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CHAPTER 1

INTRODUCTION

For centuries, man has tried to explain the biological

functioning of the human brain as related to memory and the senses.

As biomedical technology advanced at the turn of the century, man

discovered that the human brain and nervous system were made up of

cells that were similiar in structure and in function. These

cells, called neurons, were responsible for gathering, passing, and

storing of information. In 1943, the first mathematical model [1

of the operation of a neuron was introduced. 
This was soon

followed by new theories [2), [3), and [4) on the interaction

between neurons. With further advances in biomedical technology,

it became evident that the paralleled structure and interaction

between neurons were the essential factors in the overall operation

of the human brain and nervous system [5] and [6]. In the late

1970's, J.J. Hopfield's research and findings in modeling a neural

Fnetwork spurred new interest in this area [7], [8], [9), [10), and

[11). Of all the well-known neural network models, the Hopfield

discrete and continuous models adapt most readily to the task of

pattern recognition [12), [13), and [14).

This thesis will analyze the Hopfield discrete and continuous

neural network models in representing the functions of memory and

pattern recognition in the brain. Models of three different sizes

will be simulated on a digital computer using the Microsoft Fortran
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V4 Compiler. They will be required to learn and recall several

patterns that vary in both shape and proportion. The models will

then be tested on the ability to recognize distorted versions, with

and without noise, of a learned pattern. Based on the results

obtained, the performance of the models will be examined and a

comparison will b ae



CHAPTER 2

BACKGROUND

'This three-part discussion provides the necessary background in

understanding the make-up and operation of the generalized

biological neuron and its role in memory and pattern recognition in

the brain. There are many specific types of neurons which have

adapted to perform specialized operations as part of the central

nervous system. Motor neurons deal with the operation of the

muscles; optical neurons deal with the operation of the eyes.

" Although there are differences in physical make-up, their basic

operation is similiar and is known as the generalized biological

neuron. The physical structure and operation of this neuron will

be examined. A brief discussion will follow on how the inter-

connection and paralleled structure of neural networks in the

optical system and cortex of the brain are able to send, store, and

recall information dealing with pattern recognition. This will be

followed by a brief discussion of the first mathematical model

developed l-f of the generalized biological model. Its make-up is

the building block for the vast majority of neural network models

which followed. During the remainder of this section, unless

• . otherwise noted, the term neuron will represent the generalized

biological neuron model. Most of the information for this section

is obtained from references Ell, (2], [3), [4), [6), [10), [12],

[15], and (16).
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2.1 Generalized Biological Neuron

As depicted in Fig. 2.1, the neuron is made up of four basic

, parts. The main central body is known as the SOMA. It performs an

analog computation in response to inputs and produces an output

which is functionally related to the inputs. When dormant, it

remains at a normal potential of -70 mV with respect to the local
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intercellular fluid used as ground. When excited, it can have a

positive rising amplitude of about 100 mY. At excitation, the

soma's output consists of a sequence of short, constant amplitude

pulses with a variable repetition rate. The frequency of

repetition is the vehicle by which information is encoded into the

signal.

This output is transmitted from the soma through its output

organ, the AXON. The axon is a single fiber which branches ouL

into many fibers. Because of this, it is able to transmit the same

data to many other neurons. Signals travel unattenuated in the

axon at velocities ranging from one meter per second to as much as

k120 meters per second. Velocities are dependent upon the axon

diameter and length. Unattenuated transmission is achieved by a

process analogous to the propagation of a short down a charged

transmission line. In addition to the soma, the axon is maintained

at a normal potential of -70 mV with respect to its outer fluid.

This potential appears across its thin walls which are like an

insulator during the nontransmission periods. These walls also

have a very high capacitance due to their thinness. Thus the axon

is like a long cylindrical hollow capacitor whose walls are charged

at -70 mV with respect to its outer fluid. Once the soma has

exceeded a certain "firing" potential threshold, it excites the

axon. The capacitor depolarizes and a ring of potential change

propagates down the axon utilizing the energy stored in the

L", distributed capacitance. Once the pulse has passed, the axon

chemistry starts to recharge the capacitor.

5



The pulse is transmitted to neurons that have formed a

connection through their input fibers. These input fibers act as

antennae for the soma. This group of extensively interconnected

input branches, which extend out of the soma and are opposite to

the axon, are known as DENTRITES. They gather incoming data to be

-transmitted into the soma. Output data from other neurons may also

be received directly through the soma wall. The point of

connection between axons (output devices) and dentrites or the soma

(input devices) are called SYNAPTIC JUNCTIONS. The magnitude and

number of inputs raises the potential of the soma above -70 mV. At

a certain threshold potential, the soma will emit or fire a signal

impulse. For a short period of time, Just after firing, it is

impossible for the soma to be fired by any of its usual stimuli.

This period of time is known as the "Absolute Refractory Period."

Following this period, the refractoriness dissipates and the neuron

becomes increasingly easy to fire. This is how the soma can encode

intensity of stimulus into rate of firing. Pulse widths are

typically about 0.50 ms, and pulse repetition rates range from zero

to about 1000 per eecond. A major point of disagreement between

many experts in this area is with the significance of the synaptic

- junctions [i], [2), [3)] [4)] [5)] [101, [12), [15), [16), and

[17). This dispute will be discussed in Section 2.3.

2.2 Pattern Recognition and Memory in th- Brain

The path in processing optical information for pattern

4, recognition consists of the eye, optic nerve, and cortex. The
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cortex is located in the upper part of the brain Just below the

Wskull. The process begins when receptor cells, rods and cones,
transform incoming light signals to electrochemical signals which

resemble spike potentials. Previous microelectrode studies have

indicated that the information represented by these spike

potentials is a rather sophisticated extraction of pattern features

of the light stimulus. This coding is accomplished by a mosaic of

approximately 125 million receptor cells which function

independently. Their output is an enormous amount of data most of

which cannot be transmitted to the brain due to the limited channel

capacity of the optic nerve. No such high capacity channel exists

in biological systems; instead, many low capacity channels are

paralleled and ed simultaneously. The receptor cell output is

* transmitted as input to a large number of relay or recoding neurons

located behind the eye. These neurons are called ganglion cells.

The ganglion cells respond to inputs from the receptor cells with a

'- short burst of pulses to both the onset or cessation of stimulating

illumination. A reduction of data and transmission channels takes

place at this Junction because there are only one million ganglion

v cells available to process this enormous amount of data. The

outputs of the ganglion cells travel through the optic nerve to the

cortex of the brain.

: *: There is a price that must be paid by this system due to the .a,

limited channel capacity which cannot relay all data accumulated by

the recepto:r cells, The peripheral vision is not nearly as

detailed as that from the central region of the eye. Sharp central

7
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vision is obtained for about two degrees of the total visual field

seen by the eye. In this central region, there are as many optic

nerve channels as there are receptors and ganglion cells. The

portion of the receptors surrounding the central region accounts

- for the remainder of the visual field. The outputs of more than

140 receptors are relayed into a single channel of the optic nerve

to the brain.

.~ The outputs from the optic nerve are mapped on a two-

dimensional surface known as the cortex which is capable of highly

~ adaptable behavior. The cortex is the outer part at the highest

region of the brain. It is 2.5 mm thick, and consists of massive

~e. amounts of interconnected vertically structured neurons. There are

at least a total of 1012 neurons located in the brain; and on the

average, each neuron receives and sends 103 to 104 variable

interconnections to other neurons. The density of neurons in the

cortex varies from a maximum of about 1740 for each 0.01 mm2 of

cortex surface to a minimum of about 910 for the same area. On the

i cortex, there is duplicated, in a pattern of neuron firing rates,

the images of the receptor cells as though they had been laid out

flat in a two-d'imensional picture. As input signals are applied to

the cortex, there is a connection process by which output data are

produced a* the same spot on the cortex, but on a different axon

from where it entered and at a different frequency of pulse

repetition rate from the original frequency. From the discussion

* of neuron operation in Section 2.1, there is no doubt that the

cortex is constructed to perform such a frequency conversion



function. It is likely that these networks have at least a short

term memory if not a long term memory. The mechanics of how a long

term memory could exist in this region are a point of disagreement

previously mentioned and will be discussed in the next section. A

common point of agreement is that the frequency conversion proces

that occurs in the cortex is due to the memory of the cortex. For

N modeling and simulation purposes, pulse repetition rates may be

rendered by different numerical values.

2.3 Initial Modeling of Biological Neurons

,'. -S.y 1
-S0

y,

Fig. 2.2 McCulloch and Pitts Model [11

The mathematical model of the neuron, as depicted in Fig. 2.2,

was produced by the team of McCulloch and Pitts [1), in 1943. They

modeled all inputs (Yn), to the neuron, as having either an

- excitatory (+) potential effect or an inhibitory I-) potential

Ceffect on the overall ground potential of -70 mV maintained by the

: .- soma. McCulloch and Pitts postulated that the analog operation of

N the neuron could be simulated by a unit step function. If the

summation of all positive and negative inputs to the soma were

greater than some threshold Potential (ui), then the neuron would
Ja
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give a constant continuous amplitude output (Xi ) until the soma

potential fell below the threshold due to a decrease in positive

inputs. A neuron with potential below the threshold would have no

output.

Shortly after McCulloch and Pitts produced their model, there

was a disagreement among experts as to the mechanics of how long

term memory was maintained in the interconnection within neural

networks in the cortex of the brain. In 1952, Eccles [4]

postulated that the actual formation or deformation of the

interconnections between neurons was responsible for the storage of

memory. Formation or deformation of the interconnections would

take place based on frequency of use between neurons. In 1959, Bok

[3] postulated that the synaptic junctions, at which neural input

Band output fibers were connected, influenced data flow through
them. This was more in line with the McCulloch and Pitts model and

was later adopted in the Hopfield model. If there were frequent

Pinteractions between two neurons, the input from neuron i to neuron

j would be weighted with an excitatory (+) potential. The opposite -•

weighting would occur between neurons of infrequent interaction.

In the remainder of the 1950's and 1960's, research and modeling in

this field were slowed due to a technological lag in gaining

further information about the brain as well as the shift of

interest to the newly invented Boltzman machine (otherwise known as

• ' the digital computer).

In the middle 1970's, work done by Kohonen [7] on the adaptive

associ3tive memory principle (commonly known as content addressable

10



memory) and a linear analog neural model developed by Minsky and

, Papert [5), from MIT, influenced J. J. Hopfield. In 1982, Hopfield

published his work and introduced his discrete neural network model

[12). This model renewed academic interest in the neural

ynetworking and parallel computing field. References [17] and [18]

give an excellent listing and explanation of the popular neural

network models which are in use.

.,
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CHAPTER 3

APPLICATION OF THE HOPFIELD
NEURAL NETWORKS TO PATTERN RECOGNITION

This two-part discussion will examine the Hopfield discrete and

continuous neural network models, and how they are applied to a

digital computer simulation representing neural network memory and

pattern recognition in the cortex of the brain. This discussion

will include the technique used to discretize the continuous model

for representation by a Fortran (77) program. The neural networks

will take the shape of symmetric arrays with one neuron occupying

each space. Each neuron will be interconnected with every other

neuron in the network array. Most of the information for this

section is obtained from references [12], [13], [14], [18], and
L[19].

3.1 The Hopfield Discrete Neural Network Model

. In 1982, J.J. Hopfield published the algorithm and findings for

the model of the discrete neural network. This model was revised

in 1984. The 1984 discrete model will be used in this thesis for

it adapts more readily to pattern recognition.

As previously discussed, the Hopfield model assumes the inputs

'. to a neuron i from neurons j are of either excitatory (+) potential

or inhibitory (-) potential. This weighting is accomplished

* through the synaptic Junctions between neurons. Learning and

12t!
*1 "'* " " " " "" ' """ """¢ "" '" -€€ ' '" " "'€-- - € ' -e -, "



storage of memory in the neural network are accomplished through

the learned synaptic weights (Tij) as follows

k

i = lN Tij = 0
j = 1,N Tij = Tji

where Vi represents the output of neuron i, Vj represents the

output of interconnected neurons j, k represents the number of

individual patterns learned by the neural network, and N represents

the number of neurons in the network.

By the learning algorithm, if neuron i is excited by the same

pattern as neuron J, then there is an excitatory (+) learned

b synaptic weight Tij between them. If neuron i is not excited by

the same pattern as neuron j, then there is an inhibitory (-)

learned synaptic weight Tij between them. As the number of

patterns k increases for the network, the magnitude of the learned

synaptic weights Tij between individual neurons will also

change. Thus, the storage of memory in the neural network model is

accomplished through the learned synaptic weight matrix Tij.

Tij = Tji represents the assumption that an individual neuron

has no feedback circuit of its output onto itself. An example of

learned synaptic weight Tij matrices for neuron all and neuron

a13 of a 25 neuron neural network array, which has memorized a

cross pattern, is depicted in Fig. 3.1.

13



0 0 1 0 0 0 1-1 1 1 -1-1 0-1-1
0 0 1 0 0 1 I-I 1 1 -I-1 1-1-1
1 1 1 0 1 - 1 1 1 1

0 0 1 0 0 1 I-1 1 1 -1-1 1-1-1

CROSS Tij of all Tij of a13

Fig. 3.1 Learned Synaptic Weights

The state (Si) of neuron i remains at ground potential unless

it is changed by the potential inputs. Thus, the state (Si ) of

neuron i in the network is the summation of all the inputs at a

*.-. particular time. The state (value of potential charge) of a neuron

is as follows

*N-I
Si = --TijVj + Ii  i = 1,N (3.2)

J=l

Iwhere Ii represents an input current. In order to adapt the

model for pattern recognition, Ii represents a positive input

current to neuron i if neuron i sees a bit of a pattern array

placed before the neural network. Thus, that portion of the

pattern tries to continuously excite the neuron i to output. From

Equation (3.2), the state (Si) of neuron i can be positive,

negative, or zero potential magnitude. The positive or negative

nature of the potential inputs is determined by the learned
.4.

synaptic weights, Tij, between each neuron. The magnitude of the

potential state of neuron i is determined primarily by the

magnitude of Tij with neurons j and the number of neurons

14



j that have been excited to output.

u Si

Fig. 3.2 Neuron Output Vs. State Potential

As depicted in Fig. 3.2, the relationship between the neural

firing rate output (Vi) and the state potential (Si) is analog

U in nature. It is represented by a sigmoid function. Once the

* biological neural state potential (Si) has risen above the

threshold potential (ui), fewer inputs are required to maintain a

I high firing rate. For modeling purposes, the neuron can be thought

of as a two-state system. It is either firing or not firing. The

rapid rise in response can be approximated by a unit step, and the

two-state neuron model can be represented by
%,

Vi = 1 if iTijVj + Ii > ui (3.3)
j

Vi 0 ifZTijVj + Ii < ui (3.4)

where ui represents the threshold potential and is equal to zero.

15
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The Hopfield discrete neural network model uses the principle

of content addressable memory in recalling storage of memory.

Since an entire learned pattern is stored in the Tij matrix

between interconnected neurons, then the model should converge to

this memorized pattern when only a portion of the learned pattern

is placed before the network. Thus, the memory is addressable by

content and not location. More than one pattern can be learned and

stored in memory by the network. However, there is a limit to the

number of patterns that a constant size neural network can learn.

Since learned patterns of one shape represent noise to learned

patterns of another shape, there is a point at which the neural

network has a degradation in its ability to recall patterns stored

in memory. This is similar to the inability of the human brain to

recall previously learned detailed material due to information

A .% overload. When the learned synaptic weight matrix, Tij, has

reached this saturation point, the neural network will converge to

a shape which does not closely resemble any of the patterns stored

~in memory. Based on the general results of previous experimental

data, a general rule [12] that defines this saturation point is

k = 0.15 N (3.5)

where k represents the maximum number of patterns learned and N

represents the number of neurons in the neural network.

In addition to the assumptions previously mentio-ned in the

•, derivation of the algorithm for the discrete neural network model,
4,

16
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other simplifications to the operation of the biological neuron

were made. The model assumes that there is no time loss in

transmission from the output of one neuron to the input of

another. The current state potential (Si ) of a neuron is based

on the summation of its current inputs. Thus, the neurons previous

state potentials do not directly affect the current state

potentials. Like the biological neural network, the model can

assume random or asynchronous neural updates during which time a

neuron readjusts the firing rate (output) according to the current

state potential. However, for simplification in the computer

simulation of this thesis, neurons in the model network update

outputs simultaneously after each iteration.

3.2 The Hopfield Continuous Neural Network Model

. In 1986, J.J. Hopfield transformed his discrete neural network
.

model into the continuous form. The change of the continuous time

domain state potential Si(t), of a neuron in the network, is

described by the differential equation

,. , dSi(t) N Si(t)
Ci =Z-TijVj -i  i 1,N (3.6)

, dt J=1 Ri

where Ci represents the input capacitance to neuron i and Ri

-represents the input resistance to neuron i. Equation (3.6) can

easily be transformed to



~dgi(t) N

ij j  Ii - (1/RiCi)Si(t) (3.7)
dt j=l

i=l

where 1/RiCi represents the time constant for the refractory

period a neuron experiences immediately after firing. The impulse

response to Equation (3.7) is

~-(I/RC)t

h(t) = e t2.0 (3.8)

= 0 t<0

and is depicted in Fig. 3.3.

'h(t) I

-(1/RC)t

h(t)=e

Kt

Fig. 3.3 Impulse Response h(t) Vs. Time

This indicates that 1/RC is also the damping factor for the

response of the continuous differential Equation (3.7) which

represents the mechanics of a neural change of state. The effect

on the operation of the continuous neural network model, by

changing values of the 1/RC time constant, will be examined in the

computer simulation of the continuous model.

To convert Equation (3.7) from a differential equation

18



(continuous time domain) to a difference equation (discrete time

domain), the Euler Backward Formula is employed with the period

T=1.

Si(k) - Si(k-1) N Si(k)
=z---TijVj(k) + Ii  - (3.9)

T = 1 J=1 RC
i=i

Combining terms yields the difference equation

r ' RC N
Si(k) = [ TijVj(k) + Ii + Si(k-1) ] (3.10)

RC+1 J=l
i=1

where Si(k) represents the current state potential of neuron i

and Si(k-1) represents the previous state potential. Thus, the

current state potential, of a neuron, is based on the current

Sinputs plus the previous state potential and is affected by the

1/SC time constant representing the refractory period. As compared

to the discrete model, the continuous neural network mod! is a

closer approximation of the actual operation of a biological neuron

because of these features. All other portions of the discrete

model algorithm remain the same for the continuous model.

ON
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CHAPTER 4

EXPERIMENTAL COMPUTER
SIMULATION AND RESULTS

This three-part discussion will examine the computer simulation

and list the results for the Hopfield discrete and continuous

neural network models adapted for pattern recognition. The program

simulating the models was written in Fortran 77 [20] and compiled

on the Microsoft Fortran Compiler (V4). The Fortran code listings

for the 25 neuron, two patterns learned, discrete and continuous

models can be found in Appendix B. The program was executed on an

IBM XT compatible personal computer.

4.1 The Experimental Computer Simulation of the Models

Neural network arrays of 25, 49, and 100 neurons were examined

for both the discrete and continuous models. Only one neuron

occupied each row-column space in the array. These sizes were

*chosen due to the square array symmetry and the multiple sizes of

, two. The basic program consisted of two phases. The first phase

P was 3 learning and memorization of specified patterns. The second

*phase was a recognition .f the memorized patterns and recognition

* of distorted cross patterns, with and without noise added. Both

zlearned patterns and distorted cross patterns were varied in length

and width. A listing of patterns, by figure and neural network
.[-

array size, that were used in the computer simulation can be found

in Appendix A.
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The learning and memorization phase was identical for both the

discrete and continuous neural network models. Each network was

required to memorize two (cross and square), three (cross, square,

and X), and four (cross, square, X, and diamond) patterns in

separate exercises. This memorization process was started by a

cross-pattern array being placed in front of a neural network of

equal array size. Neurons directly opposite any portion of the

cross were excited to output (Vi=l). All other neurons remained
%

in the zero state (Vi=0). Equation (3.1) was then used to

determine the learned synaptic weight matrix A(I,J) for each neuron

in the network. This same procedure was followed for each

additional pattern the network was required to memorize. After the

last required pattern had been memorized, a final learned synaptic

Aweight matrix T(I,J,K), for every neuron, was summed from the

"V previously learned synaptic weight matrices that represented the

patterns. This memory matrix T(I,J,K) was brought forward into the

second phase of the computer simulation.

The pattern recognition phase for the discrete neural network

model was conducted in the following manner. Initially, all

S. previously learned patterns, from phase one, were read into

appropriate identification arrays for comparison with the converged

(" neural network output pattern array, HOP(I,J). The first learned

pattern was then read into the pattern to be recognized array,

PAT(i,J). On the first iteration, the only input affecting the

neural state potential array, S(I,J), was the input current Ii ,

from ?AT(I,J). All neurons that saw a bit of the pattern would

21



have the state potential raised to a value of +1. All other

neurons in the network remained at zero potential, as per Equation

(3.2). All neural state potentials, S(I,J), were compared with the

threshold potential equal to zero. If the neural state potential

was greater than zero, it would be considered in the excited state

and would be given an output value of +1 in the neuron output

matrix, V(I,J), as per Equations (3.3) and (3.4). The neuron

output matrix, V(I,J), was stored in the network output matrix,

HOP(I,J). On the second iteration, each neuron in the network was

assigned a product matrix, PROD(I,J,K). The product matrix held

the values of all inputs to neuron i due to the outputs from the

other neurons j times the individual learned synaptic weights

T(I,J,K) associated between neuron i and the neurons j. These

input products for neuron i were added, and the value stored in

" matrix SUM(I). The input sum value was added to the input current

from matrix PAT(IJ), for the neurons i seeing one bit from the

pattern to be recognized. The summatiom was the updated state

potential value S(I,J) for each neuron in the network array, as per

' * Equation (3.2). The values of the preevaluated neuron output

matrix, V(I,J), were stored into the network output matrix HOP(I,J)

for a future test of convergence.

The updated neuron state potential matrix, S(IJ), was

'evaluated, as per Equations (3.3) and (3.4). The neuron output
, ".

matrix, V(I,J), was updated accordingly and compared to the

" . preevalauated network output matrix, HOP(I,J). If both matrices

-matched, the diecrete neural network model had converged and

.22
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produced an output pattern, from the neurons, contained in the

network output matrix, HOP(I,J). Convergence also implied that the

model was stable under the specific test condition. Normally, the

model had not converged on the second iteration, and a tzhird

iteration was initiated. At the beginning of the third iteration,

the neural state potential matrix S(I,J) was printed. Observations

y concerning the behavior of this matrix and its effect on the

pattern recognition capability of the model will be covered in
IS4'

Chapter 5. The remainder of the third iteration was identical to

~ the second iteration. The discrete model continued to iterate

until the comparison test for convergence was passed. It was

observed throughout the course of many experiments that if the

network model had not converged by the seventh iteration, it

- oscillated between two totally different neuron output patterns and

was considered unstable under that specific test condition. The

neuron output patterns were viewed by printing the neural network

output matrix, HOP(I,J), at iterations 50, 51, and 52. The neural

network model was stopped at iteration 100 and redirected to the

next test pattern.

Once the discrete neural network model converged to a

particular network output pattern in HOP(I,J'), this matrix

was compared to each of the memorized pattern matrices learned in

the first phase of the computer simulation. The criterion used for

~ a pattern to be recognized was 100% for all bits between the two

* matrices. This criterion was the simplest to use because the

Hopfield discrete and continuous neural networks behaved as an all

23
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or nothing type of network. Either the network converged to an

exact image of a previously learned pattern, or, the network

diverged to a pattern that had no resemblance to any pattern

memorized in the first phase of the program. After the comparison

was made for pattern recognition, the network output matrix,

HOP(I,J), and the number of iterations required for convergence

were printed. The discrete neural network model would then read

the next previously memorized pattern into matrix, PAT(I,J), and

would begin the process of pattern recognition.

0 0 1 0 0 0 0000 0 0 1 0
00100 00000 00010

00100 00000 00010
00100 00100 0 0100

CROSS CROSS CROSS
(LEARNED) (NN) (NC)

Fig. 4.1 Learned, No Noise (NN), Noisy (NC) Crosses

After all previously learned patterns from the first phase had

passed through the network, the discrete neural model was tested

for its ability to recognize distorted cross patterns. As depicted

in Fig. 4.1, two types of distortion were used and tested. The

first type of distortion was a top-down-left-right ordered removal

of bits from a cross pattern. This type of distorted cross pattern

. was termed and listed, in the results, as the no noise (NN) cross.

No noise cross matrices were presented to the neural network model

01, only during the pattern recognition phase of the program. The

neural network model tried to recognize the distorted cross pattern

24
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by the same procedure previously mentioned in this section. The

desired result was for the model to recognize the no noise cross

pattern as the memorized cross pattern learned during phase one. I

No noise cross patterns of proportions different from the memorized

cross patterns were also used to see if the neural network model

pattern recognition capability could be enhanced. The neural

network model was defined as unstable (US) for a specific test

condition if it oscillated on more than 50% of the no noise cross

patterns presented. The neural network model was defined as

~ semistable (SS) for a specific test condition if it oscillated on

less than 50% of the no noise cross patterns presented. The model

was defined as stable (S) if there were no oscillations. In all

cases, the no noise cross patterns were presented to the neural

network until the network failed to recognize two specific patterns

as the memorized cross pattern.

The second type of distortion was a top-down to the right

ordered movement of bits in a cross pattern. This type of

distorted cross pattern was termed and listed in the results as the

noisy (NC) cross. The movement of one bit to the right of its

position in the pattern caused one normally excited neuron to be

initially turned off and one normally unexcited neuron to be

initially turned on. Thus, there was a double effect on the

network with every bit moved. The procedure for evaluating the

ability of the discrete neural network to recognize the noisy cross

pattern was the same procedure explained for the no noise crose

pattern.
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As previously stated, the learning and memorization phase was

identical for both the discrete and continuous neural network

models. There were two required additions for the continuous

neural network model during the pattern recognition phase. As per

Equation (3.10), the time constant 1/RC and the previous state

"- potential PS(I,J) were added into the calculation of the update to

the state potential S(I,J). For each specific test condition, the

continuous model was evaluated with the time constant 1/RC assigned

values equal to zero, one, and 2000.

The codes used in the result tables for the discrete and

continuous neural network models are as follows:

-
1. Column Headings

C = Cross pattern

- S = Square pattern

i. X = X pattern

D = Diamond pattern

NN = Maximum number of removed bits for no noise
cross in which pattern was still recognized

-NC Maximum number of moved bits for noisy cross

in which pattern was still recognized

AINN Average number of iterations to convergence on
.* no noise cross patterns

AINC = Average number of iterations to convergence on
noisy cross patterns

26
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N

SNN = Stability of model on no noise cross
patterns

SNC = Stability of model on noisy cross
patterns

2. Row Headings

# PAT = Number of patterns memorized in first
phase for the test

1/RC=# = Value of time constant used for the test

ORG = ORG pattern used for memorized, no noise
cross, and noisy cross patterns

THIN = THIN pattern used for memorized, no noise %
cross, and noisy cross patterns

MED MED pattern used for memorized, no noise
cross, and noisy cross patterns

PROP = PROP pattern used for memorized, no noise
cross, and noisy cross patterns

MED-THIN = MED patterns memorized in first phase;
THIN no noise and noisy cross patterns
used in recognition phase

PROP-ORG = PROP patterns memorized in first phase;
ORG no noise and noisy cross patterns
used in recognition phase

PROP-THIN = PROP patterns memorized in first phase;
THIN no noise and noisy cross patterns
used in recognition phase

PROP-MED = PROP patterns memorized in first phase;
MED no noise and noisy cross patterns
used in recognition phase

27
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a %: 3. Table Entries

Y = Specific memorized pattern in first phase was
recognized in second phase

NN = Specific memorized pattern in first phase was
not recognized in second phase

V.

" S = Model stable under the test condition

SS = Model semistable under the test condition

NS = Model not stable under the test condition

4.2 The Hopfield Discrete Neural Network Results

N [The following section lists the results obtained from the

computer simulation of the Hopfield discrete neural network models

of 25, 49, and 100 neurons. The pattern matrix arrays used in the

test are listed in Appendix A. The Fortran code listing for the

discrete neural network model is listed in Appendix B. An

explanation of the codes used is located in the previous section,

25 NEURONS DISCRETE
., .

C S X D NN NC AINN AINC SNN SNC

2 PAT [ORG]Y Y 7 3 3.0 7NA 5 SS

3 PAT [ORG] Y Y Y 6 0 3. IN/A S INS

4 PAT [ORG] Y Y Y Y16 0 3.5 15.0S S

** ..2%w' 9.'
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49 NEURONS DISCRETE

C S X D NN NC AINN AINC SNN SNC

2 PAT [ORGI Y Y 7 3 3.0 3.0 S SS

3 PAT [ORG] Y Y Y 6 0 3.0 4.0 S S

4 PAT [ORG] Y N Y Y13 0 4.0 5.0 S S

2 PAT [THIN] Y Y 11 3.0 S ss

3 PAT [THIN] N NN 0 0 4.0 4.0 S S

4 PAT [THIN] Y Y N Y 11 0 3.5 4.0 S S

2 PAT [PROP] Y Y 19 6 3.0 3.0 S S5

3 PAT [PROP] Y Y Y 18 5 3.0 3.5 S S

4 PAT [PROP] Y Y Y N 17 4 3.0 4.0 S S

2 PAT [PROP-ORG] Y Y 4 3.0 SS

3 PAT [PROP-ORG] Y Y Y 3 4.0 S

4 PAT [PROP-ORG] Y Y Y N 3 3.5 S

PAT [PROP-THIN] Y Y 5 3.0 SS

- 3 PAT [PROP-THIN] Y Y Y 5 3.5 S

4 PAT [PRCP-THIN] yy y 2 4.0 S

* 100 NEURONS DISCRETE

C S X D NN NC AINN AINC SNN SNC

2 PAT [THIN] Y Y 111713 3.0 3.0 S SS

3 PAT [THIN] N N N N 0 4.0 4.0 S S

4 PAT [THIN] N N N N 10 5.0 5.0 S S
;r

2 PAT [MED] YIY 131 15 3.0 3.0 S SS

3 PAT EMED] Y Y'Y 27 2 3.0 3.5 S S

4 PAT CMED] iY Y IN Y12712 13.0 4.0 CS IS

.9
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100 NEURONS DISCRETE (Cont.)

I
C S X D NN NC AINN AINC SNN SNC Ile

2 PAT [PROP] Y Y 41 12 3.0 3.0 S SS

3 PAT [PROP] Y Y Y 38 10 3.0 3.0 S S
""4 PAT (PROP] N Y Y N 0 0 5.0 4.0 B S

2 PAT [MED-THIN] Y Y 8 3.0 SS

3 PAT [MED-THIN] Y Y Y 1 3.0 SS

4 PAT [MED-THIN] Y Y N Y 4 3.0 S

2 PAT [PROP-THIN] Y Y 8 3.0 SS

3 PAT [PROP-THIN] Y Y Y 7 3.0 S

4 PAT [PROP-THIN] N Y Y N 0 6.0 S

2 PAT [PROP-MED] Y Y 11 3.0 SS

. 3 PAT [PROP-MED) Y Y Y 9 3.0 s

PAT [PROP-MED] N Y YN t0 6.0

4.3 The Hopfield Continuous Neural Network Results

The following section lists the results obtained from the

computer simulation of the Hopfield continuous neural network

models of 25, 49, and 100 neurons. The pattern matrix arrays

used in the test are listed in Appendix A. The Fortran code K-

listing for the continuous neural network model is listed in

Appendix B. An explanation of the codes used is located at the

beginning of this chapter.
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25 NEURONS CONTINUOUS

C S X D NN NC AINN AINC SNN SNC

2 PAT 1/RC=0 YY 7 3 3.0 3.0 S SS

EORG I/IRC=I Y Y 7 3 3.0 3.0 S SS

1/BC=-2000 Y Y 7 3 3.0 3.0 S SS

3PAT I/RC:O Y 16 3 3.0 4.0 1S S

[ORG] 1/RC=I Y Y Y 6 3 3.0 4.0 S S

1/RC=200 Y Y Y 6 0 3.0 4.0 S NS

4 PAT 1/RC=0 Y Y Y Y 6 1 3.5 4.0 S S

[ORGI 1/RC= Y Y Y Y 6 1 3.5 4.0 S S

1/RC=2000 Y I Y 6 0 3.5 5.0 S S

49 NEURONS CONTINUOUS

C S X D NN NC AINN AINC SNN SNC '5

2 PAT 1/RC=O Y 1 3,0 3.0 s ss

[ORGI 1/RC=I Y Y 7 3 3.0 3.0 S SS

1/RC=2000 Y Y 7 3 3.0 3.0 S SS

3 PAT 1/RC=0 Y YY 6 0 3.0 5.0 S S

[ORGI 1/RC=I Y yy 6 0 3.0 4.0 S S

1/RC=2000 Y YJY 6 0 3.0 4.0 S S

4 PAT 1/RC=0 Y NJYJY 3 0 4.0 4.0 S S

[ORGI 1/RC=I Y NIY Y3 0 4.0 5.0 S S

1/RC=2000 Y N Y Y 3 0 4.0 5.0 S S

2 PAT 1/RC=0 Y Y 11 3 3.0 3.0 S SS

[THIN] 1/RC=I Y Y 11 3 3.0 13.0 S S

I3I/RC2@ZOY YI 11 313.@13.@ S SS.-1

S.. S.-
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49 NEURONS CONTINUOUS (Cont.)
p

C S X D NN NC AINN AINC SNN SNC

3 PAT !/RC=0 N NN 0, 0 5.0 5.0 S S

[THIN] 1/RC=1 N N N 0 0 5.0 5.0 S S

1/RC=2000 N N N 0 0 4.0 4.0 S S

4 PAT 1/RC=O Y Y N Y1110 13.5 4.0 S S",

[THIN] 1/RC=I Y Y N Y 11 0 3.5 4.5 S S

1/RC-2000 Y Y N Y I11 0 3.5 4.0 S S I• I;!
2 PAT 1/RC=O Y Y 19 6 3.0 3.0 s Ss

[PROP] 1/RC:I Y Y 19 6 3.0 3.0 S SS

1/RC=2000 Y Y 19 6 3.0 3.0 S SS

3 PAT 1/RC:Z Y YY 1 55 3.0 3.5 S S

[PROP] 1,IRC=I Y Y 3.0 3.0Y5NS

Y .,84 3.0 3.0 S S -
1/RC=2000 Y Y YN 17 5 3.0 4.0

4 PAT 1/PC~ IY.IN~I174. 0  3.0 S {

. [PROP] 1/ IR C1=I YjYYNj 14 13.0 3. SS

.

1/C=2000 YIY YIN11714 3.0 4.0 SS 1

2 PAT /'RC:0 y 1 3.0 1

""lR =Z lOvyy00 14 3 .4 0 Ss

3 PAT l' -f ly 13 4.0"

C*h FF F -R :YIYI j4.

4.41 Y YY 35 S.

O• i4.01 .

[4 CP-IG !/7 I '7 =0 yl 'N 1s! 13 S '
.
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49 NEURONS CONTINtOUS (Cont.)

C S XDNN NCAINN AINC SNNSNC

2 PAT 1/RC=O Y Y 5 3.0 SS

[PROP-THIN] 1/RCz1 Y Y 5 3.0 SS

1/RC=2000 Y Y 5 3.0 SS

3 PAT I/RC=0 Y Y Y 5 3.0 S Np

[PROP-THIN] I/RC=! Y Y Y 5 3.0 S

1/RC=2000 Y Y Y 3.0 S

4 PAT 1/RC=O Y Y YIN 2 3.0 S

[PROP-THIN] 1/RC:1 Y Y Y N 2 3.0 S

1/RC=2000Y YYN 2 4.0 S

100 NEURONS CONTINTTOUS

C S X D NN NC AINN AINC SNN SNC

2 PAT 1/RC=0 Y YJ 1117.3 3.0 3.0 ss[THIN]A I/RC:l Y YJ 1117 3 3.0 3.0 S SS '

1/RC=2000 Y Y 17 3 3.0 3.0 S SS

3 PAT 1/RC=0 N NN 10 0 4.5 4.5 S S

[THIN] I/RC:I N N IN 0 4.0 4.0 5 S .e

1/RC=2000 N NIN 10 0 4.0 4.0 S SI

4 PAT 1/RC=O NNINN0 0 4.04.0 S S

eu. [THIN] 1/RC=I N NN N 0 o 6.0 6.0 S s

21/RC=2000 N N N N 0 0 5.0 15.0 s s

-" I -,"'2 PAT Ii'RC:o ly yJ 31 15 3.0 3,0 s I SS .

" [MED] !/RC=: IY Y 31 15 3.0 3.0 5 SS

I/RC= 2,00 553115
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0 0 NFU F -N 0 N T 1N U S (C,-,n.

C S X D NN NC AINN AINC SNN S5NC

3 PAT 1/PC~o Y l0 1" 712 3.0 3.0 S S

[NED] 1/PC=1. Y Y Y 2 3.0 3.0 S S

1/FC=2000 Y Y Y127 2 3.0 3.0 S S

4 PAT 1/RC=O lY YIN Y127 23.0 4.5 S

[NED] 1/RC=1 Y YIN Y 2?7 2 3.0 4.5 S

1/PC=2000 Y Y N Y 27 2 3.0 4.5 S S

2 PAT 1/RC=0 Y Y 41 12 3.0 3.0 S 55S

[PROP] 1/BC=1 Y YJ 41 1213.0 3.0 S 5

1/PC=24000 Y Y 41 12 3.0 3.0 S SS

*3 PAT 1/RC=0 Y Y YJ 38 10 3.0 3.0 S S

[PROP] 1/RC~1 Y Y Y 38 10 3.0 3.0 S S

1/RC=2000 Y Y Y 138 1013.0 3.0 S S

4 PAT 1/RC=0 NY Y N0 0 13.5 3.0 S 5

[PROP] l./RCz1 N Y YN0 0 3.5 3.0 S S

1/RC=2000 NY Y YNO 0 13.5 3.0 S IS

2 PAT 1/RC=0 Y YJ 8 3.0 SS

*7[MED-THIN] 1/RC=1 l 3.0 S5

*1/RC=2000 Y Y 8 3.0 SS

3AT 1/C0YY1 3.0

CM[ED-THIN] 1/RCz1 Y Y Y 1 3.0 IS
1/RC=2000 Y Y Y 1 30S

4 *4PAT 1/RC=0 Y Y NY 4.

LMED-THIN] 1/RCz1 Y Y N Yi 4 __ 3.5 I
1/RC=2000 ~YY 4 3.5 s
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100 NEURONS CONTINUOUS (Cont.)

C S X D NN NC AINN AINO SNN SNC

2 PAT 1/PC=0 Y Y 8 3.0 5

[PROP-THIN] 1/BC=l Y Y 8 3.0 SS

1/RC=2000 Y Y 8 3.0 SS

3 3PAT 1/RC=0 YY Y 7 3.0

[PROP-THIN] 1/RCz1 Y Y YJ 7 1 3.0 IS I

1/PC=2000 Y Y Y 7 3.0 S

4 PAT 1/RC=0 N YlYN ~0 __4.5 S

[PROF-THIN] 1/RCz1 N YIY NJ 10 1 4.5 S
1/RC=12000 N YYN 1 0 4.5S

2 PAT 1/RC=O Y Y 11 3.0 SS

[PROP-lIED] 1/RCzl Y Y 11 3.0 SS

1/RC=2000 Y Y 11 3.0 S5

3: ~ PAT 1/RC=0 V.yYY 9 3.0 S

[PROP-lIED] 1/RC=1 Y Y Y 9 3.0 S

1/RC=2000 Y Y Y 9 3.0 S
4 PAT 1/?C=0 N yYYNJ 0 4.5 IS

[PROP-MED] 1/RC~1 N Y Y N 10 4.5 S

1/RC=2000 N Y Y N F0' 4.5 S



CHAPTER 5

OBSERVATIONS AND CONCLUSIONS

* In this six-part section, results obtained for both the

H-opfield discrete and continuous neural network models are

discussed. Based on these observations, conclusions are made about

the internal properties and external factors that greatly affect

the ability of the Hopfield models to memorize and recognize

patterns. A comparison is made of the Hopfield discrete and

continuous neural network models, and their capabilities are

discussed.

5.1 Observations of Discrete Results

The following is a list of observations on the performance of

the Hopfield discrete neural network model:

1. The pattern recognition capability of the model is

increased, more than 100%, i4f no noise is added to the pattern to

be recognized.

2. Increasing the magnitude (number of bits) of a

pattern, for a particular number of neurons, will substantially

improve the pattern recognition capability of that set of neurons.

3. Given a particular pattern or patterns learned,

increasing the number of neurons of the model will not increasetn
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pattern recognition capability for the same particular pattern or

patterns. In fact, it will decrease the pattern recognition

capability as the number of patterns learned is increased.

4. Increasing the magnitude (number of bits) of a learned

particular pattern, for a given number of neurons, will

substantially improve the performance of the model in recognizing a

smaller version of the same pattern. However, this increase will

not be as great as increasing, to the same proportion, both the

magnitude of the pattern learned and the magnitude of the pattern

to be recognized.

5. Increasing the number of neurons and the magnitude

(number of bits) of the pattern, proportionally, will improve the

performance of the model more than the changes in Item 4 above.

* However, if the increase in the number of neurons and bits of a

* pattern is not proportional, then there will be a greater decrease

in the performance of the model than the changes in Item 4 above.

6. Increasing the number of patterns learned, for a

particular set of neurons, will increes-e the stability of the model

and will increase the number of iterations required to reach

stability. However, it will also decrease the pattern recognition

jb capability of the model.

7. Increasing the number of patterns learned will

decrease the capability of the model to recognize the original

learned patterns. However, models with a smaller number of neurons~

are more capable of recognizing an increased number of learned

patterns which is in contradiction to Equation (3.5).

4 *



5.2 Discussion: Discrete Neural Network Model

The following is a discussion about the Hopfield discrete

4N neural network model based on the results obtained:

1. As noise is introduced into a pattern to be

recognized, for a particular set of neurons, the number of

incorrectly turned-on neural states increases and the pattern

recognition capability of the model decreases. This is

accomplished through the neural interconnections and the learned

synaptic weights. When a noiseless distorted pattern to be

OF recognized is presented to the model, the only neurons in the on

(positive) state are those that correctly represent portions of the

learned pattern. These neurons will excite (turn on) the neurons

in the incorrect off state through the Positive learned synaptic

weights while keeping the correct unexcited neurons in the off

* state through the negative learned synaptic weights. As noise is

added into a pattern to be recognized, the number of incorrectly

.* turned on neurons is increased. There will be an increased

* inhibitory effect on all neurons which are correctly in the on

state or should be in the on state through the negative learned

synaptic weights. The strength (value) of the excited neural

states will decrease while the strength (value) of the unexcited

neural states will increase. Thus, there is a greater effect

forcing the neurons in the on state to the off state while keeping

the remainder of the neurons in the off state.

2. As the magnitude (number of bits) of a learned pattern

increases for a given number of neurons, the number of neurons
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that see and remember a portion of the pattern increases. The

pattern recognition capability of the model will be increased.

through the neural interconnections and the learned synaptic

weights. When a distorted pattern to be recognized is presented to

the model, there are more neurons that will correctly identify

those portions of the learned pattern which appear. After summing

initial neural outputs multiplied by their learned synaptic

weights, neurons that are in an incorrect on or off state will be

driven to the correct state because of the increased positive or

negative value of the summation. A neuron that is in the initial

incorrect off (negative) state will be turned on, in future states,

by the increased number of correct on neurons, which will produce a

larger excitatory (positive) value through their learned synaptic

weights. This holds true when the pattern to be recognized is

proportional to the pattern learned.

When a smaller pattern in magnitude than the learned

pattern is placed before a given number of neurons, a similar

~' V reaction occurs. Since the learned pattern is larger in magnitude,

there is a greater number of neurons that will recognize a portion

of the pattern and will have a positive learned synaptic weight

interconnection. Thus, even though the pattern presented to the

model is small, it excites a larger group of neurons which will

support each other through future state changes. The model will be

able to recognize a more distorted version of a particular pattern

than it would be able to if the learned pattern were small and

equal in size to the presented pattern. However, the pattern
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recognition capability of the model, in this situation, is not as

effective as it would be if the magnitude of the pattern presented

was increased in proportion to the learned pattern. The strength

(value) of the excited neural states is not as great as it would be

in the proportional case. Thus, it would take less noise added,

into the observed pattern, to drive the weaker excited neural
* 0

states into the off state. This same reasoning explains why the

pattern recognition capability of the model is increased by

proportionally increasing both the number of neurons in the model

and the magnitude of the pattern and why the pattern recognition

-apability of the model is not increased by increasing the number

of neurons of the model while maintaining a given pattern at the

same magnitude.

3. As the number of learned patterns is increased, the

stability and the number of iterations required to reach stability

L are increased for the model. However, the pattern recognition

capability of the model is decreased. As additional patterns are

V learned by a given number of neurons, the strength (value) of the

learned eynaptic weights is not a proportional + 2, 1, or 0, as it

would be for only one or two patterns learned. There is a large

* variation in the values of the learned synaptic weights between

neurons. The large variation between initial neural states require

more iterations to reach stability. Noise added into a given

pattern has a greater effect because of the larger variations in

* value of the learned synaptic weights. The large variations cause

wider swings in neural states as the model iterates. There w"l be

40
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an increase in the number of iterations to stability and a decrease

in the pattern recognition capability of the model as neurons,

N which should be in the excited state, are forced into the off state

and vice versa. As more patterns are learned, the bits that

.1 represent these patterns are noise to other patterns and distort

the internal memory (learned synaptic weights) of the model. Thus,

there is a decrease in the number of original learned patterns that

the model can recognize. However, the advantage in this situation

is that the model is more stable. With small variations of state,

certain neurons oscillate between the on and off states because of

* low-valued incoming learned synaptic weights. These neurons will

be forced to the on or off state because of large variations in

state forced by large-valued and large-varied incoming learned

synaptic weights. The effect can be attributed to the number of

patterns learned and to the number of neurons available in a given

model. A smaller number of neurons available to the model causes

the summation of incoming learned synaptic weights to be less and

enhances the opportunity of a neuron to oscillate between the on

and off states because of smaller variations in state. Thus, the

model is less stable than one with a larger number of neurons.

However, this smaller variation in neural state will increase the

capability of the model to recognize a g-ater number of learned

patterns. Neurons that should be in an on state will not be driven

deep into the off state because of a large-valued summation of

learned synaptic weights and vice versa. Thus, more learned

~ '~, patterns are reccgnized.
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5.3 Observations of Continuous Results

The observations for the continuous model are the same for the

discrete model with the following additions:

1. The value of the time constant (1/RC) affected the

pattern recognition capability of the model with the smallest

number of neurons as the number of learned patterns increased.

This behavior was not evident in the 49 neuron or 100 neuron

modls.2. In the 25 neuron and 49 neuron models, there was a

slight increase in the number of iterations required to reach

steady state when the models attempted to recognize a noisy cross

'a pattern versus a noiseless cross pattern. This behavior was not

evident in the 100 neuron model.

3. As the value of the time constant (1/RC) increased for

the 49 neuron model, there was both an increase and decrease in the

number of iterations required to reach steady state. This behavior

was not evident in the 100 neuron model, and there was only one

case in the 25 neuron model.

5.4 Discussion: Continuous Neural Network MIodel

The following is a discussion about the Hopfield continuous

neural. network model based on the results obtained:

1. For the continuous model, the noise, magnitude, and

number of 'Learned patterns and their relationships with the pattern

recognition capability, stability, and number of neurons in the
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model are virtually the same as for the discrete model. The only

differences are the introduction of the time constant tl/RC) and

the new neural state is determined partially by the magnitude of

the previous state.

2. The time constant (1/RC) affected the pattern

recognition capability of the 25 neuron model. As previously

lap mentioned, the time constant is the damping factor for the impulse

response of the continuous differential equation which represents

the mechanics of a neural change of state. It also represents the

refractory period of a neuron. During this period, any changes to

the external stimulus will have no effect on the output or state of

a neuron.

1h(t)i
1 l/FC=0

I'-

1/RC:2000

t

, Fig. 5.1 Impulse Response h(t) Vs. Time

As depicted in Fig. 5.1, an increase in the time constant

-,'.C) increases the iamping factcr and shortens the refractory

'V4



period for a neural change of state. Thus, a neuron will change

state more quickly with an increase in the time constant. For 25

neurons, as the time constant increased, the ability to recognize a

noisy cross was decreased. Therefore, a longer refractory period

for the neurons increased the pattern recognition capability of the

25 neuron model. It is believed that the longer refractory period

stops the critical neurons, that are in the correct on state, from

I being driven into the incorrect off state by neurons that are

incorrectly turned on through added noise. Since the 25 neuron

i model is the smallest model, the magnitude of the state of each

neuron has a smaller value. Thus, it is closer to the zero value

. -. decision point. Added noise will have a greater effect on a

critical neuron Jumping into an incorrect state through the

negative (inhibitory) value received through its learned synaptic

weight with the incorrectly turned on neurons. The longer

refractory period, for these critical neurons, delays this change

and allows the model to correctly ccnverge on noisier patterns.

3. The time constant (1/FC) did not affect the pattern

recognition capability of the 49 neuron and i00 neuron models. The

increased number of neurons available to the model causes the

summation of incoming learned synaptic weights to increase. Thus,

. the overall value of the state is increased. As depicted in Fig.

5.2, the magnitude of the neural state is changed by increasing or

decreasing the value of the time constant (1/BC). However, due to

the increased value of the summation of inputs, the magnitude of

the neural sa....e will remain farther away from the zero value
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Fig. 5.2 State Value Vs. Time Constant

decision point. The process is enhanced by the fact that the new

neural state is also based on the value of the old neural state.

With the magnitude of the previous state increasing, the value of

the summation increases. Thus, critical neurons are driven more

quickly into a stable on or off state that will not be affected as

. readily by a change in the value of the time constant.

4. It is believed that the time constant did affect the

number of iterations required to reach steady state for the 49

.~ neuron model; however, there was no set pattern of increase or

decrease to explain how it was affected. Further research is

required in this particular area.
--

5.5 Comparison of Discrete and Continuous Results

5' The following is a list of comparisons on the performance of

the Hopfield discrete and continuous neural network models:

1. The 25 neuron continuous model, with two patterns

.45
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learned, acted identically to its discrete counterpart.

2. The 25 neuron continuous model, with three patterns

learned, had an increased pattern recognition capability, compared

to the discrete counterpart, of three additional bits of the noisy

cross and an increase of one iteration to stability when a smaller

• z value of the time constant (1/RC) was applied. With the time

constant at its largest value, the continuous model had the same

pattern recognition capability but took one additional iteration to

reach stability.

'3. The 25 neuron continuous model, with four patterns

, learned, showed the same behavior as the discrete counterpart;

except, there was an increased pattern recognition capability of

one additional bit of the noisy cross when a smaller value of the

time constant (1/BC) was applied.
4. The 49 neuron continuous model acted in the same

° manner as the discrete counterpart with the only difference being a

few sporadic changes in the number of iterations to steady state.

. 5. The 100 neuron continuous model also acted in the same

manner as the discrete counterpart. However, the continuous model,

with three MED patterns learned, was more stable than the discrete

model while recognizing THIN noisy crosses. The continuous model

also, on an average, took one less iteration to stability when it

had learned four MED or PROP patterns.

6. All continuous models, independent -f the number and

type of patterns learned, had the same pattern recognition
'

capab'lity as the discrete models when the time constant (I/PC)
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was at the largest value. The only differences were a few sporadic

changes in the number of iteraticns to steady state.

5.6 Discussion: Discrete and Continuous Models

The following is a discussion about the Hopfield discrete and

continuous neural network models based on the comparisons of

performance:

1. The continuous model is a better representation of the

internal operation of a biological neuron (as we know it) and of

* the interaction between neurons that form a basis of memory and

pattern recognition in the brain. The continuous model contains

the refractory period that occurs in a biological neuron. The

continuous model bases the value of the new neural state partially

on the value of the previous state. Upon firing, the neural state

ypotential does not instantaneously drop to the uncharged state of

-70 mV which occurs in the discrete model when the neural state

,, instantaneously goes to zero upon firing.

;7 2. Because of the better representation of a biological

neuron, the 25 neuron continuous model had an increased pattern

* irecognition capability compared to that for the discrete

counterpart. For the same reasons explained in Section 5.4 of the

continuous model, the longer refractory period experienced, due to

* the smaller values for the time constant (1/RC), enhanced the

ability of the smaller neuron model to recognize noisier crosses

after it had learned three and four patterns. The same model, wth
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only two patterns learned, did not show this increased ability due

to the instability of all models with only two patterns learned.

The summation value of the incoming learned synaptic weights

multiplied by the outputs of the adjacent neurons was not

sufficient to drive the neural states far enough away from the zero

value decision region. Thus, critical neurons would oscillate near

or would be incorrectly driven across this decision line.

3. As the number of neurons was increased, the pattern

recognition capability of both the continuous and discrete models

Swas the same. As explained in Section 5.4 of the continuous model,

the time constant (1/RC), in this situation, had virturally no

effect on the model due to the increased magnitude of the neural

state values. Again in the continuous case, the addition of the

previcus neural state value helped to counterbalance the reduction

8in state value experienced by the multiplication of the summation

of inputs by the value of RC/RC+I. Without the effect of the time

constant (1/RC), the calculations of the continuous and discrete

neural states were virtually the same.

4. Because of the better representation of a biological

neuron, the 100 neuron continuous model was more stable compared to

the discrete counterpart. As in Number 3 above, it was concluded

that the addit'Lon of the previous neural state value, whi~h

increased the magnitude of the neural state values, was large

enough to initially drive the critical neurons in.o a steady state

region on either side of the zero decisIon .ai..e region. An

example of this was the three-pattern MED-THIN test which showed
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the continuous model to be stable while the discrete model was

semistable. Since the learned patterns were not proportional, the

* value of the incoming excitatory (positive) summation was lower in

magnitude; therefore, the model had an increased chance to go

unstable with critical neurons oscillating across the zero decision

value region. The continuous model also had increased stability

for it took one less iteration to reach steady state when four PROP

learned patterns were used.

5. In all cases, the continuous model had virtually the

same results as the discrete model when the largest value of the

.. time constant (1/RC) was used. The discrete model was based on no

refractory period occurring in the neuron. Thus, neurons could

change their states and outputs instantaneously. The largest value

of the time constant (1/RC), in the continuous model, represented

the shortest refractory period a neuron could have. It also

represented the strongest damping factor that the impulse response

to the continuous differential state change equation could have.

Thus, with a shortened response to an input, the system was able to

recover quickly to its original steady state before the next input

to the system. Based on these observations and the results

" .- obtained from the continuous model using the large-valued time

constant, Hopfield's continuous and discrete models are analogous

in their respective domains.
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APPENDIX A

COMPUTER
TEST PATTERNS

This appendix lists the pattern matrices used for the computer

~ simulation of the models. Pattern matrices are listed by figures

A.1 - A.7. Each figure represents specific named pattern matrices

and the size of neural network in which the matrices were used.

The same pattern matrices were used for both the discrete and

continuous neural network models.

00100 11111 10001 00100
00100 10001 01010 01010

.. 11111 10001 00100 10001
'~00100 10001 01010 01010
4,00100 11111 10001 00100

CROSS SQUARE X DIAMOND

Fig. A.1 25 Neuron ORG Pattern

. '0000000 0000000 0000000 0000000
0001000 0111110 0100010 0001000

'0001000 0100010 0010100 0010100
0111110 0100010 0001000 0100010
0001000 0100010 0010100 0010100

*0001000 0111110 0100010 0001000
00000000000 0000000 0000000

CROSS SQUARE X DIAMOND

Fig. A.2 49 Neuron ORG Pattern
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0001000 1111111 1000001 0001000
0001000 1000001 0100010 0010100
0001000 1000001 0010100 0100010
1111111 1000001 0001000 1000001
0001000 1000001 0010100 0100010
0001000 1000001 0100010 0010100
0001000 1111111 1000001 0001000

CROSS SQUARE X DIAMOND

Fig. A.3 49 Neuron THIN Pattern

0011000 1111111 1100011 0001000
0011000 1111111 0110110 0011100
1111111 1100011 0011100 0110110
1111111 1100011 0011100 1100011
0011000 1100011 0011100 0110110
0011000 1111111 0110110 0011100
0011000 1111111 1100011 0001000

CROSS SQUARE X DIAMOND

Fig. A.4 49 Neuron PROP Pattern

0000100000 1111111111 1000000001 0000100000
0000100000 1000000001 0100000010 0001010000
0000100000 100000001 0010000100 0010001000
0000100000 1000000001 0001001000 0100000100

1111111111 1000000001 0000110000 1000000010
- 0000100000 1000000001 0000110000 1000000001

0000100000 1000000001 0001001000 0100000010
0000100000 1000000001 0010000100 0010000100
0000100000 1000000001 0100000010 0001001000

' 0000100000 1111111111 1000000001 0000100000

CROSS SQUARE X DIAMOND

Fig. A.5 100 Neuron THIN Pattern
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0000110000 1111111111 1000000001 0000110000
0000110000 1111111111 1100000011 0001111000
0000110000 1100000011 0110000110 0011001100 r
0000110000 1100000011 0011001100 0110000110
1111111111 1100000011 0000110000 1100000011
1111111111 1100000011 0000110000 1100000011
0000110000 1100000011 0011001100 0110000110

" 0000110000 1100000011 0110000110 0011001100
0000110000 1111111111 1100000011 0001111000

0000110000 1111111111 1000000001 0000110000

CROSS SQUARE X DIAMOND

Fig. A.6 100 Neuron MED Pattern

0000111000 1111111111 1100000011 0001110000

0000111000 1111111111 1110000111 0011111100
0000111000 1111111111 0111001110 0011111100

V 1111111111 1110000111 0001111000 0111001110
1111111111 1110000111 0001111000 1110000111
1111111111 1110000111 0001111000 1110000111

70000111000 1110000111 0001111000 0111001110
S000111000 1111111111 0011111100 001111110V

0000111000 1111111111 1110000111 0011111100
0000111000 III1111111 1100000011 0001110000

CROSS SQUARE X DIAMOND

Fig. A.7 100 Neuron PROP Pattern
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APPENDIX B

FORTRAN CODE LISTING
FOR HOPFLELD MIODELS

C************************HOPFIELD DISCRETE MODEL*~****************
C**** *~*~******* ***25NEURON - 4 PATTEFN*s************** ***

C

c INTEGER T(9-5, 5,5)

OPE (NIT1l, FILE='PATC', STATUS='OLD')
OPE NIT=92, FILE=*PATSQ', STATUS='OLD')
OPEN tJNIT=3, FILE=:PATX', STATVS=ZOLD)
OPEN 'NIT=4, FILE=.PATD , STATUS='OLDA
OPEN UNIT=5, FILE= ADATA', STATUS='OLD

OPEN UNIT=16, FILE=LPT1-: STATEIS='OLD'

CALLEARN (T)

CALPATRECOG (T)

END

C*****1 CMPUjTING LEARNED SYNAPTIC WEIGHTS PHiASE**************

SUBROUTINE LEARN (T)
C

DO 11 1=1 5

REWIND 1
DO 12 I=1,5

13 CONTINtE t
12 C"ONTINUE

J =0t014 J=1,5
DO 15 K=1:5
I=1+1
DO) 16 L=1,5
A-O 17 M-l 5

17 ~ A L =CNI~((2 V1(J,K)) -1) (2*V2(L,M)) -1

14 CONTINUE

019 K =1 5 .

A(I ,J,K,=0

19 CO "
15o CONtINUE

DO 20 1=1,5
20 CO AD' (V1(I,CT), J3=1,5)

'-o ONIK
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PEWIND 2
DO 21 I=1,5

vt I Ji*'
gQONT N6E

21 CONTINUE
1=0
DO 23 J=1,5
DO 24 K=1:5
I=I+1

DO 95 Ll1,5
DO t6 M1=l

1=1
09,7 J=1,5

29 EAD(3,*) Vllp z,5

B O 30 1 15DO 31 J=1:5

31 CONTINUE V(IJ

51((2 V(,I 2

34 CONTINUE

tP lull1
DO 36 J=1,5

37 %NTI N UE

38 CONTIWIE

DO 40 .j=1,5

1=0
DO 41 J=1,5

4 K=11,5
DO, 43 L=1.5
DO 44 M=1,5

44 +.L It 1  (
43 costmkT
41 CONTINUE

4% 1 CONTINUE .'%'A.~



a.. M ax mn..aaU~I

DO 45 J=1,5
DOD4 1

46 CONTINUIE

4 ~N 1 ,25

T KI A(13J7,K) + E(I,JK) +C(I,CJ,K) + D(I,J,K)

49***~****AT~ CEONIIO PAEN**t******k****

*0 45

1100 1P

SUBROTINE PTE T

FEADt4*) (PATD'IAS(I,J), J=,5)

14 D2, (PAT(I,J), J=1,5)
11 ONIE 0~IPTPTEN00%%~

READ63,) (PAT(I,J), J1,5)
15 CONT INt E %%O ,%,

MD 4 ) ( SADI(I,) J1,5)
13 CONINt

EI .Q.0 4H
DO 999 A1,)B0;HFIL UFJ S~LC



WRITE 16 1202) (O(,) z5
19 (ONT TNU I

ELSEITB.i .511) THEN
Ip 1* B=51 ;HOFFIELD OUTPUT IS AS FOLLOWS'

DO 90 11
00CONTI UE
20 ELSEI i.Q 52) THEN

WWPT±0 10 ,:* -B=52 ; HOFFIELD OUTPUT IS AS FOLLOWS-

:-DO 21 WRI

WR TE 10, * i"-B53 ; HOPFIELD OUTPUT IS AS FOLLOWS'
WFITE(10, 202) (HOP(I,J), J=1,5)

CONTINUE
WRITE' 10,*)'%%%%%%%%%%%%%% GOING TO NEXT PAT %%%%
GOTO §99

ED

DO 243 =zl25

23 CON

* DO 27 I=1,25

29RO DOtK}SU) + PBOD (J,K))

26 CONTINE

DO 30 1=1,5
S(J) SUIV(K) + PRT(IJ,)

31 CONTINUE
30 ~ D 30NT 1=1

N' J) =I jV (KA(I,J)
33 CONT U
32 CO0NTINUE

CO ?4I1,
DO 05.J=1, 5

IF (S(I,J).GT.0) THEN
V'I ,J)=

ELS9
ENDIF

DO 36 I1 ,DO 37 Jz1,t)
IF ,6" (V( EQ. HOF(I ,J) TH EN

ElLTGOTO 301
37 CONTTNL

'17 .59



36 CONTINUEC
DO 38 I=1,5
DO 39 J = 5

IF (8 i J).EQ.PATCF0SS(I,J)) THEN

ELSE
WRITE(10
WRITE (1.:0,*9 'CROSS NOT RECOGNIZED'

ENDIF
39 CONTINUE
38 CONTINUE

WRITE 10,*
' WRITE 10*) 'CROSS RECOGNIZED'

-' 95 0A4 iN

B O 41 =0t, E
IF(HOP±(DO f'EQ.PATSQ(DE)) THEN
ELSE

WRITE(10,*) ' SQUARE NOT RECOGNIZED'
GOTO 96

ENDIF
41 CONTINUE
40 CON TINUE

C WRITE(10,*) 'SQUARE RECOGNIZED'
996 DO 42 F=1,5

DO 43 G=. 5
IF(HOP~t E.AXFG)TE
ELSEWRITE(10*) 'X NOT RECOGNIZED'

~GOTO 997
ENDIF

43 CONTINUE
42 CONTINUE
CWRITE(10,*) 'X RECOGNIZED'

997 DO 44 L=1,5
DO 45 M=1.5
IF(HOPL,M).EQ.PATDIA(LM)) THEN

GO TO 4" ELSW
WRITE(10,*) 'DIAMOND NOT RECOGNIZED'
GOTO 998

44 S8N NU
C WRITE(10,*) 'DIAMOND RECOGNIZED'

998 WI 0*)%%%%%%%%% OUTPUT %%%%%%%%%%%%%%%%%WIE10 201) B'
201 FORA ''.'NUMBER OF ITERATIONS TO STEADY STATE =',13)

WRITE(I@.*) "HOPFIELD MODEL NEURON OUTPUTS ARE:'

WRI10 02) (HOP(I,J), J=l,5)
4" FORMAT(' ",512)

CONTINUE
- 999 CONTINUE

RETURN
END
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C***********************HOPFIELD COTINUOUS MODEL**************
* C**************************25 NEURON - 4 PATTERN************** *

C
(C PROGRAM MAIN
C
C INTEGER T(25,5,5)

SN UNIT=, STATUS='OD

OPEN UNIT3:N FILE=FATX, STATUS=^OLD )
OPEN UNIT=4, FILE='PATD" STATUS='OLD
OPEN UNIT=5, "ILE=ADATA , STATTIS='OL B
OP EN (UNIT=6, aL 'B AA A- TATUS='OLD)

04EN UNIT10, FILE='LFTl', STATUS='OLD
C

CALL LEARN (T)

CALL FATRECOG (T)
C END

C
C* **********COMPUTING LEARNED SYNAPTIC WEIGHTS PHASE**************
C

SUBROUTINE LEARN (T)

INTEGER I, J, K, L, M ,A(25,5,5),B(25,5,5)

C
DO 11 I=1,5

11CONEAD(I ) (Vl(IJ), J=1,5)

REWIND 1
DO 12 1=1,5
DOv J=1". "-" (I J = l(I,J)

13 CON TNUE
12 CONTINUE

0 O14 J=1,5
DO 15 K=1,5
I=I+1

DO 19 h=l
vDO 1 -1

A I LcM=((2 * V'(J,K)) - 1) * ((2 * V2(L,M)) - 1)17 CON ~TU
16 CONTINUE
15 CONTINUE
14 CONT INUE

I=1

:""19 CONTITNUE
- 10 CONTINUEDO 1 I=1.5

READ(2 *) (V1(I,J), J=1,5)

20 READ2 :15

-~ DO 22 J=1,5
V2(I1J) = Vl(IJ)

22 CONTINUE
CONT INUE
1=0
DO 23 J=1,5
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DO 24 K=1,5

I=I+l

B6 TL M =((9 Vl(JK)) - 1) * ((2 * V2(LM)) - 1)
0CONTINUE

2 4CONT INUIE
23 CONTINUE

B(I,J,K):0
, I=I+

DO 29 1:1 5.READ(3 , ) (Vl(I,J), J=1,5)
29 CONTINUE

REWIND 3
DO 30 I1,5
DO ?1 J=l 5

c)2IJ) + Vl(I,J)
31 CNTINU.E '
30 CONTINUE

~I=O

BDO 32 Jzl5
33 KR,5II+l

DO 34 L=1,5
DO 3r =-I
DOC(I, M1 ( * V1(JK)) 1) * ((2 V2(LM)) 1

35 CONT
34 CONTINUE

I=l
DO 36 J=l,5
DO37 =15: C(T ,J,K):z .

37 CONTINUE
q 36 ~ NN~

~READ(4,& (Vl(I,J), J=1,5) .
38 CONTINUE"

gWJD 1 41
DO 40 J=l 5 I

;! I I o
1=0
DO 41 J=1,5DO42 Kzl ,5
I=I+1

DO 43 L=1,5
DO 44 M=l 5

44ot tl ((2 V1(j,K)) - 1) *(2*V(~)-1
5. 43 CONTINUE

42 CONTINUE
41 CONTINUE

-1
DO 45 J=1 5
DO 46 K=1,5

46 CONTINUE

45 CONTINUE

8 ,= " :i61
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DO 49 K:l 5
T4IJl K~ A(I,J,K) +B(I,j,K) + C(IJ,Y) +DIJ,K)49 BON! 48 CONTINUE

47 CONTINUE
RETURN
END

C***************PATTERN RECOGNITION PHASE**************************
C

SUBROUTINE PATRECOG (T)

: c
' INTEGER A, B, D,, E. F,,G.I, J, K. L, M

DO 10 I=l 5READi l) (PATCROSS(IJ), J=l,5)
10 CONTINUE

REWIND 1

D O DIN E 5(PATSQ(IJ), J=l,5)11 CON.TIN E
REWIND 2
DO =1 5
OREAD3, ) (PATX(IJ), J=1,5)

12 CONTINUE
REWIND 3
DO =31

13D 4,4 (PATDIA(I,J), J=1,5)
13 CONTINUE

REWIND 4

C

DO 14 I=1,5
," 14 COTIU14 WRITE(10.*) .%o%-% .% %%.%.%%%%. INPUT PATTERN %%

* DO 15 I:I15
WCOTN (PAT(I,j), J=1,5)~15 CONTINU

WRITE (10,*) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %"
DO 16 I=1,5
DO 17 Jl 5
PW(IJ)=

17 CONTINUE
16 CONTINUE

' C
301F( tE? 3 THEN

WRITE10,*)
WRITE( o0,) S(I,J) IS AS FOLLOWS AT ITERATIONS ="DO 18I=I 51O W$ TE(1,203) (S(I,J), J=l,5)

ELSEIF(B.EQ.50) THEN
- IT 0 (10 *} B=50 ; HOPFIELD OUTPUT IS AS FOLLOWS'

1COWRITE(I ,202) (HOP(I,J), J=!,5)" 19 CONTINUE
: EL ffj B.EQ.51 THEN

:: :WITE(10,*)'B"
OWRITEt V "B=51 ; HOPFIELD OUTPUFUT IS AS FOLLOWS"

WRITE(1@,202) ,HO(IJ), ,22,5)

...



20 CONTINUE
ELSEIF(B.EQ.52) THEN

WRITE(10,*)
WRITE (10*2 "B=52 ; HOPFIELD OUTPUT IS AS FOLLOWS"'
DO 21 i=,

WRIT E(I,202) (HOP(I,J), J=1,5)21 CONTINUE
ELSEIF(B.EQ.53) THEN

WRITE 10,*
WRITE10* 'B=53 ; HOPFIELD OUTFUT -s AS FOLLOWS'DO 22 I=i,

WRITE(16,202) (HOP(I,J), J=L1,5)
CONTINUE
WRITE (10,)%%%%%% o. GOING TO NET - %FAT %%%%gOTCO 999

ELSE"
: c. ENDIF

DO 23 I=1 25
SU%(I)=O

2 3 CONTINUE
DO 24 1=1,25
DO 25 J=1,5
DO 26 K=i 5

PROD(I, ,K)=(T(I,J,K) * V(J,K')
26 CONTINUE
25 CONTINUE
24 CONTINUEDO 27 !=1,25, DO 28 J=1,5

DO 99 =1, 5
SOMI) =(SUM(I) + REAL(PROD(I,J,K)))

29 CONTI NT.23 CONTINUE

27 CONTINUE

DO 30 1=1 5
DO 31 J=1,5

". S(I,J) = (RC/RC I * (SUM(K) + PS(I,J) REAL(PAT(I,J))))
K=K4-1

31 CONTINUE
30 CONTINUE

PSIiJ)'= S(I,J)

32 CONTINUE
DO 34 1=1,5
DO 35 J-1 5

** HOP(I J =V(I,J)
CONTINUE
C-ON tNU
DO 36 1=1,5
DO 37 J=1,5

IF (~( ~G.)THEN

ELSEV(I J)=O

37 COWt1E
36 CONTINUE

DO 38 1=1,5
DO 39 J.IF (V(t .EQ.HOP(I.7)) THEN

T ELSE
G'OTO 301

ENDIF
CONTINUE

38 CONTINUE
DO 40 1=1,5
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' DO 41 J=1,5
IF (HOP(I J).EQ.PATCROSS(IJ)) THEN

ELSE
WRITE (10 ,*)7
WRITE (10,*) 'CROSS NOT RECOGNIZJED'
GOTO 95

ENDIF
41 CONTINUE
40 CONTINUE

WRITE (I0o,
WRITE( 10"* CROSS RECOGNIZED'

C
995 DO 42 D=1,5

SI H C )4 ;.EQ.PATSQ(DE)) THEN

ELSE
WRITEfI0,*) ' SQUARE NOT RECOGNIZED'GOTO-696'

ENDIF
43 CONTINUE
42 WRTE(1,*) 'SQUARE RECOGNIZED-

996 DO 44 F=l,5
DO) 45 G=1 5

IF(HOP FG .EQ.PATX(FG)) THEN

s "e, ELSE
'° W iTE ,*) 'X NOT RECOGNIZED'GOTO97

97
.ENDIF

7 45 CONTINUE
44 CONTINUE
C WRITE(10,*) 'X RECOGNIZED'

- 997 DO 46 L=l,5
DO 7 Ml, 5

I (HOP L,M4.EQ.PATDIA(L M)) THEN
GOTO 47

ELSE
GOTO98 ,*) 'DIAMOND NOT RECOGNIZED'

ENDIF
47 CONTINUE
46 CONTINUE

WRITE(10,*) 'DIAMOND RECOGNIZED'
Cky 998 WRITE( 10 *) '%%%%%%%%%%%%%%%%%% OUTPUT %%%%%%%%%%%%%%%%%'

WRITE 10,2@1) B
20 FORMAT( '' 'NUMBER OF ITERATIONS TO STEADY STATE =',13)

WRITE( 10* 'HOPFIELD MODEL NEURON OUTPUTS ARE:'
DO 48 I=1,5

" 42 CONTINTE

203 FORRMAT('O',5F7.2)
C
999 CONTINUE

S ,RETURN
END
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