
/AD-A193 796 HIGNER ORDER LANGUAGES FOR ROIOTSMU MANUFACTURING 1/2
Fl TECHNOLOGY INUORKATION ANALYSIS CENTER CHICAGO IL

J R SLANA ET AL. OCT 66 NTIRC-SORR-96-01
UNCLASSIFIED DL99S-4-C-1568 F/G 12/5 NI.

mhmhhhhm

10

111112 1111I2~

LL:-
MICROCOPY RESOLUTION TEST CH-AR1

%mm
m

rC..

0p

- - - - -0
V ":.-* ,-.

., rX - ,'j.,, ',V.7 , .- JN M 4,-x-% '1 ., , -,,. .. , .. , . - ',.". . , "- . . . ". " J. ". ,'%',".",,... ,.-.. ,' , -,,-.

"is-am a(% L- '

-6-i

%

I.

MTIAC-SOAR-86-01 ,

HIGHER ORDER
LANGUAGES FOR
ROBOTS NIP&

October 1986 DTIC
ELECTE

James R. Blaha PR 2 8 1988
John P. Lamoureux 0
Keith E. McKee, Ph.D.lIT Research Institute

~ A Prepared By:-I-" -LrqIr' JN Cresap, McCormick and Paget
AvPTov.d fot public raljeaso Division of TPF&C, Inc.z-t /ibtion Uinltmted (312) 567-4730

Under Contract to
Department of Defense

Contract Number DLA900-84-C-1508

A Department of Defense Information Analysis Center

_v JA
*' Iq:.7"%

Overview MTIAC Scope of
Objectives the Program

MTIAC is a Department of De- The Department of Defense es- Activities Scope
fense (DoD) Information Analysis tablished the Manufacturing MTIAC performs these activities:
Center. MTIAC serves as a central Technology Information Analysis
source for currently available and Center (MTIAC) through the De- * Maintains a bibliographic data
readily usable data and informa- fense Logistics Agency to improve base on manufacturing -

tion concerning manufacturing productivity, reduce costs, and technology

technology. The primary focus of reduce lead times in the produc- * Maintains a DoD Manufactur-
the Center is to collect, analyze, tion of defense equipment and to ing Technology Program (MTP) 7 1
and disseminate manufacturing further the use and development data base
technology for the production of of advanced technologies. By con-

defense materials and systems. solidating and retaining manu- * Prepares and publishes hand-

The funding agency for MTIAC is facturing information and experi- books, data books, reference

the Defense Technical Informa- ence in a central repository staffed works, state-of-the-art reviews -

tion Center of the Defense Logis- by manufacturing specialists, (SOARs), critical reviews and

tics Agency of the Department of knowledge can be disseminated technology assessments, con-

Defense, in Alexandria, Virginia. and applied quickly apid effec- ference proceedings, newslet-

MTIAC's data collection and dis- tively to plant modernization ters, and other publications

semination function is tied to programs. The Center benefits * Responds to technical, bib- !

DTIC by a shared bibliographic engineers and information liographic, and other user

data base. specialists, government agencies, inquiries
and defense contractors by saving

The DoD supports manufacturing valuable man-hours in locating Establishes and maintains pro-

technology programs conducted data and information and apply- grams of awareness and visibil-

by the Air Force, Navy, and Army ing the new technologies. The re- ity of MTIAC capabilities and %

as well as by the Defense Logis- suit can be reduced planning and! services to promote the
tics Agency. MTIAC's role is to or production costs. Center's use
support the effective use of man-
ufacturing technology by DoD MTIAC also serves the civil sector 0 Performs special tasks for gov-
uacind techendustril on- within the constraints of the ernment users, separately
tractor base, at both the prime priorities of defense needs and funded through the MTIAC

contract and subcontract level, limits on disseminating informa- contract. ;

This support is provided through tion, becaus of security classi- an
a range of services from technical ication, and the export laws and Further information regarding
inquiries to bibliographic searches regulations on technologyMTIAC services, products, sub-
and special tasks within the scope transfer scription plan or additional copies
of the contract. Services are this report may be obtained by
offered on a fee-for-ser'ice basis writing or calling: MTIAC, -'

to subscribers and nonsubscribers. lIT Research Institute, 10 West
35th St., Chicago, IL N)616
(312) 567-4730 '

I

J.'.

Unclassified
E C1 Y C.ASSFCAON ri AUTIY3DSRBTO/AALBLT FRP

jE RYN ORGWIANTON AUEHORITY 3URS 57~TRIUIN /ANIALT OF REPORTNUERS

S SOAR-86-01

,NAME OF PER;ORMING ORGANIZATION 15b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
* (resap, McCormick and Paget (if applicable) Dr. Lloyd Lehn

Division of TPF&C Inc. Acquisitions & Logistics PSIR
5c aDGRESS City, State, and ZIP Code) 7b. ADDRESS City, State, and ZIP Code)

10 West 35th Street Off. of the Asst. Secy. of Defense -
Chicago, IL 60616 Pentagon, R~oom 3C257

__________________________ ashington, DC 20302-8000
ia l,!%E DP '-INDING, SPONSORING 18b. OFFICE SYMBOL 9 PROC'JREMENT .NSTRUMENT iDENTIFICATION NUMBER
0RGc.L\ZAT'ON (if applicable)
Defense Logistics Agency L9084C18

3c. A D Aq 5S (City, Starte, and ZIP Code) 10 SOURCE OF FUNOING NUMBERS
Cameron Station PROGRAM PROJECT 7ASK WNORK UNIT
Alexandria, VA 22304-6145 ELEMENT NO. NO NO ACCESSION NO

7,.: lnrcide Securtry Classification)

Higher Order Languages for Robots

2 ERSONAL Au7*-OR(S)
K. E. McKee, J. P. Lamoureux, J. R. Blaha* 'a -,:, EDORT T1 3b 7IME COV4ERED 114 DATE OF REPORT (Year, Month. Day) uS PAGE COLNT

SOAR FROM TO October 1986 I 137
p. *, ,PLEENARY !40TA7.ON

Hardcopy available from 1 TIAC only. Reproduction not authorized except by permission.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 9

E GROUP SUIB-GROUIP Robots Manufacturing
02 Higher Order Languages

Robot Programming
C'"A Con iieo eesei eeu angf identif by block number)

. dis state o0 te art review ol higher order languages for robots provides a background of N
robot programming approaches. Strengths and weaknesses of various approaches are presented.
The second section of the report discusses specific languages. Manipulator level languages

*. developed by universities and research institutes include: AL,(PAL, JARS, LAMA-S, LM, ROBEX,
~- RPL, VML, LENNY, LPR, MAL, RCCL, RCL, SRL, and LMAC. Commnercial languages are: VAL, ML,

EMILY, SIGLA, AML, HELP, MCL, AML/E, AML/V, RAIL, PASRO, CIMPLER, VAL II, AR-BASIC, K.AREL and
~? AML/X. Task level languages discussions include RAPT and AUTOPASS. CAD/GRAPHIC systems that
\ are discussed include GRASP, IGRIP, GRIPS from Universities and PLACE, ANIMATE COMMAND, ADJUST C

BUILD and ROBOT-SIM from commercial manufacturers. A third section discusses robot perfor- 0
S mance and the elements of a robot programming system. The resulting programming requirements ,
~. are set forth. Comparisons are drawn for VAL, VAL-II, RAIL, KAREL, and AML/X. Off-line
Y programming is compared to teach programming. DoD HOL issues and ongoinq research are dis-

cussed. Conclusions emphasized the needs for the language and the requirements of the entire
1j robot system.,

7777 iS* U -N C V J''LABIUiTY OF ABSTRACT 21. ABSTRACT SECURITy CL.ASSIFICATION
0 %.'C -:,S ;F ED I' LMI MTE D M SAME AS RPT CQ OTIC USERS Uncl assi f ied
:A '.1E)F RESPOjSiBLE NOiVIDUAL 22b TE..EPH-ONE (include Area Code) 22c OPPFCE SYMBOL
Thomas B. Turner (312)567-4730

DO FORM 1473,.84 MAIR 83 APR edition may be used u'tii exI'austed SECURITY cLAs~iFCAr;cN OF -"15 PAGE
All other editions are obsolete

PREFACE

This state-of-the art review was prepared by the Manufacturing Technology

Information Analysis Center (MTIAC) under Contract DLA-900-84-C-1508 for the

Department of Defense.

Higher order languages are defined as textual languages in this study.

However, the study also highlights the trend toward the use of teach pendants

which have incorporated in them some higher order capabilities, noting that

the choice depends upon organizing perception of user friendliness. A major

portion of the review is dedicated to a discussion of currently available

robot programming languages. The efforts of universities and research

institutes are reviewed as are commercial offerings. Languages are discussed

in terms of levels (servo, manipulator, and task). CAD/Graphic systems are

also covered. is.

The discussion of languages leads to a section on language comparison.

Language comparison constitutes the principal portion of the study and sets

forth the basis for comparison, a listing of elements to be compared, and a

comparison of several robot programming languages (VAL, VAL II, RAIL, KAREL,

and AN-L/X).

Completion of the language comparisons permitted this review to summarize

some of the current issues in the field. Issues include the relationship to

teach vs off-line programming, language implementation, trade-offs necessary

as languages approach task level, and the appropriate scope of the robot

programming languages when considering manufacturing cells as opposed to

stand-alone installations.

The state-of-the-art review concludes with a discussion of special robot

programming considerations associated with defense manufacturing. Batch

manufacturing, communication between contractors and subcontractor, documenta-

tion of such information as cell status, and the impact of remanufacturing are

cited as relevant. J, .
.1A

I.--%

, ,.,Y

(" ! - '

A,,P

Recommendations suggest research in areas such as the need for a PP.%

programming methodology that recognizes the totality of robot programming

requirements, world modeling, simulation, communication, sensor technology and

safety. The conclusions emphasize the importance of supporting the entire

robot programming system, noting that if a program is to be written directly

in a language, the language needs to have both high-level constructs for ease

of programming and low-level constructs for explicit control. In the same

sense, programs written using an applications interface need a language that .

supports a flexible user interface. -

The content of this review has been derived from a review of over 50

references. However the subject of robot programming is constantly evolving

so that the literature had to be supplemented by 13 field interviews with

specialists in robot programming and languages. The interviews are listed in

an appendix. Upon completion, the document was reviewed by experts in the

field. The writers particularly wish to thank Dr. Lloyd Lehn, Office of the

Assistant Secretary of Defense, Acquisition and Logistics, for his guidance

and review. Additionally the authors appreciate comments from the following

reviewers:

Dr. Graham H. Morris
National Bureau of Standards

Dennis C. Haley
Martin Marietta

Bertil Thorvaldsson
ASEA Robotics Inc.

Dr. Margaret A. Eastwood
CIMCORP

Dr. Robert L. Haar
General Motors

Mitchell Ward
GM Fanuc Robotics

,% %

1V 'e

V?- I v- ".

1 7 W

This state-of-the-art review is one of a series of reports intended to

keep MTIAC users abreast of technology and information within the scope of

lanufacturing Technology. Information about other reports may be obtained by

contacting:

MTIAC
c/o Cresap, McCormick and Paget
Division of TPF&C Inc.
10 West 35th Street
Chicago, IL 60616

"N

The findings in this report are not to be construed as
an official Department of Defense position unless so
designated by other authorized documents.

The citation of any commercial products, trade names,
or manufacturers in this report does not constitute an
official endorsement or approval of such items or
companies by the United States Government.

iv_

0

TABLE OF CONTENTS

Section Page

1 BACKGROUND 1

1.1 Introduction 1 5%
1.2 Scope 1

1.3 Computer Programming Languages 2
1.4 Numerical Control Languages 8
1.5 Robot Programming Levels 8
1.6 Robot Programming Techniques 13

1.6.1 Teach Programming 13 N
1.6.2 Off-Line Textual Programming 15
1.6.3 Augmented Teach 18
1.6.4 CAD/Graphics Systems Programming 19

1.7 Robot Programming Process 21 .,
1.8 Summary 23

2 CURRENTLY AVAILABLE ROBOT PROGRAIMING LANGUAGES 25

2.1 Languages Identified and Classified 25
2.2 Servo Level Languages 35
2.3 Manipulator Level Languages 35

2.3.1 Universities and Research Institutes 35 A-t
2.3.2 Commercial Vendors 38

2.4 Task Level Languages 40

2.4.1 University and Research Institute 41
2.4.2 Commercial Vendor 41

2.5 CAD/Graphic Systems 41

2.5.1 University and Research Institute 41
2.5.2 Commercial Vendor 41

2.6 Current Language Use and Trends 42
2.7 Summary 44

3 COMIPARISON OF ROBOT LANGUAGES 46

3.1 Basis of Comparison 46

3.1.1 Robot Performance 46
3.1.2 Elements of the Robot Programming System 47 ,

3.2 Robot Programming Requirements 50

3.2.1 The Industrial Environment Layer 50
3.2.2 The Application Layer 53

3.2.2.1 Sensing 55
3.2.2.2 World Modeling 56
3.2.2.3 Motion 58
3.2.2.4 Decision laking 59
3.2.2.5 Communication 60

-vi-

TABLE OF CONTENTS (cont'd)

Section Page -1

3.2.3 Language Capability Layer 60
3.2.4 Programming Environment Layer 63
3.2.5 Operating Environment Layer 67
3.2.6 Language Implementation Layer 71
3.2.7 Language Feature Layer 75

3.2.7.1 Declarations and Variables 77
3.2.7.2 Data Types 78
3.2.7.3 Operators 80
3.2.7.4 Control Structures 80
3.2.7.5 Subprograms 81
3.2.7.6 Input/Output 82
3.2.7.7 Motion 83
3.2.7.8 Tool Statements 83

3.2.8 Relationship Among Layers in the Programming 84
System

3.3 Comparisons in the Literature 34

3.4 Capability Comparison of Selected Languages 95

3.4.1 VAL and VAL II 98
3.4.2 RAIL 99
3.4.3 KAREL 100
3.4.4 AML/X 102
3.4.5 Results of Comparison

104

3.5 Robot Programming Issues 104

3.5.1 Teach Programming vs Off-Line Programming 105
3.5.2 Language Approach 106
3.5.3 Extent of Task Level 107
3.5.4 Robot Control vs Cell Control 108
3.5.5 Standards 109

3.6 Summary 109 %

4. ROBOT PROGRAMMING LANGUAGES--A DoD PERSPECTIVE 111

5. RECENT AND ONGOING RESEARCH AND DEVELOPMENT 113

5.1 Servo Level 113
5.2 Manipulator Level 114 0
5.3 Application Level 115
5.4 Task Level 116
5.5 Applications of Artificial Intelligence 118

6. RECOMMENDATIONS AND CONCLUSIONS 119 0

6.1 Recommendations for Research and Development 119
6.2 Conclusions 119

-vii- '

S.'%,".

TABLE OF CONTENTS (cont'd)

Section Page

REFERENCES 123

BIBL IOGRAPHY 126

APPENDIX A 128
-% o.

d, %.

I..-".

0

:,A

% 0.

' '

~,.J. W

-vi ii-

*5 I

LIST OF FIGURES

Figure Page

1 COMPARISON OF COMPUTER AND ROBOT PROGRAMMING LEVELS
AND TECHNIQUES 5

2 ISE OF THE RS494 STANDARD 9 ,

3 THE OFF-LINE ROBOT PROGRAM DEVELOPMENT CYCLE 22

4 THE ROBOT PROGRAMMING SYSTEM 49

5 IMPACT OF THE EXTERNAL WORLD ON THE ROBOT PRCRAMMING ,
SYSTEM 51

6 ENTITIES OF THE APPLICATION LAYER 54

7 WORLD MODELING USING FRAMES 57

8 ENTITIES IN THE LANGUAGE CAPABILITIES LAYER 61

9 PROGRAMMING ENVIRONMENT ENTITIES 64

10 OPERATING ENVIRONMENT ENTITIES 68

11 IMPLEMENTATION LAYER ENTITIES 72

12 FEATURE LAYER ENTITIES 76

ix

.%

-ix- '

LIST OF TABLES "

-.

TABLE PAGE

1 HIGHER ORDER ROBOT LANGUAGES 26

2 CURRENTLY AVAILABLE COMMERCIAL LANGUAGES 34

3 SIGNIFICANT ACCEPTANCE AND USE TO DATE 43

4 IMPACT OF APPLICATION LAYER ON THE ROBOT PROGRAMMING 85
SYSTEM

5 COMPARISON OF THE LANGUAGES 86

6 COMPARISON OF ACTUAL FEATURES AVAILABLE IN THE
14 ROBOT LANGUAGES 88

7 QUANTITATIVE COMPARISON OF 14 LANGUAGES FOR A
PALLETIZING-BLOCK PROGRAMMING EXAMPLE 91

8 SUMMARY OF PROGRAMMING SYSTEM 93

9 IMPACT OF SOFTWARE OUALITY ATTRIBUTES ON LIFE CYCLE 94

10 USER REQUIREMENTS LIST FOR ROBOTICS LANGUAGES 96

11 ASSEMBLY RELATED ROBOT LANGUAGES AND PROGRAMMING FEATURES 97

.'.S

* *-.

)"* *.1°

.

- x-, ,

-" *Nw *.-*% *j *.(-* *-S . ~. . -

-X- '. 5 . - -

i ,j. ...

1. BACKGROUND

-6
1.1 INTRODUCTION N W.

The purpose of this paper is to present a state-of-the-art review of -.

higher order languages for robots. Research was conducted by a study of

published literature and by interviews with industry professionals. The

literature consisted of papers published in technical journals and presented

at conferences, industrial handbooks, and textbooks. Interviews were con-

ducted with professionals from the defense community (primarily the services

and aerospace contractors), the nondefense community (primarily automotive

industry), universities, and the robot vendors.

The subject of robot programming languages is not mature. Consequently, .,
there are conflicting opinions on various issues and different approaches have

been explored. This creates some confusion, particularly for nonprogrammers, S

when trying to evaluate the strengths and weaknesses of various languages.

The intent of this review is to illustrate the current issues in robot pro-

gramming, identify the languages, and provide a method by which languages can

be evaluated.

The review is structured into six sections. Section 1 provides a back- -.

ground of robot programming approaches, including the strengths and weaknesses

of different techniques. Section 2 identifies and describes robot languages

that are commercially available and those that have been developed by univer-

sities and research institutes. Section 3 presents a method by which robot

languages may be evalulted. In addition, some comparisons that have been

published in the literature are examined. Section 4 discusses some issues

relevant to defense manufacturing. Recent and ongoing research is discussed

in Section 5. Finally, conclusions and recommendations are presented in

Section 6.

1.2 SCOPE

The objective of this paper is to review the state of the art in higher .

order programming languages for robots. The scope is limited to languages

that apply to industrial robots in manufacturing applications. Different 0

types of robots will have different programming language requirements. A

- 1 -

manufacturing robot, for example, operates in a very structured and predict-

able environment when compared with that of a battlefield robot. Although the

specific language requirements are different, the general issues discussed in

this paper are generally applicable to all types of robots.

There is by no means an industrywide definition for "higher order lan-

guage" for robots. Definitions range from an "off-line programming language"

to "any language containing higher level constructs" to "task level language."

The definition providing the clearest distinction of what constitutes a higher ".

order language is that which distinguishes between teach pendant programming

and off-line textual languages. By definition then, all higher order lan-

guages are characterized as textual and man-readable, though the environment

in which they are generated may be off- or on-line with the robot controller.

Teach pendant programming is discussed, however, to illustrate the evolution

and benefits of higher order languages and to fill In the backdrop for the

current debates over robot programming techniques.

1.3 COPUTER PROGRMR4ING LANGUAGES

One school of thought promotes the use of general purpose computer pro-

gramming languages as the base for robot programming languages. In fact, the

evolution of robot programming languages closely parallels that of computer

languages. A review of the evolution of programming languages is therefore

helpful in providing a perspective from which to evaluate current and future

robot languages.

The earliest programming, using a machine-specific language, required
intimate and detailed knowledge of the computer hardware. Machine language

programming involved coding instructions in binary format (a series of ls and

Os), and each machine had its own format for particular instructions. Editing

was often done through a series of toggle switches on the front panel of the

computer. There were no high level instructions, so even a simple operation

like adding two numbers involved a series of instructions specifying where the

data was to be retrieved from, what was to be done, and where the result was

to be stored. A major portion of a programmer's time and energy was spent on
mentally translating his program concept, such as "addition," into the corre-

sponding binary codes that would literally activate the computer circuitry

necessary to access, manipulate, and store data.

-2-
- 2 --.- ''- C DV vP

To relieve the programmer of some of the details of machine programming, '.

a program called an "assembler" was developed. This first programming tool

allowed the creation of programs in a more symbolic fashion using mnemonics

for operation codes and names for data locations. The assembly language

program would be automatically translated by the assembler into the proper

binary machine codes for input to the target execution computer.

Assembly programming is still widely practiced today, for two major

reasons. An assembly program has a nearly one-to-one relationship between its

instructions and the translated machine language instructions. Therefore,

assembly programs yield executable programs that are as space and time effi-

cient as programs coded directly in machine code.

The other major reason is that hardware attached to computers, such as

*printers, terminals or servo drives, requires very low-level machine-specific

control signals for operation. The specific requirements of control demand

that a program be capable of manipulating memory locations very explicitly, ,.*.

just as machine code programs do. Consequently, assembly programming has a .

place wherever the most efficient and the most hardware-oriented programming

is required. Many of the motion control algorithms in robotics are written in

assembly code because speed of execution is essential.

A major evolutionary step in programming languages came in 1953, when IBM

wrote the first "compiler" for a language called FORTRAN. This first high-

level language was designed to perform "Formula Translation" for engineers;

that is, it converted a series of calculations into a program for solution by

a computer. A FORTRAN compiler, like any compiler, translates a program

written in a higher-level, problem-oriented symbolic language into a lower-

level, hardware-oriented language such as assembly. During the translation

process, other programs or data may be brought together or compiled in a

single output file called an object program.

Thousands of such high-level languages have been developed over the

years, sometimes in conjunction with the corresponding compiler/translator, as

was the case with FORTRAN, or sometimes as a stand-alone item requiring major

independent initiatives to develop a compiler, as with the Ada language. The

reason a language is different than its implementation (the compiler) is that L

the language is problem-oriented while the implementation must necessarily be

hardware-oriented. This division allows for many languages to be usable on a

3

',S%

"W'.W" ." '-,* r-' -' ", "-'.°"- "W ","" " .'--'-, ,'.''.''.), • W'W L' W',"..',
" .

'LW' W'." " .' .r . . .'r .' 'W " ".. .' ,_. " ." ,' • ". ".." ".

,w 7 ,. i , W 7lu M ,h .,, IM

variety of computers by virtue of forcing compilers to address the hardware

implementation issues, leaving the high-level programming language free to

express just the problem itself.

The left side of Figure 1 shows how the simple problem "2 + 3 = ?" is

programmed in the high-level language FORTRAN, and what the resulting assembly

code is after processing by a FORTRAN compiler for a VAX 11/785 computer. The

last stage shows what the actual machine language program looks like after

processing by an assembler. The point of detailing out these processing

stages is that a programmer may have programmed the solution to the question

"2 + 3 = ?" in either the FORTRAN, assembly, or machine languages directly.

An even higher level of programming is also illustrated, as a goal driven

query processor. In the earliest days of programming, the only computer

language available was machine, but 30 years later thousands of languages can

express the same problem in a more or less concise manner as the given FORTRAN

program.

The high-level general purpose computer languages have evolved over the

years, and robot programming languages have paralleled this evolution.

Unstructured languages such as BASIC and FORTRAN were the first to be devel-

oped. These were followed by the structured languages such as PASCAL and C.

*,any present day robot languages are based on the concept of structured lan-

guages. Currently, functional languages and object-oriented languages are

being developed. Gini and Gini (1)* suggested that future robot languages
6..

will be based on the concepts of these languages. This is due, in part, to an

anticipated change in the traditional Von Neumann computer architecture which

will occur in the near future.

High-level languages are independent of the computer hardware. A program

written in a high-level language will run on any computer with the appropriate

translator. There are two methods of translation. An interpreter translates

one instruction, executes it, then translates the next instruction, executes

it, and so on. The advantage is that the programmer can edit and then

execute a few instructions at a time, which makes debugging programs easier.

*Numbers in parentheses refer to list of references at the end of this report.

4

* I. ~ .- 4

Computer Programming Robot Programming

VIE d /t /

f
%

GOALDRIVN H gh Lvel ASK EVE

PRGA PROGRAM

POPendant -

t ro lt AN.

________E:!_IM Medium LevelP

I *M4472O0 6O05035 P09s" P05:2. PNC22.. POW2

cDEI0 , Pa 1o.s . .? NANO . .INI

,19"f7 OUP,7C0 T2 EAO

"Ik CO-04AN0090MI 129929OS 2 ANN-4E06

AW.3 02. ICON4 '35011 OSVF!1 WI E522ITV YRS

1uS.A, .0002 1(2 ,A
0 4 . 0V~

1 C
I N5

W E P 0 2

VIE IOE

("0 *rrlls.

Assembler Transiato, P. Pn C& N

00 1E 1140901 4040 3 07 0-00 0000 00 EE 32
D9). 0 31 36 39 SI 2D A~ 05 4 2 3 O flRI Lit3.43
3E E0 34 34 1' 31 It 47 75 42 AD0 323 93 2___________0
442I02; 32 20 so44104W20a0it23 3439

NA ~0 11 21 36 2D 39 IE 33 99 ID It 42 52 94 02 41 AW
4 0~4 So 57 Ar 460 It 07 00 00 02 01 60 It 02 05 as________________________________

04 0 oE I t 2 02 32 Da 04 0 to 2C 3X 22 13

04 02 00 i A 49447 A A , 07 o230 00 0
042 0560 00 00 *40 F' 039 30 02

to06400 Is Do a2 04 I o I O 49640 00 4

0t 40 90 61 49 04 .9 2 40470 2 2 05 6 0 00 02 5 9 0 0

S2 6C IT 4' 49 24 S2 4, 44 20 23 05 Is Is 44 4C 4 IS s9 30 02 02

31020 IN 17 2 02 0O D 0 04 SE 0 00 02 20 44 2 4 3 40 3 ' 4 0 000 2
32 Do 40 S4 56 57 60 46 93 07 A4 00 02 20 22 02 9 2 4 00 2
02 a3 0. 00 111 44 40 43 24 29 02 t2 350 0011 3 Y 0 0 2 07
C02 22 092 00 42 $A At 44 SO1 0 0 00 00 02 02 2 go is a7 to I 5 4. 0

44 04 02 04 2 040 42 V3 4042C 24 2420 02 22Do 9 0 0 W"-

III 00 co 05 00 24 00 AI4 i3 I04 0404 2
0060F040002020at020206ea022n0704 10200

Symbol Key.J

LinltLoaerprogramnong Techniquge

CID I

Executable Program0

Figure 1. Comparison of computer and robot programming levels and techniques.
(Source: IITRI).

-5-N

*r *'*9 % -,N.~ %.

%O

The disadvantage is that interpreted programs run more slowly and are less V.'.,

memory efficient. A compiler, on the other hand, reads the entire program,

translates it, and produces an object code, which is an executable machine .

level program. The advantage to a compiler is that it produces a program that

executes faster and is memory efficient. The disadvantage is that debugging

is a slow process because the entire program must be recompiled each time it

is edited. BASIC is an interpreted language and FORTRAN is a compiled lan-

guage. Those familiar with these languages can appreciate the tradeoffs

between ease of program development and speed of execution. The issue of

interpreted versus compiled languages is very relevant to robotics, because

some languages are interpreted and others are compiled.

The next level up is that of the application programs. These are compu-

ter programs, usually written in a high-level language, that provide a user-

friendly interface for performing some task. Spreadsheets and word proces-

sors, for example, are applications programs. They allow someone unfamiliar •

with computer programming to perform operations on a computer. The actual

computer program being executed is transparent to the user. In much the same

way, there are interactive robot programming packages which run on graphics

systems and computer aided design (CAD) systems. The actual robot program

generated by these packages is transparent to the robot programmer. This

topic is explored in more detail in Section 1.6.4.

The most generic criteria for evaluation of computer languages include

the ease of programmability and the degree to which the language is open to

the environment. 'ore specifically, Pratt (2) discusses the following eight

issues generic to all programming, which will later be shown as relevant to

robot programming:

1. Clarity and simplicity of the language concepts

2. Clarity of syntax

3. Naturalness for the application

4. Support for abstraction

5. Ease of testing/verification/simulation

6. Programming environment features related to the language

7. Portability

8. Cost of development, execution, maintenance

-6-

S F2

.. ,

Every language designer considers these criteria to a greater or lesser

degree. Similarly, a programmer examines the range of available languages

with the same criteria in mind, as each new application arises. Given the

number of criteria here, and the subjectivity of them, it is no wonder that r

there are so many languages and that the effort involved in picking one for a

particular application is formidable. The same is true of robot programming

languages.

If we examine robot programming with these criteria in mind, it becomes ""

apparent that a few of these have been thoroughly addressed, while others have

been virtually ignored. Conventional data processing languages also tend to

selectively address these points, but it must be remembered that those lan-

guages have a substantial history of design, development, and revision.

Relative to robot languages, conventional languages are much more mature and

standards do exist, i.e., FORTRAN 77, COBOL 66, and Ada.

As a final note, it is important to realize that there are two distinct ,

environments in computer programming: the programming environment and the -

operating environment. The programming environment consists of the hardware, .

software, and tools used to develop a program. The operating environment 0

consists of the hardware and software involved in the execution of the pro- P

gram. To clarify the point, consider a commercial spreadsheet. The program- e

ming environment is located at the vendor's site, and consists of the computer el"

and tools used in developing the product. The operating environment, on the

other hand, is at the customer's site, and consists of the computer, operating

system programs, and equipment on which the product is used. The programming

and operating environments are impacted by the implementation of the language.

As noted earlier, an interpreted language is easier to debug (programming

environment) but slower in execution (operating environment) than a compiled

language. In robotics, the programming and operating environments are

extremely important considerations in the language. This issue is explored

further in Sections 3.1 and 3.2. 0

,'% .%

~7.
.z'. Z

1.4 NUMERICAL CONTROL LANGUAGES

Another school of thought has promoted the use of APT-like languages for -

use in robot programming. The basic foundations of this argument are that

robots are similar to NC machine tools, and there is a large base of experi- .S

enced APT programmers in industry.

NC languages, such as APT, were developed specifically for control of

machine tools. In effect, APT-like languages are high-level computer lan-

guages that allow the programmer to specify the machining operations in a

generalized fashion applicable to a class of machine tools. A programmer

writing an APT program is not concerned with the particular brand of machine

tool controller on which the program will run, but only with specifying a

sequence of functions to be performed within the functional constraints of the

tool. The functions performed are primarily concerned with motion control and

tool statements. A postprocessor translates the APT program into a set of .

machine executable statements in much the same way that a compiler translates a

standard FORTRAN program into machine code executable by a specific computer.

The postprocessor must take into account details of a particular machine tool

controller combination. This requires that each machine have an APT post-

processor, and that it reside somewhere other than in the machine tool con-

troller itself, because the controller is incapable of running such transla-

tion programs. This has led to a problem where a user must maintain a large 9
library of postprocessors on some computer such as a CAD system. A solution to

this problem has been the introduction of the RS494 standard for cutter loca- .

tion (CL data). Essentially, CL data is a standardized output of an APT post-

processor which is input to a machine tool controller. The controller then

takes care of any machine-specific translations internally (see Figure 2). -

This is worth noting, since a similar standard for robot programs called -

IRDATA has been proposed in Germany (3) (4).

1.5 ROBOT PROGRMMING LEVELS , --

Just as there are various levels of computer programming, there are

various levels of robot programming. The very nature of programming demands

that problems be representable in a language natural to the level of interface

with the man or machine. Thus, a subset of the English language is a good

choice for application programming, such as the trivial query "2 + 3 = ?" in

-8-

• .• .'. . . , "*, '.,% - % - . - ". '. p - ' % ' ". % " . % "- %%• %'-. -,% %' - % . •.
"P
' -

7W W-trw.R 7 77-alV -F R V M1-7 7 -F -V*Jl %W-Y .)f"-Y - Wkh-16-1 *W-

coS
-6~ 75 .

0 0 -

CL C CL CL C CL

0- 0LC 0- 0 0

U, In n U, 0

00 0 0 0 0
0V) 0 0

F- cm

UI-

00 Itr %

CL ccCL C CL C
I F. 4 V) C

0 0 00 0

0CL 0 0C 0.C'5

*c E 0) a)

U UI
OD ~ -

'q"

Figure 1, while rigidly defined binary codes are more suitable to direct

control of binary digital computer states. Although it is desirable for the
user to express the problem in a high-level textual fashion, it is impractical

for a digital computer to interpret such an expression directly. The conver- ,

sion process, called translation, is often used off-line to decompose high- "U

level user programs into correspondingly lower levels of commands that can be

easily and unambiguously executed by the computer or controller. This process

does not burden the runtime system, because the translation process occurs

off-line. Another method of runtime execution, called interpretation, per-

forms a similar translation process immediately before the execution of

individual program statements. Interpretation may significantly affect the

overall program execution speed, though improvements in hardware design indi-

cate that this potential bottleneck will all but vanish in the near future.

In the computer programming domain, a user program normally goes through p.
two translation stages before becoming "executable machine code." Similarly,

in the robotics arena, translation is the more frequently used process than

interpretation. The left side of Figure 1 shows what the typical three levels

of computer programming languages look like. Each of the three programs is P.

semantically identical. A programmer might have written his solution to the

problem "2 + 3 = ?" in either of the three levels, or submitted it to the goal

driven query processor. It should be obvious which level is most desirable. '

The remainder of this section explains how robot programming may also occur at

various levels, with a variety of techniques, as indicated by the right side

of Figure 1.

Bonner and Shin (5) describe five levels of robot programming: task- "

oriented, structured programming, primitive motion, point-to-point, and micro- '

computer. The microcomputer level is the lowest, and consists of servo com-

mands and sensor interfaces. Point-to-point is a program consisting of
Uo-.

commands similar to those generated in some teach pendant programming. This

consists of endpoints for motion and, possibly, specification of the path

between the endpoints. Primitive notion programming is expanded beyond that -.

to include simple branching, subroutines, and primitive parallel execution.

Structured programming is the level containing constructs similar to those

found in structured programming languages. A program at this level is still

in terms of motions and end-effector commands. The highest level is the task

-10-
,%

,'. • -*w?VV V

level. At this level the program exists in terms of tasks to be performed

rather than motion sequences. Motion is defined in terms of coordinate frame

transformations, parallel execution of tasks is possible, and the concept of -,

state variables which describe the environment exists. Within this framework,

most current programming languages reside at the primitive motion and struc-

tured programming levels.

Yong, Gleave, Green, and Bonney (6) consider four levels: joint, manipu-

lator, object, and objective. They actually consider one level higher than Ne%

Bonner and Shin by proposing the objective level. At this level a task is

specified at a very general level such as "spray interior of car door." This

is a goal that is broken down into a series of tasks. Within their framework, f

most current programming languages reside at the manipulator level.

Other authors use different levels, but all of the approaches are very

similar. The important thing is to note that there are basically three levels

in robot programming that represent distinct conceptual differences in program

content. We term these the servo level, the manipulator level, and the task

level.

At the lowest level, the servo level, a program consists of a series of

endpoints, speeds, and input/output commands. Each endpoint is represented as I-_ -

a group of joint coordinates, so that a six-axis robot has six data values ..4-%

representing one position. This type of program, which is often produced by a

teach pendant, is robot specific. Input/output commands typically entail

reading a switch closure (input) or energizing a relay (output) after a motion

has been executed. The path between endpoints is generated by the robot

controller by calculating a series of intermediate points between the end-

points. The servo control then causes each joint to drive to its target

position at the first intermediate point. When all joints have achieved their .

target position, the robot drives to the next intermediate point, and so on,

until the final endpoint is reached. In terms of robot languages, it is

important to remember is that the program must specify a series of individual

joint positions. While this level of programming is quite adequate for some

applications, trying to program an assembly task at this level would be virtu-

ally impossible.

Cn..-,..

- 11 - [£v

%UXA J -. -~ -.-a v4 W 4. V" . q. i tl ..- ; W.. 'k K

At the next level, the manipulator level, a program has explicit motion

commands required to perform a task, some sensor capability, and branching and

loop constructs for error handling. It is at this level that most programming

languages reside today. Motion is programmed using commands that specify

moving from point A to point 3, where points A and B might be specified by

Cartesian coordinates. The joint positions required to achieve this motion

are calculated when this level is decomposed (translated) into the servo level

commands, and this is transparent to the programmer. Variables, macros,

procedures, and looping constructs allow the programmer to write a small sec-

tion of code to do repetitive tasks such as palletizing. This is in contrast

to the servo level, where each position in the pallet must be explicitly

stated in the program. Conditional statements like "if sensor = 0 go to DROP-

NPART," allow for branching control of the program to different sections of

code based on measurement of some input, an essential characteristic for

handling errors. The manipulator programming level is much more powerful than

the servo level, but does have some disadvantages. These are explored in more

detail in Section 1.6.2. The important thing to remember at this point is

that in order to perform some function, the programmer must explicitly specify

all motions and gripper actions.

At the highest level, the task level, a program is a task specification.
At this level the programmer may specify "put box A on box B" and decomposi-

tion will generate a list of all motions required to perform the task. The

output of the decomposition is a manipulator level program. The key distinc-

tion between task and manipulator levels is that task level programs are

stated in terms of the objects to be manipulated and the tasks to perform, '-
while manipulator level programs are stated in terms of the motions required

to achieve that task. Some current robot languages have limited task level

capabilities, but no task level language exists. M.any problems need to be

solved before task level programming becomes a reality, and these are explored

in detail in Section 5.3.

12

1.6 ROBOT PROGRMING TECHNIQUES

A great source of confusion in the literature is the failure to distin-

guish between robot programming levels and robot programming techniques.

Figure 1 compares the levels at which computer programs are created and

the corresponding levels of robot programs. It also shows the programming

techniques used to create computer programs versus robot programs. Program-

ming techniques consist of on-line teach pendant programming, off-line textual

programming with an editor, and off-line programming using a graphics or CAD

system. Each programming technique results in a program that resides at some

level. Also, it is important to note that a certain technique can result in

programs at different levels. For example, some teach pendants generate

manipulator level programs, while other (older) pendants generate servo level

programs. This is analogous to writing a FORTRAN program and an assembly pro-

gram with an editor. The same technique is used to write both programs, but 0

they are at different levels. This section summarizes current robot program-

ring techniques, their relative advantages and disadvantages, and how they

relate to the three levels discussed in Section 1.5.

1.6.1 Teach Programming

One of the oldest programming methods for robots is the teach mode. This

was developed before general purpose computers were available for robot con-

trollers. Teaching is usually done by an operator on the shop floor, and can

be done by literally moving the robot gripper to achieve the desired pattern.

For example, to program a spray painting robot the programmer (usually a shop

floor operator) leads the robot through all of the motions for locating,

moving, and orienting the spray gun. Two types of path control are possible

with this programming method: continuous path and point-to-point. Point-to-

point can be further broken down into controlled path and coordinated motion.

In continuous path control, a series of closely spaced points is recorded as

the programmer moves the robot, and the robot will repeat the prescribed

pattern with all of the details and idiosyncrasies present in the programmer's

motion. With controlled path, the programmer specifies the endpoints and the

type of path (straight line or sometimes circular) to follow between the

endpoints. With coordinated motion the path is unspecified, but all axes

arrive at their endpoints sinultaneously.

-13-

-*s-

Teach programming can also be accomplished with a teach pendant, a hand-

held device enabling the operator to position and orient the robot by watch- b
ing, but not directly touching, the robot. Motion is controlled with a series

of push-buttons on the pendant. Either each axis is controlled separately or,

in some cases, the robot can be moved in a straight line in rectangular,

cylindrical, or spherical coordinate space. When the robot has been posi-

tioned at the desired location, the endpoint is recorded by the programmer.

There are advantages and disadvantages to teach programming. The primary

advantage is that it is easy to learn. The programmer can be an operator on

the shop floor who is familiar with the application, as opposed to a trained

computer programmer. Also, it is relatively easy to program a path in a

complex geometric situation with many obstacles. Since the programmer can

position the robot under load, repeatability is the only source of error when

the program is executed. There are also several disadvantages to teach pro- 0

gramming. The robot is rendered unproductive during programming since the

robot itself is being used. Programming cannot rely on previously developed

general purpose procedures to perform tasks, such as those provided by subrou- -

tine libraries. Modular program development is hampered for similar reasons

as noted in Section 3.2. Programming can be dangerous since the operator is

close to the robot when teaching and debugging the program. Finally, teach

programming will be unsuitable for use in a highly automated and flexible.6

environment, such as a small batch automated factory of the future.

Another technique of robot programming that should be mentioned here is

off-line teach programming. This involves using a duplicate robot in a repli-

ca of the manufacturing environment. The program is generated using the teach

mode in this simulated environment while the production robot continues to

work. Later, the program is transferred to the shop floor and the positions

are "fine tuned" to account for differences between the actual shop floor and -

"- the mock-up. In a production operation using many similar robots in a rela-

tively uncomplicated environment, this can be a viable programming system.

The program generated by some of the older teach pendants is at the servo

level. The program is a set of joint coordinates, speeds, and activation

signals. It is not very man-readable, which is the reason editing is done in

conjunction with the robot. Typically, the robot controller program will read

this servo level program and generate the appropriate signals to activate the

-14-
• , J.

*. .1%.

servo drives. With recent improvements in hardware leading to increased

processing speeds, some vendors are electing to write high-level language code -b
to interpret the servo level program.

Teach pendants of recent years are considerably more powerful. Some are

capable of generating and editing manipulator level programs, teaching points

as needed, and controlling virtually every element in the workcell. The

technique of teaching is no longer necessarily related to a particular level

of language. Some major robot vendors are committed to increasing the capa- ..

bility of teach pendant programming, including some features of high-level

languages. Even as it exists today, teach pendant programming is adequate for

a wide variety of tasks. The vendors think that this fact, coupled with its

simplicity, outweighs its disadvantages. A current issue in robot programming

is whether teach pendant or off-line programming is the better method of pro-

gramming robots. This issue is explored in more detail in Section 3.5.1. S

1.6.2 Off-line Textual Programing .d

The disadvantages of teach pendant programming led to the development of

off-line textual programming languages such as VAL, KAREL and AML. Sections

1.3 and 1.4 state that there is a difference of opinion as to the best

approacL for developing these languages. RAPT, MCL, LAIA, and others are

based on the APT NC language. VAL, KAREL and others are based on extensions

to high-level computer languages such as BASIC and PASCAL. Still yet another

approach is to develop a new language from the ground up as discussed in

Section 3.5.2. This section covers the general issues involved in off-line

programming techniques. .*

There are several advantages to off-line robot programming as opposed to S

on-line programming with a simple pendant. The major ones are listed below:

1. The robot is not rendered unproductive during programming
time. In small and medium batch operations, this is
extremely important.

2. Off-line programming allows for easier incorporation of
vision and force sensors, which is required in assembly tasks.

3. Off-line languages allow synchronization of external equip- -

ment to be handled quite efficiently. In many cases a
robot program becomes the master program in a manufacturing
cell, after extensive off-line simulation and optimization.

-15- 0

............................. ".p.. .

4. Branching and looping constructs of a language allow
programs to perform customized error handling. For
example, a limit switch in the gripper can be checked after
picking up a part. If the part is not present, program
control can be branched to a specific routine written to
handle that kind of error condition. Depending on the
level of language generated by the teach pendant, an on-
line programming system may also have this capability.

5. Repetitive tasks such as palletizing can be programmed with
relative ease by using macro or subroutine capabilities.
Newer teach methodologies also have this capability.

6. A library of subroutines can be developed for use in future
programming tasks. Previously programmed solutions can be
utilized to write new programs instead of coding every
program from scratch.

7. Several programmers can simultaneously work on various
parts of a large program, and then their individual modules
can be linked together.

8. Off-line programming clearly separates the programming
environment and the operating environment. Sophisticated
programming tools can be used to aid in program develop-
ment, while not burdening the computational capabilities of
a controller.

Although there are many advantages to off-line programming there are some

major disadvantages. These are outlined below: 'I

1. It is extremely difficult to visualize a robot path in
three-dimensional space. Trying to determine the reacha-
bilities, proper orientations, and collision-free paths
poses significant problems. This is much easier to do with
teach pendant programming, where the robot path is created
as the program is written.

2. Limitations of robot accuracy may result in execution 0
errors. The accuracy of a robot is the ability to position
the end-effector at a specified target point, relative to
some absolute external frame of reference. The deviation
between the point moved to, and the point actually desired,
is a measure of the accuracy. Inaccuracies result from
loading conditions and from the configuration of the manip-
ulator in the workspace. Tight absolute positioning toler-
ances may not be achievable with a program generated .
strictly off-line unless sensors are used to position the
robot with "terminal guidance."

'g

- 16-

J s'

3. The programmer cannot anticipate all the exact locations
and orientations of equipment in the workspace. Therefore,
all programmed endpoints are likely to be in error by someamount. The program generated off-line may need to be"fine tuned" on the shop floor prior to production, perhaps

using a teach pendant, or performance may suffer. The
alternative of massive sensor integration may not be econo-
mically justifiable.

4. Program modules that work in isolation may not work when
linked together and run on the robot. This is often a
result of the dynamics of the robot.

5. The exact path that will be taken by the robot is not often
known at programming time. This is because the robot con-
troller generates its own intermediate points as a function
of initial orientation, final orientation, load, speed, and
sensor input. Also, the robot may stop in the
middle of executing a move, reorient itself, and then con-
tinue. This is a function of internal software which
attempts to avoid having the robot exceed travel limits on
the various linkages, or stretching the manipulator umbili-
cal cord.

6. The full syntax of a language may be very difficult to
learn if one is not a computer programmer.

The off-line programming technique can produce programs at any of the

three levels. It is not practical to write servo level programs in an off-

line mode, so this is seldom, if ever, done. Most off-line textual program-

ming languages are at the manipulator level, although some do have a little

task level capability. Some manipulator level languages are unstructured,

some are structured, and some are functionally-oriented. Typically, robot

controllers use the manipulator level languages as input. Software internal

to the robot controller, i.e., a translator or interpreter, then breaks down

these programs in several steps until the actual servo signals to the drives

are generated.

The problems with off-line manipulator level programming are the driving

force behind the development of task level languages. At this level, programs

can be written in an off-line mode by having the programmer specify tasks to
" be performed. The problems associated with collision avoidance, orientation,

and so forth are solved by a computer using internal models of the world.

There are significant problems to be overcome before this becomes a reality

(Section 5.3). It is likely that first task level languages will be processed

in an off-line system where they will be decomposed (translated) into manipu-

-17-
;. -.-

2%1

in an off-line system where they will be decomposed (translated) into manipu-

lator level languages for use by the robot controllers. Eventually, task

level languages themselves may be input directly into the controllers, perhaps

even using an on-line teach pendant.

1.6.3 Augmented Teach

Beginning with the development of the first commercial robot programming

language (VAL) in the 70s, vendors have often combined the method of textual .-..

programming with a teach pendant session to produce an executable robot pro-

gram. This combination of techniques can result in a flexible and economical

approach which we will refer to as "augmented teach" as opposed to the simpler

teach of Section 1.6.1.

Augmented teach programming results in the generation of two sets of

data. The first is a simple text program file composed of a sequence of

statements similar to those generated by off-line textual programming. Posi-

tions in the robot workspace are referred to symbolically, rather than with

numerical coordinate values. The second data set is a file containing a

listing of the position symbols used by the text program, associated with

coordinate values to be used at execution time. This data set is obtained by

manually jogging the manipulator to the actual points in space corresponding

to the named positions, and then storing the actual joint angles or coordi-

nates of the manipulator.

Individually, the data sets are insufficient to run the robot. Placed

together, by a compiler or loader, an executable robot program results. There

are two advantages to this augmented teach method. First, the text motion

program can be developed off-line and simulated to some degree. Second, the

program can be reused with different coordinate data sets, corresponding to

different part geometries.

The implementation of VAL and CIMPLER and many others requires the coor-

dinate data set to be created during a teach session with a robot. Other
systems, such as the ASEA Off-line Programming System, permit the coordinate

file to be generated without robot interaction if desired, possibly using

coordinate values from a CAD system, and thus can be programmed entirely off-

line. Their system allows a third parameter data set to be incorporated off-

line as well (7).

-18-

*,7 . W. 7. q.S - WE -I t a WVTW

The key value to the augmented teach method lies in the separation of

program structure and geometric data values. Consequently, a given program

may be used without modification to manipulate different parts, simply by

changing the coordinate value data sets.

1.6.4 CAD/Graphics Systems ProKramning

Since one of the major problems with off-line textual programming is in

visualizing robot motion, the natural places to turn to in solving the problem

are graphics systems and computer aided design (CAD) systems. There are

several types of systems here. The first is a graphics system used to read in

a manipulator level program and, based on a model of the robot and surrounding

equipment, presents a simulation of the robot motion. The programmer can then

check for collisions, proper orientations, reach, and so forth. The other

type of system runs an application program in which the programmer interacts it.

with a graphic display of the robot in order to generate the program. T'lotion,

for example, may be programmed by indicating endpoints with a light pen. Note

that in the latter system the programmer actually generates the program with
the aid of the simulation, while in the former system the program is completed

prior to the simulation. Note also that the latter system is robot indepen-

dent. The same applications program can be used to generate programs for

several different types of robots. Postprocessors are used to convert the

application program output into robot specific languages. The application

program itself may facilitate programming at the task or manipulator levels,

but the output from the postprocessor is typically at the manipulator level.

In either system, models of the robot, equipment, or parts may be extracted

from a CAD data base. Another method of programming is to write a manipulator 4.
level program using a text editor and allow object descriptions to be supplied

by the CAD data base. The variety of uses for CAD and graphics systems is

illustrated by the commercial products developed by McDonnell Douglas Automa-

tion (Section 2.5.2) and others. Since there are no clear delineations be-

tween these systems, we shall collectively refer to their use as CAD/Graphic
systems programming.

19

The advantages to having a simulation system are that it provides a

visual aid for analyzing motion (8), time studies can be performed (9), and -b
workcells can be designed (10) by trial and error methods. This can result in

enormous time savings in robot program development and cell layout. The

economics of small batch assembly are heavily impacted by the cost of the

robot and auxiliary hardware and the assembly cycle time (9). While hardware T J-

costs may continue to drop, immediate reduction of assembly costs is afforded

through time studies designed to optimize not only the work cell layout but

also the robot program design.

A further advantage to the interactive systems is that the programmer

need learn only one application program. There are, however, some significant

limitations to these systems (3). First, time studies are only a rough

approximation. This is because the systems assume instantaneous accelerations

and deccelerations. There is no modeling of slop, backlash, or overshoot in

the joints. Simulation of these effects would require a complex dynamic model

of the robot and these are not available from the vendors. Second, most

systems use wireframe models, and therefore do not have automatic interference

checking. The programmer must run through the simulation from different views

and visually check for collisions. Wireframe displays of complex scenes are

sometimes difficult to interpret. Solid modelers are available at a reason-

able cost, but are very slow. Third, sensory inputs to the robot, such as

vision and force, are difficult to simulate. Finally, many of the problems
present in off-line textual programming are still present. The simulation is

not an accurate geometric representation of the real world, so motion commands

must be "fine tuned" on the floor. Also, the software that causes a reorien-

tation of the robot in the middle of a move is not simulated. As with off-line

textual programming, the final debug of the program must occur on the shop

floor.

Task level programming will rely heavily on CAD models for information

needed to decompose tasks into the appropriate motions. CAD-based programming 0

techniques will therefore probably be the most popular method used to generate '*"
task level programs. Task level programs could be generated solely by textual

-20-

~~...W W- -. - WV W_ V7. * -

.
-%1

means, but this would require describing all of the features of the robot, the

parts, and the environment explicitly with textual commands. When it is

possible to store libraries of models in CAD, it is unlikely that the textual

approach will be taken.

1.7 ROBOT PROGRMMING PROCESS

--,_'-.The program development cycle for robotics is markedly different from

computer programming, for several reasons. It is worthwhile to compare and

contrast the process of programming in these two areas. From this comparison,

insight may be gained into the problems of robot program development. Figure 3

illustrates the off-line robot programming process.

In the most general sense, robot programs function to manipulate elements

in the immediate environment, according to dynamic real-time constraints

imposed by the process or material involved. Computer programming, by most P.
definitions, is concerned with the manipulation of symbolic data according to

constraints based on the nature of the data or manipulation methods. In

short, robot programs must be concerned with the real-time control in a rela-

tively unconstrained environment, while computer programs for the business

world ordinarily operate with few timing constraints over well defined sets of

data. As an obvious consequence, error handling comprises the largest part of

robot programming, while input and output statements play a relatively small

role. The converse is true of business-oriented programming, which primarily

functions to process input data files and create output files.

A second reason for the difference between computer and robotic program-

ming lies in the physical division between the programming environment and

operating environment. The programming envirorient is where the programs are

created, revised, and sometimes simulated. Simulation is the only mechanism
whereby the functionality of the program may be checked before transporting

the program to the operating environment. In the operating environment, the

actual semantic debuggglng session occurs. Z
Note that in computer programming, after a program is checked for proper

syntax and converted into an executable form, it is tested on the same system

with sets of good, and then bad, data designed to test specific portions of S

the program. The resulting output file may be rigorously checked for errors

which can be traced back to program errors. This develop/test/rewrite cycle

- 21 - S

- , , , , m' t ,t , ,'. . ',,' '.,- .,.,,.."..'-..-.. " ".. . . .",-.. . .-... . ,." ' ',.' '%

A..5

Programming Environment
Development System;

Mani~ial Interventio
andmuDetio

NoRsit

Satisactor

Auilar

Cend Delayerai

(Avontability

RnProgram

Cel No Meils %etga

(C nroir

Run Progra

More IN

Figre .Te flne obo poa deelt cYes (Sorce gIT Yes

-4 22 sfctr -e< 7
~osil % -/a '.,P/W.a.a.4'~a4..%(U~% % U

- . .

may occur many times before achieving acceptable results. In off-line robot

programming, after a similar conversion step, the program is transported to a

different system having a markedly different architecture and set of

resources. It is then tested by allowing the robot to physically perform the

programmed steps. The manual, and often unrecorded, observation of the test

then serves to motivate changes to the original program, accomplished back on

the development system. The number of testing sessions available for a robot

programmer is limited by the costs involved in using the robot and consumable

materials. Beyond a few such iterations, development costs become prohibitive.

To summarize, the robot program development cycle is different from that

of normal computer programming, because of differences in the program func-

tionality, development and operating environments and testing methodology and

costs. The capability of a robot programming system can be evaluated using

criteria developed for computer programming, as is shown in later sections.

The program development cyle, leading to a measure of programmer productivity,

can be discussed in terms of the process outlined so far. The time lag be- k.

tween program creation or revision and on-line testing can be reduced by using

a higher level of language and more powerful tools in the programming environ-

ment. The number of develop/test iterations necessary to achieve an accept-

able program is partly a function of the program design. A stronger design is
6-

achievable through language features, combined by an experienced programmer,

to utilize sensors for the detection and analysis of error conditions. The

number of iterations and the compactness of the development/test cycle form a

measure of the cost of robot program development. The issues involved in the

programmability of a system are thoroughly addressed in Section 3.

i;." 1.8 SUMMARY

Tv) robot programming issues have been identified thus far. There are

two general philosophies to robot programming approaches: teach pendant

programming and off-line programming. Among those who consider off-line .

programming to be the proper approach, there is further disagreement as to

whether the language should be an extension to existing general purpose compu-

ter languages, an extension to NC languages, or a totally new language. Teach

pendant programming was the first technique and is adequate for a variety of -

tasks. Some vendors are striving to increase its capability either by

-23 - S1,W,

D A0

increasing the power of the pendant or using the pendant to fine tune an

existing off-line program. Off-line textual programming languages offer more

power, but are considerably more complex to learn and have other drawbacks.

CAD/Graphic techniques have been developed to address some of these drawbacks.

Whatever technique is used to program a robot, the output from the tech-

nique is a program that resides at one of three levels: task level, manipula-

tor level, or servo level (see Figure 1). Task level programming is still in

the future, but some languages have begun to incorporate task level capabili-

ties. Programming at higher levels is easier for the programmer, but still

requires that the program be decomposed into the servo level commands neces- s

sary to move the robot. This can be done in an off-line system through trans-

lation or in the robot controller itself. To incorporate this capability into

the robot controller requires fast and powerful computational ability at a

reasonable cost. Current trends in hardware seem to indicate that this is a

realistic expectation. ..

Section 2 of this report reviews the current programming languages.

Section 3 investigates the requirements of a robot programming language, look "U'

at the basis of comparisons that can be used when evaluating languages, and 0

compare a selection of languages.

24'

P'..-

- • *J. ,- ,,

U.,

"# " " .," , " " " " ','-" , -"" " ," , . " " "W " "w "w " " ", ", " "- -'' " -" -" "€"."." -" " - ,"W . %..,-"

.0

2. CURRENTLY AVAILABLE ROBOT PROGRIING LANGUAGES %

2.1 LANGUAGES IDENTIFIED AND CL.ASSIFIED -

Table I is a list of many of the higher order robot languages that were

identified during this effort. This list was prepared with an open mind and,

if in doubt, a language was listed. Note that some of those listed, i.e., MHI

(1960) and WAVE (1970), formed the basis of other languages and [ad a world-

wide impact on robot language development, but are not to be considered as

currently available languages. Only those languages that have been accepted

as being applied to robotics were listed. For example, Ada has been suggested

S as a base for a robot language (11) (12) (13), but was not included because it

has not yet been accepted as such.

Initially, we identified 89 languages. This list was reduced to include

only those cited in more than one publication. It was assumed that those that .

had only one reference were of transitory interest and were either dropped as
developments or incorporated into other efforts.

The literature can be confusing as to the popularity of any one language 0

because the frequency of publication is based more on the marketing approach

of the developer than on the merits of the language. University developed

languages may be the subject of several papers, but may never have been used

commercially. On the other hand, some commercial vendors are not prone to

publish papers on their current R&D efforts. It is difficult, particularly

among the more recent developments, to determine which languages are likely to

survive in the commercial marketplace. An analysis of several languages that .*.

seem to currently have major support is in Section 3.4. 0

The identification of the developer is not always as clear as one would

like. In fact, in some cases the literature was contradictory in this

Li respect. Individuals have written papers on a language after they left the

company or institution in which it was developed. In other cases development

was done under subcontract or jointly between several organizations. Also,

many of the languages are largely based on other languages, so the reported

developer may have only modified or extended to a small degree a language

developed elsewhere.

- 25-

Al 0

& . = - --- . - -. 7 2 ..1 - %, .r N - 7

> -D Q (D t- >

I0 0 0

o 10 E 0'- 0A 0 0 0

0 C - a. 0. 0
to t-L L f - L- L CL

0i cO 0 r- C aL 0 0 -0 0 -
to to 4- 00 0.0 4- ' 0 4-

000 fu D 0 a) -u 0
o.. Z- CL C- a - - C - -

0 L L C- 00 0 0 -0 -

- 4)CD- 4- 4- 4

C - - - C C C
0 0 0 0 %

0 ~ ~ 1 - 0 z -E -
4- 0. 0 0 9 . U . 0.U

4- =. 04-
2,V x0 <0. - 0 -

< a. -L 0- V
< -L

c)CL) CL.C

4- CL Q- - u4
to -4 V-4t

to 0

CxL) CrJ c .0 ~
00 00 to (DVV VV

=> z

0 < 0 0

0r (D0 0 0)

ao a 00
00 10

0 0 '

to 0 0 0 3-0 0-
0 0 5-
.4 0o 0.43 7

r E. 0 a .
C~~~ 0 CCC C4-C-00

C L L L0 L -m 10 E A>

4-4-4-
c C U 0 m C

000

S0 CL CL <

00 00
.4 NO< < < 00

5 N."-.'-.. N. . 0 C' ~ 4 %

-4 . ~ -I C I -. I- %

-26-

*~%

SA'

L 0 L0 -0 0 -
0 OG 0 0 0 0 0 - - r-

0 = + -+ - - - ~ 2
-0% L . 0 L L0 -00~~4 0C 0 1 0 0 - L

2L 4-1 0- C4 CL +- 4- 0>0 It +- +- 0 0> 0
0.C - - 0 - - C- nl 0 L

0.- 4-0 . . . 0 4 4

u CL CL
L 0 L L0 0 0 L L . 0

- - p--c0 I0 0c 0 0D
4- -C 4- E -

05=0 0

0 =0 -l~ .3 i CI 7
4- CD .) u-

CL .(0 C- 1 6

N I InC, O

0 0

LC 0 (DC~

I..~~- U- (0 ' I

4- I

4- v 00

-C -

0. 1--

- 0 27

...

S7. -J 77

8-2 77C %

C L0 0 0 0
0) oo > > > 4- V 0 -

0)C0 0 L C C

, - L L 0 L 0 L L > E L 0
-0t 0 O. -0 0 -0-

- . - .4- 4-- 0 - +- 0 - 0 +-4-
>0 0 4- aC Ca > C C > C c

0. -- 0 -0 0 CD - -0CO -~ U) C ~ ~ U ..J 0 U

. 0 C 0.0
. 0 (-> - > - .4- >

c t ; L .0 C C L CL. 41 C C 40C L

IN

4- 4- 4- 4- 4- 4- 4-

4- C 0

C 0 0 L 0 0 0 0 0

.- - o -
-CD

U) 00u 0 0 c

-Z :3 +-, 3 4- M .4-

0 0t0o 0 0 0

00 0 0 ?

00 go0 z]

CC
10

-- 4,--,
0U.) . .. Cf_ _C C C

< d4-- 0 C O
C- - < a. I 0o -,

,,.--

C

,

0 1Q 00

o 0-CV 0C..', 0. ,.-

__ : ,

IL

S1 Q-

S
.4-

U. 0- c

>0 0-M 0

C 0

qD 0

1.0 C

tL -4 UV)

w CmU

0 L
40 - U- U0-

C0 u.........C

L C in LM C) k.
C C+ . UCD4

UL 4- 0 0-

L Q ~ L) VD CD 0-4

- >L C' 0

CL o U) CC >

4- = L
-j L 0 , 0 C rC

L 0.Cc C C
C~ Cdo0

*~~~~~% % 4 4 .-

- L

C- e 0 0 0000 "
>0 - - L ... o .. '

0) L 0 L 0 0 L L L I--I
0 m 0 L. 0L L 0 0 0 O0

4"4- 4-4- - +- +- +- > - -
4)0) f c .2 c 0 000~f

OC 0 -0 0 f
u Q Ut~ A Q c4

Q,0000 0 0 0L C l 0 0004-

L > CL> L CC
0o 000 0 (D 0 0L

4- 4-4)4 4-

E E - E E E
CL0 06 CL 0 L 00,

2 0 L 0 L 0 0

0 0)

I .

n0 or0 0 0 ,"o I
0 0 L

Ix j . 0 c
OU 0L 0

o [- Uo 4-0P
-.3 - - - -

2.2.

0 c

0 0

1.0 JC -C a L

-- 2 CL - 'C) < L

'LI V-,'.

m L< a 'C-

-- *--,1 0~w'A)a-m w l ; b b~ ~]1,;U a k JkE l : ==- , -..

o 0o cc CC
a, Cl 0,o 7

0i e

CL
* . 0 <- 0-

.j
4-

V) V) 0

T0 0 LIj

00

0 C2
a_ 0 CL.

0V) <

< 00< -
z CL C- Ca

IN 0 %C.0

1 4- CC9

% % 0

0 +

0 0
CL 4- -

so 4- >
a a4 0 la W

C* 0L I0 L. M 0

* 0 0. -- .

9 e 4- f- 04- 5*

4- 4- CL 06
44 0 L

(A 0 0

L 7- L 0

0U1, %, %*.*

0 C thf L D I

12~ 3r 0.0 0 CL

0

In 0 M.)E

I.-0
0 L F) EE

4- 0 31 . 4

LG C 01 01 L10 10

- 4-

0 Ln 0

0 ~0)

0C
0. 0.0. 10

xA

0- V

K FS

-30 5

00

0 0 >

L- >

4- 06u 0. Q. u 06
(0 L. 0 0 LL 0

(DE 2 CD EE d

0 0 (D 000 0

c ~C4
to c

o
4- Z u 0 1

P.- co DU
a: -9 1 - 2-

I 02:~~- ooI 01

zA

In -

to < 20

(A (AL 404Dc

-j 06
0' 0 0 L 3

(D
<

c (7V (V-(1()--

c 0V
I (A .0

C- 0

20 L t

0 C2 m
C 4-0 +-

4s - >1 .0
C 2 - 0 0 2 E 0

0 C 2. (A 0 0 0

(V- L 0I

CL -LV
(Az xA (A

-.- - . - . a - - . - "

- - - ; 0 -i - .

-0 > > -

>L L~ 0 L. + L4-

0 0 00 0 L 0 0
4- +- 4- (V44- 4-0 (D a,

O0 0 0 DL Z n (V 0-(V~~~ ca. fl (V V(

C4> C) IrCa->C

c "

, ,, - - 4- 4-O --

C - + a -. C

0V to (V to 0 m

• "o

4-.U .C. %L

(V L a 0 L.L0
0 - 0 0 -

E E 0 0 0 0 ,,

(- -U.A

00 0

u u m.. (V (V ftC

C4-0 CD 22 0

(V C x a. .t.

L C0
% _"

U0 0
.VP-

003 U) (V 04...%0
C14 N C4 mO N UN

I % 0,',C,

- -La 0 ., O- ",

0,0 u .

Ij I Ir3I
.j A.

0 0 0 0l
(VC 'D L

-- -u 10 0

E E 0 0

-~t 00- (

t0 4 C C% +

I- L-

> > 3C

-32-
AV

The year listed is the earliest year associated with a specific language.

Again, the literature is contradictory. In some instances the language may

have been fully developed and in use prior to the year listed. In other

instances development of the language may have been under way or just getting

started in the year listed.

The basis for a given language is listed from comments, often by the

developer of the language itself. The distinctions here are modest at best

and for many of the languages no basis is listed. This does not mean that it

was a totally new approach, but only that no reference to the base language

was found.

Where possible, the actual robot arm on which the language was run is

listed. This does not necessarily mean that the language runs efficiently or

is commercially available on the arm, only that it has been tested on that

arm. Robot vendors are the best source of information for determining what

languages are available on their robots. Table 2 lists some commercially N

available languages and the robots on which they run. 'S

When a language is in commercial use, it is listed as such. It was

assumed that simply offering to sell a language does not make it commercial,

unless it has actually been installed by user companies.

The language level is indicated in the last column. Although no task

level language actually exists, those languages having some task level capa-

bility are listed as such to distinguish them from purely manipulator level

languages. CAD/Graphics systems are also listed.

Several references (1), (5), (14), (15), (16), (17), (18), (19) briefly

discuss some of the languages listed in Table 1, and then go on to compare 0

them on several features. Other references are devoted entirely to a single

language. This information has been compiled and is presented in the sec-

tions below. The information is not intended to be detailed, but gives a

* flavor of the issues explored in robot language developments and how the

languages have evolved. The summaries of languages in the literature tend to

hit on a few key points for each language, which may at first seem to be a bit '%a I-

-33- 0

TABLE 2. CURRENTLY AVAI LABLE CORCIAL LANGUAGESP

CONTROLLER ON VENDOR-SPECIFIC
ROBOT VENDOR LANGUAGE WHICH LANGUAGE RUNS LANGUAGE

AMERICAN ROBOT AR-BASIC MERLIN YES

ASEA ARLA S-2 YES

CINCINNATI MILACRON ROPS all models YES

CYBOTECH -1RC6,RC7

-2.
DE VILBISS -

GCA CORP. CIMPLER CIMROC YES

GENERAL ELECTRIC

GMF ROBOTICS KAREL RF YES

HIRATA CORP. HARL-2 HAC Cell Controller YES

HOBART MYBASIC -YES

IBM AML 7532 YES

IBM AML/2 7575,7576 YES

KMOBOT -4ALLEN BRADLEY PLC NO

GE PLC

PRAB ROBOCAM/RISE G-SERIES YES

REIS ROBOT-Star G-70 YES 4
..

LR-30%.
I.0.

L4-70
V-i15 1A

H-15

H-30

%.SEIKO
DARL, DARL-11 DETRAN

YES

THERMWOOD CORP. T-CAM Z-8000 NO

UNIMATION VAL, VAL-2 all models NO

JS

-Menu-driven user Interface which allows off-line programming through

teach pendant.

2 _-Teach pendant programming only. %A

3-
-No longer support Help language.

4 _-Ladder logic programming.

Source: I IT Research Institute

-34-
0r

% %' . . r

3 %

obscure. For example, one language description talks about coordinate system

transformations, another talks about a different approach to motion specifica- -6

tion, another mentions multitasking, and so forth. These issues are explored 0

in detail and put into the context of robot programming in Section 3.2. At

this point, it is sufficient to note what issues are being addressed and what

approaches have been taken.

2.2 SERVO LEVEL LANGUAGES

These languages are the result of older teach pendant programming

methods. They are not languages in the sense of computer languages, but are a

means of programming at the servo level. We would not consider these to be

higher order languages and therefore do not discuss them in this section.

Included here are T3 (Cincinnati-Milacron), Funky (IB,), and AR-SMART

(American Robot). As noted in Section 1.6.1, however, some vendors have

committed themselves to improving the capabilities of teach pendant program-

ming. Current R&D efforts in this regard are within the scope of this paper

and are noted in Section 5.1.

2.3 MANIPULATOR LEVEL LANGUAGES

Manipulator level languages are typically written using editors of some

sort, but may also be output by newer teach pendants or a CAD/Graphics

programming system. In the latter case, the language itself is discussed here

and the programming system is discussed in Section 2.5. The languages have

been separated into those developed by universities and research institutes

and those developed by commercial vendors. Within each of these groups, they

are listed in approximately chronological order. Usually, languages devel-

oped within the research environment are not meant for commercial release;

they are developed with a particular research goal in mind. They do, however,

influence the development of commercial languages.

2.3.1 Universities and Research Institutes

WAVE. Developed in 1973 as an experimental language for research pur-

poses at Stanford AI Laboratory, the objective of WAVE was to find the limita-

tions of robotic theory, rather than to perform manufacturing tasks. (14)

3"i

,,- 35- 0.,

k'.Z..,v'., ,,"* " ... ,",,.. ,.r...-w"- .,,.r,.",..rr...,o,,, - - -'" .. "-, "_-.:.-J .- ". -"- - -".'.- -"". ,

the use of subroutine calls from a general purpose program. Applications

cited for this language are material handling, inspection, and assembly. (14)

(5)

VML. This was developed at Milan Polytechnic, Italy in 1980. It was

intended as an intermediate language between artificial intelligence systems

and the robot. It is used to transform points in Cartesian space into joint

space (manipulator to servo level). (1)

LENNY. Developed in 1982 at the University of Genoa, Italy, the key

issue of LENNY is its functionality. It was intended as a language to be

understandable by humans and to be powerful enough to express complex chains

of actions, processes, and concurrent computations. (1)

LPR. Developed in 1983 as a joint venture by Renault and the University

of Aontpelier in France, this language is based on definitions of state graphs

and transitions between states. The state graphs are defined with a hierar-

chical basis such that all graphs at the same level are executed in parallel.

The language supports 24 I/O ports for sensors and synchronization with exter-

nal equipment. (1)

MA. Milan Polytechnic in Italy developed two versions of 71AL, one is

based on BASIC (1979) and the other on FORTRAN (1983). The latter version ran

on a Sigma robot while the former ran on a research robot. The language can

be used to program a two-arm Cartesian robot. It features parallel execution

of tasks, subroutine calls with argument lists, and sensor interfaces. (1)

RCCL. Developed at Purdue University in 1983, the approach here is to

embed robot commands in a library of routines written in the C language,

making use of the UNIX operating system. The objectives of the language were 0

to provide rich manipulator control commands, flexible data processing, and

standardization potential. (17)

RQ.. This is a command-oriented motion control language developed at

Rensselaer Polytechnic Institute in 1983. (5)

SRL. This was developed in 1983 as part of a standardization project in

West Germany, at the University of Karlsruhe. The language is based on Port-

able AL and PASCAL, and the user program is translated into a robot indepen-

dent code called IRDATA (see Section 3.5.5). SRL data types include those of

-37- 0

_. * . *.***.* . %% ~ % % W ~' .-

v° %tU

PASCAL and artificial intelligence abstract data types. Instructions can be

executed sequentially, in parallel, in a cyclic way, or in a delayed way.

*' Both straight line and circular motion are possible. (1)

LNAC. This was a coordinated effort among several French organizations,

and was developed at the University of Besancon in France. It was designed to

ensure safe control of mechanical devices in an automated cell. The key issue

is its modularity, which is based on the implementation of abstract data

types. Program modules written in a variety of languages may be referenced by -

an LMAC program, permitting a simple interface to existing programs. (1)

2.3.2 Commercial Vendors

VAL. This was the first commercially available language, released in

1978 by Unimation. It was developed by a Stanford graduate familiar with AL,

under the constraint that it could be run on a minicomputer. Resembling

BASIC, the language was user-friendly to nonprogrammers. It was designed for

general purpose manipulation only, and had very limited data processing capa- ,.,_.

bilities. (17)

14 -,

ML. This language was developed by IBM in 1973, but was never released '0

commercially. (25)

EI4ILY. Based on ML, this language was developed by IBM in 1975, as an

extension to ML. (25)

SIGLA. Developed by Olivetti in Italy in 1978, this is a software system

with a supervisor for interpreting a job control language, a teach module for

teach by guiding, an execution module, and an editor. It is really a program-

ming environment for use on Sigma robots. (1)

X4ML. This was released in 1982 by IBM. AML was designed to be a general

language for manufacturing equipment control, but its use to date has been

mostly for robotics. The philosophy behind the design of this highly struc-

tured language is to provide low level and powerful primitives which the user

then builds into libraries of routines. This results in a language that is

extremely flexible and powerful, but requires some programming skill. The

language provides for multitasking, host system communications, user-defined

reference frames, program control features for structured programming, and

advanced sensory interface capability (14) (16) (17) (19) (22). AML is

discussed in more detail in Section 3.4.4. N

-38- 0

AML/E. This is used on the 7535 and 7540 Scara-type. It is an entry

level subset of the NIL language. (16)

AML/V. This is a package of AML subroutine providing vision capability.

(22)

HELP. This language was introduced in 1982 by General Electric under

license from Digital Electronic Automation in Italy. It is a structured

language with a PASCAL-like syntax. Robot motion is described in terms of

rectangular coordinates. It has a powerful I/O capability, and allows for

defining and activating multiple tasks which communicate with global flags.

(1) (14)

MCL. This language was developed by McDonnell Douglas under an Air Force

ICAM project and was introduced in 1981. It was written for use in manufac-

turing cells, is APT-based, and uses a CAD data base as a source for geometric
0information. The language supports vision, image modeling, process coordina- N

tion, real time conditional logic, multiple coordinate systems, macros, and

compile-time language extensions. (14) (19) 0

RAIL. Developed by Automatix in 1981 to control their AID 800 robots for

inspection, arc welding, and assembly, this language is loosely based on

PASCAL. It is unique in that it was designed to control both robots and

vision systems instead of having vision added as an extension. Motion types

supported are straight line, coordinated axis, and oscillating paths (for

welding) (14) (16) (19). Reviewed in more detail in Section 3.4.2. .,

ARLA. ARLA is the ASEA Robot Language, released in 1982 for their line

of IRb robots. This language is available for on-line program development

with a teach pendant or off-line for VAX and IBM computers. The ASEA Off-Line 0

Programming System allows for the creation of manipulator level programs in 4-."

ARLA, which is an unstructured language having constructs for motion, sensor

interaction, communication, math and logic functions, and application specific

entities for welding and vision. Coordinate data sets may be generated off- S

line with an editor, or on-line during a teach session.

PASRO. Developed in 1983 by Biomatics in West Germany, this is a PASCAL-

based language with data types and procedures added for robot-specific tasks.

Its development was based on experience with AL. (1)

-39- 0

.-.'p

* - .. ~. - -

CIMPLER. This is a manipulator level language which runs on the CIMROC ,.,

controller of GCA. It has some sophisticated features for motion control, -,

concurrent execution and I/O, which shows the designers clearly had an indus-

trial manipulation viewpoint. (20)

VAL-II. This language was introduced in 1984 by Adept for use on

Westinghouse/Unimate robots. Whereas VAL was weak in its data processing

capabilities, VAL-1I offers structured constructs, arithmetic functions,

external path modifications, and communication support. A process control

task can run concurrently in the background during motion execution. (15) "

AR-BASIC. This language was released in 1984 by American Robot for use

on their robots. It is based on BASIC, and supports discrete I/O, mathemati-

cal capabilities, and programming flow control. (16)

KAREL. Introduced in 1985 by GMF Robotics, this is a PASCAL-based lan-

guage offering structured logic constructs, high speed communications support,

vector and array structures, process control capability, vision system inte- 1

gration, and textual I/O. The language supports point-to-point motion control

and linear and circular interpolation (16) (21). It is reviewed in Section
3.4.3.

AML/X. This is a general purpose programming language by IBM1 for

manufacturing and computer aided design. It is a major revision of AML with

sophisticated data abstraction capabilities (22). It is reviewed in Section

3.4.4.

2.4 TASK LEVEL LANGUAGES t. "

As noted earlier, no true task level language exists. Different lan-

guages have been mentioned by different authors as having some task level

capability. Among these are AUTOPASS, LAMA, AL, RAPT, and ROBEX. RAPT and

AUTOPASS are the most often cited. The success with task level inplementa-

tions is limited to date. AUTOPASS and LAMA were defined, but incompletely
implemented. AL had task level instructions, but they weren't implemented.

There are many problems to be solved before task level programming is a real-

ity (see Section 5.3), but it is worthwhile to note the efforts to date and

the lessons that have been learned.

-40
-W-" o'% i!

*~~~~~~ k

0

.

2.4.1 University and Research Institute .

RAPT. Introduced by the University of Edinburgh in 1978, this is an

APT-based language in which tasks are described in terms of objects, relations

between objects, and motion of objects. A RAPT program consists of a descrip- .5

tion of the parts involved, the robot, the workstation, and an assembly plan.

The plan is a list of geometric relations expressing what should be true at

each step. The language is independent of the robot type, and a post-

processor has been developed to generate VAL programs from RAPT source code.

* (1) (24) (23)

2.4.2 Commercial Vendor

AUTOPASS. Partially implemented by IBM, this language focuses at the

object level where motion is described at a high level. (25) It is similar to

RAPT, in that programs have the look of Assembly Instruction Sheets. (23)

2.5 CAD/GRAPHIC SYSTEMS

2.5.1 University and Research Institute

GRASP. This is a CAD-based programming system developed by the

Rensselaer Polytechnic Institute. It ran on a PRIME 750, and post-processors

were written to translate trajectory information into robot specific languages

for Cincinnati Milacron T3 robots and the PUMA 600 (16).

IGRIP. This was a simulation package developed at Cornell University for

studies in the kinematics and dynamics of robot motion, and for time studies.

It ran on a VAX 11/780. (16) (26)
.--..',

GRIPPS. Developed at the Michigan Technological University as a program-

ming tool, this was expanded to perform motion simulation and dynamic behavior

aialysis. Initially run on mainframe, efforts are being made to develop a

microcomputer based system. GRIPPS input files are in IGES format, and it

uses the GKS library for display. (16)

2.5.2 Commercial Vendors

PLACE, ANIMATE, COMMAND, ADJUST, BUILD. These are packages developed by

MIcDonnell Douglas Automation that perform a variety of tasks using the Uni-

graphics CAD system. PLACE is a simulation tool for designing and evaluating

workcells. It checks positions, limits of reach, mnotion sequences, and cycle

-41-

~* *~% ~ %* 55 * % ~~* .~ *%*.' %~* - S I *~55 ~ 55 .~ *.. 5.*.* ~bs . W~ .t Wh% *.-5 .5 S **t=*"'°*°'

w,1%

times. ANI4ATE reads M1CL robot programs and displays the resulting robot

notion. COMMAND combines commands in native robot language with motion

created graphically into a robot program. ADJUST is used to calibrate off-

line programs for actual workcell variations. BUILD allows engineers to

generate control equations for various robot geometries. (16)

ROBOT-SDI4. This software was introduced by GE/Calma, and emphasizes

kinematics and dynamics. Initially used with GE products, it supports work-

cell development and robot motion simulation, analyzes dynamic response, and

calculates dynamic path errors. (16)

2.6 CURRENT LANGUAGE USE AND TRENDS

The most commonly used languages to date are listed in Table 3. These

languages have established usage in industry. Thus far, the real driver to

language acceptance has been the robot vendor community. Typically each

vendor has developed a language for use on its own robots, and languages have

gained acceptance as a consequence of robot selection and use in industry.

Note that only one of the languages in Table 3 has been developed as a

robot-independent language; the others are specific to the vendor that devel-

oped them. RAIL was developed as a language specific to Automatix vision

systems. Note also that one of the languages listed (T3) is servo level. The

reason is that, for several years, simple teach pendant programming was the

only method available on Cincinnati-Milacron robots.

Several more recent languages are not listed in Table 3. Some languages

introduced at the Robots 9 show in the Spring of 1985, for example, are not

listed because their applications thus far are limited and their eventual

acceptance is unknown. Included here would be ROBOCAM, HERON, CIMPLER, and .

ROPS. te expect that some of these languages will gain wide acceptance over

the next few years. With regard to the robot-specific languages, their accep-

tance will be dictated by the success of the robot vendors that supply them.

Languages will become an increasingly important factor in robot selection

in the future. Most robots are used for relatively simple applications in

which teach pendant programming is sufficient. In these applications, pro-

gramming is usually a secondary consideration. As robots are used for more S

complex applications, however, language considerations have a significant cost

-42- 0

A. -'* U *•-i

.- • .-

TABLE 3. SIGNIFICANT ACCEPTANCE MD USE TO DATE

NAAlE SOURCE COUNTRY ROBOT TYPES

AIL and AN.L/E USA IBM

AR-BASIC USA American Robot . -S
ARL A Sweden ASEA

HELP Italy Pragma GE

KAREL USA GIF

RAIL USA Automatix

ROBEX West Germany Variouse..%

SIGLA Italy Olivetti
'U.

T3 USA Cincinnati-1ilacron

VAL and VALII USA Westinghouse/Uni mate

Source: lIT Research Institute

3.-,

- 43 - •

=,J U' d .. *.P.~ ./~U-U U%.* %. U*% ~U.* *~ *S~U %~ U *=~=~ %* * q* &; .- *° = *o°*°o-

impact, and are likely to become a primary consideration in robot selection.

In applications such as assembly, for example, program development and mainte-

* nance costs are likely to equal or exceed hardware costs. In batch job envi-

ronments, the ability to develop robot programs quickly and efficiently is I

essential to justify the cost of the robot. In automated factories, communi-

cation (networking and file transfer) is essential. These issues all revolve

around the programming language. -

Another obvious trend is the increasing use of CAD/Graphics systems. In

off-line programming of complex applications, simulation of robot motion is

essential. As more detailed models of robots, machines, and the parts they or

A" handle are put into CAD systems, more CAD-based programming systems will be

used to automatically access these models for use in program development. The

proliferation of robot languages will also provide a driving force for

increased use of CAD-based programming. User companies will want to establish

an application program on CAD, so that all robot programs can be developed

using the same language and programming environment. Postprocessors will then

generate the robot-specific programs.

7The available programming languages were identified end classified as

servo level, manipulator level, and task level. While no true task level

languages exist, some incorporate task level capabilities. Many of the lan-

guages developed are a result of university and research institute efforts,

"-" and are usually extensions to existing robot or computer languages. Often,

the research languages are developed to explore a particular facet of robot

programming. In general, the evolution of robot languages parallels the 0

evolution of general purpose computer languages in overall structure and

capabili ties.

The primary driver behind robot language acceptance and use has been the

robot vendor community. Vendors have taken the results of previous efforts,

both research and commercial, and have developed their own languages for use

in controlling their robots. Very few of the existing languages are robot- :%

independent. S"-

-44- S
a-"-.-,,

-''S

Language considerations (capabilities, features, programming and operat-

ing environments) will become an increasingly important factor as robots are

applied to more complex tasks. Program development and maintenance costs will

be a significant factor in future robot applications.

CAD/Graphics systems' use for robot programming will increase in three

ways. First, they will be used for a simulation tool to study work cell

configurations, robot motion, and cycle time. There are many limitations to

the current systems and steady improvements will be made. Second, CAD models

of parts, robots, and machines will be used in robot program development. In

this respect, CAD models will define coordinate systems and features to be

used in executing the robot program. Finally, robot-independent applications

programs will be developed to relieve programmers of the task of learning

several robot programming languages.a-1

-

455

M ..

S. .*

'.,"

-'a - 5

3. COMPARISON OF ROBOT LANGUAGES 4

11

3.1 BASIS OF COMPARISON

When there is a proliferation of similar products it is natural to look

for a way to compare them. The variety of robot programming languages repre-

sents a unique challenge, because the subject area is complex. Robot lan-

guages are far from a stage of maturity--various approaches are still being

explored and there are many issues yet to be resolved. Also adding to the

problem is the failure of the literature to make clear several important

considerations and distinctions. These are:

1. The relationship between robot language and robot perfor-
mance

2. The distinction between robot programming levels and robot
programming techniques (see Section 1)

3. The distinction between language capabilities, language
features, and the language implementation

4. The distinction between programming environment and operat- .0
ing environment, and their relation to the robot language

5. The distinction between language requirements at the task %
level and at the manipulator level

%opt

6. The distinction between evaluating robot languages and
evaluating robot implementations.

3.1.1 Robot Performance

When a user is comparing robots, several considerations must be made.

Overall robot performance is the most critical concern, and it is important to

realize that the robot language is only a part of this. Other factors affect-

ing robot performance are lift capacity, reach, accuracy, repeatability, and

mean time between failures. No standards exist, but work is under way to try 0

to establish some metrics by which robot performance can be evaluated.

The importance of the language relative to the application must be consi- N

dered. A very simple application may require little programming and a high ' ;

degree of repeatability, so the language is of secondary importance. Another

application may not require very good repeatability, but involves complex

• m

-46-

V-N.. *

motion, significant sensor integration, and complicated error handling rou-

tines. In this case, the language is of primary concern. One application may 1W

be for a mass production environment, in which the robot may actually run only

a few programs, with minor modifications, throughout its entire life. In this
case, programming time is only a small portion of the life cycle, and rela-

tively crude programming capability is often sufficient. In another applica- 4"

tion, such as a batch production environment, the robot may require frequent

reprogramming. In this case, programmability is essential. The point to be
made is that the importance of a robot programming language is relative to the

intended application. When comparing two robot implementations, if the hard-

ware based performance criteria are approximately equal, the language may then

be the deciding factor in the robot selection. k'

3.1.2 Elements of the Robot PrograuinM System

After taking into account all of the robot performance criteria, it may 5

well be decided that the robot language is important, and that a powerful

language will be needed. A natural step at this point may be to turn to the

literature in search of language comparisons. There are many good language

comparisons, and some are discussed in Section 3.3, but these can be very .;

confusing if not placed within the context of an entire robot programming ,*

system.

A distinction that fails to be made in the literature is between language

capabilities, language features, and the language implementation. We consider
these to be three of five elements in a robot program system. The language ...

capabilities are a measure of the overall "goodness" of a language. They are
the "ilities": flexibility, extensibility, reliability, maintainability, and

so on. A measure of the "ilities" is somewhat subjective, but is very impor-
tant when comparing dissimilar languages. The capabilities determine the ease

with which the language can be used, transported, maintained, and expanded.
The set of capabilities we have chosen encompasses a very broad perspective of

robot programming. Features, on the other hand, are things such as macros,
%, *

conditional statements, and variable types. The features can be measured

objectively--either a language has the feature or it does not. The third
factor to be considered is the language implementation, i.e., unstructured .

versus structured and compiled versus interpreted. Thus, there are at least

- 47 - 'A

LA0

0ON
three elements of the robot programming system: language capabilities, lan-

g.!age features, and the implementation. The language implementation affects

the utility of certain features in the language and characterizes the overall

programming process. All of these elements are different at a conceptual

level, but they are all interrelated.

A further distinction needs to be made between the programming environ-

ment and the operating environment. Essentially, the programming environment

generates the robot program and the operating environment executes it. The

programming environment consists of the text editor, simulation tools, CAD,

subroutine libraries, and so forth. The operating environment consists of the

robot and any terminals or other equipment on the shop floor. In the case of

off-line programming the two environments typically exist in two separate

physical locations. In the case of teach pendant programming, the two envi-

ronments co-exist in the same physical location and share the same computer

(the robot controller). The programming and operating environments are the

other two elements of the robot programming system.

The robot programming system has been shown to consist of five basic

elements: language features, the language implementation, language capa- 0

bilities, the programming environment, and the operating environment. These

are all integrally related. They can be considered as different conceptual

layers, or views, of robot programming. The features represent a microscopic

view of the language whereas the capabilities represent a macroscopic view.

This is illustrated in Figure 4. Each layer is shown to be composed of a set

of entities. Entities in the outermost layer are related to entities in all

A' of the layers below. The entities in the innermost layer are the language

features themselves. If an entity in the outermost layer is considered impor- k

tant, it will require entities in the inner layers to support it. For

example, if sensor support (language capability) is required, then certain I/O

constructs (features) will be needed. In Section 3.2, the requirements for a

robot programming language are developed as a function of these layers. This 0

will result in a list of language features required to support the outer

layers, and can serve as a basis of comparison for robot programming lan-

guages.

-48-

System

Environmen

Capabilitie

Progrmmin

Operatin

'in,

49.

T"P'

Before proceeding, it should be noted that another source of confusion in

the literature is the failure to distinguish between requirements of manipula-

tor level languages and requirements of task level languages. In many of the

papers, manipulator level languages are discussed and compared, and then

requirements are discussed in terms of (what seems to be) task level lan-

guages. Thus far, manipulator and task level languages have been treated

distinctly. In fact, the evolution from manipulator level languages to task

level will be a slow, steadily progressing process involving several genera- -

tions of languages. The next generation of robot languages will lie somewhere

between the manipulator and task levels, incorporating elements of both.

Since the literature focuses on the next few generations of languages, where

the distinction between manipulator level and task level is fuzzy, their dis-

cussion of language requirements can be confusing. The following sections .',

attempt to clear up some of this confusion.

3.2 ROBOT PROGRAMMING REQUIREMENTS

The external world, within which the robot programming system must oper-

ate, imposes requirements on it. This world can be considered as consisting

of two layers: the application layer and the industrial environment layer.

This is illustrated in Figure 5. In this section we correlate the demands the

external industrial environment and application layers place on the robot

pprogramming system. The industrial environment is the outermost layer and

consists of two components: the market and the company policy. We are not

attempting here to develop the outermost layer to any level of detail, but

simply to illustrate the concept. The application layer, on the other hand,

has been treated extensively in the literature and will be examined in greater 0

detail.

3.2.1 The Industrial Environment Layer
Two elements of the industrial environment layer are depicted in Figure

5. A partial list of the entities in the user's product market includes -

responsiveness to change, product quality and cost, delivery and production

schedules and standards. All of the entities impact the robot application

layer, and, in so doing, affect the inner layers of the robot programming

system in the following ways.

5.

- 50 - h .

PF-W

Responsiveness to Change
- Product Quality
- Product Cost
- Delivery
-Size of Production Runs
-Standards

Application

61

Programming9
System

i%

- Network

- Budgets
- Manufacturing Data Base
- Vendor Selection
- Cost/Benefit (Robot Applications)

Figure 5. Impact of the external world on the robot programming system.

(Source: IITRI

o P

Responsiveness to change implies the ability of a company to respond to k

changing market conditions through the introduction or modification of a
. product line. The programming environment and implementation layers may have l

to satisfy this demand by being flexible enough to allow frequent reprogram- .

~ming. Additionally, the language features may have to support significant

sensor integration to reduce the need for expensive special tooling for each

IPproduct. .

Depending on the product quality requirements, sensors may need to be "

, used to position the robot within close tolerances. The use of sensors to aid

in positioning a robot may allow less accurate robots and more general purpose

programs to be used for an application, with a corresponding reduction in

product cost.

Production and delivery schedules place great demands on the programming

environment and implementation layers. Small and mid-size production batches

ay not be able to justify lengthy program development cycles, particularly

for one-time-only products. On the other hand, industries catering to the

defense market sometimes receive an order for a batch size of one, spaced at

irregular intervals of a year or more. Of prime concern is the ability to

maintain a program already developed for the application, perhaps incorpora-"'

ting newly established process parameters, tolerances, or equipment, without -

major reprogramming effort. The use of sensors for robot positioning is one ,.
wayecs to enhance the reusability of a program for slightly different parts or ,

-°,,

Should market standards be developed for a product line, all of the

layers will be affected to some degree, either through more rigidly defined

manufacturing tolerances or by imposing restrictions on the design, communica-

tion and use of manufacturing software.

choice of a robot programming system. If a company is committed to integrated

manufacturing using a factorywide communication network, such as ,lanufacturing .

Vand Automation Protocol (MAP), robot controller hardware and software will

-.

have to be MAP compatible. Budgetary considerations may affect the sophisti-

rdcation of the programming environment. CAD/Graphics packages may boost

programmer productivity, but can be very expensive. The existence of a anu-

facturing data base may requirae fatue may have access CAD models. A

-52 -

-. . - ~ 6- 't.7. . -

company may have committed itself to a particular robot vendor's equipment,

which significantly narrows the choice of a robot language. Finally, cost

benefit analyses will determine the applications for which a robot will be

used. This in turn influences the language features required. While this is

only a conceptual treatment, it illustrates the point that company policy

factors are a significant concern when evaluating robot programming languages.

3.2.2 The Application Layer

When one begins to compare robot languages, it is important to consider

the application. In a palletizing operation, macro capability is obviously

important. In an assembly operation, guarded and compliant motion is impor- Vle

tant. In a sorting operation, vision system integration is important. Very

little has been published regarding what language features are important for

different applications. Hanright (27) lists some software considerations for

arc welding: coordinate system transformations, tool center point specifica-

tion, linear and circular interpolation, offset displacement, and three-dimen-

sional coordinate shifts. Similar publications would be a valuable aid to

evaluating languages, but they seem to be lacking in the current literature.a If the user is selecting a robot for only one particular application, a power-

ful language may not be required. If, on the other hand, the applications

will vary or will be complex, it is important to select a robot witha ,,

programming system that provides the necessary power and flexibility.

Figure 6 illustrates the entities at the application layer. This layer

has been developed to a great extent in the literature. Lozano-Perez (28) 'a

presents an excellent discussion of the requirements that an assembly applica-

tion puts on the robot language. He describes an assembly task as follows:

7 (1) a robot picks up a randomly oriented pump cover from a moving conveyor

belt and places it on a base, while (2) a second robot picks up pins from a

second conveyor belt and inserts the pins through holes in the cover and

base. The system incorporates two robots, a vision system, force sensing, a

parts feeder, and two conveyor belts. By reviewing the operation of the

V system, Lozano-Perez illustrates a majority of the requirements related to

robot programming. He summarizes the resulting requirements into five major

aspects: sensing, world modeling, motion specification, flow of control, and

programming support. Craig (29) and others summarize robot programming

requirements into very similar categories.

53 -

X '?a

•
,k;...--&:- . - - S k h

% ~Market ; ,
-./

Robot
1

6fProgramming
,

System
.

91..

Company Policy

, -Sensing

• - World Modeling
-Motion

. - Decision Making
"-'. -Communication

Figure 6. Entities of the application layer. (Source: I ITRI). .

-54 - •

p...%

W%.1

We base our analysis on the categories set forth by Lozano-Perez. The i

last category, programming support, is considered part of the programming

environment, and is treated in Section 3.2.4. Also, "flow of control" has -p

been renamed "decision making" and interpreted with a slightly broader scope. %

Finally, an entity called "communication" has been added. Lozano-Perez

discusses this under "sensing" and "flow of control," but here it is treated

explicitly due to its importance.

3.2.2.1 Sensing

Early robots had very little sensing capacity. Fixtures were designed to

maintain a very structured environment so that everything could be predeter-

mined at programming time. In many cases the fixturing costs were equal to or

exceeded the robot system cost, but this could be justified in large produc-

tion runs. Sensors have been integrated into robot systems over the years.

This is a result of decreasing sensor costs and increasing complexity of robot

applications. Also, special fixturing cannot be cost-justified on small batch

jobs, so sensors must be used to compensate for a less structured environment.

Lozano-Perez describes four uses of sensors in robotics. The first is to
initiate and terminate motions. For example, to synchronize robot actions

with other equipment, a switch closure may indicate that some parallel task

has been accomplished and that the robot can continue with its program. The

second use is to choose among alternatives. After the robot has attempted to

pick up a part, for example, it may check the gripper to determine if it has

really achieved its objective. If it has it will continue. If not, it may

attempt to pick up the part again, or it may execute some other portion of the "

program. The third use is identification. A vision system may be used to

identify a part and its orientation on a conveyor prior to pick up. The

fourth use is compliance. This is executing a function while continuously

operating under a constraint. When inserting a pin in a hole, for example,
the entire operation must be performed without ever exceeding a specified

force. The force sensor must be read continuously during the operation. In

general, sensing involves reading sensor input (either continuously or at

intervals), manipulating the data, and performing some function based on tihe

results.

- 55 -
--1.

'C.

As languages evolve toward the task level, sensors will become increas-

ingly important. The task "put box A on box B" requires vision to determine

the location and orientation of the boxes, and to provide information so that

an appropriate path can be generated. Force sensing will also be required to

determine the force necessary to pick up the box without it slipping, and

perhaps sensing to determine if it has slipped. This is in contrast to the

manipulator level, where the location, orientation, and forces all have to be

predetermined at programming time. The only sensing required at this level

may be to determine slippage. The application determines the entities

required in the various layers of the robot programming system. For example,

in the capabilities layer, sensor support is required. In the programming

environment, simulation of sensor input is helpful (note that this is not

currently available). In the operating environment, interrupts are important.

In the feature layer, a number of features including I/O, variables, and

arithmetic operations are required.

3.2.2.2 World Modeling

World modeling is the method for describing the environment in which the

robot operates. The environment includes objects to be manipulated by the

robot, as well as other objects within the robot workspace (machine tools,

conveyors, fixtures). For the most part, this is done with coordinate frames

which are attached to each object (Figure 7). The relationship between objects

is then represented by the relationship between their coordinate frames, a .

relationship which can be defined mathematically by a coordinate system trans-

formation function. Some languages allow two coordinate frames to be "affixed"

to each other. Once a pin has been inserted in a hole in a plate, a language

statement allows the pin and plate to be affixed. When the plate is moved in a

subsequent operation, the location of the pin is automatically updated.

. As languages evolve toward task level, modeling will become crucial.

Sensor information will be transformed into world models that inform the robot

controller of the current state of the workcell. The model will include loca-

• :tion and orientation of objects, as well as activation signals and the state

of other communication processes. Frames will be insufficient in a true task

level language. iodels that depict surfaces and part features and possibly

other data, such as center of gravity and coefficient of friction, will be

required. Consider the "put box A on box B" example. The vision system will ii
-56-

% -.

-

A
Grasp E

World

Bk

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~. 7.Wrdmdln sigfae.(ore Lzn-eeTms

"RbtPorm igPoednso/h EE o.7,N.7
/ul 193,P.82)

Cam57/

provide information about box A and any objects in proximity. From this

information (world model), the robot must calculate a grasping strategy--a

method for approaching the box without colliding with surrounding objects. Oe

Center of gravity information may be important in determining where to grasp

the box. Coefficient of friction information may be required to determine the

appropriate grasping force. Finally, the world model will have to be contin-

uously updated as the robot moves toward box B so that a collision-free path

can be ensured.

The application layer determines the impact that modeling has on the

other layers of the robot programming system. A pick and place operation with

special fixturing may require no modeling capabilities while an assembly

operation may require extensive modeling. In the programming environment,

reach testing, collision detection, and cycle time analysis are all affected

by the extent of modeling capabilities. Language features required to support

modeling include frames, transforms, and geometric data types.

3.2.2.3 Motion

Obviously an important entity in the application layer, the desired path 0 1 _I

type imposes requirements on both the programming environment and language .i

features. In some cases, the exact path taken by the robot is not critical, '..

so motion may be specified by the endpoints. In other cases, the path may

need to be specified. Many languages allow a linear or circular path to be

specified. Speed, and sometimes acceleration and decceleration, are other

important parameters in motion specification.

As languages evolve toward the task level, the ability to define complex

paths will become less important. At the manipulator level, especially when

sensors are not integrated, an exact path must often be specified to ensure no

collisions. At the task level, it may be that no motion specification at all

is required. The robot will instantiate required motion from the specified

goal, i.e., "put box A on box B." Even at the task level, however, it is

likely that motion statements will be included as a specification of target

points: "go to point X," "pick up box A," "go to point Y," "put box A on box

B." This simple task decomposition done by the programmer can take a great

computational burden off tne robot--it would not have to determine approach

-58-
-~ .*.4** 5. - -

, .-' -.-. ' -. - '..,*- , .. . - . -..-.. *S %* . . . , , J , . , , , . , - -, , .. ,. .. -.*, ,.

points for box A and box B. Also, there may be times when the programmer does

not want the robot to generate its own path, and therefore requires explicit -6

control over the robot motion.

Motion requirements at the application layer impose various requirements 0-

in the language features. These include position, path, move statements,

coordinate frames, compliance, and others.
;-. -.

3.2.2.4 Decision Making -''""

This involves the ability of the robot to respond to sensor input and p.,. ,
take the appropriate actions. It impacts all layers of the robot programming

system.

In manipulator level languages, decision making must be explicitly pro-

grammed. A sensor input is read, the data is manipulated, and the program

branches based on the result. Any action in response to sensor input must

therefore be pre-programmed. For example, in "putting box A on box B," a

manipulator level program must explicitly test a gripper sensor after attempt-

ing to pick up box A. If the box has not been picked up, the programmer will

have to have written a recovery program which the robot can then execute. The

programmer must try to foresee any problem and specify the action to be taken

in its event. It is for this reason that as much as 80% or more of a manipu-

lator program can be devoted to exception handling. At the task level, deci-

sion making will still be very important and complex. It will rely heavily on

the world modeling capabilities to try and determine an appropriate response

to an error condition. Even at the task level, it is likely that the

programmer will play a large part in determining appropriate responses. If

the problem is not constrained, the robot is faced with an infinite number of

possible errors and responses. Consider "put box A on box B" and assume that

a box C sits on box B before the task is initiated. If the problem is not

constrained, the robot must determine what to do with box C. Obviously it

should be removed, but where should it be put? Does it place it somewhere ..

temporarily and move it later? Does it inform some other process that box C

is there and then wait for instructions? Should it just place box B on top of

box C? Decision making strategy is a complex problem that will grow in magni-

tude as languages evolve toward task level. Artificial intelligence techni-

ques are likely to play a significant role in developing solutions. Some

ongoing research is cited in Section 5.

-59 -
.<-,

% "P

Decision making at the application layer impacts all layers of the robotV

programming system. Interrupts in the operating environment and conditionals

in the language feature layer are examples.

3.2.2.5 Communication

Communication involves both file transfer and synchronization of robot

operation with external equipment. At the manipulator level, synchronization

typically involves binary signals (switch closures) that alert the robot to

the condition of external equipment. Also, some languages allow control of

multiple robot arms under the same program by providing some multitasking

language constructs. ianipulator level languages have begun to incorporate

networking capabilities so that communication with other computers (vision

systems, cell host computers) is possible. File transfers, so that robot

programs can be downloaded from a host, are also supported. Robot controllers

are being built with MAP capability, in recognition of the market. As lan- 0

guages progress toward task level, communication will become extremely impor-

tant. Transfer of information to and from the robot, probably at the symbolic

level, will be essential to updating world models and coordinating robot

operations with other equipment. In complex assembly tasks, multiple robots O

executing programs in parallel will be required. The "put box A on box B"

problem requires a significant amount of information processing and infor-

mation transfer.

Communication requirements affect the operating environment and the

feature layer. In the operating environment, networking and peripheral sup-

port are required. In the feature layer, sensor I/0, file I/O, device

support, and other features are required. •

3.2.3 Language Capability Layer

Language capabilities (the "ilities") are discussed in Section 3.1.2.

These are entities that describe characteristics of the programming system.

They impact the layers beneath (programming environment, operating environ-

ment, language implementation, and language features), and are affected by the

layers above (application, industrial environment). The language capabilities .

we have chosen are shown in Figure 8, and are discussed briefly below.

600

-60-I

Programming%

Syte

Environment

Capablitie

Programmin

Envirnmen

Imleenato

Feature

- Corcnss
- Maintainability
- E ff iciency
- Decision Making Capability
- Sensor Support
- Flexibility
- Usability
- Extensibility

-Upward Compatability
-Portability

-Reliability

F g e8 tte h agaecpb t slyr Sure

61S

LAPp

lid .0 .P .-, .. - .

'N IV

.0
.

Flexibility. The flexibility of a language is a function of syntactic

issues, but, more importantly, is a function of the semantic power available

to the programmer to represent his application. It is a measure of the range ,

of applications for which a language can be used. .

Usability. A language is usable for an application if program develop-

ment meets acceptable guidelines with respect to cost and maintainability.

Extensibility. The language extensibility is based on the ability to

create abstract data structures representing elements of the problem. Without

data abstraction capability, hierarchical decomposition of the tasks and

modular development are hampered.

Upward Compatibility. Revisions to a language should allow for old .

programs written in earlier versions of the same language to run successfully.

Portability. The more removed a robot language is from an application 9

area and controller hardware, the more portable it is. Thus, conventional

languages such as FORTRAN, C, and PASCAL can be implemented on a wide variety

of computer architectures. Portability can be at odds with the programmabil-

ity, in that the naturalness of the language to express the problem may depend -4-

on language features specific to the application area or hardware.
Reliability. This issue is tied in with the mechanics of program devel-

opment and implementation. Compiled programs are in some ways more reliable, --

since syntactic and semantic errors can potentially be screened out prior to

execution by the controller. The reliability of a program is also a function

of the depth to which alternative runtime conditions are handled.

Correctness. The issue of correctness for robot programs is defined e

simply as "Does it work?" No amount of off-line checking can assure that the

program will successfully complete its task. p .

Maintainability. Easily written and read programs are more maintainable

than low-level programs which tend to hide the semantics of the program. -

Modular development and documentation aids increase the programmer's ability

to quickly and correctly modify existing programs as necessary.

Efficiency. Languages which can concisely represent frequently used

robotic functions generally achieve faster execution speeds.

-62- S

Decision Making. Conditional branching facilities of a language are
used fully in robotic applications, due to the nondeterministic nature of

physical interaction with the real world. Some decisions are planned choice

points in a program, perhaps based on sensor input. Others are implicit

exception handlers designed to handle classes of unexpected events.

Sensor Support. The ability of a language to support a wide range of

complex sensors increases its flexibility and decision making capability. 4.

3.2.4 Programing Environment Layer

The programming environment (Figure 9) is the hardware and software with

which the programmer generates a robot program. A text editor, a CAD/Graphics

system, and a subroutine library are all part of the programming environment.

One of the issues in the debate over robot programming techniques is the level

and type of programmer experience required. Programmer experience is also an

entity in the programming environment. This layer is heavily impacted by the

implementation of the language. As discussed in Section 1, interpreted lan-

guages are more easily debugged than compiled ones, but are slower to exe-

cute. Consequently, some robot programming languages are interpreted, some

are compiled, and some are both. In this last case, the program is debugged

using the interpreter and, when ready to run, is compiled for efficiency. For

these and other reasons, the implementation layer somewhat overlaps the envi-

ronment layers. Entities in the programming environment that ultimately

affect the robot programming system are described below.

Programming Techniques. Programming techniques are discussed at length

in Section 1.5. These are obviously part of the programming environment. ,.

Programmer Experience. The methods, patterns and knowledge (hence -

experience) which the robot programmer can bring to bear on the task signifi-

cantly impact the effectiveness of the programming tools and techniques avail-

able. Additionally, the learning of a new language is greatly enhanced by the

range of languages already known to the programmer and by formal training in
languages and computer architecture.

Pre-processor. A pre-processor takes in a program having syntax extended

beyond the robot language, which it then converts to the normal output lan-

guage suitable for the remainder of the translation stages. An applications

-63- 0

4.. ~ . * -. - --. ~.I. -.

~~~~~~~~~~~~. . . ..... --.......-....-..... .... .---- -- .- -



Programming -

System

Environment

Capabilitie

Operating.

Environ-e-

- rogammin Techique

- Programmeng Txehies

- Preprocessor
- Editor
- Off-Line Debugging
- Simulation

Reach Testing
Collision Detection
Cycle Time Analysis

- CAD Data Base
- Library
- Documentation

00

Figure 9. Programming environment entities. (Source: 1ITRI).
r _

*-e

a,,. ~~ ~a''*a~aV'.' 64



program written on a CAD/Graphics station is pre-processed into a manipulator

level robot program, so that the normal translator or interpreter may be used
for execution.

Editor. The editor is the interactive tool whereby the programmer

creates programs. In the usual sense, this involves just typing in a program,

but it need not be so restricted. Most editors will allow the insertion of

other files at desired locations and the ability to keep a log of changes made

to an existing program. This latter feature is important to debugging and

maintainability. Editors do not often "know" the syntactic rules of a lan-

guage, and thus allow the user plenty of freedom to make typing mistakes or to

specify improper expressions. It is well known that "smart" editors, those

that will not allow syntactic garbage to be typed in, significantly boost

programmer productivity. Grown out of the artificial intelligence community,

these editing techniques can be extended even further to allow "templates" of

a typical construct to be used by a programmer, as a drafter would use a

geometric template to save time and energy. For example, a tool change se-

quence template, which would have in it all commands generic to this opera-

tion, could be invoked whenever needed leaving space only for the programmer

to specify which tools are being changed. Additionally, the editor might have

built into it rules that disallow certain sequences of harmful or inefficient

program statements, such as two successive tool changes. The editor should,

in short, assist the programmer, by helping to write the program, and by

serving as a focal point for the integration of all of the elements of the

programming environment. P%

Off-line Debugging. At the minimum, a program written offline should be

checked for valid syntax before downloading to the robot or workcell control-

ler. If a compiler is used before downloading, this check comes free as part

of the translation process. Practically, much more in the way of debugging

must be performed before attempting the use of a robot program, and this is

the reason for simulation packages.

Simulation. The simulation of the expected robot behavior as specified

by a program is an essential ingredient of the off-line development cycle. A

simulator should take in a robot program and, at the very least, show the S

:ianipulator motions that would occur if actually run on the controller. It is

desirable to have as many elements of the environment simulated as possible,

65



.'

such as "axis windup," load kinematics, process tolerances, sensor delays, and

compliance. Each additional model representing these elements burdens the

simulator package, but significantly improves the development cycle of complex

robot programs. Workcell simulation performs the analysis of data and

material flow within the cell and may use task planning (10), cycle time

estimation, and sensor models to optimize the synchronization of processes and

playout of the cell. Current simulation tools are limited in their power, and

improvements are to be expected over time.

Reach testing is a useful component of a simulator. It is the ability to

determine if a manipulator can be configured so as to reach a desired location

in the workspace and maintain a specified orientation.

Collision detection is critical to the development of workable programs.

Without it, the integrity of the manipulator, fixture, tool and part is in

serious jeopardy during program testing. Analytically, joint angle, Cartesian

coordinate, and spatial representations of the manipulator and environment are

used by algorithms to infer possible collisions. Most current systems provide

only a visual simulation, and the operator must determine collisions manually. ".

Cycle time analysis is the ability of a simulator to estimate the total

time required to execute a motion sequence, and can be important to estimate
cost in large production runs. Acceleration and deceleration factors should

be taken into account, as well as gripper activation and roll, insertion and

removal times, and part feeder location and presentation (9). Unfortunately,

current systems assume instantaneous accelerations and decelerations, and zero

settling time.

CAD Database. The information necessary to model a part (but rarely an 0

assembly), for purposes of simulation, is sometimes found in a CAD data base.

Depending on the CAD representation, which is often two-dimensional and lack-

ing tolerance data, a conversion may be necessary to produce a part model

adequate for the needs of the simulator. If available, the CAD information l

may also be used in the development of the original program itself. An editor
that extracted relevant CAD data for the part being programmed would be valu-

able. Practically speaking, a CAD data base only has utility in the initial

development cycle, although the whole programming environment might reside on S

a CAD system.

- 66.

*~ -66-



......

Library. A subroutine library is an indexed file of subroutines or

subprograms that have been previously developed to solve frequently occurring

programming problems. If the language implementation supports the access of a

subroutine library at the time of compilation, the necessary routines are

automatically integrated into the output file. An extensive subroutine

library will improve programmer productivity, since previous programming

effort is reused, and this will also improve program reliability and mainte-

nance.

Documentation. An essential ingredient in all of the language capabil- *y
ities, some high-level languages are termed "self-documenting" in that the

syntax of the language is so natural and readable that the meaning of programs

written with it is "clear." This does not imply that further documentation is Js*.

not important. The development costs of robotic applications aemand strict

attention to documentation at every phase.

3.2.5 Operating Environment Layer

The operating environment (Figure 10) coexists at the same layer as the

programming environment. When taken together they become the actual implemen-

tation of the robot system. The operating environment consists of the robot,

the controller, sensors, any external machines and conveyors, other computers,

and operator terminals. Robot programming system entities include communica-

tion with the operator, runtime debugging, and error logs. They support

execution of the robot program, and are discussed below.

Execution Sequence. A robot program is composed of a number of state-

ments whose execution (evaluation) may require very specific scheduling to

achieve even reasonably correct control over the robot and the supporting

environment. The scheduling is under partial control of the program (see

concurrent execution), but is often provided by the specific implementation

(see multitasking) and depends on the underlying computer hardware archi-

tecture (see parallel processing). This hidden scheduler is a large source of I

runtime exceptions and an unknown quantity as far as off-line simulation and

debugging are concerned. ..

%.* % *,

-67-

a:-:



.r,

External ,Vp

Vf

obot %

Programming A- _-,
System" ' ,

- ConcurretvExecutio

Capabilities

Programming
Environment

Imlemeianosic

Features

-OPriperatSupor

Environment

- Execution Sequence """'

- Concurrent Execution *_. I.*- Multi-Tasking i
- Parallel Processing -N t o k n- Process Synchronization -Ntokn

- nerps- Exception Handling - .
-- Interrupt Error Log %'" "

- Diagnostics "."
- Peripheral Support ,'..
- Overrides

Figure 10. Operating environment entities. (Source: I ITR 1).-"

% %

68 -



Concurrent Execution. When two or more program activities (such as VN

statements or procedures) are to be performed simultaneously, the programmer -1

may specify this using a "COBEGIN. COEND" or "PARBEGIN...PAREND" language

construct. The ability of the controller having this language to perform

simultaneous execution in this manner is highly dependent on the underlying ..,,

computer architecture. The program activities to be performed in this manner

are temporarily given the resources of separate microprocessors to accomplish

this. A common usage in robotics is to acquire images from a camera while

moving the manipulator.

Multitasking. Some computer architectures have enough power and flexi-

bility that they can have more than one program at a time in some state of

execution. For example, while "Program A" is idle, or waiting for some event

like a switch closure, "Program B" can be initializing the robot position.

Both programs are in a state of execution, yet only one of them has control at

the moment. The scheduling mechanism that swaps control from one program to

another is performing multitasking, and is different than parallel processing.

Parallel Processing. Some computer architectures allow for several

actual processing units to access an area of memory common to them all. These

microprocessors are performing their own functions, somewhat independently of "F.

one another. This parallel processing is common to robot controllers, but is

by no means easy to build or control. Typically at least two threads of -

parallelism are in controllers - the servo computers and the top level program

evaluator. Some controllers have additional layers of control acting in 'a.

parallel, such as trajectory computers, I/O handlers, and more. '-.

Process Synchronization. The orchestration of control may be explicitly

specified, up to a point, in a single program itself. On the other hand,

several concurrent processes may be controlled if a synchronization mechanism

is available between the individual programs. Systems allowing multitasking .

usually provide a channel of communication between concurrently executing

programs, which enable one program to "wait for" or signal" another. An

example of this may be found in an integrated vision system, where the manipu-

lator program and the vision program might be running continuously, but the

manipulator program has to "wait for" an image to be acquired and processed

before reading the results.

-69-



Interrupts. The ability of the robot program to examine the I/0 ports to

see if information is there, is termed polling. On the other hand, the

arrival of information at a port may interrupt a running program, thereby

forcing it to take notice. The first case is exemplified by the language %

construct "WAIT FOR EVENT," which continuously scans (polls) its ports for the

arrival of information (an event), such as a switch closure on a fixture.

Interrupts, however, often signal the program that an unplanned event that

needs immediate attention has occurred. An example of this is the closure of

a travel limit switch on a manipulator joint.

Networking. A number of schemes exist whereby a controller may share

resources, such as files, with a computer located in another area of the

plant. A network includes the data transmission cables running between the

"nodes," the special purpose hardware in each node, and the programs that

serve to process the data transmission. A number of networks exist. Some

have grown out of general purpose computing, such as "Ethernet," while others

like MAP were developed with automation in mind. Networking tends to vastly

improve the effectiveness of robotics when substantial information pertaining

to the process is available on some in-house computer (i.e., a cell host

computer). In use, the network will be transparent to the robot programming

language, which is to say that the program does not need to know where the

files are; the network level program handles that.

Exception Handling. Run time errors are those conditions arising from

hardware failures, unanticipated for sensor data, or misuse of a control

mode. In the case of program development which does not include compilers and

off-line debugging, syntax errors may also cause runtime exceptions. Excep-

tions resulting from unplanned events may sometimes be handled via "condition

handlers." These error trap routines are designed to take control when some

pre-defined condition occurs. Within them, some corrective action is taken if

possible, and the program Is resumed. A great deal of robot programming is

concerned with detecting exceptions and processing them. Until recently, such

errors would cause a "hard failure"-- a halt condition. Newer languages allow

"softer" degradation, which is an important safety issue.

-70-

Z7 
"*.



-.*~-A b . .

.2% l,

Error Log. The occurrence of a runtime error may cause a notation to be

placed in a file for analysis by the programmer. Useful information, such as

system variables, the state of I/O, program line number, and the time, should

be placed in the file as well. Without this information, the causal deter-

mination of an exception may be hampered.

Diagnostics. A controller needs a set of very low-level programs,

possibly hard wired into the computer architecture, that test and evaluate

system components. They are often invoked automatically on powerup, but may

be run as desired to check the integrity of memory, communication, and lines.

As a common illustration, personal computer users are subjected to a delay on

powerup while such programs are being run automatically. This should not be

confused with debugging.

Peripheral Support. A language supports I/O in a generic sense to logi-

cal devices. At the controller level, however, low-level programs which

accomplish the transmission of data through ports to conventional data

processing peripherals as well. Printers, disk drives, display screens, and

keyboards fall into this category. Peripheral support of this type is wholly .

the responsibility of lower-level controller specific software. 0

Overrides. Hardware overrides enable the person operating the controller

to change modes of operation from teach to edit to run, etc. Also available

are maximum speed controls, limiting the actual motion speeds of a program.

3.2.6 Language Implementation Layer

The implementation of a language (Figure 11) is depicted as the layer in

the robot programming system residing between the operating and programming .

environments and the innermost feature layer. The key issues involved here 0

are represented as entities for the type of language, how the language is

processed, and how the actual configuration enables certain kinds of debugging

and system access. The implementation of a language is the view of the lan-

guage which is seen by the outer levels. It serves to incorporate the S

designed language features into a workable system, to enable use by the

programmer and robot controller.

-71-



.%

~~~~~~~~~External-. -",V?,"' '" --

~~~Environment -

Capabilities

Programming %
Environment % '

Imp lamentation 16-'

W V. .

*p /%

Operating .=.~~~~Environment .....

- Language Type r'.,,
- Translator . -
- Interpreter "': "
- Modular Development .,%.
- Include Files ""
- Multi-robot Programming _
- Runtime Debugging .- ,
- System Access -,J:" "

%,

%

i

Figure 11. implementation layer entities. (Source: I ITRI1).

-72 -_: -.

r~~~ or 0*er



0'Z

e

Language Type. Programming languages are classified according to high-

level, distinctive syntactic and semantic features. Languages such as PASCAL, -.

C and KAREL are structured, while BASIC, FORTRAN and VAL are unstructured.

Languages may also be oriented in different ways. KAREL is procedurally

oriented like many computer programming languages, while AML/X and LISP are

expression oriented. Object-oriented languages, such as SMALL TALK, have had

a significant effect upon robot task level programming approaches. Goal

driven languages, an example of which is PROLOG, will play an increasing role

in task level languages. Finally, a language is implemented as an

interpreter, compiler or some combination of these.

Translator. A translator is a program that reads in "source language,"

perhaps a robot program, and then outputs a lower level "object language." This

generic concept is the basic action of compilers and pre- and post-processors.

A compiler reads in higher order language and puts out a language similar

to the language actually used by the computer architecture running the program,

program, i.e., the target computer/controller. A compiler runs in the batch

mode--an entire program is read and compiled, and then the object code is

output.

Interpreter. An interpreter is a program that runs on the target %

controller and reads in source (high) level program statements one by one and

executes them directly. Off-line translation is avoided, but with some penal- c

ties. Syntactic errors in the source program may appear as runtime excep-

tions. Also, the interpretation of a program statement requires significant

overhead before it can be executed. This is why interpreters tend to run

slower in the real world than one would like, particularly since typical

control structures cannot be optimized as they would be by a compiler. The

greatest benefits of the languages that can be run with an interpreter are

their power and ease of debugging. Much of the power comes from the notion of

delayed binding and dynamic scoping. 0

Modular Development. Larger programs benefit from partitioning the job

into smaller pieces that may be written somewhat independently. These program

modules can be individually translated and perhaps simulated before the com-

plete program is assembled. Incremental compilation supported by some lan-

guages allows for modular development.

-73- 0



A well designed programming environment will promote the use of one V,"41%

nodule, perhaps with a few minor changes, for a variety of applications. This %

issue of reusability is borne of software engineering practice that claims it

to be a major contributer to productivity in the future of all programming.

Include Files. During compilation or pre-processing, some language

implementations will allow for the automatic insertion of designated program

or data files into indicated areas of a source program. Include files differ

from subroutine libraries in that a library contains previously compiled and

tested program segments, while a file to be included might be untested source

code or data.

Multi-Robot Programing. Coordinating the control of more than one

manipulator on a given task is an extremely difficult problem. Complications

arise from the extra degrees of freedom present, timing constraints, and the

need to (perhaps) apply forces upon another manipulator through simultaneous

contact with the same rigid body. Motion siulation of multiple robots is

currently possible, but more complex models incorporating forces and sensors

will be needed to simulate intricate assembly tasks.

Runtime Debugging. A program under development is eventually executed on -
the controller, in as realistic a fashion as feasible. This is where the

remaining semantic and process synchronization errors are discovered after the .

syntactically correct program has been downloaded. Tools are available to

assist the programmer in tracing, breaking or otherwise monitoring the program

execution. Depending on the level of language actually executed at the con-

troller, i.e., man- or machine-readable, the program may be modified with a

runtime editor.

The controller may show the program statement currently being executed on

its display screen. This is tracing, and is only useful after significant

off-line program development.

Another runtime debugging technique, called single stepping, enables the

- execution of a single program step, followed by a pause. Using this, the

robot may be slowly stepped through its motions.

Breaking is similar to the mechanism of tracing, but considerably more

powerful. At desirable points during a run with the robot, program execution

may be temporarily suspended. At this time, the on-line programmer has the

-74 -

.-,, -. .,. -= . --% .. -- ,,- ,,-.. . . -.- ,,-,, -,. ,,. ,,, . . .,. , ,.,,. .o. ., .. . . .. . . -. . . ,. ,. ,, ., V% % - ,. ,-V ",%



option of examining the values of variables, the system's registers and ports, dill

and perhaps overriding some program commands. After doing so, the suspended

program nay be resumed. This is the most sophisticated debugging technique

available to the programmer, and has utility only during execution. Although

this technique is used within the operating environment, it is provided by the

language implementation.

Depending upon the level of the language implemented on a controller, a

runtime editor may be used to make minor program modifications. As the con-

troller is not designed for difficult program development, very few tools will

be available at this stage of testing.

System Access. If a robot program requires access to hardware or soft-

ware resources beyond those explicitly provided by elements of the language,

the program requests the assistance of the system monitor program. This

monitor is often referred to as the operating system or supervisor, and is

present to some degree on virtually every computer or sophisticated

controller. Access to the system monitor is especially important to programs

embedded in a workcell controller, which is orchestrating the communication

and control of multiple robots, devices, and sensors.

3.2.7 Language Feature Layer .

Much of the literature focuses on the features of different robot pro-

gramming languages (Figure 12). We have argued that the features are the

innermost layer of the programming system, and that they must be put into

perspective if an evaluation of the features is to be used as a measure of a

programming language. Simply listing the features available in a language

does not tell one much about the language, unless these can be used to make S

conclusions concerning the operating and programming environments, the lan-

guage capabilities, and the potential applications. In this section the

features of a robot programming language are defined. Many of these features

are common to conventional computer languages, and some are unique to robot •

programming.

• .% k

-75- S



Kr. IV7U 1 -I~ u -W X L - W -- l1.-_ ,I- n L

ob-t

Progrmmin

ImDecearatitnsn

and Variables

-Operators
- Control Structure -
- Sub-.Programs

- I nput/Output
Y. - Motion

- Tool

F igure 12. Feature layer entities. (Source: I ITR 1).%

-76-

®r."

4'*.... M ~ A-



TW-C- 
-- - .I F S

3.2.7.1 Declarations and Variables

Variable Type. All of the variables used in a program have an explicitly -6
stated data type if specified in a declaration, otherwise they have an impli- -

citly assigned type depending on the name or usage. The lack of a full corn-

plement of variable types can severely restrict any language.

Variable. A variable is an identifier or name, which may or may not be

established in a declaration. If it is, the scope of the variable extends

over the program segment in which it is declared. A variable can be given a

value explicitly through an assignment statement, or implicitly via parameter

passing. Variables have common use throughout all programming. A variable is

usually restricted to take on only certain data types or ranges of values, as
specified in the declaration. Failure to meet those restrictions may cause *

exceptions.

Identifier. This is usually defined as a string of characters beginning
with a letter which is used for everything from key words denoting syntactic

structure to variables and constants. Associated with the latter two is the

notion of scope. Systemwide names such as $clock-time or %io-status may exist

in some implementations in order to act as identifiers outside the realm of

the robot language syntax, for the purpose of referring to precise locations

in the controller's memory.

Label. Program statements can sometimes be labelled or tagged, for

direct reference. In FORTRAN and BASIC, the labels are integers, while in

0most structured languages they have the format of identifiers. A labelled

statement can have control given to it using a control structure such as a

"GOTO." 0

Constant. A constant is like a variable in most ways, except that its

value is established before program execution, and it may not be changed

during the execution. The use of a constant name is synonomous with using its

value instead.

Declaration. User defined data types, variables, external program

modules, subprograms, and labels are specified by name in declaration state- , Ne

ments within a program module. They usually preceed the use of the name being

declared, and are examined by the compiler prior to the actual execution of

the robot program.

-77- 0

. ,d, , , , , t. q . . , . . . . . . S . . , ~ . . . . . . , . . . . . . . . .*, . .- - . -. . . . S. 5 .~ S *. . ..: .. -



SScope. All names used in a program, whether they appear in a declara-

lj tion statement or not, have defined limits of visibility to portions of the

program. This scope determines what meaning is attributed to the name when it ..
is encountered during execution. Static scoping rules are used by a compiler '

to set up the association between a name and a meaning before execution, while

dynamic scoping rules are used by an interpreter and defer the association

until needed. Static scoping tends to create optimizable and more reliable .

execution.
Assignment. During program execution, a variable is given (bound to) a

value by an assignment statement. This process may be likened to an operator
that evaluates the meaning of the right hand operand(s) and stores it in

association with the name of the left hand operand.

3).2.7.2 Data types
Elementary Data Tpe. This is the most primitive type of data represent-

able in a computer language. It includes arithmetic types (such as integers,
reals, complex, double precision, binary), Boolean types (such as true and

false), and character types (such as ASCII and character string types).rao

Structuredl Data Type. An aggregate composed of elementary data types or .
other structured data types, which can be manipulated or accessed as a whole

or in part. Common examples in conventional languages are records, lists, and.

arrays. Common to robot languages are frames, matrices, and vectors. These
are actually arrays which have special meaning in the robot language.

Geometric Data Type. An instance of a structured data type which is s

important in robotics, geometric data types specify points, lines, planes,

curves, and surfaces These are needed for referencing part features such as

holes•.'-

Array. Arrays are a useful way to aggregate information so that it can ..
be accessed by numerical indices A common use of an array is to represent a
transformtu ata t e comption of one coordinate frame from or

another. They are also heavily used for two- and three-dimensional maps of an

image. A number of elementary data types should be supportable in an array.

78

imotnLi ooicgoeti aa ye peiypins ies lns



Vector. A linear array of numbers, often handled as a matrix, vectors

may be used to represent the manipulator's joint angles, Cartesian

coordinates, gripper approach information, forces, velocities, etc. There are

special vector operations, such as dot product and cross product, which are

useful in robotic programming.

Frame. This may be thought of as a specification of a manipulator, tool

or object position in space relative to a known origin. The entries of a

frame may be given values in response to sensor inputs, initialization, joint

encoder readings or calculations based on other frames of reference.

Matrix. This is a rectangular array of numbers. The numbers are called

entries, and in robotics they represent positional, orientational and per-

spective information. There are defined matrix operations, only a few of

which find frequent use in robotics. Vectors can be conveniently represented
S

as n x 1 matrices and as such, matrix operations are defined for them as well.

Coordinate System. This is a frame of reference for descriptions of

vectors and angles. There are a variety, each having utility to different

applications. Common 3D orthogonal ones include Cartesian, cylindrical, and

spherical. The specification of orientation can be done with an non-

orthogonal system based on three Euler angles or upon roll, pitch, and yaw

angles of rotation. There are some standard interpretations for the Cartesian

coordinate system - right-handed and left-handed. The right-handed is more

tA frequently used, and can be remembered with the observation that a screw

pointed in the positive direction along the Z-axis would be advanced if the

positive X-axis is rotated 90 degress toward the positive Y-axis.

Joint Angle. This is an angle of revolution between two prismatic links,

joined at a common revolute axis. Joint angles are the positional information

in a servo level program.

Origin. In robotics, the origin of a coordinate frame is usually placed

conveniently with respect to some manipulator or object feature. For example,

the origin of the robot coordinate frame is often placed at the base, but the

origin of the coordinate frame for a part might be a protruding corner.

Position. Defines the location of a point in Cartesian or joint angle

space.

-79- •

. ......... '



3.2.7.3 Operators

Arithunetic Operators. These are functions which include addition, sub-

traction, multiplication, and so on. Also included in this list are trigono-

metric functions.

Boolean Operators. Boolean operators include NOT, AND, OR, and NOR.

Relational Operators. These yield Boolean values and include equal,

less, and greater than.

Transformation Matrix. This is a matrix representing the translation,

rotation, and scaling necessary to align one coordinate frame with another.

The matrix product of successive transformation matrices allows one to express

the position and orientation of a manipulator joint with respect to other

coordinate systems.

Frame Affixment. Frames are associated with objects in the robot work-

space. A powerful feature provided by some robot languages is to affix one
frame to another. When one frame is moved, the other is automatically

upda ted. Z
•t

3.2.7.4 Control Structures

Branching. The flow of control in a program is determined by a control

structure. Branching to other parts of a program may be done on certain

conditions using a structure like "IF condl THEN goto labell ELSE goto

label2". Unconditional branching is accomplished with a "goto" kind of state-

me n t.
Looping. Looping behavior can be created with conditional branching, or

with a higher level control structure such as "WHILE condl DO this and then

this ENDOFWHILE" A variation on this theme is "UNTIL condl DO "
." .

Iteration. Iteration over a set of entities may be performed with the
previously mentioned constructs, or with another such as "FOR each in this

set, DO this and then this."
, .

Multiple Arm Control. Industrial robot programs usually provide for the

control of only one manipulator. Coordinated motion between two armis has
application to sophisticated assembly tasks and cell control. Robot language S

so-



constructs to enable multiple arm control under a single program are typically ..

"COBEGIN-COEND" or something similar. For control of multiple arms under I

i - '  separate programs, the language extensions are harder to define and have yet

%'

to be developed. malsml

another. Its utility arises when a larger piece of detailed code can be-

i viewed as a template, with slots that are filled in according to the invoca-

tion. For example, if "Increment" is defined as a macro suitably, then the _eprogram statement "Increment eX might be expanded to X + 1." An obvious

use in robotics is palletizing, where the pattern of motion and control is ' '

identical for inserting parts throughout the pallet, but the location of each
part is different.

Subroutines. The activities a robot program must perform typically fall

into categories, such as motion, sensing, or transformation calculations.
Within each of these generic activities are specific actions to perform such
as move, rotate, change speed, and grab camera image. Because of the sheer ivc

quantity of activities and their differing nature, it is desirable to organize

rythem so that they may be programmed i epandedntly from one another. This is a

basic neccessity in all of programming, but particularly in a domain as varied.. -.and complex as robotics. These independent modules are often called subrou-

tines or procedures. Their liberal use is essential to effective robot
programming, but this language construct is not provided by all languages.

Nesting. Nesting is the enveloping of a program construct within another .,

construct. For example, a macro routine can be called from inside another-•

, macro. This is a basic capability of structured languages, and leads to"

better programs.

itParameters. A characteristic of structured, procedural and functional

language types, is the ability to pass selected information to and from aucsubroutine or macro. These data items are loosely referred to as parameters.bto n

Larger programs and any that intend to use a given subroutine for more ---han
one specific purpose need the language feature of parameter passing.

+ .5



-'-I - U. .- - -IF- -

3.2.7.6 Input/Output

Binary. Binary (single bit) input and output typically involves switch

closures or digital logic signals. This is used extensively for synchroniza-

tion. Language statements that read binary input are often tests for activa-

tion such as "if porti is on, then goto label2."

Analog. Analog input and output are voltage signals that allow the robot

to read sensors and provide controlling output. A force sensor is an analog -

input. Sometimes specific language constructs are developed to use analog

I/0; such is the case with compliance. Otherwise, conditionals are used: "if

port1 is less than 5, then goto."

Vision. Obviously important in robotics, special language statements for

incorporating vision sensors have been established in robot languages. This

is because a vision system normally has its own computer for image processing,

and the robot system is concerned only with the results of this computation.

Commands such as "adjust," based on vision input, are commonplace.

Compliance. Due to either the nature of the task or to the range of part

tolerances, a robot joint may require flexibility in order for the manipulator

i to successfully complete a task. This lack of stiffness may be built in as

with mechanically compliant wrists, or it may be achieved using force, proxi-

mity, or vision sensors in a feedback loop. The "peg in hole" task is a

common example of the necessity of robots to perform a task while complying

with external constraints (maximum allowable force). Compliance requires

continuous motion control in response to continuous sensor feedback. For this

reason, it is sometimes referred to as "force servoing" or "vision servoing."

Guarded Motion. A guarded move can be thought of as a motion sequence

which terminates on condition that an external force is sensed. Some lan-

v guages provide constructs such as "move until" to perform this function.

Timers. Various hardware timers are accessible from robot program state-

ments of the form "delay 10," "startat 1:05:15." These are necessary for

coordinated control of motion, fixtures, and sensors. 4'

Wait. A wait statement continually looks for the occurrence of a desired .

event, and when (if) it happens, an action is taken. This involves polling of

the sensor input, where it is periodically scanned along with other inputs.

82- ,

Ntz -"eI5ze '



.. .,

Text I/O. Communication between the user and the controller running the

language requires some passage of textual data in the form of commands, status

messages, error messages, etc. A robot language needs minimally a construct N

such as "DISPLAY" or "PRINT," and "READ." -

File I/O. Depending on the hardware running the robot program, various .

file system capabilities will be available. A good language will be able to

make thorough use of these, for purposes of keeping error logs, or accessing

information about a part or process. If the controller is on a network, the

files may be stored on another hardware device and referenced from the

controller using a file transfer protocol. o

3.2.7.7 Motion

Move. Robot languages have been primarily designed to achieve physical

manipulation of objects. These actions are typically performed by the execu-

tion of primitive motion commands such as "move," "grasp," and "stop" with
parameters specifying speeds, acceleration, forces, etc. The extent to which

a programmer has control over various move parameters depends upon the lan-

guage used.

Path. This is the geometric path followed in a move command. Some

languages allow paths to be specified in more than one coordinate system.

Also, some allow paths to be specified as straight line, circular, or along

some other geometric curve.

3.2.7.8 Tool Statements

Effector Command. The end-effector is commonly referred to as the

"gripper." Commands issued to the gripper include "grasp," "close with force

3," and "open 6," and are usually expressed in the gripper coordinate frame.

Tool Comand. This is the specification of a move relative to the

gripper-held tool frame of reference. "DRILL FORWARD 3," for example, might

cause a relative motion along the axis of the drill bit, regardless of the S

orientation of the robot arm. A tool is held by a gripper, and as such it has

its own set of operations specific to the tool function. The operation of a K

tool is accomplished through programmed procedures, which send data out on I/O

ports and up to the tool or to the tool controller. The tip of a tool held by

a gripper is frequently used as a reference for the positioning of a robot.
Na

-83- _

- .- .- . j ." _,: ..." - ,'.'.., W, ,',,.,r: .Z, ,:..^:., .. , ,o, , ,.' ,.:,-,'-,, a.



3.2.8 Relationship Among Layers in the Programming System

The robot programming system has now been developed to at least a first

order level of detail. The entities in each layer have been identified, and %.be

some relationships between layers mentioned. Basically, if an entity in an
outer layer is considered important, it establishes requirements for entities v ,

in one or more of the layers beneath. Ultimately, some language feature(s)

must be present in order to support it. It is only within the context of the

overall robot programming system that the true value of a programming language

can be measured.

A conceptual representation of how the layers of the robot programming

system interact is shown in Table 4. Across the top of the figure are the,0

entities in the application layer. Along the side are the entities in layers

below. The X's indicate entities which are related to support of the applica- .-

tion entity.

A proper approach to establishing the relationships between layers would

be to develop a formal data model for the robot programming system. Several

formal data modeling techniques exist. The IDEF methodology, for example, was

developed by the Air Force and has had widespread use throughout the aerospace

industry. Such a model would be extremely valuable for evaluating existing

languages and for establishing requirements for next generation languages.

W4ith such a model, one could establish the language features required due to

various constraints in the different layers. The model would provide a struc-

tured analytical framework for use by both users and vendors of robotic soft-

ware. Having at least conceptually established this framework, we can now

properly discuss language comparisons published in the literature.

3.3 COMPARISONS IN THE LITERATURE

There are several good comparisons of robot languages in the literature,

but they normally focus on only one element of the programming system. Ahmad S

(17) compares AM*L, RCCL, AL, VAL, and SRIL-90 (see Table 5). %lost of his

comparison is based on language features, but the last few lines of the table
are concerned with other layers. Structured language (language implementation

layer), operating system (operating environment), and debugging and immediate

operations (programming environment) are also mentioned. Z'

-84- 0



~.9-

TABLE 4. IMPACT OF APPLICATION LAYER ON THE ROBOT PROGRAMM ING SYSTEM

Application Layer

World Decision
Sensing Modeling Motion Making Communication

Flexibility x x x x x
Usability x x x x x
Extensibility x A x A A
Upward Compatability x x x
Portability x x x

Capabilities Reliability A x x x
Correctness x x A

Maintainability x x x x x -
Efficiency a x x
Decision Making x x x
Sensor Support x x x

Techniques x x x x x
Experience x x x x x
Edi tor x x x x x

Programming Off-Line Debugging x x x x x
Environment Simulation A x x x x

r CAD Database x x x
Documentation A x x x x

Execution Sequence

Concurrent Eecution x x x x
Multi-Tasking x A x x
Parallel Processing X x x x x %

Operating Process Synchronization x x x x X
Environment Interrupts x x x

Networking x
Exception Handling x x x x
Error Log x x A xDiagnostics

Peripheral Support x
Overrides x x

Language Type x x x x x
Translator x x A A x
Interpreter x x x x .

Language Modular Development x x x
Implementation Include Files x x x x

.. Multi-robot Programming x x
Runtime Debugging x A x x x
System Access x x

Variables x x x x x

Data Types
* Geometric Data x x x

% Array x x x
* Vector x x x
* Frame x x x
Matrix x x x

. Coordinate System x x x

. Joint Angle x x x
* Origin x x A .
* Position x x x
Opera tors
. Arithmetic x x
. Boolean x x x
* Transformation Matrix x x x

Language . Frame Affixment x x A
Fea ture s

w, Control Structures x x x x x
Sub-Programs x x x x x

fJ Input/Output
. Binary 1I/ x x
Analog 1/0 x x

. Vision x x x
Sompliance x x x

. Guarded Motion x x x x
,Timers x x x
.Wait x x x X
. Text I/O x
. File I/0 x

Motion Statements x x x x A
Tool Statements x x x x x

Source: lIT Research Institute

N I

- 85

_ SWV .%......,-* > ? .. '-.. * . / ... . ,.. ...........- ** ..- . ..- - .



TABLE 5. OMPARISON OF THE LANGUAGES

Language AML RCCL AL VAL SRIL-90

ORIGIN IBM PURDUE STANFORD UNIMATION IMPERIAL

COMPUTER IBM VAXlI/780 PDP 11 LSI 11 68000
U

Serlesl Supermini mini micro micro

mIni

ROBOTS RSI PUMA/STANFORD PUMA/STANFORD PUMA IMPERIAL

JOINT MOTION Yes Yes Yes Yes Yes

AF4 CONFIGURATION - Yes Yes Yes Yes

CARTESIAN MOTION Yes Yes Yes Yes Yes

TRANSFORMS Yes Yes Yes Yes No

MOVING FRAMES - Yes Yes No No

TOOL CHANGE - Yes No No Yes

FUNCTIONAL MOTION - Yes - No limited

VISION Yes Yes Yes Yes Yes %

FORCE FEEDBACK None Yes Yes No user defined

COMPLIANCE user Yes Yes No user defined

defined compliance

compliance

TOUCH SENSOR (force/ - - -

switch)

OUTPUT CONTROL Yes Yes Yes Yes Yes

COMPILED Yes Yes - A

. INTERPRETED Yes - Yes Yes

DATA STRUCTURE Any Any .,iy Integer Integer
& transforms

STRUCTURED

LANGUAGE Yes Yes Yes No Yes

OPERATING SYSTEM AML-IBM UNIX DEC VAL STROS

DEBUGGING Yes Yes edit-time Yes Yes

1,4 .1 IMMEDIATE

OPERATIONS Yes Yes Yes Yes Yes

WORLD MODEL Yes Yes Yes

Source: Ahmad, Shaheen, "Robot Level Programming Languages and the SRIL-90 Language,"

Compsac 84 Conference Proceedings, Nov. 7-9, 1984.

-86 -

A-.e



-01193 7%6 HIONER ORDER LINGURGES FOR RODOTSMU NAWUACTURINO 2/2
TECHNOLOGY INNORNATION ANALYSIS CENTER CHICAGO IL
J R BLANA ET AL. OCT 86 NTIAC-SORR-96-01

UNCLRSSFIE D D84-C-IS F/O 12/3 L

Esoon mhhh



L2.

111111-6

_IIL5 UW* 111.6

MICROCOPY RESOLUTION TEST CH-ARI
lpf 'h NnARVI IP*l

Ir e V

% %
% % % %

%N



% °

Bonner and Shin (5) present a detailed comparison of fourteen languages

based on language features (Table 6). They further compared them by develop-

ing a sample program using the different languages. Their intent was to

derive some measure of programmability. By performing the excercise, they

actually identified entities at several layers which impacted the

programmability (Table 7). These were: understandability, flexibility, and

eAtensibillity (language capabilities); compute power (operating environment);

range of users or experience (programming environment); language structure;

and variables and sensing (feature layer). Their analysis, then, at least

hints that a comparison of languages based on language features alone is

somewhat inadequate. Gruver, Soroka, Craig, and Turner (30) conduct a compar-

ison which significantly begins to branch into other layers of the robot

programming system. They compare eight languages (AL, AML, HELP, JARS, MCL,

RAIL, RPL, and VAL) and break the comparison down into twelve categories:

Language Modalities (Programming Environment)
Language Type (Language Implementation)
Geometric Data Types (Language Features)
Display and Specification of Rotations (Language Features)
Ability to Control Multiple Arms (Language Features)
Control Structures (Language Features)
Control Modes (Language Features)
Motion Types (Language Features)
Signal Lines (Operating Environment)
Successful Sensor Interfaces (Language Features)
Support Modules (Programming Environment)
Debugging Features (Programming Environment)

Yong, Gleave, Green, and Bonney (6) provide a comparison of various

programming environments (Table 8). Although they refer to this as a com-

parison of programming systems, it is, by the definitions used in this paper,

a comparison of only a portion of the entire programming system.

Booze, Allen, and Hamilton (31) did a study to define the characteristics

of a good robot programming system. One result of the study was a list of

quality attributes affecting the life cycle cost of a robot program (Table 9).

Since quality is a measure of the overall "goodness" of the language, it

should not be surprising that the quality attributes are almost identical to

what we have defined to be language capabilities. Another result of this

-87- 0

, , . " , . ,. , . ..V. . .. . . ,-.



1%

0C C0 L -
C ILcN

a~ 1. S .-

- aC N00 3U 0 -3 SLIU a,- a

~'.0*
0 vL aC

CS 5e N ; 0 6 LC- On 1

CL 00 CL a v cc A. M

LO c C

C* . 3 I D

1- 0 .N g

c 0 0 I - -0I'

.C- IS s

7; 1 0 SC C C C

01

NOL- fla I SO..g

-- OC; > O

u. c S ce e CC

.- 0 - c0 L *

A0 a C0 0- C

-- 0

P. - C It 0-

IA a -d M5. r

4 1*1

a. C Ca
0.0 ; 5- P.

CaS -.

v C .07 CC 2 ELC S

aS .. 88

LI. aN



V.0

40%

0 -0

0-~~~ 000-

a u 0c 40 C 00.4U
41.-0 1.0U C 04.4 0 .

, 00 Cu 0- u 100 vI,03 -

a c-4 ac 30)1 v ct41V1 a 11C

1 00I

-" 0S-V 0 C C

f 2

10 0 1 02 0
-~ v -0 a *' 0Q---

0 0 o o oo-. v. a a

c I 0

IA Iv0. ; .; , 0~4
0 c -- lo

00~~ ~~ 0O z4 0.0 C v44 -. ~-
I~~~ 4- .4 C0- ~ 44

c IC

co e cv..

B0 0-a 4

-I -

c .11- .. 004 - 06

.CO CL M 1 0

0 04-- *89



*w .cc ,. -p

4. 4. 0--%

4. ~ ~ C 1 C N f

a~C 0 tct v 9N

o Cc

cu . c. 04e.

-a V

00

* (N .1

- 19. -c .

90



b4I
-. n N -n V 6% V NL 4

II'

%0 (14 N 1 N % qw N VN on~

WN.

- No

N . - W) C14 v.

00

-0 NU :I- Nin N 4 Nn N - - -

0

CID I' L I

LA IC' Fn. Fn N - N N on N

v, 4

I- 0

C 0 a
N NT -W CN Pa N4 N -L

CLC

0, %n '

-C N rU e N Ce N

onn

x%
4 - L %

4- -0 0 0 C . U

C 4- 0o4; >- 4- 00 01, 0 >
0 0 C U 4 C s

0C c x. m -0 0 LI

0~ :;
4- 4- 3 0 '. B 0

Z - 0 a 0 L - 0 L a A n 0 4 V )

-91 -0



0
p4-. 4-

4- C . L 0
4-C O.mc 2

Cu~-.L *C4 L CL-
f- ; 2 f 0C 4- O

ie -- U = 0 ~ a 0 

-0. -0- 0 o U C 4- o-C . m ~0 - 2 0.CO 4- 0 0 0 C
(A L ID C0- O L C1 0 C-32 0

-0 c - ML.4-20 = CL- L 0
4- *- 0 L0XC - C C- 4- 0 EC 0 4- -

to 4 C 4- - 0-0 2 0 4-L
C C- C 0CX-00 -L 0 -c* L

46 90 0. -.0L
S4 S ~ E 4- 'A,. 0. 4- 0 C

C .C n 0 tC 4- ! +0g

a (J-O ul - 0-L 0 L I
0 L0 01C L 04V 2 =0. =0O

-CI ... 6 4- L. I2~ n 0 0 - C 2 -04 0 -
4- 00 -- an-. =X .44- 4.0

- CO Ad LL 4- leCV I C o - L 4- 0 C-
L 1D. 0 04- 3 C C1 10 = 0+-1. -_E MCC I. t-

L- 4_ -4 +.C 0I2nL0 2- CD X 00C L- 04-- 0. - 4- Mo 810 I
2 Lt. COO 7 O 11 S- .C X L-0. L - . S - - C O

4--0 &0 Q s- L- 4
Cx 0C4- tO IA CL-0 L 0U j, LV.
0 0- s in L 4~I C 0 4-( L.

2 0 OUL SIA 2 04- L-j C2 a4Sa0
o v4 OL C 0 C -Z *4 4U cUC04- 4L + C 4C C c~
L CO CC4- J,~ C Z I 00L 0 COV 0 Cs 0 a-..

IA C L ~ I j O 0 0 )0 40 a) CU710 0-
4- In~- C 4 -U- C-0a ~ 0 2u- 0 = I 1 0U. -ON z OL C 1 .-~~~~~~~a 0 w- L- - ~ O EO C O . 0 z 4

- > CL.- En V - - C E )- 4>L U
0t CC SOC-I -0. C C- L m 1C0)

4-L L .- y2L c c CO C C.S
Qt 00C0 0 -; 4 ,=; 2-- - .CC

+x .L1.UL C C - v0F2DF -t0
-C- 0J 0 0I f0 0 0 -0.Z- =L E c-0cV0 C0-

06 C6 C O 0 -O L L CL C cL L C C- 0 4-
0 . =z. 0 4- 4-. 0(Ms . 04 0C -O "- L 4 0C 4- -

C L 0 * (A2 4- C +- 0- 4- -L
1. .0 0 1-C* CL 4- *a L4- -c I cg

4.-Ct0 L-S L 0 c u- X -CL +- C +- CO 0 w
3- LL-O V0 CC 0- me -0 0 &C-C9a C c 2.1 -0. n0 C . - 0 1U4 VI-c a L L.0 -l Ia-.~ 4)

L-0 O - 2 73 f 18 .0a 18u4- 0
c CC

CL A U4Co-LM- -; 06 - - 4->
L- U0 06l 0'2 

0 -(LN E. L j C0' 0 3!! 8n' u5 0 C

F. 0 0i
4 - C O'O C 4-4 4-; C

- I-

100 c0 - -

IU
3

064 0 CLC

200
4- -

L. 0. t V - 0 L 0
C4-0.O~.5 0: t

0 uC 0) S. L00L - 2C0 O
C ~~~ ~ 4-C O 0--

-L- In 00- V O 0 IV n 0 .
C2 C 2~0 20 C c 0 0 4

C 0- aC L to2 La 00 IC4 0 a C- > -
4-0 0A LO Cn 4- 0 0 C.U I 0 1 C 0

L. +-~ 0 4- 7 ) nu b
04- 00 -C el L .

-C I L CC 0 0 4 -  0 104-
0 L IL 0 Im0 LI o0 cOu

an CE 0 4-0 L4 -- CF. 04 lea V C
o c a L.C 4- -0 CC'

SIM-4- - -8 LC C. 10 C mI 4-0 0 L- L
z L 0040 >4- CO0 O.C .CLI 0 . !O0 019 to

V)U 4 C0. 0 4- f-L 0+- LC 0 ) V0 00 7; =- 02z4- 0 L-
W x 0 in C 00.L 4-04- 00 t-- 2 C - 4- Z 2L OO0L. C

4- C + 0 4 LMI 0 a)+- 00 0
L 2. (DL4- ZL - 4- 'A 0 2 O CO .

M4-4- CC 2 %~ (A +O- L- 8 L--C0 C ~
c-.C 0 OCL C- U(a

4- C 40. C n L C O 0 w 000 C- 00 4- C C-
OL 3c4-0 4- 0 - OCE0 m -- 00 4L V O4- L0M t-

c0 o 4- a~ C4 -00 0 C 4- c 003- X
- 0 0 I L 0 0 0

in L 4- '0L - 0 E) i 0 O X 0-
0. 0- 0 'A. 854- CC2 - 0 L 03 >C.

- ML > C8m8 LL 0 =- C 4- 0 C C4 - C o
'0O OC I- 4- LL. -L X' L 0- 4-----L 0 Cq

04-~0- 0. 4-04-3 - C . +. + C -. - OC4-4

4- 4-3 2 C C CO 'S L ' .-OO m0 ~ 0I tL 0 L C .
-. 'A' 0 L- m C 7VO -= LC u 00 0- EL 0 0.00 0

. 0- 
04- 

0 
00 4- -. 2 .u0l 0 0 ~ ~ 3 0

C- 2 9 Cn - C, OLs ( 3 0 CO-4- L CC0~-0 C 3 - C -
OC4.000 O) .XIAV *O 4- 004 M--. C L 4

*--UI L ) - U L3 - C- C4 >0 LL 0 - - 3 ~ 0
04-- -0 2 4-C rU 04-- ~ 0 CC ACn - -C b, 0

o~ o 4 C " - 0 CI_ 0 2. .0 4-4- O4L. . . ..0 f

-) 2 0 C 4 - 0 4 0 2 2 - p ! - IN - Ia 4 go0 3 . 0 - - Lv 4 E
L - L C - i n-0- +0 - 4 4E. ) - C 0 L L C O E-U L L ~

4-- c' 0 0 L 003=ol = '

An'00 0 L2- C- ~: I 04 IA

UC~ 4-CM C- - -2 .N IA V) - ~ - - - ' L-
J13-~~0C0 -NV 0.'0 - =00 0 *-Vi U0 50~ = I0~ V I 0 4>01" 0

4- 3 C 4- ul J4 3 0C

-92 4-4

-w~~~~ > 2 c..........** VJ



I, -P 7

,* .%%, .

w .% C 'ix

< 4 -

..IA(; ,., o - - - -... , -.I

-

*t

L) z
00

LC

4-S.I& +- =.C
6 0

8~~~ *2 4- 'aS.

U + 0
04 _4-0 4

C 6 C X 0
L) x

o .*

-938-



w x xx x x x 0
4--

L~ I-
L U

(A -C x
c c
go0

L-

2L- L

4c 0 0 0 0 0 I-

+- 0

U C6*

0 -J 0
LLIU

4- 4-

z uj Ci op
ui 40~X 10 06V . . A~*.' ~ ~ d ' 4- . ~ ~ .



study was an identification of user requirements for robot languages (Table

10). A review of this list shows that these requirements reside in various -.

layers of the robot programming system, which we have defined. i n d

The study that comes closest to comparing the entire robot programming

system was done by Collins, Palmer, and Rathmill (32) at Cranfield in England.

They attempted to establish a benchmark for assembly. This involved develop-

ing an application, programming it, and then executing it on six different

robots. From this test they concluded what types of entities are desirable to

support assembly applications (Table 11). More importantly, the difficulty in

the comparison became evident. A test of a robot programming system

necessarily involves a test of the robot hardware. The language, programming

environment, and operating environment, cannot be considered in isolation from

one another other. The authors put it rather sucrintly:

Being intentionally limited to Cartesian motions in X,Y,Z, and .-

rotation around the Z-axis, the benchmark clearly tests the
Olivetti Sigma robot more comprehensively than, say, the PUMA
or IBM RS2. There is therefore an implicit problem of some
importance in this direction, since benchmarks requiring more
complex manipulator motions would leave a significant propor-
tion of assembly robots unable to participate in the
comparison.... It would be valuable to see some work carried
out, preferably using a suitable benchmark, which compares the
performance of a robot programming language, such as LM or A4L,
when used in conjunction with a representative range of manipu-
l ators.

3.4 CAPABILITY COMPARISON OF SELECTED LANGUAGES

A comparison of languages based on language features can easily be done "

by referring to language manuals. From these, one can determine what features

are supported in each language. A comparison of programming and operating

environments is somewhat dependent on the actual implementation. For example,

is a CAD/Graphics system available for simulation? What type of subroutine

libraries is available? What type of robot arm is being used? The difficul- .

ties in this regard have been illustrated by Collins, et al. What is lacking

in the literature is a comparison of languages based on their overall capabil-

ities. We have attempted here to do such a comparison of some current lan-

guages. This subjective comparison is based on a study of the programming

manuals and/or published material. Reference is made to specific language

features as necessary to support a capability.

- 95- _
• -U _.



- -- - .'s . . . . . . . . . . - . .. .

TABLE 10. USER REQUIREMENTS LIST FOR ROBOTICS LANGUNES

* ON-LINE EDITING LOCAL AREA NETWORK

INTERFACE ,v

* ON-LINE TEACHING * USER-DEFINED MACROS, e

SUBROUT I NES

' INTERACTIVE CAPABILITIES MONITORING OF ONGOING .

PROCESSES "" -_.

- GRAPHIC PRESENTATION OF DATA * SIMULATION CAPABILITY -.

* TRACING OR SEARCHING * FAULT TRACES AND EASE l

OF DEBUGGING

* MULTIPLE ROBOT * DATA CODE STANDARDS

PROGRAMMING

* MODELS OF PARTS GEOMETRY * CONCISE PROBLEM .J%.

FORMULAT ION

* HIERARCHICAL/STRUCTURED * CONVERSATIONAL/ "

CODE INTERACTIVE '" '%

* ENGINEERING FAULT * ADAPTABLE TO INDUSTRY

ISOLATION JARGON -..

* FAILURE RECOVER " SENSORY INTERACTION

SELECTABLE -.

* OPERATOR INTERVENTION * SEPARATION BETWEEN SENSORY

ANALYSIS AND CONTROL

* MACROS WITH ROUTINE * SIMPLE GENERATIVE PLANNING

PARAMETERS

* ADAPTABLE TO STRUCTURED " FAST SERVO ALGORITHMS

TECHNIQUES FOR END-EFFECTORS WITH
COMPLEX DYNAMICS

* INTERFACE WITH DBMS/CADAM SUPPORT OF MATERIAL

AND CLDATA FILES FLOWS TO/FROM THE ROBOT S

WORK AREA

' DATA AND INPUT TEXT * ACCURACY IN WORD SIZE TO

PARSING AND EDITING .001 INCH

* COLLISION AVOIDANCE • MULTITHREADING FOR CRITICAL

PROCESSING TASKS S

* ASYNCHRONOUS ROUTINES * EASE OF UTILIZING NEW

DRIVEN BY EXTERNAL OR APPLICATIONS

INTERNAL EVENTS

. IMPROVED VISION/SENSOR DATA ' PORTABILITY

* MODEL SPATIAL RELATIONSHIPS * INCREASED FLEXIBILITY IN

*, DEFINING CYCLE LOGIC

Source: McDonnell Douglas
-96- '""'

r or

~ V.f ~ / ~ I.gi 4 **-~ ~ ' ~~ ~ -*I ** ** *%:



4- -L

04- 'A

- 4- - 0 1

0 0
E4- 0 m u .

U4 0 CO000 n

6 0 x L- u i 0ut
- 4- cn 0 Uo

4 C 0 C. 3-C
u L- 0 C 

0 0 LU C - -

0 0
C CL

0 - - 04

CLC
2 o

0 0C a
c 004 - CO.0 10

CC 2 0 0

*i -- - 0 IA-

01 mU > a L (mgi 0 C

( 4 L- 0 - 1 0 -
V- Uj 0- - L CLU -

* 04-a - .

uivtn-".w0.0.0%
*> M .0 * a *

C'. 0 0

4- -

-. t C 0 J*-
+a- o 0

LI C 0 -L

-0 C n

0L 04 in
I 04

0VU
4-C 04

LL 0V)i

O*. 0C C

-.L-.Q



3.4.1 VAL and VAL 11

VAL is a manipulator level language, having a BASIC-like structure,

designed fo.- Unimation robots. The PUMA manipulator is connected to the VAL

monitor, an LSI-11, which runs its own operating system containing an editor,

file manager, and user interface. The design intent of VAL was to allow an

operator to define "tasks" as a series of moves and gripper actuations.

VAL was originally designed by Bruce Schimano as the VicArm Language, as

it was to be used to control the VicArm created by Victor Scheinman. When

VicArm became the West Coast Division of Unimation in 1977, a contract was

initiated with GM resulting in a prototype for the PUMA robot in 1978, to be or

principally developed by Scheinman and Brian Carlisle. The language was

changed to Versatile Assembly Language by Unimation. Today, VAL continues to ,.,a.?

lead the industrial market in the number of installations. 'c,.

A VAL program consists of two parts. The motion sequencing portion can be
developed off-line, as a collection of subroutines corresponding to movements.

This part is devoid of actual coordinate and speed details. The detailed

Cartesian coordinates specifying where the endpoints of a move are located and

the speeds involved in the trajectory are provided through an on-line teach

session, which fulfills the second portion. This is done by stepping through .

the program in a combined teach/manual mode, jogging the manipulator to the

physical points referenced by the program and then copying in the actual

Cartesian coordinates and speeds to the program memory.

FLEXIBILITY. The VAL language is heavily motion-oriented, yet provides

some of the power of BASIC programming. Subroutines are supported, without

parameters, and the coordinate system can be designated right- or left-handed. 0

It supports frames, joint angles and transformations, but lacks iteration,

conditional, and block structures.

EXTENSIBILITY. A major revision, VAL II, has been released and offers

considerably more flexibility in motion control, with bias forces, guarded

moves, real-time trajectory updating, watchdog monitors over sensors, and tool

frames.

RELIABILITY and CORRECTNESS. The use of the teach mode togetner with a

textual program helps take the guesswork out of the first few runtime

debugging sessions. However, exception handling mechanisms are not a feature

-98- •

Z~• t.



of VAL, so runtime failures may be a problem. The lack of sophisticated
conditional branching makes explicit error handling difficult. I-S

MAINTAINABILITY. Since the motion sequencing is kept separate from the

location and trajectory data, VAL programs are somewhat reusable. By teaching

a different set of points, the same generic motion sequence program may be '"A'
used to handle differing parts. M

EFFICIENCY. The original VAL was an interpreted implementation using C

and assembly code on an LSI-I1. VAL II, however, is much faster and allows

for multiprocessing.

3.4.2 RAILV

Designed by Automatix Incorporated, RAIL was intended to supply a flexi-
ble interface between manipulators and vision systems. The approach taken was

to create an integrated environment with the strongest hardware available.

The result was the AI 32 controller using a Motorola 68000, running an operat-

ing system interfacing RAIL programs, robot control software, and image

processing software.

The programming environment can be off- or on-line, with a fair amount of "

tools provided within the operating system. An editor, file system,

serial/parallel communication, and multiprocessing are supported. A RAIL

program is a procedural program which is translated into an intermediate code 1A

before actual execution by the interpreter. The translation is transparent to

the programmer; it is not a separate development stage. RAIL source programs

have the structure of PASCAL, with a good complement of control and condi- .r,

tional constructs. A sophisticated pendant, called the Interactive Command I

lodule (ICM), can jog the robot in joint, world or tool coordinates. It also

can define locations and frames, paths, speeds and serves as a simple editor.

(34)

FLEXIBILITY. RAIL is quite flexible, having a number of general purpose
PASCAL-like constructs in addition to motion, image processing, math, and I/O

commands. There is good support of regular and geometric data types such as

frames, paths and transformations.

-99- 0



EXTENSIBILITY. The integrated nature of the operating system should

enable RAIL to extend as new sensor technology becomes available.
1S

RELIABILITY and CORRECTNESS. The translation stage catches syntactic

errors before execution and the early stages in program development are

enhanced by the "teach-by-showing" vision method, analogous to teach pendant

programming.

MAINTAINABILITY. The PASCAL-like syntax is rather self-documenting.

Modular development also enhances its maintainability. L

USABILITY. The integrated approach taken in design is responsible for

the success of the RAIL language in applications requiring heavy sensor

support. The system has found acceptance in welding, inspection, and

assembly.

3.4.3 KAREL 0L

KAREL is a manipulator level language consisting of a translator and an

interpreter, written by GMF Robotics for their line of controllers. A KAREL

source program resembles a PASCAL or MODULA program in many ways. However, a

number of built-in functions and procedures for math, I/O, character manipula- 4;

tion, robot motion, and line tracking give pre-defined methods for real world

control, which would have to be extensions to more general purpose languages.

The design approach was to take a strongly structured information processing

language and add the necessary features to perform motion and process control,

sensor integration and communications.

A KAREL program can be written on the controller or off-line and down-

loaded. A syntax directed editor is provided that "knows" the permissible

KAREL constructs, so program creation and maintenance is enhanced. The

resulting source file is translated to a lower form, which is then executable

by an interpreter on the controller. The translator uses static scoping

rules, which promotes reliability and maintainability, while the interpreter

gives flexibility at execution time. Modular program development is enabled

because of the translation stage and because a program module may refer to

external procedures or entire files. This exemplifies the strength of the -p'-

design approach. (21)

0.0

, .o . " - ..w o % - , .. . . - . . . - ., • - 1 00, -. -.0- .. . - . % % % " , , . - ... , .% -, - - . -.- ..



FLEXIBILITY. KAREL is a very flexible language, because it includes all

the elements normally associated with a computer language and specific lan-

guage additions pertinent to robotics and manufacturing. Procedures may be

passed parameters by reference or by value, and they may be locally defined or

accessible in external files. The same holds true for functions. Because of

static scoping, which mandates liberal use of declarations, recursion is also

possible. Vector operators and relative motion are also supported, as well as

access to the command level (operating system) of the controller.

EXTENSIBILITY. The combination of translation and interpretation used to

create executable KAREL programs makes it easier to extend the language by

simply revising the translator. Postprocessors could take a very application

specific front end and convert it to a normal source program for the transla-

tion stage. It may be possible to write a custom translator in order to

combine these steps.

UPWARD COMPATIBILITY. Revisions to KAREL will probably entail language

extensions to accommodate users and should only require the issuance of a

revised translator. Old KAREL programs should therefore run acceptably on

newer versions. 4

PORTABILITY. The low-level KAREL interpreter is currently available only

for their controllers, but the translator should be available for general

purpose computer systems.

RELIABILITY and CORRECTNESS. The translation stage assures than any

runtime errors will not be syntactic. KAREL is also notable for its exception

handling capabilities, which may be locally defined or global to the

controller. These handlers are actually condition monitors which are checked

every 32 milliseconds. By prioritizing them, a certain extra bit of

reliability is gained under failure conditions.

MAINTAINABILITY. The data abstraction and modularity gained through the

design approach provide KAREL with good maintainability.

EFFICIENCY. Because of the significant built-in language extensions

applicable to real world control, the executable code should be efficient.

Apparently, the interpreter runs at comparable speeds to other controller '

makes.

-101- S



range of robots and sensors. AML/2 defines (and implements) such motion and

sensor primitives, as well as application control and operator interfaces, for

the IBM 7575 and 7576 robots.

EXTENSIBILITY. The freedom for data abstraction allows the user the con-

tinual ability to extend the capabilities of a system, by placing more user-

oriented "front ends" on top of an application, or by integrating new sensors,

robots, and information sources into the application.

UPWARD COMPATIBILITY. AML is somewhat compatible with AML/X. Some

programs written in AML will not work with ILIX because of design decisions -

related to the future implementations.

PORTABILITY. AML/X is very portable, since the interpreter is written in '

the C general purpose language. It has been ported to IBM 370, IBM PC, and

Motorola 68000 running under CMS, UNIX, XENIX, and DOS. Low level servo con-

trol software routines callable from AML/X are under development. Such 0

routines are included with AML/2 for the IBM 7575 and 7576.

RELIABILITY and CORRECTNESS. As with any language, correctness depends

on the program and how well it reacts to changing conditions. In some ways,

an AML/X program may be more reliable than an off-line translated program,

since the exception handling mechanisms are extremely sophisticated.,r2_ , i

MAINTAINABILITY. The data abstraction and rather self-documenting style

of AML/X contribute to its maintainability.

EFFICIENCY. As the current release is an interpreter, it will not be

feasible to write some applications solely in AMJL/X. However, time critical

parts of an application can be written in C and called through AML/X's C

interface.

DECISION MAKING. The language has all the power expected of a modern,

general purpose programming language.

USABILITY. Program development under an interpreter is always easier

than with a compiler. The fact that AML/X is devoid of robotic terms like

move" and "grasp" means that an application shell defining such terms needs

to be designed by an application developer before "robot programming" can be

done by an end user. AML/X, with its object-oriented features, is well suited 0

for building such an application shell. Indeed, AIL/2 provides a shell

-103-



containing facilities for the robot programmer. It includes commands for

various kinds of moves and guarded moves, monitors, and grasping. An AML/2

application simulator and an editor that knows AML/2 syntax are also available

to further simplify robot application programming.

3.4.5 Results of Comparison

The four languages VAL, RAIL, KAREL and AML/X have been reviewed accord-

ing to the language capabilities developed in Section 3.2.3. As far as was ..

possible, each capability was evaluated according to its component language

features, programming and operating environment, and syntax. The set of

capabilities chosen was discovered to be nonorthogonal, which is to say that

they were dependent on each other in some cases. A valid set of criteria for

an evaluation should, insofar as possible, be mutually independent. This

helps to ensure that all issues are examined with equal rigor. For example,

the extensibility of a language depends to a large degree on its flexibility; 0-

likewise, upward compatibility is related to extensibility. These criteria

measures are therefore correlated, and perhaps should have been combined into

more generic measures or broken down into independent components.

This exercise was done to illustrate our viewpoint that the program-

mability of a robotic system depends on all of the factors involved in the
process of programming, not just the language features. Our particular choice

of language capabilities, as criteria for evaluation, was based on the sum

total impression gained through our research and interviews. Consequently,

the reader may find them skewed from other familiar comparisons. Neverthe-

less, the macroscopic viewpoint is a sound one, particularly in the beginning

stages of search for a suitable language.

3.5 ROBOT PROGRI4MING ISSUES

A number of issues in robot programming languages have been discussed,

and these are reviewed and expanded upon here. When comparing various robot 0
programming languages these issues should be kept in mind. The issues concern

entities in the laers of the programming system. The approach taken by a

particular language on a particular issue will therefore influence the other

layers and, ultimately, the overall performance of the programming system.

- 104 -

S %



wJw-vrv7'A. a.W "_ 17 T - 17 Zr T 77I- . 7 L

3.5.1 Teach Programing vs Off-line Programming

This is an issue in the programming environment, arising from a disa-

greement as to the type and level of experience required of robot programmers.

The relative advantages and disadvantages to each programming technique are

discussed at some length in Section 1.6. One side of the argument is that

applications people on the shop floor should program robots. These people are

familiar with the environment and are most aware of the problems involved in

performing a task. In addition, a great many tasks can be programmed more

efficiently with teach pendant programming than with off-line methods. The ..

other side of the argument is that complex tasks, such as those generated in a

flexible manufacturing environment, require off-line programming techniques.

In such cases, the ability to integrate computers into the design, manufacture,

* and test of products would be limited by teach pendant programming.

This argument should not center so much around teach pendant and off-line 0

programming techniques as it should around programmer experience. Off-line

and teach pendant programming techniques are complementary, not competitive--

each has applications for which it is the most efficient method. The real

issue is one of user-friendliness. The question is whether trained computer S

programmers should program robots directly, or whether they should provide

application programs for use by application personnel. Application personnel

can write off-line programs if provided with tools that allow them to communi-

cate in the language of the application. Interactive CAD/Graphics packages

take this approach. User companies will probably each take their own

, approaches, some electing to have computer programmers become robot

programmers and others electing to have computer programmers develop a set of -. ,

user-friendly tools for application programmers. Vendors will be in the posi- 0

tion of trying to satisfy both. In order to do this, they will have to pro-

vide user-friendly languages that also allow access to low-level constructs.

As languages evolve toward task level, this will probably become less of an

issue. Programmers at all levels of experience will be able to generate robot 0

programs. There will always be cases, however, where users need access to

low-level constructs so that a programmer can explicitly direct some robot

actions.

-105- 0

-- * W 4.*. c. . . w. . v*a w r- v -.
°,,°.-



3.5.2 Language Approach

3 Three approaches to this issue have been identified. The first is an

extension to NC languages, such as that taken by RAPT. The second is an

extension to existing computer languages, flavored for robotics, such as that

taken by KAREL. The last is a totally new language development, such as that epl

taken by AML. The issue is complicated a bit by using AX4L as an example,

because some may agree that a totally new language approach should be devel-

oped, but may not agree with the particular approach taken by AML.

There are really two issues here. Once again, user-friendliness is a

factor. One argument for the use of NC-based languages is that the functional

languages are more user-friendly and that there are many experienced APT

programmers. The same argument would oppose AML on the grounds that it is

just too difficult to learn. It might even go so far as to say that a new

language is needed that is more user-friendly than the NC-based languages.

The second, and more important, issue is that the entire robot

programming system is impacted by the approach to the language design. The

b relative strengths and weaknesses of the different approaches as they relate

to requirements of the robot programming system must be considered.

The advantage of NC-based languages is that they are good for motion

control and for manipulating objects. The disadvantage is that they are not

q good for sensor integration and information processing. As languages evolve

toward the task level, applications will become more complex. This will
,; involve significant sensor integration and information processing. The robot

controller of the past was basically a motion controller which did very little

of anything else, similar to an NC controller. This is why APT-based lan-

guages seemed a reasonable approach. The robot controller of the future,

however, will be on the opposite side of the spectrum--it will basically be an

information processor which does comparatively little motion control. For

this reason, many have taken the approach of extending computer languages.

Whereas the NC-based languages have been motion- and geometry-oriented

and have been extended to included information processing tasks, the computer-

based languages have been information processing oriented and have been

V extended to include motion and geometry. In Section 3.2.7 robot language 0

*" - 106-



features are discussed. These have been distilled to isolate the extensions

required for robot control, and are summarized as follows:

Geometric Data Types
Special Arrays (Frames, Matrices)
Matrix Operators (Affixment, Transforms)
Coordinate Systems
Vision Commands
Compliance
Timers
Motion Control Commands
Tool Statements

The approach of extending a conventional computer language appears a

viable one. The extensions are mostly expansions to existing feature classes

in conventional languages. The base language to be used is yet another issue.

A number of current manipulator level languages are based on PASCAL or BASIC.

Robot languages have typically evolved in a pattern similar to conventional

computer languages. The next generation of languages is likely to be based on

a language which supports data abstraction and symbolic communication. ' .

Included here are Ada and the artificial intelligence languages such as LISP .. "

or PROLOG.

The approach to creating a totally new language is also viable. By doing

this, language developers can concentrate on the requirements for the entire

programming system. Rather than extending feature classes of conventional , .

computer languages, the entire feature class can be designed from the ground

up with robotic applications in mind. This can result in the significant

power and flexibility required for robot programming.

3.5.3 Extent of Task Level

As languages approach the task level, tradeoffs are made. The ease in

programming at a task level is achieved at the expense of providing signifi-

cant computer power in the robot controller. This was illustrated in the

discussion of decision making. Some amount of task decomposition by the

programmer can greatly alleviate computational burden on the controller. The
computational abilities of the controller have practical limitations of speed

and cost. A truly task level controller will not be practical for many years.

An issue to be resolved is just how high a task level is really required.

J.

%" 4

-107-

' ' ' ' ' "L op .*. . . - - , . . % , . ' ' ' ' ' " " ' . . . • - -



.,
t 

-.

Although the trend toward task level seems certain, a great deal of

benefit may come from development of strong application packages analogous to

application packages in the conventional programming domain. Section 1.3

showed the evolutionary stages in computer language development, which have a

counterpart in the CAD/Graphics packages of Section 1.6.4. Application lan-

guages are a step in the direction of task level languages.

Since computer power is typically more abundant in the programming envi-

ronment than in the operating environment, task level languages are likely to

be pioneered on off-line workstations as application programs. Task level

commands will be decomposed by a postprocessor into robot controller commands.

As these commands become well established, software will be developed so that

they can be input directly into the robot controller.

3.5.4 Robot Control vs Cell Control

When robots are incorporated into manufacturing cells, the robot

controller is often the most powerful computer and the robot language is the

most flexible programming method in the cell. Since the robot program must be

synchronized with other equipment, it is natural to use the robot controller ,

as the cell controller, and to slave equipment off the robot program. This,

of course, depends on the particular application. Some will have one robot

and two small pieces of equipment; others will have many robots, machine

tools, and sensors. The latter case is likely to have a cell host computer

with a master program, off which all other equipment is slaved.

The issue here is the proper scope of robot programming languages.

Should these be expanded to cell control? If their scope is expanded upward

to cells, should it also be expanded downward to machine tool control? There

are no clear answers here, since the application is really the driving force.

What can be said is that perhaps "scope" should be added as an entity in the

application layer of the robot programming system, and should routinely be

considered when evaluating languages.

'.'.

108

- 108 - .5 5"



3.5.5 Standards

There has been some talk of standardizing robot languages at various

programming levels. Some vendors would like to have their own languages

established as industry standards at the manipulator level. Meanwhile, a

servo level standard has been proposed in Germany. (4) This is the Industrial

Robot Data (IRDATA) proposal. One could also envision a task level language

someday acting as a standard. In fact, a standard format could be envisioned

at any level (all five levels proposed by Bonner and Shin, for example). The
general consensus of most of the experts interviewed is that the technology is

not mature enough for standardization. Development in sensor technologies and

a predicted change away from the use of the traditional Von Neumann computer

architectures are likely to have a large impact on robot programming lan-

guages. Also, experience must be gained over more applications, so that these

requirements can be incorporated into any standard. .

The real push for standards may actually come when languages approach the

task level. As things become specified at higher levels there is a greater

chance for ambiguities and thus a need for standardization. For example, "put

box A on box B" means something different from "put nut A on bolt B." Is the

meaning to be derived from the word "put" or from the objects specified (nut

and bolt vs box and box) or from a combination of the two? Is specification

of the task application dependent? For example, does "put" mean one thing for

assembly and another thing for arc welding? At the task level, some standara-

ization will be desirable to establish the exact intent of each specified

_ task.

3.6 SUMMARY

Comparison of robot programming languages is difficult because the sub-

ject area is very complex. The literature fails to make clear several impor-

tant considerations and distinctions. First, the robot programming language

must be put in perspective as a factor in overall robot performance. Second,

the difference between robot programming techniques and robot programming

levels must be established. Third, the difference in robot programming

requirements at the task level and at the manipulator level must be noted.

Finally, the entire robot programming system must be considered.

/" 

--

1
a,4 Am.

109.



i ":.

The robot programming system was shown to consist of four "layers." The P.

outermost layer is the language capabilities layer, next the programming/ -6

operating environments layer, then the language implementation layer, and

finally the language feature layer. Each layer consists of a set of entities,

which are factors relevant to that layer. In general, entities in the outer

layers give rise to requirements for supporting entities in the layers below.

.Two layers outside the programming system, the application layer and the
industrial environment layer, are seen to impact the system. A certain appli-

cation requires specific language features to support it, but also establishes

needs in the other layers. A proper comparison of robot languages requires

that the entire robot programming system be considered.

There are several robot programming issues that have not been resolved.

Most revolve around the question of how user-friendly robot programming should

be, and who should program robots. These are the issues of robot programming V

techniques, approach to robot programming language design, and the extent of

task level programming needed. The approach to language design is, also, and

more importantly, an issue of supporting entities in the robot programming

system. Other issues are the scoping of robot languages (robot vs cell) and

standards. f"

.e.

°%"

-110- •
.5



4. ROBOT PROGR"MMING LANGUAGES--A DOD PERSPECTIVE

-b

Evaluation of robot programming systems for defense manufacturing can be

performed using the criteria set forth in Section 3. Defense manufacturing is

characterized by a few considerations. First, lot size is usually small and

it may be necessary to supply the parts in several shipments over a period of

time. Second, many subcontractors usually work on a project, and there needs

to be communication among them and the prime. Third, military standards must

be upheld and there is some amount of accountability (record keeping) that

must be maintained. Finally, on a different note, much of the manufacturing

is actually rework of old or damaged parts.

The implications of batch manufacturing have been discussed. Batch

manufacturing requires frequent reprogramming. The language capabilities

required to support this are flexibility, efficiency, and sensor support. The

robot programming system requires a strong programming environment with a good %

editor, off-line debugging, and simulation. Also, maintainability is very %
important if a program is to be re-used at discrete time intervals. %

With many subcontractors working on a job, it is possible that programs 0.

will need to be shipped between them. This would require a language with

portability and good documentation. This may also argue for a standard lan-

guage.

Good record-keeping also requires good program documentation. In addi-

tion, reliability, correctness, and error logs are important. This raises an

interesting point. All robot languages are communicated in only one -..*.

direction; that is, the communication of robot programs is always from the
development system down to the robot. Military applications may require that

languages also support communication the other way. A report on the current

status of the workcell may be important. A process trace that records the

exact events occurring in the workcell during manufacture of a part may also S'-

be needed. The robot language could support such record-keeping messages in

its own syntax. This bi-directional language concept has been used by

Computer-Aided 71anufacturing-International (CAM-I) in developing the P J*

Dimensional Measuring Interface Specification (DMIS), a programming language

for inspection devices.

-111I- 0



The rework of parts presents a particularly interesting application. CAD

models of parts are rarely available, and the exact program that needs to be

executed by the robot depends on the particular repair to be done. This type

of application requires significant sensor support and a very strong program-

Ming environment. Expert systems and other AI technology will be required

before automated operation is possible. In the meantime, a combination of

teach pendant programming and off-line programming will be required. Teach

pendants can be used initially to generate the part geometry and some informa-

tion about the defect (the location of a crack, for example). Off-line tech- -

niques can then be used to generate a sensor driven robot program capable of V
V, performing the gross motions necessary to approach a feature. The robot would c".

then be guided by sensors to perform the detailed repair operation.

i ..

,.-,

SS

11

'.I-.

SI.
- 112 -S

I'-o



5. RECENT AND ONGOING RESEARCH AND DEVELOPMENT

In the early 1980s, a number of good papers on robot programming lan-

guages were published, but very little has been written since 1983. In these

papers, manipulator level languages were compared and the technical barriers

to task level programming were explored. These technical barriers still

exist, and some research efforts are being directed toward solving them.

Other efforts are being directed at improving the state-of-the-art of robot

programming with available technology. For purposes of discussion, it is

convenient to break this down into four topic areas: servo level, manipulator

level, task level, and applications of artificial intelligence.

5.1 SERVO LEVEL

While servo level languages have, in general, not been the subject of

much research, there are some significant efforts which should be cited. As

mentioned in Section 1.5.1 some vendors are committed to increasing the power

of teach pendant programming, and are carrying on with in-house developments

in this area.

The IRDATA proposal in Germany is an attempt to standardize robot lan-

guage at a low level. Since it is being proposed as a standard, it will

undergo substantial industry review. Review processes such as this tend to

-' raise and investigate issues otherwise overlooked. 4,

Greshke (35) proposed the Robot Servo System (RSS) as a servo level

language which could act as a target language for manipulator level programs.

The approach taken in this language was to specify everything in terms of

servo processes. Data from external sensors was represented as dynamically .

changing functions. The advantage of the language was that the programmer

could control what sensor data and robot state information was to be used by

each and every servo process. 0

* 1

Sc.

S.-

~- 113 -

" "" "" "'" " " "'" "'" "' " '" '" ;' '" ".. . . . . . .. . . . . . . . . . . . . . . . .""." -.. . .". ."."....... . .".



Ford Motor Company is currently developing a system which combines a .1

teach pendant programming technique with an expert system. Using a specially

designed teach pendant, the programmer (operator) teaches the robot only a few

points. He does this by following a set of instructions and selecting options

from a menu. The system then computes all of the intermediate points neces-

sary to drive the robot through the complex path, and outputs a servo level

program specifying the motions.

Investigating an interesting concept, the University of Connecticut (36) .

developed an experimental system called Task Learner (TL). Here a servo level V.

program is used to generate a task level program. The programmer guides the

robot through a task using a teach pendant. The resulting servo level program -

is then used to infer the task plan, which can later be repeated in a variety

of workcell configurations.

5.2 MANIPULATOR LEVEL

Work on manipulator level languages and the next generation of robot

languages is continuing mostly in the vendor community. The main thrust is to

increase the power and flexibility of current languages, and to provide

object-oriented programming. The advancements evident in VAL-II over VAL-I

provide an indication of the trends in robot programming technology at the

manipulator level. Shimano (37) has summarized these as follows:

- formal network communication facilities

- mathematical capabilities equivalent to
those in high-level computer languages

- enhanced operator interface

- extended sensor capabilities ...

- real time path modification based on both
internally and externally generated command
signals

- facilities for performing simultaneous control
of both robot and process activities.

Languages such as VAL-II, ARLA, KAREL, and XIL/X reflect the state of the

art in vendor-supplied robot programming languages. Steady progress will be

,ade toward realization of task level languages, and sorie capabilities are

emerging. The AIMPCB language developed by Adept, Inc. is often cited as an

example.

, .. %

- 114 - S

- ~'"uM '#r, ni . -. . . . .,.'l .. . . . . . . . .



'."

MCL was developed by the United States Air Force as a language for robot

and cell control. In a continuing R&D effort to test the language, three

aerospace firms are currently using MCL: Fairchild Republic Company, Grumman

Aerospace, and McDonnell Douglas. Several problems have been uncovered.

First, an MCL program is hard to simulate on a CAD system. Second, collision

detection is very difficult because of the MCL technique of user frames.

Finally, development time for an 4CL program is two to three times longer than

that for other languages. There have been recommendations to continue testing

and to develop a generalized simulation system for MCL. These types of R&D

efforts are beneficial, since the results can be transferred to private indus-

try. For instance, many of the ideas that came out of 1CL development have

been incorporated into commercial languages.

Volz and ",ludge (11) (12) (13) have proposed Ada as an advanced manipula-

tor level, bordering on task level, language for use on robots and in manufac-

turing cells. They list the advantages of Ada as data abstraction, incremen-

tal compilation, multitasking, exception handling, timing constructs,

modularity, extensibility, maintainability, and usability. It can be used as

a base language for building applications programs and can access CAD data

bases. There are some corresponding disadvantages in the additional computa-

tional overhead associated with extremely powerful languages. Initial work

has looked promising and research is continuing.

5.3 APPLICATION LEVEL

An evolutionary step in the progress toward task level languages is shown

by application programs. Recall that computer application programming such as

spreadsheets, accounting and planning programs are essentially very high-level

language processors, which accept the statement of a problem in the language

suitable to the domain of discourse. The user specifies the problem in terms

of costs, rates and time, which are then interpreted and solved by a program

developed in some lower level conventional computer language. Robotic

programming seems amenable to a similar approach. In this case, the user

would state the problem in terms of goals, constraints, objects, features, and

processes to an application package which would generate a program capable of

running on a controller. Current CAD/Graphics systems address the surface of

- 115 -

', . -W- V



-~~~. - .S - - - J.

this programming technique by providing good user interfaces for the speci-

fication and analysis of trajectories. What still remains to be developed is

a comprehensive approach to the design of such an applications package. Work

under way at NBS is promising in several of these areas. .'
5.4 TASK LEVEL

Task level languages are many years away due to several technical

.2-- barriers. All of these are the subject of ongoing research and development to

some degree. The key thing to remember is that task level languages are

sensor driven. This gives rise to the need for world models of what should be

(programmed goals), world models of what is (sensor input), and strategies to

make the two equivalent using path planning, grasping strategy, and decision

making. (38) (39).

World modeling is the problem of accurately representing the environment

within which the robot is operating. Solid modeling techniques will be

required to represent surfaces, volumes, and many part features. The concept

of uncertainty must somehow be represented in the world model. Uncertainty

arises from imperfect accuracy and repeatability, temperature changes, the

dynamics of motion, variability in parts, robot drift, unexpected events, and

changes in the world state between sensor readings. Sensors can compensate to

some extent, but sensors also have some inherent inaccuracies and therefore

introduce their own uncertainties. Two methods for representing error as it

propagates through tasks are numeric error propagation and symbolic error

propagation. Another problem with world modeling is in relating nongeometric

data to objects. For example, the final torque on a bolt should be part of.S..

the world model. There is also a problem of overspecifying the world state in ".

7. some cases. For example, if a pin is placed in a hole, the rotation of the

pin is irrelevant and should not have to be specified. If it is not

specified, this is known as a point of singularity, and the robot is faced

with an infinite number of solutions. Strategies for selecting one must be

developed.

Path planning represents a very complex problem. r1odeling objects in

three-dimensional space, so that a collision-free path can be defined, is

extremely difficult. Different solutions to this problem have been investi-

gated and are discussed in the literature (40). If objects are moving, the

problem is complicated in that computational speed becomes a constraint and

- 116 -

• -" *,-5., -,- -,-rt-,*r,.°1-- . . . .



't.

three-dimensional vision sensing must be used to update the model. An addi-

tional problem is that the path is affected by initial orientation, final

orientation, and speed. Therefore, path planning cannot be done until a

grasping strategy has been selected.

Grasping strategy involves computing the appropriate approach and orien-

tation for picking up a part. This requires not only that the geometry of the

part to be picked up be considered, but also that any potential interference

with surrounding objects be taken into account as well. Nongeometric infor-

mation associated with the part, such as center of gravity, orientation con-

straints and coefficient of friction, must also be considered. One problem in l

grasping strategies is to select the appropriate option from a list of possi-

bilities--there are often many ways to pick up a part. Some criteria, such as

stability, must be set and then evaluated. Another problem is that of grasp-

ing under uncertainty.

Decision making currently involves branching to some part in the program

when an error condition occurs. This often involves attempting the task again

("if part not present, then try to pick up again"). This does not deal with 9.

two error conditions which must be solved for task level operating environ-

ments. The first is unexpected errors. The robot must be able to recover

gracefully from an error which was not anticipated at programming time. The

second condition is an irreversible error. In this case, the robot must be

able to go ahead and recover from the error by performing some other series of

tasks.

Current work at the National Bureau of Standards' Automated Manufacturing-,.

Research Facility addresses a number of these issues. A robot programming

system called RCS is being developed using the FORTH computer progr3mming

language. RCS breaks down the robot programming task into six levels: task,

subtask, primitives, e-moves, gripper commands, and communications. Note this

is not unlike the robot programming levels discussed in Section 1.5. The

.5 issues being addressed are geometric reasoning, component reorientation,

automatic grasping, collision detection, path planning, automatic fixture

design, mechanical testing of fixtures, and graphic simulation of fixture

layout. Geometric reasoning is the description of an assembly task by the

relationships between features on objects. An example would be to "place face

A against face B." The principles of group technology are applied and objects

-117- S

A'



are described as instances of classes. For path planning and collision detec-

tion, the robot environment is modeled using a spatial tree representation.

Several planning algorithms are then used to generate a path within the con-

straints of this model.

5.5 APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Artificial intelligence technology will significantly impact the area of

robotics programming. Task decomposition, planning strategies (path and

. grasping), and error recovery are all natural applications for artificial

intelligence. There are some existing applications and research efforts are

currently underway.

In a commercial application, expert systems are being used for diagnos-

tics on ASEA robots. The expert system generates a set of instructions for

tracking down failures in the robot controller. Currently, this amounts to

incorporating a troubleshooting manual into the expert system. A more intell-

igent system with a larger ruleset may be developed in the future.

Westinghouse (41) has developed a workcell to forge steam turbine blades

for electric power generators which uses a rule-based control system (expert .

system). It consists of two vision-guided robots, several NC machines, and a

rotary hearth furnace. Setup and operation are completely automated, and the

cell automatically adjusts for different blade batches.

Under a current contract from the United States Air Force, Martin

larietta is developing the Intelligent Task Automation (ITA) cell. In the

project, all of the computers, except for the servo drives, were stripped from

a Cincinnati Milacron T3 robot controller. These were replaced by single

board computers communicating with a Symbolics Al machine using Ethernet. The

system is used for performing inspection with a robot. The user simply indi-

. cates what points are to be checked, and the required robot program is automa-

tically generated. The system consists of two parts: an Al planner and a

path planner. The Al planner is a rule-based system which does tool selection

and generates a sequence. The path planner does incremental and global path

planning for collision avoidance under various constraints. It also monitors

execution by comparing a world model with information acquired from sensor

input. (42)

- 118 -

5- -V ' % -, ' - i I



6. RECOMMENDATIONS AND CONCLUSIONS

6.1 RECOM14ENDATIONS FOR RESEARCH AND DEVELOPMENT

Based on analysis of the literature and interviews with industry profes-

sionals, the following have been identified as areas requiring research and

devel opment:

1. Methodology for Robot Programming Languages. Efforts .5

should be directed at an understanding of the "big
picture." We need to understand the requirements of
various applications and the information flows necessary to
automate them. A data model of robot programming would be
beneficial. Also, we need to identify which parts of the
process are feasible to automate and which parts are better
left to human reasoning.

2. World Modeling. Better techniques are required for repre-
senting and updating computer models of the robot, the
environment, and the associated processes.

3. Simulation. Better simulation techniques, including auto- %
matic interference checking, kinematic and dynamic models,
and sensor simulation, need to be developed.

4. Communication. Better methods of communicating information
among equipment in a complex process must be developed.
This includes both the content of the information and the
speed with which it can be passed.

5. Sensor Technology. From a software viewpoint, methods for m
acquiring information from a large array of sensors and
then processing it into a consistent world model are %'a
needed.

6. Safety. Safety considerations, particularly for task level
programs, need to be addressed.

6.2 CONCLUSIONS

Much work has been done in the development of higher order languages for

robots. There seems, however, to be no model which correlates all of the

elements of the robot programming system. Languages do not operate in isola-

tion: programs are developed in a programming environment and are executed in

an operating environment. L.anguages are required to support both of these 0

-119- S

0 tO " Pw" " ,f ,# ,#",#" W",,"r W" ,r t" w #",#' ,€',#' " #'" #''" "a'',.'



r
i'S

environments, as well as the other layers of the system. A top-down systems

approach to developing the requirements of robot programming systems is -

required.

The evolution of robot programming systems has been shown to parallel

that of computer programming, with a lag time of five to ten years. This

observation has also been made by previously cited investigators at the

National Bureau of Standards, who further suggest (in a forthcoming paper)

that this knowledge be put to use. A number of recent advancements in compu-

ter programming can, and perhaps should, be put to use in robotic program-

ming. The present robotic programming inadequacies are largely problems of

information processing, program development, and program testing. Existing

systems have solved earlier motion control inadequacies with faster, and more

parallel, hardware. The state-of-the-art computing technology should be

applied directly to these three problem areas.

Much of the debate in the industry revolves around the user-friendliness

of the programming language. There are two questions to consider about user-

friendliness: what is it, and where is it ? First, user-friendly is a sub-

jective term, What is user-friendly to a computer programmer is certainly

different from what is user-friendly to someone with no computer language

experience. Furthermore, what is user-friendly today is not the same as what

will be user-friendly in five to ten years. Since computers are now intro-

duced at elementary school levels, we can expect the whole concept of "user- V

friendly" to be quite different in the near future. Second, user- friendly '"

front ends are finding their way into CAD/Graphics systems. As these front

ends become commonplace, there will be less impetus to make the actual manipu-

lator level languages themselves user-friendly. Robot vendors may even
develop user-friendly front ends for their own manipulator level languages.

That is, the vendors may develop one language for the programming environment

and a corresponding language for the operating environment.

Different types of robotic applications place varying demands on language .,.

design and implementation. The programming environment is the mechanism

whereby the problem specification is input to the robot programming system.

Similarly, the operating environment is the vehicle for implementing the 0

solution output by the robot programming system. This process-oriented view

of robot programming motivates some of the following conclusions.

-120-



Ta-WR-- 0V K - -rT W'W -07. 'Q IL k VA- Q "

%

The application problem should be represented in a language providing

constructs most relevant to the user. Additionally, the programming technique

employed to interface with the user should be most conducive to rapid develop-

ment. Taken together, these key issues form the core of a good programming

. environment, which in turn largely characterizes the programmability (and

hence the quality) of a system.

The control of manipulators, sensors, fixtures, and tools likewise places

demands on the robot programming system, particularly with respect to operat-

ing environment considerdtions. Since robot programming for this generation

of industrial robots needs to accomplish both problem representation and

control, controllers which utilize a single higher order language must address

both of these problems simultaneously. This need is in contrast to computer

programming languages, which tend to either expose detail (assembly level) or

hide detail by data abstraction (high-level), but seldom provide both capabil- 0

ities in a single language. Note that an executing robot program still impli-

citly requires the representation of the problem to be close at hand for the

selection of alternative actions necessitated by changing conditions. The

fact that 80% of a robot program is concerned with handling errors illustrates

the need for an executing program to perform more than control.

The development of stronger programming environments through smarter

tools, such as syntax directed editors, knowledge-based application programs,

CAD/Graphics program generators and simulators, is one approach to strengthen-

ing the control-oriented manipulator level languages in the direction of

problem representation. These tools serve very well to remove some burden
from a user who is concerned with little else than the application problem at

hand. They do not, however, actually increase the user's ability to conceptu- _
alize the problem; rather they provide powerful mechanisms for the reliable

generation of programs which achieve better control over the workcell.

The development of stronger operating environments with massively parallel

architectures, communication networks, and sensor integration also principally

addresses the needs of control. Computational speed and precision, communica-

tion speed, type and reliability are issues addressed through improvements in
the operating environment. These developments follow close on the heels of

state-of-the-art computing technology.

-121-

*2



What is still missing is a robot programming system which integrates the

model of an application problem into an implementation capable of simultaneously A 1,

exerting control over the environment and referencing the model. One approach

to this (pioneered by NBS) uses independent communicating processes, written

in a few languages, to accommodate programming at the task, manipulator, and

servo levels.

Another approach which suggests itself is that of designing a higher order

robot language based on the needs of users to represent their problem, and on

the practical requirements imposed by robot control. It is hoped that this,

document has illuminated key issues in the design of current and future higher-

order robot programming languages, and placed them in perspective of the

industrial applications of today and tomorrow.

,.

r.

4r o

- 122- __0

ev , w -v * - -~ . . . . . . . . .



- ~ S a a ft.,-, - -W
5%

%

REFERENCES

1. Gini, G. and Gini, M., "Robot Languages in the Eighties," Robotics
Assembly, Rathmill, Keith, ed., IFS (Publications) Ltd., UK, 1985.

2. Pratt, Terrence W., Programming Languages: Design and Implementation, 2nd
ed., Prentice-Hall, 1984, pp 8-12.

3. Weck, M. and Niehaus, T., "Off-line Robot Programming via Standardized
Interfaces," Industrial Robot, Vol. 11, No. 3, September 1984, pp 177-179.

4. D'Souza, Chris, Zuhlke, Detlef, and Blume, C., "Aspects to Achieve
Standardized Programming Interfaces for Industrial Robots," Robots 7

Conference Proceedings, April 17-21, 1983.

5. Bonner, Susan and Shin, Kang G., "A Comparative Study of Robot Languages,"
Computer, December 1982, pp 82-96.

6. Yong, Y. F., Gleave, J. A., Green, J. L., and Bonney, :M. C., "Off-line
Programming of Robots," Handbook of Industrial Robotics, Nof, Shimon Y.,
ed., John Wiley & Sons, 1985.

• ~.....
7. ASEA Off-line Programming System: User's Guide, ASEA Robotics, 1986.

8. Sjolund, Paul and Donath, Max, "Robot Task Planning: Programming Using
Interactive Computer Graphics," Robots 7 Conference Proceedings, April 17-
21, 1983.

9. Liu, Ying-Sung, "Robot Assembly Motion Time," Robots 10 Conference

Proceedings, April 20-24, 1986. .%

10. Govindaraj, Subbian and Doty, Keith L., "General Purpose Robot System and
Task Development Facility," Robot 10 Conference Proceedings, April 20-24,
1986.

11. Volz, R. A. and Mudge, T. N., "Robots Are (Nothing More Than) Abstract
Data Types," Robotics Research: The Next Five Years and Beyond Conference
Proceedings, August 14-16, 1984. 0

12. Volz, Richard A. Woo, Anthony C., Wolter, Jan D., Mudge, Trevor N.,
Turney, Jerry L., and Gal, David A., "CAD, Robot Programming and Ada,"
NATO ASI Series, Vol. FlI, Robotics and Artificial Intelligence, Springer-
Verlag Berlin in Heidelberg, 1984.

13. Volz, R. A., Mudge, T. N., and Gal, D. A., "Using ADA as a Robot System "_-
Programming Language," Robots 7 Conference Proceedings, April 17-21, 1983.

14. Gruver, William A., Craig, John J., Soroka, Barry I., and Turner, Timothy
L., "Evaluation of Commercially Available Robot Programming Languages,"
Robots 7 Conference Proceedings, April 17-21, 1983.

-123- 0



15. Ranky, Paul G., "Programming Industrial Robots in FMS (A Survey with
Particular Reference to Off-line, High-level Robot Program Generation
Using VAL, VAL-II, AML and MARTI)," Robotica, Vol. 2, Part 2, April 1984, -.
pp 87-92.

16. Deisenroth, Michael P., "A survey of Robot Programming Languages," 1985
Annual International Industrial Engineering Conference Proceedings,
December 8-11, 1985.

17. Ahmad, Shaheen, "Robot Level Programming Languages and the SRIL-90
Language," Compsac 84 Conference Proceedings, November 7-9, 1984. .%

18. Weck, M., Eversheim, W., Niehaus, T., Zulke, D., and Kalde, M.,
"Requirements for Robot Off-line Programming Shown at the Example ROBEX,"
Advanced Software in Robotics, Proceedings of an International Meeting,
May 4-6, 1983.

19. Hollingshead, Larry L., "Elements of Industrial Robot Software," Handbook
of Industrial Robotics, Nof, Shimon Y., ed., John Wiley & Sons, 1985.

20. CIMIPLER(TM) Programming Manual for the CIMROC(TM) Computer Integrated
Manufacturing Robot Control, GCA Corporation, Naperville, IL, July 1984.

21. KAREL Language Reference Manual, Version 1.10P, GMF Robotics Corporation,
March 1986.

22. Nackman, Lee R., Lavin, Mark A., Taylor, Russell H., Dietrich, Walter C.
and Grossman, David D., "AML/X: A Programming Language for Design and
lManufacturing," IBM Thomas J. Watson Research Center, Yorktown Heights,

NY, 1986.,

23. Kempf, Karl G., "Robot Command Languages and Artificial Intelligence,"
Robots 6 Conference Proceedings, March 2-4, 1982.

4. Ambler, A. P., "RAPT: An Object Level Robot Programming Language,"
Colloquium on Languages for Industrial Robots, February 8, 1982.

25. Grossman, David D., "A Decade of Automation Research at IBM," Robots 6
Conference Proceedings, March 2-4, 1982.

26. Mogal, Joshua S., "IGRIP - A Graphics Simulation Program for Vorkcell
Layout and Off-line Programming," Robots 10 Conference Proceedings, April
20-24, 1986.

27. Hanright, J., "Selecting Your First Arc Welding Robot - A Guide to
Equipment and Features," Welding Journal, Vol. 63, No. 11, November 1984,
pp 41-45.

28. Lozano-Perez, Tomas, "Robot Programming," Proceedings of the IEEE, Vol. 71
No. 7, July 1983, pp 821-841.

29. Craig, John J., Introduction to Robotics: Mechanics and Control, Addison-
Wesley Publishing Company, 1986.

-124-



30. Gruver, William A., Soroka, Barry I., Craig, John J., and Turner, Timothy
L., "Industrial Robot Programming Languages: A Comparative Evaluation,"
IEEE Transactions on Systems, Man, and Cyvbernetics, Vol. SMC-14, No. 4,
July/August 1984, pp 565-570. ' ' ?

31. Review of the State-of-the-Art of Assembly Technologies and Programming
Languages for Robotic Applications, Booze-Allen & Hamilton Inc.,
Arlington, VA., April 1982. Produced under subcontract for the Air Force,
Contract No. F33615-80-C-5068.

32. Collins, K., Palmer, A. J., and Ratmill, K., "Development of a European
Benchmark for the Comparison of Assembly Robot Programming Systems,"
Robotic Assembly, Rathmill, Keith, ed., IFS (Publications) Ltd., UK, 1985.

33. Saveriano, Jerry W., "An Interview with Victor Scheinman," Robotics Age,
Vol. 2, No. 3, Fall 1980, pp 12-21.

34. Franklin, James W. and VanderBrug, Gordon J., "Programming Vision and

Robotics Systems with RAIL(TM)," Robots 6 Conference Proceedings, March 2-
4, 1982.

35. Geschke, Clifford C., "A System for Programming and Controlling Sensor-
based Robot Manipulators," IEEE Transactions on pattern Analysis and
Machien Intelligence, Vol. PAMI-5, No. 1, January 1983, pp 393-399.

36. Levas, Anthony and Selfridge, Mallor, "A User-Friendly High-level Robot
Teaching System," International Conference on Robotics, March 13-15, 1984.

37. Shimanho, B. E., Geschke, C. C., Spalding, C. H., and Smith, P. G., "A
Robot Programming System Incorporating Real-time and Supervisory Control:
VAL-lI," Robotic Assembly, Rathmill, Keith, ed., IFS (Publications) Ltd.,
UK, 1985.

38. Albus, James S., Brains, Behavior, & Robotics, BYTE Books, Subsidiary of
McGraw-Hill, 1981.

39. Albus,James S., McLean, Charles R., Barbera, Anthony J., and Fitzgerald,
M. L., "Hierarchical Control for Robots in an Automated Factory," Robots 7
Conference Proceedings, April 17-21, 1983.

40. Lozano-Perez, Tomas and Brooks, Rodney A., "Task-Level Manipulator
Programming," Handbook of Industrial Robotics, Nof, Shimon Y. ed., John
Wiley & sons, 1985.

41. Rembold, Ulrich, Dillman, R., and Levi, P., "The Role of the Computer in
Robot Intelligence," Handbook of Industrial Robotics, Nof, Shimon Y., ed.,
John Wiley & Sons, 1985.

42. Haley, Dennis, "Intelligent Task Automation (ITA)," CAD/CAM Subcommittee
.1985 Annual Report and Proceedings MTAG 85 Mini-symposium, 1985

i" -125 -



* - ~ =~ =- ... ~ - -~ ..- ",#

.% ,

*. '.,

BIBL IOGRAPHY

The following papers represent a small sample of those published which detail
specific languages available commercially or under development. For the most
part, they are software or system oriented, and avoid theoretical kinematic or
application discussions.

Burchardt, C. W. and Marchiando, C., "A Multi-Robot High Level Programming
System for Assembly," AUTOFACT Europe Conference Proceedings, Geneva
Switzerland, September 13-15, 1983.

Donato, G. and Camera, A., "A High Level Programming Language for a New Multi
Arm Assembly Robot," Proceedings First International Conference on Assembly
Automation, March 25-27, 1980.

Finkel, R., et al., "An Overview of AL Programming System for Automation,"
Proceedings Fourth International Joint Conference on Artificial Intelligence,
June 3, 1975.

Gilbert, A., et al., "AR-BASIC® An Advanced and User-Friendly Programming
System for Robots," Robots 8 Conference Proceedings, June 4-7, 1984. ,

Kirschbrown, R. H. and Dorf, R. C., 'KARMA' - A Knowledge-Based Robot ..,
Manipulation System: Determining Problem Characteristics," Robots 8 41
Conference Proceedings, June 4-7, 1984.

Langston, G., et al., "Robotics Software Packages in Ada," Applying Robotics
in the Aerospace Industry Conference Proceedings, March 27-29, 1984.

Larson, T. M. and Coppola, A., "Flexible Language and Control System Eases
Robot Programming," Electronics, Vol. 57, No. 2, June 14, 1984.

Lieberman, L. I., and Wesley, M. A., "AUTOPASS: An Automatic Programming
System for Computer Controlled Mechanical Assembly," IBM Journal of Research
and Development, Vol. 21, No. 4, July 1977.

Mohri, S., et al., "Assembly Robot Language and Control Software," AUTOFACT 5
Conference Proceedings, November 14-17, 1983.

Paul, R., "WAVE: A Model-Based Language for Manipulator Control," Technical
paper MR76-615, Society of Manufacturing Engineers, 1976.

Paul, R., Evaluation of Manipulator Control Programming Languages," IEEE
paper, 1979.

Ward, M. R. and Stoddard, K. A., "KAREL: A Programming Language for the
Factory Floor," Robotics Age, September 1985.

Wood, B. 0. and Fugelso, M. A., "MCL, The Manufacturing Control Language,"
Robots 7 Conference Proceedings, April 17-21, 1983.

-126- 
0

%* *%"



. ,- , 4. ."4 . ..4.. '44. . . , - . . . '- 4 .. S ,*.. , . .
,  

-. S. S. S_ . _ . -. - - -. ; -, ° , .

A few papers contrast programming methodologies in the industrial

environment. The two included here from IBM Research make an attempt to

illustrate a few methodologies by considering example tasks in a few high-

level languages written by IBM.,,w

Grossman, D. D., "Robotic Software," Mechanical 
Engineering, August 1982.

eyer, J., "Data Driven Automation," IBM paper, 1984.

Articles from trade journals such as these discuss off-line 
programming with ""

respect to the established technologies of CAD and NC machining. Within them .-

references are ade to specific products and applications .

Gettelman, K., "The Building Blocks of Off-Line 
Robot Programming," odern

VMachine Shop, November 1985.

Gettelman K, "Off-Line Programming Comes to Robots," Modern Machine Sop,

November 1985. 

,

Kuvin, B. F., "Off-Line Programming Keeps Robots Working," Weldin Design &

Fabrication, November 1985.

These references illustrate various general approaches and techniques to using ?A

world models and CAD information for robot programming. They are somewhat

4-..

conceptual, as opposed to papers which show the application of a specific

language to a problem.

Duffle, N., et al., "A Sensor Based Technique for Automated obot

Programming," Journal of Manufacturing 
Sstems, Vol. 3, No. , 1983.

Kent, E. W. and Albus, J. S., "Servoed World Models as Interfaces between

Robot Control Systems and Sensory Data," National Bureau of Standards paper, i..

1982 ..

Z4Nitzan, D. and Bolles, R. C., Workshop on Intelligent Robots: Achievements

and Issues," SRI International Workshop Proceedings, July 1985.o..

Weck, I. M., et al., "Fundamentals for the Development of a High Level z.

Programming Language 
for Numerically 

Controlled Industrial Robots," AUTOFACT

West Proceedings, November 17-20 , 1980. MnA

-. 1274

Gettelman, K., "The Building Blocks 
of Off-Line Robot Programming," 

.-"der
Machne SopNoveber 985

GetlaK,"f-iePrgamn oe oRbts"Mdr ahn Kp



APPENDIX A

FIELD INTERVIEW SOURCES

Interviews with knowledgeable professionals working in robot programming

P languages, or allied fields, were a vital source of input to this state-of-

9I the-art survey. The authors wish to gratefully acknowledge the contributions

of the following:

Dr. Margaret A. Eastwood CIMCORP
V.P. Products & Systems Eng. 615 Enterprise St.

Aurora, IL

Mr. Bertil Thorvaldsson ASEA Robotics Inc.
,lanager, Product Development 16250 West Glendale Dr.

New Berlin, WI 53151

Mr. Mitchell Ward GM Fanuc Robotics
Director of Software 5600 New King St.

Troy, MI 48098-2696

Mr. J. E. Triggs General Motors
Artificial Intelligence Section
Robotics Engineering Group
Tech Center
Warren, MI 48090

Dr. Robert L. Haar General Motors
Staff Research Scientist Research Laboratory

Computer Science Department
Warren, MI 48090 _

- Mr. S. Shmuter, Supervisor Ford Motor Company
Mr. Youssef Ali Hamidieh Advanced Technology and

Automation Development Dept.
24500 Glendale Ave.
Detroit, MI 48239

Mr. Tom Helzerman, Supervisor Ford Motor Company
all RAACC

15100 Mercantile
Dearborn, MI 48121

Mr. M. Wudzinski Industrial Technology Institute
P.O. Box 1485 '

Ann Arbor, MI 48106

128

l -128-



., ,.,3

STATE-OF-THE-ART REVIEW Date: October 1986 r
OF HIGHER ORDER LANGUAGES FOR ROBOTS

INSTRUCTIONS TO THE USER: The above publication was produced by the Manufacturing Tech-
nology Information Analysis Center (MTIAC), an Information Analysis Center administra-
tively managed and funded by the Defense Logistics Agency (DLA). Since it is the policy \..

of DoD and DLA that this Center be responsive to the scientific and technical information
needs of the Defense community, we would appreciate it if you would complete this ques-
tionnaire and return it to us. In that way we can use your evaluation and the other
information you provide us to more effectively guide this Center In meeting your needs for
scientific and technical information and also to assess the value of this Center to DoD.

1. Name 2. Organization

3. Job Title 4. Field of Specialization

5. Please evaluate this publication (Check off one or more as applicable).

Information irrelevant Difficult to use
Information relevant Use It often
Information outdated liardl,, use it

Information timely Overall very useful to my job
Information technically excellent Overall not very useful to my job

n. 1 s
Information technically satisfactory rot my money's worth er.. %
Information technically unsatisfactory Did not get my money's worth
Easy to use Other _,__ _

6. Benefits you gained by using this publication.

a. How often would you estimate that you have consulted or will consult this :.,-..
product? er day, week, month, or year (Circle one).

%-, ,
b. What is the average amount of time that it would take you to otherwise locate .

this information yourself?_ __ _ _ _

c. What do you estimate this time would cost you?_ _ _ _

d. Can you think of instances in which the information contained in this product
helped to save/avoid costs on a project/task? (e.g., eliminated or shortened %,N.
a test, substituted material or components) Please list these projects/tasks
(e.g., Minuteman Ill/flight test instrumentation system) individually along
with estimated costs saved/avoided. 'p"'," '

e. Intangible benefits (please describe).

7. If you think any aspects of this publication to be inadequate, how can it b
improved?

VI

,, ~ - ' 'V % . . *



(Staple Here)

(Fold on Dotted Lines) ;

4.

.. , .,

DEFENSE LOGISTICS AGENCY
Cameron Station

Alexandria, Virginia 22314 POSTAGE ANO FEES PAID
DEFENSE LOGISTICS AGENCY

OD 30*

Official Business -
Penalty for Private Use, $300

DEFENSE TECHNICAL INFORMATION CENTER I

ATTN: DTIC-DF
Cameron Station
Alexandria, VA 22314

I ft

-------------------------------------------------------------------------- II

8. Please tell us about your needs for scientific and technical information.
What organized body of information would help you in doing your job? Please

include such specifics as the materials, components, devices, or properties

(electrical, magnetic, etc.) for which you need information. Also the format

that would be most useful to you; forecast of number of years that this body

of information will be required by the Defense community; forecast of total

savings to you if this information was readily available.



%0

MVJ

% AF~*'

%

w~ w

% M. eA 9o
r~ F

Lit


