
A"9 FLE9 IDL DAFSIS:FRD SQFT AO9IIGlAO.IrpmG 'D I/I

UNCLASSIFIED I/ LM M-I5

ll* '

I,

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memormn kum 4.127

Title:
A Flexible basis for Software Configuration Management

Authors:
M.Stanley, P.O.Hammond

Date:
February 1988

Summary,
Software configuration management is a necessary part of any project
support environment. This paper discusses what software
configuration management aims to achieve and proposes a basis from
which a software c-7'figuration management system can be developed.
The proposed basis is illustrated by reference to the software
configuration management features demonstrated in the Flex
programming support environment, developed at RSRE Malvern.

Copyr 9ht

Controller H1150 London
198

A Flexible basis for Software Configuration Management
M.Stanley and P.D.Hammond

CONTENTS

1. INTRODUCTION
2. AIMS OF SOFTWARE CONFIGURATION MANAGEMENT

2.1 Product identification
2.2 Product stability
2.3 Change evaluation
2.4- Testing authorised changes
2.5 Propagating tested changes
2.6 Controlling authorised change

3. TRADITIONAL SOFTWARE CONFIGURATION MANAGEMENT
3.1 Product identification
3.2 Product stability
3.3 Change evaluation
3.1+ Testing authorised changes
3.5 Propagating tested changes
3.6 Controlling authorised change

1.. FLEX FEATURES THAT SUPPORT CONFIGURATION MANAGEMENT
.1 Relationships

.1. 1 Database-like structures
It. 1.2. Relationships and History

1. 1.2.1 Constants
,.1.2.2 Modifiable values

4. 1.3 Special relationships
tt.. I.14 Relationships between source text,

compiled code and program
1.1.5 Relationships to associated items

4.2 Access control and product stability
1.2.1 Capabilities
4.2.2 Procedure values
4.2.3 Protection from unauthorised change

t..3 Change evaluation
'+.v Implementing change

'.+. 1 Interface checking
10..2 Change propagation
1-.. .. 3 Testing an authorised change
'+..4..1 Propagating changes in a distributed system

It.5 Versions L-Ac0ession-Fo
4.5.1 Names NTIS CRA&I

4.5.2 Old versions DTIC TAB L
1+.5.3 Archives Unannounced 5
I,.5.1+ Parallel versions Justltioaion

(Continued)

Distributlon/
--, Availability Codes
/Avail end/or

Diet fSpecial

A Flexible basis for Software Configuration Management
M.Stanley and P.D.Hammond

CONTENTS

(Continued)

5. SUMMARY
5. 1 Product identification
5.2 Product stability
5.3 Change evaluation
5.4. Testing authorised changes
5.5 Propagating tested changes
5.6 Controlling authorised change

6. CONCLUSIONS
7. ACKNOWLEDGEMENTS
8. REFERENCES

A Flexible basis for Software Configuration Management
M.Stanley and P.D.Hammond

1. INTRODUCTION
Configuration management is defined(ref 6) to be management of change.
It has two complementary aspects, provision of information about a
changing product and controlling changes to the product. Change needs to
be controlled and recorded without excessive interference in the
development process.

A software product changes whenever any component (compiled unit and
the source text from which the compiled unit derived) is changed, or the
way in which the components are assembled is changed or any associated
item (e.g. requirements, designs, user documents or build files) is
changed. A component may be part of more than one product.

This paper discusses a basis for a flexible approach to software
configuration management. It sets out the aims of software configuration
management and outlines the traditional method of achieving these aims.
It goes on to describe the underlying features that provide a basis for
configuration management in the Flex programming support environment.
(t,2,*,5,te ant-ll)t It describes the practical application of these
features in easing some of the traditional problems of configuration
management. Configuration management across a set of machines is
considered as well as configuration management on a single machine.

2. AIMS OF SOFTWARE CONFIGURATION MANAGEMENT
2.1 Product identification
A software product may be instantiated in several places at once, perhaps
on different computers. Software suppliers need to be able to identify
the components and structure of an existing instantiation of a product
(not necessarily the most up-to-date version) to enable them to explain
its behaviour, to rectify detected faults and to update an out of date
instantiation of the product. Unambiguous identification of each source
text used to derive that instantiation of the product, the relationships
between the components and identification of associated items such as
documentation is essential. It may also be useful to identify the
transformations applied in deriving the product, such as the version of
the compiler and of the linking process.

2.2 Product stability
Change control involves both preventing unauthorised change and
assisting authorised change. Prevention of unauthorised change requires
access controls that allow use of a component while denying the ability to
modify the component. Even authorised change may have limited
applicability. A user may wish to prevent an authorised change to a
component from being applied to a specific product instantiation. It may
be easier to live with an error than to accommodate corrections,

I

particularly corrections that involve changes to the interface between
components.

2.3 Change evaluation
Any proposed change must be evaluated and its consequences identified.
This may involve Identifying users of a component to obtain their consent
to a proposed change. It may also involve identifying associated
components and documentation and tracing the history of a component,
Identifying date and reason for previous changes.

2.4.- Testing authorised changes
Before a product is actually altered it must be possible to test an
authorised change without impact on other users. Records must be kept of
tests, test results and tests that must be repeated after changes have
been made.

2.5 Propagating tested changes
On completion of testing assistance is required to propagate the
corrections to all users of a changed component with a minimum of
effort.

2.6 Controlling authorised change
When a change is authorised it is important that implementation of the
change should not introduce inconsistency in any associated product.
Inconsistency may be introduced between a product or component and its
documentation or it may take the form of non-matching interfaces within a
product. The configuration management system should provide whatever
assistance it can to encourage consistency between a product and
associated items such as documentation, although this must ultimately be
a matter for human judgement. Non-matching interfaces within a product
should be prevented. It should not be possible to run a program in which
some interface does not match.

3. TRADITIONAL SOFTWARE CONFIGURATION MANAGEMENT
Traditionally software configuration management (ref 7) has involved the
provision of a library of master copies of items which have been placed
under formal chn ge control, access to which is permitted only to a
librarian. A new version of any item is regarded as a separate item with a
relationship (new version) to the original item.

3. 1 Product identification
Identification of the components in any product instantiation depends on
accurate recording of the issue of components and products to users and
on information on how products have been derived from other items, on
which version of a component is used by whom and how the various
versions of the components are combined to form different versions of
the products (for example which source text was used for version 5 of a
product). To this end the librarian is responsible for storing,
controlling access to and providing copies of all items placed under his

2

control. He is also expected to keep accurate records of the history of
controlled items and the relationships between them (such as that two
items are different versions of the same thing or that one item
interfaces to, or uses, another). Some relationships (such as the
relationship between source text and compiled code or the relationship
between successive versions of an item) are traditionally indicated by a
naming convention. Accurate recording and control of items by the
supplier of a product may still be insufficient for completely
unambiguous identification of the components in use in a particular
instantiation if product maintenance depends, not only on the supplier,
but also on trust that any modification issued to a user has actually been
correctly implemented on the product.

3.2 Product stability
Items from the library are issued only after appropriate formalities have
been completed, such as change approval by a designated authority. An
authorised change is implemented on copies of the affected master items
issued by the librarian and the tested change is entered into the library
as a set of new items.

3.3 Change evaluation
Change requests are recorded by the librarian who provides status
reports on change requests awaiting approval or implementation as well
as information (where possible) on the implications of proposed changes,
such as a list of other items which will be affected and a list of users. A
librarian may or may not be supported by software tools and a database
management system holding information about the controlled items. Most
database management systems cannot hold the items themselves because
they are not designed to hold files, only information about files.

3.', Testing authorised changes
Changes to a component are implemented and tested on an issued copy of
the controlled item. Only on completion of testing is the modified item
added to the library of controlled items. The set of tests made and the
results of the tests are also held in the library. These tests may be
rerun when testing a modified item.

3.5 Propagating tested changes
When a tested item has been added to the library, the librarian is
responsible for propagating the tested change to all affected users.
Propagation of completed changes Is often achieved by issuing update
information to component users listed by the librarian. It Is then the
responsibility of the recipient to ensure that the change Is correctly
Implemented. There is heavy reliance on manually updated information
which is liable to error. Programmers do not always remember to record
all relevant information on a changing product.

One of the difficulties in this approach to configuration management lies
in the need to have separate copies of software in the library and in use

3

in a product. The librarian is responsible for ensuring that changes to
the master copies are reflected in all use of the items in actual
programs. There is always the danger that the different instantiations
may get out of step.

3.6 Controlling authorised change
The responsibility for maintaining consistency between controlled items
lies with the librarian. Use of appropriate high level languages assists in
enforcing consistency between compiled units in a product but the
librarian still needs to identify associated changes resulting from
modification of a widely used component. The librarian also has the
responsibility for insisting on changes to associated documentation and
for requiring proper authorisation before accepting a changed component
into the library or propagating a change.

4.. FLEX FEATURES THAT SUPPORT CONFIGURATION MANAGEMENT
A different approach to software configuration management is
demonstrated in the Flex Programming Support Environment (PSE)
developed at RSRE, Malvern. Flex is an interactive PSE that has been used
for program development since 1978. This section identifies the features
of Flex that are relevant to software configuration management and
discusses their use as demonstrated in a local network of Flex machines
connected on ethernet. One useful feature is the ability to show and to
document relationships by using tree-like structures combined with text,
on filestore. Another feature is the Flex separate compilation and
software construction system which eases propagation of changes to
affected users as well as providing binding relationships between a
product and the source text from which it was derived. A third feature is
the remarkably flexible and powerful access control facilities provided
by combining the microcode supported capability mechanism with the
treatment of the procedur a "first-class" value.

I. I Relationships
h.. 1.1 Detabase-like structures
An important aspect of configuration management is the recording of and
tracing of relationships between different controlled items.

Flex supports the general expression of relationships in a database-like
structure of text and filestore values. The databaselike structures are
stored on filestore and are called edfiles. The values and associated text
held within them are created, updated and searched by the normal Flex
editor. This editor is unusual in that it Is fully integrated with the
command interpreter and handles not just text but a mixture of text and
values. It handles any value that can exist on Flex such as other edfiles,
compiled units (called modules), integers, programs (called filed
procedures) etc. Since any edflle may contain others, edfiles may be a
structure of edfiles and other values, with the restriction (enforced by
the Flex filestore) that the structure must be acyclic. The values are
produced and used by the integrated command interpreter. Many database

management systems are restricted in the kinds of data that they can
hold. They can hold only textual information about the values such as
programs or source text files. They cannot hold the values themselves.
The edfile structures are more powerful than these for configuration
management because they can hold the actual programs and source text
files that are to be controlled.

Figure 1 is a trivial example of the content of a structured edfile as
displayed by the Flex editor. The cartouches (boxes) represent values.
Anything not enclosed in a cartouche is normal text.

This is the first line of the outermost level of this edfile.
This line includes an integerR. value 35.

A value is displayed as a labelled cartouche although the label is
completely independent of the value.
The value F5] could also be displayed as FtI. Note that the label
in a cartouche often indicates the type ovaT-ue, such as Edfile,
Module or Filed. Every value on Flex has an associated type.

An example of the use of the structure to indicate relationships
is in the (labelled) edfile led_date_doc (listed in figure 2)
It contains a procedure and its associat ed documentation, indicating
that the procedure, its documentation and the module are related.

l-igure 1. hdfile example.

This edfile,held within the first edfile, is the documentation on
the filed procedure, Filed (Edfile->Vec Char) . This procedure
takes an edfile and delivers its creation date in the form
dd/mm/yy hh mm. It was created from led_date :Module.

written by JB 11/02/81.

Below is a command delivering the date on which lexample: edfile was
created

lexample, edfile Filed (Edfile->Vec Char) 11

[is another edfile, whose content describes the design and
iie-in1ed use of the module and the procedure.

Note the convenience of holding documentation about the
procedure with its value and its derivation all in one edfile.

Figure 2. Edfi le labelled ed_date_doc.

The structure shown in figures I and 2 is tree-like. It is not strictly
speaking a tree because the same value may appear in more than one place
in the acyclic structure. The value of objects such as edfiles and modules

5

are represented by pointers (capabilities, see later) that give access to
the object content, so every occurrence of a given value in the tree-like
structures gives access to the same object. Only a single copy of the
object exists so there need be no concern about keeping different copies
in step with each other.

The editor provides facilities for examining the value represented by a
cartouche. Every value in Flex has an associated type (ref 12) that
defines its structure and the operations that are valid on it. The type is
used by the editor to select how the examined value will be displayed.
For example examining a value that is an edfile displays its content and
examining a value that is a module displays the source text from which it
was derived (see later).

An edfile is rather like a combination of a text file and the
tree-structured directories available on many other systems, although it
is more flexible for expressing relationships than a tree-structured
directory. There are two reasons for this. Firstly the ability to hold
explanatory text within the structure allows the reliance on navigation
and correct use of naming conventions to be abandoned. Meaning can be
documented fully in the surrounding text rather than relying on the
somewhat inadequate shorthand of appropriately chosen names. Secondly,
the same value can appear in any number of places in the structure
without extra copies of the object to which it gives access being
created. Relationships are expressed by holding related values either
adjacent or at different levels in the same edfile. Multiple relationships
may be expressed by holding a value in more than one place. For example,
the relationships between values such as modules, programs, design
documents, user guides etc are shown by holding the related values, with
explanatory text, either in the same edfile or in subfiles of an outer
level edfile as illustrated in the edfile example, eddatedoc.

o. 1.2. Relationships and History
As a software product develops controlled items are changed or
superseded. One responsibility of configuration management is keeping a
history of the development, retaining copies of superseded items and the
relationships between them.

It. 1.2. 1 Constants
In general Flex filestore values are constants and there is therefore no
danger that a change will alter an old version. In particular, edfiles are
constants. A new version of an edfile is a totally new value created after
modifying a mainstore copy of the edfile using the editor. The old value
is unaltered and persists, keeping all the implicit relationship
information and old values held in the edfile, as long as a pointer to it
(capability for it) is retained. On a system that permits filestore values
to be modifed there is a danger that an old version of a file might
actually be destroyed when the new version is created.

The Flex architecture ensures that filestore values are normally

6

constants. The filestore is basically non-overwriting. A user can either
write something to filestore or he can read or execute, something that has
already been written. The only operation that can overwrite anything on
filestore is an atomic action to update a root pointer to point to a new
root value. The fact that only atomic actions can overwrite the filestore
prevents the possibility of partially updating filestore. Vital files could
be lost and filestore corrputed if a hardware or system crash during file
updating could result in partially updated filestore.

4..1.2.2 Modifiable values
There are values on Flex which are not constants. They are references to
some content. When updated, the reference gives access to new content.
Modifiable values do not violate the principle of non-overwriting. Each
modifiable value is accessed through a root value which is a constant.
Modification is achieved by creating a new constant root value and
updating the root pointer to point to the new root value. The old root
value, previously pointed to by the root pointer, can be accessed through
the new root value. It holds the old content of the modifiable value.
Alternatively the old content of a modifiable value can be saved before
the value is updated (see discussion on versions). Modules are
modifiable values and there are also modifiable edfiles, called
edfile-modules.

'.. 1.3 Special relationships
In addition to flexible expression of relationships using the edfile
structures there are some special relationships which are relevant to
configuration management. The special relationships on Flex are binding
relationships which are automatically created and maintained because they
have been identified as useful in program development. They are
analogous to the relationship between an entity and its attributes in a
database such as the entity relationship style of database supported by
PCTE (Portable Common Tool Environment) and CAIS (Common APSE
Interface set) (refs 15, 16,17 and 18). These special relationships are
expressed on Flex by making the related values accessible through a
single object. The related values and the association between them are
protected from unauthorised tampering by hiding the object in a
procedure or program (see later). Other special relationships could be
added using the same technique.

The binding relationship between any value and its type is fundamental to
Flex. Otherspecial relationships currently supported on Flex include a
relationship between source text, compiled code and log file which are
bound together in a single object called a module (discussed later). The
relationship between a named value, an information file (an edfile which
may be structured) holding information about the value and the date of
the association between name and value is expressed by holding the three
values together in an object called a Flex dictionary that can be accessed
only by calling the appropriate dictionary access programs. (A dictionary
is a set of name/value associations associated with a specific user.) The
relationship binding an edfile (including source text accessed from a

7

module) to its creation date is maintained by having the creation date as
an integral part of the edfile. (Update dates are not relevant on Flex
because edfiles are constants.)

4.. 1.1o, Relationships between source text, compiled code and program
One problem in product identification is keeping track of the source text
from which any software product was derived. The traditiona! methods of
using carefully chosen names has proved difficult to manage. Databases
showing relationships between source text, compiled code and product
have been suggested (ref 19).

Flex uses a slightly different approach. Firstly the unit of separate
compilation (a module) actually gives access both to source text and to
compiled code. The two are indissolubly linked. The usual practice is to
rely on this binding to keep the source text. Explicit references to the
source text can be deleted as soon as a module has beeii created. A
program or module can be issued to other users with or without access to
the source text.

Secondly the source text of Algol68 programs (the programming language
most commonly used on Flex) itself contains the actual value of each
separately compiled module that it uses. This is possible because both
the editor and Flex Algoi68 compiler are designed to handle values in the
source text rather than referring by name to a compiled unit held in a
separate library. The multiple 'used-by' relationship is expressed by the
fact that the module value is held in every source text that uses it. This
does not imply that each source text holding a module value requires its
own copy of the module. A module is a modifiable value and each instance
of a given module value accesses the same content, the current version of
the source text, compiled code and a log file showing the history of the
module. (Log files and versioning are both discussed in more detail
later.) Since a source text holds the values of every used module, the
user can extract not only the source text from which a module derived but
also, by chaining through the used modules, any of the source texts
associated with used modules. The user can always be confident that the
text extracted from the module is the correct version. There is never any
confusion and the programmer is not burdened with the responsibility for
keeping appropriate records. Note that a module can be made accessible
to other users with the source text hidden. This may be deemed desirable
for software that is commercially sensitive.

Separate build files are unnecessary because each module always gives
access to all the modules that it uses. There is no ambiguity as to the
version used because a module is a modifiable value. It is not a sequence
of values. A user can also discover from which of the modules to which
he already has access a program was derived. However, to prevent a user
from gaining unauthorised access to the modules, it is possible only to
confirm the derivation. The user must already have access to the module.

When a program has failed, any user can display the source text of the

8

modules from which the failed program derived (provided the text has not
been hidden by the supplier, as mentioned above). This is not equivalent
to giving access to the module. The text can be accessed but not the
module from which the product derived.

It is sometimes considered desirable that not only should the source text
of a product be identifiable but the version of the compiler and other
programs used to convert source text to an executable program should
also be identifiable. Although this is difficult on Flex it could be
arranged. At present the date of creation (date of last change) of the
source file in each module is recorded but the date of compilation is not
recorded. The date of module amendment (which will usually but not
necessarily be the date of compilation) is recorded in the log file. Were
the date of compilation to be recorded it would be possible, although
somewhat tedious, to reconstruct the version of the compiler in use on
that date. This would be done by examining every module in the compiler
to discover whether it had changed since the date in question. So far the
effort required has not seemed justified.

It. 1.5 Relationships to associated items
Source text and compiled code are not the only elements in a module. A
log file that holds records of changes to the module is also bound to the
module. It is a structured edfile that can be accessed only through the
module. It may hold not only the history of a module, the changes that
have been made and the reasons for them, but also the superseded
versions of source text, relevant change requests and authorisation and
any supporting documentation. Other more permanant information may also
be included such as the name and address of the author of the module. It
would also be possible to include items that might be affected should the
module be changed, such as the design and user documentation.

The log file is automatically updated when a module is changed. The
module change programs display the log file, adding the date of the
update and the value of the superseded version. They invite the amender
to add a comment explaining the change. The amendment is committed only
when the user indicates that he has finished updating the log. Figure 3
shows the log file displayed when updating the ed_date module shown in
figure 2.

Log of amendments to ed-date:
Documentation in fed_date-doc

Amended at 25/02/85 by MS to correct error in calculating month.
previous version was 1old version
Amended at 1/10/85 ,Give reaa
previous version was o

Figure .

9

%-.2 Access control and product stability
Access control is vital to product stability. Items under configuration
control should be accessible to users for appropriate use but not for
alteration. Two aspects of Flex contribute to access control, capabilities
and procedure values.

k.2.1 Capabilities
Those values in Flex which require some degree of access control to
preserve system integrity are represented by capabilities (refs 13 and
lit.). This includes all values that would normally be under change control.
The capability mechanism ensures that only authorised operations
(read/write or execute) can be applied to the value represented by a
capability and only the holder of the capability can apply the authorised
operations. An important and unusual aspect of Flex capabilities is that
they can be treated like other values in that they can be held anywhere on
filestore or in mainstore, stored in edfiles or used in programs and can
be passed to another user, giving the other user the right to access the
controlled value but only in the specified way.

The Flex microcode (which is fixed and inaccessible to users, being used
as an extension to the hardware) ensures that capabilities cannot be
forged. The only software or user operations involving a capability are:

1. request a new capability from the microcode (any procedure or
program can do this I it is not a privileged operation);

2. store a capability for future use;
3. copy the capability to another user;
'. delete a copy of the capability (this does not delete the value to

which the capability gives access, another copy of the
capability may still exist);

5. use the capability as authorised by the microcode.

Current work at RSRE aims to implement capabilities and the protection
that they provide without specific microcode support.

Items under configuration management can be issued freely as
capabilities, secure in the knowledge that they can be used only as
authorised. Since capabilities cannot be modified, the type of access
permission that they allow cannot be changed. A user with a capability to
execute a program can execute the program but he cannot do anything else
to It, such as reading any internal values or modifying any code. Since
capabilities cannot be forged illegal access to the controlled values
cannot be obtained.

Capabilities can be split into four general categories a-

1. Mainstore capabilities - exist in only one mainstore and cannot
be transmitted elsewhere.

2. Flleatore capabilities - exist in only one filestore or in the
mainstore of any computer which directly accesses that

1

filestore. They can be transmitted between mainstore and the
filestore.

3. Remote capabilities - can exist in any mainstore and can be
transmitted between mainstores. They allow access to other
mainstores and filestores across the network.

to.. Universal capabilities - can exist anywhere in the Flex world in
mainstores, filestores or on networks. They represent
commonly used objects like compilers, editors etc.

Items under configuration management are usually filestore capabilities
that do not permit alteration of the controlled value. Remote capabilities
may be used to give remote access to controlled filestore values.

.. 2.2 Procedure values
A major factor in the access controls provided on Flex is the fact that
Flex treats procedures as first class, context independent values or
objects (refs 2,8 and 9). This allows values, including capabilities, to
be protected by being hidden inside a procedure. The only way to access
such values is to execute the procedure (or program) that hides them.
Such programs are known as access programs.

A true procedure value in the sense of Landin (ref 7) has the context or
environment in which the procedure runs (its non-locals) bound in as a
part of the procedure value. Procedures may be parameters for other
procedures or may be delivered by other procedures (provided the
language also supports this notion, as does Algol68). Procedure values
may be executed either by calling from other procedures or as programs
called from the command interpreter. The terms program and procedure
are therefore used interchangeably. Values (both local and non-local) and
input parameters of the delivering procedure can be bound into a
delivered program, and thus hidden from a caller of the delivered
program. The facility to hide values in delivered access programs is not
privileged but is available to any programmer. It is used to provide the
flexible access control necessary for configuration management.

For example, delivered procedures might be used as described below. It
should be borne in mind that this is only an example of how the access
controls provided by procedure values might be applied. There is
complete flexibility as to how the facilities are used. Precise details of
the access programs suitable for a full configuration management system
have not yet been worked out, although the practical application of
access programs is demonstrated in their use to control changes to
modules, as discussed later.

Consider a program to place an item under configuration management. The
program, controlItem, takes as parameter a capability for the item to be
protected. It creates a history record and an old versions record for that
item and delivers a set of four programs for accessing and updating the
item and its history. The protected item and its history will then be
accessible only through the issued access programs, provided that the

i

programmer who provided the Item for configuration control does not
retain an unauthorised copy of the capability.

Because Algol68 modes do not include capabilities as a distinct mode,
capabilities are represented in Algol68 by integers. (Microcode checks
prevent the abuse of a capability represented as an integer.) Program
control-item therefore has Algol68 mode:

PROC control-Item = (INT file-capability)
STRUCT(PROC INT issue-item,

PROC (INT olditem,
INT newitem,
INT changerequest)update_item ,

PROC INT show-history ,
PROC (INT version)INT old-version);

The first delivered program (issueitem) takes no parameters and
delivers a capability for the controlled item only after it has performed
certain checks. These checks might include password checks and a set of
questions requesting details of the authorisation to access the item.
They might request a capability for the relevant change request. Any
checks that the writer of control-item wishes to impose can be built into
the delivered access program, issue-item. Each time issue_item is
executed it either fails after recording an unsuccessful attempt to
satisfy the checks or it records, in the history, the identity of the
recipient, the reason for issue and the date and the capability for the
authorised change request, before issuing the item. The recorded
information is accessible only through another delivered program,
show history.

The second delivered program (update-item) takes as parameters the
capabilities for the issued item, its replacement and the change request
against which the item was issued. It checks that the change request and
issued item are as recorded in the history, performs any specified
compatibility checks between the old and new items, and if all checks are
satisfied it replaces the old version by the new one, moving the
superseded item to the oldversions record and updating the history
record.

The third delivered program (showhistory) displays the history of the
Item and delivers a capability to read the history, again after appropriate
checks and the fourth, (old-version) after appropriate checks will issue
an old version.

A user invokes contro_ tem to place an item under configuration
management. The delivered access programs all give access to the same
Item. They all have the capabilities for the protected item, its history
and the old versions hidden within them as non-local values, bound to the
delivered programs when control_item is executed. These capabilities

12

VF

need not exist outside these programs. The access programs may be
stored on backing store because all the Internal values and non-locals can
be stored on backing store. The user can use them to access the item and
its history and to update the item. He can pass them to other users to
give them controlled access to the item and its history. Different
programs may be issued to different users, allowing some access only to
the history while others have access to issue-item and update-item. The
controlled capability can be shared safely by issuing the capabilities for
the access programs. The protected value cannot be reached except by
executing an access program because it does not exist outside these
programs. The capability to execute an access program does not give the
ability to dismember the program to get at the protected value. The
access control provided by the capability mechanism combines with the
protection provided by procedure values to give an unusually powerful and
flexible form of access control that can be used, not only by the
operating system, but also by any programmer, to protect values and to
provide configuration control. Access programs are ordinary procedures
created by a user. No privilege is required.

to.2.3 Protection from unauthorised change
The protection of modules from change by an unauthorised user provides a
good example of the use of delivered procedures. Each user has a set of
procedures or programs peculiar to him, which have his identity bound in.
It is impossible to supply the identity of a different user to them.
Included in the set of user specific programs are a program newrmodule
to create a new module and a pair of programs that can modify only
modules created by that new_module program. One of these programs
change-spec permits the external specification of the module to be
changed, the other amend_module will apply only a change that preserves
the external specification. When a change program is invoked on a module,
the identity of the owner of the module, bound into the module by the
new_module program that created it, is compared with the identity bound
into the change program. Only if the two user identities match will the
module be updated. This ensures that a module can normally be changed
only by its owner. Attempts to change a module created by someone elses
new_module will fail. The owner of a module can still modify a module
that has been issued to other users because he holds the change program
with the correct user identity. If it is deemed desirable to limit the
authority to change an issued module to a librarian this could be done by
requiring the librarian to issue only modules created by his newmodule
program. It is easy to create a new module from any existing module
submitted to the librarian.

More elaborate configuration management controls could be incorporated
in the change programs. They could require confirmation that all
associated items (listed in the log file) had been changed, perhaps
requesting some form of independent authorisation to confirm consistency
before a change is accepted for propagation.

13

16.3 Change evaluation
Evaluating a proposed change may involve considering all items that might
be affected by the change, such as documentation, associated products
and modules that use components that will change. It Is important to
consider the problem of maintaining consistency between related items.
Consistency between documentation and the rest of a product is a matter
of human Judgement. However, a configuration management system should
provide such assistance as is possible, for example Indicating where a
change in one item implies a need for a corresponding change in an
associated item (e.g. if a compiled unit is changed, the documentation or
user guide may need change). If all items likely to be affected by changes
to modifiable values such as a module or an edfile module were held in
the associated log file, then they would easily be located. The source
text of the module gives access all used modules. It is therefore easy to
list the modules used in any given module and to access the log files of
the used modules to find other associated items.

It is not essential to maintain accurate lists of all users of a module
because changes are automatically propagated and interfaces are
automatically checked, as discussed below. Provided the external
specification and the functionality of a module are not affected by a
proposed change then it is probably not necessary to contact all users.
Such a change would be acceptable even without prior warning. More care
is needed if a change to the external interface of the module or to its
functionality is envisaged. It is a human responsibility to consider
carefully the consequences of a radical change. It may be preferable to
replace the module with a different module in specific products rather
than to update the module for all users.

The evaluator of a change that will affect either the functionality or the
external specification of a module may also wish to know who uses a
module that may be changed. Records are not usually kept on Flex as to
where a module is used. Locating all users of a module is difficult
because the filestore is acyclic, so there is no explicit route from a
value to the values that contain it. It is, however, easy to confirm
whether a user has a specific module. Programs exist to search a
container (such as an edfile, a dictionary or a module) to confirm
whether it gives access to a given module and to search for a module that
uses a given module.

,.% Implementing change
4.I Interface checking
One task of configuration management is to assure product users that the

interfaces between components will always match. A product running with
non-matching interfaces will have unpredictable results. Non-matching
interfaces within a product are a hazard not only when a product is
initially assembled from Its components but throughout the life of the
product. Corrections to components can give rise to non-matching
interfaces so it is necessary to be able to detect a non-matching

Ilk.

interface and to correct affected components. Choice of language and of
separate compilation facilities affects the clarity of the interface
definition and the ability to ensure matching interfaces between
components at all times. A language such as Algol68 or Ada that enforces
adequate type checking of interfaces at compilation time is an important
element in configuration control, particularly where re-use of
components is involved. Compilers on Flex check that the interfaces of
all used modules match their use.

In addition Flex differentiates between changes that alter an external
specification and amendments that leave the external interface inviolate.
The amendment program does not permit alteration of the external
specification. Because different programs are used, an external
specification cannot be altered unwittingly. To prevent the use of
modules whose interfaces no longer match their use, instances of a
module updated using a changespec program are marked as invalid. They
can be revalidated only by recompiling the using module. (It is not
necessary to recompile any user of a module whose external specification
has not changed.) Invalid Instances of modules cannot be loaded or run.
Thus any user, even if not formally notified of the change, will know that
an interface has been changed when he tries to use the program or
procedure involving an invalid instance of the changed module. He will
never be subject to the undefined results that can occur if accidentally
using a procedure whose specification no longer matches the call.

It is easy to implement all the changes needed to accommodate interface
changes. A recompile program scans a module and all used modules,
locates any use of an invalid instance of a module and recompiles the
user, validating the used module. Where non-matching interfaces are
involved it calls the editor to invite change to the using module.

Modifying a using module will fail if the using module was created by
another user because a module can be updated only by its creator. For
this reason approval for changes that will alter an external specification
of a widely used module should be granted only in exceptional
circumstances.

.P.2 Change propagation
A common problem in software configuration management is to ensure
that, when an error has been corrected in a component, the correction is
propagated to all users. Some systems provide automatic propagation of
changes in compiled units to all dependent units but the propagation is
not always extended to cover programs or executable images that include
the changed units. Manual propagation of changes, aided by tools such as
a program to list where a compiled unit has been used, may depend on a
programmer remembering to insert the necessary information in a
database. The administrative burden of keeping track of changes can be
reduced by such tools, but reliance on systematic use of the naming
system and on separate systematic recording of all changes and all uses
of a compiled unit is dangerous and error prone.

is

Changes to Flex modules have Immediate system wide effect. This is
unusual. It means that a change is automatically propagated to all users of
the module, to all programs or filed procedures that involve the module
and across all Ads libraries that contain the module. Changes are so
propagated because Flex links Its programs dynamically. The user of the
module (be it another module or a program) does not incorporate the code
of a module until it is loaded at run time. There are no executable images
with distinct copies of the compiled code bound to them. In addition a
module is effectively a reference to its content. When a module is
updated the same module capability references the new content. There is
only one copy of the compiled code of any module regardless of the
number of references to it held in different using modules. The module
capability gives access to the same content whether issued to another
user or not.

Sometimes a user may wish to prevent changes being propagated to his use
of a module that was supplied by someone else. Flex has facilities for
this. The module user can call his own newnmodule program to create a
new module from the old one. The new module will not receive any of the
changes propagated to the module from which it was derived. Obviously to
prevent any changes to anything would require creating a whole new set of
modules. However, in practice this rarely seems necessary. The
programmer can still hold the module that he has replaced (perhaps in the
log file of the replacing module) thus having access to the log file and
corresponding changes in the replaced module in case they prove to be of
interest. It will be the responsibility of the owner of the new module to
check occasionally whether any significant change has been made to the
replaced module.

--.1..3 Testing an authorised change
Any proposed change can be tested and approved prior to committing the
change to all users. Although a program is usually created from a module
it can be derived directly from the compiled code without affecting the
module. The directly derived program can be tested by calling it from the
command interpreter without changing any module. Alternatively, because
programs are linked dynamically, a new program can be created for
testing purposes by replacing selected modules used within a program.
The replacements are linked into the program instead of the original
modules. Neither the replaced modules nor the original program is
affected and no change is made to any source text. This powerful facility
can be used to test proposed changes before propagation of the change or
to construct multiple versions of a piece of software by merely replacing
certain modules. The remainder of the modules will be common to the
different programs. Module replacement is possible only if the
replacement has the same external Interface as the replaced module.
Replacement of modules with altered external specification is achieved
by replacing the using module, altered as necessary to match the altered
used module specification.

16

.4.- Propagating changes ina distributed system
In a distributed system or in situations where separate machines have
their own copy of the software, changes must be propagated to other
machines. If Flex machines are connected on a network then software on
one machine may invoke software residing on another machine on the
network using remote capabilities. The configuration management
facilities described above apply both to software on a single Flex
machine and to use of software shared using remote capabilities. In the
situation where separate machines each have their own copy of the
software is is necessary to be able to keep the copies in step, or at
least to know when copies differ. Conventionally this is done by keeping
records of updates and of transfers of updates to the different machines,
usually keeping a master copy of any shared software in a library from
which updates may be taken. Transfers may be of source text, of compiled
units or executable programs or of amendment instructions.

At present any Flex software may be copied from a host machine to other
(target) machines. Users of the target sofware periodically update it
from the host. A program, update, is run on the host machine. Update
automatically extracts the source texts from all modules in a given set
which have been changed since a given date. These are transferred to the
target machine where another program is run to update the target
software. This recompiles the transferred texts and amends the modules
on the target machine. It creates new modules to cater for those modules
created in the host since the given date (probably the last update date).
In some cases this process can be speeded up by transferring the
compiled code of the module to avoid recompilation on the target
machine. Changing the modules on the target automatically results in
changes to the programs derived from them, as described above. These
facilities allow software to be taken from any host to any target. While
they do not rely on manual recording of who has what software nor when
host software has been changed, the control is not as rigorous as that
which can be applied on a single Flex machine. It relies on correct use of
update and on records to indicate which hosts have supplied software to a
target. Each individual machine is however protected to a certain extent
by its own internal configuration management.

A higher level of distributed configuration management will be achieved
by the use of universal capabilities (ref I'+) and an ethernet linking all
the Flex machines. Work on universal capabilities is currently under way.
A universal capability represents a system value which has a counterpart
on each machine e.g. the Algo168 compiler. On the network this value will
be represented by a simple unique token. On receiving this token a
machine will know that it should use its own copy of that universal
capability. Each machine will also keep the version number of its copy of
any universal capability and will transmit this with the universal
capability across the network. On receiving a universal capability with a
higher version number than that of its own copy a machine will set in
motion an update of its copy of that universal.

17

k..5 Versions
One responsibility of configuration management is maintaining an accurate
record of the different versions of controlled items and the
relationships between them. Versioning is a partial ordering, in which any
object is superseded by its successor, but parallel versions may also
exist that do not affect the currency of other versions.

4-.5.1 Names
Conventionally a sequence of versions of an item share a common name,
optionally qualified by a version identifier. Flex does not have this
concept (ref 28). A Flex name in a given dictionary references a unique
value. (which may be a structured edfile containing many other values)
rather than a sequence of values. When a new value is associated with a
name a new dictionary is created. The old dictionary, holding the value
formerly associated with the name can be accessed through the new
dictionary. A user who wishes to retain a sequence of values may keep
them all in a single edfile, with suitable text or labels to indicate
status, as is done automatically in the log files for modules (fig 3).

k.5.2 Old versions
As mentioned earlier, most values on Flex machines are constants and
constant values cannot be altered, although they can be superseded.
Replacement of constants with new values can make it difficult to
maintain consistency if the same constant appears in several different
places (for example the same edfile may appear in different branches of
a structured edfile). One instance may be superseded by a new version but
the other instances may still point to the old version. It such cases
modifiable values are used.

Modules are not constants, they are modifiable values. Instances of a
module may appear in many places and changes to it are automatically
propagated to all instances. A modifiable edfile (called an
edfile-module) is another example of a modifiable value, created using
the module mechanism. An edfile-module is like a module whose content
contains the edfile but no compiled code. It is updated in the same way as
a module, and superseded versions of the edfile and its history can be
stored in the log file if required. This is particularly useful because it
allows references to structured edfiles. Edfile-modules are used for
those edfiles which need to be referenced from more than one place, for
example to allow cross-referencing in documentation.

Old versions of constants can be accessed as long as a capability for
them Is retained. Successive versions of constants may be held together
in a single structured edf lle. Old versions of the content of an modifiable
value can be written automatically to the log file when the value is
changed. Alternatively old values can be accessed through old
dictionaries which can themselves be accessed through the current
dictionary.

18

V

%-.5.3 Archives
Traditionally the configuration management librarian has responsibility
for archiving controlled items to ensure that old versions can be
recovered or recreated and that, when recovered, consistency between
related items is maintained. The user of a conventional system cannot
expect to recover a precise copy of a prematurely discarded file. He may
retrieve an earlier version by use of the system back-up facilities, but
the earlier version (if accessible) may not be the same as the discarded
file and may be inconsistent with other files or dictionaries in the
current filestore. On Flex a discarded value previously associated with a
module, an edfile-module or a name may be retrieved through old
dictionaries, which are automatically retained on Flex until the next disc
garbage collection. A value held in a previously named value can be
retrieved through the value formerly associated with the name. The old
version, recovered by access to the old dictionaries, is precisely the
value that was lost and not some arbitrarily selected earlier version.
Because the root pointers are the only values on Flex that can be
over-written, each root pointer gives access (indirectly) to a completely
consistent snapshot of filestore. This eases the problem of maintaining
consistency when old versions are retrieved. A user worried about losing
access to old versions at garbage collection can arrange to keep old
versions automatically, as in the log file.

lt.5. Parallel versions
Parallel versions of a program differing from each other in only a few
modules are easy to create and to keep in step on Flex. For example, a
compiler may exist with two back ends A and B. for two different target
machines. The two versions exist in parallel and are composed from the
same modules except for those peculiar to the specific target.
Conventionally separate executable images for the parallel versions are
created using separate build files. The only indication that both programs
are essentially the same is in the manually maintained records held about
them. On Flex this artificial separation is unnecessary. Version A of the
compiler is created in the usual way from its modules. Version B is then
created from version A by replacing only the target specific modules with
different, equivalent compiled units for target B. Replacement of modules
in an existing program ensures that that the differences are only those
specifically indicated by the replacements. No accidental differences can
creep in due to different build files or different modules being used in
error or due to changes in shared modules not being incorporated in both
versions. The command showing the replacement of modules from the
parent program is kept with other relationship information in an edfile.

Corrections to modules that have not been replaced will be propagated to
both versions in the usual way. The propagation of changes to the module
replacements is not as neat as the propagation of changes to modules, and
a balance needs to be struck to decide when a new module would be more
appropriate than a replacement. If, however, a replacement is used in
only one modified program, as usually happens, then the inability to
propagate changes automatically to other units is irrelevant.

19

5. SUMMARY
5. 1 Product identification
The identity of the source text from which a product instantiation
derived is never in doubt on Flex. This certainty derives from a
combination of binding source text to compiled code in a module and the
use of actual values of the modules within the source text of the using
modules. It removes the potential confusion of working with the wrong
version of source text and enables the diagnostic program to deliver the
actual text in which an error has been detected.

It has not in practice been found necessary to reconstruct the version of
the compiler or linker used to derive a product from its source text.
Although difficult, this would be possible.

5.2 Product stability
Procedure values provide the means to protect a module from
unauthorised change. The actual protection provided prevents change by
an unauthorised user, prevents unwitting change of external specification
and requests an update to the log file containing a history of changes.
Other protection could be incorporated by placing additional constraints
such as password protection or a set of queries to be answered within
the program that amends a module. Similar protection could be provided

for other values if deemed useful.

A user who wishes to avoid all future change to his version of a module
must create his own version of the module which will then be completely
independent of its parent. He can still gain information about changes to
the parent by keeping the parent and calling a program to display its log
file, but he will not automatically receive notification of changes.

5.3 Change evaluation
The log file of a modifiable value such as a module or an edfile module,
accessed through the value itself, need not be restricted to holding the
history of the value. The use of structured edfiles to hold related items
together with their documentation helps those assessing the impact of a
proposed change to identify associated items such as documentation that
may need change. The log file may be just such a source of information.
The modules used by a module are easily identified by examining the
source text extracted from the module. Although no records are kept on
Flex as to where a value such as a module is used, procedures can be
written to search a dictionary or container for a specific value if the
information is needed. Should it prove necessary to discover where an
item is used each user can search his own dictionaries to check if the,'
give access to the item. This cumbersome task has not yet proved
necessary in the ten years of use of the Flex system.

A radical charge to a module, that would alter either its functionality or
its external interface should be authorised only with extreme caution.
Users of modules will reasonably expect stability in the external

28

appearance of the module. It is incumbent upon those evaluating a
proposed change not to authorise radical change. Any change radical
enough to involve a change to the external interface of a module could
result in non-matching interfaces. Although users of the modified module
would automatically discover that the change had occurred when the
product with non-matching interfaces was loaded, notification at
run-time is obviously unsatisfactory. It is better to reject such radical
changes, insisting on a new module in place of the previous version
rather than the same module with a changed specification. The
propagation of change would then be limited to those products where it is
known that the change is needed.

The relationships between compiled code, source text and log file have
proved invaluable for configuration management. If other explicit
relationships are deemed useful for change evaluation they could be added
to F'ex using a data structure similar to a module in which related
capabilities would be accessible through the same object.

5.1+ Testing authorised changes
Testing an authorised change without actually modifying any component is
done by running a program with selected modules replaced just for the
purposes of the test or by creating a program directly from the compiled
code and calling it from the command interpreter.

Test data, results and any textual explanation can if desired be kept in
the associated log file or with the module in any other structured edfile.
Change requests and authorisations may be also held in these edfiles. A
procedure could be written to check that all the items identified as
affected by an authorised change request had actually been modified
before the change request status was marked completed.

5.5 Propagating tested changes
On completion of testing a module must actually be updated. Propagation
of completed changes is automatic on a single Flex machine because
linking of a module to a product occurs only when the product is loaded.
Any change to the product then comes into force automatically. Changes
must still be propagated explicitly to other machines.

5.6 Controlling authorised change
Module amendment will change an external specification only if this is
explicitly requested, and will then invalidate all other instances of the
changed module on that machine. Revalidatation involves calling the
compilers on each using module. The compilers will check against the use
of modules with non-matching interfaces. Automatic means are provided
to locate instances of modules with changed external specification and to
recompile only as necessary.

Although human intervention is still the most important factor in
maintaining consistency between a component and associated

21

documentation, the use of structured edfiles can assist by keeping
associated items together. If desired all associated items can be held in
the log file. This does not waste space since it is only the capability for
an item that is actually kept in several places. The item itself occurs
only once.

6. CONCLUSIONS
We have shown that an alternative to the traditional approach to software
configuration management is possible. Although the actual procedures for
a full software configuration management system have not been worked
out, the facilities described here, and demonstrated in the Flex PSE,
provide a powerful and adaptable basis on which to build a software
configuration management system. These facilities support a form of
software configuration management that allows for greater flexibility
than can be permitted when relying on a library of master copies coupled
with manually maintained records. The facilities can prevent related
items from getting out of step, as demonstrated in the binding of
compiled code to source text and log files, they can enforce proper use
of controlled items, as demonstrated in the procedures controlling
change to modules and they can express relationships in a particular i
flexible way in the structured edfiles. The main characteristics that
enable this support to be provided are the distinction between constants
and modifiable values, capabilities, context independent procedure
values, dynamic linking, the module system and an editor that handles
values as well as text, thus supporting the database-like edfiles.

Additional tools for configuration management of large software projects
could be envisaged which make use of the powerful facilities
demonstrated. Some tools such as a file comparison program already exist
and an equivalent of the source code control system (Glasser (8) and
Rochkind(9)) system could be developed.

Procedure values combine with capabilities to provide a remarkablN
flexible and powerful system for access control. Although we have not
investigated the control facilities needed for full configuration
management, some indication of the power of access procedures to
provide the necessary controls is demonstrated by the change controls
provided for modules.

An editor that handles any type of value as well as text leads to the
tree-like structured edfiles that make it easy to express relationships,
to hold related objects together and to document values in the edfile that
holds them. Instances of the same value can appear in any number of
places in the structures without the value of the item to which the
instance gives access actually being duplicated.

The module is a structure giving access to source text, compiled code and
log file. The fact that these are linked in a single item gives confidence
that they cannot get out of step. Similar structures may be desirable to
support other aspects of configuration managment. The supplier of a

22

module (and its user if permitted) will always know what source text was
used to create the current version of a module and all the modules it
uses. Use of structured log files, accessible only through the item whose
history is being recorded, gives an unusual approach to the retention not
only of old versions but also to the location of associated items.

Although most values on a system with non-overwriting filestore are
constants it is possible to support modifiable values as is shown with
modules. Non-overwriting filestore, designed to provide high integrity,
gives confidence that values will not change. Old versions only need
protection from being discarded. They cannot be corrupted. Although the
non-overwriting filestore leads to difficulty in establishing who has
access to a value held in several parts of an acyclic structure, this has
not so far proved to be an important problem. Individual parts of the
filestore can always be searched for a specific value when necessary.

Dynamic linking of procedures at run time plus the fact that modules are
modifiable values with instances of the used modules actually held in the
source text gives automatic propagation of completed amendments to all
users of a module on a single machine. Programmers need not therefore
worry about keeping accurate records of the recipients of modules. The
ability to test a change without actually updating the affected module
makes it safe to have a module amendment system that automatically
propagates change to all users. A potential change to a module can be
tested without propagation of the change. The change control facilities
still give the user the opportunity to cut himself off from module updates
by creating his own copy of the module.

The detailed specification of tools that could be developed to provide
automated support for configuration management remains to be done. A PSE
such as Flex demonstrates that it is possible to support such tools in a
flexible way.

7. ACKNOWLEDGEMENTS
The authors wish to acknowledge the help of their colleagues at RSRE who
developed the ideas embodied in the Flex PSE and demonstrated their use.

23

L

S. REFERENCES

1. Currie, I.F.. Edwards, P.W., and Foster, J.M., 1985. "PerqFlex
Firmware", RSRE Report 85015.

2. Currie, I.F., Edwards, P.W., and Foster, J.M., 1982, "Flext A working
computer with an architecture based on procedure values". RSRE
Memorandum 35908.

3. Landin, P.J., 1961., "The mechanical evaluation of expressions",
Computer Journal, Vol 6, No 1+, pp388-328 .

I-. Currie, I.F., 1982, "in praise of procedures", RSRE Memorandum 31+99.
5. Stanley, M., 1986, "Using true procedure values in a programming

support environment". RSRE Memorandum 3916.
6. Dunn, R. and Ullman, R. "Quality Assurance for computer software",

McGraw Hill 1982
7. BersoffE.H., Henderson,V.D.and Siegal.S.G. "Software configuration

management- an investment in product integrity" Prentice Hall 1988.
8. GlasserA. I., "The evolution of a source code control system" Proc.

of the Software Quality and Assurance workshop in Software Engineering
notes , Vol 3 no 3 July 1978

9. Rochkind,M. "The source code control system" IEEE Trans. on Software
Engineering, Vol SE-I no It Dec 75.

18. Stanley.M. 1986 "An evaluation of the Flex PSE" RSRE Report
86083

I1. Stanley.M and GoodenoughS.J. "Some practical aspects of
software re-use" Proceedings of Alvey conference on software
engineering environments, Lancaster 1986 ;
ed, 1. Sommerville, Peter Peregrinus

12. Stanley M., "Extending data typing beyond the bounds of
programming languages. " RSRE Memorandum 3878

13. Foster J.M and Currie I.F, "Remote capabilities" Computer
Journal, Vol 36 No 5, Oct 1987

I'. Foster J.M and Currie I.F, "The varieties of capabilities in Flex"
RSRE Memorandum 1+8It2 1987

15. Chen P.P "The entity relationship model, Towards a unified view of
data" ACM Transactions on Database Systems, 1976 Vol 1 No 1.

16 . PCTE Functional Specifications ',.th edition
17. Lyons T and Tedd M.D "Recent developments in tool support

interfaces. CAIS and PCTE" 6th Ada UK Conference, York Jan 1987.
18. Lyons T and Tedd M.D. "Technical overview of PCTE and CAIS" 6th Ada

UK Conference, York Jan 1987.
19. Bernard. Y, Lacroix M. Lavency P and Vanhoedenaghe M

"Configuration management in an open environment" Ist European
Software Engineering Conference, France, Sept 1987

20. Stanley, M.. 1986, "Using values without names in a programming
support environment". RSRE Memorandum 3901.

21t

DOCKMN7 CONTROL SHEET

Overall security classification of seetUNCL.ASS. IF.. ED.....................................C.LASSIFIE

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. 3RIC Reference (it known) 2. Originator's Reference 3. Agency Reference . Report Security
Memo 4127 7 7 n lass if il

ss i fica t
,
o n

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known)

778400 RSRE Saint Andrews Road, Malvern, Worcs WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

Alvey Conference on Software Engineering Environments - Durham, 21-24 mar 1988

8. Author 1 Surname, initials g~a) Author 2 9(b) Authors 3.4... 10. Date DID. ref.

Stanley M Hammond P D 1988.2 24

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Descriptors (or keywords)

continue on separate ciece of paper

hAbract

Software configuration management is a necessary part of any project
support environment. This paper discusses what software configuration

management aims to achieve and proposes a basis from which a software
configuration management system can be developed. The proposed basis
is illustrated by reference to the software configuration management

features demonstrated in the Flex programming support environment,

developed at RSRE Malvern.

S60/48

DATE

FILMED

