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FOREWORD

The Thirty-Third Conference on the Design of Experiments in Army
Research, Developient, end Testing was held 21-23 October 1987 on the
campus of the University of Delaware. This university served as one of
its hosts, the other host heing the Ballistic Research Laboratory
(BRL). Professor Henry B. Tingey was the Chairperson on Local
Arrangements for the U~liversity and Dr. Malcolm Taylor served in this
capacity of BRL. The members of the Army Mathematics Steering
Committee (AMSC), sponsors of these conferences, would like to take
this opportunity to thank these gentlemen for their excellent handling
of the many problems associated with a meeting of this size.

Members of the Program Committee for the conference were pleased to
obtain the services of the following invited speakers to talk on topics
of interest to Army personnel:

Speaker and Affiliation Title of Address

Dr. J. Stuart Hunter Statistics and the Learning
Private Consultant Process

Professor Albert Paulson A Generalized Likelihood
Rensselaer Polytechnic Institute Approach to Experimental

Design, Data Analysis and
Modeling

Dr. William A. Gale Structural Statistical
Bell Communications Research Knowledge for Expert Systems

Professor Howard M. Taylor The Effect of Size on
University of Delaware Material Strength

On 19-20 October 1987, two days before the start of the Design
Conference, a tutorial entitled "Regression Diagnostics" was held. Its
speaker was Professor Roy Welsch of the Massachusetts Institute of
Technology, Cambridge, MA. The main purpose of these seminars was to
develop, in Army scientists, an interest in and and appreciation for
the statistical methods that are needed to analyze experimental data.

Dr. J. Stuart Hunter, Professor Emeritus of Princeton University, was
the recipient of the seventh Wilks Award for contributions to
Statistical Methodologies in Army Research, Development, and Testing.
This honor was bestowed on Dr. Hunter for his many significant
contributions to various fields of statistics, in particular to the
areas of fractional factorial and response surface experimental design.
He has assisted many Army scienLists with their statistical problems,
and has been an invited speaker at four of these Design conferences.
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The AMSC has requested that these transactions be published and
distributed Army-wide so that the information in them might assist Army
scientists with some of their statistical problems. Committee members
would like to thank all the speakers for their interesting
presentations and also the members of the Program Committee for their
many contributions to this scientific meeting.

PROGRAM COMMITTEE

Carl Bates David Cruess Eugene Dutoit
Robert Launer Carl Russell Douglas Tang
Malcolm Taylor Jerry Thomas Henry Tingey
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AGENDA

THIRTY-THIRD CONFERE4CE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH, DEVELOPMENT AND TESTING

21-23 October 1987

Hosts: The Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

and

The D'ipartment of Mathematical Sciences
The University of Delaware
Newark, Delaware

Location: Pencader Hall, Room 106
The University of Delaware

* * * * * Wednesday, 2l OctobeL * * * * *

0815-0915 REGISTRATION - Clayton Hall Lobby

0915-0930 CALL TO ORDER - Pencader Hall, Room 106

Dr. Malcolm Taylor, Ballistic Research Laboratory

OPENING REMARKS

Dr John T Frasier
Director, Ballistic Research Laboratory

WELCOMING REMARKS

Dr Ivar Stakgold
Chairman, Department of Mathematical Sciences
The University of Delaware

0930-1200 GENERAL SESSION I

Chairman: Prof Henry B Tingey, University of Delaware g

0930-1030 KEYNOTE ADDRESS

J Stuart Hunter, Princeton, NJ

1030-1100 BREAK

1100-1200 A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF
COMPUTATIONAL EXPERIMENTS

Toby J Mitchell* and Max Morris, Oak Ridge National Labs

1200-1330 LUNCH
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1330-1700 CLINICAL SESSION A

Chairman: Barry Bodt, Ballistic Research Laboratory

Panelists: Prof John Green
Prof Vincent LaRiccia
Prof John Schuenemeyer
Prof Robert Stark
Prof Howard Taylor

The Department of Mathematical Sciences
The University of Delaware

ANALYSIS OF A REPEATED DESIGN WITH MISSING CELLS

Michelle R Sam$ and Joel H Fernandez, White Sands Missile Range

ALTERNATIVE METHODS FOR RELIABILITY ESTIMATION

Raymond V Spring, US Army Natick R&D Directorate
Thomas A Mazzuchi, The George Washington University

ALLOCATION AND DISTRIBUTION OF 155 MM HOWITZER FIRE

Ann E M Brodeen and Wendy A Winner,-
The Ballistic Research Laboratory

1500-1530 Break (as needed)

A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION OF IR BACKGROUNDS

Denis F Strenzwilk, Ballistic Research Laboratory
Walter T Federer and Michael T Meredith, Cornell University

1530-1700 CLINICAL SESSION A, CONTINUED (as needed)

1830-1930 CASH BAR - THE SFMA70N INN, NEWARK

1930-2130 BANQUET AND PRES!ZNTATICN OF WILKS AWARD - THE SHERATON INN

* * * * * Thursday, 22 October * * * * *

0830-1000 TECHNICAL SESSION 1 - STATISTICAL APPLICATIONS

Chairman: Dr Francis Dressel, US Army Research Office

EVALUATION OF CAMOUFLAGE PAINT GLOSS VERSUS DETECTION RANGE

George Anitole and Ronald L Johnson, US Army Belvoir Research,
Development and Engineering Center

Christopher J Neubert, US Army Materiel Command

A 2-STAGE EXPERIMETAL DESIGN FOR TESTING LARGE SCALE SIMULATIONS

Aqeel A Kahn, US Army Concepts Analysis Agency

viii
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BLACK BRANT HAZARD ANALYSIS

Weston C Woltf, white Sands Missile Range

USING A PERSONAL COMPUTER IN STATISTICAL PLANNINO AND ANALYSIS

Carl Russell, Army Operational Test and Evaluation Agency

1000-1030 CREAK

1030-1200 TECHNICAL SESSION 2, EXPERIMENT DESIGN AND LINEAR MODELS

Chairman: William Baker, Ballistic Research Laboratory

ONE SIDED TOLERANCE LIMITS FOR RANDOM EFFECTS MODELS

Mark Vangel, US Army Material Testing Laboratory

ESTIMATION OF VARIANCE COMPONENTS AND MODEL-BASED DIA4NSTICS IN
A REPEATED MEASURES DESIGN

Jock 0 Grynovicki, US Army Human Engineering Laboratory, APG
J W Green, The University of Delaware

MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONE4TS IN A GENERAL
MIXED LINEAR MODEL

John W Green, The University of Delaware
R R Hocking, The Texas A&M University

CHANGE-POINT REGRESSION WITH UNKNOWN CHANGE POINTS

Robert L. Launer, US Army Research Office

1200-1330 Lunch

1330-1500 TECHNICAL SESSION 3 - STOCHASTIC PROCESSES

Chairman: Or Eugene Dutoit, US Army Infantry School

SEMIREGENERATIVE PHENOMENA

N U Prabhu, Cornell University

k-LAPLACE PROCESSES

Lee S Dewals, The US Military Academy
Peter A W Lewis, Naval Postgraduate School
Ed McKenzie, University of Strathclyde, Glascow, Scotland

THEORY OF RANDOM MAPPINGS

Bernard Harris, University of Wisconsin - Madison

1500-1530 BREAK
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1530-1730 GENERAL SESSION II

Chairman: Dr Malcolm S Taylor, Ballistic Research Laboratory

A GENERALIZED LIKELIHOOD APPROACH TO EXPER MENTAL DESIGN,
DATA ANALYSIS AND MODELING

Albert Paulson, Rensselaer Polytechnic Institute

STRUCTURING STATISTICAL KNOWLEDGE FOR EXPERT SYSTEMS

William A Gale, Bell Communications Research

* * * * * Friday, 23 October * * * * *

0830-1000 TECI•ICAL SESSION 4 - STATISTICAL INFERENCE

Chairman: Linda Moss, Ballistic Research Laboratory

ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL

Oskar N Essenwanger, US Army Missile Command

CONSISTENCY OF THE P-VALUE AND A SET OF 0-VALUES IN A SCORING
ACCURACY ANALYSIS

Paul Thrasher, White Sands Missile Range

A BAYESIAN METHOD FOR PROJECTING A TOLERANCE LIMIT

Donald Neal and John Reardon, US Army Material Testing Laboratory

COVERING PROBABILITY PROPERTIES Or COMPETING CONFIDENCE INTERVAL
METHODS FOR THE RISK RATIO
Craig Morrissette* and Douglas B Tang, Walter Reed Army Institute
of Research

1030-1045 BREAK

1045-1200 GENERAL SESSION III

Chairman: Dr Douglas B Tang, Walter Reed Army Institute of Research
Chairman of the AMSC Subconmittee on Probability and Statistics

1045-1100 OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE
OF THE ARMY MATHE•ATICS STEERING COMMI'ITEE

1100-1200 THE EFFECT OF SIZE ON MATERIAL STRENGTH

Howard M Taylor, University of Delaware

ADJOURN
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ANALYSIS OF A REPEATED MEASURES DESIGN WITH MISSING DATA

Michelle R. Sams and Joel H. Fernandez
US. Army Materiel Test and Evaluation/
Engineering and Analysis RAM Division

U.S. Army White Sands Missile Range, NM 88002-5175

ABSTRACT CT

Electronic Maintenance Publication System (EMPS) is a U.S.
Army Materiel Command (USAMC) initiative to determine the
feasibility of using current technology to electronically display
and deliver the contents of Department of the Army Technical
Manuals (DATMs) to thp maintenance site. The Army Materiel Test
and Evaluation Directorate (ARMTE) was tasked to conduct a "side-
by-side" comparison of EMPS vs. DATMs and to conduct a human
factors evaluation of the EMPS hardware and software. ARMTE
conducted the comparison study on the Patriot System at Ft. Bliss,
TX from 6 April to 15 May 1987. Ten operator/maintainers (MOS
24T) were trained to use EMPS and then participated in the test
phase performing maintenance tasks on the Radar Set (RS) and on
the Engagement Control Station (ECS), A 2 x 2 x 7 within-subjects
factorial design was planned, with 2 mediums (EMPS, DATMs)
performed on 2 major end items (RS, ECS) for 7 types of
maintenance tasks. Due to software constraints and Patriot
peculiar problems, only 8 of the 28 possible treatment conditions
have observations from all the subjects and 2 of the treatment
conditions have no observations. Various data estimation
procedures were considered and then rejected on the basis of
excessive and systematic missing data. Two analyses of variance
were conducted on a subset of the original data, which contained
the least amount of missing data and were determined to be
representative of the maintenance actions. No significant
difference was found for the variables of interest (those
involving EMPS and DATMs). Based on the results of this study, it
was concluded that there is no evidence to suggest that there is
any significant difference in time to perform a fault isolation or
remove and install task on the PATRIOT system utilizing either
EMPS or DATMs. An electronic delivery of maintenance information
(as tested in EMPS) appears to be as effective as the traditional
medium of paper technical manuals (DATMs).

Comments and suggestions by the panelists and attendees at the
conference were greatly appreciated. We are especially indebted to
N. Scott Urquhart of New Mexico State University for his guidance
throughout the completion of the data analysis.

1 I1
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INTRODUCTION

Maintainability is a major element of system effectiveness.

As such, the delivery of maintenance information is a crucial

component in the man-machine system. The current delivery medium

is through paper technical manuals (DATMs). Many problems have

been noted with the paper manuals (e.g., the large number of bulky

manuals needed to contain all the information and difficulties

eiicountered keeping the manuals updated and current, the

difficulty using the manuals especially in inclement weather,

etc.) An alternative delivery medium was sought and tested in the

form of Electronic Maintenance Publication System (EMPS). As part

of a larger evaluation of EMPS, the Army Materiel Test and

Evaluation Directorate at White Sands Missile Range was tasked to

conduct a performance ("side-by-side") comparison of EMPS vs.

DATMs and to conduct a human factors evaluation. The performance

evaluation was based on the speed and accuracy of maintenance

actions for ':he two mediums and is presented in this paper.

METHOD

Subject and Team Selection

A total of ten operator/maintainers (all trained to the T5

PFAS level) were allotted for the study on the basis of

availability, Maintenance tasks are normally performed in

maintenance teams consLsting of a "reader" and a "doer", For the

purposes of this study, the ten subjects were divided into two

groups on the basis of their GT scores (an index of general

intelligence and ability). Five teams were then formed out of each

group (each subject participated in two teams). Each team from

2
i4



Group A was then matched with a team from Group B with

approximately the same GT level. This matching was done in order

to reduce sone of the variance due to the subjects, especially

since there was such a small.number of subjects in the experiment.

Experimental Design

A 2 x 2 x 7 within-subjects factorial design was planned,

with 2 mediums (EMPS, DATMs) performed on 2 major end items (RS,

ECS) for 7 types of maintenance tasks. The design was within-

subjects in that all teams would participate under all treatment

combinations. However, due to the concern of possible

asymmetrical transfer effects, a particular team did not

participate in the same task twi;e. For example, when a team

performed a particular task utilizing EMPS, a different team

matched for general ability performed the same task utilizing

paper DATMs.

Task Selection

With the assistance of subject matter experts, it was

determined that there were seven types of maintenance actions

performed on the RS and ECS. These task types consisted of fault

isolation (FI), remove and install (RI), repair and verify (RV),

combined tasks (CO) which included FI, RI, and RV times,

preventive maintenance checks and services (PMCS), operations

(OP), and repair parts and special tools list (RPSTL). The

selection of the specific tasks to be performed was influenced by

several factors; software capability, the tasks had to be

representative of normal maintenance actions, and the concern of

face validity.

3



Training Session

Ten operator/maintainers were familiarized with EMPS in the

classroom and given support documentation. They then participated

in an on-site training session in their assigned teams. A total

of 63 maintenance tasks on the RS and ECS utilizing both EMPS and

DATMs were completed in this session.

Testing Session

The teams then participated in the test phase performing a

total of 302 separate maintenance actions consisting of the seven

types of maintenance actions on the RS and ECS utilizing both EMPS

and DATMs.

Data Collection

The errors committed and the total time to complete a

maintenance action were recorded by a data collector for each

task. A particular data collector would record data for the same

task, performed once by a team utilizing EMPS and again by a

matched team utilizing DATMs. This was done to reduce variation in

the time and error measurements recorded among the data collectors.

Reduction of the Full Factorial Design

Each team was to participate in an equal number of tasks

utilizing the two medi.Ins on both major end items for all task

types. Halfway through the test phase, it became obvious that due

to equipment failure and frequent removal of the subjects for

field training exercises, that the full factorial would not be

completed as originally planned. Even though generalizability of

the results to all types of maintenance actions was a concern, it

was determined that those tasks which best utilized the DATMs and

EMPS would be an accurate indicator of the efficiency and

4



feasibility of the mediums.

Through discussions with subject matter experts and the ¶

participating subjects, it was determined that two types of tasks

best utilized the two mediums. These were fault isolation (FI)

and remove and install (RI). These tasks were complex enough to

compel the maintainer to actually read and refer to the

maintenance material. The other tasks were simple and routine, so

that close attention to either medium was not necessary (although

they were instructed to actually read and use both mediums in any

circumstance). Within the remaining test phase time, the test

schedule was revised to include more of the F1 and RI type tasks.

As a result, there was a large amount of missing data in the other

four types of tasks. The seventh task (RPSTL) was conducted only

on the ECS, due to software problems, and is not reported here.

RESULTS AND DATA ANALYSIS

A summary of the data collected for maintenance action times

is presented in Table 1 and a means bar chart is presented in

Figure 1. There are 81 missing observations out of a total if 240.

Estimating the missing data would allow investigation of 3-way

interactions (type of task x itew x medium) and allow

generalization to all types of tasks tested, Various data

estimation procedures were investigated, with employing stepwise

regression for each missing value on the available variables

appearing as the most appropriate method (Frane, 1976).

Frane (1976) cautions that the methods for estimating missing

data for multivariate analysis depend on several assumptions:

50
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data must be missing at random to get a good estimate of the

covariance matrix, each missing variable must be highly correlated

with one or more available variables, and the amount of missing

data should not be excessive. If any of the assumptions are

seriously violated, any procedure for handling missing data is

likely to be unsatisfactory. The data collected in the study

violated two of these assumptions; the missing data was excessive

and systematic.

It was determined not to make estimations of the missing

observations and to instead conduct separate analyses of variance

on the two types of tasks ( F1 and RI) which contained the least

amount of missing data, and which were previously determined to

best test the variables of interest. Since the data approximated a

lognormal distribution, the data was transformed ((log (X + 1)) to

normalize the distribution (Winer, 1971). The transformed

maintenance times were subjected to the analyses of variance

presented in Tables 2 and 3.

A significant difference for maintenance time for the

different tasks within each item was found, (2 < .01), for both

types of tasks. This was neither surprising, nor of interest.

The set of tasks performed on each item varied in difficulty. For

fault isolation tasks a significant difference was found for item,

(2 < .01). It took longer to perform fault isolation tasks on the

ECS than on the RS. Again this was not a variable of interest,

and most likely eflects the relative complexity of the the items.

The variables of interest, those involving the two mediums

being compared (EMPS and DATMs) revealed no significant

differences in maintenance time (2 > .10). Also there was no

9 0

""? ,~Rr~. 1.9 - %V.r C~I\



Table 2

ANOVA Table for Fault Isolation Tasks using Log Transformed Time

Source df MS F

Between Subject 43

Group 1 .007 0.21
Task(Item) 21 .497 14.62 **

Error (Between) 21 .034

Within Subject 46

Medium 1 .083 0.82
Item 1 2.930 29.01 **
Medium X Item 1 .003 0.03

Error (Within) 43 0.101

TOTAL 89

** £ < .01

Table 3

ANOVA Table for Remove and Install Tasks using Log Transformed
Time

Source df MS F

Between Subject 45

Group 1 .046 1.24
Task(Item) 22 1.661 44.42 *

Error (Between) 22 .037

Within Subject 36

Medium 1 .044 0.73
Item 1 .012 0.20
Medium X Item 1 .025 0.42

Error (Within) 33 0.060

TOTAL 81

** £ < .01

10
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significant difference in group performance for either type of

task. Thus the various teams composed from each group were

matched fairly well on ability to perform the tasks.

Errors committed while performing the maintenance tasks were

negligible and were not subjected to statistical analysis.

CONCLUSION

Based on the results of this study, there is no evidence to

suggest that there is any significant difference in time to

perform fault isolation and remove and install maintenance actions

on the PATRIOT system utilizing either EMPS or DATMs. Errors made

while using either medium were negligible and are not a

significant factor either. An electronic delivery of maintenance

information (as tested in EMPS) appears to be as effective as the

traditional medium of paper technical manuals (DATMs).

These are encouraging results considering that the test

subjects had a very "quick and dirty" training period with the

EMPS system. It is conceivable that the speed with which a

maintenance action can be performed with an electronic delivery of

maintenance information will improve with a more comprehensive

training approach and with Human Engineering improvements to the

system.

REFERENCES

Frane, J.W. (1976). Some simple procedures for handling missing
data in multivariate analysis. Psychometrika, 41, 409-415.

Winer, B.J. (1962). Statistical principles in experimental
desiRn. New York: McGraw-Hill. 5?
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ALLOCATION AND DISTRIBUTION OF 165MM HOWITZER FIRE

Ann E. At. Brodeen
Wendy A. Winner

Director,
U. S. Army Ballistic Re..areh Laboratory

A TTN: SLCBR-SE.P
Aberdeen Proving Ground, AID 21005-5066

(901) .78-6659, AV 898 .6659

Abstract

The U.S. Army Ballistic Research Laboratory (BRL), Aberdeen
Proving Ground, MD, has been Investigating the problems associ-
ated with allocating and distributing friendly fire based on the
importance of an enemy target and its function in a particular tac.
tical situation. The available data contain nonstandard data struc.
turn, numerous variables with various degrees of influence on the
predictive relationship, a mixture of data types, and nonhomogene-
ous variable relationships. Various approaches including parametric
and nonparametric procedures have been applied to this problem,
As an alternative to standard parametric procedures, the BRL is
investigating recently published classification tree methodology
which extends previous developments in this area [1]. Similar to
other classification tree methodologies, this methodology provides
predictions by constructing binary trees. Ilowever, unlike other
analytical techniques, e.g., cluster analysis, linear discriminant
analysis, and earlier classification trees, Breiman et al.'s
classification tree structured methods concurrently handle these
problems, which are common to the data collected by the BRL on
Fire Direction Officers' decisions on 1.55mm howitzer targets,

The authors would like to solicit critiques of the proposed
approach to this problem and suggestions for alternatives.

12



I. Introduction

The U.S. Army Ballistic Research Laboratory (BRL) has been examining the prob-
lems associated with selecting the type, volume, and the method of firing ammunition
on enemy targets by a specific 156mm howitzer firing conrlguration, i.e., the allocation
and distribution of friendly fire. This research is concentrating on allocating and distri-
buting the fire of 155mm howitzer firing units based on the importance of an enemy tar-
let and its function in a particular tactical situation. Results from this research will be
incorporated into the BRL's prototype decision aid FireAdvisor. As a tool for developing
and implementing fire support plans, FireAdvisor is incorporating commander's criteria,
munition effects, and the tactical situation (including firing units, munitions, fuzes, and
targets) to assist with determining the optimum allocation and distribution of fire
against independent targets over time.

To acquire data for this research, the BRL conducted a statistically designed exper-
iment, the Firepower Control Experiment, in December 1985. In addition, the BRL has
recently extracted similar information from scenarios developed by LB&M Associates,
Inc., Lawton, OK, under a BRL contract. Both of these data sets are characterized by a
mixture of data types, nonhomogeneous variable relationships, and different degrees of
influence of the variables. Various approaches such as multiple regression analysis, the
Mann-Whitney test, Kruskal-Wallis analysis of variance by ranks, and cluster analysis
have been applied to analyze the data from the Firepower Control Experiment. The
goals of these procedures were to uncover the relationships among the variables and pro.
vide accurate predictions for allocating and distributing 1565mm howitzer fire.

As an alternative to standard parametric procedures, the BRL is investigating
employing a recently published classification tree methodology to these data sets I1l.
Similar to other published classification tree methodologies, Breiman et al.'s methodol-
ogy provides predictions by constructing binary trees. However, unlike other analytical
techniques, Breiman et al's classification tree structured methods concurrently handle
nonstandard data structures, a mixture of data types, nonhomogeneous variable rela-
tionships, and different degrees of influence of the variables.

An overview of Breiman et al's methodology will be given in the context of allocat-
ing and distributing 155mm howitzer fire. Critiques of this proposed approach and
suggestions for alternative approaches are invited,

13
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* Fire Direction Officer IFDO] (determines or approves the number of
rounds and the shell/fuze combination to fire on the target)

* Typp/Subtype (description of the type of target)
e.g,, artillery/mc'diuni.

0 Size (in meters),

Me%1thod or Engage'ment (how to lire on the target)
e~g., fire-tor-eflect when ready,

a Degree of Protection (position of the target.)
e.g., standing on first volley and laying down on subsequent volleys.

* Strength (number or units comprising the tnrge-t)

* Target Speed (in kilometers per hour)

0 Sensor (friendly unit sighting the target)
e~g., forward observer,

* Sensor Speed (in kilometers per hour)

a Sensor to Target Range (in meters)

* 1-55mim Howitzer to Target Range (in meters)

* Ammunition Available (both as number of rounds available by munition tYpe arid as thle
initial ammunition load expressed as a percentage of a basic load)
e.g., 100 rounds of high explosive rounds which is x% of a basic load,

* Allocation Method (method of Biring the rounds on a target)
e.g, fire high explosive and smoke rounds simultaneousl), on the target
[a opposed to firing all high explosive rounds first followed
by the smoke rounds],

* Total Number of Rounds Fired on the Target (number)

* Nlimrber of First Munition Rounds Fired
e.g., 6 rounds of high explosive,

* Type of First Munition Fired
e~g.. high explosive,

0 Number of Second Munition Roundq Fired
e.g., 8 round-, of smoke.

0 Type of Second Munition Fired
e.g., smoke.

Figure 1. Information Available for Each Decision.
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In. Background

a. Data Sets

In December 1985, the BRL conducted a controlled laboratory experiment, the
Firepower Control Experiment [21, at the joint U.S. Human Engineering Laboratory and
BRL Command Post Exercise Research Facility. As part of this statistically designed
experiment., information was collected on Fire Direction Officers' (FDOs') decisions on a
variety of targets being forwarded to 155mm howitzer units.* This data set comprises
3,219 FDOs' tactical fire control decisions collected for different FDOs, target
types/subtypes, target sizes, types of fire mission control (i.e., "method of engagement")
and initial ammunition basic loads.

As part, of the BRL's research in tactical computer science, several unclassified
scenarios between friendly and enemy forces in the Fulda Gap have been developed
under a BRL contract with LBLN1 Associates, Inc., Lawton, OK. Embedded within
these scenarios are decisions on allocating and distributing 155mm howitzer fire on
independent targets observed in one-hour periods. To date, information associated with
522 tactical fire control decisions has been extracted from a portion of these scenarios.

Figure I summarizes the type of information available for the decisions in these
data sets. A combination of categorical and numerical variables describes the principle
factors thought to influence the decision process (FDO through ammunition available) as
well as the actual decision (allocation method through type of second munition fired),
Based on the results of previous data analyses, it is anticipated that these variables have
different degrees of influence and exhibit nonhomogeneity.

b. Parametric and Nonparametrlc Procedures Applied

1. Multiple Regresion Analyasi

Multiple regression analysis [13 is an analytical methodology that usually has one of
the following primary goals: 1) predict the value of the dependent variable for new
values of the independent variables, 2) screen variables to detect each variable's degree
of imlportince in explaining the variation in response, 3) specify the functional rorm of
the modl, or 4) provide estimates of each coeffirient's magnitude and sign. By npplying
multiple regression analysis to the data from the Firepower Control Experiment, it wasi
hoped that a regression equation could be derived to suitably predict the allocation
method, Using a combination of indicator factors for the categorical variables (e.g., FI)()
and target type/subtype) and untransformed values for the numerical variablhs (
ammunition load expressed as a percentage of a basic load, target size, and the iinilihod
of engagement), stepwise and "best subset" regressions were run to predict the re.,nt.
factor (eg., the allocation method).

iTactical Pirt Direction and gunnery icitructor from the US Army Field Artillery School, Fort Sill, OK, participated av FDOP
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Stepwise regression [4] was run to insert factors into the regression equation based
on t heir partial correlation coefficient with the response factor. At each step, the partial
F crite~rion of each regressor already in the equation was compared to the appropriate
tabled F value. The regressor was either retained in the equation or rejected based on
whether the test was significant or not. Stepping continued until none of the regressors
could be removed, and none of the other potential regressors could be inserted due to
the value of their partial correlation coefficient. "Best subset" regression was then run
on the stepwise regrssor variables to determine the best overall subset out of all possi-
ble regressions according to the maximum R2 criterion.

As a consequence of performing a least squares fit of the data, fitted equations were

obtainwd for the allocation method, However, based on the proportion of variance
accounted for by the regressors in the regression equations, none of the factors clearly
influenced the allocation method. This suggests that other factors not taken into
account may influence FDOs' decisions on an allocation method.

2. Mann-WhItney test

One of the objectives of the experiment was to test whether the amount of avail-
able ammunition affected the number of rounds the FDO elected to fire on a target.
Prior to comparing all FDOs within a given ammunition basic load or comparing an
individual FDO across the three ammunition basic loads, it was desirable to first exam-
ine whether or not. it would be necessary to distinguish between the adjust fire (AF) and
fire-for-effect (FFE) methods of engagement. Since the distribution of total rounds fired
against a target is not known for the two employed methods of engaging a target, the
nonparametric Mann-Whitney test [5] was used to test whether the two independri¶
random samples could have been drawn from two populations having similar distribil-
tion functions. Based on the results of the Mann-\Whitney test, the samples associatd
with the two methods of engagement. could not, be grouped together for other statistical
tests.

3. Kruskal-Wallis Test

Similnr to the Mann-Whitney test, the nonparan.etric Kruskal-Wallis one-factor
analysis of variance by ranks procedure [5] was used to examine, first, the mean number
of rounds fired within each of the three different ammunition basic loads by each FDO,
and, second, the mean number of rounds fired by each of the three FDOs within a given
ammunition basic load, It was concluded from the test that there were significant •I,
differences within an ammunition basic load in the mean number of rounds fired by each
FDO against an individual target. In addition, test results showed that only one of the
FDOs tended to fire on average more rounds against a target under at least one of the
ammunition basic loads than under at least, one of the other basic loads. For the ran-
dom samples resulting in rejection of the null hypotheses, i.e., no difference in the mean
rounds fired against a single target, additional pairwise Kruskal-Wallis tests were per-
formed.
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4. Cluster Analysis

Cl'hster analysis [6] was employed to categorize targets according to their impor-
tance Ibased on their contribution to an enemy force in a particular tactical situation,
i.e., their target value [71. There are several ways to measure the value of the target.
For example, one way could be to use several variables to measure the description, loca-
tion, and activity of the target. A description of the target might include its
type/subtype, size, and degree of protection. The location of the target might consider
the actual grid location of the target, the altitude of the target, and the distaner
between the target and specific friendly units. The activity of the target might take into
account its velocity and direction of moe ement.

('Clster analysis provided a multivarinte statistical method to examine the interrela-
tion.hips between the target description, the FDOs, and the initial ammunition load
expret•',d as a percentage of a basic load. Target value was. based on the mnva n ir ni 1),-r
of rounds expended against an individual target, Targets were cAtegori.zd into 1h1,.(,
target value clusters, i.e,, low", "fair", or "high", based on the mininmization or 11,,r
Euclidean distance between each target, and the mean of the targets in the cluster.

c. Deficiencies Among the Analyses

DMspite the fact that each of these statistical procedures is well known and used,
they have several shortcomings with regard to the problems inherent to the Firepower
Cont.ol Experiment data set. For instance, these methods do not concurrently handle
the nonstandard data structures, a mLxture of data types, nonhomogeneous variable
relationships, and different degrees of influence of the variables. Subsequently, it is
expected some information has been lost.

Thus, the combined results of these procedures do not provide an effective means of
allocating and distributing 155mm howitzer fire for enemy targets. For instance, cluster
analysis provides a coarse evaluation of a target's value based on the initial ammunition
load, its type/subtype, and FDO. The "best subset" multiple regression equations pro-
vide only weak relationships between the FDO, allocation method, target type, target
size, nmethod of engagement, and initial ammunition load. Thus, the question remains,
"Is this a result of variables measured in the experiment or a consequence that. these
procedures could only be focused on limited subsets of the data collected?" Subse-
quently, a search for a different means of analyzing this data has been undertaken,

IM. Classification Tree Methodology

a. Background

Trees, whether known as decision trees, binary trees, or by some other name, have
been previously used by data analysts as an informative nonparametric tool for investi-
gating various types of data sets. Tree classification methods use the data to form pred-
•otion rules for a response variable based on the values of independent variables.
Specifically, measurements are made on some object, and a prediction rule is then used
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to decide to what class the object belongs. This methodology is so simple that it is
often passed over in favor of other methods which are thought to be nmore ac, irat,.,
such as discriminant analysis.

Recent developments in the area of structured classification trees, which have been,
published by Breiman et al,, are aimed at, strengthening and extending the original tree
methodology. Their advancements have been incorporated into a statistical software
package known as CARTTM (Classification and Regression Trees). Given complex data
sets with many independent variables, the developers of CART feel that the structured
trees produced by CART can have error rates that may be significantly lower than those
produced by the usual parametric techniques. These procedures are robust, eg., they
minimize the effects that data outliers might produce,

We feel that the advancements made in the area of structured tree methodolrigy
are significant enough to warrant investigation and application to the problems of allo-
eating and distributing 155mm howitzer fire.

b. Overview of the CART Methodology

1. Definitions

Many of the statistical techniques presently available are designed for small data
sets having a standard data structure. By a standard data structure we mean that there
are no missing values among the measurements made on an object, or so few they may
be estimated prior to analyzing the data. In addition, the variables all have to be of the
same type, iEe., all numerical or all categorical, The underlying assumption of the data
is that the driving phenomenon is homogeneous, iLe., the same relationship holds over
the entire set of measurements made on the object in question.

The data which is available to study the problem of allocating and distributing
friendly fire on enemy targets does not meet the above criteria. In both data sets, values
for several of the measurements used to describe an enemy target may be missing or
must be assumed not available for any number of reasons. The variable list comprising
the make-up of a target's description (to include such items as its location, activity,
description, etc.) is a mixture of both numerical and categorical variable types. Finally,
we cannot realistically expect the same relationships to hold amongst the wide range of
measurements made on a target.

3. Constructing a Clusifieatlion Tree

To initially construct a structured tree, four elements are needed: 1) a set of binary
questions of the form: Is x E A?, A C X, where x is the measurement vector defining
the measurements (rl, h2, ...) made on a case, and X is defined as the measurement
space containing all possible measurements, 2) a goodness of split criterion that can
numerically evaluate any split of any node of the tree, 3) a rule which dictates when to
continue splitting the node or to declare it a terminal node, and 4) a rule for assigning
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every terminal node to a class. The set of binary questions generates a set of splits of
every node. Those caues answering "yes" go to a left descendant node, while those
answering "no" go to a right descendant node.

8. Features and Advantages

Breiman et al.'s methodology for classification trees appears to be a powerful and
flexible analytical tool. Some of its major features and advantages over other methods
will be very briefly outlined.

One of the more important aspects of the CART methodology is its ability to
automatically handle missing values while minimizing the loss of information. This is
achieved via the concept of surrogate splitting.

To understand surrogate splitting, two splits are said to be associated at a node if
either of two conditions exists. If most of the cases are sent to the left or to the right by
one split, and the other split also sends most of the cases in the same direction, the two
splits are said to be strongly associated, On the contrary, the splits are also associated
when one split sends most of the cases to the left (right) while the other split sends most
of the cases to the right (left), The missing value algorithm then proceeds as follows.
The CART methodology is designed to initially search through all possible splits on a
given node and select the best split, For example, suppose the best initial split is: Is 4(5)
> 34.1?. All other variables except 4(5) will then be searched until the split on each
variable which is most closely associated with the split on x(5) is found. This series of
splits might result in a list such as the following

2(2) > 20.2 is the most closely associated with 45) > 34.1

211) > 50.6 is the second most closely associated with 2(5) > 34.1

and so forth. These splits are the surrogate splits for .he initial split: Is r(5) > 31.V?.

If a case has a missing value of z(5) so that the best split is not deflned for that
case, CART then looks at all nonmissing variables in that case and find! the one having
the highest measure of predictive association with the best split. In this example, CART
would first look at the most closely associated surrogate split. For example, if the value
of 2(2) is not missing, then the case would go left if z(2) > 26,2 and right otherwise,

This procedure is analogous to the one used to estimate the missing values in a
linear model (viz., regression on the nonmissing value most highly correlated with the
missing value), However, the CART missing value algorithm is more robust. The cases
with missing values in the selected splitting variable do not determine which direction
the other cases will take. Since further splitting continues, there is always the possibility
that cases which may have been sent in the wrong direction due to the missing value
algorithm will still be classified correctly.

19

40



Since variables do Dot act alone when predicting a classification, it is natural to
question which variables played the role of predictors. In the construction of a tree there
may be instances in which some of the variables are never used to split any node; hoW-
ever, this does not necessarily mean these variables lack any predictive informat ion.
Therefore, each variable is assigned a measure of importance which may be helpful to
the analyst in uncovering variables otherwise glossed over when looking at only the
splits from the final selected tree. One note should be made. Like many variable ranking
procedures, this one is a bit subjective and the exact numerical values should not he
interpreted precisely.

Other features which do not require sueh an in-depth discussion are the following:
1) ability to handle both numerical and categorical variables in a natural and simple
fashion, 2) application to any type of data structure through the formulation of an
appropriate set of binary questions, 3) a variable selection process closely resembling a
stepwise procedure since a search is made at each intermediate node for the most
signifivont split, and 4) in the overall meatsurement space XA, the trees exhibit a robust-
ness property similar to medians, while within the learning set the method is not RrPr-
ciiably affected by several misclassified points.

e. Dlglt Recognition Example Using the CART Methodology

The following digit recognition example was constructed by the authors oi CA11%T
and illustrates the various parts of the classification portion of the mnethodology,**

Mlost of us are familiar with electronic calculators which ordinarily represent the
digits 1, ... , 9, and 0 using seven horizontal and vertical lights in specific on-off conibina-
tions. If the lights are numbered as shown in Figure 2, then i denotes the ith digit, i=
1, 2, ... , 0, and .9, and the measurement vector (x-1 ... , z,7) is a seven. d iiension a) vector
of zeros and ones, Let T~,.=l if the light in the mth position is "on for the ith digit,
otherwise xj,=0, Table 1 presents the possible values of xtm., Set the numhber of
classes C = (I, ..., 10) and let the measurement, space X contain all possible 7-t uples of
zeros and ones,

Stippose the data for this problem are generated fro1m a faulty calculator for which
it is biown that each of the seven lights has the probability of 0.1 of not functioning
propvrly. The data. consist of outcomes from the random vector (XI, . . . , X7, Y) wherv
Y is the class label and assumes the values 1,.... 10 with equal probability and, as noted
previously, the X 1, ... , X7 are zero-one varinbles. Given Y, the X1, ... , X7 nre indepen-
dently equil to the value corresponding to Y in Table 1 with probability of 0,0 and are
in error with a probability of 0.1.

'0* It should be pointed out. here that while this is the same example ats outlpind by the authors in their textbooli, the output ~bey
produced for the purpose of illustration was sot generated by the learning Pitimple data presented is the text Padraic Nvville, wbri
has been assisting the authors with the software maniageuieat, has stat-d that the original data need to rnm this eximol was
acridesially lost, however, the data in the text nearly depicts thbe original data Therefore, the final itructured tree presented il this
paper will differ from that piresnted is the text.
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Figure 2. Horizontal and Vertical Lights.

Table 1. Possible Values of r,.

Digit x, x2  x3  x4  x6 X6 x7  y

1 0 0 1 0 0 1 0 1
2 1 0 1 1 0 1 2
3 1 0 1 1 0 1 1 3
4 q 1 1 1 0 1 0 4
6 1 1 0 1 0 1 1 5
6 1 1 0 1 1 1 1 6
7 1 0 1 0 0 1 0 7
8 1 1 1 1 1 1 1 8
9 1 1 1 0 1 1 9
0 1 1 1 0 1 1 1 10

The learning sample, L, is comprised of two hundred samples which are generated
using the above distribution. Recall that each sample in L is of the general form
(rj, ... , z?, J1 where j E C is the class label and the measurement vector rl, ... , 2i con-
sists of zeros and ones,

As previously mentioned in Section Ill.b.2., to apply the CART structured
classification construction on L, four things must be specified: 1) the set of questions, 2)

rule for selecting the best split, 3) a criterion for choosing the right-sized tree, 4) a
rule for assigning every terminal node to a class. Here the question set consisted of the

seven questions: Is xzI = 0? where m = 1, ... , 7, The Gini index of diversity rule was
used to select the best split. The concept of this splitting criterion depends on a node
impurity measure. Given a node n with estimated class probabilities P(j I n), j M 1, ... ,
J, and the probability that given a randomly selected case of unknown class falls into
node n that it is classified as class i, define a measure in) of the impurity of the given
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node n as a nonnegative function 0 of the p(l I n), ... , p(J j n). Subsequently, the Gini
index of diversity takes the form: in) = • p(j I n) p i I n). This node impurity is

largest when all classes are equally mixed together in the node and smallest when the
node contains only one class. A search is marle for the split that most reduces the node,
and consequently tree, impurity. The V-fold cross-validation method was used to
"prune" to the right-sized tree. Here the original learning sample L was divided by ran-
dom selection into V subsets L,, v = 1, ... , V of nearly equal size. The vth learning
sample is: L' = L - L,, v = 1, ... , V, where Lk contains the fraction (V-1)/ V of the
total data cases (the cases in L but not in L,). For example, if V is taken as 10, each
learning sample L(') contains 9/10 of the cases. Assume that a classifier can be con-
structed using any learning sample. Then, for every v, apply the classification procedure
and let d') (x) be the resulting classifier. Since none of the cases in L, was used to con-
struct d') (the classifier), a sample estimate of the overall tree misclassification rate may
be calculated, and a classifier is now constructed using the entire original learning sam-
ple L. The assignment rule proposed was to classify a terminal node n as that class for
which NP{n) is largest, where Njn) is the number of class j observations in n.

The resulting classification tree is shown in Figure 3J The question leading to a
split is indicated directly underneath each intermediate node. If the question is answered
affirmatively, the split is to the left; if it Is answered negatively, the split. is to the right.
Note that there are 11 terminal nodes, each corresponding to at least one class with
class 3 having a second terminal node. Generally speaking, such a one-to-one correspon-
dence occurs by accident since any number of terminal uodes may correspond to a par-
ticular class, or some classes may have no corresponding terminal nodes.

The overall probability of misclassifying a new sample given the constructed
classifier (and the above fixed learning sample), Rs(1), was estimated as 0,31, Two other
estimates of R#(1) were also computed: 1) the cross-validation estimate, and 2) the
resubstitution estimate. Since the learning sample, L, must be used in actual problems
to construct both the classifier and to estimate R*(I), these estimates are referred to as
internal estimates. The cross-validation estimate was estimated as 0.32 - satisfactorily
close to R#(/). The resubstitution estimate was also calculated to be 0.32. This particu-
lar estimate identifies the proportion of cases from the learning sample, L, which is
miscln.ssified once the set is run through the constructed classifier. Using the V-fold
cross-vnlidation method explained earlier, such estimators come satisfactorily close to
Rs(I),.

t The ootiLtio used here to describe the ctumLICatiOl tree diff.rs from that of the tat
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detail, it also may be another means of analyzing this data. In the ease of the data from
the Firepower Control Experimenet, it should be interesting to compare the results of the
multiple regression analysis, Mann-Whitney test, Kruskal-Wallis tests, and cluster
analysis to the CART results,

A critique of this proposed approach and suggestions for alternative approaches are
invited.
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A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION
OF IR BACKGROUNDS

Denis F. Strenzwilk, US Army Ballistic Research Laboratory
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ABSTRACT

At the US Army Ballistic Research Laboratory (BRL), Aberdeen Proving
Ground, Md., weapon system analysts use background models in order to: 1)
establish "clutter" thresholds for firing algorithms: and, 2) to study the
masking and false alarm effect of background in their effort to evaluate the
performance of various weapon systems. The BRL has received from US Army
Engineer Waterways Experimental Station (WES) several large data bases
comprised of blackbody temperatures derived from measurements obtained with
an IR sensor, The sensor was mounted on a helicopter and scanned in the
cross-track direction perpendicular to the direction of flight (in-track). The data
consists of temperatures of scene elements (pixels) for a plowed field, a forested
area, and a grassy field, The primary objective of this research is to provide a
slm ple mathematical model which provides simulated data that are consistent
with descriptive statistics from the original spatially correlated data base.
Such statistics include the mean and standard deviation of temperature, and its
'energy spectrum'. The Mathematical Sciences Institute (MSI) at Cornell
University have suggested time series models and a Spatial Moving Average
(SMA) model as two approaches to the problem. One lonW term objective of
this type of investigation is to construct a method for relating parameters in
the model to physical constants. If successful, the model may then be extended
over the diurnal cycle and seasons.

I. INTRODUCTION

BRL to date has modeled target signatures in a deterministic manner while
background signatures have been treated stochastically, The deterministic model for
target signatures is appropriate because under a particular set of conditions, the
signature is rather well defined and is amenable to a single characterization. The case
is not the same for backgrounds, which are many and varied. Thus, the general
approach in modeling backgrounds has been to select a data set of a homogeneous
scene, to extract pertinent statistics, such as, the mean temperature, the standard
deviation, the 'energy spectrum', the correlation between pixels, etc., and finally,
to develop a model, which can simulate a 'typical' background segment with
these same statistics.

In most smart weapon simulations, the sensor scans across many square meters
of background before any target is encountered, During this time, the sensor's signals
are processed by a target discrimination circuit that usually includes some sort of
adaptive threshold logic. Usually for this type of discrimination, the signal's Root-
Mean-Square (RMS) average is developed as a measure of background 'clutter'. Target
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detections occur when the instantaneous sensor output exceeds a threshold value that
is proportional to the average of the output signal. The sensor's output signals
produced by scanning the modeled background are thus used to provide a basis for
setting the detection threshold; this is perhaps the most important function of the
background, The stochastic background modeling approach currently being used at the
BRL-Is based on a normal temperature assumption. It is quite well suited to provide a
reasonable estimate of average clutter in many situations, even though the temperature
distribution of the pixels is not normal. However, a background model also ought to
include some provision for sources of false detection. The simple stochastic
background model described here is clearly not capable of fulfilling this objective, for
there is only a very remote possibility of a false alarm when the detection
threshold is set to some multiple of the RMS signal, What is lacking is a means
for incorporating some realistic scene features that would constitute possible sources
for false alarms.

Given that a target signature model with a reasonable degree of fidelity Is mated
with a valid stochastic background signature model , It is possible to predict when and
where a target detection is likely to occur, Probabilities of target detection can be
Inferred and the sensor/processor may be analyzed in terms of performance given a
target encounter, This has been the BRL approach for many smart weapon
simulations. A different approach must be taken if one wants to make some
assessment of the smart weapon's capability for rejecting false targets, Ideally, the
background infrared signature model used for this type of performance analysis ought to
include a realistic characterization of individual scene elements that might confuse the
target discrimination logic. Might it be possible to develop a background signature
model that is predictive in nature and includes specific features that are potential false
targets? BRL would like such a model if the development effort does not cost us too
much, and more importantly if the proposed model does not require so many computer
resources as to interfere with those needed for the performance simulation.

An alternative to "modeling" the background signatures either deterministically
or stochastically would be to use actual scene measurements as inputs to the smart
weapon sensor model. This would require that the measured background signatures
be compatible with the sensor model in terms of viewing direction, detector
wavelength band, and scene pixel size. Although the existing infrared background
signature data base is rather extensive , very few of these sources have the requisite
characteristics for smart weapons system evaluations that are currently being
conducted, One source of data found to be generally compatible with the type of smart
weapons that are being investigated at the BRL is the set of infrared scanner
measurements of a rural area near Hunfeld Germany made by the US Army Engineer
Waterways Experiment Station (WES). For these measurements WES employed a
helicopter-mounted Daedalus infrared scanner operating in the wavelength band of
8,5 to 12,5 micrometers. The scanner was flown over the test terrain at altitudes of 200
and 600 feet. The sizes of the corresponding ground resolution elements were roughly
compatible with the 0.1 meter resolution that is optimum for the BRL's smart
munition evaluation efforts, and the site of the measurements and the scene content is
quite appropriate. The advantage of modeling this data set is that the model can
be checked against the actual data in the simulation of a smart weapons concept.

Up to this point the discussion has been confined to simple scenes, e.g., a grassy
field, a plowed field, a forested area, etc. Once a suitable model for a simple scene has
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been developed, BHL wants to construct arbitrary scenes from these simple scenes.
Thus a forested area of any desired size may be placed next to a plowed field. A road
may be added to the scene. This compound scene with these three different kinds of
textures could then be used in computer simulations of smart weapon concepts. All
kinds of different compound scenes of arbitrary geometry and composition could be
constructed from the models of the simple scenes. Thus the ability to construct
compound scenes from simple scenes is a desideratum of the modeling effort.

II. DATA BASE

In this paper the time series models were applied to the data of the forested area.
The data of the plowed field and grassy area have a similar format. The data base for
the forested area is composed of 2W0 rows of temperatures. Each row contains 500
temperature pixels. Thus, for this data set there are 250 rows times 500 columns or
125,000 pixels of temperature. A row of data (500 pixels) represents one 'cross-track'
scan of the sensor, which was mounted on a helicopter that flew in a direction
perpendicular to the rows ('in-track') . After processing the data with ground truth
nformation, it was concluded that at the 600 ft altitude the in-track (flight direction)

dimension of the pixels was 0.3050m whereas the cross-track dimension was 0,15265m,
The data are highly correlated both in-track and cross-track.

II. TIME SERIES MODEL

For each row of 500 observations a (p-,l, q=i) autoregressive moving average
model, ARMA(1,1) was fitted to the data, If the actual temperature observation was
used to forecast the next pixel value for a complete row of simulated data, the
forecasted data had the same spatial pattern and statistical characteristics as the actual
data, If, however, the forecasted value was used to forecast the next pixel value in the
row, the resulting set of forecasted values did not have the same pattern but did have
the same characteristics. Thus, to preserve the spatial pattern in the time series
approach, the actual data base would have to be used to make the forecasts. It was
decided that for most applications it would suffice to have a model with the same
statistical characteristics, Therefore the actual observation of the temperature of the
first pixel In each row was used to forecast the 2nd value and thereafter the forecasted
value was used to forecast the next pixel value in the row. The AIMA used was

where

I equals 1,2,3,...,500

:1 temperature of t th pixel In row

it temperature of t th pixel In row minus the mean, (zj-p)

p mcan temperature of row

01 autoregressive parameter of order one

01  moving average parameter of order one

at random number for t th pixel from N(p8 ,o.2), called residual or 'shock' .

it, mean temperature of residuals N,
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as standard deviation of residuals

IV.ENERGY SPECTRUM

Let us represent the the two dimensional array of temperatures as a matrix, whose

elements 711,m) are

where

it is the value of It, In the lth row

m equals 0,1,2,,..,N,,- 1

N, is the number of pixels in a row (=600)

1 equals 0,1,2,,,,,N, 1

N, Is the number of pixels in a column (=250).

t equal. m+1

The discrete Fourier transform (DFT) for a row of temperatures is
N,-1

where

k Ociuals 011,21 ...,IN,-1

and for a column of temperatures Is
NA-I

where

k equals 0,1,2 ....,Nd-1.

The frequency of a row f, is

fmNMA r IVA4
where

Ar is *1525m,

and the frequency of a column his

where OR,/N I.

Aeis .3050m,

The onergy of the kth frequency in the lth row Sl(k) is
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k IV.6
and the energy of the kth frequency in the mth row Sm is

Sm(k)=Zm(k) Z,( k), IV.7

where the symbol * denotes the complex conjugate. The cross-track energy spectrum
and the in-track eneggy spectrum are a statistical measure of the correlation of the data,
and result when ;Fk) or S (k) are plotted against frequency, respectively. (Zero
frequency is excluded as the interest is in the the variation from the mean.)

The energy spectrum is symmetrical about the Nyquist frequency, which occurs at
f,=.5/A,-3.279 cycles per metre and at Iff .5/A,=1.639 cycles per metre. Thus, it is
common practice to multiply the energy of the kth frequency by a factor of two and to
plot the energy spectrum up to the Nyquist frequency. This convention was used in this
paper.

In order to approximate an ensemble average by a spatial average, it is customary-
to average S'(k) over the 250 rows and to average Sm(k) over the 500 columns. Thus,
the average energy of the kth frequency of the 250 rows St(k) is240

5r(1/250) S'(k), IV.8
1-0

and the average energy of the kth frequency of the 500 columns S,(k) is
490S=150 E Smk) v.0
m-0

V. TWO DIMENSIONAL ARMA MODEL

The criterion for selecting a model was that its mean temperature, its standard
deviation, and its energy spectrum, which measures the correlation in the temperature,
be in good agreement with the data. The mean temperature and the standard deviation
of the data were evaluated. The energy spectrum of the data was evaluated and plottd
versus the frequency for the cross-trac and in-track directions,

The first two dimensional (2D) model tried was to simulate the 250 rows of
temperature by using Equation (111I) and the appropriate parameter estimates for each
row, The mean temperature and its standard deviation were in good agreement. The
cross-track energy spectrum for the rows r'(k) was also in good agreement with the data
since the ARMA model was fitted to the rows. However, the in-track energy spectrum
for the columns S,(k) was not in agreement with the data. This was expected because
nothing had been done to introduce correlation between adjacent rows. Several
approaches based on using the temperatures In the row above to forecast the next
forecast in the row below were suggested as a way of introducing correlation. None of
these approaches was successful,

After inspection of the spatial temperature variatior of several sets of adjacent
rows, some trends were noticed. The first was that T71,m) and 71I+1,m) had similar
values and the second was that if 7Tl,m+l) increased or decreased from 711,11) , then

1La Rocca, Anthony J. and Witte, David J.,"Handbook of the Statistics of Various
Terrain and Water (Ice) Backgrounds from Selected U.S. Locations(U)," DTIC Technical •
Report Number 139900-1-x, January 1980, pages 2-11 to 2-12.
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T11+1,tn+I) would show a similar increase or decrease from T7 +lin). Perhaps, the
shock at that produced T(I,m+l) was correlated with the shockal+i that produced
Tl+1,mn+1. Based on this physical evidence, the assumption was made that a, was
r ated to ad+1 through a bivariate normal distribution 9(t, a1+1) given by

" ~~where the means of the residuals p• do not appear since they are approximately equal to I

zero, and the correlation coefficient p has the range
-l<p<+l. V.2

• • ~The mnrginal probability density function (pdf) for a' isg( a'),N (0, (o)I, V,3

S~The conditional distribution for a4+1 given '4 is),

0.(•+la*ffNI G•j •, (+'(-p)V.5 •

am

Now, the following procedure was used to find that value of p which minimized in
the least squares sense the difference between the in-track energy spectrum of ehe data
ST(k) and the in-track energy spectrum of the simulated data i s (k;P). For a given value

of p the first row of simulated temperatures was generated from the ARMA model give1•
in Equation (111.1) with the appropriate parameter estimates by using the values of a'•drawn from the marginal distribution given in Equation (7.3) The second row of

- simulated temperatures was generated from the .ARMA model given in Equation (111.)
with the appropriate parameter estimates by using the values of a• drawn from the mSconditional distribution given in Equation {V.5). The set of at 's for the second row were

then used to generate the a?'s for the third row through the conditional distribution
S~~given in Equation (V.5), etc., until 250 rows of simulated temperatures were generated. _

Then, the in-track energy spectrum Se(k ;p) was evaluated. The process was repeated for
several values of p and the sum of squares of differences between the in-track energy o
spectrum for the data and the simulated data was evaluated for each value of p. The
Svalue of p which minimized this sum was chosen as the p to be used in this model.

.÷ VI. CONCLUSIONS FOR 3D ARMA MODEL
wThe value of p which minimized the diffence in the actual and simulated energy

spectrum was 0.8e. The mean temperature T of the data base was 13.1i E and its
wstandard deviation e was 1,2rm , whereas the simulated data base had a mean

ntemperature of 13. giC and a standard E u 'ation of II.C, The comparison of the cross- w-
track energy spectrum for the data (5.et i r the simulated data can be seen in Figure 1.
Similarly, the comparison of the in-track energy spectrum for the data and for the
ssimulated data can be seen in Figure 2. The agreement in both cases is good. Thus, this
two dimensional ARMA model can simulate the statistical characteristics of the data,
sbut not the spatial variations. Furthermore, to obtain more than 250 rows use Row 24a
parameter estimates for Row 251, Row 248 parameter estimates for Row 252, etc., and
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essentially form a inirror image of the original 250 rows. To make rows longer, just draw
more than 500 shocks for each row. An alternative to this procedure would be to use the
250 x 500 array of temperatures as the basic unit and extend it in any direction by
mirror reflection.

One untried approach to improve this 2D ARMA model would be to take the
average value of the ARMA parameter estimates for the 250 rows or at least several
consecutive rows to obtain "representative parameter estimates". Then, randomly
perturb these representative parameter estimates within their observed bounds for each
row to be simulated, and proceed as before to determine a suitable value of p for the
simulated temperatures.

Another untried approach to improve this 2D ARMA model might be to fit an
ARMA model to every kth row of data, Use the appropriate parameter estimates for
Rows 1,k+1,2k+I,etc.. For the rows in between I and k use a weighted average for the
parameter estimates, e.g., Row 2 values are (k-1)/k](value of Row 1)+ (Ilk) (value of
Row k), Row 3 values are [(k-2)/kJ(value of Row 1) + (2/k)(value of Iow k), etc. (Note
that a small aamount of noise could be added to each value.) Proceed as before to
determine a suitable value of p for the simulated temperatures.

VII. SPATIAL MOVING AVERAGE MODEL

The model described in this section differs from the ARMA models discussed above
in that it is a two-dimensional model from the start whereas the others are one-
dimensional models adjusted to give a two-dimensional array of spatially correlated
observations. It also offers more promise of reproducing the spatial variation of the data,
but at present it has not been applied to our problem. The steps for the SMA model are:

1. Generate an array of Z., which are independent, identically

distributed normal random variables, NIID(0,o2 ).

2. Use Zji in a spatial moving average (SMA) to construct

the temperature datum T.,m as

Tn,M=T+ ~ A~j1Z&+~,p+j ,V1I.1

i--p i--q

where EJTm1JT,

ind
CotqTo,m,To+a,m+t)=O, if I 8I>p, I tI>q; VII.2.a

Co( To,,m, T,+t,M+t)---2 A4i , if a=0, t=0; VII.2.b

and

S, otherwiae. VII.2-c
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3. A.i are chosen by the experimenter such that

Vii.3

Table I illustrates the needed coefficients Aii for pal,q-1 that multiply the random
variable Z.,. in order to obtain a value for T,. in Equation (VII.l).

TABLE 1. Coefficients of the Spatial Moving Average for Constructing
the Datum T.,. Using the NUD Random Variables Zq.

M-1 m m+L

n- A-,- A-1 ,0  A- 1,

n A0, 1  A0,0  A0,1

n+1 A1,.- A1,0  A1 ,1

Some Aq. may be chosen to be zero or some other value.

PROBLEM: Optimal determination of AU. in SMA to match marginal

spectra from observed process.

VIII. SOME COMMENTS

Our primary objective in this research was to provide a simple mathematical
model which provides simulated data that are consistent with descriptive statistics from
the original spatially correlated data base. Our 2D ARMA model met our criterion that
its mean temperature, its standard deviation, and its energy, spectrum, which measures
the correlation in the temperature, be in good agreement with the data, even though it
did not reproduce the spatial variation in the data. Our assumption that the shocks in
adjacent rows be drawn from a bivariate normal distribution was the ingredient that
introduced the necessary two dimensional spatial correlation in the simulated data.
Some additional approaches for simplifying our 2D ARMA model, which were centered
around reducing the number of ARMA parameter estimates needed for simulation, have
been suggested in the text. In addition a spatial moving average model has been
outlined as an alternative method for this problem.

Our 2D ARMA model is an improvement over the normal models that are currently
being used at the BRL especially since the time series approach naturally forecasts
outlier temperatures ( faise alarms ) that are found in the data. In time, after more data
are analyzed by ARMA models, methods for relating the parameter estimates to
physical constants will be found. If successful, the model may then be extended over the 6
diurnal cycle and seasons. Also, for the theorists, an n-dimensional spatially correlated
model is easily constructed.
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EVALUATION OF CAMOUFLAGE PAINT GLOSS
VERSUS DETECTION RANGE

George Anitole and Ronald L. Johnson
U. S. Army Belvoir Research, Development

And Engineering Center
Fort Belvoir, Virginia 22060-5606

Christopher J. Neubert
U. S. Army Materiel Command

Alexandria, Virginia 22333.0001

ABSTRACT

To Increase durability, the military has considered using a higher gloss camouflage paint.
The field toot and statistical analyses required to determine paint gloss effects upon range of
detection are described. Five, 5/4.ton CUCV trucks were painted In the woodland U.S./Ger-
man pattern with 1, 5, 10, 15, and 20 percent paint gloss, At least 30 observers per gloss level
were individually driven towards two sites. The distance of correct detections were recorded.
An analysis of variance with Individual comparisons determined that detection range was sig.
nificantly (a < 0.05) greater, when higher gloss levels were compared with the standard one
percent.

1.0 SECTION I • INTRODUCTION

The current camouflage paint specificationa used by the U.S. Army call for a lusterless
finish. This particular finish was originally selected for camouflage purposes because of its low
visual reflectance characteristic. The lusterless finish is the result of a high pigment to binder
ratio, and tends to mark and scuff easier than paint with a lower ratio and higher gloss finish.
In addition, colors in a glossier finish appear more vivid than lusterless finishes which acquire
a washed out appearance much sooner. These phenomena have been the object of concern from
a camouflage standpoint, since the use of glossier paints would result in a longer lasting camouflage
effect.11 However, the problem in using glossier paints is the potential of increased reflcetance,
hence detection. It was the purpose of this field test to determine statistically the effect in.
creased paint gloss would have on the range of target detection in a woodland background.

2,0 SECTION II • EXPERIMENTAL DESIGN

2.1 Test Paint

Camouflage paints were purchased in five different degrees of specular gloss from the
Enterprise Chemical Coatings Co. Wheeling, Illinois. The paints were produced in colors Green
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383, Brown 383, and Black using paint specification MIL-E-52798A, in 1, 5, 10, 15, and 20%
reflectance measured at 600 (1% is the current gloss of military paint). The gloss percentage
spread was selected to provide a noticeable difference in reflection considering normal manufac-
turing tolerances. The 20% reflectance level was selected as the upper limit, since any greater
reflectance was considered too shiny for military purposes. One gallon of each color, in each
reflectance, was purchased for test and shipped to Ft. Devens, MA where the field evaluation
took place.

2.2 Test Targets

Five, 5/4-ton, commercial utility combat vehicles (CUCVs) on loan from the Massachusetts
National Guard were painted by Belvoir personnel at the Ft. Devens Maintenance Facility in
the standard United States/German three color woodland pattern.

2.3 Test Sites

The study was conducted at the Turner Drop Zone, Ft. Devens, MA, a large cleared tract
of land surrounded by a mix of coniferous and deciduous forest resembling a central European
background. Two test vehicle location sites were selected, Site #1 was located on the western
end of the drop zone, so that the morning sun shown directly upon the test vehicle. Site #2
was located on the eastern edge of the drop zone, so that the afternoon sun shown directly upon
the test vehicle. An observation path, starting at the opposite end of the drop zone from the
test vehicle location, was laid out for each site. These layouts followed zig-zag, random length
directions toward the test sites, and afforded a continuous line-of.sight to their respective test
vehicle locations. The paths were within a 300 to 400 cone from the targets, and were surveyed
and marked at 50 meter intervals using random letter markers, The markers and distances from
the test vehicle location sites are shown in Table 1.
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Table 1

Distance. of Markers to Test Vehicles on Sites #1 and #2
site #1 site #2

ALPHABET DISTANCE IN ALPHABET DISTANCE IN
MARKER METERS ALONG MARKER METERS ALONG

PATH FROM PAnh FROM
STARTING POINT STARTIM13 POINT

TO TARGET TO TARGET

o1,173.70 f1,261.50
U 1,132.02 I1 1,230.74
A 11088.51 W1,192.40
R 1,044.10 Be 1113.85
G 1,015.03 We 1,110.90
0 989.27 T' 1,076.05
F 947.17 U 1,033.50
X 901.17 H 987.16
K 854.06 L 942.80
IS 808.71 T 902.04
H 762.38 J 53.57
Z 723.52 R 811.07
0 706.95 K 770.70

J 93.23 1 731.23
V 653.54 V 693.08
D 608.16 F 548.52

856-9.9 Z 602.61
N 536.40 E 561.69
T 497.44 N 517.36
W 457.13 x 473.04
M 416.47 D 426.61
L 376.99 V 392.77
E 342.99 8 354.92
1 296.01 P 320.74
V 260.15 M 297.81
B 219.07 A 277.02

L172.15 C 239.95
B'1 126.89 0 202.56

pf79.71 0 162.82
0f 27.85 B 125.71

w92.19U
0 ~51.84 *



2.4 Test Subjects

A total of 153 enlisted soldiers from Ft. Devens served as ground observers. All person-
nel had at least 20/30 corrected vision and normal color vision. A minimum of 30 observers
were used for each teat vehicle, about evenly split per test site. Each observer was used only
one time.

2J Data Generation

The teat procedure for determining the detection distances of the five vehicles involved
searching for the vehicles while traveling along the predetermined measured paths. Each ground
observer started at the beginning of the observation path, i.e,, marker C for site #1 and marker
L for site #2. The observer rode in the back of an open 5/4- ton truck accompanied by a data
collector. The truck traveled down the observation path at a very slow speed, about 3-5 mph,
The observer was instructed to look for military targets in all directions except directly to his
rear. When a possible target was detected, the observer informed the data collector and pointed
to the target. The truck was immediately stopped, and the data collector sighted the pointed
target. If the sighting was correct i.e., the painted CUCV, the data collector recorded the al-
phabetical marker nearest the truck, If the detection was not correct, the data collector in-
formed the observer to continue looking, and the truck proceeded down the observation path.
This search process was repeated until the correct target was located.

The target CUCVs were rotated between the two test sites on a daily basis, until all vehicles
had been observed by at least 15 observers at each site. Their orientations with respect to the
sun were kept constant at both test sites. The vehicle side windows were left open to eliminate
shine, and a tarpaulin was used to cover the windshield and rear window. The vehicles were
positioned so that the left side was facing the direction of observer approach.

3.0 SECTXON IIl-RESULTS

Tables 2, 3, and 4 show the detection data for the 5/4-ton CUCVs painted in 1, 5, 10, 15,
and 20% gloss. Table 2 gives the mean detection range in meter& for each gloss level, and its
associated 95% confidence interval. Table 3 shows the analysis of variance2 / performed upon
the data of Table 2 to determine if there were significant differences in the detection ranges
i.e., gloss has an effect upon detection range. Table 4 indicates which gloss levels differed Sig-
nificantly from each other. Figure 1 is a graphic display of the detection ranges of Table 2.
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Table 2

Mean Gloss Detection Ranges (Moters) and 95 Percent Confidence

Intervals.

05 PERCENT CONFIDENCE
% GLOSS STANDARD INTERVAL
LEVEL N MEAN ERROR LOWER LIMIT UPPER LIMIT

1 31 680.0000 138.3944 529.2433 630.7567
6 30 790.1333 216,3083 709,3715 870.8951

10 31 971,0000 117.7328 927.0429 1014,9571
15 30 1078.3333 114.1196 1035.7262 1120.9415
20 31 1153.9677 93,1967 1119.7875 1188,1480

Table 3

Analysis of Variance for Vehicle Detection Across
Five Levels of Paint Gloss

DEGREES
OF

SOURCE FREEDOM SUM OF SQUARES MEAN SQUARE F-TEST SIG LEVEL

GLOSS 4 6,01 1,277,3660 1652819.3415 81,7597 0.00000'
ERROR 148 2,971,801.1011 20215.5857
TOTAL 152 9,582,968,4671

BARTLETT'S TEST FOR HOMOGENEOUS VARIANCES

NUMBER DEGREES OF FREEDOM - 4,
F - 6.49661911766 SIGNIFICANCE LEVEL ct - 0,0003
0Si~nifcant at a less than 0.001 level.

Table 3 Indicates that there are significant differences in the ability of the ground observers
to detect 5/4-ton CUCVs of different degrees of paint gloss. The Bartlett's Test Indicates that

the variances for each level of paint gloss are not homogeneous, ie,, significantly different, so

they are not necessarily from the same population.
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Table 4

Individual Comparisons Identifying Which Levels
of Paint Gloss Differed Significantly from Each Other

1% Gloss and 5% Gloss
COMPARISON W -210. 13333 SUM OF SQUARES -673198.30383

F 0 33.301 SIGNIFICANCE LEVEL - 0.00000 it

1% Gloss and 10% Gloss
COMPARISON - -391.00000 SUM OF SQUARES 2330808.88852
F - 115.298 SIGNIFICANCE LEVEL - 0.00000 '

1% Gloss and 15% Gloss
COMPARISON - -498,33383 SUM OF SQUARES - 3788107.92350
F - 187,207 SIGNIFICANCE LEVEL - 0.00000 '

1% Gloss and 20% Gloss
COMPARISON - -573.96774 SUM OF SQUARES - 5106304,01613
F = 252.592 SIGNIFICANCE LEVEL - 0.00000 '

5% Gloss and 10% Gloss
COMPARISON - -180.86667 SUM OF SQUARES - 490891.26867
F a 24.273 SIGNIFICANCE LEVEL - 0.00000
8% Gloss and 15% Gloss
COMPARISON 0 -288.20000 SUM OF SQUARES -1245888.60000

F - 81 .630 SIGNIFICANCE LEVEL - 0.00000
5% Gloss and 2096 Gloss
COMPARISON - -363.83441 SUM OF SQUARES 9 018183.50002
FN 0 99.833 SIGNIFICANCE LEVEL - 0.00000 ~
10% Gloss and 15% Gloss
COMPARISON - -107.33303 SUM OF SQUARES - 172806.68867
F M 8.548 SIGNIFICANCE LEVEL - 0.00346 ~
10% Gloss and 20% Gloss
COMPARISON - -182.965774 SUM OF SQUARES - 10390.01586
F 0 25,247 SIGNIFICANCE LEVEL - 0.00000
15% Gloss and 20% Gloam
COMPARISON - -75.63441 SUM OF SQUARES - 87215.15248
FIN 4.314 SIGNIFICANCE LEVEL - 0.03779

The following levels of paint $loas differed significantly from each other: 1% vs. 5%, 1%
vs. 10%, 1% vs. 15%, 1% vs. 20%, 5% vs. 10%, 5% vs. 15%, 5% vs. 20%, 10% vs. 15%, 10%
vs. 20% and IS% vs. 20%.

Significant at a less than 0.01 level

Significant at a less than 0.01 level

" Significant at (& less than 0.001 level
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Figure 1, Detection Range In Meters for CUCVa Painted in Five Levels of Gloss

The Bartlett's Test for homogeneity of variance was significant at less than A - 0,001,
Thus, It can not be assumed that all the sample variances are from the same population, This
assumption is required to perform the parametric test of aniAysis of variance and associated In.
dividual comparisons. When the Bartlett's Test Is significant, non-parametric tests should be
used to determine the relative positioning of the sample statistics, Two such non-parametric
teats were performed, the Krushkal-Wallis One-Way Analysis of Variance and the Mann-Whit-
ney U Test3 l' The Krushkal.Wallis Test determined that there were significant differences be-
tween the levels of paint gloss. The Mann-Whitney U Test, based upon the Chi-Square
distribution, determined the probability of individual iloss percentages differing from each other.
These tests, while not as powerful as the parametric test, yielded the same general results, and
are available upon request from the U.S, Army Belvoir Research, Development and Engineer-
ing Center, ATTN: STRBE-JDS, Fort Bolvoir, VA 22060. It is not unexpected that the varian.
ces for each gloss level were not homogeneous. Each level of gloss was different from the
preceding by 5%. These equal differences in shine are not perceived as such by the human
eye. The 1% gloss was seen as dull, however the 5 through 20% paint gloss was perceived as
being reflective, This Is verified by viewing the differences in mean detection for the gloss per-
centages of 1 vs, 5, 5 vs. 10, 10 vs, 15, and 15 vs, 20 (see Table 5). If the variances were nor-
mally distributed, the mean differences between percentages of gloss would be about the same.
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Table 5

Mean Differences In Detection Range (Meters) Between Gloss Levels

% GLOSS MEAN DETECTION RANGE DIFFERENCE

I V.a 580 790 210
S vs, 10 790 971 181

10 vs. 15 971 1078 107
15 vs. 20 1078 1153 75

4.0 SECTION IV. DISCUSSION

Figure 1 and Tables 2 through 4 clearly show that the higher the percentages of paint gloss,
the longer the mean range of target detection. The differences between the 1% gloss detection
range, and the 5, 10, 15, and 20% gloss detection ranges are significant well beyond the a -0.05
level. This a value is the probability that one will make a decision that the levels of parnt gloss
are significantly different in the resulting detection ranges when they are not. For this study,
the decision is that the higher gloss paint levels of 5, 10, 15, and 20% will have a longer range
of target detection than the 1% paint gloss level. In the world of statistics, if a decision has a
probability of being wrong S or less times out of 100 ( a - 0.05) then this is an acceptable
risk. If this probability of being wrong is greater than 5 times out of 100, the risk is not accept-
able, and the decision is rejected. In the present study, these levels of differences in mean
detection ranges tend to get smaller as the percentage of paint gloss increases (Figure 1 and
Tables 2 and 4), but they never exceed the a - 0.05 level, With the exception of the paint gloss
comparisons 10 vs. 15% and 15 vs. 20%, which are significant at a - 0.003 and 0.03" respec-
tively, the other comparisons are significant at an a level less than 0,001, The differences be-
tween the detection means asymptotes as the percentage of the gloss gets higher (see Figure 1),
This is due to the fact that targets with a higher gloss are easier to seo than targets with a lowur
gloss. For example, increasing the paint gloss from I to 5% would Increase the moan detection
range by 210 meters (Table 5).

It was also observed that as the level of paint gloss increased, the visual perception of a
pattern decreased, The camouflage pattern was difficult to discern at paint gloss levels of 10%
and above.
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5.0 SECTION V. SUMMARY AND CONCLUSIONS

Five 54-ton CUCVu were painted in the standard woodland United States/German three
color pattern with the following paint glosses:

* 1% (standard)
0 5%
0 10%
o 15%

e 20%
A minimum of 30 ground observers per paint gloss level were driven toward each of two sites
on marked observation trails In the back of an open 5/4-ton truck, The subjects were looking
for military targets, and they Informed the data collector when they thought they saw one. If
the detection was correct, the closest alphabetic ground marker to the truck was recorded, From
this letter, the exact distance to the target from the truck was determined, If the detection was

not correct, the search continued with the truck traveling down the observation path until the

test target was soen. An analysis of the resulting data provided the following conclusions:

A. The targets with the higher paint gloss of 5, 10, 15, and 20% were significantly easier
to detect than the target with the 1% paint gloss.*

B. The higher gloss paint levels of 5, 10, 15, and 20% will have a significantly longer range

of target detection than will the 1% paint gloss level, which will increase their vulnerability to

enemy fire.

C. In that the 5% paint gloss vehicle was detected, on the average, 210 meters farther
away than the 1% paint gloss vehicle, one can not recommend any Increase In the paint gloss

over the 1% currently being employed by the U.S. military.

* Low visual reflectance Is particularly important In woodland backgrounds where reflection and

brightness are relatively low. Its effect in bright backgrounds such as desert or arctic environments,
where reflections from glossier paints may be lost In the noise, remains to be evaluated.
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SENSITIVITY ANALYSIS

OF A NONSTOCHASTIC MODEL

A.A. Khan
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ABSTRACT. Simulation models are now widely used as analytical tools. New

models are usually subjected to quality assurance criteria before they can be

employed in studies. This practice is prudent as well as useful in learning the

characteristics of a newly developed simulation model. Also, it is necessary to find

those parameterswhich have a significant impact on the response variable [1

Mobilization Based Requirements Model (MOBREM), the model examined in

this article will be used for policy studies and budget planning. Before it can be so

employed, we subjected it to sensitivity analysis. Since the model is deterministic,

there are no random errors in the response variable; therefore, the usual statistical

methods are not applicable. In their place, the'summary statistics' R2 has been used

judgmentally.
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1-0 INTRODUCTION. The results in this report deal with the sensitivity analysis of

the simulation model, Mobilization Based Requirements Model (MOBREM). This
model has been designed to provide the U.S. Army with 'a responsive, consistent,
and auditable system for determining the Continental United States (CONUS)
resources required to support mobilization' [2]. This model was developed over a

five year, five.-phased period, from 1979 to 1984. It was delivered to Concepts
Analysis Agency (CAA) in August 1984. Since then, the model has been used for the
training of operators and for performing policy studies in connection with

mobilization.

1-1 Sensitivity Analysis. A new model, before it can be used for any study, must
be tested for its sensitivity to input parameters. In this report, we address the

following issues:
a. From a selected list of input parimeters (or factors), find those

parameters which have a significant impact on the response variable.
b. Rank order the significant input parameters.

The response variable in this study is the manpower requirements by the major

Army Commands (MACOMS) Installations, by Army Functional Dictionary (AFD)

code, and by time periods from Mobilization day (M-day) to day of hostilities (D-

day).
1-2 Backaround. MOBREM is a very large and complex simulation model. For

our purpose it is essential to keep in mind that it is a deterministic model. There are
no random number generators in the subroutines or modules. Repeated

observations do not provide estimate of 'variance'. If we repeat an experiment with
fixed input values, we do not get a new value for a response variable. For this

reason the classical statistical procedures have to be modified to meet the specific

situation of MOBREM. In particular, F-test and t-test are not valid. We use R2, the
coefficient of determination, as the index of goodness of procedures used in our

analysis..

2-0 OVERVIEW OF MOBREM. It will help in understanding the objectives of this

study to have some perspective in mobilizing large numbers of people, To provide
the reader with the magnitude of the numbers involved, we present in Table 1 the

initial and final stages of mobilization in MOBREM. We will skip the details of

organizational complexities and the organizations which are required to manage
! this operation.

2-1 CONUS Base. The major functions of CONUS Base organizations are to

provide the support that enable units to be deployed, trainees to be be trained, and
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equipment and supplies to be shipped to the theater or within CONUS. They also
provide medical support for theater medical evacuees as well as those patient loads
generated in CONUS installations [2]. iv

2-2 Projections. A profile of organizations in CONUS in peace and war is given
below. It illustrates the staggering magnitude of manpower involved from the
initial to the final phase of mobilization. The organizational complexities to
synchronize various phases of this process quantitatively is the most important
function of MOBREM, but will not be discussed here.

Table 1
CONUS Base Organizations

Peacetime Strengths Wartime
Units (000) Strengths

TDA
OSA and OCSA 3,7 6.8

Joint and DEF ACTV 6.7 7.1
OSA and ARSTAF FOA 46.7 46.0

Commands in CONUS 347.6 658.7
Army Reserves 25.8 0

National Guard 20,4 0

TOE
Training division 32,0 52.9

Training spt units 4,1 4.5

GSF units 29,8 37.1
Sep inf bde 19.0 20.1

Other 3.9 4.1

Totals 539.7 837.3
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Table(s) of allowances (TDA) is the number of slots allocated to different
organizations, it includes both civilian and military, and table(s) of organization and
equipment (TOE), i.e., the number of personnel authorized to keep a unit of army -.

functional.
3-0 DESIGN OF EXPERIMENT. The initial list of 30 parameters was pared down to
9 for this study to economize on computer time; since each run of MOBREM takes
about 12 hours to complete. The selection of the final list of input parameters and
their levels was carried out with the help of both civilian and military analysts.
3-1. Choice of Desian: A two-level fractional factorial design was planned for
sensitivity analysis. The full design was completed in two stages. In the first stage,
the 9 factors included both scalar and matrix inputs. The non-scalar inputs were
treated as scalars by the following convention:

High value + C.V

Low value -C.V

where C is a constant, V is a non-scalar. In this way the design is the usual fractional
factorial design. At the initial stage of the study, we are Interested only in
'sensitive' parameters, their interactions are of less importance. By 'sensitive,' we
mean those inputs which produce a large impact on the response variable. A
Plackett-Burman (P-B) design was deemed most suitable in this phase (4]. The 9
parameters are listed below:
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FACTOR DESCRIPTION

A M-Day to D-Day

B Work week

C Training load

D Show rates

E Hospital rates

F Deploying MTOE levels

G Non-deploying MTOE levels
H TDA levels

Other levels

Only Factors A and D are scalars

The smallest P-B design to accommodate 9 parameters Is a 12 run design given
below, A P-B design allows us to assess the impact of the main effects, which In this
layout are not confounded with higher order interactions (5].
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"Table 2
PLACKETT-BURMAN DESIGN

I STAGE
PACKAGES

RUN A B C D E F G H I

"1 + - + - + + +

2 + + + - - - + +

3 - + + - - +

4 + - + + - + "

5 + + - + + - +

6 + + + - + + - +
7 -7 + + + - + + -+

_ - + + + - +,
9 - + + - + +*_
10 + - - + + + - +

11 - + - + + +

12 . . -. . . .

+ HIGH LEVEL
-LOW LEVEL

"PACKAGE' stands for a policy, i.e., a particular combination of input values.

3-2. Second Stace Desian. At the first stage, results showed that only 5 factors
were important enough for further Investigation. These are:

Table 3

"FACTOR DESCRIPTION

A D-Dayto D-Day
Cl Training load

C2 Training equipment

H1 TDA fill

H2 TDA equipment
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H2 is the corresponding level of equipment allowed to the unit. In this scheme, all
parameters are scalars and the second stage P-B3 design is shown in Table 4.

Table 4
P-B DESIGN

11 STAGE

Run A C1 C2 Hi H2

13 . . . . -

14 +i + +. + -

15 + + +. +

16 + + - + +

17 +. - +. + +

Is - + +. + +

19 +. + - -

20 +. - 4. - -

21 + - - - +

22 + - - +

23 - + + -

24 - + +

25 -+ - - +

26 - + + -

27 + 9 +

28+ +

+. HIGH LEVEL I
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4-0 LINEAR MODEL. The collection and analysis of data depends on the

mathematical model which we postulate to explain the relationship between the

response and the input factors. The selection of a fractional factorial design at two

levels, a resolution III design (P-B Design), was made with the object of estimating

the main effects; higher order Interactions can be sacrificed at this stage. The

reasons can be summarized as follows [6]:

* Not much is known about the model on how different Inputs impact on

the output.
0 In this situation it is best to assume a linear model.

• All experiments under uncertain conditions are conducted with some risk.

If later, It is found that interactions are more important, one can re-run

the simulation model to obtain additional observations, Simulation

models can be run anytime one chooses to do so, provided time and

resources are not prohibitive.

* Simpler mathematical models help in clearer exposition of the conclusions.

4-1 Analysis. At this stage the assumptions of linearity and additivity are

convenient to model our results. If the experimental region is not large, higher

order interactions need not be Included in the expression connecting the response

to the input [7]. We approximate the functional relationship between the response
y and the input factors xl, x2, ... , x9 by Taylor's expansion,

yaA0 +Al xl + A2x2+.. +Agxg+R (1)

where Ai (i m 0, 1, 2, ..., 9) are unknown constants and R is the remainder term in the

Taylor's series expansion.. Observe that this model does not have stochastic

components and therefore statistical techniques cannot be applied. We use the

least square (I.s.) methods in the estimation of Al and use R2 to measure the

adequacy of the model (1). For a clear discussion of two-level fractional design and

the techniques of estimation of main effects, we refer to [8]. The least square

technique Is used In (1) to evaluate and partition the total sum of squares into the

component sum of squares. Each component is attributable to a specific factor, plus

the sum of square due to the remainder term. This analysis is carried out for the

data in the first stage. A typical run with the response variable at each time period

is shown in Table 5.
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Table 5

Total L!
Time from ManoeM-Da Manpower

M-Day Requirements

M+10 318671

M+20 314747

M+30 354932

M +40 367936

M +50 403887

M+60 442291

M +90 479470

M + 120 498009

M+150 504354

M + 180 501839

M +210 497962

M + 240 497845

M + 270 497494

MOB-AV 532915

Since there Is an ANOVA at each time period and for each run, there are

13 x 12 w 156 ANOVAs. These are not listed here, but the result of the analysis is

shown in Table 6, showing the ranks of the factors in descending order.
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Table 6

Ranking of Packacaes in Descending Order

Factor Package

B Workweek

C Training
H TDA

A M-Day to D-Day

G Non-deploying MTOE levels

F Deploying MTOE levels

D Show rate

E Hospital

I Other Personnel

Visual analysis at this stage is most effective, Figure 1 shows the response variable
against time, when grouped according to the levels of Factor B (workweek). Factor
8 is the driver of the manpower requirements, a result confirmed by the usual
ANOVA techniques. Figure 2 clearly Indicates the main effects which have clear
impact on the response variable. Apart from B, A and C produce measurable Impact
on manpower requirements up to time M + 100, after that the effects of these
factors is dampened out. Other factors have negligible effects as can be seen by
inspecting Figure 3. This combination of ANOVA, graphs of main effects and
aggregating results by each level of Factor B is carried out for a selected group of
AFD's. The results confirm the hypothesis that the ranking in Table 6 is valid for the
sampled AFD aggregations. This simple computer intensive graphical technique has
been extensively used In this study.

4-2 ii Staae A*Ialvsls. Since the workweek parameter is so decisive, no further

investigation is required to measure the sensitivity of the response variable to this
parameter at this stage. In the II stage of design, a 60-hour workweek was fixed.
The number of input factors was narrowed to 5 factors. Again, a resolution III
design was used to generate simulation data. The factors In the 11 stage design are

given in Table 7.
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Table 7
Packacaes in the II Stage Design

Factors Description

A M-Day to D-Day

C1 Training load

C2 Training equipment

H1 TDA fill

H2 TDA equipment

Cl and C2 are the elements of the vector input C of the I stage design, Likewise, H1
and H2 are the components of the vector H of the I stage, At the second stage, all
paramenters are scalars. The two values of the parameters at this stage are chosen
within the range of their values at the first stage.

The same method of ANOVA is used as in the first stage. A sample ANOVA (for run

13) is shown In Table 8. The response variable is the manpower requirements on
M + 270 day, i.e., 270 days after mobilization day. Sensitivity of a factor Is measured

by its contributions to the total sum of squares. The overall 'fit' is measured by 'R2'

as given below.
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Table 8
ANOVA For Run 13

Source of Sum of squares

variation

A 4.000

HI 495952900.000

H2 0.250

C1 6272402402.250

C2 0.250

Explained 6768355306.750

Residual 119041.000

Total 6768474347.750

R2 .93%
The explanation of response by the input factors are quite satisfactory with HI and
C1 being most important factors. The impact of A, H2 and C2 are negligible. Now
we have 13 x 16 w 208 ANOVAs. Figure 4 shows the time series due to each of the 5
factors. Effect due to C1 is dominant, followed by H1, Effect due to A is significant
up to M + 120 days, after that its impact on the response diminishes. Factors C2 ani
H2 are negligible.
4-3 Summary. We have summarized the data from the first stage design using
regression equations. Only half the runs (B - +) from Table 2 have been utilized in
deriving these equations in order to compare these results with those of the second
stage design (Table 4). The regression equations and their R2 values are given
below. The dependent variable y is the manpower requirements, the independent
variables are A, C1 and H1. Only the data for time phases from the mobilization day
(M-Day) to 90 days after it (M + 90) are shown.

ForM+ 10 y- 315567-3.4A + 52198C1-5756 H 1
R2 = 99%

ForM+20 y.249976+77.1A+66016C1+56508H1
R2 - 97%
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ForM +30 y=248656.7+479.1A+869(,,C1 +73635 H1

R2 m96%

ForM+40 y•255859-216.7A+ 104387.5C1 +85470 H1
R2 = 98%

ForM+50 y-265077-644.9A+121675.SC1 +92054H1

R2 m 99%

For M + 60 y - 261767.3-882.6A + 142257C1 + 96510 H1

R2 a 99%

ForM+90 yu278884.7+135.6A+173240.SC1+96904Hi

R2 m 99%

We plan to use these results along with the second stage data to apply response
surface methodology for more refined predictive equations.

6
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flIMAIO OF VARIANCE COMPONENTS AND MD-S
DIAGNOSTICS IN A REPEATED MEASURES DESIGN

Jock 0. Grynovicki J, W, Green
U.S. Army Laboratory Command Department of Mathematics
Human Engineering Laboratory University of Delaware

Aberdeen Proving Ground, Maryland Newark, Delaware
21005-5001 19711

The traditional univariate analysis of the repeated measures design is
obtained by treating subjects and their associated interactions as random
effects. This analysis requires that certain variances and covariances of the
dependent variable at various combinations of within-subject factors be equal.
Instability of the variance and covariance components may mask significant
effects and compel the researcher to utilize a less powerful multivariate
technique.

This paper illustrates the use of a recently developed class of unbiased
variance component estimators and their associated diagnostics for examining
the data and the model assumptions. A comprehensive example is given for the
case of a three-way design with two factors repeated.

I. INTRODUCTION

Repeated measures designs are one of the most frequently utilized classes
of designs in Army Research and Development. These designs offer a reduction
in the error variance due to the removal of an individual's variability, are
efficient, and require fewer subjects to achieve the same power of the F test
as completely random or block designs.

This class of designs, sometimes referred to as within-subject designs,
obtain their name from the fact that one or more factors of the design are
manipulated in such a way that each subject receives all levels of the within
subject factor. The advantage of this approach is that subjects act as their
own control in their responsiveness to the various experimental treatments,
On the other hand, this type of design introduces intercorrolations among the
means on which the test of within subject main affects and interactions are
based,

Due to this intercorrelation, three separate approaches have been
proposed in the literature. The first, the univariate analysis of the
repeated measures design is obtained by treating subjects as a random effect.
The linear model employed is called a mixed effects model, and the resulting
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analysis is a mixed model analysis of the repeated measures design. The
standard mixed model assumes certain variances and oovariances of responses
are invariant across the experiment. For example, in a three-factor factorial
model with Factors I and 3 fixed and subjects (or Factor 2) random, a standard
assumption is that the covariance, *12, of responses at the same level of
Factor 1 and on the same subject (i.e., level of Factor 2) but at different
levels of Factor 3, is invariant across all subjects, all levels of Factor I
and all combinations of distinct levels of Factor 3. More generally, if e is
the covariance between observations at the same levels of Factors indexed ty t
and at different levels of the other factors, then standard mixed models
assume 0 is invariant across all levels of the factors indexed by t and
across all combinations of distinct levels of the other factors, This
assumption is referred to in the literature as compound symmetry. Huynh and
Feldt (1970) have shown this assumption to be a sufficient condition,

In the second approach, the multivariate method, the responses of a
subject are treated as a k-dimensional response vector. It is worth noting
that this approach is not as powerful as the univariate approach if the,
assumption of compound symmetry is accepted.

Thirdly, a degree of freedom adjustment initially proposed for use by
Greenhouse and Geissar (1959) is used to adjust the numerator and denominator
degrees of freedom of the ratio. Huynh and Feldt (1970) have shown this
adjustment to be too conservative.

Difficulty in interpretation can occur when several dependent measures
are made for each experimental treatment and the assumption of compound
symmetry is rejected. This situation can result in a lack of degrees of
freedom and power since the response matrix, which is a multiple of dependent
variables and the number of unique within subject factor treatment
combinations, can equal or exceed the total number of subjects. In the
multivariate context, this can result in the degrees of freedom parameter
being very small.

Since it is common and necessary to record, evaluate and analyze numerous
measurements during developmental testing and human factors evaluation of
weapon systems and equipment, alternative approaches to assessing the effect
of treatment conditions on the response measurements need to be explored.

This paper introduces and demonstrates the use of unbiased, efficient
variance component estimators and their associated diagnostics in analyzing
the repeated measures design,

11. GENERAL VARIANCE COMPONENT ESTIMATES AND DIAGNOSTICS METHODOLOGY

The problem of estimating variance components in random and mixed models
has been of interest to researchers for years as pointed out by Green and
Hocking (1988). However, over the last few years, new closed form expressions
for the estimators of variance components have been developed, based on the
equivalence shown in Green (1985, 1987); Hocking, Bremer and Green (1987); and
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Hooking (1985) of the variance component estimation problem to the problem of
estimating the covariances, et between appropriately related observations, In
addition, these estimators have been shown to provide information which will
be useful in diagnosing problems and suggest simple graphical procedures for
examining the influence of the treatment levels.

To introduce this general methodology, this paper will only consider
three factor repeated measures design with factors one and three repeated as
shown in Table 1. The number of levels of Zactor (i) is designated by ai,
Subjects are designated factor two, Factors one and three are the within
subject fixed factors. The traditional univariate repeated measures model
with subject and subject interactions considered random is

Y(ijkm) - M + A(i) + S(j) + AS(ij) + B(k) + AB(ik) +
SB(jk) + ABS(ijk) + E(ijkm)

where M is the overall mean, A(i) is the effect of level i of treatment or
factor A, S(j) is the effect of subject J, AS(ij), is the effect of level ij
of treatment combination AS, B(k) is the effect of level k of factor B,
AB(ik) is the effect of the AB treatment combination at level ik, SB(jk) in
the effect of treatment combination SB at level (jk), ABS(ijk) is the effect
of level ijk of treatment combination ASS, and E(ijkm) is the random error,
For the traditional univariate approach, it is assumed that A(i), B(k),
AB(ik), and H are fixed and S(j), AS(ij), SB(jk), ABS(ijk), E(ijkm) are zero
mean independent normal random variables with variances a2, 12, 023, 0123,
and $ respectively, While the variables are independent, the responses are
correlated with the covariance structure found in Figure 1.

This covariance structure in Figure 1 suggeste an alternative approach to
the linear model first proposed in Hocking (1983) and extended and developed
in Green (1985) to several classes of linear models. This approach relaxes
the requirement that the variance components be positive. Thus, the classical
model is replaced by specifying the response vector as normal with covariance
matrix as given in Figure 1 and mean vector determined from the expectation of
Y.

The only restriction on the covariance matrix is that it be positive
definite. This requirement is weaker than the classical requirement that the

02 be positive. An in-depth development of this alternative model can be
found in Hocking (1985),

The covariance, et, is between observations at the same level of factors
indexed by t and different levels of all other factors in the model. This

suggests examining the corresponding sample covariances. These sample
covariances, or averages thereof, yield the estimators of the Ot. Sample
covariances yielding estimators of e2 and 012 are given in Figure 2.
Similarly, 023 is analogous to the 012 estimator with subscript three
replacing one. For example, from Figure 2 one recognizes the e2 estimator as
the average of al 3rl equal expectation sample covariances corresponding to
all combinations of 1+1*, k~k*. Here ri is the level of Factor i minus one.
Similarly, 012 is the average of a1 r equal expectation sample covariances
corresponding to all combinations o l and k+k*.
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COVARIANCE STRUCTURE
2 WITHIN SUBJECT FACTORS

COY (Y(i,J,k,m),Y(I*,J*,k*,m*)

G82 $ 2 If 1IsI*,j1=J* k :0k*
812 = 02+012 If i= i*, J j k * k*
023 02+023 If i I*, J J* k =k*
8123 4 02+0112+0123+01123 I f * IJ = J* k = k* m* • m

$0 +, 0123 Ijkm = I*J*k*m*

Figure 1: Covariance structure of three repeated measures design (Subjects random)

VARIANCE COMPONENT ESTIMATES

62 = 1 ., I(YI]k- yi.k.) (yl*jk*- yi*.J*.)
r2 al 3 r13 Ik•I*k* j

612 = _ 1 ,., 1__ (yiJk.. yi.k.)(yljk*.- y.k*.)
al3 r3 k r2 ij

Figure 2: Variance component estimates for e 2 and e12
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These covarianqes are unbiased and contain the diagnoatic Rower, By
plotting these covariancoes (diagnostics) in table form, one obtains an
indication of the stability of the estimate and of suspect estimates.

In general, one looks for various characteristics and trends, For
example, (1) unusually large or small diagonal entries indicate abnormal
variability in the cell means for this level of the factor under
investigation, (2) special patterns in the off-diagonal elements such as a
particular column or row having the majority of its entries higher or lower
than associative rows or columns, indicate one or more cell means may contain
extreme outliers, and (3) large fluctuations in the off-diagonal entries
reflect high variability is the data.

Following the examination of the diagnostics, plots of treatment i vs,
treatment i* cell-means, where abnormal diagnostics have been identified, are
recommended, This will help the researcher identify the treatment cells
responsible for extra large or small variance component estimates, Finally,
the diagnostic procedure should conclude with an examination of the data in
the identified calls,

ItI. REPSATD UR DI E fSION

To illustrate these diagnostic procedures, data from a repeated measures
design carried out by Malkin and Christ (1987) will be used,

A. Objective

The objective of the experiment was to conduct a laboratory flight
simulation to compare a cockpit keyboard, a thumb-controlled switch, and a
connected-word voice recognizer for data entry of navigation map coordinate
sets when (1) the entry of Universal Transverse Mercator (UT') coordinate sots
is the sole task performed (No Flight) and (2) the entry of UTH coordiuate
sots is performed concurrently with controlling a helicopter simulator while
flying a computer-generated external scene (Flight). For this paper, the
difference among the three methods of data entry for response and input time
will be evaluated for both the Flight and No Flight conditions. The original
paper also investigated error. However, no practical or statistical
difference was found for subject error in regard to any of the experimental
factors.

B. Methodology

Data were collected using 12 Army aviators assigned to Aberdeen Proving

Ground, Maryland as the experimental units,

The Aviation and Air Defense Division, Human Engineering Laboratory's
(HEL's) flight simulator was utilized for this study. The Crew Simulator
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consists of a cockpit cab with advanced controls and displays and an "out-the-
window" scene produced by Computer-Goenerated Imaging (COI), The CGI, cockpit
controls, flight simulation, displays and results were driven or recorded
using two Vax computers. Training was administered to all subjects in the
operation of the voice recognition system and flight simulator. For an in-
depth accounting of the Apparatus and Training, the reader is referred to
Malkin and Christ (1987),

C. Procedure

Each subject entered eight UTH coordinate sets for each test condition.
The coordinate sets, which wore selected from a scenario based on the Fulda
Gap area of Germany, were located on a kneeboard attached to the subject's
leg. A standardized, but different set of coordinates was used in each
condition. The subject was teoted in both conditions using one data entry
method before proceeding to the next data entry method. The order of the test
conditions were counterbalanced to control for learning,

D, Experimental Demign

A 2x3x12 factorial design with repeated measures on the twelve subjects
was implemented. The within subject factors were data entry methods (voice,
keyboard and thumb-controlled switch) and task conditions (flight, no flight).
The dependent variables were input time and iponse time, For illustration,
the 2x3x12 repeated measures design along with input time can be found in
Table 2.

E, Results

Since the response measures were highly correlated, and only 12 subjects
were used, a multivariate analysis of variance was performed using the
univariate repeated measures model with subjects considered a random factor.
The approximate F ratios were then checked against the Greenhouse Geisser
adjustment and they agreed.

The results are whown in Figure 3. For response time, subjects were able
to respond significantly faster during the no-flight condition than during the
flight condition. There also was a significant interaction between data entry
method and task conditions. During the no-flight task condition, subjects
responded significantly faster when the keyboard was used to enter data.
However, during zhe flight task condition, subjects responded significantly
faster using either voice or the thumb-controlled switch (see Figure 4).

There were significant differences among the three mean impact times for
the data entry method. Subjects were also able to input data faster during
the no-flight task conditions than during the flight conditions. However, •
there was no significant interaction between Task and Entry method (see Figure
5).
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TABLE 2. METHOD BY TASK BY SUBJECT
(INPUT TIME)

Method

Voice Keyboard Thumb
1 2 3

Task Task Task
No No No

Flight Flight Flight Flight Flight Flight
Sublect 1 2 1 2 1 2

1 15.8 17.8 16.9 16.8 28.5 34.3

2 23.9 49.3 9.1 13.2 25.0 35.5

3 33.0 55.9 13.6 31.6 29.7 48.8

4 15.2 27.8 11.3 16.1 24.1 43.1

5 35.9 45.0 11.9 20.7 39.2 65.2

6 49.8 36.4 11.8 23.7 36.3 49.1

7 27.2 34.9 13.9 20.6 31.7 44.7

8 20.6 20.6 10.9 24.1 35.4 37.4

9 28.92 38.7 10.5 19.9 34.7 34.6

10 27.7 23.5 10.7 15.9 34.0 43.6

11 17.9 11.7 15.4 24.1 32.6 39.0

12 23.0 16.3 13.5 33.8 38.9 70.9
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DATA ENTRY METHOD BY TASK

K

IIII T

4w

z Ts
*w K

0- 1

NO FLIGHT FLIGHT

LEGIEND

V - VOICE

K - KEYBOARD
T - THUMN SWITCH

Figure 4: Data entry methods by task for response time
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DATA ENTRY METHOD BY TASK

so-
T

40-

!6O T
80- (82.5 s00)

(36.6*6K

z (21.7 see)

z
4c K
lo- (12.4800e)

0.

NO FLIGHT PLIGHT

LEGEND

V - VOICE

K-KEYBOARD
T-THUMB SWITCH

Figure 5: Data entry method by task for input time
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As a final note, the input time covariances for the within-subject
factors deviated extremely from the compound symmetry assumption whereas the
compound symmetry assumption for response time was acceptable. Therefore, the
variance component diagnostic procedure will be demonstrated for input times
only.

IV, ILLUSTRATED EXAMPLE OF VARIANCE COMPONENT ESTIMATES AND DIAGNOSTICS

As previously pointed out, it is natural to estimate the covariances Ot
by corresponding sample covariances. In the balanced case, and for the
Malkin, Christ data, the estimates can be obtained from the ANOVA table (see
Figure 6).

For this example, a1 - 3, a2 - 12 and a 3 - 2. The estimate of 62 is the
average of six distinct sample covariances. They can be displayed in a table
such as Table 3-A. The off-diagonal elements are the sample covariances, To
avoid confusion, it is worth noting that the diagonal elements are not true
variances since i~i*. An alternative and simpler display of these sample
covariances can be found in Table 3-B. Again, the diagonal elements are not
true variances since k+k*.

Under the compound symmetry assumption, all elements of Table 3-A or
Table 3-B should be approximately equal. Therefore, the diagnostics provide a
illustrative procedure to check the compound symmetry assumption and identify
unique treatments combinations that contribute to this assumption being
violated.

In examining the 62 off-diagonal diagnostics of Table 3-A, the
covariances Keyboard No Flight vs. Voice Flight (-13.81) and Thumb No Flight
vs. Voice Flight (-12.47) are small when compared to the other off-diagonal
entries in the Table. In addition, Thumb Flight vs. Voice No Flight (40.78)
seems large in comparison. This large fluctuation indicates high variability
in the data,

The diagonal entries of Table 3-A indicates the covariances at the same
Task level but different Input levels. The large diagonal entry (43.26),
representing the covariance of Thumb Flight vs. Keyboard Flight, indicates
instability and variability in the cell means making up this covariance.
Referring to Table 1, the reader can see that the cell means for Keyboard,
Flight and Thumb Flight are larger and more unstable than the other Method
Task treatment conditions.

This suggests further examination of the specified treatment
combinations. Follow-up plots of subject mean input times by treatment
combinations reflecting the large or small covariances are shown in Figures 7
through 9.

Examinatin of these plots revealed that subjects (3, 5, 6 and 12) input
time contributed to the extremely high or low covariances.
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TABLE III - A

DIAGNOSTIC,
INPUT TIME

VOICE
NO FLIGHT FLIGHT

KEYBOARD NO FLIGHT -5.90 -13.81

FLIGHT 13.68 -5.07

VOICE
NO FLIGHT FLIGHT

THUMB NO FLIGHT 23.15 -12.47

FLIGHT 40.78 10.52

KEYBOARD
NO FLIGHT FLIGHT

THUMB NO FLIGHT 0.19 16.01

FLIGHT 1.88 43.26
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The diagnostic plots for 012 and 023 are shown in Table 4. For e the
plot consists of covariances based on tile same level of Subject and Method,
but different levels of Task. The diagnostic plot revealed a spurious
covariance component of 76.2 for Voice No Flight vs. Voice Flight. A follow-
up plot (Figure 10) indicated that subjects (3, 5 and 6) input times
contributed to this large covariance.

Similarly, the diagnostic plot for 023, revealed large spurious
covariances at treatment combinations Voice No Flight vs. Thumb No Flight
(23.1) and Keyboard Flight vs. Thumb Flight (43.2).

It is worth noting that this diagnostic plot contains covariances based
on the same subject and Task levels but different Methods.

Follow-up plots (Figures 11, 12) for both covariances revealed that
subjects (3, 5, 6 and 12) input time were contributing to one or both large
covariance components.

Identifying what seemed to be a dichotomous population of subjects, a
review of subject records were undertaken to attempt to explain the reason
subjects 3, 5, 6 and 12 seemed to respond differently from the rest of the
subjects. A review of the records indicated that, in general, these pilots
were older (over 42 as compared to under 38), had a higher military rank, and
had spent as much time or more flying fixed wing or rotary wing aircraft, with
recent flying experience concentrated on fixed wing. Based on subjective
input from experienced pilots, differences between the aircraft in regard to
instrumentation and flying procedures could certainly account for the
difference in input times between fixed wing and rotary wing pilots.

A recalculation of the diagnostics with subjects 3, 5, 6 and 12 removed
revealed covariances that were more stable. In addition, in grouping the
subjects into Fixed Wing and Rotary Wing categories and reanalyzing the data,
the assumption of compound symmetry was accepted. Hauchly's criteria, which
is used to check this assumption, was found not to be significant at the .01
level.

This information was made available to the Aviation and Air Defense
Division of the HEL so that this additional source of variability could be
controlled for future experiments.

Y. CONCLUSIONS

The variance component estimates and associated diagnostic procedures
have been shown to be computationally and intuitively simple, All
calculations can be obtained using sLandard statistical packages such as
SPSSX, SAS, or BMDP.

The diagnostic procedures have been demonstrated to be effective in
checking underlying assumption (compound symmetry) of the repeated measures
model, and useful in identifying probable causes for the violation of these
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assumptLons. This provides the researcher the option of removing spurious
observations, performing transformations, or controlling additional sources of
variability so that the data can conform to the standard assumptions such as
compound symmetry or to modifying the model. By circumventing the problems
associated with the traditional univariate repeated measures analysis, these
diagnostic procedures provide easier interpretation of the results and
increased validity of the conclusions derived from the data, The result is a
valuable statistical approach that can be applied in many areas including
developmental testing and human factors evaluation of weapon systems and
equipment.
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MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS

IN A GENERAL MIXED LINEAR MODEL

J. W. Green R. R. Hocking
Department of Mathematical Sciences Department of Statistics
University of Delaware Texas A&M University
Newark, Delaware 19711 College Station, Texas 777843

ABSTRACT

A new class of unbiased estimators is given for unbalanced mixed

models which have simple, closed-form expressions. These estimators

allow easy computation of variances which, when compared to minimum var-

iance bounds, show the estimators to be highly efficient.

Based on the estimator, a diagnostic methodology is developed for

assessing the effect of the data on the estimates. The source of nega-

tive estimates of variance components is often revealed, as well as

other sorts of instability and problems with the model or data.

An overview of the methodology and its growing literature is given,

illustrated by applications to several industrial problems. The method-

ology applies to all random and mixed models, regardless of the degree

of imbalance or pattern of crossed and nested factors. The diagnostics

flag only those features of the data which affect parameter estimates.

1. INTRODUCTION

The problem of estimating variance components in random and mixed

models has become a classical research area in statistics. Review

papers, such as those by Searle (1971), Harville (1977), Sahai (1979),
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Sahai and Khuri (1984) and Khuri and Sahai (1984), attest to the

importance of the problem and emphasize the fact that there are many

aspects of the problem which remain unsolved.

It is well known that in the case of balanced data, The ANOVA

estimators, or, equivalently, the restricted maximum likelihood estima- 4

tors (REML), have certain optimality properties. Graybill and Hultquist

(1961) showed that these estimators are uniformly best quadratic est~ima-

tors. Under the added assumption of normality, Graybill and Wortham

(1956) showed these estimators are UtVU. A discussion of these results

is given by Hocking (1985). Even in this ideal situation, the esti-

mates are often unacceptable in the sense of violating the implicit

assumption of nonnegativity. Several authors have proposed alternatives

which guarantee nonnegative estimates, including Thompson and Moore

(1963), Hartly and Rao (1967), Rao and Chaubey (1978) and Hartung

(1981). Searle (1971ab) discusses various alternatives in some detail.

Examples show spurious data can lead to negative estimates and Leone, et

al (1968) have shown that negative eE.timates have non-trivial probabil-

ity of occuring. The fact that spurious data can lead to negative

estimates suggests that even positive estimates should be questioned

and stresses the need for good diagnostic methods.

In the case of unbalanced data, there is a sharp discontinuity in

theory. Except for special cases, minimal sets of sufficient statistics

are not known, and, even in those special cases, they are not complete.

Many estimators have been proposed and they fall generally into two

categories. In one category are estimators based on quadratic forms,

usoially obtained from the mean squares of an AOV table. MINQUE and
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related methods are included~in this category. There is no basis to

support the superiority of any of these approaches. Iterative methods

fall into a second category and include maximum likelihood and REML.

Other than large sample properties, little is known of the properties

of these estimators. In addition, the iterative computations often

encounter convergence difficulties.

The situation regarding the estimation of fixed effects parameters

(means) is similar. With balanced data, the estimates are not affected

by the presense of a non-scalar covariance matrix and they are UMVU

estimators. With unbalanced data, maximum likelihood leads to weighted

least squares estimators which depend on the unknown variance compo-

nents. The properties of fixed effects estimators computed using

estimated variance components are unknown.

The present paper discusses two contributions to the study of mixed

models. First is the development of a new class of unbiased estimators

for the case of unbalanced data which have simple, closed-form expres-

sions. These expressions allow easy computation of variances which,

when compared to minimum variance bounds, show the estimators to be

highly efficient.

The second contribution discussed is the development of diagnostic

methodology, based on the estimator, for assessing the effect of the

data on the estimates. The source of negative estimates of variance

components is often revealed by this methodology, as well as other

sorts of instability and problems with the model or the design.
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An overview of the methodology and its growing literature will be

given. Applications of the ideas developed will be discussed in the

context of several industrial problems for illustrative purposes.

It is to be stressed that the methodology applies to random and mixed

models, whether factorial or partially nested and whether balanced or

unbalanced. Indeed, completely nested designs have been succesfully

analyzed by this methodology by Hocking and M. S. Von Tress, but will

not be discussed here. Also not discussed here is the distribution

theory developed by Green and J. Grynovicki.

The problem of estimating variance components is shown to be equi-

valent to the problem of estimating the covariances between appropriate

related observations. A covariance is naturally estimated by the cor-

responding sample covariance. In fact, almost every covarariance, eS~t
of the relevant sort can be estimated in an unbiased and efficient

manner by a simple average of sample covariances, all having the same

expectation and all simply related to 9 , or else, by simple linear
t

functions of such averages. In balanced cases, these sample covariances

have the same distribution. In any case, they provide diagnostic

power for examining the quality of the estimate of 9 . The diagnostics
t

are directly in terms of the effect influential factors have on

parameter estimates of interest. Thus, only features of the data

impacting on variance component estimates are highlighted. For small

problems, these diagnostics are conveniently displayed in tables, as

shown below. For larger problems, the diagnostics can be displayed

in simple plots, as indicated below and described by Green (1987).

For very large problems, reduction formulae, given by Green (1988)

are available to reduce the demands of these displays to managable
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levels. These are also discussed below. Since there are, in fact, many

ways to generate meaningful diagnostics, these same formulae allow one

to change from one representation to another, and even to increase the

number of diagnostic elements.

2. THREE- AND FOUR-FACTOR MODELS

To motivate the procedure and introduce soma general notation, con-

sider a model with Factors 1, 2 and 3 ( or l, 2, 3 and 4) with Factor I

having a levels. Let r * a - 1, a - a a , r - r r , etc. Let
i 1 i 12 1 2 12 1 2

r a a 1. Suppose there are n # 0 (or in the four-factor case,
0 0 ijk

n # 0 ) observations in the indicated cell. The empty cell problem
ijkt

will be reported on at a later date, although a brief discussion is

given by Hocking (1987). Five model will be described to introduce the

AVE-estimator and the diagnostic procedure. Two parameterizations are

given. one is standard. The other is equivalent, but suggests both the

diagnostic philosophy and the AVE-estimator, as well as an alternative

statistical model which is more general than the usual model and has

intuitive appeal.

2.1 Five Designs

To introduce the two warameterizations, consider the following three-

and four-factor designs.

Design I. Factors 1, 2 and 3 are crossed, 2 and 3 are fixed and

1 is random.

Design 2. Factors 1 and 3 are fixed and crossed, Factor 2 is random and

nested in 1.

Design 3 is the same as Design 2, except Factor 1 is random.
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Design 4 is the same as Design 2, except all factors are random.

Design 5. Factors 1, 3 and 4 are crossed, 2 is nesced in 1, 1 and 2 are

random and 3 and 4 are fixed.

2.2 Statistical Models for tne Five Designs

In the case of design i, a standard model is

(2.1) y(ijks) = M(jk)4 A(i) + AB(lj) + AC(ik) + ABC(ijk) + E(ijks),

where M(jk) is the population mean of responses at levels jk of factors

23 and the others are independent 0-mean normal random variables with

variances 0 30 , , 0 and 0 , respectively, and y(ijks) is the
1 12 13 123 0

s-th response at levels i, J, k of factors 1, 2, 3, respectively. It is

useful to compute 9 the covariance of distinct observations at the

same level of factors indexed in t and at different levels of all other

factors. Also, 0 will denote the total variance in the response. Thus,

* = 0 +9 in the three-factor case. The covariance structure in
0 123

design 1 is given by-

(2.2) Cov( y(ijks), y(i*j*k*s*) i

0 if i#.I*

e a0 if i-i*, J#j*, k~k*
1 1

a - 0 +0 if ijui*J*, k#k*
12 1 1.2

o - 0 *0 if ikui*k*, joj*
13 1 13

9 * 0 +, +0 +0 if ijk-i*j*k*, s.s*
123 1 12 13 123

e - 0 +e if ijksai*j*k*s*.
0 123

It should be observed that the parameterization given, in partic-

ular, the independence assumed of the "random effects", does not re-

strict the model. Rather, it indicates which of several equivalent
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parameterizations ic used. The covariance structures for the other

designs follow.

Design 2.

(2.3) y(ijks) a M(ik) + AB(ij) + ABC(ijk) + ABC(ijk),

where M(Ik) is the population mean of levels ik of Factors 1 and 3, re-

spectively, and the other terms are 0-mean normals with variances 0 ,
12

S and r , respectively. The covariance structure is given in (2.4).
123 0

(2.4) G * 0
12 12

e = 0 +0
123 12 123e =0+e

0 123

Design 3.

(2.5) y(ijks) - A(i) + AB(ij) + M(k) + AC(ik) + ABC(ijk) + E(ijks),

where M(k) is the population mean of Factor 3, level k and the other

terms are 0-mean normals with variances 0 , 0 , 0 , 0 and 0 , re-
1 12 13 123 0

spectively. The covariance structure is given in (2.6).

(2.6) e
1. 1

12 2 12
e =0 +0

13 1 13
e =0 +0 +0 +0

123 1 12 13 123

e -+e
0 123

Design 4.

(2.7) y(ijks) - M + A(I) + ASliJ) + C(k) +AC(ik) + ABC(ijk) + E(Ijks),

where M is the mean and the other terms are 0-mean normals with vari-

ances 0 , 0 , 0 , 0 , 0 0 . The covariance structure is in (2.8).
1 12 3 13 123 0

(2.8) 9 = 0
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= 0.+0
12 1 12

3 3
--0 0 + 0

13 1 3 13
e 0O+0 +0 +0 + 0

123 1 12 3 13 123
S=0•+e

0 123

Design 5.

(2.9) y(ijkts) - M(kt) + A(i) + AB(ij) + AC(ik) + ABC(ijk) +

AD(it) + ABD(ijt) + ACD(ikt) + ABCD(ijkt) + E(ijkts),

where M(kt) is the population mean of responses at levels k and t of

factors 3 and 4, respectively, and the other terms are independent, 0-

mean normals with variances 0 # , 0 0 ,# 0 ,0 , 0 , 0
1 12 13 123 14 124 134 1234

and 0 , respectively. The covariances are given by (2.6), excluding 0,S~0
3nd by

(2.10) e = .+0 +0 +0
134 1 13 14 134

e 0 + 0 + 0 +0 +0 +0 +÷ + 0
1234 1 12 13 123 14 124 134 1234

e -0 +e
0 1234

with 9 and 0 analogous to e and 0 . It is evident that e.ti-
14 124 13 123

mation of the 0 is equivalent to estimation of the 6 . There are two
t t

advantages to the ( parameterization. First, these covariances are
t

rather naturally estimated by corresponding sample covariances. This

estimation idea is the basis of AVE-estimator introduced (for unbalanced

designs) in Hocking, Bremer and Green (1987), hereafter called (HBG). It
is equivalent, in the balanced case, to the usual ANOVA estimator (HBG),

Green (1985, 1988) and offers an efficient Hocking (1987), (HBG)

alternative in the unbalanced case. A second advantage is the pos-
sibility of a more general formulation of the model in terms of the

mean and covariance structure of the response vector, y. For example,

in design 1, the model can be specified by writing
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E[ y(ijks) ] = M(jk) and COV ( y ), as given by (2.2).

The only restriction on the covariance structure is that the covariance

matrix be positive definite. This is true if all the 0 are positive,
t

but also under more general conditions which permit individual

"variance" components to be negative. Explicit requirements for pos-

Itive definitness are given in Hocking (1985). Since physically, a

negative covarlance is possible ( See Green(1988), for an industrial

setting in which a negative covariance is quite sensible), this more

general formulation has some appeal. It also provides an explanation

for the negative variance component estimates which frequently occur.

The validity of the AVE-estimator or the diagnostic procedure does

hinge on acceptance of this alternative model.

2.3 Estimation of Variance Components Arising from the Five Designs

It is natural to estimate the covariances 9 by corresponding
t

sample covariances. This is the basis of the diagnostic procedure. In

the balanced case, the estimates found are the usual estimates obtained

from an AOV table ( Henders'on's type H3 or SAS type 2 ).

Some simple notation is introduced to facilitate the procedure.

The general form is given in Green (1987, 1988), (HBG) appropriate for

any design. For the present, forms needed for three or four factors are

given. These contain all the basic forms required in general. They

are not tied to any particular design.

To estimate the covariance, 8 , between observations at thp same

level of Factor 1 but different levels of Factors 2 and 3, one of the
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following three forms is used.

'2.11) C(1/23) = (a r ) ZC(i/jkj*k*).23 23 li

(2.12) C(1/203) - (a r a )3 C(l/jkj*k*).
232 3

331

(2.13) C(1/3) = (a r ) EC(l/kk*).
In (2.11), the sum is over all a r pairs of distinct levels joj* of

22
Factor 2 and all a r pairs of distinct levels kkk* of Factor 3. In3 3
(2.12), the sum is over the a r pairs of distinct levels of Factor 22 2
and all a x a pairs of levels of Factor 3, whether or not distinct.

3 3
In (2.13) the sum is over the a r pairs of distinct levels of Factor 3.

33
In (2.11) and (2.12),

-1
(2.14)C(l/jkj*k*) a r E (7(ijk.)-y(.jk.) )( 7(ij*k*.)-7(.J*k*.) ),1 t

where V(ijk.) is a cell mean and 7(.Jk.) is an (unweighted) mean of cell

means. (2.14) is a sample covariance of cell means at the same level of

Factor 1 and at indicated levels of Factors 2 and 3. (2.13) is the aver-

age of forms of the sort (2.15), which is a sample covariance of the

average responses of Factor 1 at indicated levels of Factor 3.

"-2
(2.15) C(l/kk*) - a 2 C(l/jkj*k*)2 jJ*

-1

r1 
i

Justification for using unweighted means of the cell means in the un-

balanced case is discussed in (HBG) and is as follows. Begin with the

balanced case, where the forms are clearly reasonable. (HBG) shows

that in the unbalanced case, if one uses these forms for all possible

balanced submodels of minimum cell frequency and averages these

estimators over all such submodels, the resulting average is the AVE-

estimator as described here. Which of the forms to use in a problem
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is determined by the nesting and fixed factors in the design and

is explored below. *5

To estimate the covariance, 9 , between observations at the same
12

level of Factors 1 and 2 but different levels of Factor 3, (2.14) or one

of the following two forms is used (in a three-factor model).

-1
(2.16) C(12/3) = (a r ) • C(12/kk*),

33
-l

(2.17) C(1,2/3) = (a r ) . C(i,2/kk*),
13 3

where the first sum is over all a r pairs of distinct levels k#k* of
33

Factor 3 and the second sum is also over these and over all a distinct

levels of Factor 1. Here,
-1

(2.18) C(12/kk*) - r (y(ijk.)-y(..k.) )(y(ijk*.)-y(..k*.) ) ),
12 ij

(2.19) C(i,2/kk*) = r- y(iJk.)-y(i.k.) )(y(ijk*.)-y(i.k*.) ) A

2

In all forms, by permutation of the indicies, one obtains analogous

forms appropriate for estimating the other covariances. Now consider

the five designs stated above.

Design 1.

6" -AVE - C(1/23)
1

(2.20) 0- -AVE = C(201/3)
12

e- -AVE = C(3,1/2)
13

Design 2.

(2.21) 9- -AVE = C(1,2/3)

12

Design 3.
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9e -AVE = C(1/3) - a C(1,2/3)
S1 2

(2.22) -1
Q@..-AVE = C(1/3) + r a C(1,2/3).
12 2 2

Design 4.

9- -AVE and 9' -AVE are as in Design 3.
1 12

(2.23) 0-- AVE = C(3/1:2)
3

9e -AVE a C(1,3/2) + 8" -AVE.
13 1

Design 5. -1.

(2.24) G" -AVE - C(I/34) - a * C(1,2/34)
1 2

e -AVE = C(1/34) + r a * C(1,2/34)
12 2 2

-1
9- -AVE = C(3,1/4) - a * C(13,2/4)

13 2

19 -AVE = C(3,1/4) + r a * C(13,2/4)
123 2 2

The estimators for the 14-and 124-interactions are obtained from those

for 13 and 123 by interchange of indicies.

In all cases, the highest order term (e or e ) suggests no
123 1234

sample covariance estimator, since, if the model is correct, the order of

observations within a cell is arbitrary. Also, some terms of highest

order in the non-nested factors are not well-represented by sample co-

variances of the obvious type. However, an AVE-type estimator can be

be based on deletion methods. Such are discussed in (HBG).

2.4 Estimation of Fixed Effects

Similar unweighted means are used to estimate the fixed effects.
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It will be noted that the esti.mators of the fixed effects in a balanced

design are linear combinations of the cell means. The idea of averaging

over all possible designs of minimum cell size (provided that size is

not zero) leads to the same linear combination, except that with

unbalanced data, the cell means are based on different numbers of ob-

servations. The result is to replace an expression such as
-l

(2.25) M(ij)- = (a n) y(ijks)ks 3

in the balanced case by

-1 -1
(2.26) M(ij)-AVE = a (n ) • y(ijks).

3 k ijk s

(HBG) contains a discussion of ftxed effects estimation in unbalanced

factorial models. Hocking (1987) continues this discussion, with

reference to partially nested models. Further joint work on this

latter topic is expected to appear soon.

2.5 Display and Use of Diagnostics

Now that the basic forms are evident, attention can turn to their

use. Each term C(p,v/d) is an average of sample covariances, all of which

have the same expectation. In design 1, the general representation

theorem Green (1988) gives the forms (2.20). The AVE-estimator of e-
1

is C(1/23), which is the average of the a r /2 distinct sample covar-
23 23

lances C(l/jkj*k*), for j 0 j*, k 0 k*. Each of these covarianaces is

an unbiased estimate of 9-. They can be displayed in a table, such as
1

Table 1, which shows a 2 and a = 4. In this illustration, one 4-by-
2 3

4 table gives all the diagnostics. The off-diaqonal elements are the

sample covariances. Since this table is not symmetric, all off-diagonal
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elements are printed. The diagonal elements are not true variances,

since j = 1 and j* = 2 there, while k = k*. If two tables were given,

one could compute and report the following variances.-l 2

(2.27) C(l/Jkjk) a r r ( lJ(jk.) - y(.Jk.) ) .
2 j

Under the usual assumptions for this design, all diagonal elements have

the same expectation, as do all off-diagonal elements. The table is

examined for outliers and patterns. Green (1988) gives moments of

these diagnostic elements. In this example, the elements C(l/jkj*k*)

for Jk, J*k* - 12, 13 and 13, 22 stand out as much larger than the

other entries. Also, the diagonal entries for k = 2 and k = 3 are much

larger than the other diagonal entries. This suggests further exami-

nation of the two combinations indicated. In a paper presented at the

Gordon Research Conference, August, 1987, and being prepared by the

present authors for publication, this table was part of an analysis

which detected a process shift in data from an actual chemical produc-

tion process. This point will be elaborated on below. One use of such

tables is the detection of problems in the underlying assumptions made

about the model. One conclusion drawn for the chemical data is that a

violation of this sort occurs. A physical consequence is the need to

redesign the production line to make a uniform product.

A second application of these diagnostic tables is the detection of

spurious data. The second point is illustrated in the context of a

wool fiber example discussed in Green (1987). The design is Design 2,

with a = 2, a = 5, a = 23. The estimate, C(1,2/3), of 9- is the
1 2 3 12

average of the sample covariances C(i,2/kk*p, i = 1,2 and k # k* = 1,..,

23, A tabular display of these diagnostics would require two 23-by-23

tables, an unpleasant prospect. In the above cited article, these
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diagnostics are displayed in simple plots. For each value of k, the

value C(i,2/kk*) is plotted against k*, using as plotting symbol the

value of I. Figure 1 is the result for k = 5 and k = 6. Two features

stand out in this plot. First, the i - 2 values are almost all higher

than the corresponding i - I values. Second, the value for I = 2 and

k* =11 are dramatically higher than than all other points, for both

k = 5 and k r 6. A logical followup step is to plot y(ijk.) vs j(ijk*.)

for I = 2, k = 6, k* = 11 and all J. This is done in Figure 2. The

plotting symbol is A for j 1 1, S for j - 2, etc when i = 2, and 1 for

j 1 i, 2 for j = 2, etc when I - 1. if a sample covariance appearing

in the table is a stable estimate of 9 , one would expect a clear
12

linear trend in the plot of cell means. At I = 2, there is evident a

serious problem due to the effect of j = 1 (the point A). Serious reser-

vations about the sampling methodology are raised iv' the article by this

(and similar) points.

To return to the chemical data, a followup plot of cell means at

jk - 13 vs jk a 22 is shown in Figure 3. Here there is a strong linear

trend to the points, unlike the wool example. A possibly spurious point

is seen, but deletion of this point has little effect on the 9
1

estimate. The plotting symbol used indicates inl which level of factor 1 S
the data point falls. The symbol 0 is for I = 1-10, 1 is for I = 11-20,

etc. The plot suggests the highier levels of I give higher points. A

subsequent plot (Figure 4) of cell means y(ijk.) vs I, for jk = 12 (and

jk = 13, 22, 23 are similar) shows a pronounced shift at around I = 30.

(a = 60 in this problem.) Process engineers verified a change in raw
I

material at this point.
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2.6 Reductions in Size of Didplays

If neither tabular nor graphical display seems feasible, Green

(1988) offers algebraic reduction formulae and partial summing methods,

which, together with the general moment formulae developed there, allow

smaller tables to be constructed which retain most of the diagnostic

power suggested by these examples. He describes a six factor design

which would require the display of 15,680 sample covariances. This

seems an unreasonable demand. The reduction formulae cut the required

display to 840 sample covariances, a reduction of 94 %. Further reduc-

tions are possible through partial summing of the diagnostic forms,

as described in the context of a glass manufacturing example.

Consider now design 5, with diagnostic forms given by (2.24).

Green (1988) considers a glass manufacturing example with a * a - 5,
1 3

a * 2, a * 3. These forms require displaying 630 diagnostic elements.
2 4

After applying the reduction formulae, a display of C(13,2/4) is still

required. Conceptually, the terms C(ik,2/tt*) are displayed in table

form. Perhaps, for each value of i and k, an a -by-a table is con-
4 4

structed, the off-diagonal terms of which are the sample covariances.

The below-diagonal terms need not be displayed, since the table is

symmetric. Diagonal entries are sample variances, which also carry

diagnostic information. In the example, this requires 25 3-by-3 tables,

a rather onerous requirement. The graphical displays discussed above

can be used if the number of terms is moderate. Even these displays

may bte problematic for larger values of a , a and a . A simple remedy
1 3 4

is to work with "partial sums" described below. In the glass example, S

the forms (2.24) can be veplaced by:
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(2.28)

C(1,2/4), with 15 elements

C(1/4), with 3 elements

C(13,2/4), with 30 elements through
-1 -1

a • C(ik,2/tt*) and a • C(ik,2/tt*)
1 i 3 k

(2.28a) (2.28b)
C(14,2/3), with 80 elements through

a Z C(it,2/kk*) and a • C(it,2/kk*)

1 i 4 t

C(3,l/4), with 15 elements

C(4,1/3), with 9 elements.

This gives a total of 152 diagnostic elements, a reduction of 75 %. As

shown by Green (1988), the remaining elements have essentially the

same diagnostic power as a full analysis. Further reduction is possible

in the last two terms. In this example, there are so few diagnostics in

in these two that further reduction makes little sense.

The analysis now is in four parts. (1) Outlier analysis associated

with each table finds those estimates more than 20- away from the mean

for that table. (2) In the case of tables for the partial sums, if,

say, for some i, one of the off-diagonal terms in (2.28a) stands out,

then a table of C(ik,2/tt*) for just that i is constructed, or else a

univariate analysis of the estimates C(ik,2/tt*) is done ( either

using stem-and-leaf plots or a printout of values outside a 2- or 3-U

confidence band). (3) Next, a "pattern analysis" of the tables may

bring out special patterns. There should be no pattern to the tables

if the statistical model assumptions are correct. (4) Next, the

the data set is examined to seek statistical cause for what was seen
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(l)-(3).

Each table shows appropriate, equal-expectation, sample covariances

off the diagonal. Since these tables are symmetric, below diagonal

terms are omitted. The diagonal terms in these tables are variances, and

always have equal expectations under standard assumptions.

To continue with the illustration, Table 2 gives the diagnostics

(2.28a). The entry for i a 5, tt4 = 12 stands out a, large. This can be

judged by inspecting either the table or a stem-and-leaf plot, or with

the aid of a 20r confidence band centered at the average value of

(2.28a). In this last regard, the following variance formula is helpful.

(2.29)
-l 2 2 2

VAR (Form 2.28a) a (a r ) f a (8 -e ) + r (e -e ) + (e-e ) ].
3 2 3 124 14 3 12 1 134

From this, the standard deviation is 311.0 and the average value is seen

to be 329.5 Similar computations apply to the diagonals. A printout

of the forms C(ik,2/tt*) for i - 5, tt* - 12 outside a 3C confidence

band shows k = 3 and k - 4 account for the initial large estimate.

This in turn leads to an examination of the relevant data, where a large

difference between the values for j = 1 and J = 2 is found at these

locations. A complete discussion of this data is given in the cited

article, but this should indicate how the "reduction" techniques work.

In connection with the above analysis, the first two momemts of the

diagnostic forms involved in (2.28) are needed. General closed-form

expressions for moments of the required type are given. These are

functions of the e and apply to balanced and unbalanced cases.
t
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2.7 Repeated Measures Experimrnts

Grynovicki and Green (1988) contains a discussion of this method-

ology to repeated measures experiments. In the example described there,

the diagnostics lead to the discovery of two populations of subjects

not properly taken into account in the study and which raise serious

questions about the validity of conclusions to be drawn. The existence

of these two populations had not been previously suspected. Applications

to other repeated measures experiments, such as medical experiments, are

readily apparent.

2.8 Computations

The computations involved in constructing the tables or plots pre-

sented above are minimal. Standard statistical computer packages will do

all calculations required, though some manipulation may be required to

print the diagnostic tables in a useful format. For example, SAS PROC

CORR, with the COy option will compute sample covariances and even

display them, often in appropriate form. The plots require additional

data manipulation, but again standard packages have the requisite

capability. All computations discussed here were done using SAS,

The reduction and partial summing ideas discussed make this method-

ology applicable to designs of all sizes. Since the methodology also

applies regardless of the degree of imbalance and to a large class

of mixed models, it can be seen to be useful in a wide variety of

problems.
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2.9 Efficiency of the AVE-Estimator

(HBG) and, more definitively, Hocking (1987) contain discussions

the efficiency of the AVE-estimator. This is done by comparing the

small sample variances of these estimators with lower bounds for this

variance, as given by Bhattacharya (1946) in an improvement of the

usual Cramer-Rao lower bounds. Closed-form expressions for these bounds

are not known, but they can be computed numerically for specific

designs. Such computation is reported in the cited articles for a

variety of cell frequency patterns and parameter values. Among the

conclusions reported there are the following.

1. The AVE-estimators of both variance components and fixed effects

are very efficient.

2. The efficiencies are monotonically increasing in all parameters.

3. The efficiencies depend on all parameters but the variances do not.

4. When compared to Yates' method (or the method of weighted square of

means or SAS type 3) or Henderson's method (or the method of fitting

constants or SAS type 2), there is little reason to distinguish

among these estimators on the grounds of efficiency, although

the AVE-estimator is generally superior except for small parameter

values.
,1•

3. OTHER LITERATURE

The first article on the general diagnostic philosophy described

was Hocking (1983) which applied these ideas to balanced randomized

block designs. Alternative models, such as discussed above, which

allow for negative estimates of variance components, were discussed by
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Smith and Murray (1984) for certain two-factor models, but no diagnos-

tics were described there. The first major development of diagnostics

was given by Green (1985), a dissertation written under the direction of

Hocking. Results based in part on this were reported by Hocking (1985)

and Hocking and Pendelton (1985). It deals with balanced, random models

only, but, with minor changes, applies to mixed models. Matrix expres-

siona for various diagnostic forms and moments are given which simplify

computations by hand or computer for balanced designs. Since most

diagnostic forms in the unbalanced case are unweighted linear functions

of the cell means, many results from the balanced case apply with

little or no change to the unbalanced case. Hocking and Bremer were the

first to notice the unbalanced extension. Some results from this

source will appear in a more available format in the near future.

Results from (HBO) are discussed in (HOGb), although in the conference

proceedings, an administrative error omitted one author's name.

4. CONCLUSIONS

A diagnostic procedure has been shown to be both intuitively simple

and effective in judging the quality of variance component estimates.

It applies to both small and large problems. All calculations, displays

and plots can be (and were) done by standard statistical computing

packages. The diagnostics are themselves estimates of the components

in question, and, as such, indicate in a straight forward manner, what

impact various features of the data have on the overall estimates. Only

features of the data affecting the parameter estimates are flagged. The I
methodology applies to both balanced and unbalanced designs with no

missing cells. A sound theoretical basis exists for the procedure. In

111 N



the balanced case, the overall, estimator based on the diagnostics is a

standard one obtained from equating mean squares to expected mean

squares, whereas in the unbalanced case, the estimator is new and com-

pares favorably with standard estimators in terms of efficiency. In

addition, in the unbalanced case, the estimator Is in closed form,

which simplifies both computation and theoretical inquiry. Also of

importance is the fact the method applies in any random or mixed model

to all components of variance other than the highest order in the non-

nested factors, and even to some of these, without modification, as well

to fixed factors. With some modification, these estimates apply to these

highest order terms as well.

The diagnostic methodology brings out many noteworthy features of

the data directly in terms of their effect on parameters of interest.

Even for large data sets, the tabular and computational requirements are

modest. The reduction formulae and univariate confidence interval

approach reduce the need for tabular displays to a reasonable level.

Unbalanced models are handled in the same way as balanced models, and

with little added trouble. The methodology is sufficiently flexable to

allow the user to tailor some computations to suit the needs of a

particular problem, yet sufficiently standardized to be easily learned

or programmed.
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TABLE 1. Diagnostics C(i/jkjkk*) for a

Chemistry Data

j 0l STEM &LEAF

k

1 2 3 4

1 6.8 16.7 14.6 9.7 30 23
20h

2 11.7 31.5 33.2 12.2 20 3
J- 2 k* 10h 5777

3 10.5 31.1 27.1 17.3 10 0122
0 8

4 9.1 16.9 22.6 11.3
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TABLE 2. Diagnostics a • C(ik,2/tth)
3 k

Glass Data
t* [

STEM & LEAF 1 2 3

10 0 1 131.2 -43.5 -28.9
9
8 2 t 2 156.0 - 1.2 i , 1
7I
6 0 3 44.5
5 55
4 0
3 01 t*

2 4 3 2 3
1 37 _

0 1 1582.2 821.6 54618
-0 0348

t 2 517.7 304.9 1 =2

3 392.5

"1 2 3

1 89.2 242.2 17o.7

t 2 761.4 599.0 193

3 593.3

1 2 3

1 241.5 133.6 -82.0

t 2 586.6 396.4 1 u 4

3 594.0

1 2 3

3. 1631-.8 102.0 ST4T.-

t 2 893.2 306.4 1 - 5

3 392.1
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THEORY OF SEMIREGENERATIVE PHENOMENA

N.U. Prabhu
School of Operations Research and Industrial Engineering

and Mathematical Sciences Institute
Cornell University, Ithaca, NY 14853, U.S.A.

Aba~raL: We develop a theory of semiregenerative phenomena. These may be viewed as a
family o linked regenerative phenomena, for which Kingman ([6],[7]) developed a theory
within the framework of quasi-Markov chains. We use a different approach and explore
the correspondence between serriiregenerative sets and the range of a Markov subordinator
with a unit drift (or a Markov renewal process in the discrete time case). We use
techniques based on results from Markov renewal theory.

o '. Semiregenerative phenomena and sets, linked regenerative phenomena,
quasi-Markov chains, standard phenomena, stable states, lifetime, Markov renewal
processes, Markov additive processes.

Introduction .ad Summayz. Let the set T be either [O,w) or {0,1,2,-.,}, E a countable
set and (fl,, P) a probability space.

Definition 1. A semiregenerative phenomenon Z = (Zte, (t,f) e TxE} on a probability
space (0,Y P) is a stochastic process taking values 0 or 1 and such that for (trer) E TxE

(r1), with 0 tot1 ... • tr, J E E we have

P{Ztlel M Zt22 = ... =Ztrr IZoj = 1}

r

= = P{ZtIt _1,1 = 110 1 = 1} (t0 = j).

For each tE E, denote Zt= Zt,e, t E T}. Since

P{Ztl Zte.' = Ztre=lIZ0J=I1 (2)

rI
P{Ztl fIIZoj 1= 1 i=2 P {Ztl-t-I' = I1Zoe 1),

Z is a (possibly delayed) regenerative phenomenon in the sense of Kingman [7] in the

continuous time case T = [O,o), and a recurrent event (phenomenon) In the sense of Feller
[5] in the discrete time case T = {0,1,2,...}. The family Z' = {Z1 , I E} is a family oflinked regenerative phenomena, for which a theory was developed by Kingman [6] in the
case of finite E; later he reformulated the results in terms of quasi-Markov chains
(Kingman [7]). We explain this concept below.
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ExampleJ . Let J = {Jt, t E T} be a time-homogeneous Markov chain on the state space
E and denote

Zt= - IJfi for (t,e) E TxE. (3)
tkThe random variables Zte satisfy the relationship (1), which Is merely the Markov

property. More generally, let C be a fixed subset of E and

Zti = l1jtffi} for (t,l) E TxC. (4)

These random variables also satisfy (1) and thus Z = {Zt, (t,l) e TxC} is a
semlregenerative phenomenon. In particular, suppose that C is a finite subset of E and
define

Kt = Jt if Jt E C, and = 0 if JtC. (5)

Then {Kt, t E T} Is a quasi-Markov chain on the state space C U {0). o

While the quasi-Markov chain does provide agood example of a semiregenerative
phenomenon (especially in the case of finite E), it does not reveal the full features of these
phenomena-in particular, It does not establish their connection with Markov additive
processes. Thus, let

S= {(t,l) E TxE: Zte = 1). (6)

We shall call C the semiregenerative set associated with Z. The main theme of this paper
is the correspondence between the set C and the range of a Markov renewal process (in the
discrete time case) and of a Markov subordinator with a unit drift (in the continuous time
case). Kingman ([7], p. 123) has remarked that associated with a quasi-Markov chainthere is a process of type F studied by Neveu [9]. The Markov subordinator we construct
for our purpose is indeed a process of type F, but we concentrate on properties of the
ran e ofthis process. For a detailed description of Markov additive processes see Cinlar

To complete Definition 1 we specify the Initial distribution (aj, j e E}, where

P{Zoj = 1} = aj (7)

with a > 09 Ea -i 1. As in the case of regenerative phenomena, it can be proved that the
relation (1) determines all finite dimensional distributions of Z and that Z Is stron ly
regenerative (that is, (1) holds for stopping times). We shall write P and E for tte
probability and the expectation conditional on the event {Z0j = 1}.

In the discrete time case we call Z a semirecurrent phenomenon and denote
Ujk(n) = P{ Znk = 11 ZOJ= 1} (8) •

where Ujk(0) =bk' In the continuous time case let
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Pjk(t) = P('m I iI Zj = 1} (9)

where Pjk(0 ) - bjk. The phenomenon is standard if

Pjk(t) -4 a t -4 0+. (10)

In this case it is known that the limit
i- P•(t)lira - (j EE) (11)

t-+0+

is known to exist (possibly infinite); if this limit is finite, then J is said to be stable.

We consider semirecurrent phenomena and provide some examples. The main result
is that the semirecurrent set C corresponds to the range of a Markov renewal process
(MRP) and conversely, a semlrecurrent set can only arise in this manner. For details of
the results from Markov renewal theory used in this paper see Cinlar ([4], Chapter 10). We
construct a Markov subordinator with a unit drift whose range turns out to be a
semiregenerative set. In the case where E is finite we prove that every semiregenerative
set corresponds to the range of a Markov subordinator. Our approach yields results
analogous to Kingman's([], Chapter 5) for quasi-Markov chains. While our approach
(based on Definition 1) is thus more rewarding in these respects, our techniques are
simpler, beingbased on properties of Markov renewal processes, Bondesson [1I has
investigated the distribution of occupation times of quasi-Markov processes, We shall not
investigate this problem for semiregenerative phenomena.

In the literature there are extensive investigations of semiregenerative processes,
These are processes imbedded in which there is an MRP (or equivalently, a sernirecurrent
phenomenon). We take the view that semiregenerative phenomena are important bythemselves and therefore worthy of study. In particular, the theory developed in this paper
provides a proper perspective to the work of Kulkarni and Prabhu [8] ard Prabhu [10].
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1. Introduction 

Knowledge-based consultation systems (often called expert systems) have become common in the last 
decade. Outside the field of statistics, several commercial systems have been built. Within statistics 
progress has been limited to methodological feasibility studies, beginning with REX (Gale and Pregibon, 
1982; Pregibon and Gale, 1984; Gale, 1986b). Since then Muse (Dambroise and Massotte, 1986), 
Express (Carlsen and Heuch, 1986), and unnamed systems by Berzuini and others (1986) and Darius 
(1986) have been described. 

I mention these first level consultation systems to distinguish Student from them. Student is more than a 
consultation system, since it is primarily a tool to help a statistician build such consultation systems. 
But since Student also serves as the vehicle for the constructed knowledge-based consultation systems, it 
includes the capabilities of the first level consultation systems. 

Student is designed to allow a professional statistician to build a knowledge-based consultation system 
in a data analysis technique by selecting and working examples and by answering questions. The 
statistician does not need to know the internal representation of the strategy demonstrated, and does not 
need to know how to write a knowledge based program. He does need to be fluent in the underlying 
statistical system, a more natural expectation of a statistician. 

REX is a working demonstration of the type of consultation that Student will provide. It allows a 
novice to use advanced regression techniques safely by systematically checking the assumptions of the 
techniques. It provides guidance to what tests need to be done and when, interpretation of the results of 
tests and plots, and instruction in statistical concepts. It has appeared that REX, while designed for use 
by novices, is interesting to expert statisticians, because it makes explicit much knowledge that has not 
been formalized. Most experts have also expressed interest in using such a consultation system because 
it automates many tasks that they know they want to do, but don't always do. 

Like REX, Student is based on an underlying statistical analysis system, and constitutes an interface to 
that system. Student uses Quantitative Programming Environment, QPE, (Chambers 1986) as the 
underlying system. Briefly, QPE has been designed as a successor to S (Becker and Chambers, 1984). 
The external syntax and appearance have been largely maintained. But QPE was designed to be an 
environment, that is, to contain programming, browsing, debugging, and editing capabilities. The design 
of Student assumes that the statistician using Student to create a consultation system knows how to use 
QPE. 

A methodological prototype study of Student (Gale 1986c) was built using Lisp and a Symbolics 
machine. The current version of Student is intended as a product definition study. It is programmed in 
the language provided by QPE, since this would be the most likely delivery language for a product. The 
goals of the QPE version are to study issues such as speed, usefulness to statisticians, and generality of 
the conceptual framework used by Student. This version is currently a partially developed system that 
has only begun to be used by statisticians. It has not yet begun to answer the product issues posed, but 
shows the knowledge acquisition methods more clearly than the prototype, and has begun to be used to 
acquire a few different data analysis strategies. 

By using QPE, hardware and software requirements are minimized. QPE will run in most Unix™ 
environments. Wherever QPE runs, Student will run. Student is not a product, but if it were, it would 
require a machine with Unix, and QPE software. 

This articale appeared in the Bulletin of the International 
Statistical Institute, Vol. 52, pp 1-18. Permission of the 
author and the editor of that journal to reproduce it here 
is appreciated. 
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What Student adds to the capabilities of REX is the capability to acquire its knowledge base by 
interview and demonstration. The demonstration approach was proposed by Gale and Pregibon (1984), 
and tested in the Lisp prototype (Gale 1986c). 

The knowledge base used to conduct a particular method of data analysis has been called a strategy, 
and the terra will be used here. Section 4 defines strategy. Briefly, a data analysis strategy includes 
knowledge about the kinds of problems that can occur in using the method, how to test for them, what 
to do if they occur, and how to communicate the problems and solutions to a novice user. 

The importance of acquiring a strategy by interview and demonstration is considerable. In the current 
state of building knowledge-based consultation systems, two distinct roles, usually played by two 
different people, are standard. One is the role of subject matter expert, and the other is the expert in the 
inference engine used, or knowledge engineer. In building REX, I played the knowledge engineer, 
while Daryl Pregibon played the statistical expert. This procedure requires the knowledge engineer to 
leam a lot about the subject matter, or the subject matter expert to leant a lot about the inference engine 
and programming, or both. 

Student's primary goal is to allow a statistician, who does not know how the inference engine is built, to 
build a knowledge based consultation system without the involvement of a knowledge engineer. This 
should support greater efficiency in building consultation systems in data analysis. 

There is a substantial secondary benefit as well. A statistical consultation system will be used in many 
other ground domains, such as physics, psychology, or business analysis. Current AI techniques are not 
adequate to handle knowledge in multiple domains, so we built REX with the explicit assumption that 
the user was willing to leam statistics concepts and vocabulary. This assumption will be reasonable for 
many analysts, but it will be unreasonable for many managers or low frequency users of statistics. 

Student provides the means to specialize the knowledge and vocabulary used to guide a consultation in 
data analysis. Because it can learn by interviewing a statistician using locally relevant examples, it can 
be provided with strategies shaped to local environments. This will increase the market size for a 
Student-like product as compared to a REX-iike product. 

Another significant benefit of removing dependence on a knowledge engineer is the capability to 
specialize a system to a local environment. When Student is first acquired by a group such as a quality 
engineering group, a specialist statistician can select examples from the group's files and work them in 
the Student environment After this specialization training, the engineering experts would use Student 
for consultation, returning to the statistician with problems beyond its training. When such a problem 
seemed frequent, the statistician would work it as an addition to the strategy. If it seemed infrequent, 
then it would be worked by hand. 

There have been three main challenges in building Student. First, the system had to support the 
acquisition of the first example. In a rule based system, the first rales to be acquired are typically 
different from later rules, because a rule based system uses a core of rules to encode control information. 
A subject matter expert would not be able to provide control information. 

Second, Student had to acquire knowledge from a new example that was consistent with its previous 
examples. Consistency means that all the examples that the statistician considered as properly worked, 
remain so when the additions to the strategy are made. 

Third, the system had to support deliberately inconsistent changes to strategies over a long period of 
time. Current technology, such as used for REX, results in a "compiled" strategy, which is difficult to 
change. 

The current version of Student has made clear that the first two of these challenges have been met, and 
it suggests that the third can be met. These challenges have been met by the development of an 
artificial intelligence technique called knowledge-based knowledge acquisition (Gale, 1986e). 
Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be 
acquired, and developing a conceptual model of the restricted domain. 

Student is restricted to acquiring data analysis strategies. It is not a general purpose knowledge 
acquisition program for a general purpose inference engine. With this restriction, 1 have been able to 
provide a conceptual model for strategies of data analysis. For instance, we know we have to deal with 
data sets, and we have provided representations to deal with them.  The conceptual model specifies that 
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the analysis consists of looking for violated assumptions, and if found, of finding a cure. It specifies 
that we look for violated assumptions by making tests and by showing the user plots. I derived this 
conceptual model by inference from REX, and by considering extension of the methods to other data 
analysis techniques. Having this conceptual model provides enough structure to guide the user through 
the first analysis of a given kind, and to acquire additional consistent examples. It is still a research 
question how far this view based on work with REX will generalize, and how well inconsistent changes 
can be treated. 

Student is written in modules that fall into three groups: control, data structure management, and 
learning. The data structure management modules can be distinguished as managing primitive or 
composite structures. Student then acquires knowledge by filling in data structures, which become a 
significant part of the system. The control and data structure management modules are nearly 
independent of statistics knowledge. The learning modules are specific to data analysis. This paper will 
focus on the learning modules. 

The ideas for Student were proposed by Gale and Pregibon (1984), and tested in a Lisp prototype by 
Gale (1986c). The current QPE version is a partially developed system intended to explore issues 
relevant to making a product. It is on the leading edge of the line of research applying artificial 
intelligence techniques in statistics for the benefit of statistically naive users (Gale, 1986a; Haux, 1987). 
Our statistics department has begun to use this version of Student to better define the requirements for a 
useful product 

2. The Appearance of Student to the Statistician 

The appearance of Student to the statistician is partially conveyed by the following transcriptions of 
sessions with Student. The sessions show how a statistician begins to instruct Student. This phase 
demonstrates most clearly the knowledge built into Student, as opposed to the knowledge that it 
acquires. 

2.1  Introducing a New Data Analysis Method 

In the first session, work is begun on a strategy for a data analysis technique new to Student. This is 
the first stage of building a new consultation system. The example supposes that spectrum analysis 
(Bloomfield 1976) is to be defined for the system. The statistician's entries are shown by a V and 
boldface text The computer's screen output appears in italics. 

>student( ) 

Do you want to 
1. get a consultation from me 
2. instruct me in a strategy 
>l 

There is no currently selected analysis. Do you want 
1. univariate description 
2. simple regression 
3. New Analysis 
>3 

Please type a word for the name of the new type of analysis ( analysis}? 
>spectrum 

At least one variable is mandatory for spectrum analysis. 
What is the name of the first required variable? 
>lime.series 

Each input variable will be copied to a standard QPE variable. 
What standard name would you like to use for the time series variable? 
>x 
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time series is now the required variable for spectrum analysis. 
Please enter another name for another required variable, 
or '.' (dot) if there are no more. 
> . 

There are no optional variables now. Please 
enter a name for a variable, or '.' (dot) if there are none. 
> . 

Notes on the session to this point: 

The session begins from within QPE by calling student just as any other QPE function is called. Since 
Student is built within QPE, it is easy to use Student for routine analyses, switching to the full power of 
QPE if the analysis becomes non-routine. 

The first point that Student must establish is whether the user is a statistician who wants to instruct 
Student, or a consultation client. This is essentially a branch to two entirely different programs which 
share the same data structures. The data structures are acquired from statisticians and used for 
consulting. 

Student then asks which analysis will be worked on. Any existing analysis may be modified by a 
statistician. Notice that the list of options provided is a dynamic one that depends on what kinds of 
analyses Student knows about. Also, the option to add a new kind of analysis is only shown if the 
mode asked for was student 

The reason we know that we must have at least one mandatory variable is that we are doing data 
analysis. There may be other mandatory variables, and there may be optional variables. This is a clear 
and simple example of how the restriction to data analysis provides information which enables 
knowledge acquisition. By organizing the information about data analysis as much as possible, we try 
to build a formal cognitive model of data analysis. 

The session continued: 

Analysis Revision Menu 
1. select or define analysis (spectrum now) 
2. create a new strategy (copy or construct) 
3. define a new example 
>2 

There is no existing strategy to copy. 
Please type your last name. 
>gale 

Please type a word to use for the strategy name 
(or just a ' ' (dot) to accept "gale" as a default). 

Analysis Revision Menu 
1. select or define analysis (spectrum now) 
2. create a new strategy (copy or construct) 
3. define a new example 
4. select a strategy 
5. delete a strategy 
6. stabilize a strategy 
7. refine the gale strategy 
>7 
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Strategy Refinement Menu 
1. snow strategy & statuses 
2. select or define an example 
>l 

NA.inJnputs        OK 
final.cakulation OK 

Notes on the continuation. 

Once an analysis is selected, the top level menu becomes the analysis revision menu. An analysis is 
needed to select the dynamic entries to the menu. The menu shows that with a minimally defined 
analysis, we can define a new strategy or a new example. 

The session continued by defining a new strategy. The system records the name of the author of the 
strategy, and gets the date it is begun from the operating system. 

Communication requires many names, and they have to be convenient for the people using Student. 
Thus, Student needs to ask a lot of names. Wherever possible, the system suggests a default, but the 
final choice is up to the statistician. 

After creating an empty strategy, the analysis menu has expanded. Before there was a strategy, there 
were none to select or delete, so there was no sense offering these options. A strategy is "stabilized" to 
make it available for consultation. So long as a strategy is considered stable, it can be used for 
consultation, and it cannot be modified. This is just a reminder to the statistician, since it is simple to 
stabilize and destabilize, or to copy a stable strategy and modify the copy. But it is important that the 
statistician carefully consider which strategies Student will be allowed to use for consultation. 

This session is ended as Student shows the two minimal features automatically created for any new 
strategy. QPE provides "NA" as the result when asked to take the logarithm of a negative number, or to 
divide by zero. Student infers from NA's in transformed variables that inappropriate mathematical 
manipulations have been made. The knowledge about the limits of the functions is thus distributed 
among the functions themselves. If it were not there, it could be provided as background knowledge, 
but there is no reason to duplicate the knowledge. This does mean that strategies need to specify what 
should happen if an original input contain NA's. The feature initially provided will detect NA in any 
input, but awaits learning what to do until some example triggers it. The other feature initially provided 
is an empty shell to place a final calculation and report into. 

Before the strategy extension cycle can be begun, an example must be provided. 

2.2 Introducing an Example 

In this session, Student is shown the existence of a new example. No demonstrations can be made 
without examples, so this step is necessary to continue constructing a consultation system. The user has 
selected simple regression analysis (Mosteller and Tukey 1977) for this session, at a point just after 
defining simple regression and one minimal strategy named "basicsr." 

Analysis Revision Menu 
1. select or define analysis (simple regression now) 
2. create a new strategy (copy or construct) 
3. define a new example 
4. select a strategy 
5. delete a strategy 
6. stabilize a strategy 
7. refine the basicsr strategy 
>3 

Please type a word to use for a short name for this example. 
> brain.body 

Please type a word to use for the response variable data set. 
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Please type a word to use for the explanatory variable data set. 
> brainjc 

Do you have a weight variable for this example? 
> no 

Please type a brief description of the brain.body example. 
> The response variable is the average brain weight in grams, 
the explanatory variable Is the average body weight in kilograms, 
for 62 terrestrial mammalian species. Data from Weisberg, pl2S. 

Noies on this session: 

The simple regression data analysis method was denned to have two required inputs and one optional 
input The required inputs are called "response" and "explanatory", and the internal QPE names are "y" 
and "x". The optional input is called "weight" and its internal name is "w." This session shows how 
the information acquired by Student is put to use and becomes difficult to distinguish from the 
knowledge it starts with. 

If the short name had been chosen as "brain," the system would have located "brain.y" as a data set 
named by concatenating the short name and the internal name of the response variable. It would have 
assumed that the data set was so named precisely to be used as the initial input for the response 
variable. It would likewise have found "brain.x" as a data set for the explanatory variable. As it is, the 
system has checked that the data sets of the given names exist It then constructs code to assign these 
initial values to the data sets "y" and "x." It does not execute this code now, but stores it as pan of the 
definition of the example. 

The system did not find a data set named "brain.body.w", so it asks if there is a weight variable for this 
specific example. When it learns that there is no weight variable, it uses stored code describing how to 
generate defautt values for the weight variable, The code used was acquired by demonstration during 
the initial definition of the simple.regression analysis frame. 

The description of the example is treated as unprocessed text It is available to those modifying a 
strategy to see what examples the strategy was developed with. Asking for it is a reminder to the 
statistician that the information will be needed by others later. It is probably easier to give this 
information now than in the future. The reply given here shows that there is information that could be 
broken down and some of it made available to the machine. The meaning of each variable, their units, 
the sampling units, and the source of the data might each need to be asked individually. 

13  Strategy Extension 

This session shows the usual cycle for strategy extension. It begins with a minimal strategy for simple 
regression. I have shown this session without the full menus, only the menu line selected by the user as 
the user's input. 

Analysis Revision Menu 
> 7. refine the basicsr strategy 

Strategy Refinement Menu 
> 2. show examples and evaluations 

brain - unanalyzed 

Strategy Refinement Menu 
> 3. select an example 
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The only example available is tlie brain example. 
> 4. analyze the example 

beginning to consider NA.in.inputs feature with no argument 
beginning to consider final.report feature with no argument 

Strategy Refinement Menu 
> 5, REVISE strategy by inserting a new feature 

Which feature is the last one correctly analyzed? 
1. none of the below are correct 
2. NA.in.inputsfnone) 
3. final.report(none) 
>2 

Please type a word to use for a name for the new feature. 
> skewness 

Please tell me why skewness is important for simple regression. 
> The skew points are unduly influential. 

Please type a word to use for a name for this lest (the ... test), 
or just a'.' (dot) to accept skewness as a default. 
> . 

Please type a word to use for a QPE name for the test statistic, 
or just a '.' (dot) to accept skewness as a default. 
> . 

Type 'return^)' to make your last expression define skewness. 
Student: qtls<-qtl<y) #quartiles of y 
Student: qtls 
(4., 17.25, 169.) 
5<u^n(.(qtls[3]-qtls[2])/(qtls[2]-qtls[l]) 
11.4528 
Student: return() 

The value of skewness on this example is 11.4528. 
What preliminary LOWER limit do you suggest? 
> 1.5 

What preliminary UPPER limit do you suggest? 
> 3 

The interpretation of the first test result is severe. 
Is this your intention? 
>yes 

This test has just one input variable.  This can be treated 
as an argument if you want, but doing so will make the result 
unavailable to further computation. 
Do you want this to be a feature with an argument? 
> yes 

Please type a word to use for a short name for this transform (the ... transform). 
>log 
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I am selling up a temporary environment.  Please show me how to make a i 
transform by providing code to redefine ALL NECESSARY input variables, 
ENDING with a redefinition ofy. 
Type 'retwnO' to make your last expression define y. 
Student: Iog(y) 
(3.79549, 2.74084. ... 

Student: returnO 
You have shown me: expression(y <- log (y ) ) 
is this a satisfactory definition of the log transform? 
> yes 

The tog transform will reduce the problem severity from severe to mild. 
Is the log transform acceptable to you? 
>yes 

Committing to the log transform. 

Strategy Refinement Menu 
> 4. analyze the example 

beginning to consider NA.in.inputs feature with no argument 
beginning to consider skewness feature with argument y 

making iog transform 
beginning to consider final.repori feature with no argument 

Notes on the session: 

All strategies for a given analysis method share the same set of examples, each defined by specifying the 
input variables. Each strategy has its own records about how well the strategy has analyzed the 
example. Each example has status unanalyzed, acceptable, or unacceptable. To start with, an example 
is unanalyzed.  After a strategy revision, all examples arc marked unanalyzed. 

After selecting and analyzing the brain example, it is found to be unacceptable, because there is no basis 
for declaring it acceptable. One action possible for an unacceptable example is to declare it is 
acceptable. Then it is so marked, and the pattern of transformations and their reasons (features of 
arguments) is stored. Any other analysis that makes the same sequence of transforms for the same 
reasons will be automatically marked acceptable. An acceptable example can be declared unacceptable, 
which causes the pattern to be stored as a known bad pattern. 

The other options for an unacceptable example all revise the strategy. The session shows one way to 
revise the strategy, by inserting a new feature. Other ways include deleting a feature, and revising a 
feature. To insert a feature, we must know how far the analysis is considered correct. Then the new 
feature will be inserted so that it will be tested following the last correct feature. 

The acquisition of a test shows the system collecting code to define the test. The statistician is in a 
slightly modified QPE environment, free to examine data known to Student, call on any predefined QPE 
functions, and to plot as may be useful. The modifications are that the user may not refer to data not 
known to Student, and may not make an assignment to a global variable known to Student. When the 
user types 'retumO', a legal QPE expression with a special interpretation here, control returns to 
Student. The program then cleans up the series of expressions into a minimal set required to define the 
desired variable. In the example, the line on which the statistician examined the values of the quartiles 
will be deleted. 

Student will infer lower and upper limits from the statistician's actions over many examples. But when 
there is only one example, the induction method fails. Therefore a set of preliminary limits is requested. 
Their importance declines as more examples become available. The preliminary limits can also be set 
by an automated Monte Carlo method, but it is too slow for interactive use. 
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The system examines the code produced, and finds that only one variable was used to define skewness. 
In such a case, generalization is frequently useful. It simplifies the process of reconstructing any given 
value to have such generalized functions not be used in further calculations. This appears to be 
acceptable in common cases where generalization is useful. If it is unduly restrictive, a more complex 
internal method can be programmed. 

The system then asks for a demonstration of what to do if skewness is found to be a problem. A 
transform specifies each input's new value. The previous values of the inputs and intermediate results 
based on them are available for the new specification. 

Student always creates a temporary environment when it considers a transform. The transform is made 
in the temporary environment, and the test for the feature is applied. If the result is soil unacceptable, 
the transform is not committed, but the original environment is restored. This procedure is followed 
even on the time that Student is shown how to make the transform. 

This completes the demonstration of the skewness feature. Student now works the example by making 
the log transform of the response variable. The next step will be to show it that the skewness of the 
explanatory variable needs to be examined. This will be much shorter to show, since the same feature 
can be reused with a different parameter, 

3. The Knowledge Acquisition Method 

3.1  A Critique of Knowledge Acquisition In REX 

Developing a strategy for use in REX was a labor-intensive process. Two phases can be distinguished. 
In the first phase the statistician responsible for the strategy, Daryl Pregibon, chose a half dozen 
regression examples that clearly showed some frequent problems. He then analyzed them using 
interactive statistical software with an automatic trace. After analyzing the group of examples, he 
studied the traces and abstracted a description of what he was doing. We coded this as a strategy for 
REX and tried it on a few more examples. He revised the strategy completely at this point, and the 
second phase began. 

In the second and longer phase, one of us would select one additional regression example and run REX 
interactively on the chosen example. Since we selected the example knowing what would stretch REX, 
REX usually reported a severe problem that it didn't know how to fix. Then we would modify the 
strategy so that the example would be handled. This process was iterated through about three dozen 
more examples. 

Based on this experience, and on a feeling that it was typical of other techniques, we do not believe it is 
possible to build a data analysis strategy without working through many examples. One must make 
many decisions to build a strategy, and there is no literature simplifying the task. Therefore the only 
available defense of a strategy is to demonstrate performance, which requires working many examples 
more than those used to build the system. On the other hand, our experience also leads us to believe 
that it is easy to generalize from data analysis examples. The basis for generalization is usually a 
statistical test that statisticians can provide. Generalization then consists of determining the range of 
values of the test for which the demonstrated technique holds. 

However, the way in which we worked examples for REX was far from ideal. The first difficulty with 
our method was assuring ourselves that a strategy modified to work one additional example still worked 
all previous examples. We could by brute force run REX in batch mode on all previous examples and 
see if the performance was the same. Usually we reasoned that most of the previous examples could not 
be affected, and checked the few that might be affected by hand. Naturally, the more examples worked, 
the more severe this problem became. The need to check consistency in batch mode for a system 
designed to be interactive reduced the flexibility of the strategy developed. 

Second, the method used was the epitome of the currently standard two-person development of expert 
systems. I built the inference engine used while Daryl was responsible for the strategy developed. 
Whenever Daryl wanted to do something he hadn't done before, we had to huddle, as Daryl was 
learning a language he would only use to build one program. In a department with twenty professional 
statisticians and one person intimately familiar with the inference engine, it was not clear how many 
additional data analysis techniques could be handled by this two person approach. 
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Third, it would be difficult to modify the strategy in REX. Modifiability is important because a growing 
literature on strategy (Gale, 1986a; Haux, 1986) can be expected to suggest desirable changes. It is also 
important because users will probably want to modify strategies to their particular needs. However, the 
first two problems would make this difficult: to specialize the program a local statistician would have to 
leam a language used by no other program in the world, and the modifications made might inadvertently 
destroy some capabilities of the strategy. 

However, the development of REX contributed greatly to following work. It provided us with the 
beginnings of a conceptual model for data analysis: a data analysis consists of a desired calculation, 
assumptions required for the calculation to be meaningful, tests for the violation of the assumptions, and 
transformations to ameliorate the violations. The classes of frames used in REX provided us with an 
initial list of classes of primitives that has remained useful and has been expanded into a fuller 
conceptual mode! of data analysis. 

3.2  Knowledge Acquisition In Student 

The necessity of working examples to build a data analysis strategy suggested the possibility of 
acquiring strategies directly through that process. A system should assist the teacher in establishing 
consistency across all examples worked, and should not force a statistician to leam an obscure language. 
It appeared that examples might provide a language suitable for communication between statisticians and 
computers. 

The first issue encountered in designing Student was how to leam from the first example. In a system 
without knowledge, there is simply no basis for use of information provided in working an example. By 
providing Student with the conceptual framework induced from REX, we have built a system that can 
deal meaningfully with an example even when it has seen no previous examples. The rather limited use 
of code collection in Student shows how much of the knowledge it is acquiring is not knowledge that 
could be inferred from just watching the analysis of an example. Even for the parts heavily dependent 
on code, if the system did not have some notion corresponding to "plot", "test", and "transform", it 
would not be able to deal with code having these different functions. In short, understanding the first 
information provided is possible because the system is limited to data analysis, and because it has been 
possible to build a conceptual framework for data analysis. 

The conceptual framework used in the current version of Student has me fifteen classes of primitives 
shown in the following table. Each instance of a primitive is represented by a frame. In the table, 
indentation shows that names of instances of the primitive indented occur as values in some slot of the 
superordinate primitive.  That is, the relation shown by indentation is "uses information from." 

analysis 
input variable 
example 
feature 

test 
plot 

strategy 

transform 
report 

linear 
conditional 
repeated 

concept 
class 
consultation 

Each primitive has a set of slots, which are also chosen to reflect the structure of data analysis.  As an 
example, a simple primitive is the input variable frame, which has only a few slots: 

input variable 
external name of input 
required or optional 
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default if optional 
data type 
internal variable name 

The content of the instances of these primitives is the information that a consultation system must have. 
For instance, when asking a consulting client for a specific input, it is necessary to know the common 
name of the input Likewise, the system must know whether to insist upon having a given input 
variable before beginning the analysis (required or optional), and what default to use if the user does not 
have an optional input. The system must also know what data type the input requires to determine if 
submitted data is possible. Since we do not want to overwrite input data with later calculations, we 
need a standard variable name to copy the input to. 

Knowledge-based knowledge acquisition in this context means specifying how the contents of each slot 
will be acquired. For the input variable primitive, each slot could be acquired by asking the leaching 
statistician. Most of them could also be acquired more actively. The internal name could be created 
from the external name and perhaps a unique number. Acceptable data types could be inferred from the 
data types of the inputs to the set of examples provided. Optional variables and their defaults could be 
inferred as those with repeated inputs. It seemed better in each of these cases to ask the teaching 
statistician and then use the information to check inputs to teaching examples. 

Thus, specific techniques designed for the specific knowledge in each slot were chosen. Student uses 
four   specific   techniques:   interviewing,   limits   induction,   Monte  Carlo   learning,  and  background 
knowledge. 

Most cases are handled by interviewing. Knowing what is needed, and having a statistician at hand, it is 
easy to just ask. Even so, exactly how to ask for the information varies between menus, fill in the 
blank, multiple simultaneous choice, and free response. And of course the prompts vary with the item. 

Monte Carlo learning can establish initial notions of the distributions for test results. The distributions 
in turn can be used to set initial cut points, or limits for distinguishing severe, mild and insignificant 
cases of assumption violations. 

Limits induction is inference of limits on test ranges from test results and action (transform) or non- 
action by the statistician. Let v; be the value of a test on the ith data set, and a, be T or F as the 
statistician acted or didn't act. Set the lower cut point as max(Vjlo;=F) and the upper cut point as 
min(v,-1 Oi-T). Then for test values above the upper cut point, the statistician has always acted, and for 
values below the lower cut point, the statistician has never acted. This simple scheme is slightly 
modified to include the Monte Carlo results. 

Knowledge-based knowledge acquisition has several advantages. First, the information in each slot is 
necessary for a consultation program. Systematizing the knowledge to acquire from a statistician speeds 
construction because the system won't forget what is needed. 
necessary tor a consultation program. Systematizing tne Knov 
construction because the system won't forget what is needed. 

Another advantage of knowledge-based knowledge acquisition can be shown in the acquisition of an 
input variable. It is almost always appropriate to run a number of tests on each input variable by itself. 
Without knowledge-based knowledge acquisition each time a new variable is given, a battery of tests 
must be specified by the teaching statistician. However, it is easy to keep track of what tests have been 
used for all input variables by data type, and to suggest these to the statistician. Since the tests are 
based only on knowing the data type of the input, they will often be appropriate in many different data 
analysis procedures. The domain knowledge we are using here is that the tests are similar in many 
different analysis types, and that they are reasonably organized by data type. 

As another example, a statistician may notice after some time of programming that an optional input 
variable is possible. One would then back up and increase the generality of numerical procedures to 
accommodate the extra variable. With knowledge-based knowledge acquisition, the statistician is 
encouraged to think of optional inputs at the beginning of the construction process, thus avoiding the 
costs of reprogramming. This encouragement may not always be effective, but it can only work in the 
direction of reducing the problem. In short, by providing a framework for data analysis, the statistician is 
encouraged to think in previously successful terms. 

Acquiring first examples does not address all the problems in building a knowledge acquisition system. 
However, the domain restriction has been useful for extending a given body of knowledge as well as 
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beginning it. Extension of knowledge for a given data analytic technique involves demonstrating more 
assumptions, how to detect their violation, and how to fix them. The same techniques used for initial 
acquisition suffice here. However, it is also necessary to check consistency for previously worked 
examples. 

Knowledge-based knowledge acquisition has also been useful for dealing with consistency as the number 
of examples and the strategy have grown. Consistency means that after incorporating information on a 
new assumption, the recommended analyses of all previously worked examples are not changed. This is 
a requirement analogous to logical monotonicity. Some changes can be proved consistent by using 
domain knowledge. The domain knowledge consists of a theorem, and the proof consists of verifying 
the hypotheses of the theorem, so this is not automatic theorem proving. The proof may use data that 
could be specified and collected when the previous examples were demonstrated. This will be more 
efficient than rerunning examples. Other cases, such as showing that a new test is not passed for an old 
example, require new calculations. Domain knowledge is able to specify data to save that will make 
such checking faster than completely reworking an example. 

Of course, the check may find that a change is inconsistent. That is, that the recommended analysis for 
at least one previous example has changed. Then the statistician will need to revise the existing body of 
knowledge. This might just consist of blessing the revised analysis for the inconsistent examples. Or it 
may require revising the strategy, perhaps revising the assumption just added. This can be assisted by 
domain knowledge encoded as editing procedures. 

33  A Critique of Knowledge Acquisition in Student 

Interviewing is useful. A knowledge-based interview is easy to write, since one knows exactly what to 
acquire. Interview procedures attached to slots are easy to keep track of, so that it is easy to see if all 
slots can be acquired. 

A research issue is how much can and should be acquired by interviewing, and how much must or 
should be provided as initial knowledge. The Lisp prototype tested this by attempting to acquire 
everything by interviewing. It appeared that everything could be acquired this way. However, 
experience with this extreme approach led to deciding to provide some items as initial knowledge. The 
collected reasons used to justify initial provision of an item were 

(1) distractingly frequent requests for information, 
(2) richly structured information, 
(3) stable and non-controversial information. 

For example, data types (vectors, matrices, time series, ...) are being built in for reasons 2 and 3. An 
initial core of technical definitions will be provided for reasons 1 and 3. 

The original idea of programming through demonstration of techniques on examples needs further 
development. In the Lisp version of Student, demonstration of examples seemed slow and clumsy. As 
Student has developed, the settings in which demonstrations occur have been restricted to key points 
about a particular example, so that the demonstrations become short sequences in a well understood 
setting. This has helped, and it is useful when describing a plot or test to have an example to do the 
operations on immediately. However, the process is still not flexible enough to allow exploration and 
final selection of one of several approaches tried. The statistician needs to approach the system with a 
clear idea of what will be demonstrated. There is, however, key information in the examples and I 
believe the current system is a useful start towards a more flexible system. 

We found in building REX that the most powerful explanations in statistics were not verbal, but 
graphical. Thus we programmed before and after plots for each transformation. Student is able to make 
these automatically from plots acquired while being shown how to detect an assumption violation. This 
is a convenience. 

Monte Carlo learning seems like a technique with much wider applicability for statistical systems to 
leam about statistical tests. Its use will be limited to overnight applications. 

Limits induction is apparently a useful idea. It can describe what a statistician has actually done, 
possibly pointing out a poorly worked example, or a poor test. It can be used to alert statisticians to 
taking an action that is not consistent with previous actions, but can be changed easily if they insist 
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4. Statistical Strategy Representation In Student 

4.1 Goab for Representation of Statistical Strategy 

This section discusses what is meant by statistical strategy, how strategy is being used, and why it is 
being studied. The purpose is to derive the goals that must be met by representations of statistical 
strategy. 

The term statistical strategy has been used to denote integrating previously known tests and 
transformations into coherent total approaches to data analysis. Although the term was suggested by in 
1981 by Chambers, there is as yet no generally accepted definition of this term. Daryl Pregibon and I 
(1982) suggested that strategy would answer questions such as 

"What do I look for?" 
"When do I look for it?" 
"How do I look for it?" 
"Why do I look for it?" 
"What do I have to do to look for it?" 

Wayne Oldford and Steve Peters (1986) wrote "The term 'statistical strategy' will be used here to label 
the reasoning used by the experienced statistician in the course of the analysis of some aspect of a 
substantive statistical problem." David Hand (1986) stated "statistical strategy has been defined as a 
formal description of the choices, actions, and decisions to be made while using statistical methods in 
the course of a study," These definitions give the general flavor of the subject matter beginning to be 
addressed and for which representations must be sought 

A more informative view of what strategy must mean can be derived by examining the situations in 
which we want to use it To this end, I would like to review two views of the data analysis process that 
have been proposed by Hand (1986) and Oldford and Peters (1986), Hand discussed four stages of 
analysis, while Oldford and Petere distinguished four levels of strategy. That is. Hand was concerned 
with entities which take place at different times, while Oldford and Peters' description is a classification. 

Hand's four stages are (1) formulate aims, (2) translate into formal terms, (3) numerical processing, (4) 
interpretation. These stages were given specifically as stages in a multiple analysis of variance 
(MANOVA), but they appear to me to be general. The first stage is concerned with what dependent and 
independent variables are involved, how they are related, and what questions the researcher wants to 
explore. It is largely phrased in the language of the ground discipline. The second stage results in the 
translation from a problem statement in the ground discipline to a problem statement in statistics terms. 
The third stage consists of estimation, testing, data cleaning, and transformation. This stage functions 
within the statistician's language. The fourth stage consists of translating back to the ground domain. 
As Hand points out, there will be various loops in an analysis, returning to earlier stages to alter 
decisions. 

Oldford and Peters suggest 'operational level' as a scale for thinking about procedures. At the lowest 
level are standard numerical procedures of statistics, such as least squares fitting or robust fitting. 
Selections from this level constitute the minimal components of a statistical package. Just above this 
level are such sub-procedures as collinearity analysis and influential data diagnosis. Each of these 
presupposes the existence of procedures in the layer below it. Above this layer lies a layer of 
techniques, such as regression analysis, spectrum analysis, or analysis of variance. The top-most 
identifiable level has strategies for analysis and for design. 

The levels idea rests on a notion of a procedure using other procedures as building blocks to carry out 
its goals. The notion of stages is that of what is done first The relationship between them is that the 
high level strategies are used first and more frequently. The low level strategies are used later if at all. 
Thus the higher levels of a hierarchy of techniques will correspond to the preliminary stages of a study. 

4.2 Intentions in Studying Statistical Strategy 

One intention in studying statistical strategy is clearly to respond to the programming opportunities 
available. All the programs discussed in the introduction can be said to have as their goal to help 
people choose statistical methods. This will require research by statisticians about how one should 
choose statistical methods. The strategy representation then should be usable by statisticians in 
communicating among themselves. 
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Since the current uses of strategy are for programs, the representation must be interpretable by machine. 

The assumed users of all the programs cited appear to be untutored in statistics. Therefore, it will be 
important to interpret the numerical statistics in English. The strategy representation needs to ease 
preparation of reports on what has been done. 

Implicit in the choice of technique and application of technique uses is the opportunity to assist users in 
many different techniques. The representation must then be capable of expressing how to make the 
required choices in many different data analytic techniques. 

Another possible use of strategy is for statistical education. By clarifying what features the various tests 
and plots are designed to detect, when various features should be sought, and how to respond if they are 
found, it should be possible to educate students more effectively. A representation suitable for education 
may be considerably different from one for consultation, based on Clancey's experience with Guidon 
(Clancey 1984).  Without a setting in which to test this use, the requirements are unclear. 

The goals that emerge for a representation for statistical strategy are that it should serve as a 
communication medium between expert statisticians, students, and machines. It should be sufficiently 
expressive for strategies in the range of data analytic techniques. The machine uses include both 
deciding what to do and reporting why. 

43 The Feature/Imperative Representation of Strategy in Student 

This section describes the strategy representation evolved through REX and Student. Another 
representation is described by Gale and Lubinsky (1986), which compares the two representations. 

The statistical knowledge in Student is represented by a symbolic network. The lowest level of this 
network consists of such things as strings representing commands to the statistical language, strings of 
English text to show the user, numbers representing limits for interpreting tests, and lists of past results. 
These lowest level entities are grouped into entities that represent such things as tests, plots, report 
fragments, and transformations. These are in turn grouped to represent what we call features, and the 
features are combined into strategies. This representation can be readily seen to correspond closely to 
Oldford and Peters' description of strategy by levels, although the contents of the lower levels are 
different 

Features represent statistical concepts such as outliers, mean, granularity, heteroscedasticity, and 
symmetry. When a statistician examines a strategy used by Student, features are the lowest level 
exhibited in the graphical presentation. When the Student program examines a strategy, it interprets the 
same structure as a set of commands, or imperatively. Thus 1 have called this representation scheme 
"feature/imperative." When interpreted imperatively, the strategy directs the program through a series 
of stages, analogous to Hand's description, but much more restricted in scope. 

The feature/imperative representation has evolved through development of REX, and the prototype study 
for Student (Gale 1986c) to the current design. REX made two major contributions to following work. 
The first was a viewpoint for thinking about data analysis as a diagnostic problem. Briefly, one should 
list model assumptions (analogous to possible diseases), test the data set at hand for violations of the 
assumptions (analogous to symptoms), and if found select a transform of the data (analogous to 
treatment). The success of this approach depends on the representation of statistical knowledge. This 
was the second major contribution of REX. REX had a set of statistical primitives including tests, plots, 
assumptions, and transforms, which could be built with artificial intelligence techniques such as frames 
with slots, or objects with attached methods. 

Features, plots, tests, and strategies are entities with enough usefulness as concepts that it is also useful 
to establish analogous entities in writing a program. The programing device used to represent these 
entities is called a frame. A frame is in the first place a place to store information. Named slots specify 
which information can be stored in the frame. Different types of frames are distinguished by what 
information will be stored in them. The bare bones of the strategy representation can then be stated by 
describing the types of frames, or primitives, used and what information is kept for each of them. 

The Student prototype built on the insight gained from REX, and increased the number of primitives to 
ten. The current design for Student uses most of the primitives from the prototype plus a few more, as 
listed in the section 3. Descriptions of the primitives follow. 
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The concept primitive keeps information about technical statistical words. The purpose is simply to be 
prepared to define them for users. The more this definition can be tutorial, the better. This is the only 
primitive not used directly in the strategy. 

The data type primitive keeps information about vectors, matrices, upper right triangular matrices, etc. 
There is a small collection of data types with a hierarchical structure. It provides information such as 
how to verify that, a data set is of the required type, and how to generate a random example for a Monte 
Carlo study (Gale and Lubinsky, 1986). 

The analysis primitive reflects that Student will handle several analysis techniques, such as regression 
analysis, description of univariate data, spectrum analysis, and analysis of variance. The analysts frame 
will show how many input variables ate required, and how many are optional. It will also show what 
strategies are available. The input variable primitives specify such things as name, data type, and 
default value. 

A strategy is validated by the examples that it works, and it is partially derived automatically from 
examples. Therefore each strategy will deal with a group of examples, each represented by an example 
primitive. The remainder of the primitives are used to express the strategy as a structure built of 
features. 

The feature, test, plot, and transform primitives originated in REX and have been used in each system 
since. They describe how to test for a feature, hoe to show it to a user, and if its presence violates an 
assumption, what transforms can be considered to alleviate the problem. The report fragment primitive 
has been added to help generate a report  It seems likely to be elaborated. 

The preceding discussion described how strategy in a broad sense is represented in Student. A strategy 
in the narrower sense of the strategy primitive is described formally as a combination of features. The 
combination used in Student is a programming language restricted by requiring a simple graphical 
display of an expression in the language. This is based on a decision to encourage statisticians to think 
about strategy by providing a vivid representation of a strategy. The restriction does not limit the 
strategies that can be described, but it may make a description clumsy. In interactive use only the 
graphical language is seen by the statistician. However, the formal language underlying the graphical 
expression gives it a clear definition of its meaning. It may also be useful as an off line recording and 
communication medium. 

The language used is formally described as follows: 
strategy = item (strategy / empty) 

item = feature 
/ 'if(' feature ')' (strategy ( 'else' strategy / empty ) 

/ 'else' strategy ) 
/ 'for(' feature ')' strategy 

feature = test-feature 
/ strategy-feature 

Informally, this is read that a strategy consists of a list of items. Each item is either a feature, a 
conditional strategy, or an iterated strategy. A feature is either a test feature or a strategy feature. A 
conditional strategy is a test on a feature, with one or two alternative strategies to consider depending on 
the test. A conditional strategy is a repeatedly tested feature with a strategy to consider whenever the 
test is passed. 

The symbols of this language are given meaning by considering each feature, item, and strategy to be a 
predicate having value present or absent. A test-feature (a feature primitive) contains a test that can be 
applied to any example and a means of interpreting the test result to state that the feature is present or 
absent This is the "ground truth" on which the language builds. A strategy is present if and only if at 
least one item is present A strategy-feature has a strategy, and is present if and only if the strategy is 
present. A feature is tested according to its type, test-feature or strategy-feature. A conditional strategy 
is present if and only if the selected strategy is present An iterated strategy is present if and only if the 
feature is present at least once and (he strategy is present at least once. The feature of an iterated 
strategy must have exactly one argument that takes integer values starting with one.   The iteration is 
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performed over successive values of the argument and terminates when the feature is not present. 

This language can be diagramed using a node for each item. The details are given by Gale and 
Lubinsky (1986). Examples of the use of this notation for a strategy for unordered univariate 
description and the strategy used by REX are given there. 

My belief is that this forms an easily learned language for statisticians, that it forms a sufficiently 
expressive language for data analysis strategies, and that it can be easily used by a machine to analyze 
data and report on the findings. All these points require further experience before the language is 
suitable for a product. 

S. Prospective 

Key questions still need to be answered before a reliable and easy to use program for building 
consultation systems will be available as a product It is still not clear how far the conceptual model 
provided in Student will generalize, or how far it can be made to generalize. It is not clear how easy 
Student will be to work with, or how suitable the interface for statisticians is. The most fruitful avenue 
of continued research would appear to be to focus on statistical strategies, using Student to develop and 
compare strategies in commonly used data analysis techniques. We need experience with statisticians 
building strategies using Student and with consultations done using those strategies. This experience 
will show us what the opportunities are for further artificial intelligence applications. 
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ABSTRACT 

Student is an expert statistician's tool for building consultation systems in data analysis. To 
use Student, the statistician selects a technique of data analysis and choses examples for 
which the technique is appropriate. The statistician then demonstrates to Student how the 
chosen data sets should be analyzed. Various learning techniques are used by the Student 
program to build a strategy for the data analysis technique. These include asking questions, 
inference, Monte Carlo learning, and background knowledge. Student tests consistency 
between demonstrated examples and the evolving strategy. The statistician can change 
either the acceptable method for working an example or the strategy if the two are 
inconsistent 

Student is built within the Quantitative Programming Environment, a new generation 
statistical system. Use of Student only requires that the statistician know how to use QPE; 
no other language is needed. Student is being used to build strategies for univariate 
description, simple linear regression, and spectrum analysis. 

The key artificial intelligence technique used to build Student has been called knowledge- 
based knowledge acquisition. This means restricting the domain for which knowledge can 
be acquired (to data analysis), and providing a conceptual framework for the domain. The 
conceptual framework for data analysis is expressed as a set of primitives representing such 
statistical concepts as strategies, features, plots, and examples. A strategy is represented as 
a network of frames each of which is an instance of one primitive. 

RESUME 

Student est un outil expert utilise" par les statisticiens pour construire des systemes de 
consultation pour l'anayse de donne"es. Pour utilise? Student, le statisticien choisit une 
technique d'analyse des donnees et des exemples pour lesquels cette technique est 
apppropriee. Le statisticien de'montre ensuite au Student comment les bases de donnees 
choisis devraient £tre analysees. Des technique d'apprentissage diverses sont utilisees par le 
programme Student pour construire une state'gie pour la technique d'analyse des donne"es. 
Ces me'thodes comprennent poser des question, la deduction, l'apprentissage Monte-Carlo et 
les connaissances de base. Le Student teste le coherence entre les exemples demontres et la 
state'gie en cours. Le statisticien peut changer soil la me'thode appropriee pour resoudre un 
exemple, soit la Strategie si les deux sont en contradiction. 

Le Student fait partie de l'Environnement de Programmation Quantitative (Quantitative 
Programming Environment), un Systeme statistique de nouvelle generation. Pour utiüser 
Student, ie statisticien n'a besoin que de savoir utiliser le QPE; aucun autre langage n'est 
necessaire. Student est utilise" pour developper des strategies de description univariee, de 
regression lineaire simple et d'analyse de spectre. 

La technique-cle" d'intelligence artificielle utilisee pour r^aliser Student a €16 nommee 
acqisition de connnaissances base's sur les connaissances. Ceci veut dire timiter le domaine 
sur lequei des connaissaince peuvent etre acquises (pour I'analyse de donnee), et foumir un 
cadre conceptuel pour ce domaine. Le cadre conceptuel pour l'analyse de donnees 
s'exprime sous la forme d'une base d'operations des concepts statistiques tels que des 
strategies, des functions, des tableaux, et des exemples. Une Strategie est represents par un 
reseau de cadres dont chacun est un exemple d'une operation. 
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ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL 

Qskar ft. Essenwanger 
U. S. Army Missile Command 

Research Directorate 
Research, Development, and Engineering Center 

Redstone Arsenal, AL 35898-S248 

ABSTRACT:   Factor anal ysis is generally considered as being a diagnostic tool in 
statistical analysis. Since the mathematical background for factor analysis and the computation 
of empirical polynomials is the same, factor analysis can be useful as a prediction tool. 

Factor analysis is compared vith ordinary regression analysis as a prediction tool and 
some advantages utilizing factor analysis are discussed. In regression systems the individual 
terms are not neces3arll y Independent while the factors are orthogo&fhl. Predictors which have 
a time occurence later than the time of prediction cannot be included into regression systems but 
can be utilized in factor schemes. Furthermore, extreme values are usually underestimated in 
regression systems. Thus factor analysis may fare better especiall y for predictands whose 
frequency distributions are U-shaped rather than bell-shaped. 

ft will be demonstrated that prediction of ceili ng height and cloud amount are two 
atmospheric parameters which may be predicted better with factor analysis than with a 
regression system. 

1. INTRODUCTION. Many statisticians consider factor anal ysis as a diagnostic tool and 
prefer ordinary regression analysis techniques for predictions. One of the reasons may be the 
simplicity of the regression scheme. In addition, the availability of "canned programs" found 
today even for the small microcomputers (P.C.) contributes to this easy handling. However, 
regression analysis has some deficiencies which apply to factor analysis to a lesser degree. E.g. 
a new set of coefficients must be calculated for every added or omitted predictor. It is also 
known that predictors are not always Independent from each other but the factors In factor 
analysis are othogonal. Thus a smaller number of factors (predictors) can achieve the same 
amount of residual (error) variance as in regression analysis. 

Factor analysis is related to empirical polynomials whilch have been used in predictions. 
Consequent! y factor anal ysi3 is a prediction tool. I n addition, two other facts are presented here 
which may favor the use of factor analysis as a prediction tool. Is is well known that regression 
anal ysis is based largel yon persistence. If val ues of a parameter withi n the prediction i nterval 
are switching from a large positive deviation from the mean to an extreme negative departure 
or vice versa the regression model will fail to account for this variation. Furthermore, only 
those predictors known at the ti me of prediction can be included into regression anal ysis. In 
turn, factors can be derived from any set of predictors including elements whose value will not 
be known at the prediction time. 

It will be ill ustrated i n the subsequent sections that for prediction of ceili ng height, cloud 
cover, or visibility, the factor analysis as a prediction tool may be b e tter suited than 
regression techniques. 

2. MATHEMATICAL BACKGROUND.  The regression model is based on: 

<Y-Y)/S=A1 (X, -£,)+ A2(X2-X2) + ... + An(Xn-Xn) (1) 
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In the factor anal ysis ve can write: 

CY-7)/5 = B1F1+B2f2+... +BmFm (2) 

where m<n. In the notations above V is the predictand, Xj are the predictors, Fj the factors, Aj, 

Bj are coefficients, and s or S denotes the standard deviation. 

Examples for eqn (1) are given below for a prediction model of ceiling height: 

YD=Y-V= 19Zj+ 0.4Z2-0.4Z3-1.7Z4 + 2.6Z5 + 0.1Z6-79Z7      (3) 

The predictors (Zj = Xj-Xj) in this model are Zj * visibility, Z2 = zonal windspeed, Z3 = 

temperature, Z4 = relative humidity, 25 = surface pressure, Zg = ceiling height, and Z7 = sky 

cover with clouds. Three forecasts for particular days follow where the subscript of the Y 
indicates the hour of the day. I n the first case V< j = 999 (synoptic code) at 11" on a particular 

day at Stuttgart (Germany), and Yg = 999 at OS*1 on this day. The predicted value from eqn (1) 

was 984 which is very close. On the second day Yj 1 wa3 again 999 but Yg = 20. The predicted 

value for Y| ] in this case was 125 which reflects the trend correctly but misses the magnitude 

of the change. Another example of a missed prediction is a case where the ceiling height dropped 
rapidly within 3 hours. Yg = 999, Yj | = 100, predicted 736. Again, the trend is consist but 

the magnitude of the change is missed. It vill be illustrated later that the factor model in these 
cases of rapid change would have rendered a better prediction. 

5. CÜMATOLQGICAL BACKGROUND OF PREDICTANDS.   Before the factor model is 
presented ve may inspect the frequency distributions of ceiling height, cloud amount and 
visibility (Fig 1-3). It is obvious that all three predictand3 do not conform with a bell-shaped 
distribution where extremes have a low probability of occurrence (e.g. + 3 sigma = 0.27%). 
The other important fact is found in a survey of changes of the value of the element within a 
short time interval, here 08 AM to 11 AM (Table 1). In the last column of Tables 1A, B, Cthe 
change from one side of the mean value (indicated by the double bar) to the other side is 
summarized. We notice a change in 14, 9 or 18% for ceiling height, cloud amount, and 
visibility, respectively. In these cases incorrect predictions by the regression technique 
comprise a considerable amount of the total data. In addition, these fcasea of rapid changes may be 
of particular interest to the forecaster. 

4. FACTOR MODEL. In this pilot study the first step of the factor model is a factor 
analysis whose structure matrix is displayed in Table 2. (For technical details see 
Essenwanger, 1986, 1987a, b, c) We deduce from Table 2 that factor one is highly related to 
ceiling height and cloud amount at 08 AM (GMT) but also to ceiling height and cloud amount 3 
hours later. Unrotated factors and rotated factors differ very little for the first tsi/o factors 
which are the most important ones (see E3senwanger, 1987a). 

The next 3tep 13 the study of the factors. Table 3 exhi bits the mean factors by ceili ng 
height groups as an example. While factor one has a numerical value of - 8.22 when the ceiling 
height remains at 999 for the 3 hour time interval the value changes to - 2.40 when the ceiling 
rises from <5Q to 999 (code in 100 ft). The following predictions cover the two case3 where 
prediction by the regression model failed. In the first case a lifting of the ceiling height from 20 
to 522 is calculated while the actual value is 999. This is a significant improvement over the 
number of only 125 from the regression model. In the second case where the ceiling drops from 
999 to 100 the factor model renders 490 versus 736 from the regression model. Again, a 
significant improvement 13 obtained. 
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The predictions from the factor model, although considerabl y better than from the 
regression mode), may not satisfy some skeptics. It must be stressed that these forecasts are 
ba3ed on mean factors, and better models may be developed given time and effort. This is only a 
pilot study. The real factors on these individual days would have resulted in the prediction of the 
precise observed value but even the utilization of mean factors was better than the forecast from 
the regression model. 

5. MODEL COMPARISON, While these individual case3 prove that a better prediction with 
the factor than the regression model could have been made in those particular cases it is 
necessary to study a larger data sample. Table 4 provides a decision tree from observations of 
ceiling height and cloud amount at 08 AM to derive the predicted value of ceiling height and cloud 
amount at 11 AM. The numbers of V j and Y4 were based on the mean factors such as in Table 3 

leadi ng to prediction as shown in Table 4. These factors had been derived from a data sample of N 
- 200 for Stuttgart (1946-1952) in January with a structure matrix as displayed in Table 2. 
The squared deviation between predicted values from Table 4and actual values were summed up 
and divided by N and the variance. The results are disclosed in Tables 5A, B, Z, converted to 
percentage. 

The first column provides the results for the assumption that the value of the element is 
the same at 11 AM as at 08 AM (persistence).  The second and thi rd col umn lists the residual 
variance for one and four factors, respectively. Finall y, the percentages in col umn 4are given 
for the regression model, utilizing the observed value of the 7 elements at 08 AM without 
inclusion of the ceiling height, cloud amount or visibility at 11 AM. The latter 3 values would 
not be available at prediction time 08 AM but can be incl uded into the derivation for the factor 
model. 

Inspection of Table 5 reveals that the residual variance for the factor model is 
significantly lover than for the model based on persistence or the regression model. In fact, the 
application of the F-test proves a statistical significance above the 97.5 level (for N = 50 the 
threshold is 1.72, while for N = 200 the 99^ value is 1.39 for the variances ratio, e.g. Hald, 
1952). Table 5A displays the residual variances (in %) for the three predictands from models 
derived for this data set N = 200. Since we learn from Figure 1 that a data gap between 300 and 
999 exists. One may suspect an excessive i nfluence of missed extreme values. Therefore, 
consideration was given to convert all 999 values to 400 in order to reduce the magnitude of the 
variance and deviation from the mean for extreme values. A3 can be seen from the row "CEIL 2" 
in Table 5a the percentage figures have changed very little.  Thus the data gap ha3 little to do 
with the demonstrated improvement over the regression model by. the use of a factor model. 

It may be argued that the results 3hould be favorable because the coefficients and factors 
have been derived for thi3 data sample of N = 200. Thus an independent sample of N = 50 has 
been studied. The results are depicted in Tables 5B and C. Two versions we re investigated. 
Fir3t (Table 5B) the coefficients for the models from the data 3et of N = 50 were derived and the 
same calculations as exhibited in Table 5A were performed. This computation reflects the "ideal 
case". It permits U3 to evaluate the degradation which i3 introduced by utilising coefficients and 
factors derived from a different data sample such as the data of N = 200. Table 5C shows that the 
regression model experienced a larger increase of the residual variance than the factor model 
evidenced by the increase of the ratio REGR/F^ from Tables 5B to 5C. 

The critical observer may notice that the percentage for the residual variances are also 
changed for the persistance model from Table 58 to Table 5C. It may appear as a discrepancy at 
first but it can be explained. The variances in the 200 data sample are not identical with the 
variances in the 50 data sample. Consequently the percentage values change for Table 5C 1n 
accordance with the differences of the variances. It may be assummed that given a large enough 
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sample for Table3 5A and 5B this effect would disappear. This effect does not alter the basic 
conclusion that the factor model has provided better predictions than persistence or the 
regression model. 

It may be of interest that the factor model based on 4 factors (Table 5C) did not render 
much improvement over a single factor model although for ceiling height and cloud amount the 
usage of 4 (mean) factors i ndicates a decrease of the residual variance (Tables 5A and B). 
Whether thi3 is a sign of a general trend or a peculiarity of this special data set remains to be 
seen. Nevertheless, the one factor model in this pilot study led to a smaller residual variance 
than the 7 parameter regression model. 

6. CONCLUSIONS.  !n predictions of atmospheric parameters such as ceiling height, cloud 
amount, and visibility, a model based on factor analy3i3 may be better suited than a regression 
model. This may be due largely to the possibility to include predictands into the derivation of 
the factor model. A factor model has also an advantage that only one 3et of coefficients must be 
derived for the task of developing models for several simultaneous predictand3. The results of 
this pilot study indicate a real potential of factor models in certain atmospheric predictions. 
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TABLE 1: CONTINGENCY TABLE OF CHANGES OF ELEMIENT IN

PREDICTION INTERVAL

(STUTTGART (F.R.6.), JANUARY 1946-1953, N = 250)

A) CEILING IIE16HT (IN FEET)
11 AM

6 A& GMT (5000 -5-10000 10-300.00 NO CEIL CHJANGE

(5000 ft 54X 4 2 4 64X 63
3-10000 ft 5 4 1 1 11 2

10-30000 ft 2 1 2 1 6 3
N I 21 1 is 19 3

63 10 6 21 1003X 143

B) CLOUD AMOUNT (TENTH OF SKY COVER)

11 AM

8 AM GMT 0-§/ 10 6-9/10 10/10 57 CHANGE

0-5/10 15KX 4 0 19 4X
8-9/10 3 11 7 21 3
JD.LWi.. 2- 1 Q 48 .. Q. __Z

20 25 55 1tOOK 9x

0) VISIBILITY (Kin)
I IAM

c3.2 k m 20X a 1 1 30% 10
3.2-8 km 5 12 4 1 23 5

8-20 km 1 7 14 3 25 1
>20 km I1 1 3 17 22 1

28 28 22 22 1tOOX I18%9
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TABLE 2. STRUCTURE MATRIX

STUTTGART, JANUARY 1946- 1953, 008 GMT

UNROTATED ROTATED (ORTHOGONAL)

U .44 .53 -.410 .49 .13 .10 -.93 .16

T .53 .49 -.42 -. 12 .36 .52 -.62 -.20

RH .04 -.66 -.57 -.44 .07 -.32 .00 -.92

CEIL -.09 .21 -.09 -.01 -.90 .04 .15 .06

CL AMIT .91 -.24 .04 .01 .92 -.07 -.110 -.10

In VIS .10 .90 .18 -.23 -.06 .00 -.13 .32

CElL 3 -.07 .19 -.20 .06 -.92 -.03 .04 .01

CL AMIT 3 .91 -.17 .20 -.03 .94 .02 -.018 .01

Ln VIS .14 .009 .02 -.34 -.06 .92 -.19 .14

VAR 3.01 2.70 .06 .61 3.54 2.04 1.36 1.04

VAR S 42 30 10 7 '39 23 15 13

U * ZONAL WIMOSPEED, T w TEMPERATURE,

RH a REL. HUMIDITY, CElL a CEILING HEIGHT,

CL AMIT *TOTAL SKY COVERS

Ln VIS uLOGARITH OF VISIBILITY

THE NUMBER 3 INDICATES THE ELEMENT 3 HOURS LATER.
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TABLE 3. MEAN FACTORS BY GROUPS

CEILING HEIGHT

CEII ah CEIL I b F1  F2  F,3  F4  N

999 999 -10.22 .79 -. 13 -. 16 30
100-300 999 -4.20 -1.34 -1.44 .57 1
s100 999 -2.17 .53 -.50 -.410 10
s50 999 -2.40 .31 -.42 -.44 9

999 100-300 -3.34 .00 .25 -.54 4
100-300 100-300 .39 .65 .21 .81 6
£100 100-300 .95 -.17 -.34 .35 7
£50 100-300 1.42 .51 -.74 .40 6

999 (100 -3.36 .50 .24 -.33 5
100-300 (100 1.24 .71 .61 .30 12
(100 (100 2.10 -.31 .05 .06 125
(s0 (100 2.10 -.55 -.05 .02 115

(CEILING IN 100 ft.)



TABLE 4. GROUP SELECTION USING MEAN FACTORS

A) CEILING HEIGHT (IN 100 FT.)

CElL CL. AMT CHARACT CEIL PREDICTED

alh ah CBS 1h V, V

999 0 REMAIN 999 949.6 907.9
9gg 1-5 CHANGE 4300 525.5 575.7
100-300 All REMAIN <300 202.2 155.4
100-300 7 CHANGE ggg 007.8 609.6
000 10 REMAIN (100 53.1 37.0
(100 19 CHANGE 999 424.2 506.1

B) CLOUD AMOUNT (IN TENTH SKY COVER)

CL. AMT CElL CHARACT CL. AMIT PREDICTED

10 (30 REMAIN 10 9.6 9.83
10 30-100 CHANGE 6-9 9.2 9.2
10 >100 CHANGE 0-5 5.7 5.5
6-9 ISO REMAIN 6-10 0.6 83.7
6-9 A0 CHANGE 0-5 6.4 6.0
4-5 999 CHANGE 6-10 4.6 6.0
0-3 999 REMAIN 0-5 1.9 1.7

Y1  ONE FACTOR. V4 *FOUR FACTORS
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TABLE 5. RESIDUAL VARIANCE (IN 9) FOR THREE PREDICTION
MODELS

A) 200 DATA SAMPLE

PENR F1  F4  REGR RAT IO(REBR/FI)

CEIL 55.6 22.6 16.5 43.03 1.90
CEIL 2 54.7 23.3 16.2 41.5 1.75
V1s 50.4 23.0 20.5 69.0 2.90
CL ANIT 38.9 16.3 11.4 37.9 2.32

5) 50 DATA SAMPLE (IDEAL)

CEIL 120.9 36.1 3.2 62.7X 1.74
VIs 56.6 16.9 13.4 31.4 1.06
CL ANT 109.2 34.0 6.1 67.3 1.98

C) 50 DATA SAMPLE (200 'DATA COEFF.)

CEIL 120.0 39.6 35.0 66.73 2.19
Vi5 42.6 15.7 16.1 66.0 4.20
CL AMTI 70.0 33.5 29.0 69.9 2.09

PERS = PERSISTENCE, F I a USING ONE, F4 * USING FOUR

FACTORS, NEOER REGRESSION MODEL.
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CONSISTENCY OF THE P-VALUE AND A SET OF Q-VALUES
IN A SCORING ACCURACY ANALYSIS

Paul H. Thrasher
U.S. Army Materiel Test and Evaluation/Engineering and Analysis RAM Division

U.S. Army White Sands Missile Range
White Sands Missile Range, New Mexico 88002-5175

ABSTRACT

One particular application, an investigation of bias in a scoring device,

illustrates the use of p-value and q-value analyses. The q-values, the post-

test estimates of Type Il risks, are used to estimate a bias, rhis estimation

is shown to be meaningful by the consistency of different analyses.

INTRODUCTION

Hypothesis testing Is a well established analysis technique. This fairly

rigid procedure can be outlined in distinct steps:"

(1) State a null hypothesis H, and an appropriate alternate hypothe-

sis H, regarding a parameter e.

(2) SpecIfy the acceptable Type I risk a of falsely rejecting H,1 the

acceptable Type II risk 0 of falsely failing to reject H, when 0 has an

unacceptable parameter eu, and the planned sample size np by using the

sampling distribution of an appropriate test statistic.
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(3) Obtain sample data.

(4) Decide and report whether or not to reject H,.

In the traditional hypothesis testing technique, the report of this reject

or not-reject decision conveys no Information concerning the strength of the

evidence for the decision. There are, however, two methods that can be used

simultaneously to describe the evidence for rejection or non-rejection of H,.

One method of indicating the strength of the decision is to calculate and

report the p-value." The p-value is the smallest value of a that would have

allowed the sample data to cause H, to be rejected. A very low p-value

strongly implies rejection of Ho.

A second method of indicating the strength of the decision is to calculate

and report a q-value for eu, The q-value is the output of the algorithm that

was used to find 0 when the algorithm Inputs a and np are replaced by the p-

value and the data sample size, A very high q-value strongly implies

rejection of H, in favor of H, characterized by eue

It is po3sible to combine the p-value and a q-value in a single measure of

evidence for rejection of Ho. One combined measure is the ratio of a q-value

to the p-value.4 A more informative combined measure is the ratio

(q-value/ 0)/(p-value/ a) or (q-value/p-value)/ (s/ a). I

For analyses in which a, 0, and especially eu are not firmly established,

the most flexible and meaningful approach is to consider the post-test Type I

and Type II risks separately. Since there is a q-value for every fu, the

analyst should report the p-value and a set of q-values corresponding to a set

of ou's of possible Interest. When these two methods are used simultaneously,

a decision can be based on a comprehensive view of the evidence.
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APPLICATION

The data for the application discussed in this paper is presented in

Table 1. These data are estimates of Cartesian coordinates for points in a

vertical plane. The abscissa Is horizontal and the ordinate is vertical. Esti-

mates are reported from both a scoring device and a standard. The scoring

device is expected to have different horizontal and vertical characteristics

because of physical effects. The standard is more than an order of magnitude

more accurate than that which is expected of the scoring device. The two

partial scores of the scoring device are not independent. Each is obtained

from two intermediate results and one intermediate result is shared by the two

partial scores. The final result of the scoring device is normally obtained

by averaging the two partial scores. This is not done here because

(1) the drop-outs of the 25 points do not ccn'IJe so averaging would

further decrease the sample size, and

(2) comparison of the results from the two partial scores can tenta-

tively provide a check for consistency.

The primary approach used in this application is to do a p-value and q-

value analysis on the parameters describing scaling and fixed biases. Linear

regression is used to find least-squares estimates of A and B in y - Ax + B

where y is the scoring device data and x is the standard data. Separate

calculations are done on both

(1) horizontal and vertical data and

(2) partial scores.

The parameter A should be unity if there is no scaling bias, and B should be

zero if there is no fixed bias.
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Table 2 contains results of a least-squares fit of a straight line to the

data. The coefficients of correlation are sufficiently low to suggest that

the fit is inadequate to specify A and B without reservations. Further indi-

cations of reservations are obtained by considering the ranges that are over-

lapped by the estimates of A and B plus and minus the corresponding standard

deviations. All four slopes are close to one, but the slopes for vertical

data have high standard deviations which overlap not only one but values quite

different from one. The intercepts for horizontal data are close to zero, and

the standard deviations overlap zero. The Intercepts for vertical data are

above zero and their standard deviations, even though they are large, do not

overlap zero. The standard deviations of the means, obtained by dividing the

square roots of the sample sizes into the standard deviations of data from the

line, are all near or less than 0.4 meter. This Implies that the random error

of the scoring device is near or less than 0.4 meter.

Table 3 contains the results of one-sided, Student's-t hypothesis tests on

B. All null hypotheses assume no fixed bias. The direction of each alternate

hypothesis was obtained from the sign of the data average. For horizontal

data from both partial scores, the p-values are su'Fficient~y high and the q-

values, for possible biases further from zero thavi 0.2 meter, are sufficiently

low to suggest that there is no fixed bias. For vertical data, rejection for S

p-values less than 0.10 and q-values greater than 0.30 suggests that there may

be a fixed bias of 0.6 meter to 1.2 meter. This agrees with the point esti-

mates tentatively suggested in Table 2.

Table 4 contains the results of one-sided, Student's-t hypothesis tests on

A. All null hypotheses assume no scaling bias. For both horizontal and S

lEO
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vertical data, the p-values are sufficiently high and q-values, corresponding

to possible biases in the range of 0,8 1/m to 1.2 1/m, are sufficiently low to

suggest that there is no scaling bias.

An alternate approach used in this application is to investigate the bias

by doing a p-value and q-value analysis on A where A is the difference between

the scoring device and standard estimates of point location. These differ-

ences are obtained by subtraction of data from Table 1.

Table 5 contains the result of one-sided, Student's-t hypothesis tests on

A. A mean of zero would indicate no bias. For horizontal data from both

partial scores, the p-values are sufficiently high and the q-values, corre-

sponding to possible biases further from zero than 0.2 meter, are sufficiently

low to suggest that there is no bias. For vertical data, rejection for p-

values less than 0.10 and q-values greater than 0.30 suggests that there may

be a bias of 0.6 meter to 1.2 meter. This is in agreement with the point

estimates tentatively suggested in Table 2 and with the p-value and q-value

analysis of Table 3.

CONSISTENCY

This example illustrates the consistency of p-value and q-value analy-

ses. There certainly. are issues that need investigation before the general

technique is Judged to be universally applicable and reliable. One issue is

the effect of using critical levels of significance other than 0.10 and 0.30
for the post-test Type I and Type II errors. A more serious issue is the need

for a comprehensive study on the properties of the q-value. This study should
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include both theoretical and simulation investigations. It should consider

such factors as different underlying distributions and sensitivity to extra-

neous data. In the absence of such a study, however, this paper provides an

example of consistency in the p-value and q-value analysis technique.

Table 6 repeats information from Tables 3 and 5 in a format to allow easy

comparison between the two hypothesis tests on fixed bias B and total bias

A. Based on the retention of the null hypothesis that there is no scaling

bias, these two tests should give the same results.

When a decision needs to -be made, the q-values are in close agreement for

the two hypothesis tests. For vertical data, the p-values and q-values differ

only slightly for the two tests for bias,

For horizontal data, the agreement is not as good, In this case, however,

rejection is not warranted. This is indicated by sufficiently high p-values

and the sufficiently low q-values for biases bigger than the estimated

0.4 meter random error of the scoring device. Thus, for horizontal measure-

ments, q-values are not needed to estimate the size of the bias.

The results of the two p-value and q-value analyses are consistant where

consistancy is needed. Thus, this example supports the hypothesis that the

p-value and q-value analysis is meaningful.

CONCWSION

This application illustrates the value of the p-value and q-value analy-

nis. This type of analysis should be done to consider and report the best

post-test estimates of both Type I and Type II risks. Analysts should proviae

managers with this information so managers can make informed decisions.
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TABLE 1.--Data for scoring device calibration

Point Data from Standard Data from Scoring Device
Identification (meters) (meters)

Partial Score One Partial Score Two

Group Point Horizontal Vertical Horizontal Vertical Horizontal Vertical

1 1 1.0 1.0 1.0 1.2 1.8 1.8

2 1 0.8 0.0 1.8 -2.8 1.5 0.7

2 1.1 -1.8 1.4 -0.4 0.7 -1.4
3 0.0 -1.2 - - -0.1 -0,9

4 1.6 -0.4 1.3 -0.7 1.1 -1.4
5 0,3 1.0 -0.2 2.3 -0.3 0.9

6 1.5 0.6 - - 1.4 1.2
7 1.0 0.4 2.3 5.0 1.0 0.5

8 0.7 0.4 0.6 0.9 0.7 0.3

3 1 1.0 2.1 1.2 2.6 1.1 4.3

2 0.5 -0.3 -0.5 4.2 0.1 1.2
3 -0.5 0.4 -0.8 1.6 -0.4 0.5

4 -0.2 0.5 0.0 0.6 -0.2 0.9
5 -0.3 0,7 -0.2 1.4 - -

6 0.2 0.7 0.1 1.0 - -

7 -0.3 0.7 0.2 1.g -0.1 0.7

8 0.2 -0.5 0.1 0.5 0.0 0.7

4 1 1.0 0.9 0.0 2.8 0.8 1.1

2 0.7 -0.4 0.3 2.2 - -

3 -0.4 -0.3 -0.3 -1.6 -0.3 0.7
4 0.0 -0.6 0.1 -0.3 -0.3 -1.7 I
S -0.2 -0.1 -1.4 5.6 -0.2 0.1

6 0.7 -0.5 0.4 -0.5 0.1 4.0
7 0.6 0.6 -2.0 2.6 0.6 2.7

8 1.4 -0.2 1.3 -2.3 1.1 -0.8
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TABLE 2.--Summary of linear regression
(Least squares fit of y - Ax + B for y *scoring device & x - standard data)

Measurement: Horizontal Horizontal vertical Vertical
Partial Score: One Two One Two

Sample Size: 23 22 23 22
Correlation: 0.63 0.86 0.37 0.63

A (1/mn): 1.039 0.927 0.996 1.149
B (mn): -0.201 -0.038 1.022 0.591

2A (1/rn): 0.279 0.123 0.552 0.320
2B (in): 0.212 0.101 0.437 0.265

'y-line (m) 0.795 0.360 2.036 1.231
$mean y-line ():0.166 0.077 0.425 0.263
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TABLE 3.--Summary of Student's-t hypothesis touts on B
(B w Intercept from y - Ax + 8 fixed bias)

Measurement: Horizo~ital Horizontal Vertical Vertical
Partial Score: One Two One Two

Null: H: *Mean aO H ,:Mean aO H,: Mean w0 HI :Mean 0O
Alternate: H I: Mean 40 H I: Mean <0 H ,: Mean > 0 H ,: Mean > 0

Sample Size: 23 22 23 22

Average (m): -0.201 -0.038 1.022 0.591
Std Deviation
of Mean (m): 0.212 0.101 0.437 0.265

P-Value: 0.177 0.365 0.015 0.019

Q-Value for
Bias - 0.2 mi: 0.036 0.015 0.96 0.92
Bias m 0.4 m: 0.005 0.0002 0.92 0.76
Bias a 0.8 m: 0.0001 Close to 0 0.69 0.22
Bias - 1.2 mn: Close to 0 Close to 0 0.34 0.016
Bias - 1.6 in: Close to 0 Close to 0 0.10 0.0006
Bias - 2.0 mn: Close to 0 Close to 0 0.02 <0.00001

Bias signs: -++
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TABLE 4.--Summrary of Student's-t hypothesis tests on A
(A m slope from y aAx + 8 - scalead bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two

Null: H,: Mean -1 H,: Mean. 1 He: Mean. 1 H,: Mean.
Alternate: H 1: Mean > 1 H 1: Mean 4 1 H I: Mean <(1 H,: Mogan > 1

Sample size: 23 22 23 22
Average (1/rn): 1.039 0.927 0.996 1.149
Std Deviation
of Mean (1/rn): 0.279 0.123 0.552 0.320

P-Value: 0.445 0.107 0.497 0.324

Q-Value for
Slope m R, 1/rn: 0.48 0.57 0.47 0.62
Slope a S., 1/rn: 0.42 0.41 0.43 0.56
Slope a TiI1/rn: 0.23 0.16 0.36 0.38
Slope a U, 1/rn: 0.057 0.04 0.30 0,14
Slope - Vi 1/rn: 0.0094 0.008 0.24 0.038

Slope - W, 1/rn: 0.0012 0.001 0.19 0.0076

Slope subscript: 1 2 2 1

R: S: T: U: V: W
.Considered biases for subscript 1: 1.05 1.10 1.25 1.50 1.75 2.00
Considered biases for subscript 2: 0.95 0.90 0.80 0.70 0.60 0.50
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TABLE 5.--Summary of Student's-t hypothesis tests on a
(a.- scoring device data - standard dqta a total bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two

Null: H,: Mean - 0 He*: Mean 0 0 H,: Mean a0 H,: Mean - 0
Alternate: H 1: Mean < 0 H 1: Mean <0 HI: Mean > 0 HI: Mean > 0

Sample Size: 23 22 23 22
Average (M'i): -0.183 -0.077 1.022 0.609
Std Deviation
of Mean (mn): 0.777 0.354 1.989 1.208

P-Value: 0.136 0.159 0.011 0.014

Q-Value for
Bias a 0.2 mn: 0.46 0.06 0.97 0.94
Bias - 0.4 mn: 0.097 <0.00001 0.93 0.79
Bias a 0.8 in: 0.0048 Close to 0 0.70 0.23
Bias W 1.2 in: 40.00001 Close to 0 0.34 0.016
Bias - 1.6 mn: Close to 0 Close to 0 0.089 0.0005
Bias a 2.0 in: Close to 0 Close to 0 0.014 <0.00001

Bias signs: -- + +
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TABLE 6.--Consistency of P-values and Q-values

(Comparison of results from hypothesis tests on B and A)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two

P-Value for 8: 0.177 0.355 0.015 0.019

P-Value for A: 0.136 0.159 0.011 0.014

Q-Value for

Bias m 0.2 m

for 8: 0.036 0.016 0.96 0.92

for A: 0.46 0.06 0.97 0.94

Bias - 0.4 m
for B: 0.005 0.0002 0.92 0.76

for A: 0.097 <0.00001 0.93 0.79

Bias a 0.8 m
for B: 0.0001 Close to 0 0.69 0.22

for A: 0.0048 Close to 0 0.70 0.23

Bias - 1.2 m

for B: Close to 0 Close to 0 0.34 0.016

for A: <0.00001 Close to 0 0.34 0.016

Bias 0 1.6 m

for B: Close to 0 Close to 0 0.10 0.0006

for A: Close to 0 Close to 0 0.089 0.0005

Bias - 2.0 m
for B: Close to 0 Close to 0 0.02 (0.00001

for A: Close to 0 Close to 0 0.014 <0.00001
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PREFACE

The study of mathematical models is clcsely connected to notions of

scientific creativity. As of the present, there le no axiomatic or even well defined

discipline which Is dircctly concerned with creativity. Even though we cannot

display a progression of exercises which have as their direct objective the building

of creativity, we can attempt to accomplish this goal indirectly. A mastery of a

portion of Euclid's treatises on geometry does not directly appear to build up a

potential statesman's ability to practise statecraft. Yet many effective statesmen

have claimed that their studies of Euclid's geometry had achieved this effect,.

More directly, It is clear that the study of physics would be likely to be helpful in

developing the ability to design good automobiles. It is this carryover effect from

one well defined discipline to another less defined one which has traditionally

been the background of science and engineering education.

Valuable though an indirect approach to the gaining of creativity in a par-

ticular area may be, it carries with it certain dangers. We are rather in the

same situation as the little boy who searched for his quarter, lost in a dark alley,

under a bright streetlgil.t on a main street. There is no doubt that the main-

street searching could be of great utility In the ultimate quest of finding the quar-

ter. Many of the relevant techniques in quarter finding are similar, whether one

is looking in the light or in the dark. Hopefully, the study of technique, albeit

unde, taken In a setting substantially different from that of the real problem, will

be at least marginally useful in solving the real problem.
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However, there is a natural temptation never to leave the comfort of ideal-

ized technique under the bright lights, never to venture into the murky depths of

the alley where the real problem lies. How much easier to stay on mainstreet, to

write a treatise on the topology of street lamps, gradually to forget about the lost

quarter altogether.

In its most applied aspect, technique becomes problem solving. For example,

if the little boy really develops a procedure for finding his particular quarter in

the particular dark alley where he lost It, he will have been engaged in problem

solving. Although it is difflcult to say where problem posing ends and problem

solving begins, since in the ideal state there is continuous interaction between the

two, model building is more concerned with the former than with the latter.

Whereas problem solving can generally be approached by more or lees well

defined techniques, there Is seldom such order In the problem posing mode. In

the quarter finding example, problem poslng would involve determining that It

was important that the quarter be found and a description of the relevant factors

concerning this task. Here, the problem posing Is heuristic, difficult to put Into

symbols and trivial. In the real world of science, problem posing Is seldom

trivial, but remains generally heuristic and difficult to put Into symbols. For

example, Newton's Second Principle states that force is equal to the rate of

change of momentum or

F=-d(mv). (0.1)d1
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The solving of (0.1) for a variety of scenarios is something well defined and easily

taught to a high school student. But the thought process by which Newton con-

Jectured (0.1) Is far more complex.

We have no philosopher's stone to unlock for us the thought processes of the

creative giants of science. And we shall not use the device of scientific biography

much in this treatise. However, the case study approach appears to be useful in

the development of creativity. By processes which we do not understand, the

mind i. able to sytithesize the ability to deal with situations apparently unrelated

to any of the case studies considered. It is the case study approach, historically

motivated on occasion, which we shall emphasize.

At this point, it is appropriate that some attempt be made to indicate what

the author means by the term Empirical Model Building . To do so, it Is neces-

sary that we give some thought to some of the ways various scientists approach

the concept of models. We shall list here only those three schools which appear

to have the greatest numbers of adherents. The first group we shall term the

Idealists. The Idealists are not really data oriented. They are rather concerned

with theory as a mental process which takes a cavalier attitude toward the "real

world." Their attitude can be summed up by, "If facts do not conform to theory,

then so much the worse for facts." For them, the "model" Is all. An example of a

pure Idealist Is given by the character of Marat In Weiss' play AfaratSade. Marat

says "Against Nature's silence I use action. In the vast Indifference I invent a

meaning." Although Idealists do crop up from time to time in the physical and

biological sciences, they have a hard time there. Sooner or later, the theories of a S
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Lysenko, say, are brought up against the discipline Imposed by the real world

and must surrender in the face of conflicting evidence. But even In the hard sci-

ences, there Is the poesibility that "sooner or later" may mean decades. Once a

theory has developed a constituency of Individuals who have a vested interest In

its perpetuation, particularly If the theory has no Immediate practical Implics-

tion, there will be a tendency of other scientists, who have no Interest in the

theory either way, to let well enough alone.

The second group, that of the Radical Pragmatist8 (Occamites, nominalists)

would appear to be at the opposite end of the spectrum from that of the Ideal-

lats. The Radical Pragmatists hold that data is all. Every situation is to be

treated more or less aui generis. There Is no "truth." All models are false.

Instead of model building, the Radical Pragmatist curve fits. He does not look on

his fitted curve as something of general applicability, rather as an empirical dev-

ice for coping with a particular situation. The maxim of Wllilam of Occam was

"Essentla non aunt multlpllcanta praeter necessitatem," roughly, "The

hypotheses ought not to be more than Is necessary." The question here Is what

we mean by "necessary." All too frequently, It can happen than "necessary"

means what we need to muddle through rather than what we need to understand.

But few Radical Pragmatists would take the pure position of Weiss's Sade who

says "No sooner have I discovered something than I begin to doubt it and I have

to destroy it agaln...the only truths we can point to are the ever-changlng truths

of our own experience."
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The Realista (Aristoteleans, Thomists) might appear to some to occupy a

grouud Intermediate to that of the Idealists and that of the Radical Pragmatists.

They hold that the universe to governed by rational and consistent laws. Models,

for the Realist, are approximations to bits and pieces of these laws. To the Real-

ist, "We see through a glass darkly," but there is reality on the other side of the

glass. The Realist knows his model is not quite right, but he hopes !t is Incom-

plete rather than false. The collection of data Is useful In testing his model and

enabling him to modify it in appropriate fashion. It is this truthseitklng, interac-

tive procedure between mind and data which we term Empirical Model Building.

To return again to Newton's Second Principle, the position of the Idealist

might be simply that the old Newtonian formula

F-ma (0.2)

is true because of logical argument. But then we have the empirically demonstr-

able discovery of Einstein that mass is not constant but depends on velocity via

MO
20 (0.3)

The Idealist would have a problem. He might simply stick with (0.2) or

experience an intellectual conversion, saying, "Right, Einstein is correct; Newton

is wrong. I am no longer a Newtonian but an Einsteinlan" (or some less self-

effacing dialectical version of the above conversion.)

The reaction of the Radical Pragmatist might be, "You see, even an

apparently well established model like Newton's is false. No doubt we will soon
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learn that Einstein's is false also. Both these 'models' are useful In many applica-

tions, but their utility lies solely in their applicability in each situation."

The Realist Is also unsurprised that Newton's model falls short of the mark.

He notes that the discovery of Einstein will require a modification of (0.2). He

readily accomplishes this by combining (0.1) and (0.3) to give

Fd ut0
dt 2 - (0.4)

He views (0.4) as a better approximation to truth than (0.2) and expects to hear

of still better approximations in the future.

The preceeding should give the reader some feel as to what the author

means by empirical model building (and also as to his prejudices In favor of the

Realist position). It Is the process which is sometimes loosely referred to as the

"scientific method." As such, it has been around for millenla--though only for

the last five hundred years or so has quantitative data collecting enabled its

ready use on nontrivial scientific problems. Realists might argue (as I do ) that

empirical model building Is a natural activity of the human mind. It is the

interactive procedure by which human beings proceed to understand portions of

the real world by proposing theoretical mechanisms, testing these against obser-

vatlon and revising theory when It does not conform to data. In any given situa-

tion, a scientist's empirical model Is simply his current best guess as to the under-

lying mechanism at hand.
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The Radical Pragmatist position has great appeal for many, particularly in

the United States. There would appear to be many advantages to an orientation

which allowed one to change his ground any time It was convenient to do so.

But the ultimately nihilistic position of Radical Pragmatism has many practical

difficulties. For example, data Is generally collected in the light of some model,

Moreover, from the standpoint of compression of information, a point of view

which rejects truth also rejects uniqueness, causing no little chaos in represents.

tion. Finally, the old adage that "He who believes in nothing will believe any-

thing" appears to hold. The Radical Pragmatist seems to Join hands with the

Idealist more often than either cares to admit. There are certain groups who

seem to wear the colours of both the Idealist and Radical Pragmatist schools.

Tho above taxonomy of contemporary scientists into three fairly well defined

schools of thought is, obviously, an oversimplification. Most scientists will tend

to embody elements of all of the three schools in their makeup. For example, I

might be ( and have been) accosted In my office by someone who wishes me to

examine his plans for a perpetual motion machine or his discovery of a conspiracy

of Freemasons to take over the world. As a purely practical matter, because my
S

time is limited, I will be likely to dismiss their theories as patently absurd. In so

doing, I am apparently taking an Idealist position, for, Indeed I know little about

Freemasonry or about perpetual motion machines. But without such practical

use of prejudice, nothing could ever be accomplished. We would spend our lives

"starting from zero" and continually reinventing the wheel. There is a vast body

of information which I have not investigated and yet take to be true, without
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ever carefully checking It out. This Is not really "Idealism"; this is coping. But

If I read in the paper that Professor Strepticolllcus had indeed demonstrated a

working model of a perpetual motion machine, or If I heard that a secret meeting

room, covered with Masonic symbols, were discovered in the Capitol, then I

should be willing to reopen this portion of my "information bank" for possible

modification.

For similar practical reasons, I must act like a Radical Pragmatist more

often than I might wish. If I see a ten ton truck bearing down on me, I will

instinctively try to get away without carefully investigating considerations of

momentum and the likely destruction to human tissue as a result of the diselpa-

tion thereof. But I have the hope that the manufacturer of the truck has logically

and with the best Newtonian theory in tandem with empirical evidence designed

the vehicle and not simply thrown components together, hoping to muddle

through.

In sum, most of us, while accepting the practical necessity of frequently

assuming theories which we have not analyzed and using a great deal of instinc-

tive rather than logical tools in our work, would claim to believe In objective

reality and a system of natural laws which we are in a continuing process of per-

ceiving. This, most of us would consider ourselves to be Rationalists though we

might, from time to time, act otherwise. Perhaps the minimal Rationalist maxim

Is that of Orwell's Winston Smith "Freedom Is the freedom• to say that two plus

two make four. If that is granted, all else follows."
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Section 3. Modular Wargamlng 

Checkerboard based games are of ancient origin, being claimed 

by a number of ancient cultures. One characteristic of these 

games Is the restricted motion of the pieces, due to the shape of 

the playing field. This is overcome. In measure, in chess, by 

giving pieces varying capabilities for motion both in direction 

and distance. Another characteristic of these games is their 

essential equality of firepower. A pawn has the same power to 

capture a queen as the queen to capture a pawn. Effectiveness of 

the various pieces is completely a function of their mobility. 

Figure 

The directional restrictions of square tiles are a serious 

detriment to check board games if they are to be reasonable 

simulations of warfare. The most satisfactory solution, at first 

glance, would appear to be to use building blocks based on 

circles, since such tiles would appear to allow full 360 degree 

mobility. Unfortunately, as we observe below, circles cannot be 

satisfactory tiles, since they leave empty spaces between the 

tiles. 
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Figure 2

A .

A natural first attempt to overcome the difficulty of circles

as tiles would be to use equilateral octagons, since these allow

motion to the eight points of the compass, N,NE,E,SE,S,SW,W,NW.

Unfortunately, as we see below, this still leaves us with the

empty space phenomenon.
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Figure 3 

None of the ancient games is particularly apt as an analogue of 

combat after the development of the longbow, let alone after the 

invention of gunpowder. Accordingly, the Prussian von Reiswitz 

began to make suitable modifications leading in 1820 

\nKriegspref . The variants of the Prussian game took to 

superimposing an hexagonal grid over a map of actual terrain. 

184 



77
i U. 1mm=

Motion of various units was regulated by their capabilities in

their particular terrain situation. The old notion of "turnsW was

retained, but at each turn, a player could move a number of units

subject to a restriction on total move credits. Combat could be

Instituted by rules based on adjacency of opposing forces. The

result of the combat was regulated by the total firepower of the

units Involved on both sides in the particular terrain situation-

A roll of the dice, followed by lookup in a combat table gave the

casualty figures together with advance and retreat information.
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The Prussian game, together with later American variants, 

such as Strategos, were validated against actual historical 

combat situations.    In general, these games were excellent in 
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their ability to simulate the real world situatio. Their major

difficulty was one of bookkeeping. Frequently, a simulated

combat could take longer to play than the actual historical

battle. If the masking of movements and questions of

Intelligence gathering were included in the game, a large number

of referees was required.

In attempting to take advantage of the computer, the creators

of many modern military wargames have attempted to go far

beyond resolution of the bookkeeping problems associated with

Kriegspiel. Very frequently, these games do not allow for any

Interaction of human participants at all.

Initial conditions are loaded into a powerful mainframe

computer, and the machine plays out the game to conclusion

based upon a complex program which may actually look at the

pooled result of simulations of individual soldiers firing at each

other, even though the combat is for very large units. Any real

time corrections for imperfections in the game are, accordingly,

impossible. Any training potential of such games is, obviously,

slight.

Furthermore, the creators of many of these games may disdain

to engage in any validation based on historical combat results.

Such validation as exists may be limited to checking with

previous generations nf the same game to see whether both gave

the same answe-.

If we know anything about artificial intelligence (and

admittedly, we know very little), it would appear to be that

those simulations work best which appear to mimic the

noncomputerized human system.

Attempts to make great leaps forward without evoiutton from

noncomputerized system are almost always un.successful. And It
L••
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Is another characteristic of such a nonevolutionary approach that

It becomes quickly difficult to check the results against

realistic benchimarks. Before anyone realizes it, a new,

expensive, and, very likely, sterile science will have been

created soaking up time and treasure and diverting us from the

real world situation.

My own view is that it is better to use the computer as a

means of alleviating the bookkeeping difficulties associated

with Kriegwieklike board games. In the late 1 970's and early

1980"s, I assigned this task to various groups of students at

Rice. Experience showed that two hundred person hours of work

generally led to games which could emulate historical results

very well.

At least another five hundred person hours would have been

required to make these games user-friendly, but the rough

versions of the games were instructive enough. One criticism

made against historical validation is that technology is

advancing so rapidly that any such validations are meaningless.It

is claimed that the principal function of wargaming ought to be

predictions of what will happen given the new technologies.

While not agreeing that parallels between historical situations

and future conflicts are irrelevant (and I note here that the

Stratogy aWd Tactics hobbyists generally make games ranging

from Bronze Age warfare to Staship Troqpers), I agree that the

predictive aspect, in the form of scenario analyses, Is very

important.

Accordingly, one student created a game for conflict between

an American carrier task force and a Soviet missle cruiser task

force. Given the close-in combat which would be likely, it

appeared that if the Soviet commander is willing to sacrifice his

I 2:',
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force for the much more costly American force, he can effect an

exclhange of units by a massive launch of missles at the outset of

the conflict. Clearly, such a playout could have serious

technological Implications, e.g., the desirability of constructing

a system of jamming and antimissle defenses which is highly

resistant to being overwhelmed by a massive strike. Or, if it is

deemed that such a system could always be penetrated by futher

technological advances on the Soviet side, It might be

appropriate to reconsider task forces based around the aircraft

carrier. In any event, I personally would much prefer an

interactive game in which I could see the step by step results of

the simulation.

Also, a validation using, say, data from the Falkland conflict

could be used to check modular portions of the game. World War

II data could be used to check other parts. The validation would

not be as thorough as one might wish, but it would be a goodly

improvement on no validation at all. Some "supersophisticated'

unvalidated computer simulation in which the computer simply

played with Itself and, at the end of the day, told me that

existing antimissle defenses were sufficient would leave me

neither comforted nor confident.

An integral part of any Krie.oie/computerization should deal

with the resolution of the likely results of a conflict. A ready

means of carrying this out was made available via the famous

World War I opus of Lanchester (1916). Let us suppose that there

are two forces, the Blue and the Red, each homogeneous, and with

I siLe u and v respccLivcly.

Then, if the fire of the Red force is directed, the probability a

particular Red combatant will eliminate some Blue combatant in

time interval [t,t*A] is given simply by:
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(2.3.1) P[Blue combatant eliminated In It,t*Ah- CIA,

wre C1 Is the Red coefficient of undirected fire. If we wish,

then, to obtain the total number of Blue combatants eliminated

by the entire Red side In [t,t+A]. we will simply multiply by the

number of Red combatants to obtain:

(2.3.2) E[Change in Blue in [t,t+A] I - -v c, A.

Replacing u by tts expectation (as we have the right to do In

many cases where the coefficient Is truly a constant and v and u

are large), we have:

(2.3.3) AulA = - CIV.

This gives us Immediately the differential equation

(2.3.4) duldt = - c Iv.

Similarly, we have for the Red side

(2.3.5) dv/dt = - c 2 u.

This system has the time solution

(2.3.6) u(t)-uocosh4(c Ic 2 )t-vo ((c I/c 2 ) sinh v(c1 c 2 )t

v(t)Vocosh(c I c 2 )t-uo 4(c 2 1c 1 ) sinh 4(c Ic 2 )t

A more common representation of the solution is obtained by

dividing (2.3.4) by (2.3.5) to obtain

(2.3.7) du/dv = clv/ c 2 u,

with the solution

(2.3.8) u2 - u0
2 = c I/c 2 ( v2 - v0

2 ).

Now u and v are at "combat parity" with each other when

(2.3.9) u2 = c I /c 2 ( v2 ).

(A special point needs to be made here. Such parity models

assume that both sides are willing to bear the same proportion

of losses. If such Is not the case, then an otherwise less
190
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tumerous nd less effective force can still emerge victorious.

For example, suppose that the Blue force versus Red force

coefficient Is .5 and the Blue force has only .9 the numerosity of

the Red force. Then if Blue is willing to fight until reduced to .5

of his original strength, but Red will fight only to .8 of his

original strength, then using (2-38) that by the time Red has

reached maximal acceptable losses, Blue still has 61Z of his

forces, and thus wins the conflict. This advantage to one force

to accept higher attrition than his opponent is frequently

overlooked in wargame analysis. The empirical realization of

this fact has not escaped the attention of guerilla leaders from

the Maccabees to the Mlujaheddin.)

Accordingly, It is interesting to note that if there is a

doubling of numbers on the Red side, Blue can only maintain

parity by seeing to it that c2 /cI is quadrupled, a seemingly

Impossible task.

Lanchester's formula for undirected fire follows from similar

Poissonian arguments. The probability that a Red combatant will

eliminate some Blue combatant in [t~t.A1 is given by

(2.3.10) Pla Blue eliminated by a Red in Lt,t.,&] =

Pishot fired in [t,t+A1] Pishot hits a Blue] A.

Now, the probability a shot aimed at an area rather than an

individual hits someone is proportional to the density of Blue

combatants in the area, hence proportional to u. Thus, we have:

(2.3.11 ) P[Blue eliminated in [t,t+A]] = dlu A.

The expected number of Blues eliminated in the interval is

given by multiplying the above by the size of the Red force,
191
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nunely. v.

So the differential equations are:

(2.3.12) du/dt - -dIuv

dw/dt - -d 2 uv.

This system has the time solution:

(2.3.13)u(t)= (d2 /d1 uO-vo0 /1d2 /d 1-vo/uOexp[-(d 2 Uo- dI vo)tfl

v(t) - d I d2 vO- u0 lJd I Md2 - uolvOexp[-(d 1 vo- d2 uO)tIJ.

Here, when dividing the equations in (2.3.12) and solving, we

obtain the parity equations:

(2.3.14) u- u0 = d I /d2 ( v- v0 ).

In such a case, a doubling of Red's parity force can be matched

by Blue's doubling of d2 1dI.

In attempting to match either law (or some other) against

historical data, one needs to be a bit careful. In 1954, Engel

claimed to have validated the applicability of Lanchester's

directed fire law for the Battle of Iwo Jima. He used no records

for Japanese casualties and simply juggled the two parameters

to fit the record of American casualty data.

In a STAG report written in 1972 (later published in the

open literature in 1979), Thompson, using the partial Japanese

casualty records, showed that the directed fire model gave

answers much at variance with the data (sometimes off the

Japanese total effectives by a factor of four) and that the

undirected fire model appeared to work much more

satisfactorily. However, the bottom line in the Thompson paper

was that a homogeneous force model was probably not very
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satisfactory In an engagement In which naval gunfIre together

with Marine assault both played important roles. We shall

address the hetero-n- force model problem directly.

In this. the one hundred and fiftieth anniversary of the Battle

of the Alamo, it Is perhaps instructive to consider a situation in

which a mixture of the two models Is appropriate. Since the

Texians were aiming at a multiplicity of Mexican targets and

using rifles capable of accuracy at long range (300re), It might

be appropriate to use the directed fire model for Mexican

casualties. Since the Mexicans were using less accurate

muskets (lOOm) and firing against a fortified enemy, it might be

appropriate to use the undirected fire model for Texian

casulatles. This would give

(2.3.15) du/dt = -dIuv

dv/dt = -c 2 u.

The parity equations are given by

(2.3.16) v2 -v 0
2 - 2c 2 /d I ( u-uo).

The Texians fought 188 men, all of whom perished in the

defense. The Mexicans fought 3,000 men of whom 1,500 perished

In the attack. By plugging in initial and final strength

conditions, it Is an easy matter to compute c2 /dI = 17,952.

Howc-:", ýuch an Index is essentially meaningless, since the

equations of combat are dramatically different for the two

sides. A fair measure of man for man Texian versus Mexican

effectiveness is given by

(2.3.17) [ (dv/dtj/u I / [ {du/dt)/v] = c2 /(dlU).

This index computes the rate of destruction of Mexicans per

Texian divided by the rate of destruction of Texian per Mexican.

193
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We note that the mixed law model gives a varying rate of

effectiveness, depending on the number of Mexicans present. At

the beginning of the conflict, the effectiveness ratio is a

possible 96 ; at the end, a romantic but unrealistic 17,952.

The examination of this model In the light of historical data

should cause us to question it. What is wrong? Most of the

Mexican casualties occurred before the walls were breached.

Most of the Texian casualties occurred after the walls were

breached. But after the walls were breaclhed, the Mexicans

would be using directed fire against the Texians.

We have no precise data to verify such an assumption, but for

the sake of argument, let us assume that the Texians had 100

men when the walls were breached; the Mexicans 1800. Then

(2.3.16) gives c2 /dI = 32,727. The combat effectiveness ratio

c2 /(dI u) goes then from 174 at the beginning of the siege to 327

at the time the walls were breached. For the balance of the

conflict we must use equations (2.3.4) and (2.3.5) with the

combat effectiveness ratio c2 /cI = 99 (computed from (2.3.8).

Personally, I am not uncomfortable with these figures. The

defenses seem to have given the Texians a marginal advantage of

around 3. Those who consider the figures too 'John Wayneish"

should remember that the Mexicans had great difficulty in

focusinq their forces aqainst, the Alamo, whereas the Texians

were essentially all gainfully employed in the business of

fighting. This advantage to a group of determined Palikari to

defend a fortified position against overwhelming numbers of a

besieging enemy is something we shall return to shortly.

Having, hopefully, transmitted some feeling as to the

advantages of common sense utilization of the method of

l1q4
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Lachester (borrowed In spirit from Polsson), we shall now take

the next step In its explication: namely the utilization of

heterogern force equations.

Let us suppose that the Blue side has m subforces

NJ IJh12m. These might represent, artillery, Infantry,

armour, etc. Also, let us suppose that the Red side has n

subforces (vj)j. 1,2,...,n- Then the directed fire equations (2.3.4)

umd (2.3.5) become:

(2.3.18) du Idt = - I I= I to nkijc I jjvi

(2.3.19) dvildt = - !j- I to mljic2jiuj-

Here, kij represents the allocation (a number between 0 and I

such that Zj=l to mkij I) of the i'th Red subforce's firepower

against the jeth Blue subforce. cij represents the Lanchester

attrition coefficient of the tth Red subforce against the j'th

Blue subforce. Similar obvious definitions hold for (lJI) and

(c 2 ji}-

(2.3.18) furnishes us a useful alternative to the old table

lookup In Krfegspfel Numerica! Integration enables us to deal

handily and easily with any difficulties associated with turn to

turn changes In allocation and effectiveness, reinforcements.

etc. Experience has shown that computerized utilization of

mobility rules based on hexagonal tiling superimposed on actual

terrain, together with the use of Lanchester hetereogeneous

force combat equations, makes possible the construction of

realistic war games at modest cost.

Beyond the very real utility of the Lanchester combat laws to

describe the combat mode for war games, they can be used as a
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model framework to gain Insights as to the wisdom or lack

thereof of proposed changes in defense policy. In 1972 I wrote a

STAG report (published in the open literature in 1979) to

address the problems of disparity of NATO and Warsaw Pact

forces. As we have observed in (2.3.9), in the face of a twofold

manpower increase of Red beyond the parity level, Blue can,

assuming Lanchester's directed fire model, maintain parity only

by quadrupling c2 /c!. This has usually been perceived to imply

that NATO must rely on Its superior technology to match the

Soviet threat by keeping c 2 always much bigger than c1 .

Since there exists evidence to suggest that such technological

superiority does not exist at the conventional level, it appears

that the Soviets keep out of Western Europe because of a fear

that a conventional juggernaut across Western Europe would be

met by a tactical nuclear response. Thus, the big push ity the

Soviets and their surrogates for "non first use of nuclear

weapons" treaties. It Is not at all unlikely that the Soviets

could take Western Europe In a conventional war.

In my paper -An Argument for Fortified Defense In Western

Europe," I attempted to show how the c2 /ci ratio could be

Increased by using fortifications to decrease c1 . Whether or not

the reader judges such a strategy to be patently absurd, it is

instructive to go through the argument as a means of explicating

the power of Lanchester's laws in scenario analysis

My investigation was motivated by the defense of the

Westerplatte peninsula in Dantzig by 188 Polish soldiers from

September 1 through September 7 in 1939, and some interesting

parallels with the much lower tech sige of the Alamo a hnundred

years earlier. (Coincidentally, the number of Polish defenders
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was the same as the number of Texians at the Alamo.) The

attacking German forces included a batallion of SS, a batallion

of engineers. a company of marines, a construction batallion, a

company of coastal troops, assorted police units, 25 Stukas, the

artillery of the Battleship Schleswig-iolstein, eight 150 mm

howitzers, four 210 mm heavy mortars, a hundred machine guns.

and two trainloads of gasoline (the Germans tried to flood the

bunkers with burning gasoline).

The total number of German troops engaged in combat during

the seven day seige was well over 3,000. Anyone who has visited

Westerplatte (as I have) is amazed with the lack of natural

defenses. It looks like a nice place for a walkover. It was not.

The garrison was defended on the first day by a steel fence

(which the Germans and the League of Nations had allowed,

accepting the excuse of the Polish commander, Major Sucharski,

that the fence was necessary to keep the livestock of the

garrison from wandering into Dantzig), which was quickly

obliterated- Mainly, however, the structural defences consisted

in concrete fortifications constructed at the ground level and

below. Theoretically, the structural fortifications did not exist,

since they were prohibited by the League of Nations and the

peninsula was regularly inspected by the Germans to insure

compliance. However, extensive "coal and storage cellars' were

permitted, and It was such which comprised the fortifications.

The most essential part of the defenses was the contingent of

men there. Unlike the Texians at the Alamo who realized they

were going to die only after reinforcements from Goliad failed

to arrive and the decision was made not to break through Santa

Anna's encirclement, the Polish defenders of Westerplatte

realized that when the German Invasion began, they were
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Ommme. It Is Interesting to note the keen competition which

existed to gain the supreme honour of a posting to Westerplatte.

Perhaps "no bastard ever won a war by dying for his country' but

the defenders of the Alamo and those of Westerplatte

consciously chose their deaths as an acceptable price for

wreaking a bloody vengence on the enemies of their people.

Ever since the abysmal failure of the Maginot Line in 1940, it

has been taken for granted that any strategy based on even the

partial use of fixed defenses is absurd- I question this view.

Historically fixed defenses have proved more effective as

islands rather than as flankable dikes. The Maginot Line was

clearly designed as a dike, as was the Great Wall of China, and

both proved failures. It is unfortunate that the dike-like tactics

of trench warfare had proved so effective in World War I.

Otherwise, the French would undoubtedly have noted that they

were basing their 1940 defense on an historically fragile

strategy. Dikes generally can withstand force only from the

front, as the Persians (finally) discovered at Thermopolae. If

the dikes are sufficiently narrow and thick, however, they many

be effective islands and very difficult to outflank. It was

conceded by the panzer innovator, von Manstein, that Germany

absolutely could not have taken the Sudentenland defenses in

1938 had they been used This brings up another interesting

point. An effective system of fixed defenses is very much

dependent on the will of the people using them.

Historical examples, modern as well as ancient, of successful

use of constructed defensive positions can be given ad

infinitum. Among the crusading orders, the Templars and

Hospitalers early discovered that they could maintain an

effective Christian presence in the Holy Land only by

1 98•
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Concentrating a large percentage of their forces in a mznber of

strongly fortified castles. This gave them sufficient nufsance

value to cause concessions by the Muslim leaders. Most of the

military disasters to the orders were the result of their

frequent willingness to strip their castle defenses and join the

crusader barons in massive land battles against numerically

overwhelming odds--as at Hattin. For over a thousand years,

some of the Christian peoples in the Near East, e.g., the

Armenians and the Maronites maintained their very identity by

mountain fortifications.

It is interesting to note that one of the crusader

fortresses--Malta--never fell to the Muslims and was only taken

(by treachery) by Napoleon in 1798. In the Second World War,

the connection between the resistance of Malta and the ultimate

destruction of the Afrika Korps is well remembered. Even light,

hastily constructed defenses, manned by people who do not know

they are supposed to surrender when surrounded, can be

extremely effective in slowing down the enemy advance, as

proved by the 101 'st Airborne during the Battle of the Bulge.

In the examples above, there seem to be some common points.

F i-st of all, fortified defense gives a ready means of increasing

the ratio of the Lanchester coefficients in favour of the Blue

side. One natural advantag(.,• to this type of defense is the fact

that the defender can increase his Lanchester attrition ratio by

a policy of construction over a period of time. This may be a

more fruitful policy than placing all one's hopes on increasing

ones Lanchester ratio by the design of new weapons systems.

Secondly, fortified defense should rely ol, ;dequate stores of

supplies located within the "fortress pertmetei " It should be

assumed by the defenders that they will be camrnletely



swrew-ded by the enemy for long periods of time. (in their

f ortrs at flagdebwr, the Teutonic Knights always kept ten

yar*s provisions for men and horses.)

Thirdly. fortified defense Is a task best undertaken by well

trained professionals with strong goup loyalty.

Fourthly. fortified defense Is most effective when there are

allied armies poised to strike the enemy at some future time

and place. The fortress and the mobile striking force

complement each other in their functions. The function of the

fortress is to punish, harass and divide the enemy and to

maintain a presence in a particular area. In general, however,

offensive activities must be left to the mobile forces. The

deployment of enemy forces to take fortified positions will

weaken their ability to withstand mobile offensive operations.

Let us now examine modified versions of (2.3.4) and (2.3.5)

(2.3.20) du/dt = - cI•V

and

(2.3.21) dvldt = - u.

Here the attrition to Blue coefficient Is taken to be variable

ci* = ci*(uv) and is demonstrated graphically in Figure 5.
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In the above, we assume that c1  never exceeds cl, the

attrition constant corresponding to ronfortifled combat.

Clearly, the functions cI and c2o are functions of the manner

in which the fortress has been constructed. It meg be desirable

to design the fortifications so that cl* is small, even at the .

expense of decreasing C2 ' Generally, one might assume that
*. •.

c2" Is close to the nonfortifled attrition rate of u against v.

since the defenders wil have removed potential cover for the
Red side. In fortress defense, the solution in time is likely to

be Important, since a primary objective is to maintain a Blue

presence for as long as possible. We consider a linear

approximation to the v-level curves of cI (',v) in Figure 6.
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Figure 6
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Then we would have

(2.3.22) du/dt = - g(v)uv - C1  u

where cI (u,v) = g(v)u and cI is the Blue coefficient of

internal attrition. (We notice that this analgsis has moved us,

quite naturally to an undirected fire model for the defender's

lossees. Thie model thus derived Is essentially that used earlier

for the Alamo.) We might reasonably expect that the besieging

fortes would maintain more or less a constant number of troops

in the vicinity of the redoubt. Hence we would expect

(2.3.23) dy/dt - c2 U - c2  v +P(u,v) = 0,

where P(u,v) Is the rate of replacement necessanj to maintain
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constant v strength and c2i* s the Red coefficient of Internal

attrition. We might expect that c2 ").) ce since inadvertent

self-inflicted casuulties are a well known problem for the

besieging force. Then

(2.3.24) u(t) = uOexpi-(g(v)v + c I **)t]"

The enemyn attrition by time t is given by

(2.3.25) Jotp(uv)dt=

c 2 Stvc 2 Uo I -exPI-(g(v)V*c l )t])/lg(v)v+cl ".

If the Blue defense can hold out until u =4K u0 (where O•x1),

then the time till the end of resistance is given by

(2.3.26) t*= - ln(oc)/fg(v)v+ c I").

We have, then that the total losses to the Red side by the time

the defense falls is given by

(2.3.27)I c2 uo(I-Oc) - c2 **vln(ox)]/ (g(v)v+ c I).

It is Interesting to note that if c2*=O, then tho minimization

of Red casualties appears to be consistent with the

minimization of t*. This might Indicate that an optimum

strategy for Red Is to overwhelm the Blue fortifications by

shear weight of numbers. This would not be true If beyond some

value of v, d(g(v)v)/dvWo, implying that beyond a certain

strength, additional Red forces would actually Impair ked's

ability to inflict casualties on the Blue side. As a matter of

fact, the history of fortified defense seems to indicate that

such a 'beginning of negative returns" point in the v space does

exist. It is generally the case for the besieging force that

c2">>O end that it is increasing in v. This is particularlg true

if the besieged forces are able from time to time to conduct
0
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ceref ult planned "murpresa" in order to encoulgs Increased

confusion and trigger happiness on the part of the besiegers.

In the heterogeneous force modal for fortified defense, we

have

(2.3.20) dujfdt = - XI=I to nkiJglj(vi) vlUj- c 1 j uj

(2.3.29) dvj/dt = - pj: I to mljlj:2ji uj -c21i • "I -

The size of the Jth Blue subforce at time t Is given bV

(2.3.30) Uj(t) = uj(O)expl-tlli=I to nkijgij(vi)viccl, )

The total attrition to the ith enomy subforce at time t is given
bg

(2.3.31) lot Pl(U,V)dl = 1 pj.I to mljic2ji*J(O) X

o 9t exp[- 1( 1w to nkIJgj(vI) vi+* cj1 1  )] dV+c 2 1**tvi

SZjI tO mljlC2Jl*Uj(o)(1-expi -tlkljglj(v1 ) VOW)/

( 1kljgij(v) vI + Clj ) * c2 1*tvi ,

Sp4ppose that the effectiveness (at time t) of the Blue

defender is measured bg

(2.3.32) T(t) = xj I to ma]uj(t)

where the aj are predetermined relative effectiveness

constants. if we assume that the fortress is lost when the .j

effectiveness is reduced to some fraction ix of its initial value,

Lo•.., when

(2.3.33) T(t) ( NT(O),

then we can use (2.3.31), in straightforward fashion, to solve

for the time of capture.

The above model gives some indication of the power of the

simple Lanchester "laws" In analUzing a "what if?" scenario. It

4.
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Is, in large measure, the lack of "goo-whizziness of

Loachosters models which renders them such a useful device to

the applied worker. eonerellg speokIm9o after a few hours of

self-instruction, a potential user can bring himself to the level

of sophistication where he can flowchart his own wargame or

other form of scenario analpuis.
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Section 4. Predation and Immune Response Systems

Let us consider Volterra's predator-prey model and some

consequences for modeling the human body's anti-cancer immune

response system. For the classical shark-fish modal, we follow

essentially Haberman [19771. Suppose we have predators, say

sharks, whose numbers are indicated by 5, who prey on, say fish,

whose numbers are Indicated by F. In the 1920's, it was brought

to the attention of Volterra that there appeared to be a periodic

pattern in the abundance of certain food fish in the Adriatic, and

that this pattern did not appear to be simply seasonal. Volterra

attempted to come up with the simplest logical explanation of

this periodicity.

We might suppose that the probability a typical shark gives

birth to another shark (for reasons of simplicity we treat the

sharks as though they were single cell creatures) is given by

(2.4. 1) Pr(birth in [t,t+At]) - [aF1 At.

Here the assumption Is that the probability of reproduction is

proportional to the food supply, i.e., to the size of the fish

population.

The probability P nhark dies in the time interval is considered S

to be a constant kAt. Thus, the expected change in the predator

population during [t,t+AtI is given by

(2.4.2) E[hS] - S[aF-k]At.

As we have in the past, we shall assume that for a sufficiently

large predator population, we may treat the expectation as

essentially deterministic. This gives us the differential 0

equation:

(2.4.3) dS/dt - S[LF-k].

Similarly the probability that a given fish will reproduce in
207
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[tAt.htt minus the probability it will die from natural causes

may be treated like

(2.4.4) Pr('birth" in [t,t+Atl) aat

We have assumed that the fish have. essentially, an unlimited

food supply. The death by predation, on a per fish basis, is

obviously the number of sharks multiplied by their fish eating

rate, c, giving the differential equation:

(2.4.5) dF/dt - F(a-cS).

Now the system of equations given by (2.4.3) and (2.4.5) has no

known simple time domain solution, although numerical solution

is, obviously, trivial. However, let us examine the F versus 5

situation by dividing (2.4.5) by (2.4.3). This gives us

(2.4.6) dF/dS -(F/(?F-k)) ((a-cS)/S).

The solution to (6) is easily seen to be

(2.4.7) F-ke )%F, Ee-cSsa, with E a constant.

Now, let us use (2.4.3) and (2.4.5) to trace the path of F versus

5. We note, first of all, that F-ki), gives an unchanging 5

population; S-a/c gives an unchanging F population.

F dF/dt>O dF/dtLOKA
dS t>O S/dt>O

dF/ 0 dF/dt0O
dS/dtO dS/dt<O

an/c
S

•, Figure 1 208
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The consequences of Figure I are that the F versus S plot must

either be a closed repeating curve or a spiral. We can use -.

(2.4.7) to eliminate the possibility of a spiral. Lot us examine

the level curves of F and S corresponding to the common Z values

In

(2.4.8) F-ke xF = Ee-CSSa.Z.

In Figure 2, we sketch the shapes of Z versus F and 5,

respectively, and use these values to trace the F versus 5 curve.

zz

f 2 I!SfI F f 2 1S

f 20

20

f

- I I2s

5142

Figure 2 S_
We note that since each value of Z corresponds to at most four

209 0e
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points on the F versus 5 curve, a spiral structure is out of the

question, so we obtain the kind of closed curve which was

consistent with the rough data presented to Volterra. Using

Figure I In conjunction with Figure 2. we can sketch the time

behaviour of the two populations

II

S

a/c__ _

Figure 3

Here we note periodic behaviour with the fish curve leading the

shark curve by "ninety degrees.

Let us now turn to an apparently quite different problem,

that of modeling the body's Immune response to cancer. Calling

the number of cancer cells, x, let us postulate the existence of
"antibodies" in the human organism which Identify and attempt

to destroy cancer cells. Let us call the number of these Immuno

entities, y, and suppose that they are given in x units, i.e., one

unit of y annihilates and is annihilated by one cancer cell. Then,

we can model the two populations via

(2.4.9) dx/dt - x, ax -bxy

(2.4. 10) dy/dt - cx -bxy.
210
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The justification for such a model Is as follows. Cancer cells
are produced at a constant rate A~ which is a function of
environmental factors, inability of the body to make accurate
copies of some of the cells when they divide, etc. a Is the
growth rate of the cancer cells. b Is the rate at which

antibodies 3kttack and destroy the cancer cells. c Is the rate o~f
response of the antibody population to the presence of cancer

cells.
Although we cannot obtain closed form solutions for the

system given by (2.4.9) and (2.4. 10). we can sketch a system of
curves which will give us some feel as to which individuals will
have immune systems which can cope with the oncogenesis
process. From (2.4. 10), we notice that y decreases If dy/dt - cx
-bxycO; iLe.. if y~c/b. If the inequality Is reversed, then y will
Increase. Similarly, from (2.4.9), we note that x decreases If
dx/dt - x +ax -bxy(O; i.e., If y)(%.oax)/b. Let us examine the
consequences of these facts by looking at Figure 4.

'=(?X,+ax)/(bx) smith

Smth _y=a/b

Figure 4 211

p M = rl



104

,kus a. Thrum. P• 0" " & "ý b Sydam

The prognosis here would appear to be very bat The body Is not

able to fight back the cancer cells and must be overwhelmed. -s

On the other hand, let us examine the more hopeful scenario

in Figure 5

y=(x4ax)/(bx)

db

alb -b

X

Figure 5

We note the change if c increases dramatically relative to a. We

now have regions where the body will arrive at a stable

equilibrium of cancer cells and antibodies. We should also note

that in both Figure 4 and Figure 5, the situation of an Individual

who starts out with no antibodies backup at the beginning of the

process Is bad.

We can glean other Insights from the model. For example, a

large enough value of ? can overwhelm any value of c. Thus no

organism can reasonably expect to have the Immune response

power to overcome'Innn oncogbnic'snbcKs. no Mhtter noW'oig.

Next. even If x is very large, provided only that we can change

the biological situation to Increase dramatically c. while
212
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suppressing A. the tumor can be defeated.

The model considered here is obviously not only hugely

simplified, but purely speculative. We have, at present, no good

means of measuring x and y. But it should be remembered that

the model generally precedes the collection of data: generally,

data is collected in the light of a model. In the case of

Volterra's fish model, partial data was available because the

selling of fish was measured for economic reasons. Volterra

was, in short, fortunate that he could proceed from a well

developed data set to an explanatory model. This was

serendipitous, and unusual.

Generally speaking, we waste much if we Insist on dealing

only with existing data sets and refuse to conjecture on the

basis of what may be only anecdotal information. If we are being

sufficiently bold, then for every conjecture that subsequently

becomes substantiated we should expect to be wrong a dozen

times. Model building is not so much the safe and cozy

codification of what we are confident about as it Is a means of

orderly speculation.

References

1. Haberman, Richard (1977), Mathematical Model; Englewood .
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Section 5. Pyramid Clubs for Fun and Profit

There are those who hold that the very formalism of the

"free market" will produce good--irrespective of the production

of any product or service other than the right to participate in

the "enterprise" Itself. One *%xample of such an enterprise is

gambling. Here, the player may understand that he is engaging in

an activity in which his long run expectations for success are

dim---the odds are against him. Nevertheless, he will enter the

enterprise for fun, excitement and the chance that, if he only

plays the game a small number of times, he will get lucky and

beat the odds.

Another example of an enterprise which apparently

i,,oduces no good or service is that of the pyramid club. Unlike

gambling, the pyramid club gives the participant the notion that

they almost certainly will "win," i.e., their gain will exceed, by

a very significant margin, the cost of their participation. Lot

us consider a typical club structure. For the cost of $2,000. the

member is allowed to recruit up to six new members. For each

member he recrt, Ls, he receives a commission of $1,000.

Furthermore, each of the new members Is inducted with the

same conditions as those of the member who inducted them. Now

for, each recruit made by second level members, the first level

member receives a commission of $ 100. This member is allowed

to share in these $100 commissions down through the sixth

level. Generally, there is some time limit as to how long the

member has to recruit his second level members--typically a

year. Thus, his anticipated return is
•-
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(2.5. 1) Anticipated Return - I ,OOOX 6

*[62 +63 .6 4 #651X 100 938,400

It is this apparent certainty of gain which attracts many

to pyramid enterprises. Many state governments claim that this

hope of gain is hugely unrealistic, and thus that pyramid

enterprises constitute fraud. We wish to examine this claim.

Let us suppose we consider only those members of society

who would become members if asked. Let us say that at any

given time those who are already members will be included in

the pool 'y' and those who have not yet joined but would if asked

are included in the pool "x". If we examine the probability that

a member will effect a recruitment in time interval a, this

appears to be given by

(2.5.2) P(recrultment in [t,t+A] - k x/(x~y)&

where k = yearly rate of recruitment if all persons in

the pool were nonmembers (e.g., k- 6).

Then we have that the expected numbers of recruits by all

members in (t,t#h) is given by:

(2.5.3) Elnumber of recruits in [t,t+All = ky x/(xoy)A.
S

Now there will be an exodus from the pool given by the rate &

which is the reciprocal of the average time a member is a

member (say I year). (You should check by an infinitessimal

argument that this statement is true.)

Thus, If we replace the expectation of y by y itself, and

divide by A, and let a go to 0, we have

(2.5.4) dy/dt =kyx/(x+y) - ly.

Let us make the optimistic (from the standpoint of the

participants) assumption that x~y is constant. And. further, let
"215
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us consider that x M y a proportions so that y I-x. Then we

have the easily solvable (using partial fractions) equation

(2.5.5) dy[~- -k) dt

So we have

(2.5.6) t- I /(k-y)lnly/(k-6-ky)j- I 1(k-yo)lnlyo/(k-&-kyo)].

Now, when dy/dtmO, there is no further Increase of y. Thus, the

equilibrium (and maximum) value of y is given by

(2.5.7) Ye (k-)/k.

For the present example, where k is 6 and P-1, the maximum

value of y Is .83. Ye will only be reached at t- -. But It Is

relevant to ask how long It will take before y equals, say .82. If

we assume that YO equals .001, a little computation shows that

t(y(.82)) - 1.87 years.

Now, the rate of recruitment per member per year at any

given tirae is given by

(2.5.8) [dy/dtl/y - [k-5-ky).

At time t- 1.87, and thereafter,

(2.5.9) [dy/dtl/y -.08.

Unfortunately, a member who joins at t-1.87 or thereafter must

replace the "6" in (1) by a number no greater than .08. Thus, the

anticipated return to a member entering at this time is rather

less than 938,400:

(2.5.10) Anticipated Return t1,OOOX.08+

[.0B2 .. 083 +.084.. 08SjX 100- $80.70.

The difference between a pyramid structure and a bona fIde

franchising enterprise Is clear. In franchising enterprises In

216
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which a reasonable good or service Is being distributed, there Is

a rational expectation of gain to members even if they sell no

franchises. Potential members may buy Into the enterprise

purely on the basis of this expectation. Still, It Is clear that a

different kind of saturation effect Is imnortant. The owner of a

fast food restaurant may find that he has opened In an area

which already has more such establishments than the pool of

potential customers. But a careful marketing analysis will be
enormously helpful In avoiding this kind of snafu. The primary

saturation effect Is not caused by a lack of potential purchasers

of fast food restaurants but by an absence of customers. On the

other hand, there is little doubt that many franchising

operations infuse in potential members the Idea that their main

profit will be realized by selling distributorships. Indeed, many

such operations are Ae f/'topyramid operations. Thus, it would

appear to be impossible for the government to come up with a

nonstiffling definition of pyramid clubs which could not be

circumvented by simply providing, in additIon to the recrultIng

license, some modest good or service (numbered "collectors'

Item" bronze paper weights should work nicely). The old maxim

of caveat empto*would appear to he the best protection for the

pubi Ic.

The model of a pyramid club Is an example of epidemic

structure, although no transmission of germs Is involved. Nor

should the term "epidemic" be considered always to have

negative connotations. It simply has to do with the ability o(

one population to recruit, willfully or othtrwise, members of

another population into Its ranks.
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Section 6. A Model Based Examination of AIDS: Its Causes and

Likely Progression

A customary approach to the control of contagious diseases

in contemporary Amorica Is via medical intervention, either by

prevenivye vaccination or by the use of antibiotics. Historically,

qociological control of eridemics has been the more customary

method. This has been due, in part, to the fact tnat vaccines

were unknown before the Nineteenth Century and antibiotics

before the Twentieth Century.

In the case of some ancient peoples, a large portion of the

system of laws dealt with the means of sociological control of

epidemics. For examplfs, it should be noted that the 13th, 14th

and half of the 15th chapter of Leviticus (131 verses) are

dedicated for the sociological control of leprosy. We might

contrast this with the fact that the often mentioned dietary

(koshe4 laws receive only one chapter, the I Ith, with a total of

47 verses.

The notion that epidemics can always be controlled by a shot

or a pill rather than by the generally more painful sociological

methods caused much human suffering even before AIDS. For S

example, First World medicine has largely displaced isolation as

a control for leprosy In the Third World. Because the methods

have been less effective in practice than hoped, we have the

spectacle in some countries of three generations of a family

sharing the same roof and the disease of leprosy. Only in the

1980's have we (apparently) reached the level of meidical control 0

necessary to protect individuals against the effects of ieprosy.

But, in some sense, we have acted for half a century as though

we were in possession of an a•-Ieprosy technoiogy which we
1"11 15 ;1
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did not, In actuality, have.

In the case of AIDS, we see an even more difficult (of

medical control) disease thin leprosy. At present, the mount

of federal funds expended on AIDS is over 15! of the total

federal funding for research on all oncological diseases (of

which AIDS fs con 4,dwd to be une). My own discussion with

colleagues involved in the Investigation indicates that a vaccine

or a cure is extremely unlikely In the near future. Accordingly,

we are confronted with a disease with a 1001 fatality record

and a per patient medical cost (using the present heroic

intervention) In the $100,0001case range. We must ask the

question of whether the present main thrust of attack can be

deemed optimal or even Intelligent.

Below, I will give some of the arguments used In a paper

written in 1983, when the extent of the disease was much less

than Is the case presently. First of all, we can determine the

probability that a random infective will transmit the disease to

a susceptible during a time Interval [t,t+At].

Prob(tran•missirn In (t,t+AMt)) = o
X •

where
k # contacts/time
c= prob of contact causing AIDS
X It susceptibles
Y =# infectives

219 C
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To get the expected total increase in the Infective population

during (t.t+at], we multiply the above by Y, the number of W.,

Infectives.

(2.6.1) AE(Y) a YPr(transmission in [t,t+At]).

For large populations, we can assume, under fairly general

conditions, that the expected total change in Y is a very nearly

equal to a deterministic Y, Ite.,

(2.6.2) AEY) m 0AY.

Letting At go to zero, this yields, immediately

(2.6.3)

dY _ k ,XY
dt X+Y
dX k XY•.

dt X+Y

Now, we must allow for Immigration Into the susceptible

population (X), and emigration (i) from both the susceptible and

Infective populations and for marginal increase in the

emigration from the Infective population due to AIDS (5), from

sickness and death. Thus we have the improved differential

equation model

220
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(2.6.4)

dY koa XY (6+P)y
dt X+Y

dX XY
- = -k +_,-_

dt X+Y
where A = imminratinn

,i= emigration
6 = aids death rate

For early stages of the disease, Xl(X+Y)u i. Accordingly, we may

write the approximation:

(2.6.5) dY/dt x[kan-p-iJY.

This gives us the solution:

(2.6.5) Y- Y(O)exp([kt-p-5-tJ.

Now, we shall use some rough guesses for some of the

parameters In the equations above.

We shall assume that, absent AIDS, the total target population

is 3,000,000. We shall assume that an individual stays in this

population an average of 15 years (yielding

PiI-/(15XI2)-.00556). We will use as the average time an

Infective remains sexually active 10 months (yielding 5-.1). To

maintain the population of 3,000,000 (absent AIDS), then, we

require

(2.6.7) dX/dt- X-piX- 0

or V•-16,666. Now, if we comiine these figures with early death

data from AIDS, we can use the approximation for Y to obtain an

estimate for kxm.263. Below, we show a table of predicted and

~~\4~M RA~ ~S'
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observed AF S figures using Ut. istimates above.

Table I AIDS Cases

Date Actual Predicted

May 82 255 189

Aug 82 475 339

Nov 82 750 580

Feb. 83 1,150 957

May 83 1,675 1,587

Now, using the somewhat smaller km value of .25 and an initial

infective population of 2.000, we come up with the following

projections maki7n the asswmptlon that things cntinue with t&e

paraPeter values above.

Table 2. Projections of AIDS with ka - .25

YEAR CUM. DEATHS FRACTION INFECTIVE

"I 6,434 .004

2 42,210 .021

3 226,261 .107

4 903.429 .395

, 5 2,003,633 .738
1,' 0 3,741,841 .578

15 4,650,124 .578

20 5,562,438 .578

The fraction Infective column has been given, since, In the
222



115
JUUa. Tbemp. nMdMdo AlS

absence of state intervention or medical breakthrough, it Is this

variable which provides the (sociological) feedback for the

control of the disease. Any visibility of a loathsome and fatal

disease in the proportion range of one percent of the target

population will almost certainly cause members of that

population to consider modifying their membership in it. In the

days of plague in Western Europe, one could attempt to leave

centers of congested population. It would appear likely that

AIDS will cause a diminution of x• and k and an increase of IL. (it

is very possible that the present government health service

intervention actually decreases 1 and so Increases the spread of

the disease, but this effect Is probably minor.)

Let us consider, for example, the effect of diminishing k. We

note that in the early stages of the disease, an equilibrium

value of ko-.1056 Is obtained. At this value, with all other

parameters held constant, the total body count after 20 years is

47,848 with a fraction of Infectives quickly reaching .000668.

Now, let us suppose that fear reduces k to 203 of its present

value, by the use of condoms and some restraint In activity.

Then, the table below shows that the disease quickly retreats

Into epidemiological Insignificance.

Table 3. Projections of AIDS with kat - .05

YEAR CUlM. DEATHS FRACTION INFECTIVE

1 1,751 .00034

2 2,650 .00018

3 3,112 .00009
4 3,349 .00005

5 3,471 .00002

10 3,594 .000001
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But, let us suppose that a promiscuous fraction, p, retains a

ka value L times that of the less promtscuous population.

Our model becomes:

dYI/dt- km X1(YI.LY2 )/( XI.YI*L(Y2 *X2 ))-(U* p) YI

(2.6.8) dY2 /dt- km LX2 (YI+LY2 )/( X I+YIL(Y2 #X2 ))-(4i 1) Y2

dXlIdt" - KC XI(YI.LY2 )I( XI+YI+L(Y2 +X2 ])+(I-p))-ilXI

dX2 /dt- -km. LX2 (Y I +LY2 )/( X 1 +Y I +L(Y2 +X2)P-pX2

Below, we consider the case where ka -.05

L- 5. and p a .1.

Table 4. Projection of AIDS with p - .10

YEAR CUlM. DEATHS FRACTION INFECTIVE

1 2,100 .0005

2 4,102 .0006

3 6,367 .0007

4 9,054 .0008

5 12,274 .0010

10 40,669 .0020 ,

15 105,076 .0059

20 228,065 .0091

We notice how the presence of even a small promiscuous

population can stop the demise of the epidemic. But, If this

proportion becomes sufficiently small, then the disease Is

removed from an epidemic to an endemic situation, as we see

below with p-.95 and all other parameters the same as above.

VS
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Table 5. Projections of AIDS with p - .05

YEAR CULM. DEATH5 FRACTION INFECTIVE

1 1,917 .00043 all

2 3,272 .00033

3 4,344 .00027

4 5,228 .00022

5 5,971 .00019

10 8,263 .00008

15 9,247 .00003

20 9,672 .00002

The dramatic effect of a small promiscuous population may be

considered In the case where 901 of the population has a ka of

.02 and 10% has a ko of .32. This gives a population with an

overall ko of .05. If this low value is maintained across the

population, then we have seen that the disease quickly dies out.

But consider the situation when the mix Is given as above.

Table 6. Projections of AIDS with p - .1, koc-.02, L-16

YEAR CUM. DEATHS FRACTION INFECTIVE

1 2,184 .0007
2 6,536 .0020

3 20,583 .0067

4 64,157 .0197

5 170,030 .0421

10 855,839 .0229

15 1,056,571 .0122

20 1,269,362 .0182
225 1,.',
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One prediction about AIDS Is that there Is a "Typhoid Mary"

phenomenon. That means that the actual transmission rate is

much higher than had been supposed, but only a fraction of the

Infected develop the disease quickly. Another fraction become

carriers of the disease without themselves actually developing

the physical manifestations of the disease, except possibly

after a long interval of time. To see the effects of such a

phenomenon, let us suppose km -. 05, but 502 of those who

contract the disease have a life expectancy of 100 months

Instead of only 10.

Table 7. Projections of AiDS with kc-.05 and Half of the

Infectives with §-.01

YEAR CUMl. DEATHS FRACTION INFECTIVE

I 1,064 .00066

2 1.419 .00075

3 2,801 .00089

4 3,815 .00110

5 5.023 .00130
10 16,032 .00330

15 44,340 .00860

20 115,979 .02210

Such a disastrous scenario Is, naturally, made much worse as

We Increase the fraction of those with the long sexually active
iMfe expectancy. For example, if this proportion is 90S, we have

226
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Table 8. Pr-ojections of AIDS with 903 Having Life Expectancy

of 1O0 Months

YEAR CUM. DEATHS FRACTION INFECTIVE

1 457 .0094

2 1,020 .0013

3 1,808 .0020

4 2,943 .0028

5 4,587 .0041

10 32,911 .0260

15 194,154 .1441

20 776,146 .4754

If the Typhoid Mary phenomenon is an actuality, then the

effect of AIDS Is likely to be catastrophic Indeed. (Note that no

presence of a promiscuous subpopulatlon Is necessary to cause

this catastrophic scenario.) However, this would Imply that

AIDS was a new disease, contrary to the historical evidence. It

seems most likely that AIDS has always been endemic in a

species of Central African monkey and that its presence in the

human population is of long standing. Indeed, the present entry

Into the United States appears to be via Haiti, which has not had 4

significant African Immigration for centuries. Since the

disease has been noted in the United States, studies show the

disease present in Tanzania, Uganda, Zaire, etc. These studies

contain even more noise than those in the United States, which

are very noisy indeed. (Also, It Is Interesting to note that

claims have been made that the disease is frequently now of

epidemic proportions in the heterosexual population. How much

of this latter phenomenon is real, and how much of the real
227 ,
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heterosexual cases are due not to sexual contact, but other

factors, e.g., zealous local medicos dispensing shots with

unsterilized needles, is a matter of conjecture. If vectoring

sexual vectoring into the heterosexual population is truly such

an enormous problem in Africa, we need quickly to understand

what the reasons are.) How likely, we must ask, is it that

genetic drift In the AIDS virus would have proceeded in such

widely separated populations to produce epidemics in both the

United States and Central Africa at the same time? Anecdotally,

a pathologist at the Texas Medical Center has Informed me that

some of his colleagues, nearing retirement, now recall young

male patients with AIDS symptoms as long as 30 years ago, but

in such occasional numbers that there was no attempt to

characterize such rare occurrences in any systematic faehlun.

If AIDS is not a new disease (and evidence that it is might

well be Investigated as an act of war by a hostile power with

genetic engineering capabilities), then we ought to nk what hat

changed in order that an endemic disease has now reached

epidemic proportions. It seems most likely that the reason is

that the large contact rates (k), which characterize the

frenetically homosexual communities whith exist In some

American cities, have never occurred before in the history of

the world.

Some Suggestions From The Model

1. The most Important elements in AIDS which will cause its

essential elimination are:

low value of ac

awfulness of the disease
228
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2. As the diseased traction of the target population, Increases,
k wti I decrease

x~ will decrease
It will Increase

3. Intervention by the State in the form Of a publicity campaign

giving a graphically realistic assessment of the prognosis of zi

AIDS victim would be useful. BeOaBSe of the very significant

effect by a small subgroup having large numbers af potentially

contagious contacts, the closing of meeting places (bath houses,

etc.) where high contact rate activity takes place would be

ussful. If such places were closed, then the homospxual
communities In a number of American cities could possibly last

indofitnitely. However, the resistance to such steps an the basis
of civil itbertartan consderations, will insure the destruction

of theine communities.
4. Vectoring into the heterosexual population will not be a

serious problem because of the much lower leve' of prom Iscuity
among t~raights.

5. AIDS wiil eliminate the target subculture, not through
fati ty but through f ear of f atal Ity. The ul t Imate 'curs" of the
disease will be sociological, rather than medical.

-EEENE
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CHAPTER 4. SOMI TECHNIQUES OF NONSTANDARD DATA ANALYSIS

Section 1. A Glimpse at Exploratoryj Data Anhlysis

Books have boen written on John W. Tukeges revolutionanj

tee~hnique of exploratory data analysis (which Is genera~l~i

referred to simply as EDA). and we can only hops In a brief

discussion to shed some light on the fundamentals of troat

subject. floreover, the point of view that I take In this section

represents my own perceptions, which may be very dirfuorsnt
from those of others. Some of the enthusiasts of FDA V riquently

take a philosophical position which I would charocteriza as
being very strongly toward that of the Radical Pr-agmatist
position In the Introduction. A common phrase that ane hears Is
that OEDA allows the data to speak to us .in unfettered feshion.0

The afetterso here refer to preconceived mndels which can get
between us and the usefull Information in the date. The pos~tio
might be characterized bp Will Rodger's fs~'us dictum, Olt isn't

so much ignorance which harms we. it's the things we know that
aren't so.0

Whereas I believe that peresatiou~s are alwii ir. tho !ill'O at
preconceived models, which we hope to mcinsUl and ste sovove,

there Is much more to EDA than the anti-model position of some

of Its adherents. It Is this "much~ more" about whizh I wish to
speak. The digital computer Is a mighty device in moot
quantitative work these days. Yeli It han serious limitations

which did not so much epply to t~he now discardad atcaloq devices
of the 1950's. Analog devices were very rinch cr~ientmd taviwarbi
holistic display of the output of a model. Th~ey were not

oriented toward dealing with mountains of date, nor were theyj

particularly accurate. Digital devices, on the other hand, cea beI

Ad .30
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muds as accurate as we wish end handie the storsgs ai%4

manipulation of digitized infornietion extremelq well.

At this point In time, we have hardware which In very much

trore "tress* oriented than 'forest" oriented. We con easily ask

that thvis or that set of operations be perorvneiý on this or that

megabyte of encoded data. Buit we ev'e increasingig aware of the

cognitivo untrtendliness o~f copin~g with digitatlly processed

Information. Analog devic-es were inuch closer to the way the

human brain reasons then are digital d~evices.

Perhaps what is necded is a h~bridtzed device which

combines the struing points ,- both tho analog. end digital

computers. But suc~h a hardware d~vice will bo gears in brlinging

to d sucico~stul constructirt. In. tth, mean time, what do we do?

One approach hilight tbe simplU to tr'V to ýsat problems to death

an the inumber cruncher.- But juchi an appro~ach quickly, iutallW We

have the computer power to obtain pointwise estima~tes of ten
dimehosional desi~3tj fnctions using data sets of sizes In theI tons of t~ousbods. But where shell we evalumto such a .19nsity

function? New shall the computer be troinei to distill vast

bcdi~vs of information into sumtraries which are useful to us?

Thesei are d~ficult prublems end the answeurs will be coming In

aiccamal for come time.

In ths e rntimp' we nosd to copwe, it is tjis necessity

somehbw to address the fact thait the digital computer has

outstripped our abil~tts to usc the Information It gives us that

EIDA ad~1resses. Moeding a good analog proccissor to handle the

oigital information and having none, a human observer Is used

to fulflill the analog fainction.

Onoi racurring themve in science fictiorn has been the human

whoIs lugedInt acomputor sstem. Out the observer fn EDA,,
x~Ži~"'I
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unlike the sci-f I cyborg Is not hardwired ikto the system, is rot

deprived eo his freo,#il, is In fact It. control of the digitlI

system. One presest lIm••ation ef exploratory diAta aneliss is

the slow Input-output pertormence of friewllled human

observers. Thus, man-In-the-loop EDA could not be used, for

example, to differentiate between incoming missles and decoys

in the event of a large scoe,' attack. EDA is exploratory not only

in the sense that we can use it for analyzing date sets with

which we have little experience. We should also view EI)A as an

alpha utop toward the construction of the ana)og-digital hybrid

computer, which will not have the slow input-output speeds of

the human-digital prototype.

In the discussion below, we shtill address some of the

Important humnn perception bases of EDA. Lot us give a short

list of some of these:

(I) Tho only function which can be Identified by the human

eye Is the straight line.

(2) The gee expects adjacent pixels to be likely parts of a

common whole.

(3) As points move for apart, the human processor needs

training to decide when points are no longer to be considered

part of the common whole. Because of the ubiquity of situations

where the Centra] LUmit Theorem, in one form or another,

applies, a natural benchmark is the normal distribution.

(4) A point remains a point In any dimension.

(5) Symmetry riducoc the complexity of data.

(6) Symmetry essentially demands unimodality.

Lot us address the EDA means of utilizing the ability of the

human eye to recognize a stralght line. We might suppose thait

since linear relationships are not all that ubiquitous, the fact

human232
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that we can recognize straight lines is not particularly useful.

Happily, one con frequently reduce monotone relationships to

straight lines through transformations. Suppose, for example,

that the relationship between the dependent variable V and the

independent variable x is given bg
(4.1.1) g = 3,-2x

We show a graph of this relationship in Figure 1.

LUTRANSFOIM DATA

35

y 4

10 4

444 0

0 . o I I o I . I : : I

0 1 2 3 4 5 6 7 9 9 10 11 12
X

Figure I

We can easilg see that the relationship between x and g ia
not linear. Further, we see that V is increasing in U at a faster

than linear rate. Further than this, our visual perceptions ore

not of great use in Identifying the functional relationship.

But suppose that we decided te plrt the logarithm of y

against x as shown in Figure 2.

233
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T t"RMM! DATA

I~o

It isl

Figure 2
* Now we have transformed the relationship between x and V to a

,linear one. B recalling how we transformed the data, we can

* complete our task of Identifying the functional relationship

between x and U. So. then, we recall that we started with an

unknown functional relationship

(4.1.2) y =fI W.

But thin we saw that ln(y) was of the form

(4.1.3) In.y) = a + bx.

Exponentlating both sides of (4.1.3), we see that we must have a
relationship of the form:

(4.1.4) , =aebx.

Once we know the functional form of the curve, we can estimate

the unknown parameters bg putting In two data pairs (x15vt) and

(X2,92) and using (4.1.3) to solve:

(4.1.5) In (y) = a+ bx 1

In. ( 2 ) a* bx 2
234
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This immediately gives the true relationship In (4.1.1).

Clearly, we will not always be so fortunate to get our

transformation to linearity after trying simply a semilog plot.

We might, for example, have the relationship

(4.1.6) y = 3x-4 .

In such a case, simply taking the logarithm of g will not give a

linear plot, for

(4.1.7) in(9) = n(3) +.4n(x)

is not linear in x. But, as we see Immediately from (4.1.7), we

would get a straight line If we plotted In(y), not versus x, but

versus ln(x). And, again, as soon as the transformation to

linearity has been achieved, we can Immediately infer the

functional relationship between x and y and compute the

parameters from the linear relationship between ln(y) and ln(x).

Now it is clear from the above that simply using semilog and

log-log plots will enable us to Infer functional relationships of

the forms

(4.1.8) y=aebx

and

(4.1.9) y=axb, repectively.

This technique of transforming to essential linearity has

been used In chemical engineering for a century in the empirical

modeling of complex systems in mechanics and thermodynamics. W4

Indeed, the very existence of log-log and semilog graph paper Is

motivated by applications in these fields. In the classical

applications, x and y would typically be complicated

dimensionless *factors," i.e., products and quotients of

parameters and variables (the products and quotients having

been empirically arrived at by "dimensional aialysis") which one

would plot from experimental data using various kinds of graph
235
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paper until linear or nearlg linear relationships had been

observed. But the transformational ladder of Tukeg goes far

beyond this earig methodologg bg ordering the transformations

one might be expected to use and approaching the problem of

transformation to linearitU in methodolical fashion. For

example, let us consider the shapes of curves in Figure 3:

A

y B

Figure 3

Now it Is clear that curve A is growing faster than linearly.

Accordingly, If we wish to Investigate transformations which

will bring its rate of growth to that of a straight line, wit need
236
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to use transformations which will reduce its rate of growth.

Some likely candidates In increasing order of uuverlti of

reduction art:

1i/2

(4.1.10) V1/4ln(g)--•

In(In(g)).

Similarly, if curve 0 is to be transformed to linearitgy we might

try, In decreasing order of

severitg:

exp(eV)

(4.1.11) exp(g)
U4
2

9.
Putting the two groups of transformations together, we can

build a transformational ladder:

exp(eU)

(4. 1.12) exp(g)

94

V S

1l/2

91/4

In(g) ).

The shape of the original Y curve points us up or down the 'N

transformational ladder. 0

Using the transformational ladder to find more complicated

functional relationships between V and x becomes much more

difficult. For example, it would require a fair amount of trial

ý1
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and error to infer a relationship ouch is

(4.1.13) -4 * 2X2 *. x

Furthermore, we must face the fact that in practice our dati -a

will be contaminated by noise. Thus, uniqueness of a solution

will likely eoed. us.

For, a great many situations, the use of Tukeu's

transformational ladder will bring us quickly to an quick

understanding of whit Is going on. The technique avoids the use

of a criterion function end uses the visual perceptions of an

observer to decide the driving mechanism.

For more complicated problems, we can still be guided by the

philosophy of the technique to use the computer to handle

situations like that in (4.1.13) even when there Is a good degree

of noise contamination. We might decide, for example to use

least squares to go through a complex hierarchy of possible

models, fitting the parameters as we went. So, then, we might

employ

(4.1.14) S(hodel~in x)) = -(v - Model) 2.

If we have on appropriately chosen hierarchy of models, we

might have the computer output those which seemed most

promising for further investigation. The problem of choosing

the hierarchy is a nontrivial problem In artificial intelligence.

We must remember, for example, that if models in the hierarchy

are overpiarmeterized, we may come up with rather bizarre and

artificial suggestions. For example, if we have 20 data points,

a lth degree polynomial will give us a zero value for the sum

In (4.1.14).

Let us now turn to the second of the perception based notions

of EDA: namely the fact tihat the eye expects continuity, that

adjacent points should be similar. This notion has been used
238



Z17

Jams I. Tbampsee Explerrulmg Deta Aseipis

with good ef fect, f or example, in Ocleening up' NASA
photographs. For example, let us suppose we have a nolig
monochromatic two dimensional photograph with light
Intensities measured on a Cartesian grid as shown In Figure 4.

(x~y+h)

(x-h,y) 00(x+h,y)
(x,y)

0
(x~y-h)

Figure 4

We might decide to smooth the ilitsnsities, via the henning
formula

(4.1.1 S)Kxjy) 4j4kx,y).Kx-h.y).Kx..h,y)*Kx~y-h).Kx,y *h)I 10

where IOxU) Is the light Intensity at grid point (x.U).
Valuable though such e smoothing device has proven Itself to

be (note that this kid of device was used bU Tukeg end his
associates 40 veers ego in time series applications),, there is
the problem that outliers (wild points) can contaminate large
portions of a date set If the digital filter Is applied repeatedly.
For example. suppose we consider a one dimenslonal date set,

which we will smooth using the henning rule

239
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At the ends of the data set, we will simply use the average of

the eandpoint with that of the second point. We show below the

data set followed by succesive harming smooths:

Table 1. Repeated Harming Smooths.

Data H HH HHH

I 1 1 16.61
1 1 63.44 94.66
1 250.75 250.75 235.14
1,000 500.50 375.62 313.10
1 250.75 250.75 235.14
1 1 63.44 94.66
1 1 1 16.61
1 1 1 1

We note that the wild value of 1,000 has effectively

contaminated the entire data set. To resolve this anomaly,

Tukey uses a smooth based on medians of groups of three down

the data set, I.e., we use the rule
(4.1.16) tx) 4- Mod [(x-h),lx),lx6h)j

The endpoints will simply be left unsmoothed In our discussion,

although better rules are readily devised. In the data set above,

the smoothing by threes approach gives us what one would

presumably wish, namely a column of ones.

As a practical matter, Tukey's median filter is readily used

by the computer. It is a very localized filter, so that typically

if we apply it until no further changes occur (this is called the

3R smoother), we will not spread values of points throughout

the data set. Note that this is not the case with the hanning

filter. Repeated applications of the hanning filter will continue

to change the values throughout the set until a straight line

240
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results. Consequently, it Is frequently appropriate to use the 3R

filter followed by one application of the banning filter (H). The

combined use of the 3RH filter generally gets rid of the wild -S

points (3R), and the unnatural plateaus of the 3R are smoothed

by the H. Far more elaborate schemes are, of course, possible.

We could, if we believed that two wild points could occur in the

same block of three points, simply use a 5R filter.

Below we perform a 3RH smooth on a data set of daily unit

productions on an assembly line.

Table 2. Various Smooths.
Day Production 3 3R 3RH

1 150 150 157.5

2 165 165 160.25
3 212 193 le8

4 193 201 199

5 201 201 201

6 220 201 199.5
7 195 195 190.25

0 170 170 176.25

9 161 170 167.75
10 182 161 160.25
11 149 149 142.25

12 110 110 117.5
13 95 101 101.75
14 101 95 07.75
15 60 60 64.25

16 42 42 46.5

17 15 42 46.5
18 110 60 55.5

19 60 00 60 6020 so 60 57.5 ••

21 50 50 50

22 40 40 45

A graph quickly shows how the 3RH smooth approximates

closely what we would do if we smoothed the raw data by eye.

-. 241,
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Ra•,, aMd Sm

S. 250

501a A • Ray Data

Dalyj Projctioam 3 Sn

100

I m 791

1 3 .9 7 9 1

Figure 5

At this point, we swould mentio-a thet aUl the smooths ef EDA

ure curve fits, L'ot derived models. Ws clearng find the 3RH

smooth a more visuallg appealing graph than the raw data. But

the data was measured precisely; the fluctuations really wer"

there. So, in a sense, we have distorted realitg by applying P•e

3RH smooth. Why have we applied it nevertheloss? The human

visual system t ,nds to view and store in memry,- such a record

holistically. Whether we smoothed the data or nut, our age

would attempt to carry out more or Iess equivalewit operations

to those of 3RH. T he human eye expects continuitg and we do not

readilg perceive da.c digitally. The sm3oth gives us a

benchmark (the forest) around which we caw attempt to place

the trees. For example, wa might ask whao was causing the

unexpactedly low production on dog 17. As we mentioned earlier,

"242
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EDA tries to assist humans to carrg out the analog part of the

analgsis process. The 3RH smooth done on the computer verj

neerig reproduces the processing carried out bg the human age.

In a very real sense, Tukeg's deceptivelg simple 3RH smooth is
a powerful result to artificial intelligence.

Lot us fiow address the third point, the making of the

decifion that a point has removed itself from a class by extreme

behaviour. We note that we have alreadg addressed this point

somewhat, since we have discussed the use of the median and

hanning filters.

If we seek a benchmark by which "togetherness" of a group of

points can be measured, we might decide to use the ubiquitous

normal distribution. We note that for this distribution,
z

(4.1.17) P[X1x] = lt~r(2 ) exp[-t 2
-00,

where z -1(x-)/O , with X Iboving mean ji and standard

deviution a, respectively. For the normal distribution, the value

z=.675 In (4.1.17) gives probability .75 By symmetry, the value

z -t -. 675 gives probability .25. Tukey calls the corresponding x

values "hinges." The difference between these standardized

values is 1.35. Let us call 1.5 times this H spread (interquartile

r3nge) a step. Adding a step to the standardized hinge gives a z

valuc, Pf 2.7. This value of 2.7 represents the standardized

"upper Inner fence." The proabclitp' a normal variate will be

greater then the upper Inner fence or less than the lower inner

fence is .007x one percent. Adding another step to the upper

inner fence gives the "upper outer fence" (in the standardized

case with mean 0 and standard deviation 1, this will give
243
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z-4.725). The probtability of ; normal varuate not felmng

between the outer fences is .0000023, roughlg two chences Ine

million. It could be argued that a value which fN1ls outside the

inner fences bears Investigetion to spa whether It is resllj a

member of the group. A value outslde the outer fonces Is ma~t

likoly not n member of iho. group. (Notei that both thtese

statements assume the Onto s9t is of'modest size. If thi re arn

a million datM points, ell from th• same Pof'•ol uiztribution., we

would expsct 700 to fall outstdo the innbr fences and 2 to f'i

outside ths outer fences.)

Let US examine a data set of annual incomes of a set of

thirty tax returns supposedly cho;sn at random f 'rm those filed

in 1938, Suppose the reported Incomes are 700, AOM,, 1500,

2500. 3700, 3900, 5300, 5400, 5900, 6100, 6700, 6900, 7100,

7200,7400, 7600, 1900, 0100, 0100, 0900, 9000, 9200. 9300,

9900, 10400, 11200, 13000, 14740. 15100, 1i50.

We first construct a "stem-end-leat' plot with units in

hundreds of dollars. We notice that the 'plot" appabrs to be a

hybrid between a table and a graph. In retording the actual

values of the data, Instead of only counts, Tukey's

strm-mnd-leaf plot gives us the visual informatton of a

histogram, while enabling full recoverli of .•ach data point. Here

is a• exemple where we con see both the forest and the tress.

2
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Table 3. Stsm-smd-Leaf --- unit 100 dollars

Depth

3 1 5
4 2 5
6 3 79i

4
9 5 349
12 6 179
17 7 12469 Y
13 a 119
10 9 0239
6 10 4
5 11 2

12
4 13 '0

3 14 7
2 15 1

116 9

From the above stemn-and-leal plot, it Is clear that certain tacit

assumptions have been made. For example, we compute the
OdepthoQ from both ends of tho et. Thus, a kind of symmetrical

besichmark has Ueso assumed. Lot us fu~rther point to symmetryj

by computing the median ( the average of the two Incomes tat

4epth 15 from the top evd thiat of depth 15 Iromn the bottom),

namely 7500 dollars. The two hinges; can be obtainel by going up

to thi two averages of incomes of dep'h 7 and S. Thus thie lower

hinge ts 5350 aod the upper hinge Js 9600. A stop Is givon by

(0600,5350)1.5 =6375. Thus, the tivo inner MbCes uro givan bo
- 1025 and ý 975. Thb two outer feonces are qi von by -7400 and

22350. We note .mmsdizsteig on~e income (16900) falls outside

the inner fance~i, hut none outeiIde the outer fences.

'Nr4
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Let us now consider the various popular summarg plotv used

fusr the Incomo Infieemation, Ws hive alreoidg lien one,~ the
stem-aand-leef. Although t611s piot looks very much like a
htstorgremn turned on its aide, we note that It shows not onlyj

the forest, Wu also the trees, sinice we could completely

recover our table from the plot. In the present sWtuation, the

natem-and-!aaf mWjnt be sotftlcient data compression. Let us

conolder, however, some athbr plots.

The "flive figure summa'iJ" plot below shows the mirnk,

hinges snr6 extr~e,#a upper and lower inr'ines.

Five Figure Summary

M 15h 3500

Figure 5

Cloar, the five figure summarS. Is much nmores comprekesed

than the stem-i'nd-leef. But, It dvv~ emphasis to the supposed

conter of sgmm~try an look* at thi.# hinges and extremal values.

Nuturfi~g, es the sarnpie b-icomcs larger, we woul'I expect that

ihe me~dian arnA the hingto do itot %:hbnge much. Du-t Os sxtremsoi

values certeanlg will. A e~~h~o nhanc~ement of the fWive figurtr
suppmeor ýs the Obo.-and-whiskors plot shown Wi Fgurs 7.

a24
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Figure 7
Box-and-Whiskers Plot 17500

15000

12500

Income (dollars)
10000

7500

5000

2500

0

A generally more useful plot then the box-and-whiskers

representation Is the "schematic plot." Essentially, In this plot,

the ends of the "whiskers" are the values Inside the inner fences

but closest to them. Such values are termed "adjacent.

Essentially, then, the schematic plot replaces the extremal

values with the .0035 "percentiles."

'I
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Figure 8
Schematic Plot

17500

15100 -- -- ------- 15000 -

12500

Income (dollars)
10000

7500

5000

2500

700 -- -0- 0

In the above, we seem to have a date set which Is not at all

inconsistent with the assumption of being all "of a piece." We

might have felt very differently If, sag, we had been presented

with the above Income data which someone had mistakenly

raised to the fourth power. 6oing through our standard onalgsis, 0

we would find values outside the upper outer fence. Yet. the

data has essentially not been changed, only transformed. Before

declaring points to be untgpical of the group, if we believe in S

symmetry and unimodalitg, we should run through our

transformational ladder until we have brought the data to a

state of near sgmmetr. If we did this, for the example 0

mentioned, we would arrive at something very near the original

data given in Table 3, and that data set,. as we have seen, does

248 0
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seem to be part of the some whole.

Now it Is clear that the representations of date sets

discussed above are built upon the assumption of

transformability to symmetry about an internal mode. If we

accept this proposition, then the further use of the normal

distribution as a benchmark Is nontraumatic.

In the next section, we shall briefly discuss an approach,

nonparemetric density estimation, which does not build upon the

assumption of unimodality. Obviously, such an approach must

struggle with representational difficulties about which EDA

need not concern Itself. There Is a crucial issue here. Now

reasonable is it to assume unimodality and symmetry, and does

this assumption get better or worse as the dimensionality of the

data set increases? My own view Is that the problem of dealing

with the pathology of outliers (extremal points which are to be

discarded from membership in the date set) is not as serious as

that of multimodality, and that the even more serious problem

of data lying in bizarre and twisted manifolds in higher

dimensional space ought to begin receiving more of our

attention.

One further issue that nonparametric density estimation
investigators must face is that of representation of the density
function suggested by the data. For higher dimensional

problems, EDA neatly sidesteps the representational issue by

looking always at the original data points, rather than density

contours. Let us consider two dimensional projoctions of a three 0

dimensional data set generated by the routine RANDU. In Figure

9, we notice what appears to be more or less what we would

expect a random set to look like. But using the interactive 0
249
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routine MacSpin (D2 Software), we can "spin" the data around the

axes, to arrive at the nonrandom looking lattice structure in

Figure 10.

.. .5 . . :. .*. .S.!

S S

I • I * I I* ; 5 I*
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Figure 9o
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%

The human-mac inInteractions posbewith api a

personal computer version of Tukey's PRII-g 'cloud analysis,

are truly Impressive, certainly the most Impressive graphics

package I hive get seen for, personal computer.

Several problems of dealing always with a scattergrom
based analysis are obvious. For example, as the size of the data

set approaches infinity, the data points will simply blacken the

screen. It would appear that there are advantages to dealing

with data processors that converge to some fixed, informative
entity--e.g., the density function. Furthermore, whereas the

automitization of such EDA concepts as the 3RH smooth are

straightforward, the taking of man out of the loop with MacSpin
Is a very complicated problem in, artificial Intelligence. By

opting not to use such easily automated concepts as contouring,

EDA relies very much on the human eye to incorporate continuity

In data analysis. 251
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Section 2. Nonparametric Density Estimation

Perhaps the oldest procedure for looking at continuous data

Is that of the histogram and its precurrsor, the sample cdf. We

have earlier discussed the life table of John Graunt, which gave
the world Its first glimpse at a cumulative distribution Ea

function. It Is interesting to consider that this first approach

to continuous data analysis started with an actual data set,

was heuristic and preceded parametric data analysis. We see

here a rather common trend in statistics, and in science more

generally, namely that the search for a solution to a real

problem is generally the way that important technique is

developed. Although many of us spend a great deal of time

trying to find applications for "useful" theory, historically the

"theory in search of an applicationu approach is less fruitful

than attempts to develop the methodology appropriate for

dealing with particular kinds of real world problems.

If we know virtually nothing about the probability

distribution which generated a datr set, there are a number of

ways we can proceed. For example, we might decide (as most

do) that we will demand that the data conform to our

predetermined notions of what a 'typical' probability denvity

function looks like. This frequently means that we will pull out

one of a rather small number of density functions In our memory

banks and use the data to estimate the parameters

characterizing that density. This is an approach which has been

employed with varying degrees of success for a hundred years or

SO.

There is a strong bias in the minds of many toward the

normal (also named Gaussian or Laplacian) distribution. Thus,

Ok~ MýY %
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we could simply estimate the mean p and variance 0 in the

expression
(4.2. 1 ) f(AlIi, a2)_ 1 /,((211G2)expj_(X-lj)2/(202)].

Such a belief in a distribution as being "universal" goes back to

the nineteenth century. Francis Galton coined the name "normal"

to indicate this universality. He stated (1879), "1 know of

scarcely nothing so apt to impress the imagination as the

wonderful form of cosmic order expressed by the 'Law ofI

Frequency of Error.' The law would have been personified by the

Greeks and deified, if they had know of it. It reigns with

serenity and in complete self-effacement amidst the wildest

confusion. The huger the mob and the greater the apparent

anarchy, the more perfect is its sway. It is the supreme law of

Unreason."

Galton is here discussing the practical manifestations of

the Central Limit Theorem, i.e., the fact that if we sum random

variables from most practical distributions, then the sum tends

to a normal variate. So strong was Galton's belief in normality

that in cases where the data was manifestly non-normal, he

assumed that somehow it had been run through a filter before It

was observed. Thus, Galton proposed such related distributions

as the log-normal. Clearly the transformation to symmetry

which is so important in EDA is very much in the spirit of

Galton.

In most applications, it Is very hard to see how the

resulting data points are each in actuality, the result of a

summing process which would produce normality. Nevertheless,

it is a practical fact. that very many data sets either are nearly

normal or can be transformed to near normality by a

transformation to symmetry. Galton was not naive, even less so
253
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was Fisher. Both used the assumption of normality very

extensively. Although we can get in serious trouble by assuming

that a data set is normal, it seems to be a fact that we get

effective normality more often than we have a right to expect.

When data Is not normal, what shall we do? One approach

might be to seek some sort of transformation to normality, or

(in practice, almost equivalently) to symmetry. This is very

much In the spirit of EDA. If the data can be readily transformed

to symmetry, there is still the possibility of contamination by
-outliers." These may be Introduced by the blending in of

observations from a second distribution, one which does not

relate to the problem at hand, but which can cause serious

difficulties if we use them in the estimation of the

characterizing parameters of the primary distribution. Or,
-outliers" may be actual observations from the primary

distribution, but that distribution may have extremely long

tails, e.g., the Cauchý distribution. From one point of view, EDA

can be viewed as a perturbation approach of normal theory. The

data is "massaged' until it makes sense to talk, for example,

about a location parameter.

Nonparametric density estimation has its primary worth in

dealing with situations where the data Is not readily
,?

transformed to symmetry about a central mode. As such, it is

much farther from normal theory than EDA. Although some (e.g.,

Devroye and Gyorf0) have developed techniques which are

designed to handle outlier problems, the main application of

nonparametric density estimation is in dealing with regions of

relatively high density. Unlike both classical parametric

estimation and EDA, the methodology of nonparametric density

estimation is more local and less global.
254
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For example, let us suppose that the data comes from a

50-50 mixture of two univariate normal distributions with unit

variances and means at -2 and +2, respectively. The classical

approach for estimating the location parameter would give us a

value of roughly 0. The blind use of a trimmed mean approach

would also put the location close to 0. But, in fact, it makes no

particular sense to record 0 as a measure of "location." We

really need to use a procedure which tells us that there is not

one mode, but two. Then, using the two modal valucis of -2 and

42, as base camps, one can gingerly look around these local

centers of high activity to get a better glimpse at the structure

which generated the data.

Naturally, for low dimensional data, simply looking at

scattergrams would give the user a warning that normal theory

(or perturbations thereof) was not appropriate, In such cases,

such EDA approaches as MacSpin are particularly useful in

recogni7ing what the underlying structure is.

As has been noted in the section on EDA, there are problems

in getting the human observer out of the loop for such

procedures as MacSpin. Another problem is that in cases where

there are a great number of data points, a scattergram does not

converge to anything; it simply blackens the page. The

scattergram does not exploit continuity In the way that

nonparametric density estimation does. It makes sense to talk

about consistency with a density estimator. As the data gets

more and more extensive, the nonparametric density estimator

converges to the underlying probability density which
characterizes the mechanism which generated the data.

Tb get to the 'nuts and bolts" of nonparametric density

estimation, we recall the construction of the histogram. Let us
255
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take the range of n univariate data points ;Rnd partition It into mT

bins of width h. Then the h~istogram estimate for the density in

a bin Is given by

(4.2.2) fH(x) (*data points in bin containing WO/Nh.

Figure 1

The graph in Figure 1 shows the kind of shape of the histogram

estimator. Clearly there are disadvantages.The histogram

estImAtor has discontinuities at the bin boundaries, and any

naive attempts to use the estimator to o~aln derivative

information of' the underlying density are inappropriate. The

mean square error rate of convergence of the estimator is

n-23 . A recent paper of Scott (1985) shows how by simply

computing 16 histograms, the oirgin of each shifted from the

preceeding h/ 1 6 to the right, and averaging poin't by point over

each of the histograms, many of the undersirabie properties of

histograms are overcome, while still retaining the rapid

computational speed of the histogram estimator. (For an

interesting use of the histogram. in blvariate systems, see

H-usernann (1986).)

Next to the histogramn (.nd, significanutly, the histogram is

ritill the most used nonparamietric density estimator) the ritost
popular nonparametr'ic density estimator is the kernel

estima~tor, proposed first by Rosenblatt (1956) and extended and

explicated by Parzen (1962). Here, the estimator at a point x is

25 6
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given by

(4.2.3) fK(X)U - 1K((x-xiJ/h)/nh

where K is a probability density function and the summation is

over the data points (xi). A popular kernel here Is Tukey's

biweight

(4.2.4) K(y) = (15/16) (1 -y2 )2 for Iyli I.

The order or convergence or the mean square error for most

kernels is n-45. Moreover, the procedure gives a smooth

estimate as shown In~ Ngure 2. A practical Impelementation of

the kernel estimation procedure (NDKER) Is Included In the

popular ItISL library.

Figure:?

It is possible to use estimators of this sort to obtain

derivative estimates of the underlying density. The

determination of the~ bandwidth h can, in theory, be determined

from the formula

(4.25) h = -n 115[JK2(y)dy/(fy2 K(y)dy)2J1115X Ijf-(ty))2dyf-1 /5.

The problem here is that we do not know f, much less fe. An
approach suggested by Scott, Tap~a and Thompson (1977) is to

make a preliminary guess for h, use (4.2.3) to obtain an estimate

for f, differentiate it, and plug into (4.2,5). The process is

continued until no further change In the estimate for h isa
257
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obsorved. A mcora sopt~s~cated approach for th~e selectlood of hi

has recently been given, by Scott and Terrell (1986).

A more local procedure than the kernel estimator is the kth

nearest neighbour kernel estimate

(4.2.6,1 fx) - Ia xx)d~)/n~)

where dk(x) Is the distance from x to the Kth data point nearest

to It, The bandwidth parometer here Is, of course, K.

Another estimation procedure Is the maximum penalized

likelihood approach suggested by Good and Gasklns (1971) and

generalized by deMontricher, Tapia and Thompson (1975) Scott,

Tapia and Thompson (190). and Silverman (1982). In one of the

simple formulations, the procedure finds the f whclO maximizes

(4.2?7) J(f) X1log f(xi) 4m("y)~y

An implitmentation (NDIIPLE) is given in% the IMSL library. The

maximum penalized likelihood approach Is partitularly useful Mn

problems associated with time dependent proceases (see, e.g.,

Dart uszgniski,Brown, flcBr~dq and Thompson, 1901).

it is unfortunate that well over 952 of the papers written

In the area of nonpararnetric density estimation deal with the

univariate dat2 case, for we now have many procedures to deal

with the one dimensional situation. The problem in the higher
dimernsiona; case is very different from that' with one
dimensional data, as we argue below.

Supo~se we are given the choice between two packets of

inf ormation.

dA: a random sample of size 100 from an unknown denisty

8: exact knowledge of the density on an equispaced mesh ofIsize 100 between the IN and 991 percentiles.
For one dimensional data, most of us, most of the time will opt

2588
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for option B. However, for four dimensional data, the mesh In

option B would give us only slightly more than three mesh points

per dtimans.oin. We might find that we had our 100 precise

values of the density function evaluated at 100 points where the

density wes effectively zero. Here we see the high price we pay

for an eq~ispavced Cartesian mesh in higher d-mensions if we

insist on using it, we will be spend most of our time fliling

about in empty space.

On the other hand, information of packet A remains useful in

four dimensional space, for it gives 100 points which will tend

to come from regions where the density is relatively high. Thus

they provide anchor points from which we can examine, In

spherical search fashion, the fine structure of the density.

Now, we must observe that the criteria of those who Mea,

almost exclusively with one dimensional data is to transform,

information of type A into information of type 5 Thus% it is

very wrong in nonparametric density estimation to believe that

we can get frý)m the one dimensional problem to those of higher

dimensionality by a simple wave of the hand. The fact is that
"even a rusty nail" works with one dimensional data. We still

know very little about what works for the higher dimensional

problems. Repre-entational problems are dominant. The
difficu!ty is not so much being able to estimate a density
function at a particular point, but knowing where to look. We

can, if we are not careful, spend an inordinate amount of time

coming up with excellent estimates of zero. We shall discuss

two of the more promising avenues of dealing with the higher e

dimensional problem below. The first is an attempt to extend

what we have learned in density estimation in lower dimensions

to higher dimensions, ernphasizing graphical display. For259
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example we see in Figure 3 (Scott and Thompson, 1983) a display

of estimated density contours uelng four dimensional remote

selksing crop data. We note that it is quite possible to

dewmonstraLe three dMmensional densities, by the use of

equidensity contours. Cleaiy, as the value of the density

function Increases, we should expect to see a smaller region

which stisfies tho condition

(4.2.8) f(XNx 2 ,A3 ) I c.

The handling of the fourth dimension, unfortunately, must be

hhndled in a fash~nn asymmetrically .•rom the other three

dimensions. In Figure :i, we have employed a bar cursor at the

bottom of the figure fbr the magnitude of the fourth variable.

We note the presence of two well separated regions

corresponding to a magnitude of 24 for the fourth variable. To

;gve an idea of the'scattergram alternative, we show in Figure

4, a display of the d,6ta from which Figurk Z was generated.
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:

F igure :9. 1 par cant~, 15 per cant,
*. 50 per cent and 80 par cent contouro

at tl~ow points 9, 14, 19, 24 and ý9
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In Figure 5, we tiote a natural extension of the density

estimati•,n procdure above using six variables.

•.. = Plot, of I contours in z,y,z

witt mouse set in control

box at (u*,v*,z*)

-. =J, =2'

-CONTOUR REPRESENTATION

CONTROL BOX

I 0

'•V * ".',

UU
Figure 5 0

The contours are given in terms of three of the variables, and

the magnitudes of the other three are varied using a control box.

262
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These procedures, on the SUN 3-160 system are under

investigation at Rice.

The similarities between such a density estimation

approach and EDA scattergrams are clear. The problem of

"fading to black" with large data sets has been eliminated.

Moreover, the presence of a "man in the loop" would seem to be

less than with the scattergram. The notion of a region having

points of density greater than a specified amount can be

automated.

A second approach (Boswel1,lq83, 1985) is automated from

the outset. The objective of the Boswell algorithms Is the

discovery of roci of high density, which we can use as *base

camps" for further investigation. In many situations, the

determination of modal points may give us most of the

information we seek. For example, if we wish to discriminate

between incoming warheads and incoming decoys, it may be

possible to establish "signatures" of the two genera on the basis

of the centers of the high density regions.

We shall below give a brief glimpse at the simplest of the

Boswell algorithms. We are seeking a point of high density, a

local maximum of the density function.

(4.2.8) Algorithm I

Xc= X0

do until stopping criteria are satisfied

Xc<--- mean of k nearest neighbours of xc.

In Figure 6, we sketch the result of (4.2.8) when applied to the

estimation of a normal variate centered at zero with Identity

covarlance matrix based on a sample of size 100 for

dimensionality (p) through 100. If we look at the standardized
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(divided by the number of dimensions) mean squared error of the

estimate, we note that it diminishes dramatically as p

increases to 5 and does not appear to rise thereafter.

MSE/p Estflatlon of it from Multlvarlate Normals

.6

k-1 0
Tf k-20

5 10 20 30 40 50

p- Dimension

Figure 6

Naturally, we need the algorithm to deal with the more complex

situation where the number of modes is large and unknown. This

has been done with the Boswell approach by making multiple

starts of the algorithm (4.2.8), saving the various xc values in a

file, and coalescing the estimated modes into a smaller

collection.

(4.2.9) Algorithm 2

For each data point x, set Xc= xI

Perform Algorithm I to produce mode estimate mi

Save mi in a workfile

end

Analyze the set (min) by cluster analytic techniques or by

repeating Algorithm 2 with the (mi) treated as the Input data

set. b
264
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Algorithm 2 appears to perform reasonably well as a

technique for finding the modes of mixtures of distributions
(e.g., Fisher's Iris data).

In summary, the primary energies of density estimation
Investigators ought to be directed to the multivariate case.
Nonparametric densit.y estimation, together with EDA

scattergram analysis appear to be the major contenders for

handling higher dimensional data whose generating density is

unknown. Many of the reasonable "nonparametric" techniques,

such as rank tests, are only usable on one dimensional data. We

now have the computing power available to answer some really

important questions of mutitivariate data. For example, what

price do we pay for following the usual technique of looking at

low dimensional projections? Ought we to make. a serious

attempt to deemphasize the Cartesian coordinate system and go

to spherical representations for multivariate data? When the

data is not unimodal, ought we to move to multiple origin

representations rather than single origin representations? How

soon can we develop completely automated nonparametric

density estimation algorithms for detection purposes? Can we

use nonparametric density estimation as an exploratory device

to get us back to algorithms based on modified normal theory?
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Section 3. Stein's Paradox

Suppose we wish to estimate the mean of a normal

distribution with covariance matrix o on the basis of an

observation X-(X, X2,...,Xp). Then, if we use the loss function

Llp*,jL) - l(lj'-ItJ)2/p, the usual estimator X has uniformly I
larger risk than some estimators of the form IL**- g(XTX) X,

where g is an appropriatily chosen function nondecreasing

between 0 and 1; I.e.,

(4.3.1) W(I}') - E[L(I.L,•)1t 2

RISK VERSUS Ili

2 __ __ __ __ __ __ __ __ __i

.........

2 0ý1

p S

Figure 26,
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Lindley in commenting on a paper by Efron and Morris (1973)

accordingly informs us:

....Now comes the crunch--notice it applies to the general linear
model. The usual theory says xi (maximum likelihood) Is the

best estimate of Pil, but Stein showed that there is another

estimate which is, for every set of I's, better than it, when
judged by the squared-error criterion except when only one or
two parameters are Involved. In other words, using standard
criteria, the usual estimate Is unsound. Further calculation
(described in the paper) shows that it can be seriously unsound:
with 10 parameters, quite a small number by the standard of
present-day applications, the usual estimate cun have five
times the squared error of Stein's estimate. And remember--it
can never have smaller squared error .... the result of Stein
undermines the most Important practical technique in
statistics....

The next time you do an analysis of variance or fit a
regression surface (a line Is aii rightl) remember you are for
sure, using an unsound procedure....

Worse Is to follow, for much of multivariate work Is based
on the assumption of a normal distribution. With known
dispersion matrix this can again be transformed to the standard
situation and consequently, in all cases except the blvarlate
one, the usual estimates of the means of a multivariate normal
distribution are suspect...

To get a better feel for what is happening, let us consider the

one dimensional case.

Suppose we wish to estimate the mean of a random variable X

on the basis of one observation of that random variable using

estimators of the form

(4.3.2) ILO -~ aX.

We will pick a In such a way as to minimize

(4.3.3) QOaX) - E[(aX-j)1 2 = a2024 2( 1 -a) 2 .

Taking the derivative with respect to a and

setting it equal to 0, we find the optimal a to be given simply by
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(4.3.4) a - p2/(p2*02).

Using this a. we find that

(4.3.5) O(aX) - i2 /(Ip2+.o 2 ) 02 ( o2 .

This is an old result and can be found In Kendall & Stuart.

Of course. in practice, we will not have pi or a2 available for our

finagle factor a. Still, we should ask why iR is that such a

factor, were it realisticIlly avalilable, helps us. Perhaps we get

some feel if we rewrite aX as (X/gl)/[l+a 2 /p 2 ] Ip. This gives us

the truth---pi---degraded by a multiplier which, if p be small

(relative to A2), would discount, automatically, large values of

X as outliers. If pi is large, (relative to A2), then we are left

essentially with the usual estimator X. Thus, there Is no paradox

in the Improvement of aX over X as an estimator for the one

dimensional case, If we know p and A2. Note, moreover, that the

argument to find a did not depend on any assumption of

normality, only on the existence of a finite variance.

Again, in the one dimensional case, we should address

ourselves to dealing with the situation where we do not have p-

or 02 available for our finagle factor. (I shall assume we do

have a2 for reasons of convenience, bot the argument holds if we

do not have a2 .) In such a case, we will have available the v

estimator X2 /(X2 + 02 ) X.

But here, we generally lose our *free lunch". If the data is

normally distributed, then our risk curve looks like: 0

2

V.j
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Risk of X2 1( X2 + 12) X

Figure 2

Let us suppose that we were allowed to use the following

strategy: we will have one Observation X1 to use for the

estimation of Ii. But. in addition, we will have p-) additional

observations of X: X2, X3 a --. X p to be used In an a of the f orm:

(4.3.6) a (__X_ 2 1/1 __X _ 2 p021.___

Now,

(4.3.7) IXJ2/p --- ) 112 4 02 ,almost surely in p.A

Thus, our finagle fpctir a approaches •,

(4.3. 8) ( 2+o / 2+ 202) for p "large." 0

__ II ,:•

This would give, for large p,

(4.3.9) Ola) = [pt4 + 3a2 !12, a +4 ! p 42p 4 o41 02 <( 02. :•
We might suspect that something In the . sehn formulation may lro

atelow yuch a phenomenon to occur. Indeed, this is the case.
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For the loss function considered

(4.3. 10) ULg 10A) - Z( -1J ~i) 2 /p

and estimators or the form:

(4.3.1 I )p* XTX 11 xTx +cu2 ] X,
* ~the risk Is not dependent on the allocation of the 11133 for any

* fixed 11ij 2. (Alum and Thompson proved (1968) that, In the

normal case, this estimator beats X for P)2 If 0(c<2(p-2).)
Accordingly. we need only consider the case where ii. -

(iji.i....,). But this reduces immediately to the kind or one
dimensional estimator we showed had asymptotically (in p)

smaller risk than Xi.(Apparently, for the normal case, the

asymptotic result starts Impacting for p-3.) Thus, It Is the
assumption of a loss function of a particular torn; which gives
the apparent Stein improvement.

Note that for unequal weights and unknown variance, the Stein
r es ulIt h oId s, if we Mnow the weigh ts in -be less funct Ion

(4.3112) L(11¶11i) = wp1-j2,

But Is It not reasonable to assume that we w~ll frequently
know the weights precisely? Atter all, cost functions are

frequently common. So. for example, we might need to estimate

lwjipj ,where the weights are known. Note that this Is the one

dimensional estimation problem where we know, In the normal

case. we cannot uniformly beat lw Xj

The cases where we know the weights in the Loss function

(4.3.13) L(PNiaj) = Iwj(tt,*-IjL) 2 /p,
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are rare. Any strategy which assumes we do have precise

knowledge of the weights is likely to be dangerous. Let us look

at the more realistic situation where we do not have precise

knowledge of the weights. Thus, let us consider the loss,

function

(4.3.14) L(U ,,it) - I wit (pi,*"-j) 2 /p,

where, for all tCT, I wit - I, wit )o.

Let the risk 0(1•*;Iu,t) -E[ Et(1*IL.(t)]. Let the class of

estimators A to be considered be those of the form

(4.3.15) IL*- X f(X'X), where f is positive, real valued and i .

DILAn estimator 'gi is said to be w-adrinssible if there does

not exist in A an estimator pi** such that 0(p*)i Q0ti*) for all

(p,t) and for at least one (jI,t), 0(IJ**) is strictly less than

Q(,i ).

OeL An estimator is w-minimax if it minimizes

suP(I,.t)Q(g*;IL,t) for all members of A.

Note that the usual estimator ( X I, X2 , ... XP) is w-admissible

(consider the special case where wIt - I ). Mcreover, ( XI, X2 ,

Xp) minimizes Max,.t 0, i.e., is w-nT/nimax. The Stein

estimators cannot be w-minimax for squared loss function,

since for W1It I, they are randomized estimates of IL1!

In conclusion, there Is no 'paradox" about Stein estimation.

The free lunch is due to an apparent but artificial transferral of

Informat'on between the dimensions as a result of an

unrealistic assumption about the loss function. Shrinkage

toward an arbitrary point (without prior Information), on the

basis of a factor which Is built up usiig information from
273
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varAables which are totally unrelated, which strikes most

people, at first glance, as inappropriate, is indeed

Inappropriate.

When estimrating, simultaneously, the density of mosquitoes

in Houston, the average equatorial temperature of Mars, and the

gross national product of ancient Persia, we ought not believe

that some mathematical qitrk demands that we multipiy our

usual (separable) estimates by a finagle factor which

artificially combines all three estimates.

The above study has been given as an example of the

difficulties which attend us when we attempt to make the world

conform to an idealized mathemattcal construction, instead of

the other way round. When the use of a particular criterion

function yields results which are completely contrary to our

Intuitions, we should question the criterion function before

disregarding our intuitions. At the end of the day, we may find

that our intuitions were, Indeed, wrong. The world is not flat,

naive perceptions notwithstanding. However, the flatness of the

earth was not disproved by construction of an artificial

mathematical model, but rather by the construction of a model

which explained real things with which the assumption of a flat

earth could not cope.
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Using Personal Computer Spreadsheets in
Statistical Planning and Analysis

Carl T. Russell
US Army Operational Test and Evaluation Agency

Falls Church, Virginia
ABSTRACT. Personal computer spreadsheets provide an easy-to-use tool for performing many
statistical coisputations. This paper describes examples of such computations. The first shows
how the standard approximations for binomial sample sizing from Natrella can be implemented
in a spreadsheet to produce flexible automatic tabies. A second series of examples examines a
variety of exact calculations involving binomial coefficients. Other spreadsheet applications are
briefly discussed. These examples show that spreadsheets serve as alternatives or sulpplements
to published tables or traditional programming languages for many statistical problems.

1. INTRODUCTION. This is a simple paper. Its thesis is that commercial microcom-
puter spreadsheet software is the first place one should look for assistance with many routine
statistical computations. It was motivated by personal experience developing tabular displays,
especially specialized tabular displays of discrete probability distributions. This experience
showed that commercial microcomputer spreadsheet software (hereafter referred to as "spread-
sheets") could be used quickly to implement versions of such probability tables. Little effort
produces spreadsheet templates which can duplicate voluminous standard tables. More impor-
tant, spreadsheets can produce custom interactive tables which provide quicker, more flexible
and more accurate answers than standard tables. Most of the paper is devoted to examples of
such probability tabulations, starting with an automated version of some standard binomial
approximations and meandering through several exact calculations involving binomial coeffi-
cients. Other actual and potential applications are discussed briefly.

Some familiarity with spreadsheet software is required to appreciate this paper. Most
important is realizing how easily formulas can be promulgated throughout an automated
spreadsheet. Once appropriate combinations of absolute and relative references are devised,
only a few formulas need be entered to generate a large, flexible table from a few input
parameters. Moreover, only the relevant portion of the table needs to be examined, fine tuned,
and printed.

2. ROUTINE BINOMIAL SAMPLE SIZING A LA NATRELLA. Natrella's
Experimental Statisticst is used widely in the Army for binomial sample sizing. The approach
involves look-up from several tables based on an arcsine transformation. The theoretical basis
for the approximations used by Natrella is that if X successes are observed in N Bernoulli trials
with success probability p and f: x-+f(x) is an appropriate arcsine transformation, then Y=f(X)
has approximately normal distribution with p=arcsin(,Fp) and 02=1/(4N); that is, the variance of
Y does not depend on p. Natrella discusses four possibilities depending on whether there are
one or two populations, and on whether one- or two-sided hypotheses are appropriate. That is,
there are one- and two-sided hypotheses in each of two cases: one population compared against
a standard (success probability Po) and two populations compared against each other (success
probabilities pI and p2). In the one-population case,

21f'N(Y-po) is approximately normal with pf2 4'N[arcsin4_'- arcsin,/-:] and a2=1,
and in the two-population case,

24'N(Y1 -Y2) is approximately normal with 1-2r'N[arcsin-, - arcsin'l] and oa=2.

Writing down expressions for type I error (at) and type II error (f3) and solving for N in
terms of the percentiles of the standard normnal distribution, z,"=d'(i.), gives the formulas used

t Nationa Bueau of Standards IPanbook 91. 1963, US Government Printing Oftico, sections 8-1.4.8.1.5, 8.24. This haldbook was odg.
Inally dovilope I& ,mited distol~t• " sUS Army Ordnance Pampleots ORDP 20.110 through )0.114. It is now supplemented ad to
a large enxent rept•,wd by DARCOM PAMPHLET 4o. 706-103. December 1983, which discusses binomitl sampe siring in seebOw 8.3.
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One-Sided Two-Sided

On. Hi1 : p5pn vs K,,: P>po H12: P-Po VS Kla: Ppo,On (Z 2, + 2~p
Population N ,4(arcsunq_•-arcsn4 0 ) N 2,4(arcsl n4P.arcsinqpo) 2

TWO H2,: P,<P2 vs K21: PI>P2 H22: P1-P2 vs K22: P1p OPN z I + z -) • ( Z 1z , . _+ z 1 .) 2
Populations 2(arcsln,1p,-arcslnp)2 N 2(arcsln4p,-arcsinP2) "

Figure 1. Binomial Sample Sizing Formulas Used by Natrella.

in Natrella's tables (see Figure 1). Implementing these formulas in a spreadsheet is easy. Each
numerator in the sample size formula, 82-(zi +zi.p) 2 or 8 2-(zZ,.d+z1.p) 2, depends only on a and P3,
and each denominator, d2-4(arcsln1p_-arisln"po)2 or d2m4(arcsln-1. arcs$n•-2)2, depends only on
the parameters specified by simple null and alternative hypotheses. Interactive spreadsheet
tables for binomial sample sizing can be built by providing a data entry area for choosing a,
entering the difference in parameters to be detected (A-p-p0 or A-pi-p,), and specifying the
range of parameters to be examined. Figure 2 assumea that such a data entry area has spec-
fled-in addition to A and a-an initial probability value Poe and a value % to be used to incre- L
ment poo for a fixed number of lines, Both a and P3 require 0'1, which is not available as a stan-
dard spreadsheet function. A macro could probably be written to compute 0.1, but a simpler
approach is to limit choices for a to a few values and let "confidence levels" 1-jI vary across
fixed standard values. That was done in the example of Figure 2 and the actual spreadsheet
implementation in Figure 3, The original motivation for the spreadsheet in Figure 3 was to
help an evaluator assess a resource requirement for an operational test. An analyst was
arguing on the basis of Natrella's formu-
las that in order to have 80% confidence 81 ... 85
of detecting a 10 probability point differ- .d , ft .
ence in kill probabilities between two- P2 11 d-ie ýpekr
missile systems, about 115 missiles of POO P2.+A Td•Pl•p) 28i2/d2 ... 2V/d2
each type would be required-versus the poo+4 p2+A d(p,,p2) 281

2/d2  ... 2"/d2

100 missiles of each type which were (poo+X)÷X P2+A d(pi,p2) 2812/d2  .. 283/d

available. This claim was based on two
"assumptions": an assumption that the
difference to be detected was between Figure 2. Example of Spreadsheet Template for

and pi=0.95 and an assumption Natrella's Sample Size Formula-Two-Sided Testp.=0,85 adp=.5adaasu tinBetween Two Observed Proportions. 0

that 10% to 15% of any firings would be ....

"no tested," The sensitivity of binomial sample sizes to assumptions about the underlying prob-
abilities was not clear to the evaluator, Once the table in Figure 3 was produced, the evaluator
could see that since the underlying probabilities could just as well be p2=0.75 and pi=0.85 or
even p2=0.65 and pi=0.75, obtaining a few more expensive missiles was not something to fall on
his sword over. The simple capability to produce a full table instead of a few numbers provided
a convincing test planning tool,

3. IMPLEMENTING EXACT BINOMIAL TABLES. At one time or another, nearly
every applied statistician hus attempted to program exact calculations for probabilities based
on binomial coefficients. Using FORTRAN or BASIC, potential underflow ard overflow must be
carefully considered to avoid silly answers, Using L, spreadsheet, calculations more accurate
than standard tables can be obtained with very little care. Figure 4 shows the key binomial
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TWO-SIDED HYPOTHESIS TEST FOR DIFFERENCE BETWEEN TWO OBSERVED PROPORTIONS
SAWPLE SIZE REQUIREMENTS FROM NATRELLA 8-2.4.1. PAGES S-IS & 8-19

Sample Size=2#(delta)o*2/d*2
where d*Itaz[1-aIph,/2)+zsI-beta).d,2a(arcmn~nlqrt(P'))-arclin~eqrt)P')f),
and z1k)kth percentile of the standard normal.

Increment for P' in 0.010
Significance Level alpha (us*: .01, .05. .1 or .2) is 0.10

alpha used ia 0.10 z[l-alpha/2) in 1.85

Delta. 3.97 3.29 2.93 2.49 2,17 1.90 1.85
Coni (l-beta)- 0.99 0.95, 0,0 0.80 0.70 o0.8 0.50

Sample Size Required to Obtain Prescribed Confidence
F' F'. d That PI Differs From P'' at Significance Level alpha

0,450 0,550 0.200 785 540 427 309 235 180 135
0.450 0.580 0.200 786 540 427 309 235 180 135
0.470 0.570 0.200 785 530 427 308 23$ 180 135
0.480 0,580 0.20.) 783 538 428 308 234 179 135
0,490 0.590 0.201 781 536 425 307 233 170 13.
0,500 0.800 0.201 778 534 423 306 233 178 134
0.510 0.810 0.202 775 532 421 304 232 177 13.,
0,520 0.820 0.202 771 529 419 303 230 178 133
0,530 0.830 0.203 768 526 416 301 229 175 132
0.540 0,640 0,204 780 522 413 299 227 174 131
0,550 0,850 0.205 754 518 410 296 225 173 130
0.580 0.880 0.205 748 513 406 2U4 223 1171 129
0,570 0,870 0,206 740 508 402 201 221 170 127
0,580 0.860 0.208 732 503 398 288 219 189 128
0,590 0,890 0.209 724 497 393 284 218 188 125
0.00 0.700 0.210 715 491 388 181 214 164 123
0.810 0..710 0.212 705 484 383 277 211 181 121
0,20 0.720 0.213 894 477 377 273 207 159 120
O0830 0.130 0.215 683 489 371 286 204 158 118
0.540 0.740 0.217 871 441 385 284 201 154 118
0.850 0,750 0.219 859 452 358 259 191' 151 113
0,80 0,70 0.221 848 443 351 253 193 148 111
0.870 0,770 0.224 832 434 343 248 189 145 109
0.880 0,780 0.228 617 424 330 242 185 141 100
0,890 0.790 0.229 002 414 327 237 180 138 104
0 700 0,600 0.232 587 403 319 230 175 134 101
0.710 0,810 0.235 570 392 310 224 170 131 93
0,720 0.620 0,239 553 380 301 217 155 127 95
0,730 0.830 0.243 535 388 291 210 180 123 92
0,740 0.840 0.247 517 355 281 203 155 li8 89
0.750 0.850 0.252 498 342 271 198 149 114 8s
0,780 0.880 0.257 478 328 280 18 143 110 82
0.770 0,870 0.283 458 314 249 180 137 105 79
0,780 0,880 0.28g 437 300 237 172 131 100 75
0,790 0.900 0.276 415 285 228 153 124 05 72
0.800 0.900 0.284 392 209 213 154 117 90 58
0.810 0,910 0,293 389 253 201 145 110 85 84
0,820 0,920 0.303 345 237 187 135 103 79 80
0.830 0,930 0.314 319 219 174 12f 96 73 55
0.840 0.940 0.328 293 202 180 111 88 87 51
0,850 0.950 0.344 2b8 183 145 105 80 51 46
0.800 0.980 0.384 238 104 130 94 71 55 41
0.870 0.970 0.390 208 143 113 82 83 48 36
0.O80 0o980 0.424 178 121 96 69 53 41 31
('890 0.990 0.470 140 98 78 !5 42 32 24

Fiaure 8. Example Based on the Natresla Formula,.
..Printout of an Enable Spreadsheet on a Zenith 248,)
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7 A6+•1 $A$1-A7 C6*BW/A7 $C71D$2"$A7'D$3*"87 ... J6+0D7 K6+E7

Figure 4. Spreadsheet Template for Exact Binomial Tables.

relationship and formulas which generate tables of both individual and cumulative binomial
probabilities. £cript toep in Figure 4 indicates a data entry area while gray typo indicates
formulas obtained by "copying," which can be extended at will, The notation in Figure 4 is the
standard from Lotus 1-2-3 with columns labeled by letters and rows by numerals and with 8
indicating an absolute rather than the default relative reference. In Figure 4, columns D-H
contain individual probabilities while columns J-M contain the cumulative probabilities.
Column C-which contains the binomial coefficients--neids to be calculated but is not of direct
interest; its display would normally be suppressed. Likewise, formatting or logic tricks can be
used to suppress printing many values very close to zero nr one, as in Figure 5.

Figure 5 shows a portion of a large table of binomial probabilities generated via a template
similar to that of Figure 4. The only substantial difference is that Figure 5 displays nine values
for p vice five in Figure 4, and the p-values in Figure 5 are controlled by a center value and a
delta in both directions vice a starting value and a delta in Figure 4. The fact that all cumula-
tive columns end in 1.0000000 confirms substantial numerical accuracy. Underlying spread-
sheet calculations are typically performed to 14 significant figure accuracy, so multiplication of
the very large binomial coefficients with the very small products of success and failure proba-
bilities is accurate to nearly 14 significant figures, and only very tiny probabilitien are lost to
underflow when cumulated. Since standard tables typically display only 7-place accuracy-
already more than needed for practical purposes--accuracy of spreadsheet calculations
presents no problem. Memory and computing time is a greater concern. On the standard Apple
Macintosh SE where Figure 5 was calculated and printed (using Microsoft Excel), loading or
recalculating the spreadsheet takes several minutes, the spreadsheet loaded into Excel takes
approximately 760 kilobytes of memory, and storage of the spreadsheet takes more than 500 lw
kilobytes on disk. (A similar spreadsheet implemented in Enable on a Zenith 248 with 640 kilo-
bytes of RAM runs out of memory when N is slightly larger than 100,)

4. RETHINKING TABULATION OF DISCRETE PROBABILITIES. For practical
purposes, the spreadsheet template in Figure 4 (implemented in Figure 5), replaces all stan-
dard binomial tables. Templates for other discrete distributions requiring binomial coefficients
are also easy to implnment, both for standard distributions such as the hypergeometric distri-
bution and for more unusual distributions such as that tabulated in Figure 6. Unlike previous
tables in this paper, Figure 6 represents a rethinking of probability tabulation rather than a
straightforward translation of traditional tables into an automated spreadsheet. It shows the
screen image of an Excel spreadsheet on a Macintosh, formatted for ease of interactive sample
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sizing or inference. Only two val- 92 0.e-ouil FIrm se-1O
uies for p are shown since only two " " ,c 0., 1.I3 0.0010624 ". 6, ""794'Al J01020n I6

are typically needed for sample 242 o012 :OA0 CA0.041101"M 044 =1170 510
sizing or determining confidence n n go : DA :0 :7104 1 orINuu tam

intervals. Standard tabulated val- 17 2720M.1I In Ia"OA 0711300004: 0"mSO'I 0.M94100116296 740
n ONO 20:140 0CAM4 DAM5 40.91147170.00100128 0JU421*2 @101 79M

ties are suppleme~ated by several " "0 no 1 0 CA244 CAW4*249011600.130 MUM02 SOM
so20W 0,190 0CAM1 DAN024 0N17911 0A 20200.1 112411.1V20 7M

usefuil arithmetic results, and the "' MIT9 ,5 001 0.006300,20.119171 0.1"1230610790.102M001402 77

data entry area is arranged so I 1, 0,?* Wft AM 0:O" 0 :05111 09"16 U811 "M
that it always remains on screen. *o In: :AM CA NW.,I om 0.1420,1279009701410117 1

The underlying distribution comes A .5 0.-10
from a series of Bernoulli trials K* M'rPS CAM 0.16 CIA00001000 BM, a0. now . so=0C 200

where R rounds are fired at T tar- VIJNW 0

gets (T-5R) until either all1 rounds
are expended or all targets are Figure 6. Example of a Rethought Spreadsheet,
killed. When T.R the distribution -_______________________
is binomial, and when Te: it approximates the negative binomial distribution. The R+1
possible outcomes (indexed by M) are as follows:

M-0: Prob{T-0 targets killed with R-R rounds)... R (1 -p)'k
~0 ,

M-1: Prob{T.1 targets killed with R-R rounds). p(I _.p) *1

M-t: Prob{T-t targets kililed with R-R rounds). R _ )p-(1..pR
M-T-i: Prob(T-T-1 targets killed with R-F4 rounds). ~R1 )pl(:)r1
MinT: Prob{T.T targets killed with R-Ft rounds)o- ( 1 pT(I _p) R*1  R- I pT(j _p) A-

M-T+1 -Prob{T-T targets killed with R-R-1 rounds).-1 f :)p1pr
M.T+k: Prob(T-T targets killedwtRRk rons -(kl)p~~ p .

M-R: Prob{T.T targets killed with R-T rounds). ( 1 )pT

Since the data entry area and column labels at the bottom of the screen do not scroll with the
body of the table, parameters can be changed easily and the results observed -immediately.

0,Be3 Mil 14410,201I0. F rom a sample sizing viewpoint,
1enul Fir ai0 AnA 04 the screen in Figure 6 shows that

20 0 3 0 ,0 0091 0.0*172 ,314420.01007041137 0.00741 M N W ih
r 0 200.0 011 0,00440 0.4,02900941 1,3217 .010 7Tr 20 10 0,10 01 04916 00M12 .0960440,262 91 0,144444 0.1700 1 wt4T3 targets and R-200

22 23 200 2,112 0174 0.10 "7 0,T7027794 0.449610 .20434 022301=0 719 rounds, observed kill proportions
24 10 200 2120D720,024 0,1200.242 0.974004927W near 0.15 will produce 80% confi-

* :;, 200 0, *03013 01 13 1641 0, 0 D430,999970.141426 0.00842.1 79"
24 24 2000.,130 041434 0.04M 00,000000,1400760010.0!997 Ot0.99117 SO dence intervals somewha~t less

27 200 ,1 1 00240.94 0, 96M01 0.190141 0.047002 0.14007411 IM5.
26 6200,1 ;2.02 0012 0101'79 0,2494074,043420 0.190141 ?7W than 0.1 in length. Once data are

29 2: :0000 ,146 041026 0,04074 019724019 0.1161778 0,0279941 014"4074 72W
sototo " .13000I 1 021 0.01000 0.9"4024 010270740 .0,28091,4 0W1111732O collected, the same spreadsheet ~ '

221 So 92 0'j 0.004 0.014 0."0 03*1 0.XM WM 4 can be used to determine confi-
~~~.LP .104 N12,~ J~ dence intervals. Figure 7 shows

KII M6Pk- 01040.10 0 14 '7"S 1 04(0.10442, that observing 26 kills when T-30
-~ ~ ~ 41~fMf YW and R-200 yields (0.1044,0,1603)

as an 80% confidence interval.
Figure 7. 80% Confidence Interval for T=26. Alternatively, the same spread-

______ ________________- ~.sheet could be used to investigate
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other sample sizes. Figure 8 shows - sornoulll Firln a- I0

that T ~-11 and R-74 provide the 4 4. --4o :.b0'0 0.2310 . 04, ; 0.07304 0=0110, *a 1112 0,100106 02II1 1 000,114442 .47| 00 2'

approxim ate sam ple size required ,740 014130 CA0 o 031601 , G.AW S AIho•W 0,014442 US

to detect a 0.1 difference in kill 1 ,7 CAG',494 00111) 0.020 M 0.02710600. 31: " 1119011 $70
prob abilities w ith 80% confid ence. IC IQ 74 0 .110 0 ,047,0 "0. ,7941 0016 .101" " 0 110101 GA MIN 7 n

1II 4 al 0470 14CNI0."N"40.993 19 7420,10 66706 0.17 101 " "~SI 3Although less than 40 rows have 111, o0o1,0,0100444 , OM0T 01642 0.:19742 "It

been displayed in Figures 6-8, the I 2 1,, ,0747 0.0o " 0,027109 o.640 711611 01.3 74 0 9

spreadsheet was laid out with 100 1 94 ii 1 0:157 o0:;401,04 G.040M 0147FOU IM
10.1 +.00 14 41 .0 14 : ,0921 1"" 70 7 ' 074M M A4 0M $0 M I

rows for flexibility (more could be o7 11 0.1" 040011 0.01MW O13163 0,.1 M ID GAMIC 01f741179 70.

obtained by copying rows down- .2 ±..
ward if necessary), Since this A. 0 00000000•2000000 C,0.11CO

spreadsheet is much more Sol 0 , ....

compact and requires fewer
demanding calculations than a full Figure 8. Sample Size Needed to Detect Ap-0.10.
table like that of Figure 5, it
recalculates much faster (less than 10 seconds). Thus the iterative fiddling required to obtain
results such as those in Figures 7 and 8 is quite feasible,

5. OTHER ACTUAL AND POTENTIAL APPLICATIONS. Use of spreadsheets for
statistical calculations is not limited to calculation of probability tables. In particular, spread-
sheets are useful in conjunction with other programs which perform statistical analyses, 1
Arithmetic operations are frequently required to understand, interpret, and present the results
of analyses performed using standard statistical packages. Spreadsheets can reduce the
manual labor involved with such operations without requiring specialized programming. For
example, SAS Least Squares Means (LSM's) provide representations for various marginal
means as if the underlying experimental design had been balanced, SAS can calculate LSM's
for any effect in an underlying model, but cannot calculate LSM's for any effect not in a model,
Simple but tedious arithmetic can be used to calculate internal values from margins for
presentation, If more than one or two such calculations is to be done, writing a spreadsheet
template to do them pays off. Similarly, a spreadsheet can provide a convenient way of
translating back and forth between estimates obtained on a transformed variable and more
easily understood corresponding estimates on the untransformed variable-for instance,
translating results of an analysis of log(Y+0.02) back into statements about (p-po)/po, where
Expw.A[týoaog(Y+0.02)]=Iog(p+0.02). Still another related application was suggested following
presentation of this paper by a statistician who routinely uses spreadsheets in conjunction
with other procedures to perform jackknifing, Finally, since spreadsheets read and write files
consisting of tab delineated fields, automated exchange of data with other computer programs
can be easy, Spreadsheet capabilities for editing and rearranging data make them a good
preprocessor for specialized statistical packages like MacSpin, which have less flexible data
entry capabilities. Additional capabilities of most modern spreadsheets include macro language
capabilities, which make nonstandard formulas and calculations readily available, and
integrated graphics capabilities, some of' which are quite good, Every statistician having access
to a microcomputer should understand the kinds of things spreadsheets can do to make life
easier, both as stand-alone tools and as supplements to other tools. The convenient power of
microcomputer spreadsheets provides computational tools which should be the first place one
looks for assistance with routine statistical calculations. ""
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