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CHAPTER 1
INTRODUCTION

For centuries, man has tried to explain the biological
functioning of the human brain as related to memory and the senees.
As biomedical technology advanced at the turn of the century, man
discovered that the human brain and nervous system were made up of
cells that were similiar in structure and in function. These
cells, called neurons, were responsible for gathering, passing, and
storing of information. 1In 1943, the first mathematical model [1]
of the operation of a neuron was introduced. This was soon
followed by new theories [21, [3], and [4] on the interaction
between neurons. With further advances in biomedical technology,
it became evident that the paralleled structure and interaction
between neurons were the essential factors in the overall operation
of the human brain and nervous system [5] and {6]. In the late
1970°s, J.J. Hopfield's research and findings in modeling a neural
network spurred new interest in this area [7]), (8], [9]), [1@), and
(11]. Of all the well-known neural network models, the Hopfield
discrete and continuous models adapt most readily to the task of
pattern recognition [12], [13], and [14].

This thesis will analyze the Hopfield discrete and continuous
neural network models in representing the functions of memory and
pattern recognition in the brain. Models of three different sizes

will be simulated on a digital computer using the Micrcsoft Fortran
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CHAPTER 2
BACKGROUND

This three-part discussion provides the necessary background in
understanding the make-up and operation of the generalized
biological neuron and its role in memory and pattern recognition in
the brain. There are many specific types of neurons which have
adapted to perform specialized operations as part of the central
nervous system. Motor neurons deal with the operation of the
muscles; optical neurons deal with the operation of the eyes.
Although there are differences in physical make-up, their basic
operation is similiar and is known as the generalized biological
neuron. The physical structure and operation of this neuron will
be examined. A brief discussion will follow on how the inter-
connection and paralleled structure of neural networks in the
optical system and cortex of the brain are able to send, store, and
recall information dealing with pattern recognition. This will be

followed by a brief discussion of the first mathematical model

developed‘éia-of the generalized biological model. Ite make-up is

the building block for the vast majority of neural network models
which followed. During the remainder of this section, unless
otherwise noted, the term neuron will represent the generalized
biological neuron model. Most of the information for this section
is obtained from references (1], (21, (3], (4], [6], (1@}, [121],
(15], and [16].
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2.1 Generalized Biological Neuron

As depicted in Fig. 2.1, the neuron is made up of four basic
parte. The main central body is known as the SOMA. It performe an
analog computation in response to inpute and produces an output
which is functionally related to the inputs. When dormant, it

remains at a normal potential of -72 mV with respect to the local
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Fig. 2.1 Biological Neuron (From Wittie [11])
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intercellular fluid used as ground. When excited, it can have a
positive rising amplitude of about 109 mV. At excitation, the
soma’'s output consists of a sequence of short, constant amplitude
pulses with a variable repetition rate. The frequency of
repetition is the vehicle by which information is encoded into the
signal.

This output is tranemitted from the soma through its output
organ, the AXON. The axon is a single fiber which branches ouw
into many fibers. Because of this, it is able to transmit the same
data to many other neurons. Signals travel unattenuated in the
axon at velocities ranging from one meter per second to as much as
120 meters per second. Velocities are dependent upon the axon
diameter and length. Unattenuated transmission is achieved by a
process analogous to the propagation of a short down a charged
transmission line. In addition to the soma, the axon is maintained
at a normal potential of -70 mV with respect to its outer fluid.
This potential appears across its thin walls which are like an
insulator during the nontransmission periods. These walls also
have a very high capacitance due to their thinness. Thus the axon
is like a long cylindrical hollow capacitor whose walls are charged
at -70 mV with respect to its outer fluid. Once the soma has
exceeded a certain "firing" potential threshold, it excites the
axon. The capacitor depolarizes and a ring of potential change
propagates down the axon utilizing the energy stored in the

distributed capacitance. Once the pulse has passed, the axon
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The pulse 18 transmitted to neurons that have formed a

.

2

connection through their input fibers. These input fibers act as

N

ﬁ 'ﬁ antennae for the soma. This group of extensively interconnected !
« ” input branches, which extend out of the soma and are copposite to ?
' §E the axon, are known as DENTRITES. They gather incoming data to be

? - transmitted into the soma. OQutput data from other neurons may also

' N be received directly through the scoma wall. The point of

::‘. Ea connection between axons (output devices) and dentrites or the soma :
ﬁ . (input devices) are called SYNAPTIC JUNCTIONS. The magnitude and E
W Pﬁ number of inputs ralses the potential of the soma above -70 mV. At

f - a certain threshold potential, the soma will emit or fire a signal {
§ R impulse. For a short period of time, just after firing, it is

) ii impossible for the soma to be fired by any of its usual stimuli.

i This period of time is known as the "Absolute Refractory Period.” ‘
3 ;; Following thie period, the refractoriness dissipates and the neuron

becomes increasingly easy to fire. This is how the soma can encode

-

e

¢

intensity of stimulus intoc rate of firing. Pulse widths are

LMl o

typically about @.50 ms, and pulse repetition rates range from zero

PR,
.“-"l"

s,

to about 19000 per eecond. A major point of disagreement between

QS 33 many experts in this area 1s with the significance of the synaptic Y
‘% - Junctione (1], (2], (31, [4], (5], (1@], (12], (15], (16], and

y - [17]. This dispute will be discussed in Section 2.3. '
;4 |
bl 2.2 Pattern Recognition and Memory in the Brain

tﬁ 53 The path in processing optical information for pattern

:t < recognition consists of the eye, optic nerve, and cortex. The
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cortex is located in the upper part of the brain just below the
skull. The process begins when receptor cells, rods and cones,
transform incoming light signals to electrochemical signals which
resemble spike potentials. Previous microelectrode studies have
indicated that the information represented by these spike
potentials is a rather sophisticated extraction of pattern features
of the light stimulus. This coding is accomplished by a mosaic of
approximately 125 million receptor cells which function
independently. Their output is an enormous amount of data most of
which cannot be transmitted to the brain due to the limited channel
capacity of the optic nerve. No such high capacity channel exists
in biological systems; instead, many low capacity channels are
paralleled and -ed simultanecusly. The receptor cell output is
transmitted as input to a large nuamber of relay or recoding neurons
located behind the eye. These neurons are called ganglion cells.
The ganglion cells respond to inputs from the receptor cells with a
short burst of pulses to both the onset or cessation of stimulating
illumination. A reduction of data and transmission channels takes
place at this Junction because there are only one million ganglion
cells avallable to process this enormous amount of data. The
outputs of the ganglion cells travel through the optic nerve to the
cortex of the brain.

There is a price that must be paid by this system due to the
limited channel capacity which cannot relay all data accumulated by
the receptor cells. The peripheral vision is not nearly as

detalled as that from the central region of the eye. Sharp central

»
»
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vision is obtained for about two degrees of the total visual field
geen by the eye. In this central region, there are as many optic
nerve channels as there are receptors and ganglion cells. The
portion of the receptors surrounding the central region accounte
for the remainder of the visual field. The outputs of more than
140 receptors are relayed into a single channel of the optic nerve
to the brain.

The outputs from the optic nerve are mapped on a two-
dimensional surface known as the cortex which is capable of highly
adaptable behavior. The cortex is the outer part at the highest
region of the brain. It is 2.5 mm thick, and consists of massive

amounte of interconnected vertically structured neurons. There are

at least a total of 1012 neurons located in the brain; and on the

average, each neuron receives and sends 103 to 104 variable
interconnections to other neurons. The density of neurons in the
cortex varies from a maximum of about 1748 for each @.01 mmé of
cortex surface to a minimum of about 912 fecr the same area. On the
cortex, there 1is duplicated, in a pattern of neurcn firing rates,
the images of the receptor cells as though they had been laid out
flat in a two-dimensional picture. As input signals are applied to
the cortex, there is a connection process by which output data are
produced a* the same epot on the cortex, but on a different axon
from where it entered and at a different frequency of pulse
repetition rate from the original frequency. From the discussion
of neuron operation in Section 2.1, there is no Jdoubt that the

cortex is constructed to perform such a frequency conversion
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function. It is likely that these networke have at least a short

term memory if not a long term memory. The mechanics of how a long

term memory could exist in this region are a point of disagreement

=L

) previously mentioned and will be discussed in the next section. A 1
JY
N\ ;ﬁ common point of agreement is that the frequency convereion process
| !
; - that occurs in the cortex is due to the memory of the cortex. For
; >
& o modeling and simulation purposes, pulse repetition rates may be h
f' f: rendered by different numerical values. !
N N
;
-
i ?. 2.3 Initial Modeling of Biological Neurons
Y a2 1 — |
~ Yo »
: Y3 — '
g i T4 — uy > X4 \
oY
N Tn — "
Y ]
. E Fig. 2.2 McCulloch and Pitts Model [1] "
'ﬁ E The mathematical model of the neuron, as deplicted in Fig. 2.2,
.
= was produced by the team of McCulloch and Pitts [1], in 1943. They
f e modeled all inputs (Y,), to the neuron, as having either an .
") -
; - excitatory (+) potential effect or an inhibitory (-) potential
2K effect on the overall ground potential of -7@ mV maintained by the
f{ (: soma. McCulloch and Pitts postulated that the analog operation of
L° e
ﬂ the neuron could be simulated by a unit step function. If the
?' sunnmation of all positive and negative inputs to the soma were ‘
o,
p o greater than some threshold potential (uj), then the neuron would
2
1
Ky
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give a constant continuous amplitude output (X3) until the soma

potential fell below the threshold due to a decrease in positive
inputs. A neuron with potential below the threshold would have no
output.

Shortly after McCulloch and Pitts produced their model, there
was a Jdisagreement among experts as to the mechanics of how long
term memory was maintained in the interconnection within reural
networks in the cortex of the brain. In 1952, Eccles [4]
postulated that the actual formation or deformation of the
interconnections between neurons was responsible for the storage of
memory. Formation or deformation of the interconnections would
take place based on frequency of use between neurons. In 1959, Bok
[3) postulated that the synaptic Junctions, at which neural input
and output fibers were connected, influenced data flow through
them. This was more in line with the McCulloch and Pitts model and
was later adopted in the Hopfield model. If there were frequent
interactions between two neurons, the input from neuron i to neuron
J would be weighted with an excitatory (+) potential. The opposite
weighting would occur between neurons of infrequent interactiocn.

In the remainder of the 1350°s and 196@°s, research and modeling in
thies field were slowed due to a technological lag in gaining
further information about the brain as well as the shift of
interest to the newly invented Boltzman machine (otherwise known as
the digital computer).

In the middie 1970°s, work done by Kohonen [7] on the adaptive

associative memory principle (commonly known as content addressable
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o ~ memory) and a linear analog neural model developed by Minsky and
W,
; Papert (5], from MIT, influenced J. J. Hopfield. 1In 1982, Hopfield
|I| ¢
E: o published his work and introduced his discrete neural network model
& & (12]. This model renewed academic interest in the neural
A
{, networking and parallel computing field. References [17] and [18]
9 f:'
',f ) give an excellent listing and explanation of the popular neural
: 5 network models which are in use.
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CHAPTER 3
APPLICATION OF THE HOPFIELD
NEURAL NETWORKS TO PATTERN RECCGNITION

This two-part discussion will examine the Hopfield discrete and
continuous neural network models, and how they are applied to a
digital computer simulation representing neural network memory and
pattern recognition in the cortex of the brain. This discussion
will include the technique used to discretize the continuocus model
for representation by a Fortran (77) program. The neural networks
will take the shape of symmetric arrays with one neuron occupying
each space. FEach neuron will be interconnected with every other
neuron in the network array. Most of the information for this
section 1is obtained from references [12], [13], (14], (18], and
[191. f

3.1 The Hopfleld Discrete Neural Network Model ‘
In 1382, J.J. Hopfield published the algorithm and findings for

the model of the discrete neural network. This model was revised

in 1984. The 1984 discrete mecdel will be used in this thesis for

it adapte more readily to pattern recognition.
As previously discussed, the Hopfiz=ld model assumes the inputs

to a neuron i from neurons j are of either excitatory (+) potential

or inhibitory (-) potential. This weighting is accomplished

through the synaptic Jjunctions between neurons. Learning and
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storage of memory in the neural network are accomplished through

the learned synaptic weights (Tjj) as follows

Ty ='>_—£__(2v§ -1 (2vf - 1) (3.1)
= 1,N TiJ = O
J=1,N Tij = Tji

where Vi represents the output of neuron i, Vj represents the
output of interconnected neurons j, k represents the number of
individual patterns learned by the neural network, and N represents
the number of neurons in the network.

By the learning algorithm, if neuron i is excited by the same
pattern as neuron j, then there 1is an excitatory (+) learned
gynaptic weight Tjj between them. If neuron i 1s not excited by
the same pattern as neuron j, then there is an inhibitory (-)
learned synaptic weight Tjj between them. As the number of
patterns k increases for the network, the magnitude of the learned
synaptic weighte Tjj between individual neurons will also
change. Thus, the storage of memory in the neural network model is
accomplished through the learned synaptic weight matrix Tij.

Tij = Tji represents the assumption that an individual neuron
has no feedback circuit of its output onto itself. An example of
learned synaptic weight Tjj matrices for neuron ajj and neuron
a13 of a 25 neuron neural network array, which has memorized a

cross pattern, is depicted in Fig. 3.1.
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Tij of a3

Fig. 3.1 Learned Synaptic Welights

The state (5j) of neuron i remains at ground potential unless
it is changed by the potential inputs. Thus, the state (Si) of
neuron i in the network is the summation of all the inpute at a
particular time. The state (value of potential charge) of a neuron

is as follows

S1 =ET11VJ + Iy

J=1

where Ij represents an input current. In order to adapt the

model for pattern recognition, Ij represents a positive input
current to neuron i if neuron i1 sees a bit of a pattern array
placed before the neural network. Thus, that portion of the
pattern tries to continuously excite the neuron i to output. From

Equation (3.2), the state (Si) of neuron i can be positive,

EAPLALPURAPY N

negative, or zero potential magnitude. The positive or negative
nature of the potential inputs is determined by the learned
synaptic weights, Tij, between each neuron. The magnitude of the
potential state of neuron 1 is determined primarily by the

magnitude of Tij with neurons j and the number of neurons

14
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J that have been excited to output.

Fig. 3.2 Neuron Output Vs. State Potential

As depicted in Fig. 3.2, the relationship between the neural
firing rate output (Vi) and the state potential (531) is analog
in nature. It is represented by a sigmoid function. Once the
biological neural state potential (Sj) has risen above the
threshéld potential (uj), fewer inputs are required to maintain a
high firing rate. For modeling purposes, the neuron can be thought
of as a two-state system. It is either firing or not firing. The
rapid rise in response can be approximated by a unit step, and the

two-state neuron model can be represented by

Vi =1 4£2 TygVy o+ I3 > wy (3.3)
J

Vi =@ 1£2 TyyVy + I < uy (3.4)
3

where uj represents the threshold potential and ie equal to zero.
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The Hopfield discrete neural network model uses the principle
of content addressable memory in recalling storage of memory.
Since an entire learned pattern is stored in the Tjj matrix
between interconnected neurons, then the model should converge to
this memorized pattern when only a portion of the learned pattern
is placed before the network. Thus, the memory is addressable by
content and not location. More than one pattern can be learned and
stored in memory by the network. However, there is a limit to the
number of patterns that a constant size neural network can learn.
Since learned patterns of one shape represent noise to learned
patterns of another shape, there is a point at which the neural
network has a degradation in its ability to recall patterns stored
in memory. This is similar to the inability of the human brain to
recall previously learned detailed material due to information
overload. When the learned synaptic weight matrix, Tij, has
reached this saturation point, the neural network will converge to
a shape which does not clesely resemble any of the patterns stored
in memory. Based on the general results of previous experimental

data, a general rule [12] that defines this saturation point is

where kK represents the maximum number of patterns learned and N
represents the number of neurons in the neural network.
In addition *to the assumptions previously menticned in the

derivation of the algorithm for “he discrete neural network model,
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other simplifications to the operation of the biological neuron

were made. The model assumes that there is no time loss in
transmission from the output of one neuron to the input of

another. The current state potential (S3) of a neuron is based

on the summation of its current inputs. Thus, the neurons previous
state potentials do not directly affect the current state
potentials. Like the biological neural network, the model can
assume random or asynchronous neural updates during which time a
neuron readjusts the firing rate (output) according to the current
state potential. However, for simplification in the computer
simulation of this thesis, neurons in the model network update

outputs simultanecusly after each iteration.

3.2 The Hopfield Continuous Neural Network Model

In 1986, J.J. Hopfield transformed his discrete neural network
model into the continuous form. The change of the continuocus time
domain state potential S4(t), of a neuron in the network, is

described by the differential equation

dSj(t) N S3(t)
Cj — =ZT1JVJ + Iy - — i
dt J=1 Ry

1,N (3.6)

where Cj represents the input capacitance to neuron i and Rj
represents the input resistance to neuron i. Egquation (3.6) can

easily be transformed to

(]
-3
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dSi(¢) N
=3 "T33V; = I3 - (1/R3C4)S54 (%)

dt Jj=1
i=1

where 1/RjC; represents the time constant for the refractory
period a neuron experiences immediately after firing. The impulse
response to Equation (3.7) is

-(1/RC)t

h(t) e t20 (3.8)
7] t<@

rrETLS

and is depicted in Fig. 3.3.

-(1/RC)t
P h(t)=e

~

th(t)i 7

\

—
~—

Fig. 3.3 Impulse Response h(t) Vs. Time

This indicates that 1/RC is also the damping factor for the
response of the continuous differential Equation (3.7) which
represents the mechanics of a neural change of state. The eifect
on the operation of the continuous neural network model, by
changing values o the 1/RC time constant, will be examined in the
computer simulation of the continuous model.

To convert Equation (3.7) from a differential equation

D
'-’\'- e 3 . . REIAEY > DT . AN
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ﬁ {continuous time domain) to a difference equation (discrete time

L
g

domain), the Euler Backward Formula is employed with the period

V' T=1.

S

”

{

vy q

RN Si(k) - S3(k-1) <ﬁ_ S; (k)

! 4__TiJVj(k) + I3 - (3.9)

!. .'\.;: i=1
E ot Combining terms yields the difference equation

o

I RC N

- Sy(k) = [2_Ti3Vytk) + I + Sy(k-1) ] (3.12)

' RC+1 J=1
i=1

;& ) where Sj(k) represents the current state potential of neuron i

- ‘; and Sj(k-1) represents the previous state potential. Thus, the
~I
. current state potential, of a neuron, is based on the current
SIEN

3 2 inputs plus the previous state potential and is affected by the
. 1/RC time constant representing the refractory period. As ccmpared
NN

A to the discrete model, the continuous neural network mod:1l is a

¢ I A

4 :ﬁ closer aprroximation of the actual operation of a biological neuron
p because of these features. All other portions of the discrete
SEYG
-~ model algorithm remain the same for the continuous model.
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0 EXPERIMENTAL COMPUTER
: g SIMULATION AND RESULTS X
g
3

“ This three-part discussion will examine the computer simulation
J ) and list the results for the Horfield discrete and continucus 4
(YRR )
v neural network models adapted for pattern recognition. The program 3
a o simulating the models was written in Fortran 77 [2@0] and compiled s
) & '
S on the Microsoft Fortran Compiler (V4). The Fortran code listings ]
R ﬂy for the 28 neuron, two patterns learned, discrete and continuous \

r)
: models can be found in Appendix B. The program was executed on an !
- ,~.‘. )
AN IBM XT compatible personal computer. K
‘ -
X ‘. A
AN 4.1 The Experimental Computer Simulation of the Models .
» .
; Zj Neural network arrays of 25, 49, and 120 neurons were examined .
" for both the discrete and continuous models. Only one neuron X
' % occupled each row-column space in the array. These sizes were .
: :

. chosen due to the square array symmetry and the multiple sizes of A

< ’
" two. The basic program consisted of two phases. The first rhase
: ,'-'E wag a learning and memorization of especified patterns. The second

A
4 phase was a recognition <of the memorized patterns and recognition

f& [

w

4 of distorted cross patterns, with and without noise added. Both ‘
NI learned patterns and distorted croes patterns were varied in length \
\» ._-- i
M and width. A listing of patterns, ty figure and neural network ‘
"y N
. o array size, that were used in the computer simu.ation can be found

in Appendix A. .

- S e .
e
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The learning and memorization phase was identical for both the

discrete and continuous neural network models. Each network was

s &, required to memorize two (cross and square), three (crose, square, :

-§ 4 and X), and four (cross, square, X, and diamond) patterns in ‘
E: separate exercises. This memorization process was started by a

3 ; cross-pattern array being placed in front of a neural network of i

{ 33 equal array size. Neurons directly orposite any portion of the X

2 f: cross Wwere exclited to output (V3=1). All other neurons remained 1

3 : in the zero state (Vy=0). Equation (3.1) was then used to E

& f: determine the learned synaptic weight matrix A(I,J) for each neuron

.y in the network. This same procedure was followed for each

Y

P2

additional pattern the network was required to memorize. After the

last required pattern had been memorized, a final learned synaptic

.
for’
J

weight matrix T(I,J,K), for every neuron, was summed from the

4
4
15 % previously learned synaptic weight matrices that represented the
S patterns. This memory matrix T(I,J,K) was brought forward into the
‘ﬁ %: second phase of the computer simulation. .
§ = The pattern reccognition phase for the discrete neural network
; ~ model was conducted in the following manner. Initially, all
.E EE previously learned patterns, from vhase one, were read into :
g _ approrriate identification arrays for comparison with the converged E
AP neural network output pattern array, HOP(I,J). The first learned L
: &, pattern was then read into the pattern to be recognized array,

v PAT(I,J). On the first iteration, the only input affecting the g
< ;' rneural state potential array, S(I,J), was the input current Ij, .
; y from PAT(I,J). All neurons that saw a bit of the pattern would
i i -
- 21
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N > have the state potential raised to a value of +1. All other

" !; neurons in the network remained at zero potential, as per Equation

: i (3.2). All neural state potentials, S(I,J), were compared with the ’
Y threshold potential equal to zero. If the neural state potential

)

) i was greater than zero, it would be cconsidered in the excited state

~ = and would be given an output value of +1 in the neuron output 1
? :i matrix, V(I,J), as per Equations (3.3) and (3.4). The neurcn t

output matrix, V(I,J), was stored in the network output matrix,
HOP(I,J). ©On the second iteration, each neuron in the network was !

o assigned a product matrix, PROD(I,J,K). The product matrix held y

w2 kY

the values of all inputs to neuron 1 due to the outputs from the

X
a2

" jf other neurons j times the individual learned synaptic weights ;
1 * y
e T(I,J,R) associated between neuron i and the neurons j. These 3
Y -

; i: input products for neuron 1 were added, and the value stored in

N N matrix SUM(I). The input sum value was added to the input current

NN

. from matrix PAT(I,J), for the neurons i seeing one bit from the

. pattern to be recognized. The summatiom was the updated state ,
. 4
A potential value S5(I,J) for each neuron in the network array, as per .
’l ’l :
AR Equation (3.2). The values of the preevaluated neurcn output \
o matrix, V(I,J), were stored into the network output matrix HOP(I,J)

v

" o

) for a future test of convergence, ;
~ L, h
‘; :Q The updated neuron state potential matrix, S(I,J), was )\
N

) evaluated, as per Equations (3.3) and (3.4). The neurcn ocutput

F R

LA -

, . matrix, V(I,J), was updated accordingly and compared to the

(4

¢ e preevalauated networkx output matrix, HOP(I,J). 1If both matrices ‘
v matched, *he diecre*e neural networx model had converged and '
Y
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produced an output pattern, from the neurons, contained in the
network output matrix, HOP(I,J). Convergence also implied that the
model was stable under the specific test condition. Normally, the
model had not converged on the second iteration, and a third
iteration was initiated. At the beginning of the third iteration,
the neural state potential matrix S(I,J) was printed. Observations
concerning the behavior of this matrix and its effect on the
pattern recognition capability of the model will be covered in
Chapter 5. The remainder of the third iteration was identical to
the second iteration. The discrete model continued to iterate
until the comparison test for convergence was passed. It was
observed throughout the course of many experiments that if the
network model had not converged by the seventh iteration, it
oscillated between two totally different neuron output patterns and
was considered unstable under that specific test condition. The
neuron output patterns were viewed by printing the neural network
output matrix, HOP(I,J), at iteratione 50, 51, and 52. The neural
network model was stopped at iteration 10@ and redirected to the
next test pattern.

Once the discrete neural network model converged to a
particular network output pattern in HOP(I,J), this matrix
was compared to each of the memorized pattern matrices learned in
the first phase of the computer simulation. The criterion used for
a pattern to be recognized was 10@% for all bits between the two
matrices. This criterion was the simplest to use because the

Hopfield discrete and continuous neural networxs behaved as an all
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or nothing type of network. Either the network converged to an
exact image of a previously learned pattern, or, the network
diverged to a pattern that had no resemblance to any pattern
memorized in the first phase of the program. After the comparison
was made for pattern recognition, the network output ma%trix,

HOP(I,J), and the number of iterations required for convergence

were printed. The discrete neural network model would then read
the next previously memorized pattern into matrix, PAT(I,J), and

would begin the process of pattern recognition.

001029 00000 Qo 1Y
Q0100 /I 02010
11111 11111 11111
o100 Q0000 Woo1Ld
Q0100 00100 00100
CROSS CROSS CROSS
(LEARNED) (NN) (NC)

Fig. 4.1 Learned, No Noise (NN), Noisy (NC) Crosses

After all previously learned patterns from the first phase had
passed through the network, the discrete neural model was tested
for its ability to recognize distorted cross patterns. As depicted
in Fig. 4.1, two types of distortion were used and tested. The
first type of distortion was a top-down-left-right ordered removal
of bits from a cross pattern. This type of distorted cross pattern
was termed and listed, in the results, as the no noise (NN) cross.
No noise cross matrices were presented to the neural network model
oniy during the pattern recogni%*ion phase of the program. The

neural network model tried to recognize the distorted cross pattern

24
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by the same procedure previously mentioned in this section. The
desired result was for the model to recognize the no noise cross
pattern as the memorized cross pattern learned during phase one.

No noise cross patterns of proportions different from the memorized
cross patterns were also used to see if the neural network model
pattern recognition capability could be enhanced. The neural
network model was defined as unstable (US) for a specific test
condition if it oscillated on more than 50% of the no noiee cross
patterns presented. The neural network model was defined as
semistable (SS) for a specific test condition if it oscillated on
less than 5@0% of the no noise cross patterns presented. The model
was defined as stable (S) 1f there were no oscillations. 1In all
cases, the no nolse cross patterns were presented to the neural
network until the network failed to recognize two specific patterns
as the memorized cross pattern.

The second type of distortion was a top-down to the right
ordered movement of bits in a cross pattern. This type of
distorted cross pattern was termed and listed in the results as the
noisy (NC) cross. The movement of one bit to the right of its
position in the pattern caused one normally excited neuron to be
initially turned off and one normally unexcited neuron to be
initially turned on. Thus, there was a double effect on the
network with every bit moved. The procedure for evaluating the
ability of the discrete neural network to recognize the ncoisy cross

rattern was the same procedure explained for the no noise crose

rpattern.

“ "
2,

T

WSS S
X “‘; .h?

o Ny YT
." ?0 -I
L -u.m -

ey

YTV
L2 .
CAIARIRA

- -
ZLL]

&b:

-

' TR Yy 4
SN

v
.

N
1

. & ¥

ST Y

.' LAY
PR
e




a¥30,% $ah Uat fa® §30 §aV fu¥ fof fa® foB g v Bg? 9% Fo® fat Par da¥ fov §id § 0 dat”

< W

the learning and memorization phase was

As previously stated,

ldentical for both the discrete and continuous neural network

models. There were two required additions for the continuocus

&y

neural network model during the pattern recognition phase. As per

Equation (3.10), the time constant 1/RC and the previous state

potential PS(I,J) were added into the calculation of the update to

For each specific test condition, the

the state potential S(I,J).

continucus model was evaluated with the time constant 1/RC assigned

values equal to zero, one, and 290929. ;

The codes used in the result tables for the discrete and

continuous neural network modelis are as follows:

Column Headings

Cross pattern

Square pattern

X pattern

Diamond pattern

Maximum number of removed bits for no noise
cross in which pattern was still recognized

Maximum number of moved bits for noisy cross
in which pattern was still recognized

Average number of iterations to convergence on
no noise cross patterns

A
Ba"s'n e

= Average number of iterations tc convergence on ;
~ noisy cross patterns y

AL LA

‘- -
T =

. S TS e i T >
X . ,.\ - -'\‘ ) i" “.“. >
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~ SNN

Stability of model on no noise cross
patterns

SNC = Stability of model on noisy cross

».
:‘.; patterns
- 2. Row Headings
~
] $ PAT = Number of patterns memorized in first
A phase for the test
&
:i 1/RC=# = Value of time constant used for the test
Y

ORG = ORG pattern used for memorized, no noise
cross, and noisy cross patterns

BRLX

THIN = THIN pattern used for memorized, no noise
cross, and noilsy cross patterns

oOF

3y ~

MED

MED pattern used for memorized, no noise
cross, and noisy cross patterns

N

PROP = PROP pattern used for memorized, no noise
cross, and noisy cross patterns

"

Y

_ MED-THIN = MED patterns memorized in first phase;

e THIN no noise and noisy cross patterns

{- used in recognition phase

” PROP-ORG = PROP patterns memorized in first phase;
ORG no noise and noisy cross patterns

o~ used in recognition phase

i

R PROP-THIN = PROP patterns memorized in first phase;

~ THIN no noise and nolsy cross patterns

W used in recognition phase

‘}"

— PROP-MED = PROP patterns memorized in first phase;
MED no noise and ncisy cross patterns

5 used in reccognition phase

!

kM
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~ 3. Table Entries

! LY

‘l. 1
! Y = Specific memorized pattern in firet phase was

K recognized in second phase

.

By N

$ ﬁ- N = Specific memorized pattern in first phase was

.-
- -

not recognized in second phase

i had
s

Loy
)
wn
I

= Model stable under the tesgt conditicn

S

" g; SS = Model semistable under the test conditicn '
e 1

Py o NS = Model not stable under the test condition

.: ;
. : '

;: ~ 4.2 The Hopfield Discrete Neural Network Results ;
; ~ The following section lists the results obtained from the

! I computer simulation of the Hopfield discrete neural network models

3 B of 25, 49, and 109 neurons. The pattern matrix arrays used in the

12 Ig test are listed in Appendix A. The Fortran code listing for the

>

gy

discrete neural network model is listed in Appendix B. An

3

explanation of the codes used is located in the previcus section.
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RET

2 PAT [ORG)

3 PAT [ORG]

4 PAT [(ORG]
2 PAT [THIN]
3 PAT [THIN]
4 PAT [THIN]
2 PAT (PROP]
3 PAT [PROP]
4 PAT [PROP]
2 PAT [PROP-ORG]
3 PAT [PROP-0ORG]
4 PAT [PROP-ORG]
2 PAT [PROP-THIN]
3 PAT [PROP-THIN]

4 PAT [PRCP-THIN]

W3 DTS rTw

2 PAT [THIN]
3 PAT [THIN)
4 PAT [THIN]
2 PAT ([MED]
3 PAT (MED]
4 PAT [MED]
T R NN RN R

Ml

. e 2'00'L 0% 2L 2°¢ " AL o0 ath ol oAt y -...‘VIW'..-.
C S X D NN NC AINN AINC SNN SNC
Y|Y 7 13 3.8 13.0 | S |ss :
Y|v|Y| |6 |2 |3.0 4.0 | 5 |S
YiN|Y|Y|3 |2 |4.0 |5.2 | 5 |S
Y|Y 11|3 3.2 {3.0 | s |sS ’
NIN|N| |@ |@ |4.2 |4.0 | S |S «
Y{Y|N|Y|11|@ [3.5 @ | S |s ’
Yly 19{6 (3.0 |3.@ | 5 |S5 ;
vy(v|y| |18]|5 [3.2 [3.5 | S |S :
vivlv|n|17|4a [3.0 |4.0 | s |S :
Y|Y 4 3.9 3 :
Y|vl|Y 3 4.9 S X
Y|Y|Y|N 3 3.5 S :
Y|Y 5 3.9 s 3
YlY(|Y 5 3.5 s
YIY|Y|N 2 4.0 S ‘

4

:

C S X D NN NC AINN AINC SNN SNC §

Y Y 1713 3.0 |3.0 | S |sS A

NIN|N| |@ |@ |4.2 4.2 | S |S '
NIN|N|N|@ |@ |5.0 |5.0 | 5 |S

YIY 131115/3.2 [3.@ | S 3

vivy'y| (27(2 (3.2 (3.5 | s I5

v|Y|N|Y|27|2 3.8 [4.0 | 5 IS
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120 NEURONS DISCRETE (Cont.)

C S X D NN NC AINN AINC SNN SNC

g‘: 2 PAT [PROP] |Y!Y 41112:3.9 13.9 S |88
~ 3 PAT [PROP] |Y|Y|Y 38110|13.0 (3.0 S S
"ﬁ 4 PAT (PROP] (N|Y|Y{NID |@ |5.0 |4.09 S |8
E;. 2 PAT [MED-THIN] |Y|Y 8 3.0 S8

3 PAT [MED-THIN] [Y(Y(Y 1 3.0 SS
& 4 paT [MED-THIN] |Y|¥[N[Y] [a 3.0 s
~ 2 PAT [PROP-THIN] [Y|Y 8 3.2 S8
i 3 PAT ([PROP-THIN] [Y|Y!|Y 7 3.0 S
-;'._‘,‘ 4 PAT [PROP-THIN] [N|Y|Y|N % 6.9 S
2 PAT [PROP-MED] |Y|Y 11 3.0 sS
i' 3 PAT [PROP-MED] |YIY|Y 9 3.9 S
-~ ¢ PAT [PROP-MED] |N|Y|YIN % 6.0 S
~
.
) 4.3 The Hopfield Continuous Neural Network Resul‘s
l:"f The following section lists the results obtained from the
. computer simulation of the Hopfield continuous neural networi:
e models of 25, 49, and 108 neurons. The pattern matrix arrays
_ used in the test are listed in Appendix A. The Fortran ccde
: listing for the continuous neural network model is listed in
:E: Appendix B. An explanaticn of the codes used is located at *he
A beginning of this chapter.
ol




RN A ANASOLS ARV A

p
;::
b
1o
"‘ C S X DNNNCAINN AINC SNN SNC
- 2 PAT  1/RC=0 Y|y 7 |3 |3.8 3.0 s |ss
T [ORG]  1/RC=1 Y]y 7 3.0 |3.8 | s |ss
:: 1/RC=2¢00 |Y|Y 7 |a 3.2 3.0 | s |ss
.. 3 PAT  1/RC=0 v|v[v] [6 [3 |3.0 [4.06 | s |s
2 [ORG]  1/RC=1 YIY|Y| {6 |3 |3.0 |4.9 | S |S
o 1/Rc=2009 |Y|v|Y| |6 |@ |3.0 [4.0 | 5 |NsS
4 PAT  1/RC=0 v|v|y|v|s |1 {3.5 [4.0 | s |s
> [ORG]  1/RC=1 v|Y|Y|Y|6 |1 (3.5 |4.0 | 5 |S
. 1/RC=2000 |Y|Y|Y|Y|6 |2 [3.5 |5.0 | S |8
%
ﬁ co ous
" C S X D NN NC AINN AINC SNN SNC
s 2 PAT  1/RC=0 K 71330 [3.0 ] s [ss
[ORG]  1/RC=1 Y|y 7 |3 |3.0 [3.0 | s |ssS
R 1/RC=2000 |Y|Y 7 (3 ls.0 (3.0 | s [ss
3 3 PAT  1/RC=0 v|yY|y| {6 |@ [3.0 |5.8 | s |s
i [ORG]  1/RC=1 v|vly| |6 |@ (3.0 |4.6 | s |s
1/rc=2000 |Y|v|Y| |6 |0 [3.0 [a.0 | 5 |5
4 FAT  1/RC=0 v|nlv|v|3 |o [4.0 |40 | s |5
- [ORG]  1/RC=1 v[NlYiY|3 |0 |4.6 |50 | S |S
o 1/rc=200¢ |Y|N|Y|Y|3 |0 4.0 |5.0 | s |5
2 PAT  1/RC=0 Y|y 113 3.0 {3.0 | s |ss
., [THIN] 1/RC=1 Y|y 113 (3.0 3.8 | S |sS
" 1/RC=2000 |Y|Y 11]3 (3.0 13.8 | s |ss
~ '
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gﬁ 3 PAT 1/RC=0
. [THIN] 1/RC=1
> 1/RC=2000
¥ 4 PAT 1/RC=0
' [THIN] 1/RC=1
E 1/RC=2000
o 2 PAT 1/RC=Q
e
' [PROP] 1/RC=1
% 1/RC= 2000
3 PAT 1/RC=2
! [PROP] 1/RC=1
. 1/RC=2000
e 4 PAT 1/RC=2
Qﬂ\ [PROP] 1/8C=1
' 1/RC=20200
2 2 PAT 1 /RC=2
- [PEOP-(RG] 1 /RC=1
= 1,97:2000
; 3 PAT 1 'RT:=3
. (FRCP-ORG] 1 50=1
z 1,/8C=2000
5 4 PAT 1 /R7=2
(PRCP-0RG]  1,/80=1
E; 1,BC=2000
B A T A P P P L B AP

43 NEURONS CONTINUCUS (Cecnt.)

C S XD NN NC AINN AINC SNN SNC
NININ| |2 |@ 5.0 |5.0 | 5 |s
N{N|N| [@ |0 |5.2 |5.0 | 5 |S
NININ| |2 |2 |4.2 4.0 | s |s
viv[n|Y[11le [3.5 {4.0 | s |s
Y|Y{NIY{11]|® 3.5 |4.5 | S |S
v{y{NlY{11]|o (3.5 4.0 | S [s
vly 19/6 {3.90 {3.0 | s |ss
Y|y 196 (3.2 [3.0 | S |sS
vy 196 (3.0 (3.0 | s [s¢
v(ylyl [18]5 (3.2 |3.5 | S IS
viv(y| [18(5 (3.2 [3.8 | S |S
vivlyl [18]5 |3.0 |3.0 | 5 |s
vivl7|N[17]4 |3.6 |3.0 | 5 |S
YiY|Y|NI17]4 {3.0 (2.8 ]| S |S
vivivIN|17]4 |3.0 |4.0 | s |S
Y|Y] | 4 3.0 SS
Y ¥ 4 3.0 ss
R

YY) 4 3.0 sS
‘LLLL

ylyly 3 | 4.0 S
bt ——+

YiYlYD o a3 4.9 s
A RSN TR L
iyt |3 4.2 | S
T S S S S S

lvlyiyint '3 ER E
L %4L LT i !
yTyien’ 1a EREERE
;1.1\LA|1 N
yiviviN ER 13.5 E
. 1 4 4 1 i 1
2

Yl M P BT (L A S S L PP Ll L LT

('.o'.;,"‘."-!".- F':;‘;r‘rrzl",:u '., et "."-'.- .

L% o8 ¢

\'P‘:\\\\ » ‘ P

. - e o L
" y"' W v_‘ o

C Ll

LY

R LIRS

Y

.
.
‘-J'



h)

N

:
| b
o .\:
N -~
o o
49 NEURONS CONTINUMUS (Cont.) o

o

b C S X D NN NC AINN AINC SNN SNC .
| 2 PAT 1/RC=0 Yy 5 3.0 SS ':'
[PROP-THIN] 1/RC=1 Y|Y 5 3.9 SS 2
‘Jq

3 1/RC=2000 |Y|Y 5 3.0 sS

LS

o

‘ 3 PAT 1/RC=0 Yly|y 5 3.0 5 A
_‘-'
[ [PROP-THIN] 1/RC=1  (Y|Y|Y 5 3.0 5 oA
1/RC=2000 |Y|Y|Y 5 3.0 S ]
" LN,
® 4 PAT 1/RC=Q viv|y|n| |2 3.0 S ,
9 [PROP-THIN] 1/RC=1 v|Y|YIN| |2 3.0 5 o
[ 4

' 1/RC=2000 |Y|Y|Y|N] |2 4.0 S

gl

. 1 5
2 %
& ¥
1 N
120 NEURONS CONTINUOQUS :
K | b
C S X D NN NC AINN AINC SNN SNC P

> 2 PAT 1/RC=0  |Y|Y| | [17}3 [3.0 |3.0 | 5 |sS N
N ~
[THIN] 1/RC=1 YiY 17|3 |3.@ |3.8 | S |SS "4
8

» 1/RC=2000 |Y|Y 1713 |3.0 |3.8 | s |ss x
A =
) 3 PAT 1/RC=0 NIN[N| |@ @ [4.5 4.5 | 5 | o
o u
~ [THIN] 1/RC=1 N[N|N| |@ |@ (4.0 [4.0 | 5 |S Nt
P2 1/RC=2000 [N|N|N| |0 |o (4.0 (4.0 | 5 |S
l'.' n'."
4 PAT 1/RC=0 N(N[NIN|lo o 4.0 (4.2 | 5 |5 o

A [THIN] 1/RC=1 N|N|N|N|@ | (6.0 6.0 | S5 |S v
_ 1/Rc=2000 |N|N|N|N|@ @ |5.0 |5.0 | 5 |s o
- 2 PAT 1/RC=0  !v|Y 31]15|3.8 [3.0 | 5 |ss s
- [MED] 1/RC=1 vy 31[15(3.0 (3.6 | S [sS o
- 1/RC=20C0 |Y1Y 31(1513.¢ [3.8 | 5 |SS 7
.t i L 1 i \“:

~
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NEURFONS TONTINUQUS

3 PAT
(MED]

4 PAT
{MED]

2 PAT
[PROP]

3 PAT
[PROP]

4 PAT
[PROP]

2 PAT
{MED-THIN]

3 PAT

[MED-THIN]

4 PAT

{MED-THIN]

1/RC=0
1/RC=1
1/RC=20€0
1/RC=@
1/RC=1
1/RC=2000
1/RC=90
1/RC=1
1/RC=2000
1/RC=0
1/RC=1
1/RC=2000
1/RC=0
1/RC=1
1/RC=2000
1/RC=9
1/RC=1
1/RC=2000
1/RC=0
1/RC=1
1/RC=2200
1/RC=@
1/RC=1

1/RC=2000

(Cont.

.......

)

C S X D NN NC AINN AINC SNN S5NC
Y|IY|Y 2712 3.2 3.9 S |8
YIY]Y 2712 13.0 |3.9 S IS
YiYi Y 2712 13.9 |13.9 S |8
YiIYINIY[27]2 [3.€ [4.5 S 13
YIYIN]YI27{2 |3.9 |4.5 S 8
YIY|N|Y{27]2 |3.9 |4.5 5 |5
Y|y 41112/3.0 (3.0 S {885
Ty 41112)13.9 |3.9 S IS5
YY 41112]3.9 .0 S |88
YIY(Y 38112|3.9 .2 S |S
TIYLY 38|19213.0 |3.0 5 [S
YiYY 38|1013.9 |3.0 S |S
NIYIY|N|@® |© |3.5 [3.0 S IS
N|Y|Y|N|@ |©@ |3.5 |3.0 5 |8
NIY|Y|N{@ |© (3.5 .0 S IS
T Y 8 3.9 S8
Y| Y 8 3.0 SS
1Y 3.0 SS
YiY|yY 1 3.0 S
Yiv|\y 1 3.0 S
MRER 1 3.9 S
YIYIN|Y 4 3.5 S
YIY|NY 4 3.5 S
YIY|N|Y 4 3.5 S |
34
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12@ NEURONS CONTINUOUS (Cont.

~—
'

] C S X D NN NC AINN AINC SNN SNC :
:‘: 2 PAT 1/RC=0 Y|Y 8 3.0 S5 f
¢ [PROP-THIN] 1/RC=1 Y|Y 8 3.0 SS
3 1/RC=2000 |Y!|Y 8 3.0 SS
’:{ 3 PAT 1/RC=0 Y|YlY 7 3.0 S
J: [PROP-THIN] 1/RC=1 Y| Y|Y 7 3.0 S
%ﬁ 1/RC=2000 |Y|Y|Y 7 3.9 S '
2 4 PAT 1/RC=0 NIY YN 2 4.5 S
‘ [PROP-THIN] 1/RC=1 NIY|Y|N %) 4.5 S :
EJ 1/RC=2000 |N|Y|Y|N| |o 4.5 S )
) 2 PAT 1/RC=0 Y|Y 11 3.9 SS \
‘ [PROP-MED] 1/RC=1 Y|Y 11 3.0 SS
o 1/RC=2000 |Y|Y 11 3.9 SS
e 3 PAT 1/RC=0 YiY|Y 9 3.0 S
s [PROP-MED] 1/RC=1 Y|v|y 9 3.0 S
1/RC=2000 |Y|Y|Y 9 3.0 S
7 4 PAT 1/RC=0 NlYlY|IN] o 4.5 5 y
> [PROP-MED] 1/RC=1 N|Y|Y|N 2 4.5 S _
o 1/Rc=200@ (N|Y|Y(N| |0 4.5 s
§
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CHAPTER 5 ]
A )
. 3
- OBSERVATIONS AND CONCLUSIONS -
2% anl
-~ :‘
F
. O

In this six-part section, results obtained for both the

1
.
[

Hopfield discrete and continuous neural network models are

¥

discussed. Based on these observations, conclusions are made about

&
r-7 224 ™

A
o the internal properties and external factors that greatly affect k
-’ the ability of the Hopfield models to memorize and recognize f
:& patterns. A comparison is made of the Hopfield discrete and é
i continuous neural network models, and their capabilities are ;
i discussed. ‘
h}
» "
M o~
5. 5.1 Cbservations of Discrete Results .:
* The following is a list of observations on the performance of E;
;’ the Hopfield discrete neural network model: i
- 1. The pattern recognition capability of the model is g
= increased, more than 1090%, if no noise is added to the pattern to ;,
B be recognized. Ei
2. Increasing the magnitude (number of bits) of a E
£§ pattern, for a particular number of neurons, will substantially i
y improve the pattern recognition capability of that set of neurons. f
- 3. Given a particular pattern or patterns learned, )
i increasing the number of neurons of the model will not increase the E:
N N
A
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pattern recognition capability for the same particular pattern cr
patterns. In fact, it will decrease the pattern recognition

capability as the number of patterns learned is increased. s

- e

4. Increasing the magnitude (number of bits) of a learned

; F particular pattern, for a given number of neurons, will
' substantially improve the performance of the model in reccgnizing a
< emaller version of the same pattern. However, this increase will ‘
f:‘ Ej' not be as great as increasing, to the same proportion, both the '
Es L’i magnitude of the pattern learned and the magnitude of the pattern '
': ?’ to be recognized. N
N
N - 5. Increasing the number of neurons and the magnitude ;
z o (number of bits) of the pattern, proporticnally, will improve the
. performance of the model more than the changes in Item 4 above. '
' However, if the increase in the number of neurons and bits of a .
' : pattern is not proportional, then there will be a greater decrease <
:' '8 in the performance of the model than the changes in Item 4 above. H
- “ 6. Increasing the number of patterns learned, for a ::
' :: particular set of neurons, will increzce the stability of the model '
’, ‘ and will increase the number of iterations required to reach
ﬁ‘ stability. However, it will alsoc decrease the pattern recognition .
" :: capability of “he model. :
§ < 7. Increasing the number of patterns learned will _
’.'E: decrease the capability of the model to recognize the original ;
.: : learned patterns. However, models with a smaller number of neurons )

are more capable ¢of recognizing an increased number of learned

, @ patterns which is in contradiction to Equation (3.5).
Q
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5.2 Discussion: Discrete Neural Network Model

The following is a discussion about the Hopfield discrete

neural network model based on the results obtained: ¢

xR

P SO

1. As nolse is introduced into a pattern to be A

recognized, for a particular set of neurons, the number of

>

incorrectly turned-on neural states increases and the pattern X

E

recognition capabllity of the model decreases. This is ;

accomplished through the neural interconnections and the learned

synaptic weights. When a noiseless distorted pattern to be

recognized is presented to the model, the only neurons in the on

(positive) state are those that correctly represent portions of the

learned pattern. These neurons will excite (turn on) the neurons

in the incorrect off state through the positive learned synaptic

weights while keeping the correct unexcited neurons in the off

-

state through the negative learned synaptic weights. As noise is

added into a pattern to be recognized, the number of incorrectly

turned on neurons is increased. There will be an increased

. inhibitory effect on all neurons which are correctly in the on
state or should be in the on state through the negative learned ?
. synaptic weights. The strength (value) of the excited neural

states will decrease while the strength (value) of the unexcited h

BT AAYERL el

. neural states will increase. Thus, there is a greater effect J

forcing the neurons in the on state to the off state while keeping

the remainder of the neurons in the off state.

2. As the magnitude (number of bits) of a learned pattern

increages for a given number of neurons, the number of neurons

-, @ - g
aras () ., 0 Ll J b

......



that see and remember a portion of the pattern increases. The
pattern recognition capability c¢f the model will be increased.
through the neural interconnections and the learned synaptic
weights. When a distorted pattern to be recognized is presented to
the model, there are more neurons that will correctly identify
those portions of the learned pattern which appear. After summing
initial neural outputs multiplied by their learned synaptic
weights, neurons that are in an incorrect on or off state will be
driven to the correct state because of the increased positive or
negative value of the summation. A neuron that is in the initial
incorrect off (negative) state will be turned on, in future states,
by the increased number of correct on neurons, which will preoduce a
larger excitatory (positive) value through their learned synaptic
welghts. This holds true when the pattern to be recognized is
proportional to the pattern learned.

When a smaller pattern in magnitude than the learned
pattern is placed before a given number of neurons, a similar
reaction occurs. Since the learned pattern is larger in magnitude,
there 18 a greater number of neurons that will reccgnize a rportion
of the pattern and will have a positive learned synaptic weight
interconnection. Thus, even though the pattern presented to the
model is small, it excltes a larger group of neurone which will
support each other through future state changes. The model will be
able to recognize a more distorted version of a particular pattern
than it would be able to if the learned pattern were esmall and

equal in size to the presented pattern. However, the pattern

39
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* recognition capability of the model, in this situation, is not as

by

effective as it would be if the magnitude of the pattern presented

was increased in proportion to the learned pattern. The strength

Pre

(value) of the excited neural states is not as great as it would be

h sg in the proportional case. Thus, it would take less noise added,
3; o into the observed pattern, to drive the weaker excited neural
{ Q: states into the off state. This same reasoning explains why the
" :& pattern recognition capability of the model is increased by
f‘ ™ proportionally increasing both the number of neurons in the model
-
: ?3 and the magnitude of the pattern and why the pattern recognition
g " capabllity of the model is not increased by increasing the number
g & of neurons of the model while maintaining a given pattern at the
N : same magnitude.
i{ - 3. As the number of learned patterns is increased, the
v a
1: %: stability and the number of iterations required to reach stability
w are increased for the model. However, the pattern recognition
o capability of the model is decreased. As additional patterns are
% ‘§ learned by a given number of neurons, the strength (value) of the
j k_ learned eynaptic weights is not a proportional + 2, +1, or @, as it
ﬁs EZ would be for only c¢cne or two patterns learned. There is a large
E o~ variation in the values of the learned synaptic welghts between

neurons. The large variation between initial neural states require
more iterations to reach stability. Noise added into a given

pattern has a greater effect because of the larger variations in

WA 55 %

value ¢f the learned synaptic weights. The large variations cause

(..

1Y

wider swings in neural states as the model iterates. There will be "

-
g -
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s

-
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an increase in the number of iterations to stability and a decrease

-

W, in the pattern recognition capability of the model as neurons,

N g& which should be in the excited state, are forced into the off state
" F; and vice versa. As more patterns are learned, the bits that
ﬁ :; represent these patterns are noise to other patterne and distort )
é . the internal memory (learned synaptic weights) of the model. Thus,
R © there is a decrease in the number of original learned patterns that
:: g( the model can recognize. However, the advantage in this situation A
- is that the model is more stable. With small variations of state, !
] ° certain neurons oscillate between the on and off states because of
,E . low-valued incoming learned synaptic weights. These neurons will \
;E > be forced te the on or off state because of large variations in ]
‘ ! state forced by large-valued and large-varied incoming learned \
3 . synaptic weights. The effect can be attributed to the number of :
3 Eﬁ patterns learned and to the number of neurons available in a given
(. model. A smaller number of neurons available to the model causes
3 - the summation of incoming learned synaptic weights to be less and
3 'ﬂ enhances the opportunity of a neuron to oscillate between the on
; and off states because of smaller variations in state. Thus, the
‘E ;3 model is less stable than one with a larger number of neurons.
E = However, this smaller variation in neural state will increase the E
¥ capabllity of the model to recognize a gr=~ater number of learned
; ,ﬁ patterns. Neurons that should be in an on state will not be driven
- - deep into the off state because of a large-valued summation of :
; learned synaptic welghts and vice versa. Thus, more learned
; 3- patterns are reccgnized, }
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x 5.3 Observations of Continuous Results
!. The observations for the continuous model are the same for the
-r: - discrete model with the following additions:
.', % 1. The value of the time constant (1/RC) affected the
. ) pattern recognition capability of the model with the smallest
: number of neurons as the number of learned patterns increased.
"I ;_ This behavior was not evident in the 48 neuron or 12@ neuron
::: § models.
:.:‘E \ 2. In the 25 neuron and 49 neuron models, there was a
;"f slight increase in the number of iterations required to reach
: . steady state when the models attempted to recognize a noisy cross
E' :.:: pattern versus a noiseless cross pattern. This behavior was not
* t evident in the 120 neuron model.
:'_: ) 3. As the value of the time constant (1/RC) increased for
: the 49 neuron model, there was both an increase and decrease in the
2 '- number of iterations required to reach steady state. This behavior
'.' L: was not evident in the 199 neuron model, and there was only one
| :; case in the 25 neuron model.
ioh Sy 4
; 5.4 Discussion: Continuous Neural Network Model
." :;‘ The following is a discussion about the Hopfield continucus
_: o neural network model based on the results obtained:
§ ‘ 1. For the continuous model, the noise, magnitude, and
. :1 number of learned patterns and their relationships with the pa*ttern
*2 , recognition capability, stability, and number of neurcons in the
0
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model are virtually the same as for the discrete model. The only
differences are the introduction of the time constant (1/RC) and
the new neural state is determined partially by the magnitude of
the previous state.

2. The time constant (1/RC) affected the pattern
recognition capability of the 25 neuron model. As previously

mentioned, the time constant ie the damping factor for the impulse
response of the continuous differential equation which represents

the mechanics of a neural change of state. It also represents the
refractory period of a neuron. During this period, any changes to
the external stimulus will have no effect on the output or state of

a neuron.

lh(t) 1}
1 1/RC=0

\.
\\\\ 1/RC=1
N
\ 1/RC=2000

t

Fig. 5.1 Impulse Regponse h(t) Vs. Time

As depicted in Fig. 5.1, an increase in the time constant

(2/RC) increases the Jdamping factcr and shor%ens the refractory
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period for a neural change of state. Thus, a neuron will change
gtate more quickly with an increase in the time constant. For 25
neurons, as the time constant increased, the ability to recognize a
noisy crnss was decreased. Therefore, a longer refractory periocd
for the neurons increased the pattern recognition capability of the
25 neuron model. It is believed that the longer refractory pericd
stops the critical neurons, that are in the correct on state, from
being driven into the incorrect off state by neurons that are
incorrectly turned on through added noise. Since the 25 neuron
mcdel is the smallest model, the magnitude of the state of each
neuron has a smaller value. Thus, it is closer to the zeroc value
decision point. Added noise will have a greater effect on a
critical neuron jumping into an incorrect state through the
negative (inhibitory) value received through its learned synaptic
weight with the incorrectly turned on neurons. The longer
refractory period, for these critical neurons, delays this change '
and allows the model to correctly ccnverge on noisier patterns.

3. The time constant (i/RC) did not affect the pattern
recognition capability of the 493 neuron and 19@ neuron models. The
increased number of neurons available to the model causes the
summation of incoming learned synaptic weights to increase. Thus,
the overall value of the s*tate is increased. As depicted in Fig.

5.2, the magnitude of the neural state is changed by increasing cr
decreasing the value of “he time constant (1/RC). However, due *to
the lncreased value of the summaticn of inputs, *he magnitude of 3

g
the neural state will remain farther away from the zers value X
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S
o decision point. The process is enhanced by the fact that the new
,ﬁ . neural state is also based on the value of the o0ld neural state,
i; - With the magnitude of the previous state increasing, the value of
Y
) i the summation increases. Thus, critical neurons are driven more
‘ﬁ quickly into a stable on or off state that will not be affected as
NN
e ﬁ readily by a change in the value of the time constant. f
L 4. It is believed that the time constant did affect the
N ~ number of iterations required to reach steady state for the 49
My -
: .ﬁ neurcn model; however, there was no set pattern of increase or
¢ e
decrease to explain how it was affected. Further research ie
P 3
) s, :
.j ) required in this particular area. |
y
Z
44
§ 5.5 Comparison of Discrete and Continuous Results
S Sj The following is a list of comparisons on the performance of
S
~ﬁ the Hopfield discrete and continuous neural ne*work models:
p 1. The 25 neuron continuous model, with two patterns
™, . ]
N f
:. :-' (
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' ! learned, acted identically to its discrete counterpart.
;:f ' 2. The 25 neuron continuous model, with three patterne -
\ ;E learned, had an increased pattern recognition capability, compared
' y to the discrete counterpart, of three additional bits of the noisy
- cross and an increase of one iteration to stability when a smaller
E - value of the time constant (1/RC) was applied. With the time
‘. constant at its largest value, the continuous model had the same
;::: E"_‘ pattern recognition capablility but took one additional iteration to
':': ~ reach stability.
i Pl' 3. The 25 neuron continuocus model, with four patterns
E J‘- learned, showed the same behavior as the discrete counterpart; :
:; i except, there was an lncreased pattern reccgnition capability of :
<.
t one additional bit of the noisy cross when a smaller value of the
e time ceonstant (1/RC) was applied.
N o 4. The 49 neuron continuous model acted in the same
: :‘ manner as the discrete counterpart with the only difference being a
1 o few sporadic changes in the number of iterations to steady state
:: f 5. The 100 neuron continuous model also acted in the same
\ = manner as the discrete counterpart. However, the continucus model,
z with three MED patterns learned, was more stable than the discrete
A model while recognizing THIN nolsy crosses. The continucus model
; - also, on an average, took one less lteration to stability when it
: E; had learned four MED or PROP patterns. K
‘5‘ R 6. All continuous models, independent >f the numbter arnd 1
4 type of pratterns learned, had the same pattern recognition
: :_;. capabllity as the discrete models when the time constant (1/RC) '
X ~

BT
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The only differences were a few sporadic

wag at the largest value.

changes in the number of iteraticns to steady state.

5.6 Discussion: Discrete and Continucus Models

The following is a discussion about the Hopfield discrete and

continuous neural network models based on the comparisons of

performance:

1. The continuous model is a better representation of the

internal operation of a biological neuron (as we know it) and of

the interaction between neurons that form a basis of memcry and

pattern recognition in the brain. The continuous model contains

the refractory period that occurs in a biological neuron. The

coentinuous model bases the value of the new neural state partially

on the value of the previous state. Upon firing, the neural state i

NS PP

&5 potential deces not instantaneously drop to the uncharged state of
Q)

2

~-78@ mV which occurs in the discrete model when the neural state

N instantaneously goes to zero upon firing.

e

2. Because of the better representation of a biological

a8

Y|

Y

neuron, the 25 neuron continuous model had an increased pattern

v

Fotetetal e

et

recognition capability compared to that for the discrete !

L d
W

counterpart. For the same reasons explained in Section 5.4 ¢f the

continuous model, the longer refractory period experienced, due to

the smaller values for the time constant (1/RC), enhanced the

ability of the smaller neuron model to recognize noisier crosses

after it had learned three and four patterns. The same model, with

Y ;'. S S L - '. ¥ - . A f‘;’..f.‘l"-’\-’.‘f\f."




only two patterns learned, did not show this increased ability due
to the instability of all medels with only two patterns learned.
The summation value of the incoming learned synaptic weights
multiplied by the outputs of the adjacent neurons was not
sufficient to drive the neural states far enough away from the zero
value decision region. Thus, critical neurcns would oscillate near
or would be incorrectly driven across this decision line.

3. As the number of neurons was increased, the pattern
recognition capablility of both the continuous and discrete models
was *the same. As explained in Section 5.4 of the continuous model,
the time constant (1/RC), in this situation, had virturally no
effect on the model due to the increased magnitude of the neural
state values. Agailn in the continucus case, the addition of the
previcus neural state value helped to counterbalance the reduction

in state value experienced by the multiplication of the summation

~
A
~
~
-,
-

of inputs by the value of RC/RC+1. Without the effect of the time

constant (1/RC), the calculations of the continuous and discrete

neural states were virtually the same.

AR XA A

4. Because of the better representation of a biclogical
neurcn, the 190 neuron continuous model was more stable compared to
the discrete counterpart. As in Number 3 avove, it was concluded
that *he addition of the rrevious neural state value, whi-h
increased the magnitude of the neural state values, was large
encugh to initially drive the critical neurcns

icn on either side of the

this was the
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the continucus model to be stable while the discrete model was
semistable. Since the learned patterns were not proportional, the
value of the incoming excitateory (positive) summation was lower in
magnitude; therefore, the medel had an increased chance to go
unstable with critical neurons oscillating across the zero decision
value region. The continuous model also had increased stability
for it took one less iteration to reach steady state when four PROP
learned patterns were used.

5. In all cases, the continuous moedel had virtually the
game results as the discrete model when the largest value of the
time constant (1/RC) was used. The discrete model wae based on no
refractory period occurring in the neuron. Thus, neurons could
change their states and outputs instantaneously. The largest value
of the time constant (1/RC), in the continuous model, represented
the shortest refractory period a neuron could have. It also
represented the strongest damping factor that the impulse response
to the continuous differential state change egquation could have.
Thus, with a shortened response to an input, the system was able to
recover quickly to its original steady state before the next input
to the system. Based on these observations and the results
obtained from the continuous model using the large-valued time
constant, Hepfield s continuous and discrete models are analognus

in their respective domains.
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APPENDIX A

COMPUTER
TEST PATTERNS

This appendix lists the pattern matrices used for the computer
simulation of the models. Pattern matrices are listed by figures
A.1 - A, 7. Each figure represents specific named pattern matrices
and the slze of neural network in which the matrices were used.
The same pattern matrices were used for both the discrete and
continuous neural network models.

o190 11111 10001 00120
P2100 10001 21019 01019
11111 10091 Ro120 190001
20100 10091 210219 Q1219
29129 11111 120901 20120
CROSS SQUARE X DIAMOND
Fig. A.1 25 Neuron ORG Pattern
2000000 [ 0[] %] ZG@@ZGQ. el 1%1%1 0,71
Q001200 2111110 2100010 P201000
9001000 01000190 P21212@ 0010100
2111110 01000190 P001000 2120010
01000 0100019 0010100 0010100
2021000 9111112 2100019 2001000
010161 1)) 1% %0 4]%]%] 7% %21 020000
CROSS SQUARE X DIAMOND
Fig. A.2 49 Neuron ORG Pattern
52
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PP

Q021002
Vo100
K00 1000
1111111
00210202
0001000
0001020

CROSS

0211000
0011000
1111111
1111111
¥211000
211900
0211000

CROSS

0020100000
P00 100002
0000100000
VP02 1100000
1111111111
D002 100000
0200100000
Q000100000
PO 100000
2000100000

CROSS

1111111
1000001
1000001
1000001
10012001
1000021
1111111

SQUARE

Fig. A.3 48

1111111
1111111
1100011
1100211
1100011
1111111
1111111

SQUARE

1111111111
1000000001
1000000001
1000002021
1000000201
1200000001
1000000001
1200000001
1000000201
1111111111

SQUARE

Neuron

53

1900001
2100210
20192100
0201000
2010100
0100010
1000001

X

1100011
0110110
09011100
0211100
0011102
0110110
1100011

X

Fig. A.4 43 Neuron PROP Pat*ern

1000000001
0100000010
0010000100
0001001000
0000110000
0000110000
2001001000
001000010290
0100000010
10020000001

X

Fig. A.5 12@ Neuron THEIN Pattern

o \‘v p

THIN Pattern

0oV102C0
0010100
V120018
1000201
01ervv1d
0012100
PRV1203

DIAMOND

0P 1200
2211100
0110112
1100011
0110110
0011100
Q0B1200

DIAMOND

0000100000
0021010000
0010001000
010000C100
1200000010
100000002 1
0100000017
0010000100
Q21001000
PRO0 100020

DIAMOND

T
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00001 1000¢
PR0D1 10000
020901 10000
2000110000
1111111111
1111111111
2000110000
2000110000
0002110000
00001110000

CROSS

2oeN 111000
2000111000
Qored1110e2
11121111111
1111111111
1111111111
2020111200
003111000
0000111000
PR20111000

CROSS

11111111112
1111111111
1100000011
1120000011
1100000011
1100000011
1100020011
1100000011
1111111111
1111111111

SQUARE

1111111111
1111111111
1111111111
1110000111
1110000111
1110000111
1110000111
1111111111
1111111111
1111111111

SQUARE

1200000001
11900000211
0110000110
0011001100
000D1 10002
0020110000
2011001100
2110000110
1100000211
1000000001

X

Fig. A.6 120 Neuron MED Pattern

1100000311
1110000111
21110011102
0021111000
00011110¢0
0001111000
0001111000
00311111100
1110000111
1100000311

X

Fig. A.7 100 Neuron PRCP Pattern

020112020
0901111000
0011201100
0110000110
1100000011
1100000211
2110002110
0011001100
0021111200
0000110000

DIAMOND

0001110000
0011111190
00111111029
01110011102
1110000111
1110000111
0111021110
eoi1111110@
0011111109
0021110020

DIAMOND
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