking
and loading of software. Code is only loaded from disc as it is needed and once
it is no longer required it is recovered by the garbage collector. So, for
example, the initialisation code of a program is discarded once it is used and
does not use up any memory space.

3. The Instruction Set

When a process is running its state is given by the context of the procedure it
is executing. It has access to the procedure's code, its non-local variables
and the local variables and stack associated with this particular call. A
program counter gives the offset of the next instruction to be executed and a
stack pointer gives the top of the expression stack. The process also has one
general purpose register available to it.

The code block contains the constants required by the procedure, one of which
is a capability for a block containing the instructions and another is the size of
stack required by the procedure. The non-locals block is a data block which
contains the non-local environment of the procedure, that is references to all
variables declared outside the procedure's body. The workspace block contains
locally declared variables and the expression evaluation stack.

local non-local
variables top environment

I hidden 7Zrd
l prcedre constack-p

instruct ions

calling
workspace

Fi93. 1: A procedure has access to local variables, non-local
variables and constants.

The non-local environment of a- procedure takes the place of the display or
static link in language run-time systems on conventional computers. When using
displays, the overhead on accessing non-local variables occurs when the
display is constructed as the procedure is called. If a static link is used, the
overhead occurs each time the variable is accessed as the links are followed.
With closures the overhead occurs when the procedure is declared, since
references to all the non-local variables that may be accessed must be

4

brought together and made into the non-locals block. The advantage of using
closures is that procedures are treated like data objects, for example they
can be delivered as the results of procedures and stored in data structures.
Resardless of when they are called, closures remain valid. This is because
they have a capability for their non-local environment bound into them, and this
keeps the environment from being recovered by the sarbage collector.

The universal register, called U, is able to contain any number of words, bytes
or booleans, or nothing or special illegal values which are used for exception
handling. Thus U carries with it typing information about the data it contains,
which is used to sive extra context to instructions. U cannot, however, hold
mixtures of words, bytes and bools. For example, a structure of a word and a
byte would be stored in U as two words.

The U resister acts as the top of the stack, in that whenever a value is loaded
into it, the current value is first pushed onto the top of the stack. For monadic
instructions the operand is in U and the result remains in U. For dyadic
instructions, the left operand is popped from the stack, the right operand is in
U and the result is placed in U.

.......:U: U Register

U Resister

--- top

stack stack

Fig 3.2: When the U register is loaded with new data, the
contents are first pushed onto the stack.

For example the integer negate instruction expects a single word in U which is a
scalar. It negates this value and places the result in U as a single scalar
word. Integer addition pops one word from the stack, which must be a scalar,
and adds this to the single scalar word in U, the result being placed in U as a
single word. However, if U contains two scalar words, two scalar words are
popped from the stack and long format addition is performed, with the resulting
two word answer being Placed in U.

-*-top

a--top

.. .,... ,.... ,

Fig 3.3: Dyadic operations like add pop the left operand
from the stack and the right operand from U
and place the result in U.

The U register is also used for passing parameters to procedures and receiving

5

results. A procedure is called by first evaluating the actual parameters one
by one. These naturally get pushed onto the stack, leftmost parameter first.
The final parameter is evaluated and is held in U. Then, in one instruction, this
is pushed onto the stack and all the parameters are popped off into U. The
procedure is then called. If the procedure returns a result (a function in
Pascal) this will be in U. If it is to be the right operand of some operation,
this can immediately be executed. If it is to be the left operand it will be
pushed onto the stack by evaluating the right operand.

The instruction set offers the usual arithmetic operations, though if overflow
or underflow occurs an exception is always generated. Arithmetic comparisons,
such as less than, are made with specific instructions which return a boolean
value in U, thereby avoiding problems with arithmetic overflow. Instructions are
also provided that test for equality and inequality. These compare arbitrary
data and return a boolean in U. For example, if U contains n-words another
n-words are popped from the stack and compared.

JLmp instructions allow loops and conditional statements to be implemented.
Conditional jumps are made according to a boolean value in U, not by testin9
condition flags typical of modern microprocessors. This makes it particularly
easy to implement complex conditional expressions involvin9 ANDs and ORs.

Instructions for manipulating arrays and vectors of any element tyoe are
provided. Arrays are general n-dimension objects with arbitrary upper and lower
bounds, while vectors are simple one dimensional objects with a lower bound
fixed at one. Indexing, trimming and slicing instructions allow array and vector
templates to be manipulated, while movement and comparison instructions
operate on the actual data.

Instructions also provide functions usually associated with an operating system
kernel, for example, operations on semaphores. These instructions are
designed so that policy decisions, such as high level scheduling and quota
management, can be made by software yet are actioned by microcode. This
enables the microcode to present a virtual view of the hardware by effectively
hiding the presence of multiple physical memories and processors.

A formal specification of the SMITE instruction set has been produced
[Cooper&Diss8?], usin9 the language 2 [Hayes87). This is to avoid the problems
usually encountered with ambigous English specifications, which is particularly
important in view of the security requirements of intended applications.

4. Multiprocessor Architecture

The SMITE hardware base is a multiprocessor configuration centred around the
IEEE Futurebus standard. This 9ives a range of processin9 power, memory size
and I/O throughput from one processor architecture. The microcode ensures
that multiprocessing is made transparent to the software, by performing
memory management and primitive scheduling. Typical configurations will range
from two processo - for a high performance workstation, up to ten processors
for a database en

The Futurebus has 6 number of important characteristics which make it uniquely
suitable for the main system bus. It is the only standard bus which can
transfer tagged data, because it is effectively a 33 bit bus. This allows
processors to transfer scalar and capability data amongst themselves in the
same format that it is stored in memory. Several buses may be used in parallel
to achieve higher throughput and to 9ive some redundancy. for higher reliability.
However, unlike other buses, sufficient locking primitives are provided to
properly control access to shared resources. Futurebus defines protocols
which allows various coherent cachin9 schemes to be implemented for shared
memory [Sweazey&Smith86], though it is not currently envisaged that SMITE will
use these. Also Futurebus allows processor to processor communication, is
asynchronous and fast.

A SMITE system consists of a number of processors and some tagged global
memory attached to a dual Futurebus. Each processor comprises a CPU and some
private tagged local memory. A processor only uses the Futurebus to access
data in global memory and to communicate with other processors. Peripherals
are attached to I/O buses, such as VME. These are controlled by an I/O CPU

6

which is an optional part of a processor. The main and I/O CPUs share access to
the processor's local memory. The main CPU emulates the SMITE instruction
set, while the I/O CPU maps DMA requests, interrupts and peripheral bus
accesses.

Tagged~~Memory Da

Futurebus

F,94. 1: A SMITE Computer comprises several processors and some
memory attached to a Dual Futurebus. The processors
have their own local memory, two CPUs and a peripher-al
bus.

To allow software to be written independently of the hardware configuration,
the mi crocode implements a capability based virtual memory, or heap, which
hi des the separate physical memories. The hardware architecture prevents a
processor f-rom accessig the local memory of" any other processor. However if-
a processor must access a block in another local memory, the block is f'irst
moved into global memory where it can be accessed. This is perf-ormed by
microcod2 wi thout the sof-tware's knokledge.

Capablties contai n the address of- the memory in which the block they ref-er to
resides. A capabiity may reside in any physical memory and can be f-reely
coped wi thout requirin9 any translation or modifi cation. If- the sof-tware
requests an access to a block in another local memory.. the processor's
mocrocode commun cates wi th the microcode of- the other processor. This
processor moves the block into global memory and reports back its new position.
The access may now continua~ because all processors have access to global
memory.

To avoi d having to update all capabiities f-or a block which is moved, the
indirection tables have special entries which indicate that a block has moved.
These are put in place of the block's original entry and redirect all ref-erences
to the new entry in the global memory. Eventually the garbage collector will
ensure that all capabilities are updated to ref-er directly to the new position,
at which point the entry can be recovered.

The microcode of- the processors also cooperate in scheduling processes. so
that sof-tware may be written independently of the number of" processors. While
low level scheduling is perf-ormed by microcode, sof'tware is responsible f-or
hgh level scheduling. This can perf'orm load balancing to gain optimum
perf-ormance rom the multiprocessor.

Each process has a base processor, on which it will usually run. though'a
special f'orm of" procedure call can be used to make a process execute on
another processor. When the procedure exits, the process reverts to being run
by the previous processor.

......

Global I [

Memory Memor y

B

ILI

I,

B I '

. C

Fi,4.2: Blocks A and C contain capabilities for B. If B has
to be moved into global memory the indirection
table entry shows it has moved.

For example, this mechanism is used by peripheral driver software to ensure
that a process is bein9 executed by the appropriate processor when the
peripheral is accessed. Note that only that part of the process which is
concerned with driving the peripheral is actually moved onto the new processor.
If drivers are carefully written this will be no more than the data to be sent or
received.

S. Main CPU Architecture

The main CPU of a SMITE processor is a microprogrammable engine which is
microcoded to emulate the SMITE instruction set. The engine is programmed using
a high level micro assembler [PoulterB6) which allows the parallelism to be
expressed in a natural way.

5.1 Data Paths

The basic CPU comprises of a sequencer, ALU, register file (AMD 29300 series
components), scratchpad memory and memory interface. It has a basic cycle
time of 9ans with transparent clock stretching where necessary and is able to
perform several activities in parallel durin9 one cycle. This requires a
comparatively wide micro instruction of 128 bits.

The micro engine's data paths are generally 33 bits wide, to allow for
transporting ta99ed data. The register file, which is four-ported, and
scratchpad memory are able to store 33' words. The ALU is only 32' , but a
simple one bit ALU provides ta9 bit operations.

B

micr OiJ f truct ion

iconstantl

BufferFloating Pointl

1 33' ALU

FigS. 1: The SM1ITE icroengine has 33' data paths and storage
to facilitate processing tagged data.

The register file is four ported, allowing two operands to be extracted and two
values to be loaded in each cycle. The larger scratchpad memory can be
indrectly addressed, and is therefore used to hold various internal tables.
Some registers are shared with the I/0 CPU, allowing commands and parameters
to be passed between the two CPUs.

5.2 Instruction Fetch

The processor contains an Instruction Fetch Unit which assembles and
dispatches instructions. Unlike some IFUs (Lampsonet.ai.81], it is a rather
simple affair because the format of SlITE instructions is so simple. Each SMITE
instruction consists of a number of bytes. There are just over 200 different
instructions, so one byte gives the instruction opcode. Some instructions are
qualified by one or two constants which are generally used to specify an offset
or a size. These qualifiers are usually one byte, but an extended format using
two bytes can be specified by preceeding the opcode with a byte of FE16.

For example the integer add instruction is opcode 641r and has no qualifiers, so
only one byte specifies it. The instruction that loads an integer constant into U
is opcode 1Eda This has one qualifier which is the value to be loaded. lost
constants are quite small and one byte suffices. However for constants up to
216-1 two bytes can be used by preceeding the opcode with an extra byte of
FE16. Larger constants, including capabilities, can be loaded from the
code block.

Th pocssr onais n nsrutin eth ni wic asebls9n

Integer Add 6416

Load 42 11 2Ai

Load 420 FE 1E 1

FigS.2: Instructions have a one byte opcode. Some have constant
qualifiers of one byte, though this can be extended to two.

Urlike most register based architectures, no complex addressing modes a-e
used. The instruction stream only specifies constant data, like offsets anc
sizes, and not variable data like the value in a register. The task of the IFU is
to ascertain the start address of the microprogram sequence that emulates the
instruction and to assemble the qualifiers for the instruction, takin9 one or twc
bytes as appropriate. This saves several cpu cycles for each instruction
dispatched, which is particularly important for short instructions such as
arithmetic.

Next ddress W
& Incrementer

Bounds Checker --. Memory

_Interface4 Byte Queue 11M-

'zero extend Dispatch
Table

addresses qualifiers dispatch address

FigS.3: The IFU generates dispatch addresses and
assembles qualifiers.

Words are read from the instructions block autonomously, though at a lower
priority than the main microprogram accesses, and assembled into a byte
stream. The IFU also checks for attempts to run code off the end of the
instructions block. Loops and branches only occur in programs where they are
specified by the high level language statements, no loops are created to copy
blocks of data because this type of operation is handled by single instructions.
This obviates the need for complex hardware to reduce the time wasted by
breaks in the instruction pipeline.

Many SMITE instructions begin with pushing the current value contained in U onto
the stack. Depending on the type of value held in U, different microprogram
sequences must be executed to do this. To save on a few cpu cycles, the IFU
first dispatches these instructions to the appropriate push code, according to
the value in the hardware U-type resister.

10

5.3 Data Caching

The SMITE instruction set is stack oriented and it is well known that stack based
expression evaluation can use more memory bandwidth than register based
evaluation [Myers??]. To improve performance, therefore, accesses to local
memory are cached. That is, the values for those addresses which are likely
to be accessed in the near future are held in a small, but very fast, memory.

A simple direct mapped cache is used. In this, part of the address is used to
index the cache array, which contains the cached data and the address of that
data. A comparison is made between the incoming address and the address of
the cached data. If they are equal a cache hit has occured and the cached
data is used rather than the main memory. In a fully associative cache the
incoming address is compared with all cached addresses in parallel, which is
very expensive to implement.

Many systems have several direct mapped caches working in parallel and
perform an associative search to determine which cache, if any, contains the
contents of a location. Two-way set associative is most common. In SMITE the
memory is divided into blocks of various types. By caching blocks containing
instructions (readonly scalar), blocks containing local variables and the stack
(workspace) and blocks containing other data in different caches the effect of
set associative caches is achieved with much simpler hardware. Another cache
is used for the indirection tables which contain the addresses of all the
blocks.

virtual address

key offset

key valid consistent value

keys equal tagged data

cache line valid

hit/miss

FigS.4: Each SMITE cache is direct mapped and uses a
write back scheme.

In general a write back caching scheme is used. This is where data written to a
location that is cached, is stored in the cache but not in the main memory. If
the cache line is needed to cache the value of aoother location, the data in jt
must first be written back to main memory. This has the advantage of reducing
memory traffic, but at the expense of more complex hardware. It does however
increase the memory bandwidth that is available to the I/0 CPU for DMA
transfers. It is also particularly advantageous for stack based architectures
because accesses to the top of stack do not use main memory bandwidth.

The microprogram is emulating an instruction set which operates in a well
structured environment. This enables it to make certain optimisations which are
just not possible in a conventional architecture. For example, the hidden words
of a workspace block are only accessed during process switches and procedure
calls and exits. These locations are therefore rarely accessed, so if they are
cached it will be at the expense of some other more useful data. When these
locations are accessed, the microprogram can direct the memory system to not

11

cache them. Another example is that data popped from the stack will never be
accessed again, so it can be removed from the cache to allow more useful data
in.

6. I/O Architecture

SMITE is intended for applications which demand highly assured security.
Capabilities and abstract types are used internally to provide this, however
equal protection must be given to the computer's interface to the outside
world. For this reason all interactions with the peripherals are monitored by
the I/O CPU. This acts as the controller of the bus and handles requests for
DMA transfers.

The I/0 CPU receives commands from the main CPU. These are generated in
response to the use of instructions which transfer data to and from the Control
and Status Registers of a peripheral. The main CPU is responsible for
Senerating correct addresses. This is controlled by a peripheral block, there
is one for each peripheral on the bus, which contains the range of valid
addresses for the peripheral. For example, the instruction which reads one of
a peripheral's status registers takes a capability for the peripheral block on
the stack and an offset in U. The offset is added to the address of the first
register and, after a check is made to to ensure the offset is ok, it is passed
to the 1/0 CPU. This accesses the register and passes the result back to the
main CPU which places it in U.

Dual Ported
Local Memory

peripherals

Fig6. 1: The I/O CPU maps bus accesses, DAI requests
and interrupts.

Each peripheral has a number of interrupt vectors associated with it. A
semaphore can be associated with each of these so that if the peripheral
interrupts on that vector, the semaphore is released. Thus the peripheral is
able to signal to a device driver process waiting on this semaphore.

Each peripheral also has a number of DMA channels associated with it. An
uncached scalar data block may be associated with each of these for use as
DMA buffers. DMA addresses generated by a peripheral contain the channel
number and an offset. The I/O CPU maps this into an address within the
appropriate buffer, but only after checking that the offset and channel
numbers are valid. The I/0 CPU has direct access to the local memory and
carries out the DMA request without the intervention of the main CPU.

To gain the highest assurance in the security of a SMITE computer, it is
necessary to be sure that peripherals are not able to access data that is not
intended for them. Also a peripheral must not be able to communicate with the
I/O CPU while pretending to be another peripheral. Unfortunately this can only
be achieved by using special interface logic between standard peripheral cards
and the bus, or by using specially designed cards. The costs involved in doing
this will limit its usage to only a few very important systems.

12

7. Summary

The SMITE project proposes using a computer capable of providing user
definable, protected abstract data types for use in computer security
applications. Such facilities cannot be supported adequately by conventional
processor architectures, but are provided by capability architectures. The
architecture of the RSRE Flex computer has been taken as the starting point
for a new multi-processor computer capable of providing the performance and
protection features that will be required by future multi-level computer
security applications.

An initial prototype of a primitive SMITE processor has been built and a full
single processor SMITE computer workstation is under construction. The existing
Flex software development facilities are being used on PERO workstations to
develop SMITE microprogram and operating system code.

Acknowlegements

Thanks 9o to the designers of the Flex architecture whose original research
provides a foundation for the SMITE project.

References

O.G.Cooper & MJ.Diss
The Specification of the SMITE Instruction Set in 2
Report Number 72/87/RS28/U
Plessey Research Roke Manor Limited
December 1987

P.W.Core &, J.M.Foster
TenlS: An Overview
RSRE Memo 3977, September 1986

I. F. Currie
In Praise of Procedures
RSRE Memo 3499, July 1982

I.F.Currie, J.M.Foster & P.N.Edwards
PerqFlex Firmware
RSRE Report 85015, December 1985

J.M.Foster, I.F.Currie & P.W.Edwards
Flex: A Working Computer with an Architecture Based on Procedure Values
RSRE Memo 3500, July 1982

I Hayes (Ed.)
Specification Case Studies
Prentice-Hall International Series in Computer Science
1987

IEEE87
IEEE896. 1:198? Futurebus Backplane Specification

B.W.Lampson, G.McOaniel &. S.M.Ornstein
An Instruction Fetch Unit for a High Performance Personal Computer
IEEE Trans on Computers
Vol C-33, Num 8, August 1984, pp?12 ..730

G.J.Myers
The Case Against Stack-Oriented Instruction Sets
Computer Architecture News
Vol 6, Num 3, 19?7, pp 7 . .10

N. 0. Poulter
A Compiler-Compiler for the SCP3 Micro-Program
RSRE Memo 3982. September 1986

13

P.Sweazey & A.J.Smith
A Class of Compatible Cache Consistency Protocols and their

Support by the IEEE Futurebus
Procs. 13th Ann. Symp on Computer Architecture, Tokyo, Japan
June 1986

S. R. iseman
Two Advanced Computer Architectures: A Study of their Support

for Lansuages and Operating Systems
RSRE Report 82013, July 1982

S. R. Wiseman
A Garbage Collector for a Large Distributed Address Space
RSRE Report 8S009, June 1985

S. R. Wiseman
A Secure Capability Computer System
IEEE Symposium on Security and Privacy
Oakland, California
April 1986

S. R. Wiseman
Protection & Security Mechanisms in the SMITE Capability Computer
RSRE Memo 4117, January 1988

14

Appendix

The following summary lists the different types of block and indicates their
role in the SMITE architecture.

workspace used to hold the local variables and an expression
evaluation stack for a procedure call. Hidden words
contain the link to the workspace of the calling
procedure and space to dump the context during an inner
procedure call.

data holds a mixture of scalar data and capability data.

scalar holds scalar data, but not capabilites.

uncached scalar holds scalar data, but not capabilites, and is not
cached. This type is used for OMr buffers and video
display rasters.

readonly scalar a data block which can only hold scalar data, but cannot
be written to once it is created. This is used for
instructions.

readonly data a data block which may hold a mixture of scalar and
capability data, but cannot be written to once it is
created.

code holds the constants of a procedure, which may be scalar
or capabilities, along with a capability f or the
instructons.

closure this is a representation of a procedure, and comprises a
binding of the code with its non local environment.

immortal closure represent procedures which cannot be failed by
asynchronous exceptions, such as break in.

mode used to represent modes (or types) as values in very
high level languages, such as TeniS (Core&Foster8].

readonly mode as for mode, but can never be altered. In particular,
used when mode blocks are brought in from backing store.

keyed used to hide data from its users in a way which allows
software to create protected abstract data types.

readonly keyed as for keyed, but can never be altered. In particular,
used when keyed blocks are brought in from backing
store.

process carries the context of a suspended process along with
quota and scheduling information.

peripheral represents a peripheral located on the I/O bus. Contains
information necessary to map between the capability
world and the linear address space of the I/0 bus.

semaphore gives simple binary semaphores for process
synchronisation.

area these control the usage of memory, allowing quotas to be
imposed on the amount of resource consumed.

hash table give a fast, microcoded search function. Used for
translating external capabilities, such as those for
objects in remote machines or on backing store.

is

DOCURENT CONTROL SHEET

Overall security classification of sheet UNC.LAS. SI. IE. ...

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

MEMO 4126] 1 U/C Classlfical cn

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

778400 knw) RSRE St Andrews Road, Malvern, Worcs. W

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

SMITE COMPUTER ARCHITECTURE

7a. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference nacers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date r:' rei.

Wiseman, S.R. Field-Richards H.3. 19B8.l 24

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Oescriptors (or keywords)

continue on sepa'ate lece of rarer

Abbtract

The SMITE computer architecture is being produced as a base for computer
security applications. This paper describes the instruction set level of
SMITE, which is based upon the Flex capability computer architecture.

S80/48

ATE

11 LMED

F

tirSt dispatches these instructions to the appropriate push code, accordinS tc-
the value in the hardware U-type register.

10

