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FOREWORD

The Thirty-Third Conference on the Design of Experiments in Army
Research, Development, and Testing was held 21-23 October 1987 on the
campus of the University of Delaware. This university served as one of
its hosts, the other host heing the Ballistic Research Laboratory
(BRL)s Professor Henry B, Tingey was the Chairperson on Local
Arrangements for the University and Dr. Malcolm Taylor served in this
capacity of BRL. The members of the Army Mathematics Steering
Committee (AMSC), sponsors of these conferences, would like to take
this opportunity to thank these gentlemen for their excellent handling
of the many problems associated with a meeting of this size.

Members of the Program Committee for the conference were pleased to
obtain the services of the following invited speakers to talk on topics
of interest to Army personnel:

Speaker and Affiliation Title of Address

Dr. J. Stuart Hunter Statistics and the Learning

Private Consultant Process

Professor Albert Paulson A Generalized Likelthonod

Rensselaer Polytechnic Institute Approach to Experimental
Design, Data Analysis and
Modeling

Dr. William A. Gale Structural Statistical

Bell Communications Research Knowledge for Expert Systems

Professor Howard M, Taylor The Effect of Size on

University of Delaware Material Strength

On 19-20 October 1987, two days before the start of the Desiyn
Conference, & tutorial entitied "Regression Diagnostics" was held. Its
speaker was Professor Roy Welsch of the Massachusetts Institute of
Technology, Cambridge, MA. The main purpose of these seminars was to
develop, in Army scientists, an interest in and and appreciation for
the statistical methods that are needed to analyze experimental data.

Or, J. Stuart Hunter, Professor Emeritus of Princeton University, was
the recipient of the seventh Wilks Award for contributions to
Statistical Methodologies in Army Research, Development, and Testing.
This honor was bestowed on Dr. Hunter for his many significant
contributions to various fields of statistics, in particular to the
areas of fractional factorial and response surface experimental design.
He has assisted many Army scientists with thelr statistical problems,
and has been an invited speaker at four of these Design conferences.
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The AMSC has requested that these transactions be published and
distributed Army-wide so that the information in them might assist Army
scientists with some of their statistical problems. Committee members
would 1ike to thank all the speakers for their interesting
presentations and also the members of the Program Committee for their
many contributions to this scientific meeting.

PROGRAM COMMITTEE

Carl Bates David Cruess : Eugene Dutoit

Robert Launer Carl Russell Douglas Tang

Malcoim Taylor Jerry Thomas Henry Tingey
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AGENDA
THIRTY-THIRD CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING
21-23 October 1987

Hosts: The Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

and

The Dapartment of Mathematical Sciences
The University of Delaware

Newark, Delaware

Location: Pencader Hall, Room 106
The University of Delaware

* % ® & & Wednesday, 21 Octcober » * » » #
0815-0915 REGISTRATION - Clayton Hall Lobby
0915-0930 CALL TO ORDER ~ Pencader Hall, Room 106
Dr. Malcolm Taylor, Ballistic Research Laboratory
OPENING REMARKS |

Dr John T Frasier
Director, Ballistic Research Laboratory

WELCOMING REMARKS

Or Ivar Stakgold

Chairman, Department of Mathematical Sciences
The University of Delaware

0930-1200 GENERAL SESSION I

Chairman: Prof Henry B Tingey, University of Delaware
0930-~1030 KEYNOTE ADDRESS

J Stuart Hunter, Princeton, NJ
1030-1100  BREAK b

Y/ I‘

1100-1200 A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF v"§":
COMPUTATIONAL EXPERIMENTS _!;‘r

. (3

Toby J Mitchell* and Max Morris, Oak Ridge National Labs ;&‘q@

1200-1330 LUNCH
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o
1330-1700  CLINICAL SESSION A ‘:;:::
o
Chairman: Barry Bodt, Ballistic Research Laboratory :,::E
Panelists: Prof John Green ?
Prof Vincent LaRiccia R
Prof John Schuenemeyer N
Prof Robert Stark KX
Prof Howard Taylor 0
The Defartmnt of Mathematical Sciences i
The University of Delaware ¥
Oy
ANALYSIS OF A REPEATED DESIGN WITH MISSING CELLS '.Z;E;Z
O
Michelle R Sams and Joel H Fernandez, White Sands Missile Range EE%:%
\ .91*?
ALTERNATIVE METHODS FOR RELIABILITY ESTIMATION I
Plé.d,"l
Raymond V Spring, US Army Natick ReD Directorate ~ e
Thomas A Mazzuchi, The George Washington University ::.;;;;
o,
ALLOCATION AND DISTRIBUTION OF 155 MM HOWITZER FIRE v
Ann E M Brodeen and Wendy A Winner, ::,.";
The Ballistic Research Laboratory ,;.:,:.\
.H‘Q’“;
1500-1530  Break (as needed) '&: )
A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION OF IR BACKGROUNDS 'fi%;;;
Denis F Strenzwilk, Ballistic Research Laboratory ,ﬁg‘:ﬁ
Walter T Federer and Michael T Meredith, Cornell University ::' :*.
ey
1530-1700 CLINICAL SESSION A, CONTINUED (as needed) E:E%:;j
e
1830-1930 CASH BAR - THE SHERATON INN, NEWARK :}““"x:
\'q (!
1930~2130  BANQUET AND PRESENTATION OF WILKS AWARD - THE SHERATON INN ,!g!a'.f;
QA ‘.'
* % % » *» Thursday, 22 October * * % * * ::'.;.E::)'
L
0830-1000 TECHNICAL SESSION 1 - STATISTICAL APPLICATIONS
I"'I'g
Chairman: Dr Francis Dressel, US Army Research Office E;.'.:E::;
G I'c.
EVALUATION OF CAMOUFLAGE PAINT GLOSS VERSUS DETECTION RANGE ':2;:::5
et
George Anitole and Ronald L Johnson, US Army Belvoir Research, ?.
Development and Engineering Center Yo
Christopher J Neubert, US Army Materiel Command :::::,'),r
) l.:
A 2-STAGE EXPERIMENTAL DFSIGN FOR TESTING LARGE SCALE SIMULATIONS "::ég::
)
Aqeel A Kahn, US Army Concepts Analysis Agency . -
e
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BLACK BRANT HAZARD ANALYSIS
E Weston C Wolff, White Sands Missile Range
USING A PERSONAL COMPUTER IN STATISTICAL PLANNING AND ANALYSIS
Carl Russell, Army Operational Test and Evaluation Agency
1000~1030 UREAK
1030-1200 TECHNICAL SESSION 2, EXPERIMENT DESIGN AND LINEAR MODELS
Chairman: William Baker, Ballistic Research Laboratory
ONE SIDED TOLERANCE LIMITY FOR RANDOM EFFECTS MODELS
Mark vangel, US Army Material Testing Laboratory

ESTIMATION OF VARIANCE COMPONENTS AND MODEL~BASED DIAGNOSTICS IN
A REPEATED MEASURES DESIGN

Jock O Grynovicki, US Army Human Engineering Laboratory, APG
J W Green, The Uhiversity of Delaware

MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS IN A GENERAL
MIXED LINEAR MODEL

John W Green, The University of Delaware
R R Hocking, The Texas A&M University

CHANGE-POINT REGRESSION WITH UNKNCOWN CHANGE POINTS

Rotert L. Launer, US Army Research Office
1200-1330 Lunch

1330-1500 TECHNICAL SESSION 3 ~ STOCHASTIC PROCESSES
Chairman: DOcr Eugene Dutoit, US Army Infantry School
SEMIREGENERATIVE PHENOMENA

N U Prabhu, Cornell University

k-LAPLACE PROCESSES

Lee S Dewals, The US Military Academy

Peter A W Lewis, Naval Postgraduate School

Ed McKenzie, University of Strathclyde, Glascow, Scotland

THEORY OF RANDOM MAPPINGS

Bernard Harris, University of Wisconsin - Madison
1500-1530 BREAK
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X 1530-1730  GENERAL SESSION II
Chairman: Dr Malcolm S Taylor, Ballistic Research Laboratory

0 A GENERALIZED LIKELIHOOD APPROACH TO EXPERTMENTAL DESIGN,
i DATA ANALYSIS AND MODELING

& Albert bPaulson, Rensselaer Polytechnic Institute

I STRUCTURING STATISTICAL KNOALEDGE FOR EXPERT SYSTEMS
< William A Gale, Bell Communications Research
0 * % % & % Friday, 23 October » * * % «

0830-1000 TECHNICAL SESSION 4 - STATISTICAL INFERENCE

%i Chairman: Linda Moss, Ballistic Research Laboratory
a ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL
Oskar M Egsenwanger, US Army Missile Command

:: CONSISTENCY OF THE P-VALUE AND A SET OF Q-VALUES IN A SCORING
i ACCURACY ANALYSIS

o Paul Thrasher, White Sands Missile Range
A BAYESIAN METHOD FCR PROJECTING A TOLERANCE LIMIT
Donald Neal and John Reardon, US Army Material Testing Laboratory

COVERING PROBABILITY PROPERTIES OF COMPETING CONFIDENCE INTERVAL
METHODS FOR THE RISK RATIO

R Craig Morrissette* and Douglas B Tang, Walter Reed Army Institute
» of Research
[
;:: 1030-1045  BREAK
)
1045-1200 GENERAL SESSION III
$ Chairman: Dr Douglas B Tang, Walter Reed Armgarnstitute of Research
B Chairman of the AMSC Subcommittee on Probability and Statistics

:'. 1045-1100 OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE
' OF THE ARMY MATHEMATICS STEERING COMMITTEE

" 1100-1200  THE EFFECT OF SIZE ON MATERIAL STRENGTH
) Howard M Taylor, University of Delaware
ADJOURN
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ANALYSIS OF A REPEATED MEASURES DESIGN WITH MISSING DATA

Michelle R. Sams and Joel H, Fernandez
U.S., Army Materiel Test and Evaluation/
Engineering and Analysis RAM Division

U.S, Army White Sands Missile Range, NM 88002-5175

ABSTRACT

Electronic Maintenance Publication System (EMPS) is a U.S.
Army Materiel Command (USAMC) initiative to determine the
feasibility of using current technology to electronically display
and deliver the <contents of Department of the Army Technical
Manuals (DATMs) to the maintenance site. The Army Materiel Test
and Evaluation Directorate (ARMTE) was tasked to conduct a "side~
by-side" comparison of EMPS vs., DATMs and to conduct a human
factors evaluation of the EMPS hardware and software. ARMTE
conducted the comparison study on the Patriot System at Ft, Bliss,
TX from 6 April to 15 May 1987, Ten operator/maintainers (MOS
24T) were trained to use EMPS and then participated in the test
phase performing maintenance tasks on the Radar Set (RS) and on
the Engagement Control Station (ECS), A 2 x 2 x 7 within-subjects
factorial design was planned, with 2 mediums (EMPS, DATMs)
performed on 2 major end items (RS, ECS) for 7 types of
maintenance tasks. Due to software constraints and Patriot
paculiar problems, only 8 of the 28 possible treatment conditions
have observations from all the subjects and 2 of the treatment

conditions have no observations, Various data estimation
procedures were considered and then rejected on the basis of
excessive and systematic missing data. Two analyses of variance

were conducted on a subset of the original data, which contained
the 1least amount of missing data and were determined to be
representative of the maintenance actions, No significant
difference was found for the variables of interest (those
involving EMPS and DATMs). Based on the results of this study, it
was concluded that there is no evidence to suggest that there 1is
any significant difference in time to perform a fault isolation or
remove and install task on the PATRIOT system wutilizing either
EMPS or DATMs, An electronic delivery of maintenance information
(as tested in EMPS) appears to be as effective as the traditional
medium of paper technical manuals (DATMs).

—— -

Comments and suggestions by the panelists and attendees at the
conference were greatly appreciated. We are especially indebted to
N. Scott Urquhart of New Mexico State University for his guidance
throughout the completion of the data analysis,
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7 INTRODUCTION

Maintainability is a major element of system effectiveness.

}5 As such, the delivery of maintenance information is a <crucial
;? component in the man-machine systenm, The current delivery medium
¥$ ls through paper technical manuals (DATMs). Many problems have
gﬁ been noted with the paper manuals (e.g., the large number of bulky 3
§ manuals needed to contain all the information and difficulties é'
gt encountered keeping the manuals updated and current, the %
;S difficulty wusing the manuals especially in 1inclement weather, ﬁ
ég etc.) An alternative delivery medium was sought and tested in the %
ﬁi form of Electronic Maintenance Publication System (EMPS). As part %
ﬁ of a larger evaluation of EMPS, the Army Materiel Test and ﬁ
'%I Evaluation Directorate at White Sands Missile Range was tasked to -ﬁ?
ﬁ! conduct a performance ("side-by-side") comparison of EMPS vs, %
gs DATMs and to conduct a human factors evaluation. The performance ‘3
Eﬁ evaluation was based on the speed and accuracy of maintenance 'ﬁ
" actions for the two mediums and is presented in this paper. X
i
o o
" METHOD 0
: ;
5 Subject and Team Selection X
ﬁ A total of ten operator/maintainers (ell trained to the T5 3
? PFAS level) were allotted for the study on the basis of §
K/ availability, Maintenance tasks are normally performed in F
g maintenance teams consisting of a "reader" and a "doer". For the é
: purposes of this study, the ten subjects were divided into two ,}
% groups on the basis of their GT scores (an 1index of general ;;
$ intelligence and ability). Five teams were then formed out of eacp m
ﬁé group (each subject participated in two teams). FEach team from é
AN "O
I . 2 ;
X q ﬁss “ > N3l NP .
B e ?.**-?i

..."I X ' 3 .l..~ hah, " ‘ h"' ."‘.



Group A was then matclied with & team from Group B with 3&
approximately the same GT level, This matching was done in order %ﬁ
to reduce somne of the variance dve to the subjects, especially $§
since there was such a small number of subjects in the experiment. ﬁ%

Experimental Design

A 2 x 2 x 7 within-subjects factorial design was ©planned, $&

l“|a \'\":

with 2 mediums (EMPS, DATMs) performed on 2 major end items (RS, k§
ECS) for 7 types of maintenance tasks, The design was within- -

subjects in that all teams would participate under all treatment

combinations. However, due to the concern of possible gm;
asymmetrical transfer effects, a particular team did not ;;S
participate in the same task twi:e. For example, when a team ﬁ?
performed a particular task utilizing EMPS, a different team ﬁg
matched for general ability performed the same task wutilizing ;?A
paper DATMs, A%ﬁ
Task Selection %ﬁ
With the assistance of subject matter experts, it was Q%
determined that there were seven types of maintenance actions ‘%%
performed on the RS and ECS. These task types consisted of fault ﬁﬁ
isolation (FI), remove and install (RI), repair and verify (RV), :;ﬂ
combined tasks (CO0) which included FI, RI, and RV times, %&
preventive maintenance checks and services (PMCS), operations ‘§E
(OP), and repair parts and special tools 1list (RPSTL). The .39
selection of the specific tasks to be performed was influenced by ;?f.
several factors; software capability, the tasks had to be ?ﬂ
representative of normal maintenance actions, and the concern of r%
face validity. ::.:E:::
i
R
’ w;.-a
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Ten operator/maintainers were familiarized with EMPS in the
c¢lassroom and given support documentation., They then participated
in an on-site training session in their assigned teams, A total
of 63 maintenance tasks on the RS and ECS utilizing both EMPS and
DATMs were completed in this session.

Testing Session

The teams then participated in the test phase performing a
total of 302 separate maintenance actions consisting of the seven
types of maintenance actions on the RS and ECS utilizing both EMPS
and DATMs.

Data Collection

The errors committed and the total time to complete a
maintenance action were recorded by a data collector for each

task. A particular data collector would record data for the same

task, performed once by a team utilizing EMPS and again by a

matched team utilizing DATMs. This was done to reduce variation in

the time and error measurements recorded among the data collectors.

Reduction of the Full Factorial Design

Each team was to participate in an equal number of tasks
utilizing the two mediums on both major end items for all task
types. Halfway through the test phase, it became obvious that due
to equipment failure and frequent removal of the subjects for
field training exercises, that the full factorial would not be
completed as originally planned. Even though generalizability of
the results to all types of maintenance actions was a concern, it
was determined that those tasks which best utilized the DATMs and

EMPS would be an accurate indicator of the efficiency and
4
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feasibility of the mediums.

Through discussions with subject matter experts and the
participating subjects, it was determined that two types of tasks
best wutilized the two mediums, These were fault isolation (FI)
and remove and install (RI). These tasks were complex enough to
compel the maintainer to actually read and refer to the
maintenance material. The other tasks were simple and routine, Bo
that close attention to either medium was not necessary (although
they were instructed to actually read and use both mediums in any
circumstance). Within the remaining test phase time, the test
schedule was revised to include more of the FI and RI type tasks.
As a result, there was a large amount of missing data in the other
four types of tasks. The seventh task (RPSTL) was conducted only

on the ECS, due to software problems, and is not reported here.

RESULTS AND DATA ANALYSIS

A summary of the data collected for meintenance action times
is presented in Table 1 and a means bar chart 1s presented 1in
Figure 1. There are 81 missing observations out of a total »f 240.
Estimating the missing data would allow investigation of 3-way
interactions (type of task x item x medium) and allow

generalization to all types of tasks tested, Various data

estimation procedures were investigated, with employing stepwise

regression for each missing value on the available variables

WA
appearing as the most appropriate method (Frane, 1976), iég
Frane (1976) cautions that the methods for estimating missing L

data for multivariate analysis depend on several assumptions:
5 [ )
0 LA
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utilizing EMPS and paper DATMs. The number in the upper right-hand comer of each cell indicates the

Team

1-2
2-3
3-4

45

6-7

7-8
8-9

10-6

910
Table 1

%
Reduced time data (in min) collected from six types of maintenance actions on two major end items

the number of observations per cell.




[A) !l .

(continued)

Table 1.

Team

7-8
8-9

1-2

3-4

|

4-5

RADAR SET
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U N
R "f.s"':‘:'e'ﬂ'n"'e‘

RV

63

*

7w | 910

1.53

k3
||

»

k2

5690| 15| 67

0.933F

963 | 1221 10-6

8.96

i 8

20.01 | 128

3704 | .67

»

207 | 1.5

265 | 8527

»

)

»

247

352 { 4.07

Paper DATMs

»

*

]

*

.48

»

»

»

2

3
2

2

264

¢ A

]

528

1

270

4
|

3.09

4.8

EMPS

CO| AR |OP| PM] HI

*

A

80 | 1228 | 251

60 } w075 | 502

14.08

-

*

2

' (4

*

~ 1

4036| 150 13322 199 | 285

2
9.34
T

b J
1289
'

953

3

10.56

z

16.72

Y

2530 14 823 | 243

2

*

13

195 | 66.27

*

»

%

*

»

23 |3 )] S8

3220 | 1943

oP| PM | RI

1)

*

»

»

*

*

*

Fl

2

144 | 493

3
208
I

205

400 | 62

b
h |

2

299

Cco

\

B’

752 | 30

14.92

1403 | 423

1%.44 | 3.08

212 | 268

Yeam

1-2

3-4

4-5

5-1

67

7-8
8-9

10-6

_ Rv

!

]

— 45 § W -

*

'

- .
. 1

g )
3

E

. ]
*

2 Group A consisted of subjects 1-5, Group B consisted of subjects 6-10 Subjects were assigned 10 two teams within each group

*
¥ No data was collected for this cell.
(i.e., subject #1 participated in teams “1-2° and "5-1").
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ions utilizing EMPS and DATMs.

L)
XX
' 0.9,

DATMs
TYPE OF TASK

EMPS

Comparison of mean times collected from six types of maintenance

Figure 1.
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data must be missing at random to get a good estimate of the E':ﬁ
covariance matrix, each missing variable must be highly correlated ﬂ
with one or more available variables, and the amount of missing >j°::€::
data should not be excessive. If any of the assumptions are §§§
seriously violated, any procedure for handling missing data 1is ?ﬁ?
likely to be unsatisfactory. The data collected in the study E?%
violated two of these assumptions; the missing data was excessive éﬁy
and systematic, ﬁ i
o
It was determined not to make estimetions of the missing i&;
observations and to instead conduct separate analyses of variance %ﬁy
on the two types of tasks ( FI and RI) which contained the least Eﬁg
amount of missing data, and which were previously determined to ?ﬁi
best test the variables of interest, Since the data approximated a g@i
lognormal distribution, the data was transformed ((log (X + 1)) to ﬂﬁf
normalize the distribution (Winer, 1971)., The transformed Egg
maintenance times were subjected to the analyses of variance 'ﬁﬁ
presented in Tables 2 and 3, Egi
A significant difference for maintenance time for the "ﬁi
different tasks within each item was found, (p < .01), for both g:é;:
types of tasks, This was neither surprising, nor of interest. "“‘“
The set of tasks performed on each item varied in difficulty. For r"‘::a
fault isolation tasks a significant difference was found for item, l::‘:::
(p ¢ .01). It took longer to perform fault isolation tasks on the \‘“
ECS than on the RS, Again this was not a variable of interest, éﬁﬁ
and most likely eflects the relative complexity of the the items. :E‘:,:.'.:'E
The variables of interest, those involving the two mediums 'f
being compared (EMPS and DATMs) revealed no significant qiﬁ
differences, in maintenance time (p > .10). Also there was no ,:-:.::F
S
O w.‘a Mt .‘J-‘J.‘J Lot ‘J. VRRRRRR .u.,'a R .l.a...‘a..'a.u!. R AT .u.c' .



Table 2
ANOVA Table for Fault Isolation Tasks using Log Transformed Time

v - 5w SR b M A SN S R G A R D M e e R M G A M MR EE N M e A S e men S R et e G e S e e SR e ST M S e S e -

Source df MS F
Betwveen Subject 43
Group 1 .007 0.21
Task(Item) 21 497 14,62 "w
Error (Between) 21 034
Within Subject 46
Medium 1 .083 0.82
Item 1 2,930 29,01 %%
Medium X Item 1 .003 0.03
Error (Within) 43 0,101
TOTAL 89
¥ p < .01
Table 3
ANOVA Table for Remove and Instell Tasks using Log Transformed
Time
Source df MS F e
--------------------------------------------------------------- ‘.';-‘,
Between Subject 45 $$;
ek
Group 1 046 1.24 b
Task(Item) 22 1.661 44,42 %n o
@
Error (Between) 22 ,037 §$}
.I'Q.l
Within Subject 36 kﬁi
)
o
Medium 1 044 0.73 oy
Item 1 .012 0.20 [
Medium X Item 1 .025 0.42 Jﬁ-
A
Error (Within) 33 0.060 'y
e
TOTAL 81 o
¥F p < .01 0
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significant difference in group performance for either type of gﬁ%

task. Thus the various teams composed from each group were ~§§3
matched fairly well on ability to perform the tasks. gg

Errors committed while performing the maintenance tasks were %%*

negligible and were not subjected to statistical analysis. %&s_

e

CONCLUSION "«;

Based on the results of this study, there is no evidence to 2; Z
suggest that there 1s any significant difference in time to ?;n

perform fault isolation and remove and install maintenance actions E%ﬁ,

on the PATRIOT system utilizing either EMPS or DATMs. Errors made ﬁgﬁ

while using either medium were negligible and are not a %::1

significant factor either. An electronic delivery of maintenance 53%

information (as tested in EMPS) appears to be as effective as the SEE':':EEE

traditional medium of peper technical manuals (DATMs). gsg

These are encouraging results considering that the test ggg

subjects had a very "quick and dirty" training period with the g}é

EMPS system, It 1is concelvable that the speed with which a %;;

maintenance action can be performed with an electronic delivery of g%%

maintenance information will improve with a more comprehensive %&&

training approach and with Human Engineering improvements to the ‘gw

)

system, 'i.:’::%

B
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Abstract :i_a“

i

The U.S. Army Ballistic Research Laboratory (BRL), Aberdeen G}:;:::‘

Proving Ground, MD, bas been investigating the problems associ- e

ated with allocating and distributing friendly fire based on the e

importance of an enemy target and its function in a particular tac- T

tical situation. The available data contain nonstandard data struc. o

tures, numerous variables with various degrees of influence on the e

predictive relationship, a mixture of data types, and nonhomogene- Rk

ous variable relationships. Various approaches including parametric e

and nonparametric procedures have been applied to this problem. ) M

As an alternative to standard parametric procedures, the BRL is G

investigating recently published classification tree methodology '.:v:::\

which extends previous developments in this area [1). Similar to .:::::v‘

other classification tree methodologies, this methodology provides -;‘-::i

predictions by constructing binary trees. However, unlike other i
analytical techmiques, e.g., cluster analysis, linear discriminant X

analysis, and earlier classification trees, Breiman et al's .-,-5

classification tree structured methods concurrently handle these }‘,{t

problems, which are common to the data collected by the BRL on Kt
Fire Direction Officers’ decisions on 155mm howitzer targets. '

The authors would like to solicit critiques of the proposed :'R:

approach Lo this problem and suggestions for alternatives, ::-:%‘:
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. 1. Introduction i
?i‘ o
g o
-y The U.S. Army Ballistic Research Laboratory (BRL) has been examining the prob- ?5’
“ lems associated with selecting the type, volume, and the method of firing ammunition -
" on enemy targets by a specific 155mm howitzer firing configuration, i.e., the allocation -;'2;
N and distribution of friendly fre. This research is concentrating on allocating and distri- ~:'.;
B buting the fire of 155mm howitzer firing units based on the importance of an enemy tar- by
o get and its function in a particular tactical situation. Results from this research will be o
incorporated into the BRL's prototype decision aid FireAdvisor. As a tool for developing ﬂf
) and implementing fire support plans, FireAdvisor is incorporating commander's criteria, g:;.
7.:‘; munition effects, and the tactical situation (including fring units, munitions, fuzes, and e
o targets) to assiet with determining the optimum allocation and distribution of fire ]
against independent targets over time. .
=
@ To acquire data for this research, the BRL conducted a statistically designed exper- 7
A iment, the Firepower Control Experiment, in December 1985. In addition, the BRL has ::J
J‘} recently extracted similar information from scenarios developed by LB&M Associates, oy
0 Ine., Lawton, OK, under a BRL contract. Both of these data sets are characterized by a : i::-
e mixture of data types, nonhomogeneous variable relationships, and different degrees of -
v influence of the variables. Various approaches such as multiple regression analysis, the o
" Mann-Whitney test, Kruskal-Wallis analysis of variance by ranks, and cluster analysis ;3:;
o have been applied to analyze the data from the Firepower Control Experiment. The o
;-‘.T: goals of these procedures were to uncover the relationships among the variables and pro- o
! vide accurate predictions for allocating and distributing 156mm howitzer fire, "&,
;; As an alternative to standard parametric procedures, the BRL is investigating :::;
;: employing a recently published classification tres methodology to these data sets [l). :*;i«
o Similar to other published classification tree methodologies, Breiman et al.'s methodol- ‘,a‘;'.
! ogy provides predictions by constructing binary trecs. However, unlike other analytical o8
. techniques, Breiman et al.'s classification tree structured methods concurrently handle o
o nonstandard data structures, a mixture of data types, nonhomogeneous variable rela- '.::
o tionships, and different degrees of influence of the variables. ::::
» e
" An overview of Breiman ¢t al.'s methodology will be given in the context of allocat- ::
’ ing and distributing 155mm howitzer fire. Critiques of this proposed approach and
:. suggestions for a'ternative approaches are invited. ~
’ ..l
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e Fire Direction Officer [FDO) (determines or approves the number of
s rounds and the shell/fuze combination to fire on the target)

e Type/Subtype (description of the type of target)
e.g., artillery /medium.

e Size (iD meters),

¢ Method of Engagement (how to fire on the target)
e.g., fire-for-eflect when ready.

e Degree of Protection (position of the target)
e.g., standing on first volley and laying down on subsequent volleys.

e Strength (number of units comprising the target)
e Target Speed (in kilometers per hour)

e Sensor (friendly unit sighting the target)
e.g., forward observer,

e  Scnsor Speed (in kilometers per hour)
¢ Scnsor to Target Range (in meters)
e 155mm Howitzer to Target Range (in meters)

¢ Ammunition Available (both as number of rounds available by munition type and as the
initia] ammunition load expressed as a percentage of a basic load)
e.g., 100 rounds of high explosive rounds which is x% of a basic load.

¢ Allocation Method (method of firing the rounds on a target)
e.g. fire high explosive and smoke rounds simultaneously on the target
[as opposed to firing all high explosive rounds first followed
by the smoke rounds).

¢ Total Number of Rounds Fired on the Target (number)

¢ Number of First Munition Rounds Fired
e.g., 6 rounds of high explosive.

e Type of First Munition Fired
e.g.. high explosive,

¢ Number of Second Munition Rounds Fired
c.g., & rounds of smoke,

e Type of Second Munition Fired
e.g., smoke.

Figure 1. Information Avallable for Each Declsion.
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' II. Background

a. Data Sets

In December 1985, the BRL conducted a controlled laboratory experiment, the
Firepower Control Experiment [2], at the joint U.S. Human Engineering Laboratory and
BRL Command Post Exercise Research Facility. As part of this statistically designed
experiment, information was collected on Fire Direction Officers’ (FDOs') decisions on a
variety of targets being forwarded to 1565mm howitzer units.* This data set comprises
3,219 FDOs' tactical fire control decisions collected for different FDOs, targot
types/subtypes, target sizes, types of fire mission control (i.e., "method of engagement”)
and initinl ammunition basic loads.

As part of the BRL's research in tactical computer science, several unclassified
scenarios between friendly and enemy forces in the Fulda Gap have been developed
under A BRL contract with LB&M Associates, Inc., Lawton, OK. Embedded within
‘ these scenarios are decisions on allocating and distributing 155mm howitzer fire on
independent targets observed in one-hour periods. To date, information associated with
522 tactical fire control decisions has been extracted from a portion of these scenarios.

f Figure 1 summarizes the type of information available for the decisions in these
! data scts, A combination of categorical and numerical variables describes the principle
‘ factors thought to influence the decision process (FDO through ammunition available) as
well as the actual decision (allocation method through type of second munition fired).
Based on the results of previous data analyses, it is anticipated that these variables have
different degrees of influence and exhibit nonhomogeneity.

, b. Parametric and Nonparametric Procedures Applied

1. Multiple Regression Analysls

' Multiple regression analysis [3) is an analytical methodology that usually has one of
the following primary goals: 1) predict the value of the dependent variable for new
values of the independent variables, 2) screen variables to detect each variable's degree
of importance in explaining the variation in response, 3) specify the functional form of
the model, or 4) provide estimates of each coefficient's magnitude and sign. By applying
multiple regression analysis to the data from the Firepower Control Experiment, it was
hoped that a regression equation could be derived to suitably predict the allocation .
method. Using a combination of indicator factors for the categorical variables {e.g., FDO
and target type/subtype) and untransformed values for the numerical variables (e.q.,
ammunition load expressed as a percentage of a basic load, target size, and the methaod
of engagement), stepwise and "best subsct” regressions were run to predict the resjonse
factor (e.g., the allocation method).

"r.cum Fire Direction and guonery instructors from the US Army Field Artillery School, Fort Sill, OK, participated sy FDOs
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Stepwise regression [4] was run to insert factors into the regression cquation based '.':E::‘?
on their partial correlation coefficient with the response factor. At each step, the partial :?:',:;g'
F critcrion of each regressor already in the equation was compared to the appropriate faad.
tabled F value. The regressor was either retained in the equation or rejected based on 5
whether the test was significant or not. Stepping continued until none of the regressors KA
could be removed, and none of the other potential regressors could be inserted duce to :::::::i:;
the value of their partial correlation coefficient. "Best subset” regression was then run ::2':::‘”2
on the stepwise regressor variables to determine the best overall subset out of all pussi- :::::ﬁ:?
ble regressions according to the maximum R? criterion. ! "W
WK
As a consequence of performing a least squares fit of the data, fitted equations were ::';3::535
obtained for the allocation method. However, based on the proportion of variance r:;"ﬁ:ﬁv?i
accounied for by the regressors in the regression equations, none of the facturs clearly ':E;‘f.gi.
influenced the allocation method. This suggests that other factors not taken into ".lh';
account may influence FDOs' decisions on an allocation method. ;.w.,q;‘,
(A l‘.‘!
2. Mann-Whitney test :’,S::E?::E:_'
e
vty
One of the objectives of the experiment was to test whether the amount of avail- N.
able ammunition affected the number of rounds the FDO elected to fire on a target. °:;:¥§;§v2
Prior to comparing all FDOs within a given ammunition basic load or comparing an ;?2;7:’:‘5:
individual FDO across the three ammunition basic loads, it was desirable to first exam- :;::::Zﬁ'
ine whether or not it would be necessary to distinguish between the adjust fire (AF) and ,:‘:‘;3*:‘5'
fire-for-effect (FFE) methods of engagement. Since the distribution of total rounds fired m
against a target is not known for the two employed methods of engaging a target, the i
nonparametric Mann-Whitney test [5] was used to test whether the two independint .:;5.;:}1
random samples could have been drawn from two populations having similar distribu- e
tion functions. Based on the results of the Mann-Whitney test, the samples associated \:::-::'?
with the two methods of engagement could not be grouped together for other statistical ,ﬂ. ":
tosts. ng;::*,:.;
AN
3. Kruskal-Wallls Test :E:?;:,:E:l
R
e
Similar to the Mann-Whitney test, the nonparan.etric Kruskal-Wallis one-factor -
analysis of variance by ranks procedure [5] was used to examine, first, the mean number '::‘
of rounds fired within each of the three different ammunition basic loads by each FDO, ':ffc::
and, second, the mean number of rounds fired by each of the three FDOs within a given P .::
smmunition basic load. It was concluded from the test that there were significant :"‘
differences within an ammunition basic load in the mean number of rounds fired by each - A
FDO against an individual target. In addition, test results showed that only one of the '-J,,.':;:i
FDOs tended to fire on average more rounds against a target under at least one of the "}3,‘:‘:‘:4
ammunition basic loads than under at least one of the other basic loads. For the ran- iy $§
dom samples resulting in rejection of the null hypotheses, i.e., no difference in the mean t‘f':f
rounds fired against a single target, additional pairwise Kruskal-Wallis tests were per- o
formed. R
o
N
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4. Cluster Analysis

P IR

Cluster analysis [6] was employed to categorize targets according to their impor-
tance based on their contribution to an enemy force in a particular tactical situation,
i.e., their target value [7]. There are several ways to measure the value of the target.
For example, one way could be to use several variables to measure the deseription, loca- s
tion, and activity of the target. A description of the target might include its
type/subtype, size, and degree of protection. The location of the target might consider
the actual grid location of the target, the altitude of the target, and the distanre
between the target and specific friendly units. The activity of the target might take into
account its velocity and direction of mo:ement.

g C'luster analysis provided a multivariate statistical method to examine the interrela- o
. tionships botween the target description, the FDOs, and the initial ammunition load o
expressed as a percentage of a basic load. Target value was based on the mean nuniher &
. of rounds expended against an individual target. Targets were categorized into three o,
X target value clusters, i.e., "low”, "fair”, or "high”, based on the minimization of the o
Kt Euclidean distance between each target and the mean of the targets in the cluster, ';2‘;'
b
) ¢. Deficlencles Among the Analyses o
i Despite the fact that each of these statistical procedures is well known and used, E(,e
S they have scveral shortcomings with regard to the problems inherent to the Firepower ;::l
! Con(.ol Experiment data set. For instance, these methods do not concurrently handle e
. the nonstandard data structures, a mixture of data types, nonhomogeneous variable 3
N relationships, and different degrees of influence of the variables. Subsequently, it is aga;
‘ expected some information has been lost. ;.f,;
P (X}
= ‘I‘:c
e Thus, the combined results of these procedures do not provide an effective means of K
_ allocating and distributing 155mm howitzer fire for enemy targets. For instance, cluster o«
. analysis provides a coarse evaluation of a target's value based on the initial ammunition ::::
K load, iis type/subtype, and FDO. The "best subset” multiple regression equations pro- ,:;'.
o vide only weak relationships between the FDO, allocation method, target type, target R
F, size, method of engagement, and initial ammunition load. Thus, the question remains, R
"Is this a result of variables measured in the experiment or a consequence that these
> procedures could only be focused on limited subsets of the data collected?™ Subse- A
K quently, a search for a different means of analyzing this data has been undertaken. |n::
D\ ot
|.‘
;: 1. Classification Tree Methodology :ﬁ
7 a. Background "‘z;
& -
" Trees, whether known as decision trees, binary trees, or by some other name, have 4
been previously used by data analysts as an informative nonparametric tool for investi- )
gating various types of data sets. Tree classification methods use the data to form pred- L
‘ jction rules for a response variable based on the values of independent variables. x
4 Specifically, measurements are made on some object, and a prediction rule is then used :}:ﬁ
I' ‘.‘
i L
: 3
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to decide to what class the object belongs. This methodology is so simple that it is
often passed over in favor of other methods which are thought to be more accurate,
such as discriminant analysis.

Reeent developments in the arca of structured classification trees, which have heen
published by Breiman et al,, are aimed at strengthening and extending the original tree
methodology. Their advancomonts have becn incorporated into a statistical software
package known as CART™ (Classification and Regression Trees). Given complex data
sets with many independent variables, the developers of CART feel that the structured
trees produced by CART can have crror rates that may be significantly lower than those
produced by the usual parametric techniques. These procedures are robust, e.g., they
minimize the effects that data outliers might produce.

We feel that the advancements made in the area of structured tree methodology
are significant enough to warrant investigation and application to the problems of allo-
cating and distributing 155mm howitzer fire.

b. Overview of the CART Methodology
1. Definitions

Many of the statistical techniques presently available are designed for small data
sets having a standard data structure. By a standard data structure we mean that there
are no missing values among the measurements made on an object, or so few they may
be estimated prior to analyzing the data. In addition, the variables all have to be of the
same type, i.e, all numerical or all categorical. The underlying assumption of the data
is that the driving phenomenon is homogeneous, i.e., the same relationship holds over
the entire set of measurements made on the object in question.

The data which is available to study the problem of allocating and distributing
friendly fire on enemy targets does not meet the above criteria. In both data sets, values
for several of the measurements used to describe an enemy target may be missing or
must be assumed not available for any number of reasons. The variable list comprising
the make-up of a target's description (to include such items as its location, activity,
description, etc.) is a mixture of both numerical and categorical variable types. Finally,
we cannol reulistically expect the same relationships to hold amongst the wide range of
measurements made on a target.

8. Constructing a Classification Tree

To initially construct a structured tree, four elements are needed: 1) a set of binary
questions of the form: Is x € A?, A C X, where x is the measurement vector defining
the measurements (z;, 2, ...) made on a case, and X is defined as the measurement
space containing all possible measurements, 2) a goodness of split criterion that can
numerically evaluate any split of any node of the tree, 3) a rule which dictates when to
continue splitting the node or to declare it a terminal node, and 4) a rule for assigning
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every terminal node to a class. The sct of binary questions generates a set of splits of
every node. Those cases answering "yes” go to a left descendant node, while those
answering "no” go to a right descendant node.

3. Features and Advantages

Breiman et al.'s methodology for classification trees appears to be a powerful and
flexible analytical tool. Some of its major features and advantages over other methods
will be very briefly outlined.

One of the more important aspects of the CART methodology is its ability to
automatically handle missing values while minimizing the loss of information. This is
achieved via the concept of surrogate splitting.

To understand surrogate splitting, two splits are said to be associated at a node if
either of two conditions exists. If most of the cases are sent to the left or to the right by
one split, and the other split also sends most of the cases in the same direction, the two
splits are said to be strongly associated. On the contrary, the splits are also associated
when one split sends most of the cases to the left (right) while the other split sends most
of the cases to the right (left). The missing value algorithm then proceeds as follows.
The CART methodology is designed to initially search through all possible splits on a
given node and select the best split. For example, suppose the best initial split is: Is z(5)
> 34.11. All other variables except 2(5) will then be searched until the split on each
variable which is most closely associated with the split on #(5) is found. This series of
splits might result in a list such as the following

2(2) > 26.2 is the most closely associated with z(5) > 34.1
2(11) > 50.8 is the second most closely associated with #{5) > 34.1

and so forth. These splits are the surrogate splits for ‘he initial split: Is 2{5) > 34.1%.

If a case has a missing value of 2(5) so that the bhest split is not defined for that
case, CART then looks at all nonmissing variables in that case and finds the one having
the highest measure of predictive association with the best split. In this example, CART
would first look at the most closely associated surrogate split. For example, if the value
of #(2) is not missing, then the casc would go left if 2{2) > 26.2 and right otherwise.

This procedure is analogous to the one used to estimate the missing values in a
linear model (viz., regression on the nonmissing value most highly correlated with the
missing value). However, the CART missing value algorithm is more robust. The cascs
with missing values in the selected splitting variable do not determine which direction
the other cases will take. Since further splitting continues, there is always the possibility
that cases which may have been sent in the wrong direction due to the missing value
algorithm will still be classified correctly.
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Since variables do not act alone when predicting a classification, it is natural to
question which variables played the role of predictors. In the construction of a tree there
may be instances in which some of the variables are never used to split any node; how-
ever, this does not nccessarily mean these variables lack any predictive information.
Therefore, each variable is assighed a measure of importance which may be helpful to
the analyst in uncovering variables otherwise glossed over when looking at only the
splits from the final selected tree. One note should be made. Like many variable ranking

procedures, this one is a bit subjective and the exact numerical values should not he
interpreted precisely.

Other features which do not require such an in-depth discussion are the following:
1) ability to handle both numecrical and categorical variables in a natural and simple
fashion, 2) application to any type of data structure through the formulation of an
appropriate set of binary questions, 3) a variable selection process closely resembling a
stepwise procedure since a search is made at cach intermediate node for the most
significant split, and 4) in the overall measurement space X, the trees exhibit a robust-
ness property similar to medians, while within the learning set the method is not appre-
ciably affected by several misclassified points.

¢. Digit Recognition Example Using the CART Methodology

The following digit recognition example was constructed by the authors oi CART
and illustrates the various parts of the classification portion of the methodology.#*

Most of us are familiar with electronic calculators which ordinarily represent the
digits 1, ..., 9, and 0 using seven horizontal and vertival lights in specific on-off combina-
tions. If the lights are numbered as shown in Figure 3, then f denotes the ith digit, { =
1,2, ..,9 and 9, and the measurement vector (z;, ..., 2y) is a seven-dimensional vector
of zeros and ones. Let z;,=1 if the light in the mth position is "on" for the ith digit,
otherwise z,,=0. Table 1 presents the possible values of z,. Set the number of

classes C'= {1, ..., 10} and let the measurcment space X contain all possible 7-tuples of
zcros and oncs,

Suppose the data for this problem are generated from a faulty calculator for which
it is hknown that each of the seven lighte has the probability of 0.1 of not functioring
properly. The data consist of cutcomes from the random vector (X;, ..., X3, Y) where
Y is the class label and assumes the values 1, ..., 10 with equal probability and, as noted
previously, the X,, ..., X; are zero-one varinbles. Given Y, the X, ..., X; are indepen-

dently cqual to the value corresponding to Y in Table 1 with probability of 0.9 and are
in error with a probability of 0.1.

%% ¢ akould be pointed out bere that while this is the same exarnple as outlined by the author ia their textbook, the output they
produced for Lhe purpose of illustration was not geaersted by the learning sample data presented in the texi Padraie Neville, wbo
has been ansisting the autbors with the software mabagemnent, bar stated that the origizal data used to run this example was

accidentally lost, bowever, the data in the text nearly depicis the original dats Therclore, the final struciured tree prerented iu this
paper will differ from that presented in the text.
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Figure 2. Horizontal and Vertleal Lights.

Table 1. Possible Values of z,,.

Digit x; X3 X3 X4 X3 Xg Xe | ¥
1 o o ! o0 O 1 O 1
2 1 0 1 1 1 0 1 2
3 i1 o ' 1 0 1 1 3
4 Q 1 1 1 0 1 O 4
5 1 1 o0 1 o0 1 1 b
6 1 1 o0 1 1 1 1 6
7 1 0 1 o0 o0 1 O 7
8 1 1 1 1 1 1 1 8
9 1 1 1 o0 1 1 0
0 1 1 1 o0 1 1 1110

The learning sample, L, is comprised of two hundred samples which are gencrated
using the above distribution. Recall that each sample in L is of the general form
(2, ..., 73, J) where j € C is the class label and the measurement vector z, ..., # con-
sists of zeros and ones,

As previously mentioned in Section IIl.b.2., to apply the CART structured
classification construction on L, four things must be specified: 1) the set of questions, 2)
a rule for selecting the best split, 3) a criterion for choosing the right-sized tree, 4) a
rule for assigning every terminal node to a class. Here the question set consisted of the
seven questions: Is z, == 0! where m = 1, ..., 7. The Gini index of diversity rule was
used to select the best split. The concept of this splitting criterion depends on a node
impurity measure. Given 8 node n with estimated class probabilities p(5 | n), j =1, ...,
J, and the probability that given a randomly selected case of unknown class falls into
node n that it is classified as class i, define a measure {n) of the impurity of the given
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node n as a nonnegative function ¢ of the p(1 | n), ..., p{J | n). Subsequently, the Gini
index of diversity takes the form: dfn)= Y p{j | n) p{s | n). This node impurity is

]

largest when all classes are equally mixed iogether in the node and smallest when the
node contains only one class. A search is marle for the split that most reduces the node,
and consequently tree, impurity. The V-fold cross-validation method was used to
»prune” to the right-sized tree. Here the original learning sample L was divided by ran-
dom selection into V subsets L, v == 1, ..., V, of nearly equal size. The wth learning
sample is: L) == L~ L,, v =1, ..., V, where L!" contains the fraction {V-1)/ V of the
total data cases (the cases in L but not in L,). For example, if V is taken as 10, each
learning sample L") contains 9/10 of the cases. Assume that a classifier can be con-
structed using any learning sample. Then, for every v, apply the classification procedure
and let & (x) be the resulting classifier. Since none of the cases in L, was used to con-
struet o®) (the classifier), a sample estimate of the overall tree misclassification rate may
be calculated, and a classifier is now constructed using the entire original learning sam-
ple L. The assignment rule proposed was to classify a terminal node n as that class for
which Njn) is largest, where N{n) is the number of class j observations in n.

The resulting classification tree is shown in Figure 8.! The question leading to a
split is indicated directly underneath each intermediate node. If the question is answered
affirmatively, the split is to the left; if it is answered negatively, the split is to the right.
Note that there are 11 terminal nodes, each corresponding to at least onec class with
class 3 having a second terminal node. Generally speaking, such a one-to-one correspon-
dence occurs by accident since any number of terminal uodes may correspond to a par-
ticular class, or some classes may have no corresponding terminal nodes.

The overall probability of misclassifying a new sample given the constructed
classifier (and the above fixed learning sample), R#(]), was estimated as 0.31. Two other
estimates of R+#(]) were also computed: 1) the cross-validation estimate, and 2) the
resubstitution estimate. Since the learning sample, L, must be used in actual problems
to construct both the classifier and to estimate R#(/), these estimates are referred to as
internal estimates. The cross-validation estimate was estimated as 0.32 - satisfactorily
close to R#(l). The resubstitution estimate was also calculated to be 0.32. This particu-
lar estimate identifies the proportion of cases from the learning sample, L, which is
misclassified once the set is run through the constructed classifier. Using the V-fold

cross-vnlidation method explained earlier, such estimators come satisfactorily close to
R(l).

t The notation veed bere to describe the clasnfication tree dill+rs from that of the text
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Figure 3. Digit Recognition Clascification Tree, i

IV. Summary ' hices

The classification tree structured methodology developed by Breiman et al frosia
currently seems to be a viable approach to analyzing the available data sets. Although -
the regression tree portion of Breiman et al.'s methodology has not been examined in e
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detail, it also may be another means of analyzing this data. In the case of the data from
the Firepower Control Experiment, it should be intcresting to compare the results of the

multiple regression analysis, Mann-Whitney test, Kruskal-Wallis tests, and cluster
analysis to the CART results,

A critique of this proposed approach and suggestions for alternative approaches are
invited.

A

Vi da, o e A QoL X ’ L "“)
D v-k.: e g& Sl
! R W A

SRR

S
t‘ \% 0
c‘u'.'l{ A UL RO ‘t.‘-'.‘ W ‘I X u.n.



Refeisernces

(1] Breiman, L., Fiiedman, J., Olshen, R . and Stone, C., "Classification and
Regression Trees, Belmont, California: Wadsworth, Inc., 1084.

[2] Winner, Wendy A., Brodeen, Ann EM., and Smith, Jill H., Teat Design and
Analysis: Firepower Control Ezperiment Part 12 of 12, U.S. Army Ballistic Rescarch
Laboratory Memorandum Report, BRL-MR-3612, June 1987.

[3] Myers, Raymond H., Classical and Modern Regression with Application, Boston,
Massachusetts: Duxbury Press, 1986.

[4] Draper, Norman R., and Smith, Harry, Applied Regression Analysis, New York,
New York: John Wiley & Sons, Inc., 1081,

[5) Conover, W.J., Practical Nonparametric Statisties, New York, New York: John
Wiley & Sons, Inc., 1976.

[6) Romesburg, H. Charles, Cluster Analysis for Researchers, London: Lifetime
Learning Publications, 1984,

[7) FC8-20-2, "Targeting and Target Value Analysis,” coordinating draft, Fort Sill,
OK: US Army Field Artillery School, October 1984.

L) UA) v Ty
R X T K Mo N P s N T N )
8 ettt e gt et
Lo e he B ey B0 Sye B bye t te 4,
Ya) g OOt

R K A e R )




il
X
q.ggv,‘_
DQEI
A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION :!E;i;‘;
OF IR BACKGROUNDS :“,z;::
5
Denis F. Strenzwilk, US Army Ballistic Research Laboratory ;:Qi; ,
Michael P. Meredith, Biometrics Unit, Cornell University :EE:‘
Walter T. Federer, Mathematical Sciences Institute, Cornell University
ABSTRACT i
r"'b '.g
At the US Army Ballistic Research Laboratory (BRL), Aberdeen Provin h{:ﬁ;-_
Ground, Md., weapon system analysts use background models in order to: 1 A
establish ‘clutter” thresholds for firing algorithms: and, 2) to study the el
masking and false alarm effect of background in their effort to evaluate the ha,
Eerformance of various weapon systems, The BRL has received from US Army s
ngineer Waterways Experimental Station (WES) several large data bases W
comprised of blackbody temperatures derived from measurements obtained with O
an IR sensor. The sensor was mounted on a helicopter and scanned in the o~
cross-track direction perpendicular to the direction of flight (in-traek&. The data o
consists of temperatures of scene elements (Pixels) for a plowed fleld, a forested o)
area, and a Emsy fleld. The primary objective of this research is to provide a s
simple mathematical model which provides simulated data that are consistent DOOR
with descriptive statistics from the original spatially correlated data base. Ko
Such statistics include the mean and standard deviation of temperature, and its B
‘energy spectrum'. The Mathematical Sciences Institute (MSI) at Cornell 3
University have suggested time series models and a Spatial Moving Average o
(SMA) model as two approaches to the problem. One long term objective of (ons
this type of investigation is to construct a method for relatmgb parameters in {;‘1;5’;.
the model to physical constants. If successful, the model may then be extended M2
over the diurnal cycle and seasons. o
1. INTRODUCTION b
AN
BRL to date has modeled target signatures in a deterministic manner while .:-::i
background signatures have been treated stochastically, The deterministic model for R
targel signatures is apgropriate because under a particular set of conditions, the '
signature is rather well defined and is amenable to a single characterization. The case

is not the same for backgrounds, which are manr and varied. Thus, the general
approach in modeling backgrounds has been to select a data set of a homogeneous
scene, to extract pertinent statistics, such as, the mean temperature, the standard
deviation, the ‘energy spectrum', the correlation between pixels, etc., and finally,

to develop a model, which can simulate & ‘typical' background segment with
these same statistics.

In most smart weapon simulations, the sensor scaps across many square meters
of background before any target is encountered. During this time, the sensor's signals o
are processed by a target discrimination eircuit that usually includes some sort of e
adaptive threshold logic. Usually for this type of discrimination, the signal's Root- '
Mean-Square (RMS) average is developed as a measure of background ‘clutter’. Target
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.:.;.:,;
detections occur when the instantaneous sensor output exceeds a threshold value that o
is proportional to the average of the output signal. The sensor's output signals Sy
produced by scanning the modeled background are thus used to provide a basis for e
setting the detection threshold; this is perhaps the most important function of the Y
background. The stochastic background modeling approach currently being used at the e
BRLﬁs based on a normal temperature assumption. It is quite well suited to provide a o
reasonable estimate of average clutter in many situations, even though the temperature S,
distribution of the pixels is not normal. However, a background model also ought to s
include some provision for sources of false detection. The simple stochastic i
background model described here is clearly not capable of fulfilling this objective, for @4
there is only a very remote possibility of a [false alarm when the detection xR
threshold is set to some multiple of the RMS signal. What is lacking is a means ot
for incorporating some realistic scene features that would constitute possible sources St
for false alarms. :.;:;f’:j
O]
Given that a target signature model with a reasonable deiree of fidelity is mated (i';,\‘:f
with a valid stochastic background signature model , it is possible to predict when and i
where a target detection is likely to occur. Probabilities of target detection can be il
inferred afmg the sensor/processor may be analyzed in terms of performance given a !
target encounter, This has been the BRL apY(roach for many smart weapon e,
simulations. A different approach must be taken if one wants to make some A
assessment of the smart weapon's capability for rejecting false targets, Ideally, the R
backﬁround infrared signature model used for this type of performance analysis ought to !
include a realistic characterization of individual scene elements that might confuse the s,
target discrimination logic. Might it be possible to develop a background signature 0,
model that is predictive in nature and includes specific features that are potential false D
targets? BRL would like such a model if the development effort does not cost us too T
much, and more lm?ortantly it the proposed model does not require so many computer ot i,
resources as to interfere with those needed for the performance simulation. 'k‘:-;i
X
.‘Q.“:
An alternative to ‘‘modeling® the background signatures either deterministically .‘:g’:g','
or stochastically would be to use actual scene measurements as inputs to the smart
weapon sensor model. This would require that the measured background signatures Syt
be compatible with the sensor model in terms of viewing direction, detector Y
wavelength band, and scene pixel size. Although the existing infrared background .:;::!:
signature data base is rather extensive , very few of these sources have the requisite ol
charactoristics for smart weapons system evaluations that are currently being ity
conducted. One source of data found to be generally compatible with the type of smart ®
weapons that are beinf investigated at the BRL s the set of infrared scanner iy
measurements of a rural area near Hunfeld, Germany made by the US Army Engineer ;:-:'.-?
Waterways Experiment Station (WES). For these measurements WES employed a : .::;3::
helicopter-mounted Daedalus infrared scanner operating in the wavelength band of et
8.6 to 12.6 mictometers. The scanner was flown over the test terrain at altitudes of 200 W
and 600 feet. The sizes of the corresponding ground resolution elements were roughly °
compatible with the 0.1 meter resolution that is optimum for the BRL's smart W
munition evaluation efforts, and the site of the measurements and the scene content is .'.-::'-:
quite aipropriate. The advantage of modeling this data set is that the model can ,.:-;.".‘
be checked against the actusl data in the simulation of a smart weapons concept. .’.::a::
o
: ®
Up to this point the discussion has been confined to simple scenes, e.g., a grassy "
fleld, a plowed field, a forested area, etc. Once a suitable model for a simple scene has .':,\:::
2
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been developed, BRL wants to conmstruct arbitrary scenes from these simple scenes, ,:;:ﬁ::
Thus a forested area of any desired size may be placed next to a plowed field. A road n'-;::::u
may be added to the scene. This compound scene with these three different kinds of ,!!t:?.-f
textures could then be used in comyuter simulations of smart weapon concepts. All N X
kinds of different compound scenes of arbitrary geometr{I and composition could be N0
constructed from the models of the simple scenes. Thus the ability to construct oty
compound scenes from simple scenes is a desideratum of the modeling effort. e,
u”.;:a:;:_a

II. DATA BASE ik

In this paper the time series models were applied to the data of the forested area. ;w;ass

The data of the plowed field and grassy area have a similar format, The data base for AR
the forested area is composed of 250 rows of temperatures, Each row contains 500 ,a‘;.;:isg-’
temperature pixels, Thus, for this data set there are 250 rows times 6500 columns or R
125,000 pixels of temperature. A row of data (500 pixels) represents one ‘cross-track’ RO
scan of the sensor, which was mounted on a helicopter that flew in a direction -
erpendicular to the rows (‘in-track’z . After processing the data with ground truth X
nformation, it was concluded that at the 800 ft altitude the in-track (flight direction) i,
dimension of the pixels was 0.3050m whereas the cross-track dimension was 0.15625m. ::o}:u:‘
The dntn are highly correlated both in-track and cross-track. .:;-;:.:4
!ot:a.l

. TIME SERIES MODEL e

For each row of 500 observations a (pmsl, q==1) autoregressive moving average :?n.i?;?‘f
model, ARMA(1,1) was fitted to the data. If the actual temperature observation was :;;:;u‘;.’,;
used to forecast the next pixel value for a complete row of simulated data, the e
forecasted data had the same spatial pattern and statistical characteristics as the actual W
data. If, however, the forecasted value wns used to forecast the next pixel value in the ;i@
row, the resulting set of forecasted values did not have the same pattern but did have ey
the same characteristics. Thus, to preserve the spatial pattern in the time series RN
approach, the actual data base would have to be used to make the forecasts. It was i
decided that for most applications it would suffice to have a model with the same i,
statistical characteristics. Therefore, the actual observation of the temperature of the Dol
first pixel in each row was used to forecast the 2nd value and thereafter the forecasted P
value was used to forecast the next pixel value in the row. The ARMA used was X
. l.\"

=210 01+ (B4 ), IL1 ""%

(N

where ‘:;.. v
¢  oquals 1,2,3,..,500 e
B

z, temperature of t th pixel in row -:W
Vol

7,  tomperature of t th pixel in row minus the mean, (2-p) e
p  mean temperature of row O'
P,
¢,  autoregressive parameter of order one , é.":‘
§; moving average parameter of order one t
» \J

a, random number for t th pixel from My, 0,2), called residual or ‘shock’ i |_
i, mean temperature of residuals ::'?r )
ﬁ”*i‘ t
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o, standard deviation of residuals

IV. ENERGY SPECTRUM

T "

Let us represent the the two dimensional array of temperatures as a matrix, whose
elements T\/,m) are

. 'ﬂ',m)==‘¢, V.1
; where
4  is the value of z, in the lth row

equalﬂ O’I,Q,Ul,N' - 1

3

- o e

N, is the number of pixels in a row (==500)
, 1 equals 0,1,2,...,N, - 1

) N, is the number of pixels in a column (=250).

' t equals m+1

i The discrete Fourier transform (DFT) for a row of temperatures is

Hkym B T m)ezpl-ian/Nym, Iv.2
; where "

;if k  oquals 0,12,...,N,-1,

\’ and for a column of temperatures is

Z,(K)= S Tl m)eapl-i(2n/N,)IK, V.3
E': where =

;’ k equals 0,1,2,.,,N~1.

j The frequency of a row f, is

;5 =m/NA, V4
) where

¥ A, is.1525m,

.:: and the frequency of a column /, is

4 f=I/N.A, V.5
A where

' A, is .3050m,

g: The cnergy of the kth frequency in the lth row SY(k) is

: P

g ! ‘,
y ( ) o I* v . » ‘Q( " ’, » ( W .
.0.\:“:,‘ o |:. .fo Q (‘\ e *.’ .‘-" 3 .’( H, A .( o :ﬁ-\. 0 R&ﬂﬁ‘ o’ : . R A *'
" 5 ') hﬁ. \ l.‘. \‘ ‘ WVl ) %*.‘ ’i'\ ﬁ ‘d 'll‘ o .‘. LAY 'Y .. A ‘ 1. 5. ."""....ﬂ..‘. f A



S(k)y=2\(k)Z' (), Iv.e
and the energy of the kth frequency in the mth row S, is
S(K)=Zn(K)Zp( K), v.7

where the symbol # denotes the complex conjugate. The cross-track energy spectrum
and the in-track energy spectrum are a statistical measure of the correlation of the data,
and result when Flg') or Spn(k) are plotted against frequency, respectively. (Zero
frequency is excluded as the interest is in the the variation from the mean.)

The energy spectrum is symmetrical about the Nyquist frequency, which occurs at
[+=.5/4A,=3.279 cycles per metre and at f,==.5/A,=1.639 cycles per metre. Thus, it is
common practice to multiply the energy of the kth frequency by a factor of two, and to
plot the energy spectrum up to the Nyquist frequency. This convention was used in this

paper,

In order to approximate an ensemble average by a spatial average, it is customary!
to average S{k) over the 260 rows and to average S,(k) over the 500 columns. Thus,
the average energy of the kth frequency of the 250 rows S "(k) is

249
r=(1/250) ¥ SY k), v
l=0
and the average energy of the kth frequency of the 500 columns S,(k) is
408
S,=(1/800) 3 Sp(k). Iv.e

mm=(

V. TWO DIMENSIONAL ARMA MODEL

The criterion for selecting a model was that its mean temperature, its standard
deviation, and its energy spectrum, which measures the correlation in the temperature,
be in good agreement with the data. The mean temperature and the standard deviation
of the datn were evaluated. The energy spectrum of the data was evaluated and plotted
versus the frequency for the cross-track and in-track directions.

The first two dimensional l_}2D) model tried was to simulate the 260 rows of
tempernture by using Equation (II.1) and the appropriate parameter estimates for each
row. The mean temperature and its standard deviation were in good agreement. The
cross-track cnergy spectrum for the rows ST(k) was also in good agreement with the data
since the AR model was fitted to the rows. However, the in-track energy spectrum
for the columns S,(k) was not in agreement with the data. This was expected because
nothing had been done to introduce correlation between adjacent rows. Several
approaches based on using the temperatures in the row above to forecast the next
forecast in the row below were suggested as a way of introducing correlation. None of
these approaches was successful.

After inspection of the spatial temperature variatior of several sets of adjacent
rows, some trends were noticed. The first was that T, m) and T{/+1,m) had similar
values and the second was that if Tl/,m+1) increased or decreased from T{i,m) , then

1 1a Rocca, Anthony J. and Witte, David J.,''Handbook of the Statistics of Various
Terrain and Water (Ice) Backgrounds from Selected U.8. Locations(U),” DTIC Technical
Report Number 139900-1-x, January 1980, pages 2-11 to 2-12.

31

" AN ORI A M e N 0 "-.‘."(_
D

RO X DO RN Do s OO AR



s T(+1,m+1) would show a similar increase or decrease from T{/+1,m). Perhaps, the '

' shock af that produced T(i,m+1) was correlated with the shoc af“ that pro?uced ,:{
"\ l+1,m+l)l. Based on this physical evidence, the assumption was made that a, was N
' related to ai*! through a bivariate normal distribution ¢(a},af*!) given by '

2 n
I+1 I4+1 3

) 1 1 a‘ al‘ o 6 e,
"l g(al,a“"l)_—:[ ]exp = ommm— o— -2p--—+ —— ] V.1 :i:i ®
i S PR e 21-A)| | o] ol ot | o ' '
) where the means of the residuals 4! do not appear since they are approximately equal to ';,r
' zero, and the correlation coefficient p has the range 9;“.
4 ~1<p<+1. V.2 0
X . 1
3 The marginal probability density function (pdf) for a} is e
N i}@'
" a(d)=N (0, (0}, va 4
and the marginal pdf for al*! is .
i alaft)=N(0, (oi")3. V4
% The conditional distribution for ai*! given af is N
oht! 2 o
gl a)y=N|o —|at , (e (1-p?) V.5 e
0 4 :
M v“‘x
4 1
* Now, the following procedure was used to find that value of p which minimized in m
. the least squares sense the difference between the in-track energy spectrum of the data “
%, S,(k) and the in-track energy spectrum of the simulated data S,(k ;p). For a given value W
Py of p the first row of simulated temperatures was generated from the ARMA model give b,
o in %quation (TII1.1) with the appropriate parameter estimates by using the values of g; o
B drawn from the marginal distribution given in Equation (V.3). The second row of "
o simulated temperatures was generated from the ARMA model given in Equation (III.1) .
E with the appropriate parameter estimates by using the values of a} drawn from the o
R conditional distribution given in Equation (V.5). The set of a!'s for the second row were ]
o then used to generate the a?'s for the third row through the conditional distribution §
';'.: iven in Equation (V.5), etc., until 250 rows of simulated temperatures were generated. 1
R hen, the in-track energy spectrum S,(k ;p) was evaluated. The process was repeated for :". .
: several values of p and the sum of squares of differences between the in-track energy ) B
e spectrum for the data and the simulated data was evaluated for each value of p. The ot
) value of p which minimized this sum was chosen as the p to he used in this model. c§‘
'.. . ey
VI. CONCLUSIONS FOR 2D ARMA MODEL ' X
. The value of p which minimized the diﬂe;l_gnce in the actual and simulated energy %
s spectrum was 0.89. The mean temperature T of the data base was 13.1°C and its *3
o standard deviation o was 1.2°C, whereas the simulated data base had a mean o
b temperature of 13.1°C and a standar? 4~ -iation of 1.1°C. The comparison of the cross- )
® track energy spectrum for the data .o. wr the simulated data can be seen in Figure 1. ‘
. Similarly, the comparison of the in-track energy spectrum for the data and for the ‘

simulated data can be seen in Figure 2. The agreement in both cases is good. Thus, this )
- two dimensional ARMA model can simulate the statistical characteristics of the data, w
" but not the spatial variations. Furthermore, to obtain more than 250 rows use Row 249 2
" parameter estimates for Row 2561, Row 248 parameter estimates for Row 252, etc., and i,
Y o
. 3
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essentially form s rnirror image of the original 2560 rows. To make rows longer, just draw
more than 500 shocks for each row. An alternative to this procedure would be to use the
250 x 500 array of temperatures as the basic unit and extend it in any direction by
mirror reflection.

One untried approach to improve this 2D ARMA model would be to take the
average value of the ARMA parameter estimates for the 250 rows or at least several
consecutive rows to obtain ‘‘representative parameter estimates”, Then, randoml
perturb these representative parameter estimates within their observed bounds for eac
row to be simulated, and proceed as before to determine a suitable value of p for the
simulated temperatures,

Another untried apgroach to improve this 2D ARMA model might be to fit an
ARMA model to every kth row of data. Use the apfropriate parameter estimates for
Rows 1,k+1,2k+1,ete.. For the rows in between 1 and &, use a weighted average for the
Earameter estimates, e.g., Row 2 values are (k—l){k](vaiue of Row 1) 4 (1/k) (value of

ow k), Row 3 values are [(k-2)/k|(value of Row 1) + (2/k)(value of Row k) , etc. (Note
that a small amount of noise could be added to each value.) Proceed as before to
determinc a suitable value of p for the simulated temperatures.

VII. SPATIAL MOVING AVERAGE MODEL

The model described in this section differs from the ARMA models discussed above
in that it is a two-dimensional model from the start whereas the others are one-
dimensional models adjusted to give a two-dimensional array of spatially correlated
observations. It also offers more promise of reproducing the spatial variation of the data,
but at present it has not been applied to our problem. The steps for the SMA model are:
1. Generate an array of 7, which are independent, identically

distributed normal random variables, NIID(0,03).

2. Use Z;; in a spatial moving average (SMA) to construct

the temperature datum T, ,, as

Tn.m=T+ i 25 A"J'Zn+|',m+;' ) VIL.1

fam-p jum-g

where E{T, ,]= T,

sad
Co Tom Turamet)=0, if [al>p, | t|>g; VII.2.a
| CoA Ty Tarme)=02 33 35 AL, it 40, t=m0; VIL2.b
jm-p jom-q
and
CoN Ty Tasamsd=0? 3 33 AyAi, , otheruise, ViL2.c

imephy jum-gdt
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3. A;; are chosen by the experimenter such that

EEAI'J=1 . VIl.3
i

Table 1 illustrates the needed coefficients A,; for p==1,¢==1 that multiply the random
variable Z,, in order to obtain a value for T, ,, in Equation (VIL1).

TABLE 1. Coefficients of the Spatial Moving Average for Constructing
the Datum T, ,, Using thé NIID Random Variables Z;.

-l m__mtl
ol | Ao | Aap | A

n | Agr | Aoo | Aos

: n+l Al.—l Al 0 Al 1

Some A, may be chosen to be zero or some other value.
‘ PROBLEM: Optimal determination of Ay in SMA to match marginal
gpectra from observed process,
: vil. SOME COMMENTS

Our primary objective in this research was to provide a simple mathematical
. model which provides simulated data that are consistent with descriptive statistics from
, the original spatially correlated data base. Our 2D ARMA model met our criterion that
' its mean temperature, its standard deviation, and its energy spectrum, which measures
' the correlation in the temperature, be in good agreement with the data, even though it
did not reproduce the spatial variation in the data. Our assumption that the shocks in
adjacent rows be drawn from a bivariate normal distribution was the ingredient that
introduced the necessary two dimensional spatial correlation in the simulated data.
_ Some additional approaches for simplifying our 2D ARMA model, which were centered
| around reducing the number of ARMA parameter estimates needed for simulation, have
-' been suggested in the text. In addition a spatial moving average model has been

outlined as an alternative method for this problem.

Our 2D ARMA model is an improvement over the normal models that are currently
being used at the BRL, especially since the time series approach naturally forecasts
outlier tempemture;ezlsL talse alarms ) that are found in the data. In time, after more data
are analyzed by MA models, methods for relating the parameter estimates to
physical constants will be found. If successful, the mode! may then be extended over the
diurnal cycle and seasons. Also, for the theorists, an n-dimensional spatially correlatad
model is easily constructed.
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EVALUATION OF CAMOUFLAGE PAINT GLOSS
VERSUS DETECTION RANGE

George Anitole and Ronald L. Johnson
U. 8. Army Belvoir Research, Development
And Engineering Center
Fort Belvolr, Virginia 22060-3606

Christopher J. Neubert
U. 8. Army Materiel Command
Alexandria, Virginia 22333-0001

ABSTRACT

To increase durability, the military has considered using a higher gloss camouflage paint,
The field test and statistical analyses required to determine paint gloss effects upon range of
detection are described. Five, S/4<ton CUCV trucks were painted in the woodland U.S./Ger-
man pattern with 1, 5, 10, 15, and 20 percent paint gloss. At least 30 observers per gloss level
were individually driven towards two sites. The distance of correct detections were recorded.
An analysis of variance with individual comparisons determined that detection range was sig-
nificantly (a < 0.05) greater, when higher gloss levels were compared with the standard one
percent,

1.0 SECTION I - INTRODUCTION

The curreut camouflage paint specifications used by the U.S. Army call for a lusterless
finish. This particular finish was originally selected for camouflage purposes because of its low
visual reflectance characteristic. The lusterless finlsh is the result of a high pigment to binder
ratio, and tends to mark and scuff easier than paint with a lower ratio and higher gloss finish.
In addition, colors in a glossier finish appear more vivid than lusterless finishes which acquire
a washed out appearance much sooner. These phenomena have been the object of concern from
a camouflage standpoint, since the use of glossier paints would result in a longer lasting camoullage
effect.’ However, the problem in using glossier paints is the potential of increased reflectance,
hence detection. It was the purpose of this fleld test to determine statistically the cffect in-
creased paint gloss would have on the range of target detection in a woodland background,

2.0 SECTION II . EXPERIMENTAL DESIGN

2.1 Test Paint

Camouflage paints were purchased in five different degrees of specular gloss (rom the
Enterprise Chemical Coatings Co. Wheeling, Illinois. The paints were produced In colors Green

37

AP P P N R AN
s
3 L '




383, Brown 383, and Black using paint specification MIL-E-52798A, in 1, 5, 10, 15, and 20%
reflectance measured at 60° (1% is the current gloss of military paint), The gloss percentage
spread was selected to provide a noticeable difference in reflection considering normal manufac-
turing tolerances. The 20% reflectance level was selected as the upper limit, since any greater
refloctance was considered too shiny for military purposes. One gallon of each color, in each
reflectance, was purchased for test and shipped to Ft. Devens, MA where the ficld evaluation
took place.

{ 22 Test Targets

Five, 5/4-ton, commercial utility combat vehicles (CUCVs) on loan from the Massachusetts
National Guard were painted by Belvoir personnel at the Ft. Devens Maintenance Facility in
the standard United States/German three color woodland pattern.

23 Test Sites

The study was conducted at the Turner Drop Zone, Ft. Devens, MA, a large cleared tract
of land surrounded by a mix of coniferous and deciduous forest resembling a central European
| background., Two test vehicle location sites were selected, Site #1 was located on the western
end of the drop zone, so that the morning sun shown directly upon the test vehicle, Site #2
was located on the castern edge of the drop zone, so that the afternoon sun shown directly upon
the test vehicle, An observation path, starting at the opposite end of the drop zons from the
, test vehicle location, was laid out for each site. These layouts followed zig-zag, random length
d directions toward the test sites, and afforded a continuous line-of-sight to their respective test
vehicle locations. The paths were within a 30° to 40° cone from the targets, and were surveyed
and marked at 50 meter intervals using random letter markers. The markers and distances from
the test vehicle location sites are shown in Table 1.
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Table 1

Distances of Markers to Test Vehicles on Sites #1 and #2

ALPHABET
MARKER

LT MraT $s1Z200<CCpPODNITVTXXTOODDI>CO

Site #1

DISTANCE IN
METERS ALONG
PATH FROM
STARTING FOINT
TO TARGEY

1,173.70
1,132.02
1,088.81
1,044.10
1,018.03
989.27
847.17
801.17
854.08
808.71
762,38
723,82
708.95
883.23
653.54
608.16
560.96
536.46
497.44
487.13
418.47
376.60
342,00
298.01
260.15
219.07
172,18
126.89
9.7
27.65

ALPHABET
MARKER

U
H
L
T
J
R
K
|
v
F
Z
E
N
X
D
Y
S
P
M
A
C
o)
@
B
w
Q

Site #2

DISTANCE IN
METERS ALONG
PATH FROM
STARTING POINT
TO TARGET

1,261.50
1,280.74
1,192.40
11K3.88
1,:,6.90
1,076.08
1,033.80
887.16
942.80
902.04
853.67
811.07
770.70
731.23
683.08
648.52
602.61
561.58
817.368
473.04
426.61
382.77
354,02
320.74
297.81
277.02
236.68
202.66
162.82
1258.71
02.18
51.84




2.4 Test Subjectz

A total of 153 enlisted soldiers from Ft. Devens served as ground observers, All person-
nel had at least 20/30 corrected vision and normal color vision, A minimum of 30 observers
were used for each teat vehicle, about evenly split per test site. Each observer was used only
one time,

1.5 Data Generation

The test procedure for determining the detection distances of the five vehicles involved
seurching for the vehicles while traveling along the predetermined measured paths, Each ground
observer started at the beginning of the observation path, i.e,, marker C for site #1 and marker
L for site #2. The observer rode in the back of an open 5/4- ton truck accompanied by a data
collector. The truck traveled down the observation path at a very slow speed, about 3-5 mph,
The observer was instructed to look for military targets in all directions except directly to his
rear. When a possible target was detected, the observer informed the data collector and pointed
to the target. The truck was immediately stopped, and the data collector sighted the pointed
target. If the sighting was correct i.e,, the painted CUCYV, the data collector recorded the al-
phabetical marker nearest the truck, If the detection was not correct, the data collector in-
formed the observer to continue looking, and the truck proceeded down the observation path.
This scarch process was repeated until the correct target was located.

The target CUCVs were rotated between the two test sites on a daily basis, until all vehicles
had been observed by at least 15 observers at each site. Their orientations with respect to the
sun were kept constant at both test sites. The vehicle side windows were left open to eliminate
shine, and a tarpaulin was used to cover the windshield and rear window, The vehicles were
positioned so that the left side was facing the direction of observer approach.

3.0 SECTION HII-RESULTS

Tables 2, 3, and 4 show the detection data for the 5/4-ton CUCVs painted in 1, §, 10, 15,
and 20% yloss. Tabla 2 gives the mean detection range in meters for each gloss level, and its
associated 95% confidence interval, Table 3 shows the analysis of vatiance? performed upon
the data of Table 2 to determine if there were significant differences in the detection ranges
i.e., gloss has an effect upon detection range. Table 4 indicates which gloss levels differed sig-
nificantly from each other. Figure 1 is a graphic display of the detection ranges of Table 2,
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e
]
e
T! 2 e
N e 5
: Mean Gloss Detectlon Ranges (Meters) and 98 Percent Confidence ante
. Intervals, b M
LZ‘%*
' 08 PERCENT CONFIDENCE i
% GLOSS STANDARD INTERVAL :‘;;;'.i,;
LEVEL N MEAN ERROR LOWER LIMIT UPPER LIMIT s
1 3 580.0000 136.3044 520.2433 630.7567 7:33;:;‘
30 7801330 216,308 700.3718 870.8081 o
3N 871.0000 17,7328 £27.0429 1014.0571 L::’:u
30 1078.3333 114,1138 1035.7282 11209418 :;jv\“.‘,n‘
31 1183.0677 83.1087 1119.7878 1186.1480 "
ot
Table 3 ;’.';:;‘—,
an'r'“
Analysis of Variunce for Vehicle Detection Across §ow
Five Levels of Paint Gloss e
Gy b0
l(‘f’la:lv'
DEGREES s
OP ;‘,"4
SOURCE PFREEDOM SUMOF SQUARES  MEAN SQUARE F-TEST  8IQG LEVEL LR
e
et
aLoss 4 6,611,277.3880 1652819.3415 81,7897  0.00000* M
ERROR 148 2,071,601.1011 20215.5887 ‘.0::;0:
TOYAL 182 9,562,068.4671 et
Vv
& IE::::J
LA
BARTLETT'S TEST FOR HOMOGENEOUS VARIANCES ::1;::
L)
’l""l:
NUMBER DEGREES OF FREEDOM = 4, o
F = 6,40661911766 SIGNIFICANCE LEVEL & = 0,0003 N
*Significant at less than 0,001 level. e
l\- 'I=|
(3% ) )
]
Table 3 indicates that there are significant differences in the ability of the ground observers ':::
to detect 5/4-ton CUCVs of different degrees of paint gloss. The Bartlett’s Test indicates that :
the varlances for cach level of paint gloss are not homogeneous, i.c,, significantly different, so 'G::':','
they are not necessarily from the same population. ::
A
QO::
! ‘
L
s
'l‘:‘l';
'n..:t:.
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Table 4

Individual Comparisons Identifying Which Levels
of Paint Gloss Differed Significantly from Each Other

1% QGloss and 8% Gloss

COMPARISON = -210.13333 SUM OF SQUARES = 873198.30383
Fw 33.301 SIGNIFICANCE LEVEL =  0.00000 ***

1% Gloss and 10% Gloss

COMPARISON = -391,00000 SUM OF SQUARES = 2330808.68852
F= 115208 SIGNIFICANCE LEVEL =  0.00000 ***

1% Gloss and 18% Gloss

COMPARISON = -498.33333 SUM OF SQUARES = 3786107.92380
Fw 187.287 SIGNIFICANCE LEVEL =  0.00000 *“**

1% Gloss and 20% Gloss

COMPARISON = -873.068774 SUM OF SQUARES = 8108304.01813
Fw 282802 SIGNIFICANCE LEVEL =  0,00000 ***

6% Gloss and 10% Gloss

COMPARISON = -180.88887 SUM OF SQUARES = 490601.20867
Fw 24,273 SIGNIFICANCE LEVEL =  0.00000 ***

8% Gloss and 18% Gloss

COMPARISON = -288,20000 8UM OF SQUARES = 12485888.80000
F- 61.830 SIGNIFICANCE LEVEL =  0,00000 ***

8% Gloss and 20% Gloss

COMPARISON = «363.83441 SUM OF SQUARES = 2018183.50002
Ew 00.833 SIGNIFICANCE LEVEL = 0.00000 ***

10% Gloss and 15% Gloss

COMPARISON = «107.33333 SUM OF SQUARES = 172808.86667
Fa 8.848 SIGNIFICANCE LEVEL =  0.00348 **

10% Gloss and 20% Gloss

COMPARISON = «182.068774 SUM OF SQUARES = 510360.01586
Fw 25.247 SIGNIFICANCE LEVEL =  0.00000 ***

18% Qloss and 20% QGloas

COMPARISON = -75.63441 8UM OF SQUARES = 87218.15248
Fo 4,314 SIGNIFICANCE LEVEL =  0.037790 *

The following levels of paint gloss differed significantly from each other: 1% vs. 5%, 1%
ve. 10%, 19 vs. 15%, 1% vs. 20%, 5% vs. 10%, 5% wa. 15%, 5% vs. 20%, 10% vs. 15%, 10%
vs, 20% and 15% vs. 20%.

* Significant at a less than 0.05 lovel
*¢ Significant at & less than 0.01 lovel
*¢» Significant at ¢ less than 0.001 level
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- 1200

- 1100 I
- 1000 i

DETECTION - 600

RANGE IN -~ 800 }
METERS - 700
- 600 E
- 800 [ 1 [l | |
1% 5% 10% 18% 20%

GLOSS LEVEL
Figure 1, Detection Range In Meters for CUCVs Painted in Five Levels of Gloss

The Bartlett's Test for homogeneity of variance was significant at less than o« = 0,001,
Thus, it can not be assumed that all the sample variances are from the same population, This
ansumption is required to perform the parametric test of anaiysis of variance and associated In-
dividual comparisons. When the Bartlstt's Test is significant, non-parametric tests should be
used to determine the relative positioning of the sample statistics, Two such non-parametric
tests were porformed, the Krushkal-Wallia One-Way Analysis of Variance and the Mann-Whit-
ney U Test" The Krushkal-Wallls Test determined that there were significunt differences be-
tween the levels of paint gloas, The Mann-Whitney U Test, based upon the Chi-Square
distribution, determined the probability of individual gloss percentages differing from cach other.
These teats, while not as powerful as the parametric test, ylelded the same general results, and
are available upon request from the U.S. Army Belvoir Rescarch, Development and Enginser-
ing Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. It is not unexpected that the varian-
ces for each gloas level were not homogeneous. Each level of gloas was different from the
preceding by 5%. These equal differences in shine are not perceived as such by the human
eye. The 195 gloss was seen as dull, however the § through 20% paint gloss was percelved as
being reflective. This in verified by viewing the differences in mean detection for the gloss per-
centages of 1 v&, 5, 5 va, 10, 10 vs, 15, and 15 vs. 20 (see Table 5). If the varlances were nor-
mally distributed, the mean differences between percentages of gloss would be about the same.
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Table § R
‘d
o
Mean Differences In Detection Range (Meters) Between Gloss Levels ~“‘.*A
(NAO
% GLOSS MEAN DETECTION RANGE DIFFERENCE o
‘A':’j'
1ve, 8 580 790 210 B
5va. 10 7% o7 181 Pt
10 vs. 18 o7 1078 107 e
18 va, 20 1078 1183 75 g:g:;::
e
4.0 SECTION IV - DISCUSSION N
s
Figure 1 and Tables 2 through 4 cloarly show that the higher the percentages of paint gloss, AR
the longer the mean range of target detection. The differences between the 1% gloss detection ;:}:;;;.
range, and the $, 10, 15, and 20% gloss detection ranges are significant well beyond the ¢ = 0.05 {*_ﬁ;:"i-
level. This a value Is the probability that one will make a decision that the levels of paiat gloss \f-{::
are significantly different in the resulting detection ranges when they are not. For this study, ERKS
the declsion is that the higher gloss paint levels of §, 10, 15, and 20% will have a longsr range ",J;:z:j-
of target detection than the 1% paint gloss level. In the world of statistics, if a declsion has a s
probability of being wrong § or lesa times out of 100 (@ = 0.05) then this is an acceptable ot
risk, 1f this probability of being wrong is greater than 5 times out of 100, the risk is not accept- : =
able, and the decislon is rejected. In the preseat study, these levels of differences in mean o
detection ranges tend to get smaller as the percentage of paint gloss increases (Figure 1 and .:a:::
Tables 2 and 4), but they never exceed the ¢ = 0.05 level. With the exception of the paint gloss ',::::u;‘
comparisons 10 va, 15% and 15 vs, 20%, which are significant at « = 0,003 and 0.03" respec- ::::‘
tively, the other comparisons are significant at an « level loss than 0,001, The differences be- “’“
tween the detection means usymptotes as the percentage of the gloss gets higher (sec Figure 1). :,::.v‘.'.;-
This is due to the fact that targets with a highor gloss are casier to seo than targets with a lower :i“.;:':‘
gloas. For example, increasing the palnt gloss from 1 to 5% would Incrcase the moan detoction ,::;:::;
range by 210 meters (Table $). et
It was also observed that as the level of paint gloss increased, the visunl perception of a e
pattern decreased. The camouflage pattern was difficult to discern at paint gloss levels of 10% a.:::::;
and above. ) ..u',v
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5.0 SECTION V- SUMMARY AND CONCLUSIONS

Five S/4-ton CUCVs were painted in the standard woodland United States/German three
color pattern with the following paint glosses:

1% (standard)
5%

10%

15%

20%

A minimum of 30 ground observers per paint gloss level were driven toward each of two sites
on marked observation trails in the back of an open 5/4-ton truck. The subjects were looking
for military targets, and they informed the data collector when they thought they saw one. If
the detection was correct, the closest alphabetic ground marker to the truck was recorded. From
this letter, the exact distance to the target from the truck was determined. If the detection was
not correct, the search continued with the truck traveling down the observation path until the
tost target was scen. An analysis of the resulting data provided the following conclusions:

A. The targets with the higher paint gloss of 5, 10, 15, and 20% were significantly easier
to detect than the target with the 1% paint gloss.”

B. The higher gloss paint levels of 5, 10, 15, and 20% will have a significantly longer range
of target detection than will the 1% paint gloss level, which will increase their vulnerability to
eaemy fire.

C. In that the 5% paint gloss vehicle was detected, on the average, 210 meters farther
away than the 1% paint gloss vehicle, one can not recommend any increase in the paint gloss
over the 1% currently being employed by the U.S. military.

* Low visual reflectance is particularly important in woodland backgrounds where reflection and
brightness are relatively low. Its effect in bright backgrounds such as desert or arctic environments,
where reflections from glossier paints may be lost in the noise, remains to be evaluated.
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SENSITIVITY ANALYSIS
OF A NONSTOCHASTIC MODEL

A.A. Khan
US Army Concepts Analysis Agency
Bethesda, MD 20814-2797

ABSTRACT. Simulation models are now widely used as analytical tools. New
models are usually subjected to quality assurance criteria before they can be
employed in studies. This practice is prudent as well as useful in learning the
characteristics of a newly developed simulation model. Also, itis necessary to find
those parameters which have a significant impact on the response variable [1].

Mobilization Based Requirements Model (MOBREM), the model examined in
this article will be used for policy studies and budget planning. Before it can be so
employed , we subjected it to sensitivity analysis. Since the model is deterministic,
there are norandom errors in the response variable; therefore, the usual statistical
methods are not applicable. In their place, the 'summary statistics' R2 has been used
judgmentally.
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1-0  INTRODUCTION. The results in this report deal with the sensitivity analysis of
the simulation model, Mobilization Based Requirements Model (MOBREM). This
model has been designed to provide the U.S. Army with 'a responsive, consistent,
and auditable system for determining the Continental United States (CONUS)
resources required to support mobilization’ [2). This model was developed over a
five year, five-phased period, from 1979 to 1984. it was delivered to Concepts
Analysis Agency (CAA) in August 1984, Since then, the model has been used for the
training of operators and for performing policy studies in connection with
mobilization.
1-1  Sensitivity Analysis. A new model, before it can be used for any study, must
be tested for its sensitivity to input parameters. in this report, we address the
: following issues:
! a. From aselected list of input parameters (or factors), find those
! parameters which have a significant impact on the response variable.

b. Rank order the significant input parameters.
X The response variable in this study is the manpower requirements by the major
Army Commands (MACOMS) Installations, by Army Functional Dictionary (AFD)
code, and by time periods from Mobilization day (M-day) to day of hostilities (D-
day).
1-2  Background. MOBREM is a very large and complex simulation model. For
our purpose it is essential to keep in mind that it is a deterministic model. There are
no random number generators in the subroutines or modules. Repeated
observations do not provide estimate of 'variance’. |f we repeat an experiment with
fixed input values, we do not get anew value for aresponse variable. For this
reason the classical statistical procedures have to be modified to meet the specific
| situation of MOBREM. In particular, F-test and t-test are not valid. We use R2, the
coefficient of determination, as the index of goodness of procedures used in our
analysis..
2-0 OVERVIEW OF MOBREM. It will help in understanding the objectives of this
study to have some perspective in mobilizing large numbers of people. To provide
the reader with the magnitude of the numbers involved, we present in Table 1 the
initial and final stages of mobiiization in MOBREM. We will skip the details of
organizational complexities and the organizations which are required to manage
| this operation.
2-1  CONUS Base. The major functions of CONUS Base organizations are to
provide the support that enable units to be deployed, trainees to be be trained, and
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equipment and supplies to be shipped to the theater or within CONUS. They also
provide medical support for theater medical evacuees as well as those patient loads

generated in CONUS installations [2].

2-2 Projections. A profile of organizationsin CONUS in peace and war is given
below. Itillustrates the staggering magnitude of manpower involved from the
initial to the final phase of mobilization. The organizational complexities to
synchronize various phases of this process quantitatively is the most important
function of MOBREM, but will not be discussed here.

Table 1
CONUS Base Organizations
Units PeaceterO% (S);rengths ;’m‘:ié?ﬁs
{000)
TDA
OSA and OCSA 37 6.8
Joint and DEF ACTV 6.7 7.1
OSA and ARSTAF FOA 46.7 46.0
Commands in CONUS 347.6 658.7
Army Reserves 258 0
National Guard 204 0
TOE
| Training division 32.0 52.9
| Training spt units 4.1 4.5
GSF units 29.8 371
Sep inf bde 19.0 20.1
Other 39 4.1
Totals 539.7 837.3
4
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Table(s) of allowances (TDA) is the number of slots allocated to different
organizations, it includes both civilian and military, and table(s) of organization and
equipment (TOE), i.e., the number of personnel authorized to keep a unit of army
functional.

3-0 DESIGN OF EXPERIMENT. The initial list of 30 parameters was pared down to
9 for this study to economize on computer time; since each run of MOBREM takes
about 12 hours to complete. The selection of the final list of input parameters and
their levels was carried out with the help of both civilian and military analysts.

3-1.  Choice of Design: A two-leve! fractional factorial design was planned for
sensitivity analysis. The full design was completed in two stages. In the first stage,
the 9 factors included both scalar and matrix inputs. The non-scalarinputs were
treated as scalars by the following ccnvention:

High value +CV
Low value -C.V

where C is a constant, V is a non-scalar. In this way the design is the usual fractional
factorial design. Attheinitial stage of the study, we are interested only in
‘sensitive’ parameters, their interactions are of less importance. By 'sensitive,’ we
mean those inputs which produce a large impact on the response variable. A
Plackett-Burman (P-B) design was deemed most suitable in this phase [4]. The 9
parameters are listed below:

)
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FACTOR DESCRIPTION

M-Day to D-Day

Work week

Training load

Show rates

Hospital rates

Deploying MTOE |evels
Non-deploying MTOE levels
TDA levels

Other levels

>

—_ T & m m O N @

Only Factors A and D are scalars

The smallest P-B design to accommodate 9 parameters is a 12 run design given
below . A P-B design allows us to assess the impact of the main effects, which in this
layout are not confounded with higher order interactions [5].




i Table 2

% PLACKETT-BURMAN DESIGN
- | STAGE
| PACKAGES
RUN|IA B € D E F G H |
1 L T T S
i 2 + o+ ok e e e 44
3 -+ + -+ - - - %
4 + - + + = 4 - - =
5 |+ + - + + - + -
6 [+ + + - + + - ¢ -
B 7 |- + & + < o+ 4+ - %
3 8 S T T
9 |- - = + + + - + ¢
5 10 [+ - - =~ + + + - +
M- + - =« - + + + -
2. - . o . . . ..
o + HIGH LEVEL
X - LOW LEVEL
‘PACKAGE' stands for a policy, i.e., a particular combination of input values.
4
‘e 3-2. Second Stage Design. At the firststage, results showed that only 5 factors
‘fl‘ were important enough for further investigation. These are:
I Table3
I\
- FACTOR DESCRIPTION
Y A D-Day to D-Day
if. o Training load
fé C2 Training equipment
\ H1 TDA fill
H2 TDA equipment
52
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H2 is the corresponding level of equipment allowed to the unit. In this scheme, all
parameters are scalars and the second stage P-B design is shown in Table 4.

Table 4
P-B DESIGN
I STAGE

Run | A C1 €2 H1 H2
13 S
14 + o+ + -
15 + o+ -+
16 + o+ -+ 4+
17 + -+ o+ o+
18 -+ o+ o+ &
19 + o+ - - .
20 + -+ - -
21 I
22 + 0« -+ -
23 -+ + - -
24 .
25 -+ - -+
26 - -+ o+ -
27 S
28 S L .

+ HIGH LEVEL

- LOW LEVEL
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4-0 LINEAR MODEL. The collection and analysis of data depends on the i
mathematical model which we postulate to explain the relationship between the ]
response and the input factors. The selection of a fractional factorial design at two 1’
levels, a resolution Ill design (P-B Design), was made with the object of estimating
the main effects; higher order interactions can be sacrificed at this stage. The X
reasons can be summarized as follows (6):

® Not much is known about the model on how different inputs impact on ‘»f
the output. 0
® In this situation it is best to assume a linear model. ;:!
® All experiments under uncertain conditions are conducted with some risk. :'.
If later, itis found that interactions are more important, one can re-run B

the simulation model to obtain additional observations. Simulation
models can be run anytime one chooses to do so, provided time and ;
resources are not prohibitive.

® Simpler mathematical models help in clearer exposition of the conclusions. *‘
4-1  Apalysis. Atthisstage the assumptions of linearity and additivity are |:“
convenient to model our results. !f the experimental region is not large, higher N
order interactions need not be included in the expression connecting the response @
to the input [7]. We approximate the functional relationship between the response o
y and the input factors x1, x2, ..., X9 by Taylor's expansion. S‘;‘
%
ymAg+Ayx;+A2x2+.. +Agxg+R (1) ,,
o
where Aj(i=0,1,2,..,9) are unknown constants and R is the remainder term in the , 'E'.!
Taylor's series expansion.. Observe that this model does not have stochastic Eﬁ;‘
components and therefore statistical techniques cannot be applied. We use the )
least square (I.s.) methods in the estimation of Aj and use R2 to measure the 3
adequacy of the model (1). For a clear discussion of two-level fractional design and }
the techniques of estimation of main effects, we refer to (8. The |least square ”i'
technique is used in (1) to evaluate and partition the total sum of squares into the i' :
:'; component sum of squares. Each component is attributable to a specific factor, plus :;:‘
R the sum of square due to the remainder term. This analysis is carried out for the '5'.:
; data in the first stage. A typical run with the response variable at each time period .:
is shown in Table 5. )
~ ]
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Table 5 R

Total | _'
Manpower
Requirements

Time from
M-Day

M+10 318671
M+ 20 314747
M + 30 354932 |
M + 40 367936 e
M +50 403887 e
M + 60 442291 Lo
M +90 479470 it
M+ 120 498009 e
M + 150 504354 i
M + 180 501839 | it
M +210 497962 RN
M + 240 497845 R
M +270 497494 iy
MOB-AV 532915 R

Since there is an ANOVA at each time period and for each run, there are
13x 12= 156 ANOVAs. These are not listed here, but the result of the analysis is h
shown in Table 6, showing the ranks of the factors in descending order. Y
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Table 6
Ranking of Packages in Descending Order

Factor Package

B Workweek

C Training

H TODA

A M-Day to D-Day

G Non-deploying MTOE levels
F Deploying MTOE levels

D Show rate
E Hospital
I Other Personnel

Visual analysis at this stage is most effective, Figure 1 shows the response variable
against time, when grouped according to the levels of Factor B (workweek). Factor
B is the driver of the manpower requiremants, a result confirmed by the usual
ANOVA techniques. Figure 2 clearly indicates the main effects which have clear
impact on the response variable. Apart from B, A and C produce measurable impact
on manpower requirements up to time M + 100, after that the effects of these
factors is dampened out. Other factors have negligible effects ascan be seen by
inspecting Figure 3. This combination of ANOVA, graphs of main effects and
aggregating results by each level of Factor B is carried out for a selected group of
AFD's. The results confirm the hypothesis that the ranking in Table 6 is valid for the
sampled AFD aggregations. This simple computer intensive graphical technique has
been extensively used In this study.

4-2 |1 Stage Analysis. Since the workweek parameter is so decisive, no further ‘
investigation is required to measure the sensitivity of the response variable to this '
parameter at this stage. In the |l stage of design, a 60-hour workweek was fixed.

The number of input factors was narrowed to 5 factors. Again, a resolution |li

design was used to generate simulation data. The factorsin the |l stage design are

given in Table 7. %
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TIME M4 (DAYS)
Figure 1

TAGE #1 RUN
03

1,000,808 -
988,808 -
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; Table 7

" Packages in the |l Stage Design
g Factors Description
' A M-DaytoD-Day

c1 Training load

y Q2 Training equipment
R H1  TDAfill

‘ H2 TDA equipment

C1and C2 are the elements of the vector input C of the | stage design. Likewise, H1

K and H2 are the components of the vector H of the | stage. At the second stage, all
' paramenters are scalars. The two values of the parameters at thisstage are chosen
i within the range of their values at the first stage.
. The same method of ANOVA is used asin the first stage. A sample ANOVA (for run
13) isshown in Table 8. The response variable is the manpower requirements on

M + 270 day, i.e., 270 days after mobilization day. Sensitivity of a factor is measured
. by its contributions to the total sum of squares. The overall ‘fit' is measured by '‘R2’
: as given below.
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Table 8
ANOVA For Run 13

| 3‘::2';%?:: Sum of squares
A 4.000
H1 495952900.000
H2 0.250
1 6272402402.250
C2 0.250
Explained 6768355306.750
Residual 119041.000
Total 6768474347.750
R2=939%

The explanation of response by the input factors are quite satisfactory with H1 and
C1 being most important factors. The impact of A, H2 and C2 are negligible. Now
we have 13 x 16 = 208 ANOVAS. Figure 4 shows the time seriesdue to each of the 5
factors. Effectdue to C1is dominant, followed by H1. Effectdue to A is significant
up to M + 120 days, after that its impact on the response diminishes. Factors C2 and
H2 are negligible.

4-3 Summary. We have summarized the data from the first stage design using
regression equations. Only halfthe runs (B = +) from Table 2 have been utilized in
deriving these equations in order to compare these results with those of the second
stage design (Table 4). The regression equations and their R2 values are given
below. The dependent variable y is the manpower requirements, the independent
variablesare A, C1 and H1. Only the data for time phases from the mobilization day
(M-Day) to 90 days after it (M +90) are shown.

ForM+10 y=315567-3.4A +52198C1-5756 H1
R2=99%

ForM+20 y=249976+77.1A+66016C1 + 56508 H1
R2=97%

62

'.:"ll:':i 9, ' NC'N N ||

. A ~
PR A
! “" N
n.. i.uﬂ.f’-:i' ,W.*d “a "..!. " " ‘.‘I"&"" ':::'.:' DAL 7"1,.,@.7,:, N :':,a.l',;:’_-’t'u‘ " ""

...... o'&u.i I'Lo‘i iolclui




S N | - TEEe- 7 W T ORER G T T RRe T ERTTRee Ty v T e mm e e e e e e

ForM+30 y=248656.7 +479.1A +8693C1 + 73635 H1
R2=96%

ForM+40 y=255859-216.7A +104387.5C1 + 85470 H1
R2 = 98%

ForM+50 y=265077-644.9A +121675.5C1 + 92054 H1
R2 = 99%

ForM+60 y=261767.3-882.6A + 142257C1 +96510 H1
R2 = 99%

ForM+90 y=278884.7 + 135.6A + 173240.5C1 + 96904 H1
‘ R2=99%

We plan to use these results along with the second stage data to apply response
surface methodology for more refined predictive equations.
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ABSTRACT

The traditional univariate analysis of the repeated measuras design is
cbtained by treating subjects and their associated interactions as random
effects. This analysis requires that certain variances and covariances of the
dependent variable at various combinations of within-subject factors be equal,
Instability of the variance and covariance components may mask significant
effects and compel the researcher to utilize & less powerful multivariate
technique,

This paper illustrates the use of a recently developed class of unbiased
variance component estimators and thel!r associated diagnostics for examining
the data and the model assumptions. A comprehensive example is given for the
case of a three-way design with two factors repeated.

L1.__INTRODUCTION

Repeated measures designs are one of the most frequently utilized classes
of designs in Army Research and Development. These designs offer a reduction
in the error variance due to the removal of an individual's variability, are
efficient, and require fewer subjects to achieve the same power of the F test
as completely random or block designs.

This class of designs, sometimes referred to as within-subject designs,
obtain their name from the fact that one or more factors of the design are
manipulated in such a way that each subject receives all levels of the within
subject factor. The advantage of this approach is that subjects act as their
own control in their responsiveness to the various experimental treatments,
On the other hand, this type of design introduces intercorrelations among the
means on which the test of within subject main affects and interactions are
based,

Due to this intercorrelation, three separate approaches have been
proposed in the literature. The first, ths univariate analysis of the
repeated measures design is obtained by treating subjects as a random effect.
The linear model employed is called a mixed effects model, and the resulting
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analysis is a mixed model analysis of the repeated measures design. The B
standard mixed model asaumes certain variances and covariances of responses
ares invariant acroass the experimsnt, For example, in a thres-factor factorial :
model with Factors 1 and 3 fixed and subjects (or Factor 2) random, a standard o
assumption is that the covariance, 61,5, of responses at the sams lsvel of X
Factor 1 and on the same subject (i.e., level of Factor 2) but at different
levels of Factor 3, is invariant across all subjects, all levels of Factor 1 o

and all combinations of distinct levels of Factor 3, Mors generally, if 6 F
Y the covarliance batween observations at the same levels of Factors indexed t "
j? and at different levels of the other factors, then standard mixed models ")

e assume O, is invariant across all levels of the factors indexed by t and 2
across all combinations of distinct levels of the other factors, This A
assumption is referred to in the literature as compound symmetry. Huynh and .
Feldt (1970) have shown this assumption to be a sufficient condition,

) In the second approach, the multivariats msthod, the responses of a
subject are treated as a k-dimensional response vector. It is worth noting
e that this approach is not as powerful as the univariate approach if the
assumption of compound symmetry is accepted.

Thirdly, a degree of fresdom adjustment initially proposed for use by X
. Gresnhouss and Geisser (1959) is used to adjust the numerator and denominator o
A degrees of freedom of the ratio, Huynh and Feldt (15970) have shown this o
", adjustment to be too conservative. :

Difficulty in interpretation can occur whan several dependent measures i

o are made for each expsrimental treatment and the assumption of compound b
2£ symnatry is rejected. Thias situation can result in a lack of degrees of ﬁ
X freedom and power since the response matrix, which is a multiple of dependent N
o variables and the nuwmber of unique within subject factor treatment o
b combinations, can equal or excesd the total number of subjects. In the o
multivariate context, this can result in the degrees of freedom parameter .

i being very small. s
¢ %
3 s
ﬁﬁ Since it is common and necessary to record, svaluate and analyze numerous ﬁ
o measurements during developmental testing and human factors svaluation of ‘@
vy weapon systems and equipment, alternative approaches to assessing the effect ¢
. of treatment conditions on the rasponse measurements need to be explored. ‘
O v
;ﬁ This paper introduces and demonstrates ths use of unbiased, efficient _?
i’ variance component estimators and their associated diagnostics in analyzing W
o the repeated measures design. s
A L]
3
Wb .
3
‘,:: The problem of estimating variance components in random and mixed models .:f

has been of interest to researchers for years as pointed out by Green and b
4 Hocking (1988). However, over the last few years, new closed form expressions

i for the estimators of variance components have been developed, based on the

" equivalence shown in Green (1985, 1987); Hocking, Bremer and Green (1987); and

S X
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Hocking (1985) of the variance component estimation problem to the problem of
estimating the covariances, 6. between appropriatsly related observations. 1In
addition, these estimators have been shown to provide information which will
be useful in diagnosing problems and suggest simple graphical procedures for
examining the influence of the treatment levels.

To introduce this general methodology, this paper will only consider
three factor repeated measures design with factors one and three repeated as
shown in Table 1, The number of levels of Factor (i) is designated by &y
Subjects are designated factor two. Factors one and three are the within
subject fixed factors. The traditional univariate repeated measures model
with subject and subject interactions considered random is

Y(1ikm) = M + A(L) + S(J) + AS(L) + B(k) + AB(ik) +
SB(Jk) + ABS(ijk) + E(ijkm)

where M is the overall mean, A(l) is the effect of level i of treatment or
factor A, S(j) is the effect of subject j, AS(1j), is the effect of level ij
of treatment combination AS, B(k) is the effect of lavel k of factor B,
AB(ik) is the effect of the AB treatment combination at level ik, SB(jk) ia
the effect of treatment combination SB at level (jk), ABS(ijk) is the effect
of level 1ijk of treatment combination ABS, and E(ijkm) is the random error,
For the traditional univariate approach, it iz assumed that A(i), B(k),
AB(ik), and M are fixed and S(j), AS(ij), SB(jk), ABS(ijk), E(ijkm) ars zero
mean, independent normal random variables with variances ¢2 015: 023, 9123,
and 6 respectively, While the variables are independent, the responses are
correlated with the covariance structurs found in Flgure 1.

This covariance structure in Figure 1 suggestc an alternative approach to
the linear model firat proposed in Hocking (1983) and extended and developed
in Green (1985) to several classes of linear models. This approach relaxes
the requirsmsnt that the variance components be positive. Thus, tha classical
model is replaced by specifying the response vector as normal with covariance
matrix as given in Figure 1 and mean vector determined from the expectation of
Y.

The only restriction on the covariance matrix is that it be positive
definite. This requirement is weaker than the classical requirement that the
be positive. An in-depth development of this alternative model can be

found in Hocking (1983).

The covariance, 6,, is between observations at the same level of factors
indexed by t and different levels of all other factors in the model. This
suggests examining the corresponding sample covariances. These sample
covariances, or averages thereof, yield the estimators of the 6., Sample
covariances ylelding estimators of 6, and 6,, are given in Figure 2,
Similarly, 8,5 is annlogous to the 6, estimator with subscript three
replacing one. For example, from Figure 2 one recognizes the 0, estimator as
the average of a;qr;3 equal expectation sample covariances corresponding to
all combinations of i+1*. ktk*, Here r; is the lavel of Factor { minus one.
Similarly, 8, is the average of a, equal expectation sample covariances
corresponding to all combinations oi ? and kek¥*,
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COVARIANCE STRUCTURE
2 WITHIN SUBJECT FACTORS

cov (Y(ls]sksm)sY(l*s]fsk*sm*) =

@2 = 02 If I=1%]=]"k=k .
012 = 024042 If 1=1*]=) k=zk
023 =

02402 If 121" ] =]"k=k"
0123 = O2#012+023+0423 If I =*l=]"k=k*m*=m

0o + 6123 Ijkm = I**k*m*

Figure 1: Covariance structure of three repeated measures design (Subjects random)

VARIANCE COMPONENT ESTIMATES

B2 = 1 > X(yllk - yL.k.) (yIPJk* - yI*.J*.)
rz @13 rs lkz"k* | |

812 = 1 3 13 (vik - yLk.)(yik*. - ylL.k*)
a1a rn k r2 |j

Figure 2: Variance component estimates for ©2 and ©12
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These covariansces are unbiased and contain the diagnoatic powar. By
plotting these covariances (diagnostics) in table form, one obtains an
indication of the stability of the estimate and of suspect estimates,

In general, one looks for various characteristics and trends, For
example, (1) unusually large or small diagonal entries indicate abnormal
variability in the cell means for this level of the factor under
investigation, (2) special patterns in the off-diagonal slements such as a
particular column or row having the majority of its sntries higher or lower
than assoclative rows or columns, indicate one or more cell meana may contain
extreme outliers, and (3) large fluctuatious in the off-diagonal entries
reflect high variability is the data.

Following the examination of the diagnostics, plots of treatment i vs.
treatment i% cell-means, whers abnormsl diagnostics have bean identified, are
recommended, This will help the researcher identify the treatment cells
responsible for extra lurge or small variance component estimates, Finally,
the diagnostic procedure should conclude with an examination of the data in
the identified cells,

L1l.__REPEATED MEASURE DESIGN

To illustrate these diagnostic procedures, data from a repsated measures
deaign carried out by Malkin and Christ (1987) will be used,

A, Objective

The objective of the experiment was to conduct & laboratory flight
simulation to compare a cockpit keyboard, a thumb-controlled switch, and a
connected-word voice recognizer for data entry of navigation map coordinate
ssts when (1) the entry of Universal Transverse Msrcator (UTM) coordinato sots
is the sole task performed (No Flight) and (2) the entry of UIM couordinate
sets 1is performed concurrently with controlling a helicopter simulator while
flying a computer-generated external scene (Flight)., For this paper, the
difference among the three methods of data entry for responas and input time
will be evaluated for both the Flight and No Flight conditions. The original
paper also investigated error. However, no practical or statistical
difference was found for subject srror in regard to any of the experimental
factors,

B. Methodology
Data were collected using 12 Army aviators zssigned to Aberdeen Proving
Ground, Maryland as the uxperimental units,.

The Aviation and Air Defense Division, Human Engineering Laboratory's
(HEL's) flight simulator was utilized for this study. The Crew Simulator

7C

a8 00 0 Y st NG Ytk e e et ey o R g oy g .mﬁmﬁ?&im&m;ﬂwww@




OGN
o
b
consists of a cockpit cab with advanced controla and displays and an "out-the- H‘t.
window" scene produced by Computer-Generated Imaging (CGl), Thae CGL, cockpit ol
controls, flight simulation, displays and results were driven or recorded Q:j'
using two Vax computers. Tralning was administered to all subjects in the Ny
operation of the voice recognition system and flight simulator. For am in- Mo
depth accounting of the Apparatus and Training, the reader is referred to A
Malkin and Christ (1987), kiﬂ
% gh
€. Procedure ;ﬁdf
Each subject antered eight UTM coordinate sets for each test condition. Nt
The coordinate sets, which wvere selected from a scenario based on the Fulda N
Gap area of Germany, wers located on a kneeboard attached to the subject's
leg. A standardized, but different set of coordinates was used in each ﬂpf
condition. The subject was tested in both conditions using one data sntry b’
method before proceeding to the next data entry method. The order of the test et
conditions were counterbalanced to control for learning. ;xﬂ*
D, Experimental Deuign @ﬁ’
’ 'G:’;':q
A 2x3x12 factorial design with repsated measures on the twelve subjects : ﬁﬁ;
was implemented. The within subject factors were data entry methods (voice, o
keyboard and thumb-controlled switch) and task conditions (flight, no flight). fat
The dependent variables were input time and = .ponse time, For illustration, e
the 2x3x12 repsated measures design along with input time can be found in 5?@
Table 2. G:f:‘;.
at"“,:?'
E. Results ;ﬂﬁ
AR
Since the response measures were highly correlated, and only 12 subjects :Sﬁ;
were used, a multivariate analysis of variance was performed using the .%ﬁﬂ
univariate repeated measures model with subjects considered a random factor. -bﬁﬁ
The approximate F ratios were then checked againat the Greenhouse Geisser \¥ﬁ~
adjustment and they agreed, -
The cesults are whown in Figure 3. For response time, subjects were able h?%
to respond significantly faster during the no-flight conditfon than during the .Qh
flight condition. There also was a significant interaction between data entry é&ﬁ
method and task conditions. During the no-flight task condition, subjects At
responded significantly faster when the keyboard was used to enter data.
However, during che flight task condition, subjects responded significantly e
faster using either voice or the thumb-controlled switch (see Figure 4), fh&;
X v
There were significant differences among the three mean impact times for " :":
the data entry method. Subjects were also able to input data faster during ) \?
the no-flight task conditions than during the flight conditions. However, .‘
there was no significant interaction between Task and Entry method (see Figure R
5). ﬁ?ﬁ
|';:l'
‘l'l O
N
7 Ak
X]
R e R
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TABLE 2, METHOD BY TASK BY SUBJECT
(INPUT TIME)
Method
Voice Keyboard Thumb
1 2 3
Task Task Task
No No No
Flight Flight Flight TFlight Flight Flight
Subiect 1 2 1 2 1 2
_

1 15,8 17.8 16,9 16,8 28,5 34,3

2 23,9 49,3 9.1 13,2 25,0 35,5

3 33,0 55.9 13,6 31,6 29,7 48,8

4 15,2 27.8 11,3 16,1 24,1 43,1

5 35,9 45,0 11.9 20,7 39,2 65,2

6 49,8 36.4 11,8 23,7 36,3 49,1

7 27.2 3.9 13,9 20.6 31,7 44,7

8 20,6 20;6 10,9 24,1 35.4 37.4

.

9 28,92 38,7 10,5 19,9 34,7 3.6

10 27,7 23,5 10,7 15.9 34,0 43,6
11 17.9 11.7 15,4 24,1 32.6 39.0
12 23,0 16.3 13,5 33,8 38.9 l 70.9
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DATA ENTRY METHOD BY TASK i

| 2
V! 8™ 0.
| . d
- 7 = :’.

g K ;

X T (6.7 ee0) 3
g vt 6 - ':
L,‘: m - T ! l::
t .5 sec o
: ! 8 - (8.8 se0) g
v",':: 3 - :'
s 4= 5
R § J v 7
R ) 3 (3.8 ae0) ’9
y E - (2.3 se0) .r_i
"':" \ v o
i:," E t T ::
o ] ] (2.0 s00) i
(1.2 se0) N

R | N
,3:: | NO FLIGHT FLIGHT :E
o' b
! LEGEND o
|:| .\
Y Vv - voich "
i K - KEYBOARD "
2™ T = THUMB SWITCH N
f
i :
o ]
u Figure 4. Data entry methods by task for response time .
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DATA ENTRY METHOD BY TASK

80 =
T
‘ (48.6 sec)
O 4o
w
e v
w T (38.2 s00)
& 20— (32.8 se0)
- | v—
; (20.6 se0)
& 20- K
! (21.7 se0)
E s
K
E 10 + (12.4 e00)
Y T i
NO FLIGHT FLIGHT
LEQEND
V- VOICE

K - KEYBOARD
T = THUMB SWITCH

Figure 5: Data entry method by task for input time
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L

As a final note, the input time covariances for the within-subject q@
factors deviated extremely from the compound symmetry assumption whoreas the i
compound symmetry assumption for response time was acceptable. Therefors, the Y
variance component diagnostic procedures will be demonstrated for input times "
only. :j
ki

9"._

As previously pointed out, it is natural to estimate the covariances L f&

by corresponding sample covariances. In the balanced cass, and for ths e
Malkin, Christ data, the estimates can be ocbtained from the ANOVA table (see i
Figure 6). a

For this example, a) = 3, a; = 12 and a3 = 2. The estimate of 02 is the i«
average of six distinct sample covariances. They can be displayed in a table ity
such as Table 3-A. The off-diagonal elements ars the sample covariances. To N

avoid confusion, it is worth noting that the diagonal elements are not trus é;
variances since ifi*, An alternative and simpler display of these sample T;
covariances can be found in Table 3-B. Again, the diagonal elements are not oy
true variances since kik¥, i

Under the compound symmetry assumption, all elements of Table 3-A or o

Table 3-B should bs approximatsly equal. Therefore, the diagnostics provide a ’%5
illustrative procedure to check the compound symmetry assumption and identify "y
unique treatments combinations that contribute to this assumption being .&
violated. ﬁg
by,

In examining the 8, off-diagonal diagnostics of Table 3-A, the ::
covariances Keyboard No Flight vs. Voice Flighc (-13.81) and Thumb No Flight N
vs, Voice Flight (-12,47) are small when compared to the other off-diagonal ,#
entries in the Table. In addition, Thumb Flight vs. Voice No Flight (40.78) o
seems large in comparison. This large fluctuation indicates high variability ﬁ}

in the data. b

The diagonal entries of Table 3-A indicates the covariances at the same :

Task level but different Input levels. The large diagonal entry (43.26), .
representing the covariance of Thumb Flight vs, Keyboard Flight, indicates @:
instability and variability in the cell means making up this covariance. ?h
Referring to Table 1, the reader can see that the cell means for Keyboard, 5:
Flight and Thumb Flight are larger and more unstable than the other Method p;
Task treatment conditions, N
This suggests further examination of the specified treatment ﬁ%
combinations. Follow-up plots of subject mean input times by treatment W
combinations reflecting the large or small covariances are shown in Figures 7 ¢
through 9, QQ
Fxaminati{n of these plots revealed that subjects (3, 5, 6 and 12) input 2\
time contributed to the extremely high or low covarlances, .t
]
0
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Subjects are considered random.
T RCE
S

0o+n@123+naz@P12+nazazM1
0o+n@#123+na1@23+naiazT3

8o+n®123+naz2MT13
0o+naiaszb2+naz@i12+nb423

6o+nasz@12+n@q23
Bo+na1923+ndq22
0o+nl123

ANOVA
répeated measures model.

within subject factors.
RELER:

d
2
1
2
11
22
11
22
504
ariance for the three w

Method and task are

METH x TASK

SUB x METHOD

SUB x TASK

SUB x METHOD x TASK
: Analysis of v

URCE
METHOD
SuB

TASK
ERROR
Figure 6
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TABLE Il - A A

DIAGNOSTIC
INPUT TIME | .

02 e

VOICE -

NO FLIGHT FLIGHT b
KEYBOARD NO FLIGHT -5.90 -13.81
FLIGHT 13.68 -5.07 i

VOICE 8
NO FLIGHT  FLIGHT S
THUMB NO FLIGHT 23.15 -12.47

FLIGHT 40.78 10.52 2

KEYBOARKD '.::*f
NO FLIGHT FLIGHT 0

THUMB NO FLIGHT [ 0.19 16.01 )
FLIGHT 1.88 43.26 b
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TABLE lll - B
DIAGNOSTIC

INPUT TIME
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1.88 35.10

40.78
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VOiCE
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The diagnostic plots for 6,5 and 8,4 are shown in Table 4. For 6;,, the

plot consists of covariances based on the same level of Subject and Mathod, ?QE
but different levels of Task. The dilagnostic plot revealed a spurious I
covariance component of 76.2 for Voice No Flight vs, Voice Flight., A follow- i

up plot (Figure 10) indicated that asubjects (3, 5 and 6) input times
contributed to this large covariance.

Similarly, the diagnestic plot for 923. revealed large spurious

covariances at treatment combinations Voice No Flight vs. Thumb No Flight q&ﬁg
(23.1) and Keyboard Flight vs. Thumb Flight (43.2). ﬁ%ﬁo
G
It is worth noting that this diagnostic plot contains covariances based S
on the same subject and Task levels but diffarent Methods, s
Follow-up plots (Figures 11, 12) for both covariances revealed that :ﬂ%ﬁ
subjects (3, 5, 6 and 12) input time were contributing to one or both large was
covariance components. AN
'-';‘i:
Identifying what seemed to be a dichotomous population of subjects, a ;Lﬂ
review of subjsct records wers undertaken to attempt to explain the reason e
subjects 3, 5, 6 and 12 seemed to respond differently from the rest of the i
subjects, A review of the records indicated that, in general, these pilnts i
were older (over 42 as comparsd to under 38), had a higher military rank, and neble!

had spent as much time or more flying fixed wing or rotary wing aircraft, with
recent flying experience concentratsd on fixed wing. Based on subjective

input from expsrienced pilots, differences batween the aircraft In regard to §:?

instrumentation and flying procedures could certainly account for the .ﬁuﬂ
difference in input times batween fixed wing and rotary wing pilots. Tﬁh‘~

Pelprl

A recalculation of the diagnostics with subjects 3, 5, 6 and 12 removed “qﬂﬁ

revealed covariances that were more stable. In addition, in grouping the
subjects into Fixed Wing and Rotary Wing categories and reanalyzing the data, o

the agsumption of compound symmetry was accepted. Mauchly's criteria, which ﬁ%ﬁ&

is used to check this assumption, was found not to be significant at the .01 $ﬁ¢

level. v

R

This information was made available to the Aviation and Air Defense PO

Division of the HEL so ithat this additional source of variability could be ey

controlled for future experiments, ﬂH

o

ey

. CONCLUSIONS e
@

The variance component estimates and associated diagnostic procedures $§§

have bsen shown to be computationally and intuitively aimpla. All ¢¢bq

calculations can be obtained using scandard statistical packages such as 5@ﬂ$

SPSSX, SAS, or BMDP. o
The diagnostic procedures have been demonstrated to be sffective in o

checking underlying assumption (compound symmetry) of the repsated measures W
model, and useful in identifying probable cauaes for the violation of thess
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assumptions. This provides the researcher the option of removing spurious
observations, performing transformations, or controlling additional sources of
variability so that the data can conform to the standard assumptions such as
compound symmetry or to modifying the model. By circumventing the problems
associated with the traditional univariate repsated measures analysis, these
diagnostic procedures provide sasier interpretation of the results and
increased validity of the conclusions derived from the data, The result is a
valuable statistical approach that can bes applied in many areas including
developmental testing and human factors evaluation of weapon systems and
equipment.
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MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS

IN A GENERAL MIXED LINEAR MODEL

J. W. Green R. R. Hocking

Department of Mathematical Sciences Department of Statistics

University of Delaware Texas A&M University

Newark, Delaware 19711 College Station, Texas 777843
ABSTRACT

A new class of unbiased estimators is given for unbalanced mixed
models which have simple, closed-form expressions. These estimators
allow easy computation of variances which, when compared to minimum var-

iance bounds, show the estimators to be highly efficient.

Based on the estimator, a diagnostic methodology is developed for
assessing the effect of the data on the estimates. The source of nega-
tive estimates of variance components is often revealed, as well as

other sorts of instability and problems with the model or data.

An overview of the methodology and its growing literature is given,
illustrated by applications to several industrial problems. The method-
ology applies to all random and mixed models, regardless of the degree
of imbalance or pattern of crossed and nested factors. The diagnostics

flag only those features of the data which affect parameter estimates.

1. INTRODUCTION

The problem of estimating variance components in random and mixed
models has become a classical research area in statistics. Review

papers, such as those by Searle (1971), Harville (1977), Sahai (1979),

9] Preceding Page Blank



Sahai and Khuri (1984) and Khuri and Sahal (1984), attest to the iﬁg
importance of the problem and emphasize the fact that there are many ﬁ%&
aspects of the problem which remain unsolved. ﬁwf
It is well known that in the case of balanced data, The ANOVA %%@
estimators, or, equivalently, the restricted maximum likelihood estima~ ﬁ“i
tors (REML), have certain optimality properties. Graybill and Hultquist :?@
(1961) showed that these estimators are uniformly best quadratic estima- %&E
tors., Under the added assumption of normality, Graybill and Wortham fgng
(1956) showed these estimators are U#VU. A discussion of these results Eﬁi
is given by Hocking (1985). Even in this ideal situation, the esti- Eﬁ%
mates are often unacceptable in the sense of violating the implicit y%ﬁ
assumption of nonnegativity. Several authors have proposed alternatives ?g%
which guarantee nonnegative estimates, including Thompson and Moore ﬁﬁ%
(1963), Hartly and Rao (1967), Rao and Chaubey (1978) and Hartung g@;.
(1981). Searle (197lab) discusses various alternatives in some detail, %g%
Examples show spurious data can lead to negative estimates and Leone, et ﬁﬁ%
al (1968) have shown that negative estimates have non-trivial probabil=- ?2%
ity of occuring. The fact that spurious data can lead to negative ﬂﬁ;
egtimates suggests that even positive estimates should be questioned
and stresses the need for good diagnostic methods.

In the case of unbalanced data, there is a sharp discontinuity in .
theory. Except for special cases, minimal sets of sufficient statistics '.‘
are not known, and, even in those special cases, they are not complete. ;??
Many estimators have been proposed and they fall generally into two 3&{
categories. In one category are estimators based on quadratic forms, ':w
uganally obtained from the mean squares of an AOV table. MINQUE and BE%

hi
b
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telated methods are included.in this category. There is no basis to
support the superiority of any of these approaches. Iterative methods
fall into a seconrd category and include maximum likelihood and REML,
Other than large sample properties, little is known of the properties
of these estimators. 1In addition, the iterative computations often

encounter convergence difficulties,

The situation regarding the estimation of fixed effects parameters
(means) is similar, With balanced data, the estimates are not affected
by the presense of a non-scalar covariance matrix and they are UMVU
estimators. With unbalanced data, maximum likelihood leads to weighted
least squarns estimators which depend on the unknown variance compo-
nents. The properties of fixed effects estimators computed using

estimated variance components are unknown.

The present paper discusses two contributions to the study of mixéd
models, First is the development of a new class of unbiased estimators
for the case of unbalanced data which have simple, closed-form expres-
sions. These expressions allow easy computation of variances which,
when compared to minimum variance bounds, show the estimators to be

highly efficient.

The second contribution discussed is the development of diagnostic
methodology, based on the estimator, for assessing the effect of the
data on the estimates. The source of negative estimates of variance
components is often revealed by this methodology, as well as other

sorts of instability and problems with the model or the design.
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E« An overview of the methodology and its growing literature will be
5 given, Applications of the ideas developed will be discussed in the
context of several industrial problems for illustrative purposes.

It is to be stressed that the methodology applies to random and mixed
models, whether factorial or partially nested and whether balanced or
unbalanced. Indeed, completely nested designs have been succesfully
analyzed by this methodology by Hocking and M. S. Von Tress, but will
% not be discussed here. Also not discussed here is the distribution

theory developed by Green and J. Grynovicki.

Wy The problem of estimating variance components is shown to be equli-

valent to the problem of estimating the covariances between appropriate

i related observations. A covariance is naturally estimated by the cor-

g responding sample covariance., 1In fact, almost every covarariance, © ,

K of the relevant sort can be estimated in an unblased and efficient ¢

§ manner by a simple average of sample covariances, all having the same

‘:::E expect'ation and all simply related to Bt. or else, by simple linear

te functions of such averages. In balanced cases, these sample covariances -
;g have the same distribution. 1In any case, they provide diagnostic %
g' power for examining the quality of the estimgte of Ot. The diagnostics 'ﬁ

are directly in terms of the effect influential factors have on

! parameter estimates of interest. Thus, only features of the data

'$ impacting on variance component estimates are highlighted. For small s
i problems, these diagnostics are conveniently displayed in tables, as X
g shown below. For larger problems, the diagnostics can be displayed ?
‘E in simple plots, as indicated below and described by Green (1987). 3

: For very large problems, reduction formulae, given by Green (1988)

are available to reduce the demands of these displays to managable N
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levels. These are also discussed below. Since there are, in fact, many
ways to generate meaningful diagnostics, these same formulae allow one

to change from one representation to another, and even to increase the

rumber of diagnostic elements.

2, THREE- AND FOUR-FACTOR MODELS

To motivate the procedure and introduce som: general notation, con-
sider a model with Pactors 1, 2 and 3 ( or 1, 2, 3 and 4) with Factor i

having a levels. Let r =a -1, a =aa,°t = ¢t , etc., Let
i i i 12 1 2 12 1 2

r = a =1, Suppose there are nij # 0 (or in the four-factor case,
0 0 k

n # 0 ) observations in the indicated cell., The empty cell problem
wiigtbe reported on at a later date, although a brief discusslon is

given by Hocking (1987). Five model will be described to introduce the
AVE-estimator and the diagnostic procedure. Two parameterizations are
given., One is standard. The other is equivalent, but suggests both the
diagnostic philosophy and the AVE-estimator, as well as an alternative
statistical model which is more general than the usual model and has

intuitive appeal.

2.1 Five Designs

To introduce the two parameterizations, consider the following three-

and four-factor designs.

Design 1. Factors 1, 2 and 3 are crossed, 2 and 3 are fixed and

l is random.

Design 2. Factors 1 and 3 are fixed and crossed, Factor 2 is random and

nested in 1.

Design 3 is the same as Design 2, except Factor 1 is random.
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Design 4 is the same as Design 2, except all factors are random.
Design 5. Factors 1, 3 and 4 are crossed, 2 is nesced in 1, 1 and 2 are

random and 3 and 4 are fixed.
2.2 Statistical Models for ‘he Five Designs

In the case of design 1, a standard model is
(2.1) y(ijks) = M(3jk)+ A(i) + AB(LJ) + AC(ik) + ABC(ijk) + E(ijks),
where M(jk) is the population mean of responses at levels jk of factors
23 and the others are independent O-mean normal random variables with
variances ¢ ,0 , 9 , ¢ and ¢ , regpectively, and y(ijks) is the

1 12 13 123 0

s-th responge at levels i, j, k of factors 1, 2, 3, respectively. It is
useful to compute @ , the covariance of distinct observations at the
same level of facto:s indexed in t and at different levels of all other
factors. Also, © will denote the total variance in the response. Thus,
e =¢ +8 in the three-factor case. The covariance structure in
desigg llfg given by:

(2,2) Cov( y(ijks), y(i*j*k*a*) ) =

0 LE Lpiw
8 =9 LE Lwi#, Jpik, khk#
1 1
@ =0 + LE Lymitih, kpk*
12 1 12
6 =0 +¢ LE ikwitk*, k9
13 1 13
8 =+ +d +0 LE 19k=i*jrk#, spa+
123 1 12 13 123
@ =0 +0 LE Liks=l*inkrgh,
0 123

It should be observed that the parameterization given, in partic-

ular, the independence assumed of the "random effects", does not re-

strict the model, Rather, it indicates which of several equlvalent S
#:E:E:
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parameterizations is used. The covariance structures for the other
designs follow.

Design 2.

(2.3) y(ljks) = M(ik) + AB(Lj) + ABC(ijk) + ABC(ijk),

where M(ik) is the population mean of levels ik of Factors 1 and 3, re-

spectively, and the other terms are O-mean normals with variances ¢ ,

12
o and ¢ , respectively. The covarlance structure is given in (2.4).
123 0
(2.4) <] - @
12 12
e =0¢ +
123 12 123
e =0 +6
0 123
Design 3.

(2.5) y(ijks) = A(L) + AB(Lj) + M(k) + AC(ik) + ABC(ijk) + E(ijks),

where M(k) is the population mean of Factor 3, level k and the other

terms are O-mean normals with variances ¢ , o , ¢ , ¢ and ¢ , re-
1 12 13 123 0
spectively, The covariance structure is given in (2.6).
(2.6) e 2 ¢
1 1
@ =0 +0
12 2 12
@ =0 +0
13
6 =0 +d +0 +9
123 1 12 13 123
e = ¢ +0
0 123

Design 4.
(2.7) ylijks) = M + A(Ll) + AB(ij) + C(k) +AC(ik) + ABC(ijk) + E(ijks),
where M is the mean and the other terms are 0-mean normals with varil-

ances ¢ , 0 , 0,0 ,0 + . The covarlance structure is in (2.8).
1 12 3 13 123 0

(2.8) e =¢
) |
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:; e = O-'.‘ w
¥ 12 1 12
!: o -0,
, 3
e = w + 0+ ¢
. 13 1 3
4 e = ¢ +0 +¢ + 0 + 0
: 123 1 13 123
ia (<] = 0 +e
N 0 123
N Design 5.
é (2.9)  y(iikes) = M(kt) + A(L) + AB(1§) + AC(Lk) + ABC(ijk) +
4 AD(it) + ABD(1jt) + ACD(ikt) + ABCD(ijkt) + E(ijkts),

where M(kt) is the population mean of responses at levels k and t of
factors 3 and 4, respectively, and the other terms are independent, 0-

mean nornals with variances o , & , o , o P B ' O y O
1 12 13 123 14 124 134 1234

™ and ® , respectively. The covariances are given by (2.6), excluding O,
' 0

;ﬁ: and by

Tom
i (2.10) 8 =D +0 +p +0

‘ 134 1 13 14 134

8 =0 +0 +0 +0 +0 +0 +0 + 0
1234 1 12 13 123 14 124 134 1234

e -Q + 8

0 1234
with ¢ and © analogous to © and © + It is evident that esgti-
14 124 13 123
mation of the ® is equivalent to estimation of the & . There are two
t t

0

§ advantages to the @ parameterization. First, these covariances are
i t

$ rather naturally estimated by corresponding sample covariances. This

estimation ldea is the basis of AVE-estimator introduced (for unbalanced

i designs) in Hocking, Bremer and Green (1987), hereafter éalled (HBG). It

5 is equivalent, in the balanced case, to the usual ANOVA estimator (HBG),
Green (1985, 1988) and offers an efficient Hocking (1987), (HBG)

ﬁ alternative in the unbalanced case. A second advantage is the pos-

. sibility of a more general formulation of the model in terms of the

= AT

% mean and covariance structure of the response vector, y. For example,

-

?'Qﬁﬁﬁﬁ?

. in design 1, the model can be specified by writing
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\
’p:

E[ y(ijks) ] = M(3jk) and COV ( y ), as given by (2.2), J$
The only restriction on the covariance structure is that the covariance ~é§
matrix be positive definite. This is true if all the ¢ are positive, ﬁﬁ:
but also under more general conditions which permit individual g&i
"varlance" components to be negative. Expliclt requirements for pos- ﬁﬁ“

itive definitness are given in Hocking (1985). Since physically, a

negative covariance is possible ( See Green(l1988), for an industrial 2m$
X oy
setting in which a negative covariance is guite sensible), this more 3@%
P .
general formulation has some appeal. It also provides an explanation 2ﬁi
178

for. the negative variance component estimates which frequently occur. AN
The validlity of the AVE-estimator or the diagnostic procedure does by

hinge on acceptance of this alternative model. %ﬁ&

2.3 Estimation of Variance Components Arising from the Five Designs ﬁﬁg
(AN
I
It is natural to estimate the covariances ® by corresponding kégg
sample covariances. This is the basis of the dla;nostic procedure., In ﬁ%ﬁ
the balanced case, the estimates found are the usual estimates obtained &%ﬁ
from an AOV table ( Henderson's type H3 or SAS type 2 ). *%?
0y
Some simple notation is introduced to facilitate the procedure. )
The general form is given in Green (1987, 1988), (HBG) appropriate for :é?
any design., For the present, forms needed for three or four factors are -;ﬁ
glven, These contain all the basic forms required in general. They ‘
are not tied to any particular design. éég,
To estimate the covariance, @ , between observations at the same %:t:
level of Factor 1 but different letels of Factors 2 and 3, one of the é?.
e
99 !

ot AL AN . 'n
'(" ".;r.,-' AN N .’.“,-""'-""1"‘:. .1‘?.\. s
RS R AN AN A r-'i'-},~$s"“h"*- il

o ~J:*:;' a0
%ﬁ_&Mu&f' ﬁ£'

'n(:) WS )IQA-‘I'\‘DR-'\"-"H

h'r ‘A
'\{‘I“\ Jl".c‘ ‘ ‘ “n . ;'F 5(7\. Mo

w'u ghg &



following three forms is used.

-1
(a r ) J.C(L/jkj*k*).

0

12.11) C(1/23)

23 23
(2.12) C(1/2:3) = (a r a ) 12C(l/jkj*k*).
23 2 3
-1
(2.13) C(1/3) = (a3 ra) Y C(L/KK*).

In (2.11), the sum is over all a r pairs of distinct levels j#j* of
Factor 2 and all a r pairs of dfsiinct levels kkk* of Factor 3. 1In
(2,12), the sum 133039r the a r pairs of distinct levels of Factor 2
and all a x a pairs of level: gf Factor 3, whether or not distinct.

In (2.13)3the35um is over the a r pairs of distinct levels of Factor 3.
In (2.11) and (2.12), 3

-1
(2.14)C(1/3ki*k*) = £ Zi ( Y(3kO)=F (. 3ke) ) YOAI*R* ) =Y (I k> ) ),
where y(ijk.} is a cell mean and y(.jk.) is an (unweighted) mean of cell
means. (2.14) is a sample covariance of cell means at the same level of
Factor 1 and at indicated levels of Factors 2 and 3. (2.13) is the aver-
age of forms of the sort (2.15), which is a sample covariance of the

average responses of Factor 1 at indicated levels of Factor 3.

(2.15) C(l/kk*) = a ¥ C(1l/3jkI*k*)
2 I3

T ):i( ylioke) = ¥(aeke) ) (YU k* ) = Y(okby) )
Justification for using unweighted means of the cell means in the un- \

balanced case is discussed in (HBG) and is as follows. Begin with the 44%
balanced case, where the forms are clearly reasonable. (HBG) shows .9
that in the unbalanced case, If one uses these forms for all possible ned
balanced submodels of minimum cell frequency and averages these A
estimators over all such submodels, the resulting average is the AVE-

estimator as described here. Which of the forms to use in a problem
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.
.:si?..'
is determined by the nesting and fixed factors in the design and Q@ﬁ
...i
is explored below. ‘_",..',
.
0‘n':..
To estimate the covariance, © , between observations at the same &ﬁﬁ
12 ﬂ‘[f',{
level of Factors 1 and 2 but different levels of Factor 3, (2.14) or one ﬁﬂk
l‘n';.“.:u
of the following two forms is used (in a three-factor model). Y
|'.;.'i;-
-1 R
(2.16) C(12/3) = (asra) Y C(12/kk*), 5:323‘31
LR
-1 Q)
(2.17) C(1,2/3) = (a r ) 2 C(i,2/kk*), .
13 3 e
|°.-‘.;<
where the first sum is over all a r pairs of distinct levels k#k* of $ﬁ$§
3 3 'llgl
Factor 3 and the second sum is also over these and over all a distinct f&ﬁf
1 ]
levels of Factor 1. Here, ey
=1 - - - n':::“:::
(2.18) C(l2/kk*) = r 3 ( ¥(ijka)=¥(. ko) D YILIk*)=¥ (. k*) ) ), o
12 7 13 e
l.n'l‘,v"'
RN
-1 W
(2.19) c(i,2/kky) = ¢ F ; ( ¥(idk)=y(doka) )V y(idk* ) =y(l.k*) ). ’f’
i
'.'?.:‘5:
In all forms, by permutation of the indicies, one obtains analogous ﬂ@”ﬂ
RS
forms appropriate for estimating the other covariances. Now consider &:im
N
the five designs stated above. g%?%
Pt
Design 1. j% o
o
©" -AVE = C(1/23)
1
(2,20) 8 =-AVE = C(2,1/3)
12
8~ -AVE = C(3,1/2)
13
Design 2,
(2,21) @~ -AVE = C(1,2/3)
12
Design 3.
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. -1 :.u
. @ -AVE = C(1/3) =~ a C{1,2/3) B
X 1 2 o
4 (2.22) . -1 &
o @~ -AVE = C(l/3) +ra C(1,2/3). o
| 12 2 2 "
4 Design 4. ,
i L
4 ©~ -AVE and @~ -AVE are as in Design 3. Y
n 1 12 :ﬂ:;
2 o
(2.23) ©"~ AVE = C(3/1:2) R
i o
Y ©~ -AVE = C(1,3/2) + @~ -AVE, et
o 13 1 s
; "
. )
K Design 5. "
-1 ‘a‘:‘l‘-_
) (2.24) ©° -AVE = C(1/34) - a * C(1,2/34) o
¢ 1 2 i
¢ -1 :ﬁ:
K @~ -AVE = C(1/34) + r a * C(1,2/34) - g
12 2 2 ‘%:
_': '."
:; _l ";"
’ @~ -AVE = C(3,1/4) - a * C(13,2/4) Y
) 13 2 o
i -1 " ‘.
N ©~ =-AVE = C(3,1/4) + r a * C(13,2/4) é
p 123 2 2 £
l. '.(
a The estimators for the l14-and 124-interactions are obtained from those 5&
M .|.“.
v for 13 and 123 by interchange of indicies. o
&
] >
H 'ﬂ-
' In all cases, the highest order term (© or © ) suggests no v
kY 123 1234 X
- sample covariance estimator, since, if the model is correct, the order of
'g ohservations within a cell is arbitrary. Also, some terms of highest gﬁ
; order in the non-nested factors are not well-represented by sample co-~ ;Q
W J
? variances of the obvious type. However, an AVE-type estimator can be o
, by
5 be based on deletion methods. Such are discuased in (HBG). )
d 5
i :-'.
\ 2.4 Estimation of Pixed Effects :
- 0%
Y 1
: Similar unweighted means are used to estimate the fixed effects. u
; o
. 102 &
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ey
It will be : @
noted that the estimators of the fixed effects in a balanced J%*
desi i ; o
gn are linear combinations of the cell means. The idea of a :5::.:.::
. veragin D]
over all possible designs of minimum cell si . ging .5::.
. size (provided that size is e
ze ) V
ro) leads to the same linear combination, except that with 3?&
unbalanced 3
ced data, the cell means are based on different numbers of ob ﬁ%ﬁ
- DN
servations. The result is to replace an e ﬁ@
225 _ -1 xpression such as R
25) M(14)" = ¥ (an) y(ijks)
ks 3 s
. ',('-
in the balanced case by ::::ii
el
(2.26) M(13)" ) -1 i
* j) -AVE = a Z (n ) N
ijks). e
3 ko i3k Xs” Jks) K
(HBG) contains a d : i
iscussion of fixed effects estimation in unbal o
factorial models H anced s':i:‘%*
. Hocking (1987) continues this discussion, with ‘;"5’”
ref . ’ & .“f,.;
eference to partially nested models, Further joint work on thi ki
n ) )
latt i
er topic is expected to appear soon. ::3‘3
i
e
ryn
2.5 Display a [
play and Use of Diagnostics Sﬁ%
".'4:0:,:*
::‘iﬁtl".
t"‘:"“ -
Now that the b =
e basic forms are evident, attention can turn t 0
use. EaCh term C(p,V/d) is an avera t ° thEir :'l‘:":.::
e the ge of sample covariances, all of which .":.;::
same expectation. In design 1, the , e
oo ' general representation TN
m Green (1988) gives the forms (2,20). The AVE-estimator of e
‘ f of 6~ )
is €(1/23), which is the average of the a ; ; 1 -:'::::
r /2 distinct sampl o)
lances C{1/jkj*k*), for 3§ # i*, k # k* 23 23 ple covar- :m‘_
an unbiased ti o + Each of these covarianaces is N i
estimate of 91. They can be displayed in a table, such e
Table 1, which shows a = 2 and = ) as N
a 4. In this illust e
s table qives 2 3 ration, one 4-by- W
gives all the diagnostics. The off-di L
i d . e off-diagonal elements are the 1'
ple covariances. Since this t i e
able i i
s not symmetric, all off-diagonal Ny
QO
":::::\
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elements are printed. The diagonal elements are not true variances,
since j = 1 and j* = 2 there, while k = k*, If two tables were given,
one could compute and report the following variances.

(2.27)  C(1/3k3k) = rzl L ¥(iika) = ¥(.3k.) )2.

Under the usual assumptions for this design, all diagonal elements have
the same expectation, as do ali off-diagonal elements. The table is
examined for outliers and patterns, Green (1988) gives moments of
these diagnostic elements. 1In this example, the elements C(l/jkj*k*)
for jk, j*k* = 12, 13 and 13, 22 stand out as much larger than the
othef entries, Also, the diagonal entries for k = 2 and kK = 3 are much
larger than the other diagonal entries., This suggests further exami-
nation of the two combinations indicated. 1In a paper presented at the
Gordon Research Conference, August, 1987, and being prepared by the
present authors for publication, this table was part of an analysis
which detected a process shift in data from an actual chemical produc-
tion process. This point will be elaborated on below. One use of such
tables is the detection of problems in the underlying assumptions made
about the model. One conclusion drawn for the chemical data is that a

violation of this sort occurs. A physical consequence is the need to

redesign the production line to make a uniform product,

A second application of these diagnostic tables is the detection of
spurious data. The second point is illustrated in the context of a
wool fiber example discussed in Green (1987). The design is Design 2,
witha =2, a =5, a = 23. The estimate, C(1,2/3), of 8 1is the

1 2 3 12
average of the sample covariances C{i,2/kk*), i = 1,2 and k # k* = 1,..,

23, A tabular display of these diagnostics would require two 23-by-23 %i
tables, an unpleasant prospect. In the above cited article, these y
104 ®
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2.6 Reductions in Size of Didplays

If neither tabular nor graphical display seems feasible, Green
(1988) offers algebraic reduction formulae and partial summing methods,
which, together with the general moment formulae developed there, allow
smaller tables to be constructed which retain most of the diagnostic
power suggested by these examples. He describes a six factor design
which would require the display of 15,680 sample covariances. This
seems an unreasonable demand. The reduction formulae cut the required
display to 840 sample covariances, a reduction of 94 %. Further reduc-
tions are possible through partial summing of the diagnostic forms,

as described in the context of a glass manufacturing exanple.

Consider now design 5, with diagnostic forms given by (2.24).
Green (1988) considers a glass manufacturing example with a = a = 5,
a =2, a = 3, These forma require displaying 630 diagnostic elgments.
Agter appgylng the reduction formulae, a display of C(13,2/4) is still
required. Conceptually, the terms C(ik,2/tt*) are displayed in table
form. Perhaps, for each value of i and k, an a -by-a table is con-
structed, the off-diagonal terms of which are tge sam;le covariances,
The below-diagonal terms need not be displayed, since the table is
symmetric. Diagonal entries are sample variances, which also carry
diagnostic information. In the example, this requires 25 3-by-3 tables,
a rather onerous requirement. The graphical displays discussed above
can be used if the number of terms is moderate. Even these digplays
may be problematic for larger values of a , a and a . A simple remedy
is to work with "partial sums" described éelog. In t:e glass example,

the forms (2.24) can be replaced by:
106
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(2.28)
C(l1,2/4), with 15 elements
c(1/4), with 3 elements
C(13,2/4), with 30 elements through

-1 -1
a ziC(ik,Z/tt*) and a ). C(lk,2/tt*)
1 3 Tk

(2.28a) (2.28b)
C(14,2/3), with 80 elements through

-1 ' -1
a ziC(it.Z/kk*) and a Ztcm:,z/kk*)

C(3,1/4), with 15 elemants

C(4,1/3), with 9 elements.
This gives a tcotal of 152 diagnostic elements, a reduction of 75 %. As
shown by Green (1988), the remaining elements have essentially the
same diagnogstic power as a full analysis. Further reduction is possible
in the last two terms. 1In thls example, there are so few diagnostics in

in these two that further reductlion makes little sense.

The analysis now is in four parts. (1) Outlier analysis associated
with each table finds those estimates more than 2(J away from the mean
for that table. (2) In the case of tables for the partial sums, if,
say, for some i, one of the off~-diagonal terms in (2.28a) stands out,
then a table of C(ik,2/tt*) for just that i is constructed, or else a
univariate analysis of the estimates C(ik,2/tt*) is done ( either
using stem-and-leaf plots or a printout of values outside a 2- or 3-0
confidence band). (3) Next, a "pattern analysis" of the tables may
bring out special patterns. There should be no pattern to the tables
if the statistical model assumptlions are correct. (4) Next, the

the data set is examined to seek statistical cause for what was seen
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(1)=(3).

Each table shows appropriate, equal-expectation, sample covariances

" off the diagonal. Since these tables are symmetric, below diagonal

'r LI

b .,.i “";.5

terms are omitted., The diagonal terms in these tables are variances, and

always have equal expectations under standard assumptions.

To continue with the illustration, Table 2 gives the diagnostics
(2.28a), The entry for i = 5, tt* = 12 stands out a&a. large. This can be
judged by inspecting either the table or a gtem-and-leaf plot, or with
the ald of a 20 confidence band centered at the average value 6!
(2.28a). In this last regard, the following variance formula is helpful.

(2.29)

-1 2 2 2
VAR (Form 2.28a) = (ar ) ( a (® - ) +r (&8 -8 ) + (0-0 ) 1.

32 3 124 14 3 12 1 134

From this, the standard deviation is 311.0 and the average value is seen
to be 329.,5 Similar computations apply to the diagonals. A printout
of the forms C(ik,2/tt*) for 1 = 5, tt* = 12 outside a 30 confidence
band shows k = 3 and k = 4 account for the initial large estimate.
This in turn leads to an examination of the relevant data, where a large
difference between the values for j = 1 and j = 2 is found at these

locations. A complete discussion of this data is given in the cited

article, but this should indicate how the "reduction" techniques work.

In connection with the above analysis, the first two momemts of the
diagnostic forms involved in (2.28) are needed. General closed-form
expreassions for moments of the required type are given. These are

functions of the ® and apply to balanced and unbalanced cases.
t
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2.7 Repeated Measures Experimrnts

X
v

Grynovicki and Green (1988) contains a discussion of this method- ﬂf?
ology to repeated measures experiments. 1In the example described there, gﬁf
the diagnostics lead to the discovery of two populations of subjects %§$
not properly taken into account in the study and which raise serious ;ﬁ%

questions about the validity of conclusions to be drawn. The existence
of these two populations had not been previously suspected. Applications fﬁﬁ
toc other repeated measures experiments, such as medical experiments, are R

readily apparent.

2.8 Computations oy

Ty

%@J

I“.'a':‘

The computations involved in constructing the tabies or plots pre- g@ﬁ
sented above are minimal. Standard statistical computer packages will do %Sﬁ
A

all calculations required, though some manipulation may be required to R
print the diagnostic tables in a useful format. For example, SAS PROC ﬁﬁ;
CORR, with the COV option will compute sample covariances and even %ﬁi

display them, often in appropriate form. The plots require additional ﬁ%ﬁ

":”"t

data manipulation, but again standard packages have the requisite ;@%

440,

capability. All computations discussed here were done using SAS. ,Wﬂ
]

f 'I’.;li

B

The reduction and partial summing ideas discussed make this method- il

l.|'l

olnogy applicable to designs of all sizes., BSince the methodology also ﬁ?ﬁ

applies regardless of the degree of imbalance and to a large class g§?-

s

of mixed models, it can be seen to be useful in a wide variety of ?ﬁﬁ

o) ab

problems. !
Ca YO

WA

i

R
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2,9 Efficliency of the AVE-Estimator

(HBG) and, more definitively, Hocking (1987) contain discussions
the efficiency of the AVE-estimator. This is done by comparing the
small sample variances of these estimators with lower bounds for this
variance, as given by Bhattacharya (1946) in an ilmprovement of the
usual Cramer-Rao lower bounds. Closed-form expressions for these bounds
are not known, but they can be computed numerically for specific
designs. Buch computation is reported in the cited articles for a
varlety of cell frequency patterns and parameter values. Among the
conclusions reported there are the following.

1. The AVE-estimators of both variance components and fixed effects
are very efficient,

2, The efficiencies are monotonically increasing in all parameters.

3. The efficiencies depend on all parameters but the variances do not.

4. When compared to Yates' method (or the method of welghted square of
means or SAS type 3) or Henderson's method (or the method of fitting
constants or SAS type 2), there is little reason to distinguish
among these estimators on the grounds of efficiency, although

the AVE-estimator is generally superior except for small parameter

values,

3. OTHER LITERATURE

The first article on the general diagnostic philoscphy described
was Hocking (1983) which applied these ideas to balanced randomized
block designs., Alternative models, such as discussed above, which

allow for negative estimates of variance components, were discussed by
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Smith and Murray (1984) for ceértain two-factor models, but no diagnos-
tics were described there. The first major development of diagnostics
was glven by Green (1985), a dissertation written under the direction of
Hocking. Results based in part on this were reported by Hocking (1985)
and Hocking and Pendelton (1985). It deals with balanced, random models
only, but, with minor changes, applies to mixed models. Matrix expres-
slons for various diagnostic forms and moments are given which simplify
computations by hand or computer for balanced designs. Since most
dlagnostic forms in the unbalanced case are unweighted linear functions
of the cell means, many results from the balanced case apply with

little or no change to the unbalanced case, Hocking and Bremer werelthe
first to notice the unbalanced extension. Some results from this

source will appear in a more available format in the near future,
Regults from (HBG) are discussed in (HBGb), although in the conference

proceedings, an administrative error omitted one author's name.
4. CONCLUSIONS

A diagnostic procedure has been shown to be both intuitively simple
and effective in judging the quality of variance component estimates,
It applies to both small and large problems. All calculations, displays
and plots can be (and were) done by standard statistical computing
packages, The diagnostics are themselves eatimates of the components
in question, and, as such, indicate in a straight forward manner, what
impact various features of the data have on the overall estimates. Only
features of the data affecting the parameter estimates are flagged. The
methodology applies to both balanced and unbalanced designs with no

missing cells. A sound theoretical basis exists for the procedure. In

1
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Y the balanced case, the overallr estimator based on the diagnostics is a
standard one obtained from equating mean squares to expected mean
squares, whereas in the unbalanced case, the estimator is new and com-
;f pares favorably with standard estimators in terms of efficlency. 1In
ﬁ addition, in the unbalanced case, the estimator is in closed form,

which simplifies both computation and theoretical inquiry. Also of
ol importance is the fact the method applies in any random or mixed model
w to all components of variance other than the highest order in the non-
nested factors, and even to some of these, without modification, as well
0 to fixed factors. With some modificatlion, these estimates apply to these

wl . [

o highest order terms as well.

0 The diagnostic methodology brings out many noteworthy features of
R the data directly in terms of their effect on parameters of interest,
Even for large data sats, the tabular and computaticnal requirements are
4] modeat. The reduction formulae and univariate confidence interval

y approach reduce the need for tabular displays to a reasonable level,
Unbalanced models are handled in the same way as balanced models, and

e with little added trouble. The methodology is sufficiently flexable to
W allow the user to tailor some computations to suit the needs of a
particular problem, yet sufficlently standardized to be easily learned

b or programmed.
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TABLE 1. Diagnostics C(i/jkj*k*) for @

Chemistry Data : W

=1 STEM & LEAF ot
k n.: o
1 2 3 4

6.8 16.7 14.6 9.7 30 |23 o
20h ﬁe&
11.7 31.5 33,2 12.2 20 |3 e
10h|5777 e
10.5 31.1 27.1 17.3 10 |0122 o
0 |8 K
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o TABLE 2. Diagnostics a 3  C(ik,2/tt*) .
A 3 K \
) Glass Data ;
N "
E* \
;-: STEM & LEAF 1 2 3 by
' ‘:
P 10 | 0 1 7 -43.5 -8, 3
.: 9 |2|
& 8 | 2 £ 2 156.0 = 1.2 L =1 it
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