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Overview

MTIAC is a Department of De-
fense (DoD) Information Analysis
Center. MTIAC serves as a central
source for currently available and
readily usable data and informa-
tion concerning manufacturing
technology. The primary focus of
the Center is to collect, analyze,
and disseminate manufacturing
technology for the production of
defense materials and systems.

The funding agency for MTIAC is
the Defense Technical Informa-
tion Center of the Defense Logis-
tics Agency of the Department of
Defense, in Alexandria, Virginia.
MTIAC's data collection and dis-
semination function is tied to
DTIC by a shared bibliographic
data base.

The DoD supports manufacturing
technology programs conducted
by the Air Force, Navy, and Army
as well as by the Defense Logis-
tics Agency. MTIAC's role is to
support the effective use of man-
ufacturing technology by DoD
agencies and the industrial con-
tractor base, at both the prime
contract and subcontract level.
This support is provided through
a range of services from technical
inquiries to bibliographic searches
and special tasks within the scope
of the contract. Services are
offered on a fee-for-service basis
to subscribers and nonsubscribers.
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MTIAC
Objectives

The Department of Defense es-
tablished the Manufacturing
Technology Information Analysis
Center (MTIAC) through the De-
fense Logistics Agency to improve
productivity, reduce costs, and
reduce lead times in the produc-
tion of defense equipment and to
further the use and development
of advanced technologies. By con-
solidating and retaining manu-
facturing information and experi-
ence in a central repository staffed
by manufacturning specialists,
knowledge can be disseminated
and applied quickly and effec-
tively to plant modemization
programs. The Center benefits
engineers and information
spedcialists, government agendies,
and defense contractors by saving
valuable man-hours in locating
data and information and apply-
ing the new technologies. The re-
sult can be reduced planning and/
or production costs.

MTIAC also serves the civil sector
within the constraints of the
priorities of defense needs and
limits on disseminating informa-
tion, because of security classi-
fication, and the export laws and
regulations on technology
transfer.
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Scope of
the Program

Activities Scope
MTIAC performs these activities:

® Maintains a bibliographic data
base on manufacturing
technology

® Maintains a DoD Manufactur-
ing Technology Program (MTP)
data base

® Prepares and publishes hand-
books, data books, reterence
works, state-of-the-art reviews
(SOARs), critical reviews and
technology assessments, con-
ference proceedings, newslet-
ters, and other publications

® Responds to technical, bib-
liographic, and other user
inquiries

® Establishes and maintains pro-
grams of awareness and visibil-
ity of MTIAC capabilities and
services to promote the
Center’s use

@ Performs special tasks for gov-
ernment users, separatelv
funded through the MTIAC
contract.

Further information regarding
MTIAC services, products, sub-
scription plan or additional copies
& this report may be obtained by
writing or calling: MTIAC,

IIT Research Institute, 10 West
35th St., Chicago, IL 60616

(312) 567-4730
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PREFACE

This state-of-the art review was prepared by the Manufacturing Technology
Information Analysis Center (MTIAC) under Contract DLA-900-84-C-1508 for the
Department of Defense.

Higher order languages are defined as textual languages in this study.
However, the study also highlights the trend toward the use of teach pendants
which have incorporated in them some higher order capabilities, noting that
the choice depends upon organizing perception of user friendliness. A major
portion of the review is dedicated to a discussion of currently available
rohot programming languages. The efforts of universities and research
institutes are reviewed as are commercial offerings. Languages are discussed
in terms of levels (servo, manipulator, and task). CAD/Graphic systems are
also covered.

The discussion of languages leads to a section on language comparison,
Language comparison constitutes the principal portion of the study and sets
forth the basis for comparison, a listing of elements to be compared, and a
comparison of several robot programming languages (VAL, VAL II, RAIL, KAREL,
and AIL/X).

Completion of the language comparisons permitted this review to summarize
some of the current issues in the field. Issues include the relationship to
teach vs off-1ine programming, language implementation, trade-offs necessary
as languages approach task level, and the appropriate scope of the robot
programming languages when considering manufacturing cells as opposed to
stand-alone installations.,

The state-of-the-art review concludes with a discussion of special robot
programming considerations associated with defense manufacturing., Batch
manufacturing, communication between contractors and subcontractor, documenta-
tion of such information as cell status, and the impact of remanufacturing are
cited as relevant,
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Recommendations suggest research in areas such as the need for a
programming nethodology that recognizes the totality of robot programming
requirements, world modeling, simulation, communication, sensor technology and
safety. The conclusions emphasize the importance of supporting the entire
robot programming system, noting that if a program is to be written directly
in a language, the language needs to have both high-level constructs for ease
of programming and low-level constructs for explicit control. In the same
sense, programs written using an applications interface need a language that
supports a flexible user interface.

The content of this review has been derived from a review of over 50
references. However the subject of robot programming is constantly evolving
so that the literature had to be supplemented by 13 field interviews with
specialists in robot programming and languages. The interviews are listed in

an appendix. Upon completion, the document was reviewed by experts in the
field, The writers particularly wish to thank Dr, Lloyd Lehn, Office of the
Assistant Secretary of Defense, Acquisition and Logistics, for his guidance

and review., Additionally the authors appreciate comments from the following
reviewers:

Dr. Graham H. Morris
National Bureau of Standards

Dennis C. Haley
lartin Marietta

Bertil Thorvaldsson
ASEA Robotics Inc.

Dr. Margaret A. Eastwood
CIMCORP

Dr. Robert L. Haar
General Motors

Mitchell Ward
GM Fanuc Robotics
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This state-of-the-art review is one of a series of reports intended to
keep MTIAC users abreast of technology and information within the scope of
Manufacturing Technology. Information about other reports may be obtained by
contacting:
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an official Department of Defense position unless so
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official endorsement or approval of such items or
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1. BACKGROUND

1.1 INTRODUCTION

The purpose of this paper is to present a state-of-the-art review of
higher order languages for robots. Research was conducted by a study of
published 1iterature and by interviews with industry professionals, The
literature consisted of papers published in technical journals and presented
at conferences, industrial handbooks, and textbooks. Interviews were con-
ducted with professionals from the defense community (primarily the services
and aerospace contractors), the nondefense community (primarily automotive
industry), universities, and the robot vendors.

The subject of robot programming languages is not mature. Consequently,
there are conflicting opinions on various issues and different approaches have
heen explored. This creates some confusion, particularly for nonprogrammers,
when trying to evaluate the strengths and weaknesses of various languages.

The intent of this review is to illustrate the current issues in robot pro-
gramming, identify the languages, and provide a method by which languages can
be evaluated.

The review is structured into six sections. Section 1 provides a back-
ground of robot programming approaches, including the strengths and weaknesses
of different techniques. Section 2 identifies and describes robot languages
that are commercially available and those that have been developed by univer-
sities and research institutes. Section 3 presents a method by which robot
languages may be evaluxted. In addition, some comparisons that have been
published in the literature are examined., Section 4 discusses some fssues
relevant to defense manufacturing, Recent and ongoing research is discussed
in Section 5. Finally, conclusions and recommendations are presented in
Section 6,

1.2 SCOPE

The objective of this paper is to review the state of the art in higher
order programming languages for robots. The scope is limited to languages
that apply to industrial robots in manufacturing applications. Different
types of robots will have different programming language requirements. A
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manufacturing robot, for example, operates in a very structured and predict-
able environment when compared with that of a battlefield robot. Although the
specific language requirements are different, the general issues discussed in
this paper are generally applicable to all types of robots.

There is by no means an industrywide definition for "higher order lan-
guage" for robots, Definitions range from an "off-line programming language"
to "any language containing higher level constructs" to “task level language."
The definition providing the clearest distinction of what constitutes a higher
order language is that which distinguishes between teach pendant programming
and off-line textual languages. By definition then, all higher order lan-
guages are characterized as textual and man-readable, though the environment
in which they are generated may be off- or on-line with the robot controller,
Teach pendant programming is discussed, however, to illustrate the evolution
and benefits of higher order languages and to fill in the backdrop for the
current debates over robot programming techniques.

1.3 COMPUTER PROGRAMMING L ANGUAGES

One school of thought promotes the use of general purpose computer pro-
gramming languages as the base for robot programming languages. In fact, the
evolution of robot programming languages closely parallels that of computer
languages. A review of the evolution of programming Tanguages is therefore
helpful in providing a perspective from which to evaluate current and future
robot languages.

The earliest programming, using a machine-specific language, required
intimate and detailed knowledge of the computer hardware, Machine language
programming involved coding instructions in binary format (a series of ls and
0s), and each machine had its own format for particular instructions, Editing
was often done through a series of toggle switches on the front panel of the
computer, There were no high level instructions, so even a simple operation
1ike adding two numbers involved a series of instructions specifying where the
data was to be retrieved from, what was to be done, and where the result was
to be stored. A major portion of a programmer's time and energy was spent on

t

mentally translating his program concept, such as "addition," into the corre-
sponding binary codes that would literally activate the computer circuitry

necessary to access, manipulate, and store data.
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i To relieve the programmer of some of the details of machine programming,
a program called an "assembler" was developed. This first programming tool
allowed the creation of programs in a more symbolic fashion using mnemonics
for operation codes and names for data locations. The assembly language
program would be automatically translated by the assembler into the proper
binary machine codes for input to the target execution computer.

Assembly programming is still widely practiced today, for two major

« o

Fd
X

a”

reasons, An assembly program has a nearly one-to-one relationship between its

g
T N

s
.'4'."

instructions and the translated machine language instructions. Therefore,

A
Sl
v

assembly programs yield executable programs that are as space and time effi-

‘1 »

cient as programs coded directly in machine code.

-
r_J

The other major reason is that hardware attached to computers, such as
printers, terminals or servo drives, requires very low-level machine-specific
control signals for operation., The specific requirements of control demand

3'w5_

. that a program be capable of manipulating memory locations very explicitly,

» N
O')I.I

just as machine code programs do. Consequently, assembly programming has a

AR

place wherever the most efficient and the most hardware-oriented programming

)
D i

V‘.

is required. Many of the motion control algorithms in robotics are written in
assembly code because speed of execution is essential,

A major evolutionary step in programming languages came in 1953, when IBM
wrote the first “compiler" for a language called FORTRAN. This first high-
level language was designed to perform "Formula Translation" for engineers;
that is, it converted a series of calculations into a program for solution by
a computer. A FORTRAN compiler, like any compiler, translates a program

written in a higher-level, problem-oriented symbolic language into a lower-

A level, hardware-oriented language such as assembly. During the translation :43‘
X process, other programs or data may be brought together or compiled in a ;::-
. single output file called an object program. ﬁf:
] )
* Thousands of such high-level languages have been developed over the f.’

years, sometimes in conjunction with the corresponding compiler/translator, as 55;

£
7’
D

e was the case with FORTRAN, or sometimes as a stand-alone item requiring major fc:
independent initiatives to develop a compiler, as with the Ada language. The ﬁti

nY

reason a language is different than its implementation (the compiler) is that u;'
the language is problem-oriented while the implementation must necessarily be *Q;,

’ hardware-oriented. This division allows for many languages to be usable on a ﬁS’
; 4 X
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variety of computers by virtue of forcing compilers to address the hardware
implementation issues, leaving the nhigh-level programming language free to
express just the problem itself.

The left side of Figure 1 shows how the simple problem "2 + 3 = ?" is
programmed in the high-level language FORTRAN, and what the resulting assembly
code is after processing by a FORTRAN compiler for a VAX 11/785 computer. The
last stage shows what the actual machine language program looks like after
processing by an assembler., The point of detailing out these processing
stages is that a programmer may have programmed the solution to the question
"2 + 3 =12" in either the FORTRAN, assembly, or machine languages directly.

An even higher level of programming is also illustrated, as a goal driven
query processor. In the earliest days of programming, the only computer
language available was machine, but 30 years later thousands of languages can
express the same problem in a more or less concise manner as the given FORTRAN
program,

The high-Tevel general purpose computer languages have evolved over the
years, and robot programming languages have paralleled this evolution.
Unstructured languages such as BASIC and FORTRAN were the first to be devel-
oped. These were followed by the structured languages such as PASCAL and C,

“any present day robot languages are based on the concept of structured lan-

guages. Currently, functional languages and object-oriented languages are
being developed. Gini and Gini (1)* suggested that future robot languages
will be based on the concepts of these languages. This is due, in part, to an
anticipated change in the traditional Von Heumann computer architecture which
will occur in the near future.

High-level languages are independent of the computer hardware. A program
written in a high-level language will run on any computer with the appropriate
translator. There are two methods of translation. An interpreter translates
one instruction, executes it, then translates the next instruction, executes
it, and so on., The advantage is that the programmer can edit and then
execute a few instructions at a time, which makes debugging programs easier.

*Numbers in parentheses refer to list of references at the end of this report.
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The disadvantage is that interpreted programs run more slowly and are less

memory efficient. A compiler, on the other hand, reads the entire program,
translates it, and produces an object code, which is an executable machine
level program. The advantage to a compiler is that it produces a program that
executes faster and is memory efficient, The disadvantage is that debugging
is a slow process because the entire program must be recompiled each time it
is edited, BASIC is an interpreted language and FORTRAN is a compiled lan-
guage. Those familiar with these languages can appreciate the tradeoffs
between ease of program development and speed of execution., The issue of
interpreted versus compiled languages is very relevant to robotics, because
some languages are interpreted and others are compiled.

The next level up is that of the application programs. These are compu-
ter programs, usually written in a high-level language, that provide a user-
friendly interface for performing some task. Spreadsheets and word proces-
sors, for example, are applications programs. They allow someone unfamiliar
with computer programming to perform operations on a computer. The actual
computer program being executed is transparent to the user. In much the same
way, there are interactive robot programming packages which run on graphics
systems and computer aided design (CAD) systems. The actual robot program
generated by these packages is transparent to the robot programmer. This
topic is explored in more detail in Section 1.6.4,

The most generic criteria for evaluation of computer languages include
the ease of programmability and the degree to which the language is open to
the environment. ™More specifically, Pratt (2) discusses the following eight
issues generic to all programming, which will later be shown as relevant to
robot programming:

Clarity and simplicity of the language concepts

Clarity of syntax

Naturalness for the application

Support for abstraction

Ease of testing/verification/simulation

Programming environment features related to the language
Portability
Cost of development, execution, maintenance
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Every language designer considers these criteria to a greater or lesser
degree. Similarly, a programmer examines the range of available languages
with the same criteria in mind, as each new application arises. Given the
number of criteria here, and the subjectivity of them, it is no wonder that
there are so many languages and that the effort involved in picking one for a
particular application is formidable. The same is true of robot programming
languages.

If we examine robot programming with these criteria in mind, it becomes
apparent that a few of these have been thoroughly addressed, while others have
been virtually ignored. Conventional data processing languages also tend to
p selectively address these points, but it must be remembered that those lan-

} guages have a substantial history of design, development, and revision,

Relative to robot languages, conventional languages are much more mature and
standards do exist, i.e,, FORTRAN 77, COBOL 66, and Ada.

As a final note, it is important to realize that there are two distinct
environments in computer programming: the programming environment and the
operating environment. The programming environment consists of the hardware,
software, and tools used to develop a program. The operating environment
consists of the hardware and software involved in the execution of the pro-
gram, To clarify the point, consider a commercial spreadsheet. The program-
ming environment is located at the vendor's site, and consists of the computer
and tools used in developing the product. The operating environment, on the

other hand, is at the customer's site, and consists of the computer, operating ;Zﬂ.
system programs, and equipment on which the product is used. The programming §$:¢'
AN
and operating environments are impacted by the implementation of the language. Qﬁ“ﬁ
As noted earlier, an interpreted language is easier to debug (programming ,\_Q,
environment) but slower in execution (operating environment) than a compiled Oy
language. In robotics, the programming and operating environments are _ﬂ}
extremely important considerations in the language. This issue is explored RS
further in Sections 3.1 and 3.2. . @
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1.4 NUMERICAL CONTROL LANGUAGES

Another school of thought has promoted the use of APT-like languages for
use in robot programming. The basic foundations of this argument are that
robots are similar to NC machine tools, and there is a large base of experi-
enced APT programmers in industry.

NC languages, such as APT, were developed specifically for control of
machine tools., In effect, APT-1ike languages are high-level computer lan-
guages that allow the programmer to specify the machining operations in a
generalized fasﬁion applicable to a class of machine tools. A programmer
writing an APT program is not concerned with the particular brand of machine
tool controller on which the program will run, but only with specifying a
sequence of functions to be performed within the functional constraints of the
tool. The functions performed are primarily concerned with motion control and
tool statements., A postprocessor translates the APT program into a set of
machine executable statements in much the same way that a compiler transltates a
standard FORTRAN program into machine code executable by a specific computer,
The postprocessor must take into account details of a particular machine tool
controller combination, This requires that each machine have an APT post-
processor, and that it reside somewhere other than in the machine tool con-
troller itself, because the controller is incapable of running such transla-
tion programs. This has led to a problem where a user must maintain a large
library of postprocessors on some computer such as a CAD system, A solution to
this problem has been the introduction of the RS494 standard for cutter loca-
tion (CL data). Essentially, CL data is a standardized output of an APT post-
processor which is input to a machine tool controller, The controller then
takes care of any machine-specific translations internally (see Figure 2).
This is worth noting, since a similar standard for robot programs called
IRDATA has been proposed in Germany (3) (4),

1.5 ROBOT PROGRAMMING LEVELS

Just as there are various levels of computer programming, there are
various levels of robot programming. The very nature of programming demands
that problems be representable in a language natural to the level of interface
with the man or machine., Thus, a subset of the English langquage is a good

choice for application programming, such as the trivial query "2 + 3 = ?" in

ooooo

L=
X
%

o P"‘

%

-
[% S

<o

>
4

by

2

%
k3%

.

o TEEsNEss b
A o

P
L

b & % S Sy %

. £
)'.‘I"."'

e,

e AL
B ooy
LrHLs

& 7

L
o

£ "
« Tt
-

E'&’_’ﬁ'

LN e
AL RS
R AN )

'b"l NN

Pl
¢ L7

. l'
I
3

e

-

-

LA 4
"ty
Pt s

RS i
. LA S
- @Sy

A
{':." '11. e .".-_".
a / & FORCIA A 7 < '.'

’ .' ""'VI'
N

L4

4

¥ 5 _w 3 * & @
T S
PN Sy Y Cs
o e

]

'-I'I’:'
[ ]
RAAR



3ot 43¢ 0a® fa®

T

AN

(R G 858
r x..n.mra LA

AR

R e o
.T J r\u-\..-.\.\\.

(1YLl :33IN0S) "PIEPUEIS h6Y SH Yl O 3N g 3Inbi4

0100] autyoe

10s$320.4d3.d [e—

g 1001 aulyoep

105$3201d1504g

J0ssadsosdaid T‘

V 100 auiydep

10ss300.1da.d |e

2100 auyoep

v6vSH

108535040150

10553001034 |

g 100] auiydepy

0
|00 | aulyse

J0ss320.4disod

10853204da.d |

V 100 3uiyoey

g
|00} auydep

Y
.......,...,. o).’ AR

D R

10553201d1504

10ss32%04dasd -—

— e ——— — — e c——— —

v
[00 | aulydep

Asesqi)
10ss320.4d1s04d
- .

:‘-}'n e \"'\

Z
‘.

~ e ‘- e J P .
N A AT NN AN N AT

3apod v6vSH
1dv joasn
L.
e
, ‘
(2]
[}
\A'.
R
7 d
"
Z
Far.
74
-~
SWwidIsSAg b3
8po) waung
1dv 30 ‘
jeandA} ‘4
¢
\
el
,
4
hY
Vc.
R
e
%
>
P < KKS gt



C N e 89 8% 8"

e

B

‘!_

R §
|

s

- ML

Figure 1, while rigidly defined binary codes are more suitable to direct
control of binary digital computer states. Although it is desirable for the
user to express the problem in a high-level textual fashion, it is impractical
for a digital computer to interpret such an expression directly. The conver-
sion process, called translation, is often used off-line to decompose high-
level user programs into correspondingly lower levels of commands that can be
easily and unambiguously executed by the computer or controller, This process
does not burden the runtime system, because the translation process occurs
off-1ine. Another method of runtime execution, called interpretation, per-
forms a similar translation process immediately before the execution of
individual program statements. Interpretation may significantly affect the
overall program execution speed, though improvements in hardware design indi-
cate that this potential bottleneck will all but vanish in the near future.

In the computer programming domain, a user program normally goes through

two translation stages before becoming “"executable machine code." Similarly,
in the robotics arena, translation is the more frequently used process than
interpretation. The left side of Figure 1 shows what the typical three levels
of computer programming languages look iike. Each of the three programs is
semantically identical. A programmer might have written his solution to the
problem "2 + 3 = ?" in either of the three levels, or submitted it to the goal
driven query processor. It should be obvious which level is most desirable.
The remainder of this section explains how robot programming may also occur at
various levels, with a variety of techniques, as indicated by the right side
of Figure 1.

Bonner and Shin (5) describe five levels of robot programming: task-
oriented, structured programming, primitive motion, point-to-point, and micro-
computer, The microcomputer level is the lowest, and consists of servo com-
mands and sensor interfaces, Point-to-point is a program consisting of
commands similar to those generated in some teach pendant programming. This
consists of endpoints for motion and, possibly, specification of the path
between the endpoints, Primitive motion programming is expanded beyond that
to include simple branching, subroutines, and primitive parallel execution,
Structured programming is the level containing constructs similar to those
found in structured programming languages. A program at this level is still
in terms of motions and end-effector commands. The highest level is the task

A
v ]

)

Rl

Y (XA

5
’

N

LS L

W AR L 5 AA
ARG A

L

<

ne

yal NNy R,
0

P’ CNP . s S Ay
q'u'r,l,'l ‘-’."‘h"r?\;l{l

s

s

>
o
-

fglf".- -.l' '

S



O 06 20 00

OIS TR TSrrrX - TR

- o S I

level., At this level the program exists in terms of tasks to be performed
rather than motion sequences., Motion is defined in terms of coordinate frame
transformations, parallel execution of tasks is possible, and the concept of
state variables which describe the environment exists. Within this framework,
most current programming languages reside at the primitive motion and struc-
tured programming levels.

Yong, Gleave, Green, and Bonney (6) consider four levels: joint, manipu-
lator, object, and objective, They actually consider one level higher than
Bonner and Shin by proposing the objective level, At this level a task is
specified at a very general level such as "spray interior of car door." This
is a goal that is broken down into a series of tasks. Within their framework,
most current programming languages reside at the manifpulator level.

Other authors use different levels, but all of the approaches are very
similar, The important thing is to note that there are basically three levels
in robot programming that represent distinct conceptual differences in program
content. We term these the servo level, the manipulator level, and the task
level.

At the lowest level, the servo level, a program consists of a series of
endpoints, speeds, and input/output commands. Each endpoint is represented as
a group of joint coordinates, so that a six-axis robot has six data values
representing one position. This type of program, which is often produced by a
teach pendant, is robot specific. Input/output commands typically entail
reading a switch closure (input) or energizing a relay (output) after a motion
has been executed, The path between endpoints is generated by the robot
controller by calculating a series of intermediate points between the end-
points. The servo control then causes each joint to drive to its target
position at the first intermediate point. When all joints have achieved their
target position, the robot drives to the next intermediate point, and so on,
until the final endpoint is reached. In terms of robot languages, it is
important to remember is that the program must specify a series of individual
joint positions. While this level of programming 1s quite adequate for some
applications, trying to program an assembly task at this level would be virtu-
ally impossible,
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At the next level, the manipulator level, a program has explicit motion
commands required to perform a task, some sensor capability, and branching and
loop constructs for error handling. It is at this level that most programming
languages reside today. Motion is programmed using commands that specify
moving from point A to point B, where points A and B might be specified by
Cartesian coordinates. The joint positions required to achieve this motion
are calculated when this level is decomposed (translated) into the servo level
commands, and this is transparent to the programmer. Variables, macros,
procedures, and looping constructs allow the programmer to write a small sec-
tion of code to do repetitive tasks such as palletizing. This is in contrast
to the servo level, where each position in the pallet must be explicitly
stated in the program, Conditional statements like "if sensor = 0 go to DROP-
PART," allow for branching control of the program to different sections of
code based on measurement of some input, an essential characteristic for
handling errors. The manipulator programming level is much more powerful than
the servo level, but does have some disadvantages. These are explored in more
detail in Section 1.6.2. The important thing to remember at this point is
that in order to perform some function, the programmer must explicitly specify
all motions and gripper actions.

At the highest level, the task level, a program is a task specification,
At this level the programmer may specify "put box A on box B" and decomposi-
tion will generate a list of all motions required to perform the task. The
output of the decomposition is a manipulator level program. The key distinc-
tion between task and manipulator levels is that task level programs are
stated in terms of the objects to be manipulated and the tasks to perform,
while manipulator level programs are stated in terms of the motions required
to achieve that task. Some current robot languages have limited task level
capabilities, but no task level language exists, Many problems need to be
solved before task level programming becomes a reality, and these are explored
in detail in Section 5.3,
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1.6 ROBOT PROGRAMMING TECHNIQUES

A great source of confusion in the literature is the failure to distin-
guish between robot programming levels and robot programming techniques.

Figure 1 compares the levels at which computer programs are created and
the corresponding levels of robot programs, It also shows the programming
techniques used to create computer programs versus robot programs, Program-
ming techniques consist of on-line teach pendant programming, off-line textual
programming with an editor, and off-line programming using a graphics or CAD
system, Each programming technique results in a program that resides at some
level, Also, it is important to note that a certain technique can result in
programs at different levels. For example, some teach pendants generate
manipulator level programs, while other (older) pendants generate servo level
programs. This is analogous to writing a FORTRAN program and an assembly pro-
gram with an editor. The same technique is used to write both programs, but
they are at different levels. This section summarizes current robot program-
ming techniques, their relative advantages and disadvantages, and how they
relate to the three levels discussed in Section 1.5,

1.6.1 Teach Programming

One of the oldest programming methods for robots is the teach mode. This
was developed before general purpose computers were available for robot con-
trollers, Teaching is usually done by an operator on the shop floor, and can
be done by literally moving the robot gripper to achieve the desired pattern,
For example, to program a spray painting robot the programmer (usually a shop
floor operator) leads the robot through all of the motions for locating,
moving, and orienting the spray gun. Two types of path control are possible
with this programming method: continuous path and point-to-point. Point-to-
point can be further broken down into controlled path and coordinated motion.
In continuous path control, a series of closely spaced points is recorded as
the programmer moves the robot, and the robot will repeat the prescribed
pattern with all of the details and idiosyncrasies present in the programmer's
motion., With controlled path, the programmer specifies the endpoints and the
type of path (straight line or sometimes circular) to follow between the
endpoints. With coordinated motion the path is unspecified, but all axes
arrive at their endpoints sinultaneously,
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Teach programming can also be accomplished with a teach pendant, a hand- NN

held device enabling the operator to position and orient the robot by watch- e

ing, but not directly touching, the robot. Motion is controlled with a series ;:$

of push-buttons on the pendant, Either each axis is controlled separately or, o~

in some cases, the robot can be moved in a straight line in rectangular, ﬁzi
cylindrical, or spherical coordinate space. When the robot has been posi- iﬁ;

tioned at the desired location, the endpoint is recorded by the programmer. R

There are advantages and disadvantages to teach programming. The primary ;Eﬁ

advantage is that it is easy to learn. The programmer can be an operator c¢n ":%

the shop floor who is familiar with the application, as opposed to a trained :;“

computer programmer. Also, it is relatively easy to program a path in a ;i;

complex geometric situation with many obstacles., Since the programmer can ;Sj

hi position the robot under load, repeatability is the only source of error when ﬁfﬁ‘
' the program is executed. There are also several disadvantages to teach pro- 1if

x
-

o gramming. The robot is rendered unproductive during programming since the ¥$§
;: robot itself is being used. Programming carnot rely on previously developed Eﬁ‘
-* (]

general purpose procedures to perform tasks, such as those provided by subrou-

'.-

»e
LS

tine libraries. ™Modular program development is hampered for similar reasons

C -
et
L]

5\

as noted in Section 3.2. Programming can be dangerous since the operator is .’i"
;E close to the robot when teaching and debugging the program, Finally, teach é;
programming will be unsuitable for use in a highly automated and flexible th
o environment, such as a small batch automated factory of the future, ;:‘
& Another technique of robot programming that should be mentioned here is ;ii
‘: off-line teach programming. This involves using a duplicate robot in a repli- ;i?
- ca of the manufacturing environment, The program is generated using the teach }j}'
- mode in this simulated environment while the production robot continues to -3-
f% work, Later, the program is transferred to the shop floor and the positions ij;'
are "fine tuned" to account for differences between the actual shop floor and :;f
,? the mock-up. In a production operation using many similar robots in a rela- :i:.
tively uncomplicated environment, this can be a viable programming system. R
. ~
té The program generated by some of the older teach pendants is at the servo tg:
level. The program is a set of joint coordinates, speeds, and activation E?S"
,‘ signals. It is not very man-readable, which is the reason editing is done in i:"
conjunction with the robot. Typically, the robot controller program will read ;E*
}Q' this servo level program and generate the appropriate signals to activate the 3E§:
> 14 g&}
:uf:
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servo drives. With recent improvements in hardware leading to increased
processing speeds, some vendors are electing to write high-level language code
to interpret the servo level program,

Teach pendants of recent years are considerably more powerful, Some are
capable of generating and editing manipulator level programs, teaching points
as needed, and controlling virtually every element in the workcell, The

~
A

technique of teaching is no longer necessarily related to a particular level

£ 2 o
'5}'-&%

5y '-I\"s hJ

of lanquage. Some major robot vendors are committed to increasing the capa-

M 4
&N
S

bility of teach pendant programming, including some features of high-level

]
L]
I

languages. Even as it exists today, teach pendant programming is adequate for
a wide variety of tasks., The vendors think that this fact, coupled with its
simplicity, outweighs its disadvantages. A current issue in robot programming
is whether teach pendant or off-line programming is the better method of pro-
gramming robots., This issue is explored in more detail in Section 3.5.1.

1.6.2 0Off-line Textual Programming

The disadvantages of teach pendant programming led to the development of
off-line textual programming languages such as VAL, KAREL and AML. Sections
1.3 and 1.4 state that there is a difference of opinion as to the best
approact: for developing these languages. RAPT, MCL, LAMA, and others are
based on the APT NC language, VAL, KAREL and others are based on extensions
to high-level computer languages such as BASIC and PASCAL. Still yet another
approach is to develop a new language from the ground up as discussed in
Section 3.5.2. This section covers the general issues involved in off-line
programming techniques.

There are several advantages to off-line robot programming as opposed to
on-line programming with a simple pendant., The major ones are listed below:
1. The robot is not rendered unproductive during programming

time. In small and medium batch operations, this is
extremely important,

O0ff-line programming allows for easier incorporation of
vision and force sensors, which is required in assembly tasks,

. @
P R T}

4
0

.l'!lni"

0ff-line languages allow synchronization of external equip-
ment to be handled quite efficiently. In many cases a

robot program becomes the master program in a manufacturing
cell, after extensive off-line simulation and optimization,
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Although there are many advantages to off-line programming there are some

Branching and looping constructs of a language allow
programs to perform customized error handling. For
example, a limit switch in the gripper can be checked after
picking up a part, If the part is not present, program
control can be branched to a specific routine written to
handle that kind of error condition. Depending on the
level of language generated by the teach pendant, an on-
line programming system may also have this capability,

Repetitive tasks such as palletizing can be programmed with
relative ease by using macro or subroutine capabilities.
Newer teach methodologies also have this capability.

A library of subroutines can be developed for use in future
programming tasks. Previously programmed solutions can be
utilized to write new programs instead of coding every
program from scratch,

Several programmers can simultaneously work on various
parts of a large program, and then their individual modules
can be linked together,

0ff-line programming clearly separates the programming
environment and the operating environment. Sophisticated
programming tools can be used to aid in program develop-
ment, while not burdening the computational capabilities of
a controller,

major disadvantages. These are outlined below:

1. It is extremely difficult to visualize a robot path in

!! three-dimensional space. Trying to determine the reacha-

- bilities, proper orientations, and collision-free paths
poses significant problems. This is much easier to do with

&Q teach pendant programming, where the robot path is created

o as the program is written,

2, Limitations of robot accuracy may result in execution

EE errors. The accuracy of a robot is the ability to position
the end-effector at a specified target point, relative to

~ some absolute external frame of reference. The deviation

) between the point moved to, and the point actually desired,
is a measure of the accuracy, Inaccuracies result from
loading conditions and from the configuration of the manip-

i ulator in the workspace, Tight absolute positioning toler-

O ances may not be achievable with a program generated
strictly off-1ine unless sensors are used to position the

= robot with "terminal guidance.,"
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3. The programmer cannot anticipate all the exact locations
and orientations of equipment in the workspace., Therefore,
all programmed endpoints are likely to be in error by some
amount. The program generated off-line may need to be
“fine tuned" on the shop floor prior to production, perhaps
using a teach pendant, or performance may suffer. The
alternative of massive sensor integration may not be econo-
mically justifiable,

4, Program modules that work in isolation may not work when
linked together and run on the robot. This is often a
result of the dynamics of the robot,

5. The exact path that will be taken by the robot is not often
known at programming time. This is because the robot con-
troller generates its own intermediate points as a function
of initial orientation, final orientation, load, speed, and
sensor input. Also, the robot may stop in the
middle of executing a move, reorient itself, and then con-
tinue. This is a function of internal software which
attempts to avoid having the robot exceed travel limits on
the various linkages, or stretching the manipulator umbili-
cal cord.

6. The full syntax of a language may be very difficult to

learn if one is not a computer programmer.

The of f-line programming technique can produce programs at any of the
three levels, It is not practical to write servo level programs in an off-
line mode, so this is seldom, if ever, done. Most off-line textual program-
ming languages are at the manipulator level, although some do have a little
task level capability, Some manipulator level languages are unstructured,
some are structured, and some are functionally-oriented. Typically, robot

"l"' ‘A‘

controllers use the manipulator level languages as input. Software internal o)

N
to the robot contrcller, i.e., a translator or interpreter, then breaks down ;
these programs in several steps until the actual serve signals to the drives rE

are generated,

The problems with of f-l1ine manipulator level programming are the driving
force behind the development of task Tevel languages. At this level, programs
can be written in an off-line mode by having the programmer specify tasks to
be performed, The problems associated with collision avoidance, orientation,
and so forth are solved by a computer using internal models of the world,
There are significant problems to be overcome before this becomes a reality
(Section 5.,3). It is likely that first task level languages will be processed

in an off-line system where they will be decomposed (translated) into manipu-
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in an off-line system where they will be decomposed (translated) into manipu- ::
‘ lator level languages for use by the robot controllers. Eventually, task -'
: level languages themselves may be input directly into the controllers, perhaps A
gq- even using an on-line teach pendant, E‘:
™ 1.6.3 Augmented Teach '
Q’ Beginning with the development of the first commercial robot programming "
‘ language (VAL) in the 70s, vendors have often combined the method of textual ;:;:
_\' programming with a teach pendant session to produce an executable robot pro- E‘v
w gram, This combination of techniques can result in a flexible and economical :::‘.,
approach which we will refer to as "augmented teach" as opposed to the simpler -‘
g teach of Section 1.6.1. .::':.::
E Augmented teach programming results in the generation of two sets of
data. The first is a simple text program file composed of a sequence of o
. statements similar to those generated by off-line textual programming., Posi- ?‘,,.
::; tions in the robot workspace are referred to symbolically, rather than with @
. numerical coordinate values. The second data set is a file containing a E::
i listing of the position symbols used by the text program, associated with
coordinate values to be used at execution time. This data set is obtained by W“'
l;f. manually jogging the manipulator to the actual points in space corresponding ::
M to the named positions, and then storing the actual joint angles or coordi- l'-:'.
! nates of the manipulator, l
A
” Individually, the data sets are insufficient to run the robot., Placed ,’.';::.
R’» together, by a compiler or loader, an executable robot program results. There E
& are two advantages to this augmented teach method. First, the text motion f{;
~ program can be developed off-line and simulated to some degree. Second, the .,.
;3' program can be reused with different coordinate data sets, corresponding to
. different part geometries.
f.\ The implementation of VAL and CIMPLER and many others requires the coor- °
., dinate data set to be created during a teach session with a robot. Other ‘:‘-:
t'.’.- systems, such as the ASEA O0ff-line Programming System, permit the coordinate :'.:
, file to be generated without robot interaction if desired, possibly using :f-‘,
oL coordinate values from a CAD system, and thus can be programmed entirely off- -';}
line. Their system allows a third parameter data set to be incorporated off- N7
& line as well (7), j',':
| o
- L%
e:-‘. - 18- !:
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The key value to the augmented teach method lies in the separation of
program structure and geometric data values. Consequently, a given program
may be used without modification to manipulate different parts, simply by
changing the coordinate value data sets.

1.6.4 CAD/Graphics Systems Programming

Since one of the major problems with off-line textual programming is in
visualizing robot motion, the natural places to turn to in solving the problem
are graphics systems and computer aided design (CAD) systems. There are
several types of systems here., The first is a graphics system used to read in
a manipulator level program and, based on a model of the robot and surrounding
equipment, presents a simulation of the robot motion. The programmer can then
check for collisions, proper orientations, reach, and so forth, The other
type of system runs an application program in which the programmer interacts
with a graphic display of the robot in order to generate the program. *otion,
for example, may be programmed by indicating endpoints with a light pen. Note
that in the latter system the programmer actually generates the program with
the aid of the simulation, while in the former system the program is completed
prior to the simulation. Note also that the latter system is robot indepen-
dent. The same applications program can be used to generate programs for
several different types of robots. Postprocessors are used to convert the
application program output into robot specific languages. The application
program itself may facilitate programming at the task or manipulator levels,
but the output from the postprocessor is typically at the manipulator level,
In either system, models of the robot, equipment, or parts may be extracted
from a CAD data base. Another method of programming is to write a manipulator
level program using a text editor and allow object descriptions to be supplied
by the CAD data base. The variety of uses for CAD and graphics systems is
illustrated by the commercial products developed by McDonnell Douglas Automa-
tion (Section 2.5.2) and others, Since there are no clear delineations be-
tween these systems, we shall collectively refer to their use as CAD/Graphic
systems programming.

- 19 -

PP

"y )Y __s)‘-__.'\)'- I T R A A AN AN N ‘.";4'.'_.

e A Cu w, o Wy w7y T €
WAY RIS PRyl sty Ao, M WWHDA N

W N

g

ve
rd

P
S

e

el

A
%)

i

o

A
AR \}

g

~2.9,
P

1.-l ..:".:'}-

P L L
Ny
RO

2

"
e

P

oy



o 0,80 0 Y 8T 9 Ny 4 - .ol 7, PR

t
'~
ARRN

e
'l.‘,-‘

s

-
R
’d

o

LS S
P
e’

,
%

-"'

oY,

The advantages to having a simulation system are that it provides a

)

&

'v’%

: visual aid for analyzing motion (8), time studies can be performed (9), and

y workcells can be designed (10) by trial and error methods. This can result in

P
5..'
U A o
"\{'i'r'

enormous time savings in robot program development and cell layout. The
X economics of small batch assembly are heavily impacted by the cost of the
robot and auxiliary hardware and the assembly cycle time (9). While hardware
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¥ costs may continue to drop, immediate reduction of assembly costs is afforded

2%
< &

through time studies designed to optimize not only the work cell layout but
also the robot program design.

5,
%

[ Phe .
'éfffbﬁ
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A further advantage to the interactive systems is that the programmer

4|

X need learn only one application program., There are, however, some significant
limitations to these systems (3). First, time studies are only a rough

: approximation, This is because the systems assume instantaneous accelerations
and deccelerations, There is no modeling of slop, backlash, or overshoot in

MCAl
»

the joints., Simulation of these effects would require a complex dynamic model

S

| &y i oy

of the robot and these are not available from the vendors. Second, most -

<Ll
(4

systems use wireframe models, and therefore do not have automatic interference

L]
ph
o5,

checking. The programmer must run through the simulation from different views
and visually check for collisions. Wireframe displays of complex scenes are
N sometimes difficult to interpret. Solid modelers are available at a reason-
able cost, but are very slow. Third, sensory inputs to the robot, such as
vision and force, are difficult to simulate. Finally, many of the problams
3 present in off-line textual programming are still present. The simulation is
not an accurate geometric representation of the real world, so motion commands
) nust be "fine tuned" on the floor. Also, the software that causes a reorien-
tation of the robot in the middle of a move is not simulated. As with off-line
textual programming, the final debug of the program must occur on the shop

floor.

. Task level programming will rely heavily on CAD models for information
needed to decompose tasks into the appropriate motions. CAD-based programming
techniques will therefore probably be the most popular method used to generate

L 2 4

task level programs, Task level programs could be generated solely by textual
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™ means, but this would require describing all of the features of the robot, the h§

parts, and the environment explicitly with textual commands. When it is ol
' possible to store libraries of models in CAD, it is unlikely that the textual ',‘

approach will be taken,

.Q'. ot
g 2
» 1.7 ROBOT PROGRAMMING PROCESS Aoy
o The program development cycle for robotics is markedly different from E:g
- computer programming, for several reasons, It is worthwhile to compare and -Sj'
f;: contrast the process of programming in these two areas., From this comparison, Ei'
insight may be gained into the problems of robot program development. Figure 3 v

35 illustrates the off-line robot programming process. - %
In the most general sense, robot programs function to manipulate elements E :

g? in the immediate environment, according to dynamic real-time constraints ﬁf:
imposed by the process or material involved. Computer programming, by most g{,

i; definitions, is concerned with the manipulation of symbolic data according to 337
" constraints based on the nature of the data or manipulation methods. In §h
< short, robot programs must be concerned with the real-time control in a rela- éi
I‘ tively unconstrained environment, while computer programs for the business f}x
" world ordinarily operate with few timing constraints over well defined sets of =
ﬂf data, As an obvious consequence, error handling comprises the largest part of {i
robot programming, while input and output statements play a relatively small }E

Er
L

role. The converse is true of business-oriented programming, which primarily

)
DAy
functions to process input data files and create output files, g3
L. "N
. O
}: A second reason for the difference between computer and robotic program- ;:\
- -~
ming lies in the physical division between the programming environment and ;:‘
3f operating environment., The programming envirorment is where the programs are E:
- created, revised, and sometimes simulated, Simulation is the only mechanism &x
Y
- whereby the functionality of the program may be checked before transporting ﬁ ;
o v,
< the program to the operating environment., In the operating environment, the ;:‘
o actual semantic debuggging session occurs. 55
> (Q
A
- Note that in computer programming, after a program is checked for proper N
o syntax and converted into an executable form, it is tested on the same system :
' with sets of good, and then bad, data designed to test specific portions of ®
« the program. The resulting output file may be rigorously checked for errors :E:
3~ which can be traced back to program errors., This develop/test/rewrite cycle :f,
)
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Figure 3. The off-line robot program development cycle. (Source: HHTRI).
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J,,'h
may occur many times before achieving acceptable results., In off-line robot Esi
. programming, after a similar conversion step, the program is transported to a ,*’
v different system having a markedly different architecture and set of N
- resources. It is then tested by allowing the robot to physically perform the ?‘
e programmed steps. The manual, and often unrecorded, observation of the test Et.
then serves to motivate changes to the original program, accomplished back on et
W the development system. The number of testing sessions available for a robot >
) programmer is limited by the costs involved in using the robot and consumable ';a
Ej materials. Beyond a few such iterations, development costs become prohibitive, .ii
- To summarize, the robot program development cycle is different from that %;}
of normal computer programming, because of differences in the program func- N ”;
’ tionality, development and operating environments and testing methodology and :.%
i; costs, The capability of a robot programming system can be evaluated using é{
criteria developed for computer programming, as is shown in later sections. ®
:2 The program development cyle, leading to a measure of programmer productivity, g;&
e can be discussed in terms of the process outlined so far. The time lag be- :r~
, tween program creation or revision and on-line testing can be reduced by using n ;
il a higher level of language and more powerful tools in the programming environ- :u
- ment. The number of develop/test iterations necessary to achieve an accept- ?ﬁ;
:ﬁ able program is partly a function of the program design. A stronger design is 1&:
’ achievable through language features, combined by an experienced programmer, ;;E
|' to utilize sensors for the detection and analysis of error conditions. The ’r
[~ number of iterations and the compactness of the development/test cycle form a :;:.
t: measure of the cost of robot program development. The issues involved in the éig‘
AN programmability of a system are thoroughly addressed in Section 3. :E:'
oy .
o 1.8 SUMMARY o
- Tw> robot programming issues have been identified thus far, There are ﬁg;
W two general philosophies to robot programming approaches: teach pendant lfi:
. programming and off-line programming. Among those who consider off-line $?¢
:; programming to be the proper approach, there is further disagreement as to Ezi
- whether the language should be an extension to existing general purpose compu= 3:3
o ter languages, an extension to NC languages, or a totally new language. Teach RO
’ pendant programming was the first technique and is adequate for a variety of :{
;G tasks, Some vendors are striving to increase its capability either by .§§:
| Y
. 4
3 n
| NA
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increasing the power of the pendant or using the pendant to fine tune an
existing off-line program. Off-line textual programming languages offer more
power, but are considerably more complex to learn and have other drawbacks.
CAD/Graphic techniques have been developed to address some of these drawbacks.

Whatever technique is used to program a rcbot, the output from the tech-
nique is a program that resides at one of three levels: task level, manipula-
tor level, or servo level (see Figure 1). Task level programming is still in
the future, but some languages have begun to incorporate task level capabili-
ties. Programming at higher levels is easier for the programmer, but still
requires that the program be decomposed into the servo level commands neces-
sary to move the robot, This can be done in an off-line system through trans-
lation or in the robot controller itself. To incorporate this capability into
the robot controller requires fast and powerful computational ability at a
reasonable cost. Current trends in hardware seem to indicate that this is a
realistic expectation,

Section 2 of this report reviews the current progrenming languages,
Section 3 investigates the requirements of a robot programming language, look
at the basis of comparisons that can be used when evaluating languages, and
compare a selection of languages.
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2. CURRENTLY AYAILABLE ROBOT PROGRAMMING LANGUAGES

2.1 LANGUAGES IDENTIFIED AND CLASSIFIED

Table 1 is a list of many of the higher order robot languages that were
identified during this effort. This list was prepared with an open mind and,
if in doubt, a language was listed. Note that some of those listed, i.e., MHI
(1960) and WAVE (1970), formed the basis of other languages and rad a world-
wide impact on robot language development, but are not to be considered as
currently available languages. Only those languages that have been accepted
as being applied to robotics were listed. For example, Ada has been suggested
as a base for a robot language (11) (12) (13), but was not included because it
has not yet been accepted as such.

Initially, we identified 89 languages. This list was reduced to include
only those cited in more than one publication. It was assumed that those that
had only one reference were of transitory interest and were eijther dropped as
developments or incorporated into other efforts.

The literature can be confusing as to the popularity of any one language
because the frequency of publication is based more on the marketing approach
of the developer than on the merits of the language. University developed
languages may be the subject of several papers, but may never have been used
commercially, On the other hand, some commercial vendors are not prone to
publish papers on their current R& efforts, It is difficult, particularly
among the more recent developments, to determine which languages are likely to
survive in the commercial marketplace. An analysis of several languages that
seem to currently have major support is in Section 3.4,

The identification of the developer is not always as clear as one would
like, In fact, in some cases the literature was contradictory in this
respect. Individuals have written papers on a language after they left the
company or institution in which it was developed. In other cases development
was done under subcontract or jointly between several organizations, Also,
many of the languages are largely based on other languages, so the reported
developer may have only modified or extended to a small degree a language
developed elsewhere,
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The year listed is the earliest year associated with a specific language
Again, the literature is contradictory. In some instances the language may
have been fully developed and in use prior to the year listed. In other
instances development of the language may have been under way or just getting
started in the year listed.

The basis for a given language is listed from comments, often by the
developer of the language itself., The distinctions here are modest at best
and for many of the languages no basis is listed. This does not mean that it
was a totally new approach, but only that no reference to the base language
was found.

Where possible, the actual robot arm on which the language was run is
listed. This does not necessarily mean that the language runs efficiently or
is commercially available on the arm, only that it has been tested on that
arm. Robot vendors are the best source of information for determining what
languages are available on their robots. Table 2 lists some commercially
available languages and the robots on which they run,

When a language is in commercial use, it is listed as such. It was
assumed that simply offering to sell a language does not make it commercial,
unless it has actually been installed by user companies.

The language level is indicated in the last column. Although no task
level language actually exists, those languages having some task level capa-
bility are listed as such to distinguish them from purely manipulator level
languages. CAD/Graphics systems are also listed.

Several references (1), (5), (14), (15), (16), (17), (18), (19) briefly
discuss some of the languages listed in Table 1, and then go on to compare
them on several features, Other references are devoted entirely to a single
language. This information has been compiled and is presented in the sec-
tions below. The information is not intended to be detailed, but gives a
flavor of the issues explored in robot language developments and how the
languages have evolved, The summaries of lanquages in the literature tend to
hit on a few key points for each language, which may at first seem to be a bi
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TABLE 2. CURRENTLY AVAILABLE COMMERCIAL LANGUAGES
CONTROLLER ON VENDOR-SPECIF{C
ROBOT VENDOR LANGUAGE WHICH LANGUAGE RUNS LANGUAGE
AMERICAN ROBOT AR-BASIC MERL IN YES
ASEA ARLA §-2 YES
CINCINNATI MILACRON ROPS all mode!s YES
CYBOTECH -1 RC6,RCT -
DE VILBISS -2 - -
GCA CORP, CIMPLER CIMROC YES
GENERAL ELECTRIC -3 - -
GMF ROBOTICS KAREL RF YES
HIRATA CORP, HARL =2 HAC Cell Controller YES
HOBART MYBAS IC - YES
IBM AML 7532 YES
1BM AML/2 7575,7576 YES
MOBOT -4 ALLEN BRADLEY PLC NO
GE PLC

PRAB ROBOCAM/RISE  G-SERIES YES
REIS ROBOT-Star 6-70 YES

LR-30

L4-70

v-15

H-15

H-30
SE KO DARL, DARL-11 DETRAN YES

DARL 11-180

THERMWOOD CORP, T-CAM Z-8000 NO
UNIMAT | ON VAL, VAL-2 all models NO
,-Menu-drlven user interface which allows off-iine programming through

teach pendant,

2-Teach pendant programming only.,

5-No longer support Help

4—Ladder loglic programming,

Source: 11T Research
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obscure. For example, one language description talks about coordinate system
transformations, another talks about a different approach to motion specifica-
tion, another mentions multitasking, and so forth., These issues are explored
in detail and put into the context of robot programming in Section 3.2. At
this point, it is sufficient to note what issues are being addressed and what
approaches have been taken,

2.2 SERVO LEVEL LANGUAGES

These languages are the result of older teach pendant programming
methods. They are not languages in the sense of computer languages, but are a
means of programming at the servo level, We would not consider these to be
higher order languages and therefore do not discuss them in this section,
Included here are T3 (Cincinnati-Milacron), Funky (IBM), and AR-SMART
(American Robot). As noted in Section 1.6.1, however, some vendors have
commi tted themselves to improving the capabilities of teach pendant program-
ming, Current R&D efforts in this regard are within the scope of this paper
and are noted in Section 5.1,

2.3 MANIPULATOR LEVEL LANGUAGES

Manipulator level languages are typically written using editors of some
sort, but may also be output by newer teach pendants or a CAD/Graphics
programming system, In the latter case, the language itself is discussed here
and the programming system is discussed in Section 2.5. The languages have
heen separated into those developed by universities and research institutes
and those developed by commercial vendors, Within each of these groups, they
are listed in approximately chronological order, Usually, languages devel-
oped within the research environment are not meant for commercial release;
they are developed with a particular research goal in mind. They do, however,
influence the development of commercial languages.

2.3.1 \Universities and Research Institutes

WAVE. Developed in 1973 as an experimental language for research pur-
poses at Stanford Al Laboratory, the objective of WAVE was to find the limita-
tions of robotic theory, rather than to perform manufacturing tasks, (14)
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the use of subroutine calls from a general purpose program, Applications
cited for this language are material handling, inspection, and assembly. (14)
' (5)

YML. This was developed at Milan Polytechnic, Italy in 1980. It was

.

: intended as an intermediate language between artificial intelligence systems
and the robot, It is used to transform points in Cartesian space into joint
space (manipulator to servo level). (1)

N LENNY. Developed in 1982 at the University of Genoa, Italy, the key

issue of LENNY is its functionality. It was intended as a language to be
understandable by humans and to be powerful enough to express complex chains
of actions, processes, and concurrent computations, (1)

LPR. Developed in 1983 as a joint venture by Renault and the University

v
rJ

2

of lontpelier in France, this language is based on definitions of state graphs

e 1

and transitions between states. The state graphs are defined with a hierar-

“& N
e e I 3
[ A

chical basis such that all graphs at the same level are executed in parallel,

’?{r"{‘- fy

The language supports 24 I/0 ports for sensors and synchronization with exter-
nal equipment. (1)

5
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7

o
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MAL. Milan Polytechnic in Italy developed two versions of (1AL, one is
. based on BASIC (1979) and the other on FORTRAN (1983). The latter version ran
on a Sigma robot while the former ran on a research robot. The language can

A

(Rt
-,

.' l‘. l'- [J

Gy
4

o

be used to program a two-arm Cartesian robot. It features parallel execution
v of tasks, subroutine calls with argument lists, and sensor interfaces. (1)

! RCCL. DNeveloped at Purdue University in 1983, the approach here is to
embed robot commands in a library of routines written in the C language,
making use of the UNIX operating system. The objectives of the language were

A to provide rich manipulator control commands, flexible data processing, and

standardization potential. (17) -

4 (s
g RCL. This is a command-oriented motion control language developed at 'i:'
. Rensselaer Polytechnic Institute in 1983. (5) NN
‘ T
N SRL. This was developed in 1983 as part of a standardization project in ;:{:
. West Germany, at the University of Karlsruhe. The language is based on Port- ;:i}
f « ‘\!. X

able AL and PASCAL, and the user program is translated into a robot indepen- Ps

dent code called IRDATA (see Section 3,5.5). SRL data types include those of tﬂh
3 L) .’
‘: .{: ¢
SN
NG
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PASCAL and artificial intelligence abstract data types. Instructfons can be
executed sequentfally, in parallel, in a cyclic way, or in a delayed way.
Both straight line and circular motion are possible. (1)

LMAC. This was a coordinated effort among several French organizations,
and was developed at the University of Besancon in France. It was designed to
ensure safe control of mechanical devices in an automated cell. The key issue
is its modularity, which is based on the implementation of abstract data
types. Program modules written in a variety of languages may be referenced by
an LMAC program, permitting a simple interface to existing programs. (1)

2.3.2 Commercial Vendors

VAL. This was the first commercially available language, released in
1978 by Unimation. It was developed by a Stanford graduate familiar with AL,
under the constraint that it could be run on a minicomputer. Resembling
BASIC, the language was user-friendly to nonprogrammers, It was designed for
general purpose manipulation only, and had very limited data processing capa-
bilities. (17)

ML. This language was developed by IBM in 1973, but was never released
commercially., (25)

EMILY. Based on ML, this language was developed by IBM in 1975, as an
extension to ML, (25)

SIGLA, Developed by Olivetti in Italy in 1978, this is a software system
with a supervisor for interpreting a job control language, a teach module for
teach by guiding, an execution module, and an editor, It is really a program-
ming environment for use on Sigma robots. (1)

ML. This was released in 1982 by IBM. AML was designed to be a general
language for manufacturing equipment control, but its use to date has been
mostly for robotics. The philosophy behind the design of this highly struc-
tured language is to provide low level and powerful primitives which the user
then builds into libraries of routines. This results in a language that is
extremely flexible and powerful, but requires some programming skill., The
language provides for multitasking, host system communications, user-defined
reference frames, program control features for structured programming, and
advanced sensory interface capability (14) (16) (17) (19) (22). ML is
discussed in more detail in Section 3.4.4.
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ML/E. This is used on the 7535 and 7540 Scara-type. It is an entry
level subset of the AML language. (16)

AML/V. This is a package of AML subroutine providing vision capability.
(22)

HELP. This language was introduced in 1982 by General Electric under
license from Digital Electronic Automation in Italy. It is a structured
language with a PASCAL-1ike syntax. Robot motion is described in terms of
rectangular coordinates. It has a powerful 1/0 capability, and allows for
defining and activating multiple tasks which communicate with global flags.
(1) (14)

MCL. This language was developed by McDonnell Douglas under an Air Force
ICAM project and was introduced in 1981. It was written for use in manufac-
turing cells, is APT-based, and uses a CAD data base as a source for geometric
information., The language supports vision, image modeling, process coordina-
tion, real time conditional logic, multiple coordinate systems, macros, and
compile-time language extensions, (14) (19)

RAIL. Developed by Automatix in 1981 to control their AID 800 robots for
inspection, arc welding, and assembly, this language is loosely based on
PASCAL. It is unique in that it was designed to control both robots and
vision systems instead of having vision added as an extension. Motion types
supported are straight line, coordinated axis, and oscillating paths (for
welding) (14) (16) (19). Reviewed in more detail in Section 3.4.2.

ARLA. ARLA is the ASEA Robot Language, released in 1982 for their line
of IRb robots. This language is available for on-line program development
with a teach pendant or off-line for VAX and IBM computers. The ASEA Off-Line
Programming System allows for the creation of manipulator level programs in
ARLA, which is an unstructured language having constructs for motion, sensor
interaction, communication, math and logic functions, and application specific
entities for welding and vision. Coordinate data sets may be generated off-
line with an editor, or on-line during a teach session.

PASRO. Developed in 1983 by Biomatics in lWest Germany, this is a PASCAL-
based language with data types and procedures added for robot-specific tasks.

Its development was based on experience with AL, (1)
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CIMPLER, This is a manipulator level language which runs on the CIMROC
controller of GCA. It has some sophisticated features for motion control,

I.'I

LY

[
concurrent execution and 1/0, which shows the designers clearly had an indus- :SF
. . , . LG
~ trial manipulation viewpoint., (20) o
S .-: \-'

VAL-II. This language was introduced in 1984 by Adept for use on
Westinghouse/Unimate robots. Whereas VAL was weak in its data processing

i

N capabilities, VAL-I1I offers structured constructs, arithmetic functions, :Z:{
e external path modifications, and communication support, A process control ZEE'
~ task can run concurrently in the background during motion execution. (15) Ij‘
: AR-BASIC. This language was released in 1984 by American Robot for use sgr{
: on their robots. It is based on BASIC, and supports discrete I/0, mathemati- 353
cal capabilities, and programming flow control, (16) i&::

KAREL. Introduced in 1985 by GMF Robotics, this is a PASCAL-based lan- r;.

. guage offering structured logic constructs, high speed communications support, 3ky
r% vector and array structures, process control capability, vision system inte- :2:;
gration, and textual I/0. The language supports point-to-point motion control :::

and linear and circular interpolation (16) (21), It is reviewed in Section 5;r

i 3.4.3, i&i
» ML/X. This is a general purpose programming language by IBM for ;Eu
manufacturing and computer aided design. It is a major revision of AML with E;EE
sophisticated data abstraction capabilities (22). It is reviewed in Section )

[ o~
~ 2.4 TASK LEVEL LANGUAGES o
S As noted earlier, no true task level language exists. Different lan- ;SE
guages have been mentioned by different authors as having some task level :E;

: capability, Among these are AUTOPASS, LAMA, AL, RAPT, and ROBEX. RAPT and :ﬁ:
A AUTOPASS are the most often cited. The success with task level implementa- iy
tions is limited to date. AUTOPASS and LAMA were defined, but incompletely %%.

i implemented. AL had task level instructions, but they weren't implemented. ~;§§
There are many problems to be solved before task level programming is a real- .jﬂ;

2 ity (see Section 5.3), but it is worthwhile to note the efforts to date and e
the lessons that have been learned. -:L

N
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2.4.1 University and Research Institute

RAPT. Introduced by the University of Edinburgh in 1978, this is an
APT-based language in which tasks are described in terms of objects, relations
between objects, and motion of objects. A RAPT program consists of a descrip-
tion of the parts involved, the robot, the workstation, and an assembly plan,
The plan is a Tist of geometric relations expressing what should be true at
each step. The language is independent of the robot type, and a post-
processor has been developed to generate VAL programs from RAPT source code.
(1) (24) (23)

P

RS

AT

2.4.2 Commercial Vendor

AUTOPASS. Partially implemented by IBM, this language focuses at the
object level where motion is described at a high level. (25) It is similar to

. 9 ."l.,
I\l
[d

b3
P4d

p'

RAPT, in that programs have the look of Assembly Instruction Sheets. (23)
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2.5 CAD/GRAPHIC SYSTEMS

y )
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e
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2.5.1 University and Research Institute

1,

GRASP. This is a CAD-based programming system developed by the

e
&

Rensselaer Polytechnic Institute. It ran on a PRIME 750, and post-processors

- ‘v .
e,

;’-’

were written to translate trajectory information into robot specific languages
for Cincinnati Milacron T3 robots and the PUMA 600 (16).

s,
‘

-

IGRIP. This was a simulation package developed at Cornell University for
studies in the kinematics and dynamics of robot motion, and for time studies,.
It ran on a VAX 11/780. (16) (26)

GRIPPS. Developed at the Michigan Technological University as a program-
ming tool, this was expanded to perform motion simulation and dynamic hehavior
analysis. Initially run on mainframe, efforts are being made to develop a
microcomputer based system, GRIPPS input files are in IGES format, and it
uses the GKS library for display. (16)

2.5.2 Commercial Vendors

PLACE, ANIMATE, COMMAND, ADJUST, BUILD, These are packages developed by
“1cDonnell Douglas Automation that perform a variety of tasks using the Uni-
graphics CAD system, PLACE is a simulation tool for designing and evaluating
workcells, It checks positions, limits of reach, motion sequences, and cycle
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times. ANIMATE reads MCL robot programs and displays the resulting robot

motion. COMMAND combines commands in native robot language with motion
created graphically into a robot program. ADJUST is used to calibrate off-
line programs for actual workcell variations. BUILD allows engineers to
generate control equations for various robot geometries. (16)

ROBOT-SIM, This software was introduced by GE/Calma, and emphasizes
kinematics and dynamics. Initially used with GE products, it supports work-
cell development and robot motion simulation, analyzes dynamic response, and
calculates dynamic path errors, (16)

2.6 CURRENT LANGUAGE USE AND TRENDS

The most commonly used languages to date are listed in Table 3., These
languages have established usage in industry, Thus far, the real driver to
language acceptance has been the robot vendor community. Typically each
vendor has developed a language for use on its own robots, and languages have
gained acceptance as a cansequence of robot selection and use in industry.
Note that only one of the languages in Table 3 has been developed as a
robot-independent language; the others are specific to the vendor that devel-
oped them. RAIL was developed as a language specific to Automatix vision
systems, Note also that one of the languages listed {(T3) is servo level. The
reason is that, for several years, simple teach pendant programming was the
only method available on Cincinnati-Milacron robots.

Several more recent languages are not listed in Table 3. Some languages
introduced at the Robots 9 show in the Spring of 1985, for example, are not
listed because their applications thus far are limited and their eventual
acceptance is unknown., Included here would be ROBOCAM, HERON, CIMPLER, and
ROPS. Ve expect that some of these Tanguages will gain wide acceptance over
the next few years. With regard to the robot-specific languages, their accep-~
tance will be dictated by the success of the robot vendors that supply them.

Languages will become an increasingly important factor in robot selection
in the future. Most robots are used for relatively simple applications in
which teach pendant programming is sufficient. In these applications, pro-
gramming is usually a secondary consideration. As robots are used for more
complex applications, however, language considerations have a significant cost
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RNBEX West fiermany Various
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impact, and are likely to become a primary consideration in robot selection.
In applications such as assembly, for example, program development and mainte-
nance costs are likely to equal or exceed hardware costs. In batch job envi-
ronments, the ability to develop robot programs quickly and efficiently is
essential to justify the cost of the robot, In automated factories, communi-
cation (networking and file transfer) is essential. These issues all revolve
around the programming language.

Another obvious trend is the increasing use of CAD/Graphics systems. In
off-line programming of complex applications, simulation of robot motion is
essential., As more detailed models of robots, machines, and the parts they
handle are put into CAD systems, more CAD-based programming systems will be
used to automatically access these models for use in program development, The
proliferation of robot languages will also provide a driving force for
increased use of CAD-based programming. User companies will want to establish
an application program on CAD, so that all robot programs can be developed
using the same language and programming environment. Postprocessors will then
generate the robot-specific programs.

2.7 SUMMARY

The available programming languages were identified ¢nd classified as
servo level, manipulator level, and task level. While no true task level
languages exist, some incorporate task level capabilities. Many of the lan-
guages developed are a result of university and research institute efforts,
and are usually extensions to existing robot or computer languages. Often,
the research languages are developed to explore a particular facet of robot
programming., In general, the evolution of robot languages parallels the
evolution of general purpose computer languages in overall structure and
capabilities,

The primary driver behind robot language acceptance and use has been the
robot vendor community. Vendors have taken the results of previous efforts,
both research and commercial, and have developed their own languages for use
in controlling their robots., Very few of the existing languages are robot-
independent,
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Language considerations (capabilities, features, programming and operat-

é
4

2

ing environments) will become an increasingly important factor as robots are
applied to more complex tasks. Program developrment and maintenance costs will a
be a significant factor in future robot applications. RY

AN

CAD/Graphics systems' use for robot programming will increase in three .
ways. First, they will be used for a simulation tool to study work cell
configurations, robot motion, and cycle time. There are many limitations to -

(]
I3
]

the current systems and steady improvements will be made., Second, CAD models

N n/‘:‘ s

,‘ of parts, robots, and machines will be used in robot program development, In
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this respect, CAD models will define coordinate systems and features to be

y used in executing the robot program. Finally, robot-independent applications

Lot ts?

programs will be developed to relieve programmers of the task of learning

S 5%

o several robost programming languages.
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3. COMPARISON OF ROBOT LANGUAGES

3.1 BASIS OF COMPARISON

When there is a proliferation of similar products it is natural to Took
for a way to compare them, The variety of robot programming languages repre-
sents a unique challenge, because the subject area is complex. Robot lan-
guages are far from a stage of maturity--various approaches are still being
explored and there are many issues yet to be resolved. Also adding to the
problem is the failure of the literature to make clear several important
considerations and distinctions, These are:

1. The relationship between robot language and robot perfor-
mance

2. The distinction between robot programming levels and robot
programming techniques (see Section 1)

3. The distinction between language capabilities, language
features, and the language implementation

4. The distinction between programming environment and operat-
ing environment, and their relation to the robot language

5. The distinction between language requirements at the task
level and at the manipulator level

6. The distinction between evaluating robot languages and
evaluating robot implementations,

3.1.1 Robot Performance

When a user is comparing robots, several considerations must be made.
Overall robot performance is the most critical concern, and it is important to
realize that the robot language is only a part of this, Other factors affect-
ing robot performance are 1ift capacity, reach, accuracy, repeatability, and
mean time between failures. MNo standards exist, but work is under way to try
to establish some metrics by which robot performance can be evaluated.

The importance of the language relative to the application must be consi-
dered. A very simple application may require little programming and a high
degree of repeatability, so the language is of secondary importance. Another
application may not require very good repeatability, but involves complex
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motion, significant sensor integration, and complicated error handling rou-

tines. In this case, the language is of primary concern. One application may
be for a mass production environment, in which the robot may actually run only
a few programs, with minor modifications, throughout its entire life. In this
case, programming time is only a small portion of the life cycle, and rela-
tively crude programming capability is often sufficient. In another applica-
tion, such as a batch production environment, the robot may require frequent
reprogramming, In this case, programmability is essential. The point to be
made is that the importance of a robot programming language is relative to the
intended application. When comparing two robot implementations, if the hard-
ware based performance criteria are approximately equal, the language may then
be the deciding factor in the robot selection,

3.1.2 Elements of the Robot Programming System

After taking into account all of the robot performance criteria, it may
well be decided that the robot language is important, and that a powerful
language will be needed. A natural step at this point may be to turn to the
literature in search of language comparisons. There are many good language
comparisons, and some are discussed in Section 3.3, but these can be very
confusing if not placed within the context of an entire robot programming
system,

A distinction that fails to be made in the 1iterature is between language
capabilities, language features, and the language implementation. We consider
these to be three of five elements in a robot program system. The language
capabilities are a measure of the overall "goodness" of a language, They are
the "ilities": flexibility, extensibility, reliability, maintainability, and
so on, A measure of the "ilities" is somewhat subjective, but is very impor-
tant when comparing dissimilar languages. The capabilities determine the ease
with which the language can be used, transported, maintained, and expanded,
The set of capabilities we have chosen encompasses a very broad perspective of
robot programming. Features, on the other hand, are things such as macros,
conditional statements, and variable types. The features can be measured
objectively--either a language has the feature or it does not. The third
factor to be considered is the language implementation, i.e., unstructured
versus structured and compiled versus interpreted. Thus, there are at least
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three elements of the robot programming system: language capabilities, lan-
g.tage features, and the implementation. The language implementation affects
the utility of certain features in the language and characterizes the overall
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programming process. All of these elements are different at a conceptual
level, but they are all interrelated.

A further distinction needs to be made between the programming environ-
ment and the operating environment. Essentially, the programming environment
generates the robot program and the operating environment executes it., The
programming environment consists of the text editor, simulation tools, CAD,
subroutine libraries, and so forth. The operating environment consists of the
robot and any terminals or other equipment on the shop floor. In the case of
off-line programming the two environments typically exist in two separate
physical locations. In the case of teach pendant programming, the two envi-
ronments co-exist in the same physical location and share the same computer
(the robot controller). The programming and operating environments are the
other two elements of the robot programming system.

The robot programming system has been shown to consist of five basic

elements: Tlanguage features, the language implementation, language capa-
bilities, the programming environment, and the operating environment, These
are all integrally related. They can be considered as different conceptual
layers, or views, of robot programming. The features represent a microscopic
view of the language whereas the capabilities represent a macroscopic view.
This is illustrated in Figure 4., Each layer is shown to be composed of a set
of entities. Entities in the outermost layer are related to entities in all
of the layers below. The entities in the innermost layer are the language
features themselves. If an entity in the outermost layer is considered impor-
tant, it will require entities in the inner layers to support it. For
example, if sensor support (language capability) is required, then certain I/0
constructs (features) will be needed. In Section 3.2, the requirements for a
robot programming language are developed as a function of these layers. This
will result in a 1list of language features required to support the outer
layers, and can serve as a basis of comparison for robot programming lan-

guages.
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Figure 4. The robot programming system.
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Before proceeding, it should be noted that another source of confusion in
the literature is the failure to distinguish between requirements of manipula-
tor level languages and requirements of task level languages. In many of the
papers, manipulator level languages are discussed and compared, and then
requirements are discussed in terms of (what seems to be) task level lan-
guages. Thus far, manipulator and task level languages have been treated
distinctly, In fact, the evolution from manipulator level languages to task
level will be a slow, steadily progressing process involving several genera-
tions of languages. The next generation of robot languages will lie somewhere
between the manipulator and task levels, incorporating elements of both.

Since the literature focuses on the next few generations of languages, where
the distinction between manipulator level and task level is fuzzy, their dis-
cussion of language requirements can be confusing., The following sections
attempt to clear up some of this confusion,

3.2 ROBOT PROGRAMMING REQUIREMENTS

The external world, within which the robot programming system must oper-
ate, imposes requirements on it. This world can be considered as consisting
of two layers: the application layer and the industrial environment layer.
This is illustrated in Figure 5. In this section we correlate the demands the
external industrial environment and application layers place on the robot
programming system. The industrial environment is the outermost layer and
consists of two components: the market and the company policy. We are not
attempting here to develop the outermost layer to any level of detail, but
simply to illustrate the concept. The application layer, on the other hand,
has been treated extensively in the literature and will be examined in greater
detail,

3.2.1 The Industrial Environment Layer

Two elements of the industrial environment layer are depicted in Figure
5. A partial list of the entities in the user's product market includes
responsiveness to change, product quality and cost, delivery and production
schedules and standards. All of the entities impact the robot application
layer, and, in so doing, affect the inner layers of the robot programming
system in the following ways.
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Figure 5. Impact of the external world on the robot programming system.

o (Source: HTRI).
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o Responsiveness to change implies the ability of a company to respond to A
changing market conditions through the introduction or modification of a _."

! product line. The programming environment and implementation layers may have ‘
. to satisfy this demand by being flexible enough to allow frequent reprogram- h
:.(_{ ming, Additionally, the language features may have to support significant o0
sensor integration to reduce the need for expensive special tooling for each o
» product.

Y e
. Depending on the product quality requirements, sensors may need to be \:
:_ used to position the robot within close tolerances. The use of sensors to aid "E'F
in positioning a robot may allow less accurate robots and more general purpose oy
s programs to be used for an application, with a corresponding reduction in -3
' product cost. Nt
i
F Production and delivery schedules place great demands on the programming ;
environment and implementation layers. Small and mid-size production batches ’
may not be able to justify lengthy program development cycles, particularly :E“‘
for one-time-only products. On the other hand, industries catering to the ':-:'
. defense market sometimes receive an order for a batch size of one, spaced at E"'
. irregular intervals of a year or more, Of prime concern is the ability to ;
. maintain a program already developed for the application, perhaps incorpora- :
t ting newly established process parameters, tolerances, or equipment, without :E:
major reprogramming effort. The use of sensors for robot positioning is one C:::

way to enhance the reusability of a program for slightly different parts or “.
' tolerances. :;
: Should market standards be developed for a product line, all of the E’:
" layers will be affected to some degree, either through more rigidly defined Q}:
- manufacturing tolerances or by imposing restrictions on the design, communica- L4
- tion and use of manufacturing software. I:'Q.'
::' In a similar manner, the entities involved in company policy affect the E )
~ choice of a robot programming system. If a company is committed to integrated ;
X manufacturing using a factorywide communication network, such as Manufacturing N
D and Automation Protocol (MAP), robot controller hardware and software will Bf':
- have to be MAP compatible. Budgetary considerations may affect the sophisti- ;
) cation of the programming environment. CAD/Graphics packages may boost .
. programmer productivity, but can be very expensive. The existence of a manu- i:
:? facturing data base may require that the robot language access CAD models. A \'.
vy
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company may have committed itself to a particular robot vendor's equipment,
which significantly narrows the choice of a robot language. Finally, cost
benefit analyses will determine the applications for which a robot will be
used. This in turn influences the language features required, While this is
only a conceptual treatment, it illustrates the point that company policy
factors are a significant concern when evaluating robot programming languages.

3.2.2 The Application Layer

When one begins to compare robot languages, it is important to consider
the application. In a palletizing operation, macro capability is obviously
important. In an assembly operation, guarded and compliant motion is impor-
tant. In a sorting operation, vision system integration is important. Very
little has been published regarding what language features are important for
different applications., Hanright (27) lists some software considerations for
arc welding: coordinate system transformations, tool center point specifica-
tion, linear and circular interpolation, offset displacement, and three-dimen-
sional coordinate shifts. Similar publications would be a valuable aid to
evaluating languages, but they seem to be lacking in the current literature.
If the user is selecting a raobot for only one particular application, a power-
ful language may not be required. If, on the other hand, the applications
will vary or will be complex, it is important to select a robot with a
programming system that provides the necessary power and flexibility.

Figure 6 illustrates the entities at the application layer. This layer
has been developed to a great extent in the literature. Lozano-Perez (28)
presents an excellent discussion of the requirements that an assembly applica-
tion puts on the robot language. He describes an assembly task as follows:
(1) a robot picks up a randomly oriented pump cover from a moving conveyor
belt and places it on a base, while (2) a second robot picks up pins from a
second conveyor belt and inserts the pins through holes in the cover and
base. The system jncorporates two robots, a vision system, force sensing, a
parts feeder, and two conveyor belts, By reviewing the operation of the
system, Lozano-Perez illustrates a majority of the requirements related to
robot programming. He summarizes the resulting reguirements into five major
aspects: sensing, world modeling, motion specification, flow of control, and
programming support. Craig (29) and others summarize robot programming
requirements into very similar categories,

- §3 -

”q I"I-‘I.va’\d".“sf. -"_‘r_.-r.‘. .

- ha” alla-
u X7,

R

o

i

"I‘.I
Y

'

{{'lll
AT

14 -

-
Y

%

y ]

7}%

RIS
414??#?

o

b T S N DN |
Bl d
NN

o
s

&

Xy

e,
RN

4 r’"f.'t' .Jl. .",'n
PSS %

.y -‘: .'- ..‘ ..- .'- "1‘ ' o
l‘. l.,. ‘,. '.' Py .n.-,. . ';'.'1'..\'.1- '

1@

€1



? e b’ b8 st nbia g > ey m oA I —
N W o O T AN AN Vi Wteuty TaUN NN DN W RO At ot e ah i B g0y ava - -

kot A ¢ .|
‘g
5 4

;>
l.“?{

Ao,
o 5
i
Py L4
L8 -:'::
(S
! ¥
. ¥
ﬁ\ N
'\ (
Application L]
! /S /S -
> o
-~
o
. o
| ﬁ RSy

.!»..I

Robot
- Programming
Ry Systam ;
! )

4 S

hy Y mt'f ’ .f.:f‘ff'.f"f q !

"’ \g
> "y
N .
' - d
~5 n.\ ]
N
Company Policy an

@

N
i b "
’-':' ol
ol .J_: )
b
— Sensing F,
- — World Modeling "
— Motion .
N — Decision Making o
- -~ Communication
->s
od
Y
by
~ 3 e
-N' @ . '.]
“ ' ~ -~
o L
« © "\
J'._' it :‘:\1
s W
. N
. . . w0
n Figure 6. Entities of the application layer. (Source: IITRI). < -.{
&, .
! [

LA

- 54 -

[
)
~

h Y

e N e e BN e N N z
f;&!‘&!:&. - AT _!,':‘ f:f: ‘{". [ o

e et it mc A et AT a"mral -
Nt T AN LS AT

» PR




3

T
ot

R S = R L Ol G A

v
A

LS

LN

DR R R TS T N N L S N A N L N L LS A Y * IO P N S S PR TNy
p A A S £ TR G NA T T N TN N o RO, P N TR T A, N P T

We base our analysis on the categories set forth by Lozano-Perez. The
last category, programming support, is considered part of the programming
environment, and is treated in Section 3.2.4. Also, "flow of control” has
been renamed "decision making" and interpreted with a slightly broader scope.
Finally, an entity called "communication" has been added. Lozano-Perez
discusses this under "sensing" and "flow of control," but here it is treated

explicitly due to its importance.

3.2.2.1 Sensing

Early robots had very little sensing capacity., Fixtures were designed to
maintain a very structured environment so that everything could be predeter-
mined at programming time. In many cases the fixturing costs were equal to or
exceeded the robot system cost, but this could be justified in large produc-
tion runs., Sensors have been integrated into robot systems over the years.
This is a result of decreasing sensor costs and increasing complexity of robot
applications. Also, special fixturing cannot be cost-justified on small batch
jobs, so sensors must be used to compensate for a less structured environment,

Lozano-Perez describes four uses of sensors in robotics., The first is to
initiate and terminate motions., For example, to synchronize robot actions
with other equipment, a switch closure may indicate that some parallel task
has been accomplished and that the robot can continue with its program., The
second use is to choose among alternatives., After the robot has attempted to
pick up a part, for example, it may check the gripper to determine if it has
really achieved its objective, If it has it will continue., If not, it may
attempt to pick up the part again, or it may execute some other portion of the
program, The third use is identification. A vision system may be used to
identify a part and its orientation on a conveyor prior to pick up., The
fourth use is compliance, This is executing a function while continuously
operating under a constraint. When inserting a pin in a hole, for example,
the entire operation must be performed without ever exceeding a specified
force, The force sensor must be read continuously during the operation. In
general, sensing involves reading sensor input (either continuously or at
intervals), manipulating the data, and performing some function based on the

results,
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I As languages evolve toward the task level, sensors will become increas- ~
ingly important. The task "put box A on box B" reauires vision to determine ;;
i. the location and orientation of the boxes, and to provide information so that &,
an appropriate path can be generated. Force sensing will also be required to ii-
g& determine the force necessary to pick up the box without it slipping, and ;E
perhaps sensing to determine if it has slipped. This is in contrast to the ot
g manipulator level, where the location, orientation, and forces all have to be -
predetermined at programming time. The only sensing required at this level S;
E: may be to determine slippage. The application determines the entities 3
-~ required in the various layers of the robot programming system, For example, g
= in the capabilities layer, sensor support is required, In the programming té
~ environment, simulation of sensor input is helpful (note that this is not ;'
. currently available). In the operating environment, interrupts are important. f
Fﬁ In the feature layer, a number of features including I/0, variables, and 3
N arithmetic operations are required. 5.
N 3.2.2.2 World Modeling =
World modeling is the method for describing the environment in which the EE
ii robot operates. The environment includes objects to be manipulated by the ;
. robot, as well as other objects within the robot workspace (machine tools, iﬂ
Qﬁ conveyors, fixtures). For the most part, this is done with coordinate frames ;i
which are attached to each object (Figure 7). The relationship between objects E:
!! is then represented by the relationship between their coordinate frames, a E
- relationship which can be defined mathematically by a coordinate system trans- 'j
35 formation function, Some languages allow two coordinate frames to be "affixed" ?
- to each other, Once a pin has been inserted in a hole in a plate, a language hA
' . statement allows the pin and plate to be affixed. When the plate is moved in a L
'? subsequent operation, the location of the pin is automatically updated. :E,
"
- As languages evolve toward task level, modeling will become crucial, ﬁ:‘
o Sensor information will be transformed into world models that inform the robot ﬁ:
. controller of the current state of the workcell, The model will include loca- %;
;E tion and orientation of objects, as well as activation signals and the state -S
of other communication processes. Frames will be insufficient in a true task ES
' o level language. Models that depict surfaces and part features and possibly x
other data, such as center of gravity and coefficient of friction, will be
is required., Consider the "put box A on box B" example., The vision system will
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provide information about box A and any objects in proximity. From this
information (world model), the robot must calculate a grasping strategy--a
method for approaching the box without colliding with surrounding objects.
Center of gravity information may be important in determining where to grasp

.
E the box, Coefficient of friction information may be required to determine the
appropriate grasping force. Finally, the world model will have to be contin-~
uously updated as the robot moves toward box B so that a collision-free path NS
can be ensured. :jf:'
The application layer determines the jmpact that modeling has on the I?Z~
other layers of the robot programming system. A pick and place operation with ";;‘
special fixturing may require no modeling capabilities while an assembly ;§E$
operation may require extensive modeling. In the programming environment, 2§}H
reach testing, collision detection, and cycle time analysis are all affected }4&
by the extent of modeling capabilities. Language features required to support &jf‘
N rmodeling include frames, transforms, and geometric data types. :ﬁEg
: 3.2.2.3 Motion g%'.g
by Obviously an important entity in the application layer, the desired path 535!
type imposes requirements on both the programming environment and language ;553
’ features. In some cases, the exact path taken by the robot is not critical, Egii
’ so motion may be specified by the endpoints. In other cases, the path may -i;}
need to be specified. Many languages allow a linear or circular path to be Esig
specified, Speed, and sometimes acceleration and decceleration, are other ayﬁ,
important parameters in motion specification. :EEF
§ As languages evolve toward the task level, the ability to define complex
paths will become less important. At the manipulator level, especially when
C sensors are not integrated, an exact path must often be specified to ensure no
_ collisions, At the task level, it may be that no motion specification at all
: is required. The robot will instantiate required motion from the specified
goal, i.e., "put box A on box B.," Even at the task level, however, it is
g likely that motion statements will be included as a specification of target
. points: "go to point X," "pick up box A," "go to point Y," "put box A on box
\ B." This simple task decomposition done by the programmer can take a great
computational burden off tne robot--it would not have to determine approach
' - 53 -
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points for box A and box B. Also, there may be times when the programmer does *\ﬂ\p

not want the robot to generate its own path, and therefore reguires explicit f‘
control over the robot motion. EﬁPH
Motion requirements at the application layer impose various requirements E%S?\
in the language features. These include position, path, move statements, ;EE,J
coordinate frames, compliance, and others. g
3.2.2.4 Decisfon Making X
This involves the ability of the robot to respond to sensor input and gﬁ%&{
take the appropriate actions. It impacts all layers of the robot programming P 7
system, Eg\;k
In manipulator level languages, decision making must be explicitly pro- gﬁﬁ
grammed, A sensor input is read, the data is manipulated, and the program gﬁ?ﬁa'
branches based on the result, Any action in response to sensor input must 'FC%E
therefore be pre-programmed. For example, in “putting box A on box B," a Ej:ﬁ:.
manipulator level program must explicitly test a gripper sensor after attempt- :;:E:
ing to pick up box A, If the box has not been picked up, the programmer will ;jy;:
have to have written a recovery program which the robot can then execute. The ?:é:;
programmer must try to foresee any problem and specify the action to be taken E?g;:
in its event, It is for this reason that as much as 80% or more of a manipu- ;ﬁj:;
lator program can be devoted to exception handling. At the task level, deci- ﬁi,n
sion making will still be very important and complex., It will rely heavily on 5

the world modeling capabilities to try and determine an appropriate response
to an error condition. Even at the task level, it is likely that the
programmer will play a large part in determining appropriate responses, If
the problem is not constrained, the robot is faced with an infinite number of
possible errors and responses, Consider "put box A on box B" and assume that
a box C sits on box B before the task is initiated, If the problem is not
constrained, the robot must determine what to do with box C. Obviously it
should be removed, but where should it be put? Does it place it somewhere
temporarily and move it later? Does it inform some other process that box C
is there and then wait for instructions? Should it just place box B on top of
box C? Decision making strategy is a complex problem that will grow in magni-
tude as languages evolve toward task level., Artificial intelligence techni-
ques are likely to play a significant role in developing solutions. Some
ongoing research is cited in Section 5,
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Decision making at the application layer impacts all layers of the robot
. programming system. Interrupts in the operating environment and conditionals
in the language feature layer are examples.

3.2.2.5 Communication

0
Y Communication involves both file transfer and synchronization of robot
' operation with external equipment., At the manipulator level, synchronization
) typically involves binary signals (switch closures) that alert the robot to
the condition of external equipment, Also, some languages allow control of
multiple robot arms under the same program by providing some multitasking
. language constructs. HManipulator level languages have bequn to incorporate
. networking capabilities so that communication with other computers (vision
systems, cell host computers) is possible. File transfers, so that robot
4 programs can be downloaded from a host, are also supported. Robot controllers
are being built with MAP capability, in recognition of the market. As lan-
guages progress toward task level, communication will become extremely impor-
g tant. Transfer of information to and from the robot, probably at the symbolic
level, will be essential to updating world models and coordinating robot 1A
operations with other equipment. In complex assembly tasks, multiple robots 1{%
\ executing programs in parallel will be required. The "put box A on box B" EZ:;
N problem requires a significant amount of information processing and infor- gjli
mation transfer. :33$
» Communication requirements affect the operating environment and the .*(i
feature layer. 1In the operating environment, networking and peripheral sup- i
; port are required. In the feature layer, sensor [/0, file I/0, device Eﬂ§~
support, and other features are required. ”:’
3.2.3 Language Capability Layer Eé:F
Language capabilities (the "ilities") are discussed in Section 3.1.2, Eﬁs,
These are entities that describe characteristics of the programming system. 0:?
They impact the layers beneath (programming environment, operating environ- «:'
': ment, language implementation, and language features), and are affected by the ,v;‘
. layers above (application, industrial environment). The language capabilities ;ﬁﬁ;
.3 we have chosen are shown in Figure 8, and are discussed briefly below. Qﬁ:
L J
R
R
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Figure 8. Entities in the language capabilities layer. (Source: HTRI).
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Flexibility. The flexibility of a language is a function of syntactic
issues, but, more importantly, is a function of the semantic power available
to the programmer to represent his application., It is a measure of the range
of applications for which a language can be used.

Usability. A language is usable for an application i¢ program develop-
ment meets acceptable guidelines with respect to cost and maintainability.

Extensibility. The language extensibility is based on the ability to
create abstract data structures representing elements of the problem, Without
data abstraction capability, hierarchical decomposition of the tasks and
modular development are hampered.

Upward Compatibility. Revisions to a language should allow for old
programs written in earlier versions of the same language to run successfully.

Portability. The more removed a robot language is from an application
area and controller hardware, the more portable it is., Thus, conventional
languages such as FORTRAN, C, and PASCAL can be implemented on a wide variety
of computer architectures. Portability can be at odds with the programmabil-
ity, in that the naturalness of the language to express the problem may depend
on language features specific to the application area or hardware.

Reliability. This issue is tied in with the mechanics of program devel-
opment and implementation., Compiled programs are in some ways more reliable,
since syntactic and semantic errors can potentially be screened out prior to
execution by the controller. The reliability of a program is also a function
of the depth to which alternative runtime conditions are handled.

Correctness. The issue of correctness for robot programs is defined
simply as "Does it work?" No amount of off-line checking can assure that the
program will successfully complete its task.

Maintainability. Easily written and read programs are more maintainable
than low-level programs which tend to hide the semantics of the program,

Modular development and documentation aids increase the programmer's ability

to quickly and correctly modify existing programs as necessary,

Efficiency. Languages which can concisely represent frequently used
robotic functions generally achieve faster execution speeds,
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Decision Making. Conditional branching facilities of a language are
used fully in robotic applications, due to the nondeterministic nature of
physical interaction with the real world. Some decisions are planned choice
points in a program, perhaps based on sensor input. Others are implicit
exception handlers designed to handle classes of unexpected events,

Sensor Support. The ability of a language to support a wide range of

a
-~
ol

complex sensors increases its flexibility and decision making capability.

A#E;

S
£y

l\ " ?
L]

3.2.4 Programming Environment Layer

z

The programming environment (Figure 9) is the hardware and software with

o

which the programmer generates a robot program. A text editor, a CAD/Graphics
system, and a subroutine library are all part of the programming environment.
One of the issues in the debate over robot programming techniques is the level
and type of programmer experience required, Programmer experience is also an
entity in the programming environment. This layer is heavily impacted by the
implementation of the language. As discussed in Section 1, interpreted lan-
guages are more easily debugged than compiled ones, but are slower to exe-
cute, Consequently, some robot programming languages are interpreted, some
are compiled, and some are both, In this last case, the program is debugged
using the interpreter and, when ready to run, is compiled for efficiency. For
these and other reasons, the implementation layer somewhat overlaps the envi-
ronment layers. Entities in the programming environment that ultimately

Y B

affect the robot programming system are described below,

SrL
uld

4

Programming Techniques. Programming techniques are discussed at length

SASYS Y

PP AR 4

\..'

! e
{’ﬁ;". T fe s '.'.'. Ci e

P

in Section 1.5. These are obviously part of the programming environment.

Programmer Experience. The methods, patterns and knowledge (hence
experience) which the robot programmer can bring to bear on the task signifi~
cantly impact the effectiveness of the programming tools and techniques avail-
able., Additionally, the learning of a new language is greatly enhanced by the
range of languages already known to the programmer and by formal training in

I.‘{"(.:’
!

Tanguages and computer architecture.

"\
{ 1Y

Pre-processor. A pre-processor takes in a program having syntax extended

\

>

A S
s

beyond the robot language, which it then converts to the normal output lan-
guage suitable for the remainder of the translation stages. An applications

ide

b?;eig
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program written on a CAD/Graphics station is pre-processed into a manipulator
level robot program, so that the normal translator or interpreter may be used
for execution,

Edi tor,
creates programs,

The editor is the interactive tool whereby the programmer

In the usual sense, this involves just typing in a program,
but it need not be so restricted., Most editors will allow the insertion of
other files at desired locations and the ability to keep a 109 of changes made
to an existing program. This latter feature is important to debugging and
maintainability., Editors do not often "know" the syntactic rules of a lan-
guage, and thus allow the user plenty of freedom to make typing mistakes or to
specify improper expressions, It is well known that "smart" editors, those
that will not allow syntactic garbage to be typed in, significantly boost
programmer productivity. Grown out of the artificial intelligence community,
these editing techniques can be extended even further to allow "templates" of
a typical construct to be used by a programmer, as a drafter would use a
geometric template to save time and energy. For example, a tool change se-
quence template, which would have in it all commands generic to this opera-
tion, could be invoked whenever needed leaving space only for the programmer
Additionally, the editor might have

built into it rules that disallow certain sequences of harmful or fnefficient

to specify which tools are being changed,

nrogram statements, such as two successive tool changes, The editor should,
in short, assist the programmer, by helping to write the program, and by
serving as a focal point for the integration of all of the elements of the
programming environment,

0ff-line Debugging. At the minimum, a program written offline should be
checked for valid syntax before downloading to the robot or workcell control-
ler. If a compiler is used before downloading, this check comes free as part
of the translation process. Practically, much more in the way of debugging
must be performed before attempting the use of a robot program, and this is

the reason for simulation packages.

Simulation,
by a program is an essential ingredient of the off-line development cycle, A

The simulation of the expected robot behavior as specified

simulator should take in a robot program and, at the very least, show the
manipulator motions that would occur if actually run on the controller, It is
desirable to have as many elements of the environment simulated as possible,
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such as "axis windup," load kinematics, process tolerances, sensor delays, and
compliance. Each additional model representing these elements burdens the
simulator package, but significantly improves the development cycle of complex
robot programs, Workcell simulation performs the analysis of data and
material flow within the cell and may use task planning (10), cycle time
estimation, and sensor models to optimize the synchronization of processes and
layout of the cell, Current simulation tools are limited in their power, and
improvements are to be expected over time,

Reach testing is a useful component of a simulator, It is the ability to

determine if a manipulator can be configured so as to reach a desired location
in the workspace and maintain a specified orientation,

Collision detection is critical to the development of workable programs,

Without it, the integrity of the manipulator, fixture, tool and part is in

serious jeopardy during program testing. Analytically, joint angle, Cartesian
coordinate, and spatial representations of the manipulator and environment are
used by algorithms to infer possible collisions. Most current systems provide
only a visual simulation, and the operator must determine collisions manually.

Cycle time analysis is the ability of a simulator to estimate the total

time required to execute a motion sequence, and can be important to estimate
cost in large production runs., Acceleration and deceleration factors should
be taken into account, as well as gripper activation and roll, insertion and
removal times, and part feeder location and presentation (9). Unfortunately,
current systems assume instantaneous accelerations and decelerations, and zero
settling time,

CAD Database. The information necessary to model a part (but rarely an
assembly), for purposes of simulation, is sometimes found in a CAD data base.
Depending on the CAD representation, which is often two-dimensional and lack-
ing tolerance data, a conversion may be necessary to produce a part model
adequate for the needs of the simulator., If available, the CAD information
may also be used in the development of the original program itself, An editor
that extracted relevant CAD data for the part being programmed would be valu-
able. Practically speaking, a CAD data base only has utility in the initial
development cycle, although the whole programming environment might reside on
a CAD system,
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Library. A subroutine library is an indexed file of subroutines or
subprograms that have been previously developed to solve frequently occurring
programming problems. If the language implementation supports the access of a
subroutine library at the time of compilation, the necessary routines are
automatically integrated into the output file. An extensive subroutine
library will improve programmer productivity, since previous programming
effort is reused, and this will also improve program reliability and mainte~
nance.

Documentation. An essential ingredient in all of the language capabil-
jties, some high-level languages are termed "self-documenting” in that the
syntax of the language is so natural and readable that the meaning of programs
written with it is "clear." This does not imply that further documentation is
not important. The development costs of robotic applications demand strict
attention to documentation at every phase.

3.2.5 Operating Environment Layer

The operating environment (Figure 10) coexists at the same layer as the
programming environment. When taken together they become the actual implemen-
tation of the robot system. The operating environment consists of the robot,
the controller, sensors, any external machines and conveyors, other computers,
and operator terminals, Robot programming system entities include communica-
tion with the operator, runtime debugging, and error logs. They support
execution of the robot program, and are discussed below.

Execution Sequence. A robot program is composed of a number of state-
ments whose execution (evaluation) may require very specific scheduling to
achieve even reasonably correct control over the robot and the supporting
environment. The scheduling is under partial control of the program (see
concurrent execution), but is often provided by the specific implementation
(see multitasking) and depends on the underlying computer hardware archi-
tecture (see parallel processing). This hidden scheduler is a large source of
runtime exceptions and an unknown quantity as far as off-line simulation and
debugging are concerned,
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Concurrent Execution. When two or more program activities (such as :j:,

! statements or procedures) are to be performed simultaneously, the programmer 1'.
may specify this using a "COBEGIN...COEND" or "PARBEGIN...PAREND" language 5;g~
j construct. The ability of the controller having this language to perform ﬁi:;.
EE simultaneous execution in this manner is highly dependent on the underlying ::ﬂ:;
‘ computer architecture. The program activities to be performed in this manner Mg
!; are temporarily given the resources of separate microprocessors to accomplish ﬁj:,
this. A common usage in robotics is to acquire images from a camera while . ;:j:!
E moving the manipulator. \{
" Multitasking. Some computer architectures have enough power and flexi- ..
,’.: bility that they can have more than one program at a time in some state of ::,"i

execution, For example, while “Prcgram A" is idle, or waiting for some event \,).
" . . n " . . s . . . . *
& like a switch closure, "Program B" can be initializing the robot position. .&'_Q{

Both programs are in a state of execution, yet only one of them has control at * 4

= the moment. The scheduling mechanism that swaps control from one program to :\,{
K‘ another is performing multitasking, and is different than parallel processing. :‘.':
Parallel Processing. Some computer architectures allow for several .’

actual processing units to access an area of memory common to them all. These ‘;._',

. microprocessors are performing their own functions, somewhat independently of :.:-\"
. one another. This parallel processing is common to robot controllers, but is :;;
by no means easy to build or control. Typically at least two threads of ;"‘*"

‘ paralielism are in controlliers - the servo computers and the top level program «\.-"'-:
X evaluator. Some controllers have additional ltayers of control acting in :2:_
: parallel, such as trajectory computers, I/0 handlers, and more, :::;:
Process Synchronization. The orchestration of control may be explicitly : .

) specified, up to a point, in a single program itself. On the other hand, --_;.
' several concurrent processes may be controlled if a synchronization mechanism :j‘_?;
is available between the individual programs. Systems allowing multitasking -::3.}_

) usually provide a channel of communication between concurrently executing o
: programs, which enable one program to "wait for" or "signal" another, An 1\
’ example of this may be found in an integrated vision system, where the manipu- _\"
lator program and the vision program might be running continuously, but the :_._
manipulator program has to “wait for" an image to be acquired and processed ."

before reading the results. :E:
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Interrupts. The ability of the robot program to examine the I/0 ports to

see if information is there, is termed polling. On the other hand, the
arrival of information at a port may interrupt a running program, thereby
forcing it to take notice. The first case is exemplified by the language
construct "WAIT FOR EVENT," which continuously scans (polls) its ports for the
arrival of information (an event), such as a switch closure on a fixture.
Interrupts, however, often signal the program that an unplanned event that
needs immediate attention has occurred. An example of this is the closure of
a travel limit switch on a manipulator joint.

Networking. A number of schemes exist whereby a controller may share
resources, such as files, with a computer located in another area of the
plant. A network includes the data transmission cables running between the

“nodes," the special purpose hardware in each node, and the programs that
serve to process the data transmission. A number of networks exist, Some
have grown out of general purpose computing, such as "Ethernet," while others
1ike MAP were developed with automation in mind. Networking tends to vastly
improve the effectiveness of robotics when substantial information pertaining
to the process is available on some in-house computer (i.e., a cell host
computer). In use, the network will be transparent to the robot programming
language, which is to say that the program does not need to know where the

files are; the network level program handles that.

Exception Handling. Runtime errors are those conditions arising from
hardware failures, unanticipated for sensor data, or misuse of a control
mode, In the case of program development which does not include compilers and
off-line debugging, syntax errors may also cause runtime exceptions. Excep-
tions resulting from unplanned events may sometimes be handled via "condition
handlers.," These error trap routines are designed to take control when some
pre-defined condition occurs. Within them, some corrective action is taken if
possible, and the program is resumed. A great deal of robot programming is
concerned with detecting exceptions and processing them. Until recently, such

errors would cause a "hard failure"-- a halt condition. MNewer languages allow

"softer" degradation, which is an important safety issue,
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Error Log. The occurrence of a runtime error may cause a notation to be
placed in a file for analysis by the programmer. Useful information, such as
system variables, the state of I/0, program line number, and the time, should
be placed in the file as well. Without this information, the causal deter-
mination of an exception may be hampered.

Diagnostics. A controller needs a set of very low-level programs,
possibly hard wired into the computer architecture, that test and evaluate
system components. They are often invoked automatically on powerup, but may
be run as desired to check the integrity of memory, communication, and lines.
As a common illustration, personal computer users are subjected to a delay on
powerup while such programs are being run automatically., This should not be
confused with debugging.

Peripheral Support. A language supports I/0 in a generic sense to logi-
cal devices. At the controller level, however, low-level programs which
accomplish the transmission of data through ports to conventional data
processing peripherals as well, Printers, disk drives, display screens, and
keyboards fall into this category. Peripheral support of this type is wholly
the responsibility of lower-level controller specific software.

Overrides. Hardware overrides enable the person operating the controller
to change modes of operation from teach to edit to run, etc. Also available
are maximum speed controls, limiting the actual motion speeds of a program,

3.2.6 Language Implementation Layer

The implementation of a language (Figure 11) is depicted as the layer in
the robot programming system residing between the operating and programming
environments and the innermost feature layer., The key issues involved here
are represented as entities for the type of language, how the language is
processed, and how the actual configuration enables certain kinds of debugging
and system access. The implementation of a language is the view of the lan-
guage which is seen by the outer levels., It serves to incorporate the
designed language features into a workable system, to enable use by the
programmer and robot controller,
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Language Type. Programming languages are classified according to high- ;:\'5;
level, distinctive syntactic and semantic features, Languages such as PASCAL, ®
C and KAREL are structured, while BASIC, FORTRAN and VAL are unstructured. ?;Q:
Languages may also be oriented in different ways. KAREL is procedurally :.\,-E:‘,:
oriented like many computer programming languages, while AML/X and LISP are ;’E';
expression oriented. Object-oriented languages, such as SMALL TALK, have had 220
a significant effect upon robot task level programming approaches. Goal :‘;':::,'::
driven languages, an example of which is PROLOG, will play an increasing role 2"?_~
in task level languages. Finally, a language is implemented as an d'w_’:'
interpreter, compiler or some combination of these, * "
Translator., A translator is a program that reads in "source language," ,."?;
perhaps a robot program, and then outputs a lower level "object language." This »:".':
generic concept is the basic action of compilers and pre- and post-processors. ,?
A compiler reads in higher order language and puts out a language similar .{:
to the language actually used by the computer architecture running the program, ’:;:'.'-‘
program, i.e., the target computer/controller. A compiler runs in the batch F:-E
mode--an entire program is read and compiled, and then the object code is :\':“
output. E:.
Interpreter. An interpreter is a program that runs on the target :::‘,-.-
controller and reads in source (high) level program statements one by one and E&E
executes them directly. Off-line translation is avoided, but with some penal- k=
ties. Syntactic errors in the source program may appear as runtime excep- F‘:\;:: 3
tions. Also, the interpretation of a program statement requires significant ::'_::,
overhead before it can be executed, This is why interpreters tend to run :;'E
slower in the real world than one would like, particularly since typical .
control structures cannot be optimized as they would be by a compiler, The 1"3
greatest benefits of the languages that can be run with an interpreter are l'\'ﬁ::ﬁ
their power and ease of debugging. Much of the power comes from the notion of \t‘gﬁh
delayed binding and dynamic scoping. ‘ 5
Modular Development. (Larger programs benefit from partitioning the job E‘\:
into smaller pieces that may be written somewhat independently. These program _‘:_’:\-}'.'
modules can be individually translated and perhaps simulated before the con- \'
plete program is assembled. Incremental compilation supported by some lan- o
guages allows for modular development, Q:,:C
e
i
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A well designed programming environment will promote the use of one
module, perhaps with a few minor changes, for a variety of applications. This
issue of reusability is borne of software engineering practice that claims it
to be a major contributer to productivity in the future of all programming.

Include Files. During compilation or pre-processing, some language
implementations will allow for the automatic insertion of designated program
or data files into indicated areas of a source program. Include files differ
from subroutine libraries in that a library contains previously compiled and
tested program segments, while a file to be included might be untested source
code or data.

Multi-Robot Programming. Coordinating the control of more than one
manipulator on a given task is an extremely difficult problem, Complications
arise from the extra degrees of freedom present, timing constraints, and the
need to (perhaps) apply forces upon another manipulator through simultaneous
contact with the same rigid body. !Motion sinulation of multiple robots is
currently possible, but more complex models incorporating forces and sensors
will be needed to simulate intricate assembly tasks.

Runtime Debugging. A program under development is eventually executed on
the controller, in as realistic a fashion as feasible. This is where the
remaining semantic and process synchronization errors are discovered after the
syntactically correct program has been downloaded. Tools are available to
assist the programmer in tracing, breaking or otherwise monitoring the program
execution, Depending on the level of language actually executed at the con-
troller, i.e., man- or machine-readable, the program may be modified with a
runtime edi tor.

The controller may show the program statement currently being executed on
its display screen. This is tracing, and is only useful after significant
off-line program development,

Another runtime debugging technique, called single stepping, enables the

execution of a single program step, followed by a pause. Using this, the
robot may be slowly stepped through its motions.

Breaking is similar to the mechanism of tracing, but considerably more
powerful. At desirable points during a run with the robot, program exacution
may be temporarily suspended. At this time, the on-line programmer has the
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option of examining the values of variables, the system's registers and ports,
and perhaps overriding some program commands. After doing so, the suspended
program may be resumed, This is the most sophisticated debugging technique
available to the programmer, and has utility only during execution. Although
this technique is used within the operating environment, it is provided by the
language implementation,

Depending upon the level of the language implemented on a controller, a
runtime editor may be used to make minor program modifications. As the con-

troller is not designed for difficult program development, very few tools will
be available at this stage of testing.

System Access. If a robot program requires access to hardware or soft-
ware resources beyond those explicitly provided by elements of the language,
the program requests the assistance of the system monitor program. This
monitor is often referred to as the operating system or supervisor, and is
present to some degree on virtually every computer or sophisticated
controller, Access to the system monitor is especially important to programs
embedded in a workcell controller, which is orchestrating the communication
and control of multiple robots, devices, and sensors,

3.2.7 Language Feature Layer

Much of the literature focuses on the features of different robot pro-
gramming languages (Figure 12). We have argued that the features are the
innermost layer of the programming system, and that they must be put into
perspective if an evaluation of the features is to be used as a measure of a
programming language. Simply listing the features available in a language
does not tell one much about the languagde, unless these can be used to make
conclusions concerning the operating and programming environments, the lan-
guage capabilities, and the potential applications. In this section the
features of a robot programming language are defined. Many of these features
are common to conventional computer languages, and some are unique to robot
programming,
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Figure 12. Feature layer entities. (Source: !ITRI).
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3.2.7.1 Declarations and Yariables

Variable Type. A1l of the variables used in a program have an explicitly
stated data type if specified in a declaration, otherwise they have an impli-
citly assigned type depending on the name or usage. The lack of a full com-
plement of variable types can severely restrict any language,

Variable. A variable is an identifier or name, which may or may not be
established in a declaration, If it is, the scope of the variable extends
over the program segment in which it is declared, A variable can be given a
value explicitly through an assignment statement, or implicitly via parameter
passing. Variables have common use throughout all programming. A variable is
usually restricted to take on only certain data types or ranges of values, as
specified in the declaration. Failure to meet those restrictions may cause
exceptions.

Identifier, This is usually defined as a string of characters beginning
with a letter which is used for everything from key words denoting syntactic
structure to variables and constants, Associated with the latter two is the
notion of scope. Systemwide names such as $clock-time or %io-status may exist
in some implementations in order to act as identifiers outside the realm of
the robot language syntax, for the purpose of referring to precise locations
in the controller's memory,

Label. Program statements can sometimes be labelled or tagged, for
direct reference, In FORTRAN and BASIC, the labels are integers, while in
most structured languages they have the format of identifiers. A labelled
statement can have control given to it using a control structure such as a
"G0T0."

Constant. A constant is like a variable in most ways, except that its
value is established before program execution, and it may not be changed
during the execution. The use of a constant name is sSynonomous with using its
value instead.

Declaration. User defined data types, variables, external program
modules, subprograms, and labels are specified by name in declaration state-
ments within a program module. They usually preceed the use of the name being
declared, and are examined by the compiler prior to the actual execution of
the robot program,
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Scope. A1l names used in a program, whether they appear in a declara-
tion statement or not, have defined 1imits of visibility to portions of the
program, This scope determines what meaning is attributed to the name when it
is encountered during execution. Static scoping rules are used by a compiler
to set up the association between a name and a meaning before execution, while
dynamic scoping rules are used by an interpreter and defer the association
until needed. Static scoping tends to create optimizable and more reliable
execution,

Assignment. During program execution, a variable is given (bound to) a
value by an assignment statement. This process may be likened to an operator
that evaluates the meaning of the right hand operand(s) and stores it in
association with the name of the left hand operand.

3.2.7.2 Data types

Elementary Data Type. This is the most primitive type of data represent-
able in a computer language. It includes arithmetic types (such as integers,
reals, complex, double precision, binary), Boolean types (such as true and
false), and character types (such as ASCII and character string types).

Structured Data Type. An aggregate composed of elementary data types or
other structured data types, which can be manipulated or accessed as a whole
or in part., Common examples in conventional languages are records, lists, and
arrays. Common to robot languages are frames, matrices, and vectors. These
are actually arrays which have special meaning in the robot language.

Geometric Data Type. An instance of a structured data type which is
important in robotics, geometric data types specify points, lines, planes,
curves, and surfaces. These are needed for referencing part features such as
holes.

Array. Arrays are a useful way to aggregate information so that it can
be accessed by numerical indices, A common use of an array is to represent a
transformation matrix for the computation of one coordinate frame from
another, They are also heavily used for two- and three-dimensional maps of an
image, A number of elementary data types should be supportable in an array.
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Yector. A linear array of numbers, often handled as a matrix, vectors
may be used to represent the manipulator's joint angles, Cartesian
coordinates, gripper approach information, forces, velocities, etc. There are
special vector operations, such as dot product and cross product, which are
useful in robotic programming.

Frame. This may be thought of as a specification of a manipulator, tool
or object position in space relative to a known origin, The entries of a
frame may be given values in response to sensor inputs, initialization, joint
encoder readings or calculations based on other frames of reference.

Matrix., This is a rectangular array of numbers., The numbers are called

entries, and in robotics they represent positional, orientational and per-

‘xl?

pl

spective information, There are defined matrix operations, only a few of

A %W Y

which find frequent use in robotics. Vectors can be conveniently represented

L Jird
" f 5

as n x 1 matrices and as such, matrix operations are defined for them as well.

A

b

Coordinate System. This is a frame of reference for descriptions of
vectors and angles. There are a variety, each having utility to different
applications. Common 3D orthogonal ones include Cartesian, cylindrical, and

Y

IR

SZCFFL LS
g
‘-,'-;-

spherical, The specification of orientation can be done with an non-
orthogonal system based on three Euler angles or upon roll, pitch, and yaw
angles of rotation. There are some standard interpretations for the Cartesian
coordinate system - right-handed and left-handed. The right-handed is more

~r % 2 a
R AXRA

oy

’aii[

frequently used, and can be remembered with the observation that a screw

A

pointed in the positive direction along the Z-axis would be advanced if the
positive X-axis is rotated 90 degress toward the positive Y-axis,

Joint Angle. This is an angle of revolution between two prismatic links,
joined at a common revolute axis. Joint angles are the positional information
in a servo level program.

Origin. In robotics, the origin of a coordinate frame is usually placed

i

‘. 1. -‘ l‘ .‘: oy o

conveniently with respect to some manipulator or object feature. For example,

LN

A

the origin of the robot coordinate frame is often placed at the base, but the

origin of the coordinate frame for a part might be a protruding corner.

-
Pty

LS Yo 2b

Position. DNefines the location of a point in Cartesian or joint angle
space,
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3.2,7.3 Qperators ;E:K
Arithme tic Operators. These are functions which include addition, sub- ii
traction, multiplication, and so on. Also included in this list are trigono- :;i
' metric functions. 5&)7

e

Boolean Operators. Boolean operators include NOT, AND, OR, and NOR,

: Relational Operators. These yield Boolean values and include equal,

less, and greater than,

2 LA
-

y Transformation Matrix. This is a matrix representing the translation, \j\;
2N
rotation, and scalting necessary to align one coordinate frame with another, ( 4

)
5 A

) The matrix product of successive transformation matrices allows one to express C:\,

n DA,
the position and orientation of a manipulator joint with respect to other :;E

) coordinate systems, e

.'(

Frame Affixment. Frames are associated with objects in the robot work- 3251

O,
i space. A powerful feature provided by some robot languages is to affix one ag
>
- frame to another. When one frame is moved, the other is automatically s;

ne upda ted.

.,
"k;:-

's "W w
« ":

i

3.2.7.4 Control Structures

-

-,
SN
XA

S
B

Y Branching. The flow of control in a program is determined by a control

bg

structure. Branching to other parts of a program may be done on certain
conditions using a structure like "IF condl THEN goto labell ELSE goto

'

‘ label2". Unconditional branching is accomplished with a “goto" kind of state- B
v .

ment. -
N Rt
v Looping, Looping behavior can be created with conditional branching, or AT

with a higher level control structure such as "WHILE condl DO this and then

PR
this ENDOFWHILE". A variation on this theme is "UNTIL condl DO ...." e
N
Iteration. [Iteration over a set of entities may be performed with the v
SN
previously mentioned constructs, or with another such as "FOR each in this :; ;
. set, DO this and then this." oy
[y a’.S
) R
? Multiple Arm Control. Industrial robot programs usually provide for the .:5{
A
: control of only one manipulator. Coordinated motion between two arms has ﬁfﬁ’

application to sophisticated assembly tasks and cell control. Robot language

</,
A

>
:‘ “y
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constructs to enable multiple arm control under a single program are typically :;:
"COBEGIN-COEND" or something similar, For control of multiple arms under -;

separate programs, the language extensions are harder to define and have yet :'.::

s to be developed, \'}:
3.2.7.5 Subprograms B85
o Macro. This is an association between one symbolic expression and ..\_
another., Its utility arises when a larger piece of detailed code can be _,:

:; viewed as a template, with slots that are filled in according to the invoca- =
¥e tion. For example, if "Increment" is defined as a macro suitably, then the g
A program statement "Increment X" might be expanded to "X = X + 1." An obvious r_:é
& use in robotics is palletizing, where the pattern of motion and control is '-“;',Z:
. identical for inserting parts throughout the pallet, but the location of each C;
' part is different. ".
K Subroutines. The activities a robot program must perform typically fall E:
N into categories, such as motion, sensing, or transformation calculations. ;f
. Within each of these generic activities are specific actions to perform such '.:’,.':’
i as move, rotate, change speed, and grab camera image. Because of the sheer ;
o quantity of activities and their differing nature, it is desirable to organize r:.*:
. them so that they may be programmed independently from one another. This is a Z::E'.:
- basic neccessity in all of programming, but particularly in a domain as varied 'h;
and complex as robotics., These independent modules are often called subrou- 3
~ tines or procedures. Their liberal use is essential to effective robot :.:}_
~ programming, but this language construct is not provided by all languages. -"-E
E\ Nesting. Nesting is the enveloping of a program construct within another $:
construct., For example, a macro routine can be called from inside another -

! macro, This is a basic capability of structured languages, and leads to \:;'\
- better programs, ;‘:\
. Parameters. A characteristic of structured, procedural and functional 7'2\
X language types, is the ability to pass selected information to and from a i"*
r" subroutine or macro. These data items are loosely referred to as parameters, ::::
Larger programs and any that intend to use a given subroutine for more than :&‘

“":' one specific purpose need the language feature of parameter passing. :\
WY
5

3

X

@
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3.2.7.6 Input/Output

®isx

Binary. Binary (single bit) input and output typically involves switch

hY

closures or digital logic signals. This is used extensively for synchroniza- :ﬁ“
: tion, Language statements that read binary input are often tests for activa- :j:
¢ tion such as "if portl is on, then goto label2."” }i?
o Analog. Analog input and output are voltage signals that allow the robot o
to read sensors and provide controlling output. A force sensor is an analog _fi}
ﬁi input, Sometimes specific language constructs are developed to use analog :i;‘
¥a I/0; such is the case with compliance. Otherwise, conditionals are used: "if :\f
gﬁ portl is less than 5, then goto." ’i.
Yision. Obviously important in robotics, special language statements for éf
§§ incorporating vision sensors have been established in robot languages. This ?:‘
: is because a vision system normally has its own computer for image processing, ‘f
e and the robot system is concerned only with the results of this computation. EF;
& Commands such as “"adjust," based on vision input, are commonplace. t'$
" Compliance. Due to either the nature of the task or to the range of part N
i tolerances, a robot joint may require flexibility in order for the manipultator ,?
. to successfully complete a task. This lack of stiffness may be built in as :gﬂ
:i with mechanically compliant wrists, or it may be achieved using force, proxi- :L'
mity, or vision sensors in a feedback loop. The "peg in hole" task is a :i;

~1R
']

common example of the necessity of robots to perform a task while complying

TN

with external constraints (maximum allowable force). Compliance requires ;t

A

8? continuous motion control in response to continuous sensor feedback. For this ]
o reason, it is sometimes referred to as "force servoing" or "vision servoing.," :i;
o

%E Guarded Motion. A guarded move can be thought of as a motion sequence N
" which terminates on condition that an external force is sensed. Some lan- >
e guages provide constructs such as "move until" to perform this function. Ej

}i . t':‘. h
Timers. Various hardware timers are accessible from robot program state- ()

g: ments of the form "delay 10," "startat 1:05:15." These are necessary for ff
r . .

M coordinated control of motion, fixtures, and sensors, :2?
A Wait, A wait statement continually looks for the occurrence of a desired ffﬂ
t event, and when (if) it happens, an action is taken. This involves polling of . J
S

gg the sensor input, where it is periodically scanned along with other inputs. &:
W
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Text 1/0. Communication between the user and the controller running the
language requires some passage of textual data in the form of commands, status
messages, error messages, etc. A robot language needs minimally a construct
such as "DISPLAY" or "PRINT," and "READ."

File I/0. Depending on the hardware running the robot program, various
file system capabilities will be available. A good language will be able to
make thorough use of these, for purposes of keeping error logs, or accessing
information about a part or process. If the controller is on a network, the
files may be stored on another hardware device and referenced from the
controller using a file transfer protocol.

3.2.7.7 Motion

Move, Robot languages have been primarily designed to achieve physical
manipulation of objects. These actions are typically performed by the execu-

" n ]

tion of primitive motion commands such as "move,” "grasp,” and "stop" with
parameters specifying speeds, acceleration, forces, etc. The extent to which
a programmer has control over various move parameters depends upon the lan-

guage used,

Path, This is the geometric path followed in a move command. Some
languages allow paths to be specified in more than one coordinate system,
Also, some allow paths to be specified as straight line, circular, or along
some other geometric curve,

3.2.7.8 Tool Statements

Effector Command. The end-effector is commonly referred to as the

"gripper." Commands issued to the gripper include "grasp," "close with force

3," and "open 6," and are usually expressed in the gripper coordinate frame.

Tool Command. This is the specification of a move relative to the
gripper-held tool frame of reference. "DRILL FORWARD 3," for example, might
cause a relative motion along the axis of the drill bit, regardless of the
orientation of the robot arm. A tool is held by a gripper, and as such it has
its own set of operations specific to the tool function. The operation of a
tool is accomplished through programmed procedures, which send data out on I/0
ports and up to the tool or to the tool controller, The tip of a tool held by
a gripper is freguently used as a reference for the positioning of a robot.
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3.2.8 Relationship Among Layers in the Programming System

The robot programming system has now been developed to at least a first
order level of detail. The entities in each layer have been identified, and
some relationships between layers mentioned, Basically, if an entity in an
outer layer is considered important, it establishes requirements for entities
in one or more of the layers beneath, Ultimately, some language feature(s)
must be present in order to support it. It is only within the context of the
overall robot programming system that the true value of a programming language
can be measured.

A conceptual representation of how the layers of the robot programming
system interact is shown in Table 4. Across the top of the figure are the
entities in the application layer. Along the side are the entities in layers
below. The X's indicate entities which are related to support of the applica-
tion entity,

A proper approach to establishing the relationships between layers would
be to develop a formal data model for the robot programming system. Several
formal data modeling techniques exist. The IDEF methodology, for example, was
developed by the Air Force and has had widespread use throughout the aerospace
industry. Such a model would be extremely valuable for evaluating existing
languages and for establishing requirements for next generation languages.
Hith such a model, one could establish the language features required due to
various constraints in the different layers., The model would provide a struc-
tured analytical framework for use by both users and vendors of robotic soft-
ware. Having at least conceptually established this framework, we can now
properly discuss language comparisons published in the literature.

3.3 COMPARISONS IN THE LITERATURE

There are several good comparisons of robot languages in the literature,
but they normaily focus on only one element of the proygramming system. Ahmad
(17) compares AL, RCCL, AL, VAL, and SRIL-90 (see Table 5). ‘'lost of his
comparison is based on language features, but the last few lines of the table
are concerned with other layers. Structured language (language implementation
layer), operating system (operating environment), and debugging and immediate
operations (programming environment) are also mentioned,
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TABLE 4, DMPACT OF APPLICATION LAYER ON THE ROBOT PROGRAMMING SYSTEM

Application Layer

Sensing

World
Modeling

Motion

Decision
Making Communication

Capabilities

Flexinility
Usability
Extensibility
Upward Compatability
Portabilfty
Reliabtlity
Correctness
Maintainability
Efficiency
Decision Making
Sensor Support

MO M M D M O M oM M

X
X
X

X om oM O o M

Mo M oM X XX X

X
x
X

»

»x

x oM M X

Programming
Environment

Techniques
Experience

Edi tor

0ff-Line Debugging
Simulation

CAD Database
Documentation

X > oM oM X »

LA B B B B P 3

MM oM W oM X

Mo o »

Hom M oM R

>

Operating
Environment

Execution Sequence
Concurrent Fxecution
Multi-Tasking
Paratlel Processing
Process Synchronfzation
Interrupts
Networking

Exception Handling
Error Log
Diagnostics
Peripheral Support
Overrides

> o e M M

>

E R TR

x o W m

Mo M M M oM om X

»

Language
Implementation

Language Type
Translator

Interpreter

Modular Oevelopment
Include Files
Hulti-robot Programming
Runtime Debugging
System Access

o3 3 XM X X ox X

oM O M M

o o M oM X

Language
features

Variables

Data Types
Geometric Data
Array

Yector

Frame

Matrix

Coordinate System
Joint Angle
origin

. Posftion
Operators

. Arithmetic

. Boolean

. Transformation Matrix
. Frame Affixment

I S Y

Control Structures
Sub-Programs
Input/Output
Binary 1/0
Analog [/0
Yiston
Compliance
Guarded Motion
Timers

Walt

Text 1/0

Filte 1/0

. e

Motion Statements
Tool Statements

X o3 X oM oM M W oM M >

> ok X

»x

Moo M MO :

O X M M M M X >

» » om om >

b3

o »

>

PO O O O I M M m

»

> >

® x o

»

Source:

1IT Research Institute
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Language
ORIGIN

COMPUTER

ROBOTS

JOINT MOTION

ARM CONFIGURAT iON
CARTES!IAN MOTION
TRANSFORMS

MOYING FRAMES
TOOL CHANGE

FUNCT IONAL MOTION
VISION

FORCE FEEDBACK

COMPL 1 ANCE

TOUCH SENSOR

OUTPUT CONTROL
COMPILED
INTERPRETED

DATA STRUCTURE

STRUCTURED
LANGUAGE
OPERATING SYSTEM
DEBUGG ING
IMMED | ATE
OPERAT | ONS

WORLD MODEL

TABLE 5,

AML RCCL

1BM PURDUE
1BM YAX11/780
Serles! Supermini
mini
RS 1 PUMA /STANFORD
Yes Yes

~ Yes
Yes Yes
Yes Yes

~ Yes

~ Yes

- Yes

Yes Yes

None Yes

user Yes
defined

compliance

(torce/
swlitch)

Yes

Yes

Any

Yes
AML~1BM

Yes

Yes

Yes

Yes

Any

Yes
UNIX

Yes

Yes

Yes

COMPAR|SON OF THE LANGUAGES

AL
STANFORD
POP 11

mini

PUMA /STANFORD
Yes
Yes
Yes
Yes
Yes

No

Yes
Yes

Yes

Yes

Yes

raly

Yes
DEC

edlt-time

Yes

Yes

YAL
UNIMATION
LSI N

mlicro

PUMA
Yes
Yos
Yes
Yos
No
No
No
Yes
No

No

Yes

Yes

Integer
& transforms

VAL

Yes

Yes

Yes

SRIL-90
IMPERI AL
68000

micro

IMPERIAL

Yes

Yes

Yes

No

No

Yes

limited

Yes

user deflined

user deflned
compllance

Yes

Yes

Integer

Yes
STROS

Yes

Yes

Source: Ahmad, Shaheen, "Robot Level Programming Languages and the SRIL-90 Language,”

Compsac 84 Conference Proceedings, Nov, 7-9, 1984,
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Bonner and Shin (5) present a detailed comparison of fourteen languages
based on language features (Table 6). They further compared them by develop-
/ ing a sample program using the different languages. Their intent was to

S
E AL B

derive some measure of programmability. By performing the excercise, they

- - -~
O

actually identified entities at several layers which impacted the
programmability (Table 7). These were: understandability, flexibility, and

T,
s’
R

hints that a comparison of languages based on language features alone is

. extensibility (language capabilities); compute power (operating environment); Ay
Y

range of users or experience (programming environment); language structure; N

! and variables and sensing (feature layer). Their analysis, then, at least 3jx‘
AFAS,

Y-IY -

s nd

somewhat inadequate. Gruver, Soroka, Craig, and Turner (30) conduct a compar-
ison which significantly begins to branch into other layers of the robot

vy ’:
2T

programming system. They compare eight languages (AL, AML, HELP, JARS, MCL,
RAIL, RPL, and VAL) and break the comparison down into twelve categories:

=
o
o

Language !Modalities (Programming Environment)

L Language Type (Language Implementation)

' Geometric NData Types (Language Features)

Display and Specification of Rotations (Language Features)
Ability to Control Multiple Arms (Language Features)
Control Structures (Language Features)

Control Modes (Language Features)

Motion Types (Language Features)

Signal Lines (Operating Environment)

Successful Sensor Interfaces (Language Features)
Support Hodules (Programming Environment)

Debugging Features (Programming Environment)

g

Al

T A

7

B

SN AL N

i

Yong, Gleave, Green, and Bonney (6) provide a comparison of various
programming environments (Table 8). Although they refer to this as a com-
parison of programming systems, it is, by the definitions used in this paper,
a comparison of only a portion of the entire programming system,

Booze, Allen, and Hamilton (31) did a study to define the characteristics
of a good robot programming system, One result of the study was a list of
quality attributes affecting the life cycle cost of a recbot program (Table 9). ®
Since quality is a measure of the overall "goodness" of the language, it
should not be surprising that the quality attributes are almost identical to
what we have defined to be language capabilities. Another result of this

»
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study was an identification of user requirements for robot languages (Table
10). A review of this list shows that these requirements reside in various
layers of the robot programming system, which we have defined.

The study that comes closest to comparing the entire robot programming
system was done by Collins, Palmer, and Rathmill (32) at Cranfield in England.
They attempted to establish a benchmark for assembly. This involved develop~
ing an application, programming it, and then executing it on six different
robots. From this test they concluded what types of entities are desirable to
support assembly applications (Table 11). More importantly, the difficulty in
the comparison became evident., A test of a robot programming system
necessarily involves a test of the robot hardware. The language, programming
environment, and operating environment, cannot be considered in isolation from
one another other. The authors put it rather succintly:

Being intentionally limited to Cartesian motions in X,Y,Z, and TAEE
rotation around the Z-axis, the benchmark clearly tests the ;a;{f
Olivetti Sigma robot more comprehensively than, say, the PUMA o
or IBM RS2, There is therefore an implicit problem of some vt
importance in this direction, since benchmarks requiring more ﬁt;.
complex manipulator motions would leave a significant propor- ".;
tion of assembly robots unable to participate in the e
comparison....It would be valuable to see some work carried §{i91
out, preferably using a suitable benchmark, which compares the ;&ﬁ
performance of a robot programming language, such as LM or AML, N
when used in conjunction with a representative range of manipu- S
lators., ik 2
o
e
A
3.4 CAPABILITY COMPARISON OF SELECTED LANGUAGES 533_
I'_'-‘.:.
A comparison of languages based on language features can easily be done jyj_i
by referring to language manuals, From these, one can determine what features ;45\
are supported in each language. A comparison of programming and operating $E§:~
environments is somewhat dependent on the actual implementation, For example, t;ﬂ:
A
is a CAD/Graphics system available for simulation? What type of subroutine RN
libraries is available? What type of robot arm is being used? The difficul- ;-.. 3
Y
ties in this regard have been illustrated by Collins, et al. What is lacking o~
in the literature is a comparison of languages based on their overall capabil- e
P
jties. We have attempted here to do such a comparison of some current lan- 0N
guages, This subjective comparison is based on a study of the programming _"
manuals and/or published material. Reference is made to specific language '1f
features as necessary to support a capability. fC}
- - ®
9 oSS
o
o
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TABLE 10, USER REQUIREMENTS LIST FOR ROBOTICS LANGUAGES

ON=-LINE EDITING

ON=LINE TEACHING

INTERACTIVE CAPABILITIES

GRAPHIC PRESENTATION OF DATA
TRACING OR SEARCH ING

MULT{PLE ROBOT
PROGRAMM I NG

MODELS OF PARTS GECMETRY

H1I ERARCHICAL/STRUCTURED
CoDE

ENGINEERING FAULT
ISOLAT (ON

FAILURE RECOVER

OPERATOR INTERYVENTION

MACROS W!TH ROUTINE
PARAME TERS

ADAPTABLE TO STRUCTURED
TECHN IQUES

INTERFACE WITH DBMS/CADAM
AND CLDATA FILES

DATA AND |INPUT TEXT
PARSING AND EDITING

COLLISION AVOiDANCE

ASYNCHRONOUS ROUTINES
DRIVEN BY EXTERNAL OR
INTERNAL EVENTS

IMPROVED VISION/SENSOR DATA

MODEL SPATIAL RELATIONSHIPS

L]

LOCAL AREA NETWORK
INTERFACE

USER-DEF INED MACROS,
SUBROUT INES

MONITORING OF ONGOING
PROCESSES

SIMULATION CAPABILITY

FAULT TRACES AND EASE
OF DEBUGGING

DATA CODE STANDARDS

CONCISE PROBLEM
FORMULAT{ON

CONVERSAT IONAL/
INTERACT IVE

ADAPTABLE TO INDUSTRY
JARGON

SENSORY (NTERACTION
SELECTABLE

SEPARATION BETWEEN SENSORY
ANALYSIS AND CONTROL

SIMPLE GENERATIVE PLANNING

FAST SERVO ALGORITHMS
FOR END-EFFECTORS wITH
COMPLEX DYNAMICS

SUPPORT OF MATERIAL
FLOWS TO/FROM THE ROBOT
WORK AREA

ACCURACY IN WORD StZE TO
.001 INCH

MULTITHREADING FOR CRITICAL
PROCESSING TASKS

EASE OF UTILIZING NEW
APPL tCAT | ONS

PORTABILITY

INCREASED FLEXIBILITY [N
DEFINING CYCLE LOGIC

Source:

McDonnel | Douglas
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3.4.1 VA and VA 1I

VAL is a manipulator level language, having a BASIC-like structure,
designed fcr Unimation robots. The PUMA manipulator is connected to the VAL
monitor, an LSI-11, which runs its own operating system containing an edi tor,
file manager, and user interface. The design intent of VAL was to allow an
operator to define "tasks" as a series of moves and gripper actuations.

VAL was originally designed by Bruce Schimano as the VicArm Language, as
it was to be used to control the VicArm created by Victor Scheinman, \lhen
VicArm became the lest Coast Division of Unimation in 1977, a contract was
initiated with GM resulting in a prototype for the PUMA robot in 1978, to be
principally developed by Scheinman and Brian Carlisle. The language was
changed to Versatile Assembly Language by Unimation, Today, VAL continues to
lead the industrial market in the number of installations.

A VAL program consists of two parts. The motion sequencing portion can be
developed off-line, as a collection of subroutines corresponding to movements.
This part is devoid of actual coordinate and speed details. The detailed
Cartesian coordinates specifying where the endpoints of a move are located and
the speeds involved in the trajectory are provided through an on-line teach
session, which fulfills the second portion. This is done by stepping through
the program in a combined teach/manual mode, jogging the manipulator to the
physical points referenced by the program and then copying in the actual
Cartesian coordinates and speeds to the program menmnory.

FLEXIBILITY. The VAL language is heavily motion-oriented, yet provides
some of the power of BASIC programming. Subroutines are supported, without
parameters, and the coordinate system can be designated right- or left-handed,
It supports frames, joint angles and transformations, but lacks iteration,
conditional, and block structures.

EXTENSIBILITY, A major revision, VAL II, has been released and offers
considerably more flexibility in motion control, with bias forces, guarded
moves, real-time trajectory updating, watchdog monitors over sensors, and tool
frames.

REL JABILITY and CORRECTNESS. The use of the teach mode togetner with a
textual program helps take the guesswork out of the first few runtime
debugging sessions, However, exception handling mechanisms are not a feature

- 98 -
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v of VAL, so runtime failures may be a problem. The lack of sophisticated ka
conditional branching makes explicit error handling difficult. f;“
MAINTAINABILITY. Since the motion sequencing is kept separate from the Gl
- location and trajectory data, VAL programs are somewhat reusable. By teaching Pty
)
a different set of points, the same generic motion sequence program may be ﬁ}r,

used to handle differing parts. .
N NG
ol EFFICIENCY. The original VAL was an interpreted implementation using C < Oy
oy

: and assembly code on an LSI-11. VAL II, however, is much faster and allows %~
[ for multiprocessing. th
’f"
X 3.4.2 RAIL f 3
! Wi
Designed by Automatix Incorporated, RAIL was intended to supply a flexi- 4
. Al

s ble interface between manipulators and vision systems, The approach taken was Qﬁ
I_ . 4
» to create an integrated environment with the strongest hardware available, @
o The result was the AI 32 controller using a Motorola 68000, running an operat- 2
~ ing system interfacing RAIL programs, robot control software, and image N

.'.
n{ 1,8 "

processing software.

¢
e

L The programming environment can be off- or on-line, with a fair amount of

LY
[

tools provided within the operating system. An editor, file system,

s
L2
'

X,

¢

{~ serial/parallel communication, and multiprocessing are supported. A RAIL

foy
4
)

R

program is a procedural program which is translated into an intermediate code

o
I

0

before actual execution by the interpreter. The translation is transparent to

PP LT F
. Y 3t

the programmer; it is not a separate development stage. RAIL source programs

. -
P

[ have the structure of PASCAL, with a good complement of control and condi-
tional constructs. A sophisticated pendant, called the Interactive Command
‘todule (ICM), can jog the robot in joint, world or tool coordinates. It also
) can define locations and frames, paths, speeds and serves as a simple editor,
(34)

FLEXIBILITY. RAIL is quite flexible, having a number of general purpose
PASCAL-1ike constructs in addition to motion, image processing, math, and I/0

'

commands., There is good support of regular and geometric data types such as EFQQ
frames, paths and transformations, RS

e P B T A
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EXTENSIBILITY. The integrated nature of the operating system should
enable RAIL to extend as new sensor technology becomes available,

RELIABILITY and CORRECTNESS. The translation stage catches syntactic¢
) errors before execution and the early stages in program development are
enhanced by the “teach-by-showing” vision method, analogous to teach pendant
programming.

MAINTAINABILITY. The PASCAL-like syntax is rather self-documenting.

Modular development also enhances its maintainability.
)
USABILITY, The integrated approach taken in design is responsible for

" the success of the RAIL language in applications requiring heavy sensor
5 support., The system has found acceptance in welding, inspection, and
assembly,

3.4.3 KAREL

KAREL is a manipulator level language consisting of a translator and an
interpreter, written by GMF Robotics for their line of controllers. A KAREL
source program resembles & PASCAL or MODULA program in many ways., However, a

',d‘

number of built-in functions and procedures for math, I/0, character manipula-
tion, robot motion, and line tracking give pre-defined methods for real world

A S s

control, which would have to be extensions to more general purpose languages.
The design approach was to take a strongly structured information processing
language and add the necessary features to perform motion and process control,
sensor integration and communications.

L A KAREL program can be written on the controller or off-line and down-
loaded. A syntax directed editor is provided that "knows" the permissible
KAREL constructs, so program creation and maintenance is enhanced. The

e L

'{,ﬁ 5
Ly s

resulting source file is translated to a lower form, which is then executable

’ n‘.‘I

v
2% %%

by an interpreter on the controller, The translator uses static scoping

Sy

)
K
»

rules, which promotes reliability and maintainability, while the interpreter

A

gives flexibility at execution time. Modular program development is enabled

»
a
7

L: because of the translation stage and because a program module may refer to ,;i
o0
. external procedures or entire files., This exemplifies the strength of the :jii
design approach, (21) .
.
, &
N N
| N
o8y
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FLEXIBILITY, KAREL is a very flexible language, because it includes all
the elements normally associated with a computer language and specific lan-
guage additions pertinent to robotics and manufacturing. Procedures may be
passed parameters by reference or by value, and they may be locally defined or
accessible in external files. The same holds true for functions. Because of
static scoping, which mandates liberal use of declarations, recursion is also
possible, Vector operators and relative motion are also supported, as well as
access to the command level (operating system) of the controller,

EXTENSIBILITY. The combination of translation and interpretation used to
create executable KAREL programs makes it easier to extend the language by
simply revising the translator. Postprocessors could take a very application
specific front end and convert it to a normal source program for the transla-
tion stage. It may be possible to write a custom translator in order to

combine these steps.

UPNARD COMPATIBILITY. Revisions to KAREL will probably entail language
extensions to accommodate users and should only require the issuance of a
revised translator, 01d KAREL programs should therefore run acceptably on

newer versions,

PORTABILITY. The low-level KAREL interpreter is currently available only
for their controllers, but the translator should be available for general
purpose computer systems,

RELIABILITY and CORRECTNESS. The translation stage assures than any
runtime errors will not be syntactic. KAREL is also notable for its exception
handling capabilities, which may be locally defined or global to the
controller, These handlers are actually condition monitors which are checked
every 32 milliseconds. By prioritizing them, a certain extra bit of
reliability is gained under failure conditions.

MAINTAINABILITY, The data abstraction and modularity gained through the
design approach provide KAREL with good maintainability,

EFFICIENMCY. Because of the significant built-in language extensions
applicable to real world control, the executable code should be efficient,
Apparently, the interpreter runs at comparable speeds to other controller

makes.
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range of robots and sensors. AML/2 defines (and implements) such motion and
sensor primitives, as well as application control and operator interfaces, for P
the IBM 7575 and 7576 robots.

EXTENSIBILITY, The freedom for data abstraction allows the user the con-
tinual ability to extend the capabilities of a system, by placing more user- E 93
oriented "front ends" on top of an application, or by integrating new sensors, :

robots, and information sources into the application. s
*
UPWARD COMPATIBILITY. AML is somewhat compatible with AML/X, Some :&&mA
N
programs written in AML will not work with AML/X because of design decisions g%g

related to the future implementations.

PORTABILITY, ML/X is very portable, since the interpreter is written in

the C general purpose language. It has been ported to IBM 370, IBM PC, and Qf:
Motorola 68000 running under CMS, UNIX, XENIX, and DOS. Low level servo con- i;,#
trol software routines callable from AIL/X are under development. Such :3§%f

routines are included with AML/2 for the IBM 7575 and 7576.

REL IABILITY and CORRECTNESS. As with any language, correctness depends
on the program and how well it reacts to changing conditions, In some ways,
an AML/X program may be more reliable than an off-line translated program, ?t,;‘
since the exception handling mechanisms are extremely sophisticated.

MAINTAINABILITY. The data abstraction and rather self-documenting style
of AML/X contribute to its maintainability.

P4 P

‘(’
EFFICIENCY. As the current release is an interpreter, it will not be &E:
feasible to write some applications solely in AML/X. However, time critical i&:*
parts of an application can be written in C and called through AML/X's C ‘:“:.
interface. :;gf

DECISION MAKING. The language has all the power expected of a modern,
general purpose programming language,

USABILITY. Program development under an interpreter is always easier &
than with a compiler. The fact that AML/X is devoid of robotic terms like iit:
"move" and "grasp" means that an application shell defining such terms needs ;EEE‘
to be designed by an application developer before “robot programming” can be ti:i
done by an end user. AMML/X, with its object-oriented features, is well suited ® -

TG

for building such an application shell., Indeed, AML/2 provides a shell
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containing facilities for the robot programmer., It includes commands for
various kinds of moves and guarded moves, monitors, and grasping. An AML/2
application simulator and an editor that knows AML/2 syntax are also available
to further simplify robot application programming,

3.4.5 Results of Comparison

The four languages VAL, RAIL, KAREL and AML/X have been reviewed accord-
ing to the language capabilities developed in Section 3.2.3. As far as was
possible, each capability was evaluated according to its component language
features, programming and operating environment, and syntax. The set of
capabilities chosen was discovered to be nonorthogonal, which is to say that
they were dependent on each other in some cases. A valid set of criteria for
an evaluation should, insofar as possible, be mutually independent. This
helps to ensure that all issues are examined with equal rigor. For example,
the extensibility of a language depends to a large degree on its flexibility;
likewise, upward compatibility is related to extensibility. These criteria
measures are therefore correlated, and perhaps should have been combined into
more generic measures or broken down into independent components.

This exercise was done to illustrate our viewpoint that the program-
mability of a robotic system depends on all of the factors involved in the
process of programming, not just the language features, Our particular choice
of language capabilities, as criteria for evaluation, was based on the sum
total impression gained through our research and interviews, Consequently,
the reader may find them skewed from other familiar comparisons, Neverthe-
less, the macroscopic viewpoint is a sound one, particularly in the beginning
stages of search for a suitable language.

3.5 ROBOT PROGRAMMING ISSUES

A number of issues in robot programming languages have been discussed,
and these are reviewed and expanded upon here. When comparing various robot
programming languages these issues should be kept in mind. The issues concern
entities in the layers of the programming system, The approach taken by a
particular language on a particular issue will therefore influence the other
layers and, ultimately, the overall performance of the programming system.
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3.5.1 Teach Programming vs Off-line Programming

i

[}
? v
LiRInd

“x
o)

This is an issue in the programming environment, arising from a disa-
greement as to the type and level of experience required of robot programmers,
‘ The relative advantages and disadvantages to each programming technique are
f discussed at some length in Section 1.6, One side of the argument is that
applications people on the shop floor should program robots. These people are

0 familiar with the environment and are most aware of the problems involved in N
LY

performing a task. In addition, a great many tasks can be programmed more }fg

g S

v
’

) efficiently with teach pendant programming than with off-line methods. The

ey

v
!'e". ¥

-

other side of the argument is that complex tasks, such as those generated in a

4%

y

! flexible manufacturing environment, require off-line programming techniques.

% S

In such cases, the ability to integrate computers into the design, manufacture,
" and test of products would be limited by teach pendant programming.

fﬁﬁf >

w,
oL

This argument should not center so much around teach pendant and off-line

0

o
Py

: ]

h )

§ programming techniques as it should around programmer experience. 0ff-line

X7
vy
P

e Pt J
S

~ and teach pendant programming techniques are complementary, not competitive--

Pl

each has applications for which it is the most efficient method. The real

>

issue is one of user-friendliness. The question is whether trained computer
programmers should program robots directly, or whether they should provide

“e8 6 ro
VNS

application programs for use by application personnel., Application personnel

can write off-line programs if provided with tools that allow them to communi-

cate in the language of the application., Interactive CAD/Graphics packages

take this approach. User companies will probably each take their own

\ approaches, some electing to have computer programmers become robot

. programmers and others electing to have computer programmers develop a set of
user-friendly tools for application programmers, Vendors will be in the posi-

) tion of trying to satisfy both. In order to do this, they will have to pro-

vide user-friendly languages that also allow access to low-Tevel constructs. :}ﬁg

As languages evolve toward task level, this will probably become less of an ;37

issue. Programmers at all levels of experience will be able to generate robot o

* programs. There will always be cases, however, where users need access to ;3f
/ FAEA
low-1evel constructs so that a programmer can explicitly direct some robot f::,
v actions, ’gﬁ.
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3.5.2 Language Approach

"l

. Three approaches to this issue have been identified. The first is an "
extension to NC languages, such as that taken by RAPT. The second is an f.:

g extension to existing computer languages, flavored for robotics, such as that :_.T,
‘ taken by KAREL., The last is a totally new language development, such as that j:

" taken by AML., The issue is complicated a bit by using AL as an example,
% because some may agree that a totally new language approach should be devel- E::,
- oped, but may not agree with the particular approach taken by AML. '”'
C_';- There are really two issues here, Once again, user-friendliness is a -
o factor. One argument for the use of NC-based languages is that the functional
‘,:; languages are more user-friendly and that there are many experienced APT f;:
i programmers, The same argument would oppose AML on the grounds that it is :3:
,E: just too difficult to learn. It might even go so far as to say that a new .-,i
“ language is needed that is more user-friendly than the NC-based languages, ’-,,-'_

;',?, The second, and more important, issue is that the entire robot E:
N programming system is impacted by the approach to the language design. The ',':

5%
-

i relative strengths and weaknesses of the different approaches as they relate

to requirements of the robot programming system must be considered. %‘,
&' The advantage of NC-based languages is that they are good for motion :{i
) control and for manipulating objects. The disadvantage is that they are not .'"'
! good for sensor integration and information processing. As languages evolve
il toward the task level, applications will become more complex., This will I::
A involve significant sensor integration and information processing. The robot jz-j'
e controller of the past was basically a motion controller which did very little Z;:-_Z
- of anything else, similar to an NC controller. This is why APT-based lan- _.
< guages seemed a reasonable approach. The robot controller of the future, ::5
- however, will be on the opposite side of the spectrum--it will basically be an E_‘C
;‘ information processor which does comparatively little motion control. For :'_\5_
this reason, many have taken the approach of extending computer languages, ®
:{ Whereas the NC-based languages have been motion- and geometry-oriented .E
d and have been extended to included information processing tasks, the computer- o
Ve based languages have been information processing oriented and have been :
) extended to include motion and geometry. In Section 3.2.7 robot language ®
5 5
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features are discussed. These have been distilled to isolate the extensions
required for robot control, and are summarized as follows:

Geometric Data Types

Special Arrays (Frames, Matrices)

Matrix Operators (Affixment, Transforms)

Coordinate Systems

Vision Commands

Compliance

Timers

Motion Control Commands

Tool Statements

The approach of extending a conventional computer language appears a

viable one. The extensions are mostly expansions to existing feature classes
in conventional languages. The base language to be used is yet another issue.
A number of current manipulator level languages are based on PASCAL or BASIC.
Robot languages have typically evolved in a pattern similar to conventional
computer languages. The next generation of languages is likely to be based on
a language which supports data abstraction and symbolic communication.
Included here are Ada and the artificial intelligence languages such as LISP

or PROLOG,

The approach to creating a totally new language is also viable. By doing
this, language developers can concentrate on the requirements for the entire
programming system, Rather than extending feature classes of conventional
computer languages, the entire feature class can be designed from the ground
up with robotic applications in mind. This can result in the significant
power and flexibility required for robot programming.

3.5.3 Extent of Task Level

As languages approach the task level, tradeoffs are made. The ease in
programming at a task level is achieved at the expense of providing signifi-
cant computer power in the robot controller, This was illustrated in the
discussion of decision making., Some amount of task decomposition by the
programmer can greatly alleviate computational burden on the controller. The
computational abjlities of the controller have practical limitations of speed
and cost. A truly task level controller will not be practical for many years,
An issue to be resolved is just how high a task level is really required.
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Although the trend toward task level seems certain, a great deal of

h T
Cd
\<.

benefit may come from development of strong application packages analogous to

-

ol

application packages in the conventional programming domain. Section 1,3

53

P ek 2
e

showed the evolutionary stages in computer language development, which have a
counterpart in the CAD/Graphics packages of Section 1.6.4. Application lan-
guages are a step in the direction of task level languages.

/ Since computer power is typically more abundant in the programming envi- oS
P PP

ronment than in the operating environment, task level languages are likely to }:1:,

CATSAN

be pioneered on off-line workstations as application programs. Task level N

.
»

?
»
)
¥

1@

commands will be decomposed by a postprocessor into robot controller commands.
! As these commands become well established, software will be developed so that

T

they can be input directly into the robot controller,

5
% Sc.

) 3.5.4 Robot Control vs Cell Control

E

When robots are incorporated into manufacturing cells, the robot ?!!

3 controller is often the most powerful computer and the robot language is the Sf:.
most flexible programming method in the cell., Since the robot program must be :Eﬁz
synchronized with other equipment, it is natural to use the robot controller E:E:f

as the cell controller, and to slave equipment off the robot program. This, !§

, of course, depends on the particular application, Some will have one robot

Py -'_ ".f

) and two small pieces of equipment; others will have many robots, machine _\j}'
YA
tools, and sensors. The latter case is likely to have a cell host computer Y

with a master program, off which all other equipment is slaved.
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The issue here is the proper scope of robot programming languages.

N
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Should these be expanded to cell control? If their scope is expanded upward
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to cells, should it also be expanded downward to machine tool control? There
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r
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are no clear answers here, since the application is really the driving force,
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What can be said is that perhaps "scope" should be added as an entity in the
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el
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! application layer of the robot programming system, and should routinely be
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considered when evaluating languages.
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3.5.5 Standards

There has been some talk of standardizing robot languages at various
programming levels. Some vendors would like to have their own languages
established as industry standards at the manipulator level. Meanwhile, a
servo level standard has been proposed in Germany. (4) This is the Industrial
Robot Data (IRDATA) proposal. One could also envision a task level language
someday acting as a standard. In fact, a standard format could be envisioned
at any level {(all five levels proposed by Bonner and Shin, for example). The
general consensus of most of the experts interviewed is that the technology is
not mature enough for standardization. Development in sensor technologies and
a predicted change away from the use of the traditional Von Neumann computer
architectures are likely to have a large impact on robot programming lan-
guages. Also, experience must be gained over more applications, so that these
requirements can be incorporated into any standard.

The real push for standards may actually come when languages approach the
task Tevel. As things become specified at higher levels there is a greater
chance for ambiguities and thus a need for standardization. For example, "put
box A on box B" means something different from “put nut A on bolt B." Is the
meaning to be derived from the word "put" or from the objects specified (nut
and bolt vs box and box) or from a combination of the two? Is specification
of the task application dependent? For example, does “put" mean one thing for
assembly and another thing for arc welding? At the task level, some standard-
jzation will be desirable to establish the exact intent of each specified
task,

3.6 SUMMARY

Comparison of robot programming languages is difficult because the sub-
ject area is very complex. The literature fails to make clear several impor-
tant considerations and distinctions, First, the robot programming language
must be put in perspective as a factor in overall robot performance., Second,
the difference between robot programming techniques and robot programming
levels must be established, Third, the difference in robot programming
requirements at the task level and at the manipulator level must be noted,
Finally, the entire robot programming system must be considered.
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The robot programming system was shown to consist of four "layers." The
outermost layer is the language capabilities layer, next the programming/

operating environments layer, then the language implementation layer, and NG

S

: finally the language feature layer. Each layer consists of a set of entities, in
1 Y

-{'- .

«

which are factors relevant to that layer. In general, entities in the outer

{a
4
s

layers give rise to requirements for supporting entities in the layers below.

2

PAAAS

] Two layers outside the programming system, the application layer and the

l,

<
22

industrial environment layer, are seen to impact the system. A certain appli- <3
.: cation requires specific language features to support it, but also establishes 213‘
o

needs in the other layers. A proper comparison of robot languages requires

.d'

»

that the entire robot programming system be considered,

e
2

e

There are several robot programming issues that have not been resolved,

R e
>
oadnt?

- Most revolve around the question of how user-friendly robot programming should
. be, and who should program robots, These are the issues of robot programming

Se.

b techniques, approach to robot programming language design, and the extent of

A PSP
S50

o

o task level programming needed, The approach to language design is, also, and

L4

more importantly, an issue of supporting entities in the robot programming

system, Other issues are the scoping of robot languages (robot vs cell) and

R

standards,
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4. ROBOT PROGRAMMING LANGUAGES--A DoD PERSPECTIVE 2:
oA
Evaluation of robot programming systems for defense manufacturing can be
performed using the criteria set forth in Section 3, Defense manufacturing is f
characterized by a few considerations. First, lot size is usually small and §E$~
it may be necessary to supply the parts in several shipments over a period of .o

time. Second, many subcontractors usually work on a project, and there needs
to be communication among them and the prime. Third, military standards must -
be upheld and there is some amount of accountability (record keeping) that
must be maintained. Finally, on a different note, much of the manufacturing
is actually rework of old or damaged parts.

The implications of batch manufacturing have been discussed. Batch Ng;
manufacturing requires frequent reprogramming. The language capabilities e ?
required to support this are flexibility, efficiency, and sensor support. The
robot programming system requires a strong programming environment with a good -~
edi tor, off-line debugging, and simulation, Also, maintainability is very 2,
important if a program is to be re-used at discrete time intervals, ~n

With many subcontractors working on a job, it is possible that programs

X
L ]

L4
AN

>,

will need to be shipped between them. This would require a lanquage with AN

portability and good documentation. This may also argue for a standard lan- ;\JH

quage. NN

Good record-keeping also requires good program documentation. In addi-
tion, reliability, correctness, and error logs are important. This raises an e
interesting point, All robot languages are communicated in only one 7

-
direction; that is, the communication of robot programs is always from the T
development system down to the robot. Military applications may require that :i‘
lanqguages also support communication the other way. A report on the current }:
=
status of the workcell may be important. A process trace that records the :ﬁ
exact events occurring in the workcell during manufacture of a part may also 5}.
be needed. The robot language could support such record-keeping messages in RN
n.r
its own syntax. This bi-directional language concept has been used by g
Computer-Aided ‘lanufacturing-International (CAM-I) in developing the :::
.
Dimensiona? “easuring Interface Specification (DMIS), a programming language *.
for inspection devices. e
e
l\.l
~
AN
-"'-
- 111 - K
-
\:_\
1.\'-(_'.- "‘.J. I‘.l "'-'.'\..\.\‘ \"--_“"-' ‘.«'~' '.-.'- _’.-.'-\'.-_'.\"\’-\'.\.'.- “\'.\"-‘"\'.\-"-".\:'. o e e ’ -" .'? ', N "’ .'. .!- ." ‘-. ‘1‘ "- ‘I ‘-\. ‘* \*-

“s "y

PN,
s

7,

A
N A

LSS

I

AR

“a
> %4

‘I

XA



e B

“Bat e t® WO R0 VM T Wy W W anpAarath ) ot al tah, i "ol Sl tak tal DAL SR &L Sl R e S

The rework of parts presents a particularly interesting application. CAD
models of parts are rarely available, and the exact program that needs to be
executed by the robot depends on the particular repair to be done. This type
of application requires significant sensor support and a very strong program-
ming environment. Expert systems and other Al technology will be required
before automated operation is possible. In the meantime, a combination of
teach pendant programming and off~line programming will be required. Teach
pendants can be used initially to generate the part geometry and some informa-
tion about the defect (the location of a crack, for example). Off-line tech-
niques can then be used to generate a sensor driven robot program capable of
performing the gross motions necessary to approach a feature. The robot would

then be guided by sensors to perform the detailed repair operation.
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5. RECENT AND ONGOING RESEARCH AND DEVELOPMENT

In the early 1980s, a number of good papers on robot programming lan-
quages were published, but very little has been written since 1983. In these
papers, manipulator level languages were compared and the technical barriers
to task level programming were explored. These technical barriers still
exist, and some research efforts are being directed toward solving them,

Other efforts are being directed at improving the state-of-the-art of robot
programming with available technology. For purposes of discussion, it is
convenient to break this down into four topic areas: servo level, manipulator
Tevel, task level, and applications of artificial intelligence.

5.1 SERVO LEVEL

While servo level languages have, in general, not been the subject of
much research, there are some significant efforts which should be cited. As
mentioned in Section 1.5.1 some vendors are committed to increasing the power
of teach pendant programming, and are carrying on with in-house developments
in this area.

The IRDATA proposal in Germany is an attempt to standardize robot lan-
guage at a low level, Since it is being proposed as a standard, it will
undergo substantial industry review. Review processes such as this tend to
raise and investigate issues otherwise overlooked.

Greshke (35) proposed the Robot Servo System (RSS) as a servo level
language which could act as a target language for manipulator level programs,
The approach taken in this language was to specify everything in terms of
servo processes. Data from external sensors was represented as dynamically
changing functions. The advantage of the language was that the programmer
could control what sensor data and robot state information was to be used by
each and every servo process.
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Ford Motor Company is currently developing a system which combines a

3
L

fl‘b’

teach pendant programming technique with an expert system. Using a specially
designed teach pendant, the programmer (operator) teaches the robot only a few
points. He does this by following a set of instructions and selecting options

PA XX
LS

from a menu, The system then computes all of the intermediate points neces-

*x

v,
L

-

sary to drive the robot through the complex path, and outputs a servo level

" program specifying the motions.

B
5 T
. Investigating an interesting concept, the University of Connecticut (36) -“iz
2 developed an experimental system called Task Learner (TL). Here a servo level oo

g

’h’
s

program is used to generate a task level program. The programmer guides the

robot through a task using a teach pendant. The resulting servo level program t,%
¥ el
is then used to infer the task plan, which can later be repeated in a variety g:;
. of workcell configurations. ]
. Y
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5.2 MANIPULATOR LEVEL

s
L
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Work on manipulator level languages and the next generation of robot

rEY
’ ‘n,‘x

vy
7

v languages is continuing mostly in the vendor community. The main thrust is to

increase the power and flexibility of current languages, and to provide

%
X

G

object-oriented programming. The advancements evident in VAL-II over VAL-I

2

5

provide an indication of the trends in robot programming technology at the

2 e

manipulator level. Shimano (37) has summarized these as follows:

xx,

7.7

:.':_l-:'

1

" - formal network communication facilities

- mathematical capabilities equivalent to

' those in high-level computer languages {Eﬁ
. ‘..- >
- enhanced operator interface o

- extended sensor capabilities

. RSN
J - real time path modification based on both DN
internally and externally generated command SN
signals RN

- facilities for performing simultaneous control

‘0

of both robot and process activities. 77
b, Languages such as VAL-II, ARLA, KAREL, and AML/X reflect the state of the ;::f\
art in vendor-supplied robot programming languages. Steady progress will be itﬁ:.
made toward realization of task level languages, and some capabilities are o
emerging, The AIMPCB language developed by Adept, Inc. is often cited as an S
example, NN
\ '.'Y '\
. N,‘-‘_\
"
}\J\
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MCL was developed by the United States Air Force as a language for robot
and cell control, In a continuing R&D effort to test the language, three
aerospace firms are currently using MCL: Fairchild Republic Company, Grumman
Aerospace, and McDonnell Douglas. Several problems have been uncovered,
First, an MCL program is hard to simulate on a CAD system., Second, collision
detection is very difficult because of the MCL technique of user frames.
Finally, development time for an MCL program is two to three times longer than
that for other languages. There have been recommendations to continue testing
and to develop a generalized simulation system for MCL. These types of R&D
efforts are beneficial, since the results can be transferred to private indus-
try. For instance, many of the ideas that came out of !1CL development have
been incorporated into commercial languages.

Volz and Mudge (11) (12) (13) have proposed Ada as an advanced manipula-
tor level, bordering on task level, language for use on robots and in manufac-
turing cells, They 1ist the advantages of Ada as data abstraction, incremen-
tal compilation, multitasking, exception handling, timing constructs,
modularity, extensibility, maintainability, and usability. It can be used as
a hase language for building applications programs and can access CAD data
bases. There are some corresponding disadvantages in the additional computa-
tional overhead associated with extremely powerful languages. Initial work
has looked promising and research is continuing.

5.3 APPLICATION LEVEL

An evolutionary step in the progress toward task level languages is shown
by application programs. Recall that computer application programming such as
spreadsheets, accounting and planning programs are essentially very high-level
language processors, which accept the statement of a problem in the language
suitable to the domain of discourse. The user specifies the problem in terms
of costs, rates and time, which are then interpreted and solved by a program
developed in some lower level conventional computer language. Robotic
programming seems amenable to a similar approach, In this case, the user
would state the problem in terms of goals, constraints, objects, features, and
processes to an application package which would generate a program capable of
running on a controller, Current CAD/Graphics systems address the surface of
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this programming technique by providing good user interfaces for the speci-
fication and analysis of trajectories. What still remains to be developed is
a comprehensive approach to the design of such an applications package. Work
under way at NBS is promising in several of these areas.

$.4 TASK LEVEL

Task level languages are many years away due to several technical
barriers. A1l of these are the subject of ongoing research and development to
some degree. The key thing to remember is that task level languages are
sensor driven, This gives rise to the need for world models of what should be
(programmed goals), world models of what is (sensor input), and strategies to
make the two equivalent using path planning, grasping strategy, and decision
making. (38) (39).

World modeling is the problem of accurately representing the environment
within which the robot is operating. Solid modeling techniques will be
required to represent surfaces, volumes, and many part features. The concept
of uncertainty must somehow be represented in the world model. Uncertainty
arises from imperfect accuracy and repeatability, temperature changes, the
dynamic¢s of motion, variability in parts, robot drift, unexpected events, and
changes in the world state between sensor readings. Sensors can compensate to
some extent, but sensors also have some inherent inaccuracies and therefore
introduce their own uncertainties. Two methods for representing error as it
propagates through tasks are numeric error propagation and symbolic error
propagation. Another problem with world modeling is in relating nongeometric

E& data to objects. For example, the final torgue on a bolt should be part of
’ the world model. There is also a problem of overspecifying the world state in

55 some cases. For example, if a pin is placed in a hole, the rotation of the

-~ pin is irrelevant and should not have to be specified, If it is not

{: specified, this is known as a point of singularity, and the robot is faced

- with an infinite number of solutions. Strategies for selecting one must be

- developed.

-~ Path planning represents a very complex problem. !'odeling objects in

" three-dimensional space, so that a collision-free path can be defined, is
extremely difficult., Different solutions to this problem have been investi-
gated and are discussed in the literature (40), If objects are moving, the

gﬁ problem is complicated in that computational speed becomes a constraint and
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three-dimensional vision sensing must be used to update the model. An addi-
tional problem is that the path is affected by initial orientation, final
orientation, and speed. Therefore, path planning cannot be done until a
grasping strategy has been selected.

Grasping strategy involves computing the appropriate approach and orien-
tation for picking up a part. This requires not only that the geometry of the
part to be picked up be considered, but also that any potential interference
with surrounding objects be taken into account as well, MNongeometric infor-
mation associated with the part, such as center of gravity, orientation con-
straints and coefficient of friction, must also be considered. One problem in
grasping strategies is to select the appropriate option from a list of possi-
bilities--there are often many ways to pick up a part. Some criteria, such as
stability, must be set and then evaluated. Another problem is that of grasp-
ing under uncertainty.

Decision making currently involves branching to some part in the program
when an error condition occurs. This often involves attempting the task again
("if part not present, then try to pick up again"). This does not deal with
two error conditions which must be solved for task level operating environ-
ments, The first is unexpected errors. The robot must be able to recover
gracefully from an error which was not anticipated at programming time, The
second condition is an irreversible error. In this case, the robot must be
able to go ahead and recover from the error by performing some other series of
tasks.

Current work at the National Bureau of Standards' Automated Manufacturing
Research Facility addresses a number of these issues, A robot programming
system called RCS is being developed using the FORTH computer programming
language. RCS breaks down the robot programming task into six levels: task,
subtask, primitives, e-moves, gripper commands, and communications. Note this
is not unlike the robot programming levels discussed in Section 1.5. The
issues being addressed are geometric reasoning, component reorientation,
automatic grasping, collision detection, path planning, automatic fixture
design, mechanical testing of fixtures, and graphi¢ simulation of fixture
layout. Geometric reasoning is the description of an assembly task by the
relationships between features on objects. An example would be to "place face
A against face B." The principles of group technology are applied and objects
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are described as instances of classes. For path planning and collision detec-
tion, the robot environment is modeled using a spatial tree representation.
Several planning algorithms are then used to generate a path within the con-
straints of this model.

5.5 APPLICATIONS OF ARTIFICIAL INTELL IGENCE

Artificial intelligence technology will significantly impact the area of
robotics programming. Task decomposition, planning strategies (path and
grasping), and error recovery are all natural applications for artificial
intelligence. There are some existing applications and research efforts are
currently underway.

In a commercial application, expert systems are being used for diagnos-
tics on ASEA robots. The expert system generates a set of instructions for
tracking down failures in the robot controller, Currently, this amounts to
incorporating a troubleshooting manual into the expert system. A more intell-
igent system with a larger ruleset may be developed in the future,

Westinghouse (41) has developed a workcell to forge steam turbine blades
for electric power generators which uses a rule-based control system (expert
system). It consists of two vision-guided robots, several NC machines, and a
rotary hearth furnace. Setup and operation are completely automated, and the
cell automatically adjusts for different blade batches,

Under a current contract from the United States Air Force, iMartin

larietta is developing the Intelligent Task Automation (ITA) cell. In the

project, all of the computers, except for the servo drives, were stripped from
a Cincinnati Milacron T3 robot controller, These were replaced by single
board computers communicating with a Symbolics Al machine using Ethernet. The
system is used for performing inspection with a robot. The user simply indi-
cates what points are to be checked, and the required robot program is automa-
tically generated. The system consists of two parts: an Al planner and a
path planner, The Al planner is a rule-based system which does tool selection
and generates a sequence. The path planner does incremental and global path
planning for collision avoidance under various constraints., It also monitors
execution by comparing a world model with information acquired from sensor
input, (42)
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o 6. RECOMMENDATIONS AND CONCLUSIONS

6.1 RECOMMENDATIONS FOR RESEARCH AND DEVELOPMENT

Based on analysis of the literature and interviews with industry profes-

-

sionals, the following have been identified as areas requiring research and
development:

Y
o,

A
AN

1. Methodology for Robot Programming Languages. Efforts

'3 should be directed at an understanding of the "big :5 A

14 picture." We need to understand the requirements of Y
various applications and the information flows necessary to s

e automate them, A data model of robot programming would be 7

N beneficial. Also, we need to identify which parts of the R,

;;

process are feasible to automate and which parts are better

left to human reasoning. :“:
) Y,
2. MWorld Modeling. Better techniques are required for repre- ﬁ;'
senting and updating computer models of the robot, the NN
oo environment, and the associated processes. A
N AL,
3. Simulation. Better simulation techniques, including auto- A
i matic interference checking, kinematic and dynamic models, :f
.I and sensor simulation, need to be developed. N

: 4, Communication. Better methods of communicating information

E% among equiprnent in a complex process must be developed.

v This includes both the content of the information and the
speed with which it can be passed,

X

s

5. Sensor Technology., From a software viewpoint, methods for
acquiring information from a large array of sensors and

XA T |
(3

then processing it into a consistent world model are -

needed. e
e
>y
A

6. Safety, Safety considerations, particularly for task level ®
> programs, need to be addressed. N
. E&: /
: 6.2 CONCLUSIONS 'ig:
: Much work has been done in the development of higher order languages for ':;;
sﬁ robots. There seems, however, to be no model which correlates all of the z;s
t- elements of the robot programming system. Languages do not operate in isola- i:gj
s tion: programs are developed in a programming environment and are executed in 3&ﬁ
’ an operating environment. l.anguages are required to support both of these ®
\}:
: )
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environments, as well as the other layers of the system., A top-down systems
approach to developing the requirements of robot programming systems is
required,

The evolution of robot programming systems has been shown to parallel
that of computer programming, with a lag time of five to ten years. This
observation has also been made by previously cited investigators at the
National Bureau of Standards, who further suggest (in a forthcoming paper)
that this knowledge be put to use. A number of recent advancements in compu-
ter programming can, and perhaps should, be put to use in robotic program=
ming. The present robotic programming inadequacies are largely problems of
information processing, program development, and program testing, Existing
systems have solved earlier motion control inadequacies with faster, and more
parallel, hardware. The state-of-the-art computing technology should be
applied directly to these three problem areas.

Much of the debate in the industry revolves around the user-friendliness
of the programming language. There are two questions to consider about user-
friendliness: what is it, and where is it ? First, user-friendly is a sub-
jective term, What is user-friendly to a computer programmer is certainly
different from what is user-friendly to someone with no computer language
experience, Furthermore, what is user-friendly today is not the same as what
will be user-friendly in five to ten years., Since computers are now intro-
duced at elementary school levels, we can expect the whole concept of "user-
friend1y" to be quite different in the near future. Second, user- friendly
front ends are finding their way into CAD/Graphics systems, As these front
ends become commonplace, there will be less impetus to make the actual manipu-
lator level languages themselves user-friendly. Robot vendors may even
develop user-friendly front ends for their own manipulator level languages.
That is, the vendors may develop one language for the programming environment
and a corresponding language for the operating environment,

Different types of robotic applications place varying demands on language
design and implementation. The programming environment is the mechanism
whereby the problem specification is input to the robot programming system,
Similarly, the operating environment is the vehicle for implementing the
solution output by the robot programming system. This process-oriented view
of robot programming motivates some of the following conclusions.
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The application problem should be represented in a language providing
constructs most relevant to the user, Additionally, the programming technique
0 employed to interface with the user should be most conducive to rapid develop-
ment. Taken together, these key issues form the core of a good programming
environment, which in turn largely characterizes the programmability (and
hence the quality) of a system.

~The control of manipulators, sensors, fixtures, and tools likewise places
demands on the robot programming system, particularly with respect to operat-
ing environment considerations. Since robot programming for this generation

T

of industrial robots needs to accomplish both problem representation and
E% control, controllers which utilize a single higher order language must address
both of these problems simultaneously. This need is in contrast to computer
: programming languages, which tend to either expose detail (assembly level) or
hide detail by data abstraction (high-level), but seldom provide both capabil-
ities in a single language. Note that an executing robot program still impli-

.
s citly requires the representation of the problem to be close at hand for the
selection of alternative actions necessitated by changing conditions, The !
Ii fact that 80% of a robot program is concerned with handling errors illustrates @
the need for an executing program to perform more than control, i::
"~
-‘ ..l\..
&: The development of stronger programming environments through smarter 3‘

LY

a7/ 7

tools, such as syntax directed editors, knowledge-based application programs,

CAD/Graphics program generators and simulators, is one approach to strengthen-

Er |
7' ﬂ'

ing the control-oriented manipulator level languages in the direction of ?\ﬁ
X problem representation, These tools serve very well to remove some burden :Eﬁe
v from a user who is concerned with little else than the application problem at H:E
. hand. They do not, however, actually increase the user's ability to conceptu- S:\
e alize the problem; rather they provide powerful mechanisms for the reliable igi

generation of programs which achieve better control over the workcell, i&ﬁ
% W

The development of stronger operating environments with massively parallel

a architectures, communication networks, and sensor integration also principally é%f
EQ addresses the needs of control, Computational speed and precision, communica- ﬂ;’
! tion speed, type and reliability are issues addressed through improvements in :E
Ef the operating environment., These developments follow close on the heels of 1;'
state-of-the-art computing technology. ;Q
i o
o

W
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What is still missing is a robot programming system which integrates the

AN
')' -' .' s
P

o

l' model of an application problem into an implementation capable of simultaneously

e

exerting control over the environment and referencing the model. One approach

':','.

L4

N to this (pioneered by NBS) uses independent communicating processes, written
in a few languages, to accommodate programming at the task, manipulator, and

':‘

oy
- .5

b

servo levels,

a

he*

S Another approach which suggests itself is that of designing a higher order fo
robot language based on the needs of users to represent their problem, and on :yiy

the practical requirements imposed by robot control, It is hoped that this

L NS
3

LY
"_

LR R

document has illuminated key issues in the design of current and future higher-

»3Q

order robot programming languages, and placed them in perspective of the

&
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industrial applications of today and tomorrow.
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the-art survey.

Interviews with knowledgeable professionals working in robot programming
languages, or allied fields, were a vital source of input to this state-of-
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CIMCORP
615 Enterprise St.
Aurora, IL

ASEA Robotics Inc.
16250 West Glendale Or,
New Berlin, W[ 53151

GM Fanuc Robotics
5600 New King St.
Troy, MI 48098-2696

General Motors

Artificial Intelligence Section
Robotics Engineering Group

Tech Center

Warren, MI 48090

General Motors

Research Laboratory
Computer Science Department
Warren, M1 48090

Ford Motor Company

Advanced Technology and
Automation Development Dept.

24500 Glendale Ave.

Detroit, MI 48239

Ford Motor Company
RAACC

15100 Mercantile
Dearborn, MI 48121

Industrial Technology Institute
P.0. Box 1485
Ann Arbor, MI 48106
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nology Information Analysis Center (MTIAC), an Information Analysis Center adwinistra- ﬁd&:h

tively managed and funded by the Defense lLogistics Agency (DLA). Since it is the policy P
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tionnaire and return it to us. In that way we can use your evaluation and the other Rt

information you provide us to more effectively guide this Center 1in meeting your needs for v

scientific and technical information and also to assess the value of this Center to DoD. ,:,:,:
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1. Name 2. Organization f:“:’~
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3. Job Title 4. Field of Specialization N ]
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5. Please evaluate this publication (Check off one or more as applicable). \ ";.
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Information relevant Use 1t often ;!f, ¥
Information outdated Hardl: use it ‘ o
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