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CHAPTER I

INTRODUCTION

The purpose of this report is to review in detail the type checking and scope rules
for the specification language Z. At present no definitive description of the language
exists, although it is sufficiently well defined for the informal use which is currently
made of it. The production of tools to process the language requires a complete
definition during the production of which a number of decisions are made concerning
various compromises between mathematical elegance and efficiency of implementation.
It is the purpose of this report to review these in detail, using as a basis the syntax
developed by King et al [1987, see also Sufrin 1986. This will be referred to as the
standard syntax. Rather than following this language definition mechanically some
changes have been made, with the following motivations:

This report is concerned particularly with tool implementation, so a version of the
syntax has been produced enabling syntax and type checking to be completed in
one pass. Changes introduced under this heading do not affect the appearance of
the language, but in some cases a syntactic check is replaced by a semantic check.

In some cases variations have been introduced which are a matter of personal
preference. The production of variant languages in this way is actually a necessary
step towards the goal of the production of a robust and usable language standard.

.4

Most of the other cases consist not so much in change from what has been
published elsewhere as a specification of the detailed meaning of the language for
those areas which have not been described in detail, in particular the scope rules
and the properties of the type system

In contrast to the work of Spivey 11985], which is concerned with the formal
semantics of the language, this report deals with aspects of the implementation of
tools to process the language. Because of this, the report has been produced in the
form of an implementation specification for a type checking tool for a language which
bears a more than passing resemblance to Z but which represents the preferences of
the author in those areas where the Z rules are debateable.

Z is based on typed set theory so that terms in Z have a type which corresponds to
the largest set of which the term could be a member. This is not the same set for

4 every term (the set of all sets) for the usual reasons, but instead types are associated
with given sets, schemas and sets which may be constructed from them using the
powerset and tuple constructors. Thus in contrast to programming languages, functions
do not have a special type constructor but have the same type as relations (powerset
of 2-tuples) which allows some useful expressions to be constructed without the need
for special coercions.

From an implementation point of view, the most interesting aspect of type checking is
in the limited polymorphism present in Z, in which some terms may have a generic
type. In dealing with these terms the ideas of Milner (19781 have been followed and
developed to cover the various constructions available in Z. The greatest difference
in this area between Z and the language described in Milner's paper, or the related
language ML, is that in ML all types are inferred whereas in Z the types (which may
be polytypes) are given in a signature. This leads to rules for the handling of
polymorphic signatures and also for the use of those signatures at positions where the
corresponding identifiers are being defined. This will be discussed in more detail later.

The specification itself is interesting as an example of a Z specification for a
reasonably large program; this report is a complete Z spe:ification although it has
not been passed through the tool it specifies as the implementation remains to be
done. Consequently it no doubt contains errors, but the report is being issued now
with a view to contributing to the debate on the precise form of the language. The
production of the specification has been rewarding so it is worth recording some of



the reasons for feeling satisfied with the process. Apart from the obvious one of
having a precise statement of the problem, these are as follows:

1. An extensive specification in Z may be produced quickly. This has a number of
advantages. It is for example possible to understand the problem as a whole and
design an appropriate module structure for the implementation without having
to find this out the hard way at the implementation stage. This is particularly
the case in the question of the design of data structures. A standard trauma in
program development is to discover that the data structure one has been
successfully using in the previous twenty modules does not have the capability
to implement some feature required in the twenty first, leading to massive
re-compilations. By having a complete specification for the whole problem, the
capabilities required of the data structures can be made visible at the outset of
implementation.

2. The formal specification is particularly useful when it comes to expressing
error cases. There is an undoubted psychological reluctance to treating these
properly and the fact that Z provides a compact notation for stating the error
conditions as an increment to the standard case is an aid to overcoming this
barrier.

3. The Z notation is an excellent means of communication between specifiers
and implementers. The underlying set theory is easily understood and the
notation is compact enough not to obscure the overall structure with
irrelevant detail.

4. A particularly important part of what one might call the Z specification
technique is the mathematical toolkit, the standard set of Z mathematical
functions and operators which enable one to build specifications rapidly.
Apart from the characteristic Z schema structures, the expressive power of
the notation largely rests on this very useful library of functions.

5. Z is fun!

The structure of the design specification

The tool envisaged to meet this specification completes syntax analysis and type
checking in one pass, so the specification must be for a set of compiling operations on
the concrete syntax, rather than operations on the abstract syntax. A one-pass type
checker will require declaration before use rules and a simple scheme of lexical
analysis. No apology is offered for this, and none should be required by anyone who
has suffered from trying to understand a specification where declaration before use
does not apply.

The specification for each compiling operation must include the position within the
syntax at which the operation is employed, the inputs to the operation in the form of
lexical values (the identifiers encountered, the values of numerical constants etc); the
state variables appropriate to the operation, most notably the identifier environment
giving the relation between identifiers and their types; and finally, values constructed
during the course of compilation, such as the types of sub-expressions. To indicate
the relationship between these various items and the specification itself, the syntax
notation employed in the syntax transforming tool SID will be used (Foster 1968, but
see also Currie 1984L This may be briefly described by means of un example. The
following fragment of input to SID gives a syntax for numerical expressions, together
with compiling functions to evaluate the resulting integer.

BASICS

number 0 decimal numbers assembled according to the usual
convention N

orb # ( i
crb N)w

2



plus # + #
minus # -
multiply # * #
divide # / U

RULES

expression = expression addop term <opaction-pint-pint-pint--int>.
term ;

term = term multop primary <opaction-pint-pint-pint--int>,
pr i mary;

primary = <number-lv--int> number,
addop primary <monadic-pint-pint--int>,
orb expression crb;

anyop = addop,
multop;

addop = <operator-i--int> plus,
<operator-Z--int> minus;

multop = <operator-3--int> multiply,
<operator-4--int> divide;

The first part of this fragment, under the heading BASICS lists the identifiers to be
used to stand for the terminal symbols of the syntax. The syntax rules appear in the
second part of the fragment, under the heading RULES: an equals sign terminates the
name of the rule, a comma separates alternatives and a semi-colon terminates the
definition of the rule. Each alternative within the definition is a sequence of rules or
terminal symbols or compiling functions, the latter being indicated by angle brackets.
SID is able to transform this syntax into a one-track form and outputs a program
which will perform the appropriate syntax analysis. Where compiling functions have
been included the analyser will call them at the appropriate place in the symbol
stream: for example, in the rule for expression above, the function opact ion will be
called to form each intermediate result in an expression like 5+4+3.

Within the angle brackets, the name of each compiling function is followed bv strings
involving minus signs. Each minus sign introduces a parameter to the function, a final
double minus indicates the type of the result. The analyser stacks every result using a
different stack for each type: thus opact ion above leaves an integer on the stack of
integers. Parameters to the compiling functions can only come from the stacks, so
following each minus sign is the type of stack from which the value of the parameter
is to be obtained and which will be supplied by the analyser when the function is
called. the type will be preceded by a p or a q according to whether the value is to
be supplied by a *pop' or a "top" operation. With this notation, it is useful to think
of the syntax rules as delivering values onto the appropriate stack. Thus opact ion in
the rule for expression above takes the integer delivered by the term, the integer
corresponding to the operation (+ or -) and the integer corresponding to the previous
subexpression and combines them to produce a new integer which will be the result of
the expression, which may be thought of as the result of the whole phrase.

There are two other forms of parameter which are allowed to compiling functions.
These are -lv, in which case the lexical value of the symbol to the right will be
supplied, and -n, where n is a small integer representing the value to be supplied.
This latter case is used when a number of compiling functions are simple variations on
a common theme: in this example the operator function presumably simply stacks its
parameter to indicate to opect ion which action is actually required.

After this lengthy excursion into the details of SID, it is now possible to give
the conventions for specifying the compiling functions. These are:

3



1. Each compiling function is specified by a Z schema definition of the same name.

2. Each specification is preceded by the fragment of SID syntax which uses it.

3. Each parameter to a compiling function is represented as an input to the

operation (using ?).

4. The result of each function is represented as an output (using :).

In the specification which follows, each chapter is a Z document. As the
implementation is based on the Flex computing concepts [Foster et al 19821, which is
an object oriented machine, documents are represented by module values, rather than
the name of the document as in the standard syntax. These modules appear in the text
as icons: 2_,spec :rlolu e one for each document imported. The compiling functions
for creating and using these module values are not defined in this specification as
they are peculiar to the Flex architecture adopted. The Z syntax has also been
extended to include an export statement in the form:

document keeps id, id,....

which indicates the identifiers made available when the document is incorporated.

Most of the strategy of type checking is discussed in the datatypes chapter which
contains correspondingly more descriptive text compared with the other chapters
which are concerned with the details of type checking. The appendix contains the
complete syntax.

4



CHAPTER 2

BASIC REPRESENTATIONS

Identifiers

The lexical analyser has the task of sorting out base names and decorations and
produces a member of the set Id, defined by a schema below, for every identifier
encountered. The base name is represented by a line of characters, which may be
emboldened, underlined or not:

weight ::= light I bold I underlined I underbold

decline a [1 : seq Char; w : weiSht]

Name ::= noname I line<decline)

In fact, as far as the specification is concerned, Name could be a given type, but this
does at least indicate that lexical items are emboldened or not as a whole. Decoration
is either a subscripted string (a version) or an attribute or both. The version is
represented by a sequence of Name to allow for an arbitrarily complex label. An
attribute is one of exclamation mark, query or a series of dashes: the view has been
taken that these are mutually exclusive, so identifiers of the form x! ! or x?! are
illegal. Consequently it is possible to define a datatype Att to indicate the possible
attributes of an identifier.

Att ::= noatt I bang I query I dashescN>

The integer parameter of the dashes constructor is the number of dashes.

Each identifier has a syntactic status which is used by the lexical analyser to decide
what sort of terminal symbol the identifier should be: the syntactic status is by
default that of an ordinary identifier, but may be changed during the course of
compiling a definition to be that of an infixed or other operator, or a generic set.

Synstatus ::= ident I op I encopName> I distinop Name>
I distpreop4Name) I preop I postop I rel
I presetKName) I postset<Name> I insettseq Name>

The Name parameter of the constructors for the operators is the closing eop. For the
sets, the name parameter indicates the generic parameter identifier or identifiers, used
when the set is being instantiated. Identifiers are represented by the schema below,
which indicates that only one version is allowed and version and attribute may be
supplied in either order and represent the same identifier. That is, x! 1 is the same

identifier as x,

Id __ ___________

F name, version : Name
att : Att; synstat t Synstatus

Lexical values

The decoration of identifiers is handled by the lexical analyser, rather than
syntactically, so the output from lexical analysis is an identifier, even when the
decoration appears on its own (as in schema terms). It is convenient for the lexical
analyser to buffer these identifiers and decorations in a global queue which forms the
part of the lexical state visible to the compiling functions:

5
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_LexState .LexStateO

idlist : seq Id Lex5tate

idlist = 0

As a result, lexical values delivered by the SID generated syntax analyser need only
distinguish integers, characters and strings, to handle explicit denotations for these
values.

LexVal ::= numcZ Z I char'cChar) I stringcseq Char>

Representation of types

A representation of types is proposed in Spivey [19851, but it has been found
necessary to extend this, for three reasons:

1. It is necessary to cater for the distinction between generic and given types.

2. For the implementation of type checking in expressions it is necessary to infer
the types of instantiation for generic identifiers. This has been done by the
introduction of types constructed from type variables, which may be substituted
by an inferred type value.

3. Also for the purposes of the implementation, the datatype has been
extended to include predicates and an undefined type, which is used for
undeclared identifiers.

Type variables are represented by type names TName, which refer to values in a type
environment (which will have type TName-..Type): substitutions are brought about by
altering the type environment. The type names are introduced as a given set:

[TName)

Type ::= 9ivenCIdl, I powerset (Type) I tuple(seq Type>>
I schematype4ld ..Type3'
I 9eneric((N x Id)4 I variable<TName;)
I predicate I typeundefined

The elements of this disjoint union will be discussed in turn.

I. Given sets

A given set must be treated as atomic throughout the document, and may only be
changed as a result of the instantiation of a previously compiled document.
Consequently it must be distinguished from a generic type, which may be instantiated
at different types within the document which defines it. The Id is the identifier of
the given set, unique within the document. This type is also used for data types.

The types 2 and Char are datatypes and built-in to the extent that numbers and
strings are recognised as having the appropriate type. For the purposes of this
specification, it will simply be asserted that these two types exist:

2type, Chartypa - Type

It may be observed at this point that datatypes are one of the few constructions
in Z which are not allowed to be generic. One can imagine a construction like

[T) Tree ::- lefcT) I node(T Tree x T Tree>
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for polymorphic tree structures for example, which would be useful. To cope with
this, the type representation would have to be extended with a generic data type
constructor dependent on a sequence of types (the generic parameters) and an
identifier, the data type name. This identifier would have a value within the
environment corresponding to a (preferably postfix) generic set instantiating a tuple as
a parameter and delivering the appropriate type. This extension has not been made,
mainly because the semantics of such data types have not been specified, but there
seems to be no reason to suppose that this extension would introduce inconsistencies.
This, of course, is not an argument for including it.

2. Powersets, tuples and schema types

These are standard type constructors, as given by Spivey.

3. Generic and variable

Generic types may either be instantiated by name or anonymously; in the latter case
the type of their instantiation is inferred from their use, using the algorithm specified
by Milner. To correspond to these two usages are two different representations,
generic and variable. A generic type is constructed from an identifier corresponding
to the generic parameter and an integer: the integer is for instantiation with a list of
terms, rather than by name. A generic type is treated as atomic within the generic
definition which uses it and elsewhere it is used to create the appropriate type on
named instantiation. When, on the other hand, type instantiation is done by inference,
a variable type is created from the generic type to allow substitution of the inferred
type of instantiation for the generic type. The variable type is represented by a type
name, which is used to refer to a type environment where the substitutions are
actually made. By this means, one substitution accounts for all instances of the generic
type within the type representation. (An example of a multiple instance is the
identity relation which has type P(T x T), where the T are generic. An instance of
the identity must be inferred to have type IP( x 2) as soon as either the domain or
range are found to be integers.) A new type variable is created for each generic type
on every occasion when the identifier bearing that generic type is instantiated. This
is done by using a new name, drawn from the given set of type names, Tname, and
different from any other name currently in use, for each of the differing identifiers in
the generic type. Type checking of an expression involving such type variables is
done using type unification which will result in some substitution of types for the set
of names. Variable types only have a meaning within an environment giving the
substition of types for names, which, is maintained as part of the global state.

4. Predicate

This is a special built-in type, not accessible to the user, which is used to unify the
type checking of terms and predicates. For various reasons, both terms and predicates
are members of the same syntactic class, so it is helpful to have a special type to
distinguish them semantically.

5. Undefined

This is a type for undeclared identifiers, used to suppress type checking and
consequential spurious error messages.

A subset of these types are the atomic types, defined by:

AType & rng generic U rn9 given U {predicate, typeundefined}

7



2-datetypes keeps
Name, noname, line, decline,
Att, noatt, bong, query, dashes,
Synstatus, ident. op. encop, distinop, distpreop, preop,
postop, rel. preset, postset, inset.
Id, LexState, LexStateO, LexVal. num, char, string.
TName. Type, given,. powerset, tuple. schemajtype, Seneric,
variable. predicate, type...undefined. Ztype, Chartype, AT>'pe



CHAPTER 3

THE IDENTIFIER ENVIRONMENT

R2_datatypes :Module

The identifier environment gives the types associated with each identifier. It is made
up of scopes such as those associated with the global document, or the local
declarations of a schema, and scopes from imported documents. A scope defines a
look-up function, (Id-Type), for the identifiers which have been declared at the
same static level: the rule of declaration before use is followed, so the scope can be
changed incrementally as new identifiers are declared. A new scope is created at the
beginning of a document, for the local declarations in a schema, a theorem, a
comprehension and in many other places. Associated with each scope is a sequence of
types used to calculate the characteristic tuple corresponding to a scope.
Cnaracteristic tuples are used to calculate the types of ), expressions and other
comprehensions. For these constructions the type is regarded as a tuple formed from
the declaration list, in which each identifier and inclusion contributes a member in
the order in which they were introduced. For the particular case of X expressions,
the characteristic tuple is a somewhat dubious concept if two inclusions have a part
of the signature in common. For example, within the context of the schema definitions
A ! [i, i : N] and B a I j, k . N ], X A; B . j has the type (A x B )--N,
which leads to difficulties when the function is applied to a tuple in which the j
components differ. The view has been taken that inclusions with overlapping
signatures in this way are an error when used to make up a X expression, so some
indication needs to be kept within the current scope that it is destined to form the
parameter of a X expression. This is done using the datatype:

scope_type ::= lambda I mu

Also associated with each scope is an integer used to keep track of the order of
generic identifiers. This is gathered together with the other information to form a
Block:

Block

ids Id .Type; ctuple : seq Type

st :scopetype; lastSeneric : N

An imported document also introduces a set of identifiers, but these are not allowed to
override previous declarations. This is for reasons of good practice rather than
logical consistency, because it is not a good idea to have the same identifier present
with two different meanings within the same document. However, an identifier in a
document overrides the same identifier in a previously introduced document for
reasons of efficiency: it is hard to keep track of all uses, within the current
document, of identifiers from external documents and it is unreasonable to expect
external documents to have no identifiers in common. This behaviour may be modelled
using the following definitions. First of all, the identifier environment itself:

Sblocks : seq Block

docs : seq1 (IdType)

docnames : Id .Id eType

rns docnames = rng docs

A particular imported document may be searched using a document name and the
function docnames; alternatively all documents may be searched using docs. The

9
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constraint ensures that either method uses consistent look-up functions. There is
always one block present in the sequence of blocks, namely the global scope of the
current document, and there is always one document, the Z library.

An override function may be defined for sequences of look-up functions as follows:

/e_ :seq 1 (ld.*Type).-(Id-Type)

V 1 seqs(Id--Type)
* #1 = 1 . 1 = hd 1

#I > 1 - /o 1 = (/* (tl 1)) e (hd 1)

where * is the relational overrride operator. This function delivers a look-up
function in which the identifiers defined in scopes near the beginning of the sequence
override those at the end, the implication being that scopes are stacked rather than
queued. The function f ind env delivers the type of an identifier stored in a given
environment:

find Env-&Id ,Type

r env Env
* find env = docids * blockids
where

docids a /e env.docs

ids a X Block . ids

blockids a /e (env.blocks ;ids)

and f ind_.doc finds from a given document:

find_doc a X env : Env; ident : Id
I ident e dom env.docnames
* env.docnames ident

Declarations and inclusions change the look-up function and characteristic tuple in
the current scope and nothing else, so it is convenient to define the schema:

LiEnv
Env; Env'

/iBlock

OBlock = hd blocks A OBlock' = hd blocks'
tI blocks = tl blocks'
docs'= doCs A docnames' = docnames

st' = St A last-seneric' = last.generic

The initial environment consists of one empty block and a set of documents making up
the Z library:

10
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2_lib : seq1 (Id-Type)

Z_libnames : Id.Id.Type
empty block a v Block

I ids = {} A ctuple = () A st = mu
A last-generic = 0
# eBlock

EnvOF Env

blocks = (empty-block)

docs = ZIib
docnames = Z_lib-names

Entering and leaving a scope

On entering a scope a new empty block is added to the environment, on leaving it,

the current block is removed-

-new-scope end_ scope

Env; Env' FEnv; Env'
blocks' = empty...lock cons blocks blocks' = tl blocks
docs' = docs docs' = docs
docnames' = docnames docnames' = docnames

and entering a X expression is a simple variation:

new_lambda_scope

Env; Env'

blocks' = lambdablock cons blocks
where

lambda-block a j Block
I ids {} A ctuple = ()

A st lambda A last_.generic 0
* eBlock

docs' = docs

docnames' = docnames

Adding new identifiers to an environment

In standard Z it is possible to redeclare an identifier, providing the types are
compatible. This seems to be a somewhat dubious facility as it may lead to some user
mistakes going undetected, besides allowing for the implicit introduction of additional
constraints which ought really to appear explicitly in a predicate. In addition the
effect on the characteristic tuple of the environment is questionable. For this reason,
a new declaration is not allowed to over-ride an existing declaration within the
current block. In the general case, declarations involve a sequence of identifiers each
to be given the same type so the declaration operation is:

I!



-Declare

AEnv
newids : seq Id; ty Type
rep! : seq Char

ids' = ids U soodids
ctuple' = ctuple^(new-ids s (X Id . ty))
bad_ids x {} - rep! = "Identifier declared twice"

where
bad_ids a rng new ids n dam ids

good_ids e {ident :rn new.ids
i ident dam ids
ident - ty}

Schema merging

In this case added identifiers are allowed to be present in the current scope, provided
they have the same type. The following function delivers the inconsistent identifiers:

(_ inconsistent -) e X x, y z Id -Type
{ident : Id
I ident e dam x nl dam y

A x ident * y ident

Note that schema merging is done after type normalisation (see chapter 5) which
removes all variables from a type, so a simple test for equality of types is all that is
required, rather than type unification. This corresponds with the rule that types for
identifiers stored within the environment should be fully defined. The new scope is
formed by merging the consistent part of the look-up function:

Merge

AEnv
merge-ids : IdaType

rep! : seq Char

ids' = good-ids U ids

bad-ids s C} rep! = "Identifiers inconsistent"
where

bad_ids a merseids inconsistent ids
good-ids a badids 4 mergeids

The basic operation for a schema inclusion is given by adding a check for overlapping
schema signatures and a calculation of the characteristic tuple of the scope. This is
always done, even in the global scope, for reasons of simplicity.

12



_Include _______________________

Merge

common-ids 0 {} A bad-ids = A st' = lambda

rep! = *Overlapping schemes in X expression"

ctuple' - ctuple snac schematype merge_ids
where

bad-ids a merge-ids inconsistent ids

common-ids a dam merge-ids \ dam ids

Note that the constraint on bad_ids in the schema above is there to give the schema
a well-defined meaning and is required because of the simple way in which error
reporting is being modelled. In the actual implementation both inconsistent and
overlapping identifiers should be reported and in the rest of this specification, in
similar situations, rep! will be given multiple values.

Tests on schemas

A useful check for a schema type, used elsewhere in this specification, is
Schema_______________

ty? : Type

ty? a rng powerset

powerset'I ty? e rng schematype

For some schema references, each identifier must be present and with the
Correct type:

Schema._ok

EEnv
ty? : Type

ty? e rng powerset
ty e rng schematype

schema_type"' ty c find 8Env
where

ty a powerset-t ty?

2_scopes keeps lambda, mu, Block, Env, find, find_doc, newscope,
endscope, new_lambda_scope, Declare, inconsistent,
6Env, Merge, Include, Schema, Schemaok

13



CHAPTER 4

UNIFICATION OF Z TYPES

12 datatypes " oule

Generic types

Most useful general purpose mathematical functions are generic, that is, they are
defined for a range of types. A typical example is the function dom which may be
applied to any relation, no matter what its type, to give the domain of application.
Z supports this facility by allowing most constructions within the language to be
generic, the type parameters being supplied with the definition. To check types
during the course of an expression such as dom R. where R is a relation, it is
necessary to know the particular type which this instance of dom should have. This
can be provided by the user using the named instantiation facilities, but this would be
impossibly tedious for functions like dom which are used so extensively. In fact it is
possible to infer the required type for a generic term from its use, using an algorithm
due to Milner [19781, and this is the approach adopted here.

The algorithm has two parts: in the first part, generic types are instantiated as a
type expression in which the generic components have been replaced with variables.
This process is specified in the module concerned with anonymous instantiation,
(chapter 7). The second part of the type inference process occurs during the various
forms of type checking which appear within the compiling functions throughout this
specification. These all eventually involve some test for type equality: this may be a
simple test if the types are not generic, but if they are, the type inference algorithm
enables them to be judged equal if a substitution of types for the variables within the
generic types could be found which would make them equal, for this can be the type
of instantiation of some generic term. The process of substituting expressions for
variables in order to make two terms equal is called unification and a theorem due to
Robinson (19651 asserts that an algorithm exists to find the minimum substition for any
two terms which will in fact unify, and the specification of this algorithm,
particularised for the Z type expressions, is the subject of this module.

Type unification

In this implementation, the variables in a type expression are represented by type
names drawn from the set TName and a type environment Tenv, a function from names
to types.

Tenv a TName-..Type

The substitution of a type for a variable is brought about by changing the type
environment, which as a result contains the set of substitutions appropriate for the
types under consideration. The unification algorithm is represented by a function
un ify, which takes the current type environment and two types and delivers, if
possible, a new type environment in which the two types are equal; otherwise a reply
is delivered with the new environment containing the substitutions made before the
incompatibility was discovered. The type of the result of un ify is given by the
schema Uresult:

Uresult

tenv' Tenv

rep! seq Char

unify (Tenv x Type x Type)-*Uresult

The unification function will be specified incrementally in terms of the various cases
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for the structure of the type input values, ending up with a global constraint which
defines the function. For this it is useful tn gather up the parameters and result of
un i fy into the schema:

Un i pars

tenv: Tenv; tyl, ty2 : Type

Uresult

First of all. the unification of types which are variable but for which a previous
substitution has been made is specified as follows:

Puns

Un i pars

tyl a rng variable A n1 a dom tenv
SUresult = unify(tenv, tienv n1, ty2)

where
n1 a variable-' tyl

A
tyZ a rns variable A n2 a dom tenv

eUresult = unify(tenv. tyl, tenv nZ)
where

nZ a variable-t tyZ

Immediately after instantiation, a type variable has no type substituted for it,
represented by its absence from the domain of the type environment. If a substitution
does exist, the name will be present in the type environment and the substituted types
are unified. Note that a proof obligation has been incurred for the case where both
types are variables, in which case it is necessary to show that the two constraints
may be satisfied simultaneously: this will only be the case if substitutions for both
type variables are taken into account.

A variable for which no substitution exists may be substituted by any type which
does not depend on this variable. This can be checked using the following
function which gives the unassigned names in a type.

is



names (Tenv x Type)-.P TName

V tenv Tenv; ty : Type; result P TName
I result = names(tenv, ty)

ty e AType A result =
v
ty a rng variable

n d dam tenv A result = {n}
v
n e dam tenv A result = names_in_type(tenv n)

where
n e variable-' ty

v
ty e rnS powerset A result w namesintype(powerset

-I ty)
V

ty e rns tuple A result = U names_intype(rng(tuple
-I ty))

V
ty a rng schematype A

result = U names-in-type(rns(schema_type
-I ty))

where
namesintype a X ty : Type . names(tenv, ty)

Either type may be a variable, giving rise to two schemas for substitution. If both
types are variables, either may be substituted for the other. If one of the
types is dependent on the other, the only allowable case is for both types to be
equal, in which case no substitution is required.

RHsubs

Unipars

tyZ e rnS variable A nZ d dam tenv
nZ d names(tenv, tyl) A

tenv' = tenv U {n2 " tyt1 A rep? = "OK"
V
nZ s names(tenv, tyl) A tyl = tyZ A

tenv' = tenv A rep! = "OK"
v
nZ e names(tenv, tyl) A tyl * ty2 A

where tenv' = tenv A rep! = "Illegal type"

n2 a variable- tyZ

LHsubs

Unipars

tyl e rnS variable A nl d dam tenv

n1i names(tenv, tyZ) A
tenv' = tenv U {nl - ty2} A rep! = "OK"

v
nl a names(tenv, tyZ) A tyl - tyZ A

tenv' tenv A rep! = "OK"
v
nl * names(tenv, ty2) A tyl * tyZ A

tenv' - tenv A rep! = "Illegal type"
where

ni a variable-I tyl
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The remaining schemas cover the non-variable cases, given by this schema:

Novers _

Un i pars

tyl a rnS variable A tyZ a rnS variable

The undefined type is used for undeclared variables and suppresses some consequential
error messages. It is defined to unify with any type.

Undef'ined _________________F Un i pars

tyl = type-undefined v tyZ = type_undefined

tenv' = tenv A rep! = "OK"

All other atomic types unify if they are the same:

Un i atoms

FUn ipars
tyl e AType \ {type-.jndefined}
ty2 e ATYpe \ {typeundefinedl

tenv" = tenv A tyl = tyZ A rep! = "OK"

Powersets unity if they are constructed from types which unify:

Unipowers,

Unipars

tyl e rn9 powerset A ty2 e rnS powerset

eUresult = unify(tenv, tya, tyb)
where

tym a powerset1 I tyl
tyb a powerset1 I ty2

Tuples require the unification of sequences, which is defined to occur between pairs
of sequences of the same length and to terminate at the end of the sequence or when
corresponding elements of the sequence fail to unify. Each unification takes place
within the type environment resulting from previous unifications in the sequence.
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unifyseq % (Tenv x seq Type x seq Type) ,Uresult

V tenv : Tanv; tysl, tysZ : seq Type I Otysl = otysZ 1
* unifyseq(tenv. tysl. tysZ) = unify(tenv, hd tysl, hd tys2)
V tenv : Tenv; tysi, tysZ : seq Type I Mtysl = NtysZ > I
* url.rep! = "OK* A

unifyseq(tenv, tysi, tysZ)
unifyseq(url.tenv', tl tys1, tl tysZ)

V

url.rep! s 'OK" A

unifyseq(tenv, tysI, tys2) = url
where

url e unify(tenv, hd tysl, hd tys2)

Un ituples

Un ipars

tyl e rns tuple A tyZ e rn tuple A #tya = #tyb

SUresult = unifyseq(tenv, ty., tyb)
where

tya a tuplet1 tyl
tyb e tuple -' tyZ

The unification of sciemas differs from the scheme proposed by Spivey [19851, which
it is felt may be cor'using to users. In this. the standard scheme, schemas unify if
their identifiers are identical and corresponding types unify. This leads to problems
because one requires expressions like eSTATE = eSTATE' to type check correctly, so
an additional rule ,s made that decoration does not change the type of a schema.
Unfortunately, if tre decoration is bound in with the schema, either by providing it
explicitly in the signature or within a schema definition such as T a S' the types
become different and may not check in situations in which the defining terms would.
In this particular example T and S would not have the same type and neither would T
and S', which is cout ter-intuitive. In addition it is not clear what type should be
ascribed to s in the declaration s : S' or f in f a X S; S' * term.

The scheme adopted here uses the alternative discussed by Spivey, in which schema
types unify if the identifiers agree modulo any decoration common to all of the
identifiers in one schema, and the corresponding types unify. This means that although
the underlying type representations differ, the predicate eSTATE = eSTATE' still
type checks correctly and the term (eSTATE, eSTATE' ) will also type check as a
member of a homogeneous relation on STATE. In addition, any types which would
agree (in the sense of forming a correctly type checked expression) under the
standard scheme, will also agree under this one, but some types will agree under this
scheme which will not agree under standard one. However, checks on schema merging,
and the schema operations generally, are applied to the type representation, so some
operations are not allowed under this scheme which would be under the standard. A
typical one would be s : STATE; s' : STATE' which does not form a suitable
identifier pair for schema composition (whereas s, s' : STATE would). It is, in fact
debateable which of the two approaches will be less confusing to the users, but it is
in any case a fine distinction and hardly observable to th, user, so there does not
seem to be a problem with adopting this approach. The advantage of the approach is
that the type now contains all the information necessary for checking schema
operations and inclusions, which considerably simplifies the implementation.

The implementation must check the types within the schemas one at a time, so the
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specification defines an ordering within the identifiers of the schema and uses this to
construct the sequence of types to be checked.

order : P Id-.seq Id

U ids : P Id; list : seq Id
I list - order ids
Srns list = ids A dom list = 1 .. #ids

This is not a complete specification as the identifiers are required to be totally
ordered such that the addition of a decoration does not alter the order. The
specification of this requirement in a way which does not constrain the
implementation and does not occupy a page of text is beyond the author's current
ability in Z.

Checking identifiers modulo a decoration requires a function to remove either a
version or an attribute or both from an identifier as below:

decchange ::= discard I keep
undecorate -e X a, v decchanse

,XId
* pId'

I name' = name A synstat' = synstat

a = keep A Ott' = att
v a = discard A att' = noatt

v = keep A version' = version
v v = discard A version' = noname

• eId'

An attribute or version may only be discarded if it is common to a set of identifiers.
represented by the following two schemas:

common_ttribute _ common.version

ids :F Id ids : F Id

3 Ott : Att 3 v : Name
* U ident : ids . ident.att = att • U ident : ids

. ident.version = v

Note that we have stopped short of distinguishing between differing numbers of
dashes. These two schemas may be used to define the function which gives the
decoration change required.

whatdec a X ids : P Id
V 8 a, V : decchanse
I commonattribute A * = discard

v -common_attribute A a = keep

common-version A v = discard
v -common_version A v = keep

S(a, v)
With this one can define the unification of schemas as follows;
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Unischema_____________________

Un ipars

tyl e rfl9 schematype A tyZ e rng schematype
idsla = ids~a
eUresult = unifyseq(tenv, tysa, tysb)

where
tysi a schematype-t tyl
tysZ a schematAype1I tyZ
dechi a what_dec dam tysi
dechZ e what_dec dam tysZ
idsl e order dam tysi
ds2 e order dam tysZ
dsla a idsi ; undecorate dechl
idsZa a ids2 ; undecorate dech2
tysa a ids1 ; tysi
tysb a ids2 ; tysZ

Thus the specification for the unification of non-variable types is:

Non-vars a Uniatoms v Undefined v Unipowers v Unituples

v Unischema

with error case:

Typewrong

The various cases may be collected together into one schema

UNIFY a PunS A ((RHsubs v LHsubs)
v (NovarS A (Non-vars v Typewrons)))

to give a definition of the unify function as:

b Unipars . BUresult, = unify(tenv, ty1, tyZ) o* UNIFY
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Type checking operations

Type checking takes place within the type environment which gives the current
assignment of types to names. For generic type instantiation it is necessary to create
names unique to the current type environment, so the state for type checking
operations must maintain the set of valid names.

TypeState

tenv : Tenv

valid.pames ;P TName

dom tenv r valid.names

Finally, a general purpose operation to check if two types are the same:

TypeCheckr TypeState; UNIFY

validnames' = valid_names

_typeunify keeps Tenv, TypeState, TypeCheck

21



CHAPTER 5

NORMALISATION OF TYPES

7-datatypes :Module
12 type-un y :1 u u

As a result of type checking operations the type produced for an expression may
contain a number of variables, all of which should, at various points in the syntax
such as declarations, have a substitution present within the type environment.
Normalisation is the name used for the process of transforming a type by carrying out
the substitutions implicit within the environment and should result in a type containing
no variable elements, and in a standard form. (Note that this use of the term is
different from the normal Z usage which refers to the general process of deriving a
type from a term) Only types which have been normalised may be directly compared:
in all other cases types should be unified using the TypeCheck operation.
Normalisation is carried out using the following function:

normalise : (Type x (TName- Type)) -Type

This is defined according to the subsets of type as follows:

NPers

Sty : Type
tenv : TName-.Type

result : Type

Nvar _

NPars

ty e rn8 variable
n e dam tenv A result = normalise(tenv n, tenv)
V

n 9 dam tenv A result = ty
where

n e variable-' ty

NPowersF NPers

ty e rng powerset
result = powerset(normalise(powerset-I ty, tenv))

Ntuples_F NPars
ty e rng tuple

result = tuple(tuple -I ty J norm)
where

norm a X ty : Type • normalise(ty, tenv)
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Nschema ______________________FWNars
ty e rng schema_ type

result =schema-type(schema--type-I ty ;norm)
w~here

norm a X~ ty :Type - normalisefty, tenv)

NAtom __________

FNParsF ty e F(TYPe A result =ty

NORM1 e Nviar v NPowers v Ntuples v Nscherna v N~tom

U NPars . result = normalise(ty, tenv) ** NORMI

After normalisation the type should contain no type variables, so define a function to
count them:

names_ in~type Type - TName

U ty FtType .names_in_type ty=
U ty rng variable *names..jntype ty = {variable-1 tyl
U ty rng powerset
- namesin-type ty =names-in~type(powerset-' ty)
U ty : rg tuple
* names~intype ty =U names in type(rng(tuple-I tyl)
V my:rg schema-type
*namesjntype ty =U namesirit>pe(rng(schema- type-I ty))

The normalisation operation must be applied to all user-defined types:

Normal ise-___________________

ty?. ty! Type
VType~tate
rep! seq Char

t = normalise(ty?, tenny)
U(names~intype ty' ) ig 0

-rep! - Type not completely specified"

2-type..norm keeps Normalise
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CHAPTER 6

REFERENCES TO IDENTIFIERS

1Zdatatypes :Modulej

12-scopes :Module]

Ordinary references

The syntax for references is:

reference =
id (reference--type) refZ,
id dir <check__no_att> id <docreference--type> ref2;

A reference delivers a type which is the value of an identifier in the current
environment (instantiation is dealt with later). The identifier is obtained from the
lexical analyser's state variables and looked up in the current environment to find its
type.

Topld _ref. okL LexState '--:Env

id! Id id? : Id; ty! : Type

id! = hd idlist d? e dom(find eEnv)
idlist' = tl idlist ty! = find eEnv id?

If refok cannot be satisfied, the identifier is undeclared. This may not be an error
as there are various identifiers which are conventionally formed from existing
identifers, namely decorated schemas and schemas used with 6 and Z. The first use of
these identifiers when they have not been defined, and a schema of the appropriate
base name has, will result in the declaration of the appropriate schema term. First of
all, to express this, it is necessary to define a function to carry out the decoration
and which expresses the rule that !, ? or a version may only be applied once.
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decoratewith_ (Name Att)-.(Id Id)

W newversion Name; newatt : Att
decorate_with(new_version, new_att) =

X Id
I new-vgrsion * noname version = noname
new_att e rng dashes att = noatt v att e rns dashes

new_ott = bang v new_att = query -o att = noatt
p Id'
I name' = name
newversion - noname version' = version

newversion noname version' = new-version

att = noatt Ott' = new_ott
newott = noatt -* att' = att

new ott noatt A ott # noatt
att'= dashes(dashes-I att + dashes-' newatt)

synstat' = synstat
eId'

Identifiers beginning with 6 or E which have not been declared, but for which a
schema definition for the identifier formed from the name without the initial Greek
letter exists will have a new schema definition created automatically. The new schema
involves decoration with a dash, and the schema must be capable of being decorated
in this way:

25



derived-id

'Env
id?, id! : Id; ty! Type

firstchar = 'A' v firstchar =E'
id' e dom(find sEnv)
ty' e rn9 powerset A powerset-I ty' e rn9 schema-type
dam ids 2 dam decorate
ty! = powerset(schematype ids')
id! = id?

where
firstchar a hd(line "I id?.name).l
id' a W Id

I name = line(edecline')
where

8decline

edecline - line-' id?.name
1' = tl 1 A W' = W

version = id?.version
att = id?.att A synstat = id?.synstat
Sld

ty' a find eEnv id'
ids a schema.type-(powerset "| ty')
decorate a decoratewith(noname, dashes 1)
ids' a {id' : Id; ty : Type

I 3 ident :dom ids
I id' = decorate ident . ty = ids ident
id' " ty

}

The same possibility for implicit declaration exists for an undeclared identifier with a
decoration, if a schema definition exists for the undecorated identifier. Note that for
reasons of simplicity the view has been taken that the base name version must have
been defined, which precludes the decoration of an imported schema if the defining
document has been renamed, because this simply imports the decorated names. As
with the derived schema, the decorated schema must be capable of being decorated
in the way required.
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decoratedid

id?, id! : Id; ty! Type

ident e dom(find GEnv)
ty e rn9 powerset A powerset"1 tye rns schematype
dom ids c dom decorate

ty! = powerset(schematype ids')

id! = id?
where

ident a V Id
I name = id?.name

version = noname
att = noatt ^ synstat = id?.synstat
eld

ty a find eEnv ident

ids a schema..type-(powerset-I ty)
decorate a decoratewith(id?.version, id?.att)

ids' e {id' : Id; ty : Type
I 3 ident : dom ids
I id' = decorate ident • ty =ids ident
id' -ty

All error cases are treated as an undeclared identifier, which is a bit unfriendly in

the case of incompatible decorations:

ref ..wrong

EEnv
id?, id! : Id; ty! : Type

rep! : seq Char

-(decoratedid v derived_id)
rep! = "Identifier undeclared"

ty! type_undefined

id! = id?

For the three undeclared cases, it is necessary to ensure that the identifier created
is declared, so that a subsequent declaration will be ignored and not give rise to
inconsistency.

decid

Oeclare[ty?/ty]

id? : Id; ty! : Type

new-ids (id?) A ty! ty?

undeclared a (derived_id v decorated_id v ref_.Hrong) )
decid\(rep!, newids)

reference a Topid D (undeclared 0 ref_ok)
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A decoration may also be applied to a schema term in the following situation, where
specsexpZ is a syntax rule occuring in the expansion of the rules for special
purpose schema expressions.

rename =
Isqb rename_list rsqb <id_inst-ptype-pinstantiation--type>,
decor <decorate-ptype--type>;

specsexpZ =
ipar schematerm rpar,
lpar schema_term rpar rename,
reference <check_schema-ptype--type>,
schema;

The compiling functions is a simple variation of the above: the decoration required is
found in an identifier left at the head of the lexical analyser's queue.

decorate_ok

id? : Id

ty?, ty! : Type

rep! : seq Char

ty! = powerset(schematype ids')

dam ids c dom decorate
where

ids a schematype t'(powerset- ty?)

decorate a decorate with(id?.version, id?.att)

ids' a fid' : Id; ty : Type
[ 3 ident : dam ids

I id' = decorate ident * ty =ids ident
* id' " ty}

The only error case occurs with incorrect decorations as the syntax ensures that the
type of a schema term is always a schema type.

decorate__wrong

id? : Id
ty?, ty! : Type

rep! : seq Char

ty! = ty?

-(dom ids c dam decorate) -= rep! = "Incorrect decoration"
where

ids a schema_type-'(powerset- ty?)
decorate a decoratewith(id?.version, id?.att)

decorate a Topid 3 decorate_ok v decoratewronS

Document references

Document references are preceded by a document name, which must contain no
attributes. If they are present an error is reported and they are discarded.
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check-no-att

6LexState

rep! : seq Char

(hd idlist),att = noatt -. idlist' = idlist
[hd idlist).att ag noatt =

rep! = "Document reference may not contain attributes"

hd idlist' = . Id
I name = ident.name

version = ident.version

att = noatt

synstat = ident.synstat
where

ident hd idlist

eId
tl idlist' =tl idlist

TopI ds ______________LLexState
id!, doc! : Id

id! = idlist(2) A doc! = idlist(l)

idlist' = tl(tl idlist)

doc...ref-ok

-Env

id', doc? : Id

ty! : Type

(8Env, doe?) e dam find_doc

id? e dom(find-doc(eEnv, doe?))
ty! = find-doc(SEnv, doe?) id?

If the identifier is not present in the document an error is reported without
attempting to look for decorated versions: this is a somewhat debateable decision.

doc_refwron9
5En v

id?, doc?, id! : Id
ty! : Type

rep! : seq Char

feEnv, doe?) a dam finddoc A rep! "No such document"
v
(GEnv, doc?) e dam finddoc
A id? 0 dom(finddoc(eEnv, doc?))
A rep! - "Identifier undeclared"
ty' - type-undefined
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docjreference a Taplds ) (doc..yef..ok v dacjref__Hrons) 3,
decid\(rep! new-ids)

2_references keeps reference, decorate, check _no__att,
doc_reference
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CHAPTER 7

ANONYMOUS INSTANTIATION

1_datatypes :Module

12-scopes :Module

12-typeun i y :Module

The relevant extract from the syntax is:

ref erenc
id <reference--type> refZ,
id dlr <check_no_ptt> id <doc_reference--type> ref'Z;

ref2 =
< enon-i nst-pt ype--typ0,
instantiation <id-inst-ptype-pinstantiation--type>;

For anonymous instantiation, the input type ty? will be the type of the identifier as
given by the identifier environment: the output type ty! is the instantiated type,
which, if the type is generic, must be suitable for the application of the type
inference rules. Consequently it is necessary to find the generic identifiers within the
type. This is slightly complicated by the fact that at a defining occurence of an
identifier, for example the predicate part of an axiomatic definition, types dependent
on the generic parameters should not be instantiated at differing types. If this rule is
not followed, it is possible to create some inconsistencies. For example, defining a
generic function f : S-,T, where S and T are generic, should result in an error if
the predicate contains f = X s : S . s. as the delivered type must be the same as
the parameter. Within a generic definition, the identifiers for the generic parameters
are still in scope, so this gives a test as to which generic types should be instantiated
as variables and which should not: the true generics are those which appear in the
type, but are not currently defined within the environment. The effect of this rule is
that generic schemas used as an inclusion within a generic schema definition which is
generic in the same identifiers will, if instantiated anonymously, be treated as the
same generic parameters. The effect is as if the new generic definition extends the
old one, which is probably what is intended.

Note that variable types are only created for the purposes of anonymous instantiation,
so that the type derived from the identifier environment and supplied by reference
will contain no variable component. This is checked using the type normalisation
function (see chapter 5) which is always used prior to declaring an idenifier with a
given type. First of all then, a function to give the true generics within a type:
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idsin_type : (Env x Type)-.F Id

U env : Env
U ty : rng generic

ident e generic.ids A ids ty = {}
v ident 9 generic_ids A ids ty = {ident}

where
ident : Id

3 n : N - ty = generic(n, ident)
U ty AType \ rng generic * ids ty = {}

U ty rng powerset * ids ty = ids(powerset "I ty)

U ty rn9 tuple . ids ty = U ids(rng(tuple-I ty))

U ty rng schema type
- ids ty = U ids(rng(schematype "! ty))

where
ids a X ty : Type * ids_in_type(env, ty)

generic_ids e {ident Id
13n:N

f find env ident =
poerset(generic(n, dent))

}

The instantiation of a non-generic variable is straightforward:

Nongen _var

HTypeState

"Env

ty?, ty! : Type

idsin_type(eEnv, ty?) = {}
ty! = ty?

For generics we need a mapping from the generic identifiers to a unique set of names,
not currently existing within the environment:

Newnames

bTypeState

-Env

ty? Type

sub! Id.TName

tenv tenv'
dam sub! a idsin_type(SEnv, ty?)

rng sub! n vulidnames = 0

valid-names' a valid-names U rn9 sub!

Given a mapping from identifiers to names, the following function produces a variable
type from a generic:
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inst..type :(Type a (Id."TName)) .Type

Id s : d...TName
*1$ ty . mg generic

ident e donm S A inst-type(ty, s) =variable~s ident)
v ident 4 dam S A inst-type(ty, s) =ty

where
ident :Id

N n i ty =generic(n, ident)

V ty rng pwerset
. nt- typety s) =g gnerc * inst-type(poetIty, s))

Ity : rg schema-type
insttype(ty, s) =shm~yeshm~yeIt nt

where

U ty : gn tuple
inst~type(ty, s) =tuple(tuple-I ty ; inst)

where
inst a X~ ty :Type . insttjypefty, s)

which may be used to create the new type from the one given by reference:

Gen_var ____________F Ty peSt ate
Sub? :Id -TName
ty?, ty! :Type

ty' inst_.type(ty?, sub?)

The total operation for anonymous instantiation is

anon_inst S Non~gen var v (Newnames ) Gen _var)
2_anonjinst keeps anon inst, idsintype
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CHAPTER 8

FORMATION OF INSTANTIATIONS

I2_datatypes :Module]

..scopes :Module

12_references :Module

12_typenorm :Modulel

Named instantiation is applied to identifiers having a generic type and brings about
the replacement of the generic components in the type of the identifier with the
types given for this particular use of the identifier. The given types may be
introduced in the form of a list of types, in which case the generic components are
given by the order in which they were introduced in the generic definition which
assigned a type to the identifier, or they may be introduced as a mapping between
identifiers and types, to indicate which particular generic component is to be
instantiated. Because of the syntactic difficulties of distinguishing between
instantiation and schema renaming (both begin with an opening square bracket and can
carry on with an identifier), both are treated as belonging to the same syntactic class,
so the representation of an instantiation must cover both possibilities. This leads to
the following datatype definition for the representation of an instantiation:

Instantiation ::= termlisttseq Typeo I binding_list<Id .Type>
I rename_list lId Id>

The relevant syntax for the formation of a term list instantiation is:

instantiation = isqb inst_list rsqb;

inst_list = instterm_list, bindin _list, rename_list;
#gathered together to resolve various one-track problems#

inst term_list =
term <tmll-ptype--instantiation>,
term <tmll-ptype--instantiation> comma inst_termlistl;

inst _termlistl =
term <tmlZ-ptype-pinstantiation--instantiation> insttermlist2;

insttermlistZ = S, comma inst_termlistl;

The compiling functions tmll and tml2 form the instantiation from the component
terms, each of which must stand for a type. This is because the generic identifiers
have powerset type so that they may be used in a signature and consequently they
may only be instantiated as sets. This is checked in the operation below, which
removes the powerset constructor to form the type which will be stored in the
instantiation.

Check.t ypen
ty?, ty! Type; rep! : seq Char

ty? e rnS powerset A ty = powerset - ty?
v
ty? ! rns powerset A ty = ty?

A rep! = *Incorrect type for instantiation"
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As well as this check, the view has been taken that instantiations ought to be
defined, as otherwise it would be possible to instantiate a generic term with the
empty set for example. Consequently an additional check is made to ensure that the
type is normalised.

Check type e Normalise 3 Checktypen

The operation tmll forms the first element in the term list instantiation:
tmlla _______________

r ty? : Type; inst! : Instantiation

inst! = term_list (ty?)

tmll a Check type • tmlla

while tmlZ is for subsequent elements

tmlZa _

r ty? : Type; inst?, inst! : Instantiation

inst! = termlist(termlist"I inst? snoc tya)

tml2 a Check_type • tml2a

There are similar operations for binding lists and rename lists:

bindinglist = blI, 611 comma binding1listl;

bll =
id equals <bll--id> term <b12-pid-ptype--instantiation>;

binding-listl =
b12, blZ comma bindins_listl;

b12 =
id equals <bll--id> term
<b13-pid-ptype-pinstentiation--instantiation>;

bll _ blZa ,L bLexState id? : Id; ty? : Type
id! Id inst! Instantiation

id! - hd idlist inst! = binding_list {id? H ty?}

idlist' - tl idlist

b1Z a Check-type ) blZa

Note that a compiling function bl is required because the term may alter the
identifier queue. For subsequent terms in the binding list, a binding mentioning the
same identifier twice is ignored and an error reported.
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id? Id; ty? : Type; inst?, inst! : Instantiation
rep! seq Char

id? 0 dom tys A inst! = 6inding_list(tys U {id? . ty?})
V
id? e dom tys A

rep! = "Identifier occurs twice" A inst! = inst?where
tys a binding_list' inst?

613 a Check-type 3 613a

Compiling a rename list is easier because only identifiers are involved.

renamelist =
id for id <rnll--instantiation>,
id for id <rnll--instantiation> renamelistl;

rename-listl =
id for id <rnlZ-pinstantiation--instantiation> renamelist2;

renamelistZ = S, comma renamelisti;

rnllILexState
inst! Instantiation

inst = renamelist {idlist(l) - idlist(Z)}
idlist' = tl(tl idlist)

Various obvious error cases are dealt with in the compiling function for subsequent
elements in the rename list.

rnlZ _

ALexState
inst?, inst! : Instantiation
rep! : seq Char

idlist(1) 9 dom idmap A idlist(Z) g rn8 idmap A
inst! = rename_list(idmap U {idlist(l) - idlist(2)})

v
idlist(1) e dom idmap A

rep! = "Identifier occurs twice" A inst! = inst?
V
idl st(Z) e rng idmap A

ihp! = "Coincidental renaming" A inst! = inst?where
idmap a renamelist-' inst?

idlist' = tl(tl idlist)
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2_ink _instantiation keeps Instantiation, term-list, binding list.
rename-list. Check type. trnll, tml2.
bllt b12. b13. ru.f rnl2
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CHAPTER 9

NAMED INSTANTIATION

1- datatypes :Modulel

*2scopes :Module

12_mkinstantiation :ModuleJ

12-anoninst :Modulej

The relevant syntax is that associated with references:

reference=
id <ref'erence--type> refZ,
id dlr <check .no-art> id <doc-reference--type> tef2Z;

ref2 =
<snon_inst-ptype--type>,
instantiation <id-inst-ptype-pinstantiation--type>;

There are three similar cases for named instantiation, depending on the type of the
instantiation. Note that as a result of combining schema renaming with instantiation it
is possible to rename a schema within an inclusion, which turns out to be a useful
facility, so it has not been disallowed.

Two functions will be defined which carry out term list and binding list instantiation.
They are very similar and may be defined according to the elements of type. First of
all, a function for term list instantiation:

tl_inst : (Type x seq Type) -Type

U ty, result : Type; s : seq Type
I result oetltinst(ty, s)
•3 idlent :Idl; n : N I ty = Seneric(n, ident)

n e dlm s result = s n

n t da s result = ty

ny s AType \ rn Teneric result = ty
v
ty e rng powerset

A result = powerset(tl inst(powerset
-1 

ty, s))

v
ty r rng tuple

result = tuple(tys ;ninst)
where

tys a tuple- ty
inst a X ty : Type . tl inst(ty, s)

v
ty e rng schema_type

result = schema-typeftys ; inst)
where

tys a. schema_ type
-
' ty

L inst -e X ty : Type • tl_inst~ty, s)

Binding list instantiation:
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bl-inst (Type K (Id...Type)) .Type

U ty, result :Type; s :Id mType
Iresult =bl-inst(ty. S)
3 ident Id; n N I ty = eneric(n, ident)

ident e dom s result =s ident
ident 0 dom s result =ty

V
ty e AType \ rnq generic A result = ty

ty e rfl9 powerset
A result = powerset(blinst(powerset-I ty, s))

ty e mng tuple
result = tuple(tys ; nst)

where
tys a tuple-I ty
inst e X ty :Type . 61inst(ty. s)

v

ty e rnq schema_ type
result = schema-type(tys . int)

where
tys e schema-type-' ty
inst a X ty :Type . bl..jnst(ty, s)

The function for schema renaming is an extended composition:

schema_rename_ :((Id...Type) x (Id .Id))-..(Id -Type)

U schemaiddi: Id mType; idmap :Id MId
schemaj-ename(schema_ids, idmap) = idmap' schema_ids

where
idmap' e X ident :Id

&ident' :Id
Iident e dam idmap - ident' idmap ident
ident o dam idmap -- dent' ident
ident'

The operation for instantiation checks error cases, but instantiates as many types as
are correct.
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i nst
5Env

ty?, ty! Type
inst? Instantiation
rep! seq Char

inst? e rng term_list
ty! = tl_inst(ty?, s)
#dom s > #(ids_in_type(eEnv, ty?)) ,-

rep! = "Too many terms"
where

s a term-listt inst?
v

inst? e rng bindins_list
ty! = bl_inst(ty?, s)
-(dom s G ids-in-type(eEnv, ty?))

rep!= "Not generic in this identifier"
where

s a binding_list-I inst?

while that for schema renaming is

rename
En v

ty?, ty! : Type
inst? Instantiation
rep! seq Char

inst? e rng renamelist
-Schema A ty = ty? A rep! = "Only schemas may be renamed"
V

badids s {}
rep! = "Identifiers not defined in this schema"

ty! = powerset(schema_type schemarename(ids, good-ids))
where

ids a schema_type
t'(powerset-I ty?)

idmap a rename_list- inst?
bad_ids a rng idmap \ dom ids
good_ids a idmap D dom ids

After named instantiation or schema renaming, any generic types remaining are
instantiated anonymously:

idinst a (inst v rename) 3 anoninst

Z_.named-inst keeps id-inst, inst
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CHAPTER 10

GIVEN SET DEFINITIONS AND GENERIC PARAMETERS

12_datatypes -.Module

12 _scopes : Modu e

Given set definitions

The syntax for given set definitions is very simple:

siven-.set-def =lsqb siven-ids rsqb;

Siven_ids = id <given~setdef>, givenidsl;

given_idsl = S, comma givenids;

The rule givenids is also used for the parameters in generic definitions. Given set
identifiers and generic parameters must be unique within the current scope and are
not allowed to have attributes or versions. This is partly because of the form chosen
for the syntactic status of generic sets, but it does seem to be a reasonable
restriction.

check _g iven-id

8L-exState

rep! : seq Char

ident! : Id

ident.att 0 noatt v ident.version * noname
rep! = "Parameter identifiers may not be decorated"

ident! j Id
I name = ident.name A version = noname

A att = noatt A synstat = ident.synstat
e Id

where
ident a hd idlist

idlist' = tl idlist

-given-set error

EE n v
ident? : Id
rep! : seq Char

ident? a dam (hd blocks) ids

rep! - "Identifier for given set already declared"

The type of T in [T] is just powerset of given of T in the outermost block, or
generic of T in an inner block, combined with the serial number to allow for
sequential instantiation. The global scope is detected by the fact that there is only
one block in the environment.
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9 i ven_setok

Env; Env'
ABlock
ident? Id

eBlock hd blocks A elock' hd blocks'
tl blocks = tl blocks'
docs'= docs A docnames' = docnames
st' = st
last-seneric' = last-generic + 1
ident? 0 dom ids

ids' = {ident? ty} U ids
where

ty Type

#blocks = 1 ty = powerset(9iven ident?)
#blocks > 1 -

ty = powerset(seneric(lastSeneric', ident?))

In this schema, it has been necessary to expand declare, because of the change to
9ener i cs.

Sivenset_def a check_9iven_ id )
(given.seterror v given setok)

Generic definitions

For generic parameters an extra scope is introduced to contain the identifiers and
their types:

9enparams = glsqb <new_,scope> given_ids rsqb;

A further scope is created to contain the newly declared identifiers, after which the
usual declaration and definition functions (see later) are used:

generic def =
91ob3l_id <stert-idlist--idlist> 9en_parems <new_scope>
colon term <dec-ids-pidlist-ptype>
cber pred <unstackpred-ptype><endSendef>,
sr 9en_params <newscope> Se def-body er <end._sen_def>;

At the end of the generic definition the current scope is merged with the outer one
and the generic parameter scope thrown away:
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scope~ta_ids Mergeids

Env; Env' Merge

mergeids :Id "Type m-tuple seq Type
m-tuple :seq Type Scul tpemu~

merge..ids = (hd blocks). idscul tpe-tpe

mtuple = (hd blocks).ctuple
blocks' = tl(tl blocks)
dacs' = docs
docnames I = docnames

The characteristic tuple will not be used at the global level, but the declarations
are appended here for consistency.

end..sen-def a (scope_to_ids 3 Merejd~s)(merge_ ids, m-tuple)
2_Sivensets keeps Siven...set_def, end..Sen..def
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CHAPTER I I

DECLARATIONS AND INCLUSIONS

12datatypes Module

[2..scopes :Modulel
t2-Ype-norm :Module

Declarations

The commonest form of definition is the declaration, which appears in the form of a
declaration list. repeatedly throughout the syntax. The syntax for a declaration is
as follows:

dec = id-list colon term (decjids-pidlist-pt'pe>;

id-list =
id (start-_idlist--idlist>,
id <start..jdlist--idlist> comma idlisti;

idlisti
id (stack-idl ist-pidi ist--idl ist>,
id (stack idlist-pidlist---idlist> comma idlisti;

The declaration gives a list of identifiers and a term to define their type. As term
may alter the lexical state, it is necessary to stack the identifier list, rather than
using the lexical analyser's queue of identifiers:

start- idl ist..........

6LexState
dlst' seq Id

dlst! =(hd idlst)

dlst' =ti idlist

The stacking function checks for repeated identifiers:

stack_ dlist_________________ _____

61-ex~tate
dlst?, idlst' seq Id

rep! :seq Char

dent e rng idlst?
idlist' = idlst? A rep! = "Identifier declared twice"

ident 9 rng idlist? -
idlist! = idlst? snoc ident

idlist' = tl idlist
where

ident a hd idlist

The identifiers may be declared if the term in the declaration specifies a type and
the type is compatible with the syntactic status of the identifier. In the standard
syntax the syntactic status may only be set for a global identifier and this rule has
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been followed in the syntax given here. However the same compiling function is used
for global and local declarations so the generalisation of this rule would be a
syntactic change only. In checking the syntactic status, it is necessary first of all to
check that the syntactic status of the identifier is compatible with the other members
of the list of identifiers being declared. For this the arity of the function is needed
and an indication of whether the identifier is to be a relation or not. This is given as
an integer by the following function.

arity a X Id # p n : 0..3
I synstat = ident ,- n = 0

synstat = preop v synstat = postop
v synstat e rng encop -- n = 1

synstat = op v synstat e rng distinop
v synstat rng diastpreop . n = 2

synstat = rel -# n = 3
*n

The check for correct status is given by

statusok_

idlist? a seq Id
n : 0..3
ty?, ty! : Type

n = arity(hd idlist?)

V ident : rng idlist? • arity ident = n

ty! = ty?

with error case:

status_ error

idlist? : seq Id
rep! : seq Char

n : 0..3

ty?, ty! : Type

n = arity(hd idlist?)

-( ident : rng idlist? * arity ident = n)
rep! = Mixture of operator symbols"
ty? = type-undefined

No corrective action is taken to remove consequential errors. The type check takes
place after normalisation so the test for correct type need not take account of type
variables.
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t type.ok

n : 0..3; ty?, ty! : Type

n = 0 A ty? a rn9 powerset A ty! = ty?
v n = 1

3 tyl, tyZ : Type
. ty? = powerset(powerset(tuple(tyl, ty2)))

ty! = ty?

v n= =Z
3 tyl, tyZ, ty3 : Type
. ty? = powerset(powerset(tuple(tuple(tyl, tyZ), ty3M)

ty! = ty?

vn=3
3 tyl, tyZ : Type
* ty? = powerset(powerset ty')

ty! = powerset(powerset(tuple(ty', predicate)))
wherety' a tuple(tyl, ty2)

In the error case the symbols will be declared with undefined type, to reduce

consequential errors:

typeerror

rep! : seq Char

n : 0..3; ty?, ty! : Type

'typeok
n = 0 rep! = "The term given is not a type"

n 0 rep! = "Inappropriate type for operator symbol"

ty! = powerset type_undefined

The declaration is simply given bySdeclare_ids
Declare[idlist?/new-ids]

ty? : Type

ty? e rn powerset A ty powerset-' ty?

and the compiling function by

dec-ids a (status_error v status_ok) ) Normalise )
(typeerror v typeok) • declare_ids\(ty)

Inclusions

inclusion = reference <open_chema-ptype>;

For schema inclusions it is simply necessary to merge in the schema identifiers into
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the current environment. after checking that the reference is to a schema and that
it does not have an undefined type.

include_schema_____________L Schema; Include

merge-ids =schema_ type-'(powerset-t ty'?)

not_s5chema_term ______Lty? Type
rep! seq Char

-Schema
rep' = "Not a schema term"

open-schema a Normalise 3) (include~schema\(merge.ids)
v not _schema_term

A schema inclusion may also appear in a hypothesis where it appears syntactically to
be a predicate:

hyp =
pred <check..predschema-ptype>,
sdlec-list cbar pred (unstackpred-ptype>;

The allowable types for a predicate at this point in the syntax are predicate, the
undefined type or a schema; if it is not one of those, an error is reported. If it is a
schema then it is included.

pr ad ___________________________

Fty? Type
rep! seq Char

Ity? predicate v ty'? = type_undefined v not schema_term

Note that predicates should contain no type variables, so the type must be normalised
to give a specification for the compiling function as

check~pred__schema a Normalise 3o
(pred v (1pred A include_schema\(mere..ids)))

Z..dec_and_inc keeps start_idlist, stack idlist, dec_ ids.
open~schema, check..pred_schema
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CHAPTER 12

SYNTACTIC, DATATYPE AND SCHEMA DEFINITIONS

12dattypes :Modulel

JZscopes : Modu e

&.typeanorm :Module

.dec .and_ inc :Module

Syntactic definitions

Like declarations, syntactic definitions occur at various points in the syntax and, for
the non-generic cases are very similar to declarations. The main difference from the
type-checking point of view is that whereas in x : term, term must have the type
of a set of the type of x, in x e term, they have the same type. Consequently,
syntactic definitions are made to appear like declarations. The syntax for the
syntactic definition of a single identifier is

syndef-id =
global-id <start_idlist--idlist> def term <syndef-pidlist-ptype>;

and it is imply necessary to add a powerset to the type of the term to have an

equivalent operation to declaration:

addpowerset . syn-def a add_powerset 3 decids

ty?, ty! : Type

ty! = powerset ty?

Datatype definitions

datatype_def = id <dt_.def--id> becomes branches <unstackid-pid>;

branch -
id <dt _constant-qid>,
id lang term rang <dtconstructor-ptype-qid>;

branches = branch, branch bbar branches;

For a datatype definition, the identifier must be declared immediately because the
definition is allowed to be recursive. Datatypes are in fact allowed to be mutually
recursive, but in order to keep to the declaration before use rule, datatypes used
before being defined in a datatype definition must have been previously introduced as
a given set. For this reason, the merge operation is used rather than declare. Apart
from this case of introduction as a given set, the view has been taken that datatype
names should be unique, not only within the current document but also within any
referenced documents, including the standard library. This avoids some problems of
confusing types and allows datatypes to be uniquely specified from their name and to
have the same type as a given set.
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dt _dec
Mer9e
ALexState

id! Id

id! =hl idlist

,(id! 9 dom(find eEnv)
v find eEnv id! = powerset(given idJ )) =

rep! = "Dtatype not unique"

mergeids = {id! . powerset(given id! )}

ctuple' =ctuple

idlist' = tl idlist

dtdef a dt-dec\(merge-ids)

The datatype constants are straightforward:

dt_constant_dec
Declare
ALex5tate

id? ; Id

newids = (hd idlist) A, ty = given id?

idlist' = tl idlist

dt_constant a dt_constantdec\(new_ids, ty)

For the constructor functions, the requirement that recursive references to the
datatype involve only finite sets is regarded as a proof obligation, rather than a
failure of type checking.

dtconstructordec

Declare

ALexState
id? ; Id; ty? : Type

newids = (hd idlist)

idlist' = tl idlist
ty = powerset(tuple(ty?, given id?))

dtconstructor & Normalise ) dt_constructor_dec\(newids. ty)

On the completion of a datatype declaration, the SID Id stack must be reset using the
unstack-idfunction, but as the SID stacks are not modelled in the specification, the
corresponding operation is not specified here.

Schema definitions

For compatibility with declarations and definitions, the schema name is stacked as a
list of identifiers and the schema is declared using syn_.def.
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scheme-.def=
id <start-_idlist--idlist>
schema_definition (synj.ef-pidlist-ptype>,
id (start-idlist--idlist> sensparams
schemajdefinition <endscope><syn-def-pidlist-ptyps>;

schema_definition =
<checkschemajid-pidlist--idlist> sdef schema_term,
<check_schemajid-pidl tst--idl ist> schema;

For a schema name, the identifier must be undecorated

check.-schema-id ___________________

idlist!h idlst7  seq Id
rep! :seq Char

schema-id.att snoatt v schema_ id-version * noname
rep! = "Schema name must be undecorated"

dlst! = (id')
where

schema-id a hd idust7

id' a p Id
name = schema-id-name
version = noname A att =noatt
synstat = ident
eld

The syntax for schemas is

schema =
sb (new_ scope) dec_list <scope__to.schema_ type--type> esb,
sb (new-scope> dec-list
st pred-list <unstack~pred-ptype>(scope to schemea-type--type) Esb,
sch <new_.scope) dec_list <scopej:oschema type--type> esch,
sch <newscope) dec_list
cbar pred <unstack~pred-ptype)<scope to__schematype--type> esch;

For a schema, the type is derived from the scope which was created for the schema
signature, and the scope discarded:

scopejoschema-t ype _____________

Fen d~co pa

1ty! Type

~ty! =powerset(schema type (hd blocks).ids)

The function unstackspred disposes of the type produced by predjl i st, and will
be discussed later.

&-.syn...data-.schema_def keeps synj.ef. dt_def. dt_constant.
dt _constructor, check _ schema_ id,
scopejtoschema~t ype
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CHAPTER 123

OPERATOR AND GENERIC SET DEFINITIONS

Zdtaypes :Modulel
JZ-scopei:Modul1e

7.type-narm :Modulej

Declaration of operator symbols

At various points within the syntax it is possible to indicate the syntactic status of
the identifier being defined so that it becomes an infix, postfix or prefix operator
symbol or relation, with a consequential constraint on its type. The syntactic status is
dealt with immediately after encountering the identifier in the definition while the
compatibility of the type with the arity of the symbol is checked on completion of
the declaration.

slobal_id

id underline (global-sym-l>,
underline id <9lobal_5ym-Z>,
id underline id (Slobalsym-S>,
ipar underline id underline rpar (global sym-3>,
underline id underline (slobalsym-4>,
id underline id underline (global sym-S>,
underline jd underline id <9lobal_.sym-?>;

slobal-sym

bl-exSt ate
n?:1..7

hd idlist' = iId; Id'
leId -hd idlst
name' name A version' = version A att' =att

synstat' =syn
where

syn Synstatus

n? 1 syn = preop
n? Z syn =postop

n? ~ syn =op
n? - syn = rel

n? 5 . syn = encop(idlist 2).name
n? - syn = distpreop(idlist 2).name

n? - syn = distinop(idlist Z).narne
@Isd'

n?7 > 4 - ti idlist' = tl(tl idlist)
ne.4 - tli dlst' =tl idlist

Syntactic definition of generic operators

During a generic syntactic definition, the syntactic status of an identifier may also be
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defined, but in this case the parameter positions are indicated by the presence of
generic types. In this one pass system, the syntactic status of the identifier is
established at the definition itself, so the various sorts of syntactic definition all
appear to be a succession of up to three identifiers. The syntax below provides the
semantic functions to enable this to be sorted out.

synjef_ids =
id id <prepostsymbol--idlist> def term <syn.def-pidlist-ptype>,
id id id <insetsymbol--idlist>

def term <syn_.ef-pidlist-ptype>;

Prefix and postfix generic set definitions are syntactically equivalent to i d id but
may be distinguished semantically by ,whether the identifiers have been declared and
whether they are generic types or not (one should be undeclared, one should have
generic type). This is done by the prapostsymbol compiling function which delivers
an identifier list containing a single identifier which is the generic set. The first case
is with the first parameter the generic type and the second a postfixed generic set.

check_genpar 1

EEn v

ALexState
idlist! : seq Id

idlist(l) e dom(find eEnv)

ty e rng powerset

powerset"I ty e rn9 generic
where

ty e find eEnv (idlist([))

idlist(2) dt lom(find eEnv)

idlist! = (p. Id; Id'
I old = idlist(2)

name' = name A version' = version
Ott' = Ott A synstat' = postset (idlist(1)).name
old'

idlist' = tl(tl idlist)

In the second case, the first identifier is a prefix generic set and the second the
generic type:
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checkSenparZ
5Env

ALexState

idlist! : seq Id

idlist(1) 9 dom(find eEnv)

idlist(Z) 6 dom(find SEnv)

tY e rn9 powerset
powerset "1 ty e rng generic

where
ty a find eEnv (idlist(Z))

idlist! = (p Id; Id'
I oid = idlist(l)
name' name A version' version
att' att A synstat' = preset (idlist(2)).name
eId'

)

idlist' = tl(tl idlist)

For the error case, the identifier list is constructed arbitrarily using the first
identifier.

senpar error

1LexState

idlist! : seq Id

rep! : seq Char

idlist! = (idlist(1))

rep! = "Incorrect operator definition"
idlist' = tl(tl idlist)

prepostsymbol a genpar_error * (check..Senparl v check _enparZ)

For infixed operators, a succession of 3 i ds, the generic parameters must be the
outermost identifiers. These are checked to be generic and the middle identifier
made into an infixed generic set.
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par sok

BEn v
ALex5tate

idlist(1) e dom(find eEnv)

ty e rng powerset

powerset-I tye rng generic
where

ty e find BEnv (idlist(1))
idlist(3) e dom(find oEnv)

ty e rng powerset
powerset' tye rng generic

where
ty a find eEnv (idlist(3))

idlist(Z) V dom(find eEnv)

parsnot _ok

'Env

bLexState

rep! : seq Char

'pars_ok
rep! = "Incorrect identifier for parameter of generic"

. operator"

In either case the middle identifier is made into an infixed generic set, constructed
from the parameter names. These are used when the generic set is instantiated (see
below).

make1 nset

ALexStete

idlist! seq Id

idlist! = (s Id; Id'

I old = idlist(Z)
name' = name A version' = version A 8tt' = att
synstat' = inset((idlist(l)).name,

(idlist(3)).name)
•old'

)

idlist' =tl(t]{tl idlist))

insetsymbal a (parsok v pars_notok) A make_inset
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Instantiation of generic sets

12 mk-instantiation :Module

jZnamed inst :lodul 1e

formula
formi inset <setop--id> formula (inset-pid-ptype-ptype--type>,
forml;

formi

form2;

formZ

form3l;

form3=

reset <setop--id> form3 <set _inst1-pid-ptype--type>,
form4;

forml

form4 postset <set_instZ-ptype--type>.
aform;

The compiling function setop is simply required to stack the name of the identifier:

et op _____________________I LexState
dent! Id

dent! =hd idlst A idlist' = tIi dlst

To carry out the instantiation, a binding list instantiation is made up using the name
stored with the syntactic status of the generic identifier:

set-_inst___________________

inst! :Instantiation
ty?. ty! :Type
dent? Id
--:Env

inst! binding~listfident -ty
7}

t!=find SEnv ident?
where

ident a vj Id
Iname - preset-' ident?.synstat
version = noname
att = noatt A synstat =ident

*BId
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and the compiling functions are given by

set_insti a Check_type 3P set_inst 3o inst
set-inst2 a setop 3o setjinstl

For the infixed generic sets, two sets have to be instantiated

inset..jnst

inst! :Instantiation
tyl?, tyr?, ty! Type
!dent? :Id

inst! = binding list-Odl -. ty1'?, id2 .. tyr?l
ty! find BEnv ident"

where
dl p Id

Iname = (inset-' ident?.synstat) 1
version = noname
att noatt A synstat =ident
e Id

id2 a p Id
Iname = (inset-' ident?.synstat) 2
version = noname
8tt =noatt A synstat = dent
e Id

inset a Check-typeltyl7/ty?, tyl!/ty!]
A Check~type~tyr?/ty?, tyr!/ty!]
3o inset-inst 3o inst

Z.oppdef keeps globalsym, prepostsymbol, insetsymbo1,
setop, set-instl, set-inst2, inset
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CHAPTER 14

PRIMITIVE TYPES

12-datatypes :Modulel

1_type._uniy :Module

g_scopes :Module

Explicit constructions

explicit constr =
tuple,
set eset <empty-set--type>,
explicitset termlistl eset <explicitset-ptype--type>,
lseq rseq <empty_list--type>,
lseq termlistl rseq <explicit_list-ptype--type>;

In the syntax above, expli c i tset is a terminal symbol inserted by a look-ahead
function in the lexical analyser to resolve the problem of disentangling {a, b, c}
from {a, b, c : T... }. The compiling functions required are relatively trivial; for
an empty set the type required is powerset of variable:

empty-set

6TypeState

ty! : Type

ty! = pcwerset(variable n)

tenv' = tenv A valid-names' = {n} U validnames
where

n : TName j n a valid-names

and similarly for an empty list:

emptylist

6TypeState

ty! : Type

ty! = powerset(tuple(2type, variable n))

tenv' = tenv A validnames' = {n} U validnames
where

n : TName I n 9 valid-names

An explicit set is a powerset of its elements:

explicit-set

F ty!, ty? : Type

ty! a powerset ty?

and similarly for an explicit list:
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explicit_list

ty!, ty? : Type

ty! = powerset(tuple(2type, ty?))

Both sets and lists must be made up of elements of the same type:

termlistl = # terms of the same type 0
term,
term comma termlistla;

termlistla =
term <checktyssame-ptype-ptype--type>,
term <check tys.same-ptype-ptype--type> comma termlistla;

An arbitrary choice is made to deliver the first type in the series:

Scheck _t ys..same

TypeCheck ~ iyl/tyl, iZ?/tyZJ

ty : Type

ty! =tyZ?

Special constants

The various constants appear as members of the atomic formulae:

aform =
<nat--type> nat,
<char--type> char,
<sconst-lv--type> sconst,

The special constants are the numbers and strings, distinguished by the type of the
lexical value delivered by the lexical analyser.

si C n St ______________________________

1v? : LexVal; ty! : Type

v? a rng num A ! Ztype
V

1v
? e rng char A tW' = Chartype

v
1v

? 
a rng string A ty! = powerset(tuple(Ztype, Chartype))

The terminal symbols nat and char are 2 and Char respectively; they are built into
the syntax in this way in order to prohibit their re-definition.
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nat __ _ char _

ty! Type ty! Type

ty! = powerset 2type ty! powerset Chartype

Projections

aform :

,form pr-oj id <proj-ptype--type>,

A projection may only be applied to a schema type and must identifiy a member of

the schema's signature. In the error cases the type is left unchanged.

projok

6tlexState

ty?, ty! t Type

tyl e rng schema-type
hd idlist e dam idmap
ty! = idmap(hd idlist)

where
idmap a schema_type-I ty?

idlist' = tl idlist

notschema

aLexState
ty?, ty! : Type
rep! : seq Char

ty? 9 rng schematype
idlist' = tl idlist
ty! = ty?
rep? *Projection may only be applied to schemas"

id_notinsi9

ALexState
ty?, ty! : Type
rep! t seq Char

ty? e rnq schematype
hd idlist 0 dom(schematype-I ty?)
ty! = ty?
idlist' % tl idlist
rep! = "Identifier not defined in schema"
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proj A not-schema v idnotinsig v proj _ok
Ztprimitives keeps emptyset, empty'jist, explicit-_set,

explicit-ist,. check-tys-same,
nat, char, sconSt, proj
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CHAPTER 15

TUPLES, PRODUCTS. THETA TERMS AND COMPREHENSIONS

1.datatypes :Modulel

12scopes Module

*2type.unify :Mlodule

_primitives :Mlodule

Syntax

tup1le
ipar term comma termlist2 rpar,
theta reference <theta-ptype--type>;
# the reference is to a schema #

termlistZ = #terms for a tuple #
term <first..tuple-ptype--type>,
term (firsttuple-ptype--type> comma termlist2a;

termlist2a =
term (next tuple-ptype-ptype--type>,
term (next-tuple-ptype-ptype--type> comma termist2a;

Tuples

An explicit tuple is easily compiled as it is simply a matter of combining the types
into a list:

first..tuple , next-tuple______________

Fty?. ty! :Type Fty?, tuple?, ty! :Type
ty! = tuple(ty?) ty! = tuple((tuple-'tuple?) snoc ty'?)

Theta expressions

A theta expression forms a tuple, having a schema type, from identifiers defined
within the current environment and members of the schema referenced. Unlike a simple
schema reference the type of the delivered result is an element, not a set. As the
theta expression only involves a reference, rather than an expression it is not
necessary to use type unification.

theta_ schema

For the error eases, the type is passed through unchanged-
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,not schema

ty?, ty! : Type
rep! : seq Char

-Schema

ty!= ty?
rep! *Scheme required here"

schemaundefined
5 Env

ty?, ty! : Type

rep! : seq Char

Schema A -Schemaok
ty! ty?

rep! "Scheme identifiers not present in this environment"

theta A notschema v schemaeundefined v theta_schema

Products

product = term <firstprod-ptype--type> prod productl
<end.prod-ptype--type>;

productl =
term <nextprod-ptype-ptype--type>,
term <nextprod-ptype-ptype--type> prod productl;

A Cartesian product is formed from sets and forms a set of tuples of the constituent
types. The compiling functions are similar to those for tuples with the additional
complication of removing powerset constructors: to avoid problems with type variables,
this has to be done by type checking against a type consisting of a powerset of a
new variable type. The powerset constructor for the tuple is added at the end of
the product.

.prod ,____________ _ __ fi rstjnember_._.

TypeCheck(ty?/tyl, ptype/ty2l Fty?. ty! : Type
ty! Type

I ty! tuple(ty?)

ty! - variable n
valid-names' = valid-names U {n}

where
n : TName

n a valid.names

ptype a powerset ty!

firstprod a prod\(ptype) 3 first-member
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The same procedure is applied to subsequent members of the product, with the result
being added to the end of the list:

nextmember

prodl thisprod/ty!]

prod?, ty! : Type

ty! = tuple((tuple-t prod?) snoc this_prod)

next_prod a nextjnember\(ptype, this_prod)

Finally, the powerset constructor is added at the end of the product:

endprod -

ty?, ty! : Type

ty! = powerset ty?

Comprehension terms

comprehension =
schema,
set <new_scope> dec_list compset eset,
lambda <new_lambda_scope>
dec_list lambda_set <lambda-ptype--type>,
mu <new_scope> declist lambda-set <end_scope>;

compset =
<scope_to_tuple--type>,
cbar pred <unstack_pred-ptype><scope-to tuple--type>,
dot term <set-ptype--type>,
cbar pred <unstack_pred-ptype> dot term <set-ptype--type>;

lambda_set =
dot formula,
cbar pred <unstack_pred-ptype> dot formula;

The standard set comprehension is defined to deliver a set of tuples, formed either
from the characteristic tuple of the declarations in the comprehension or as provided
by the example term. A new scope is created on entry to the comprehension and
converted into a tuple using the function below.

tuple.o Lscope

8Env
ty! : Type

wctuple > 1 --o ty! = powerset(tuple ctuple)
"ctuple = 1 - ty! = powerset(hd ctuple)

scope.tojtuple A tuple.of-scope J end-scope

The set function is called when an example term is provided and adds a powerset to
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- _ .. - -.- -. Ir

its input type and ends the current scope. Consequently it is a composition of
previously defined operations:

set a explicit_set S endscope

The X comprehension uses the scope for the parameter type and the example
term for the result type:

lambdaI 1 I

FSc op2~jD.uple~tpar/ty! I
ty!, ty? : Type

ty! -- powerset(tuple(powerset
"I 
typar, tyl)))

lambda a lambdal\(typar)
E_tuples keeps first tuple, nexttuple, theta,

firstsrod. nextsrod, endsrod,
scope_to_tuple, set, lambda
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CHAPTER 16

FUNCTION APPLICATION AND PARTIAL APPLICATION

IZ-datat ypes:Mul

12-scopes :Module

?-typejunify :Module]

I! references :Module]

!2-anoninst : Modulel

Type checking for function application

Most of the syntax for function application is concerned with indicating the binding
of the various forms of operator, and then, for the infixed forms, assembling the
parameters into tuples.

formula =

formi;

forml =
forml op <funop--type> formZ <infix-ptype-ptype-ptype--type>,
form?;

formZ =
form2 form3 <funapp-ptype-ptype--type>,
form3;

form3 =
preop <funop--type> form3 <funapp-ptype-ptype--type>,

distpreop <funop--type>
term eop form3 <distpreop-ptype-ptype-ptype--type>,

powerset form3 <powerset_fn-ptype--type>,
form4;

form4 =
form4 distinop <funop--type>

term eop <infix-ptype-ptype-ptype--type>,
form4 postop <postapp-ptype--type>,

a form;

The specification for the basic type checking of function application is, loosely, that
given a supposed function, of type tl, an argument of type t2, one creates a new type
t3 which will be the type of the delivered result. The type checking consists in the
unification of ti with t2 - t3.
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funappI

TypeCheck (fun?/tyl, fuc%/tyZl

par?, ty! : Type

ty! = variable n

validnames' = valid_names U {n}
w.here

n : TName

n 0 valid_names

fun = powerset(tuple (par?, ty! ))

funapp2 e funappl\(fun)

Note that this is not a complete specification for the compiling function funapp as it

is necessary to take account of the possibility of term term being a set membership
predicate. This is dealt with later.

The function funop is used when an operator symbol has been recognised, and is
equivalent to an identifier reference followed by anonymous instantiation.

funop a reference J anon inst

For infixed application it is necessary to calculate the parameter type:

infixl

funapp2
rhpar?, lhpar? : Type

par? = tuple (lhpar?, rhpar?)

infix a infixl\(par?)

and postfixed application is a combination of an operator symbol and function
application.

postapp e funop[fun!/ty !] 3 funapp2

The specification for distpreop is the same as that for infix: the implementation
differs only in the order of the parameters, which is determined by the order in
which the types are stacked which differs in the two cases.

The powerset function is completely trivial:

powersetjn

ty?, ty! : Type

ty! = powerset ty?
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Type checking for set membership

This is syntactically the same as function application (term term), but indicates a
predicate rather than a term. Type checking of this phrase assumes function
application; if this fails, type checking for set membership is tried; if this fails the
reply for function application is delivered.

funappok-stmm_____________

Ffunapp2 TypeCheck set?/tyl, set/tY23
mem?, ty! :Type

rep! "OK"_______________

set = powerset mem?
ty! predicate
rep! = "OK"

funapp a (fonapp2 e (setmem\(set))) * funappok

Partial application

Partial application consists of operator or relation symbols considered as a term in
their own right, and infixed operators with one parameter supplied. The syntax is
fairly complicated to take into account the various forms of operator, but only a small
number of compiling functions are required.

partilals=
underline rel underline (partrel--type>,
underline op <funop--type> formZ <partopl-ptype-ptype--type>,
aform Op underline (partopZ-ptype--type>.
underline op underline <funop--type>,
underline distinop <funop--type>

term eop (partopl-ptype-ptype--type>,
inform distinap underline eap <partopZ-ptYpe--type>,
underline distinop underline eop <funop--type>.
distpreop underline eop underline <funop--type>.
distpreop <funop--type>

term eop underline (Partopi-ptype-ptype--type>,
distpreop underline eop <funop--type>

form3 <partopl-ptype-ptype--type>,
encop underline eop (funop--type),
preop underline <funop--type>,
underline postop (funop--type);

If no parameters are supplied for operator symbols then the type of the symbol is all
that is required; however, for a relation it is necessary to remove the predicate
result from the type. This can be done directly as it is derived from the identifier
look-up.

reltype

Fty?, ty! Type

ty! = powerset(hd tys)
where

tys a tuple-'(powersettI ty?)
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purtrel *(reference 3oreltype) A anon_inst

For partial application proper, a variable type is supplied for the missing parameter,
and then the function infix is used to calculate what the result type would be. This
then gives the type for the partial application as a function from the variable type
to the result type. When the left hand parameter is supplied this is

port op_

inf ix[tyres/ty!)Lty' Type
lhpar? variable n
valid-names' = valid-names U {(n}

where
n :TName

n it valid_names
ty! =powerset(tuple(lhpar?. tyres))

partopi. A partop\(tyres, lhpar?)

The right hand parameter case is a simple variation on this.

partopZ a funop[ fun!/ty!] 3'
partop, 1hpar.,/rhpar?, rhpar?/lhpar?\(Vtyres, rhpar?)

2-funapps keeps funop, infix, postapp, powerset, funapp,
partrel, partopi, partop2
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CHAPTER 17

RELATIONS AND PREDICATES
datatypes :Module]

?-scopes :Module

12-typeuni fy :Module

[2-type-norm :Module

2.funapps :Module

Relations

Relations involve a straightforward variation on type checking for function
application. The syntax is

rel-exp =
term member term <member-ptype-ptype--type>,
term equals equals-tail <to-pred-ptype--type>,
term rel <funop--type> rel_tail <topred-ptype--type>,
apred;

equalstail =

term <equals-ptype-ptype--type> tail;

tail =
$I

rel <funop--type> rel..tail,
equals equals_tail;

rel_tail =
term <rel-ptype-ptype-ptype--type> tail;

The specification for set membership is:

memberl member I memerl\(set)

TYpeCheck~set?/tyl, set/tyZ)

mem?, ty! : Type

set = powerset mem7

ty! = predicate

while that for equality allows for the continued form and delivers the type of the

right hand operand.

equals

TypeCheckrtyl?/tyl, ty2?/tyZ]

ty! Type

ty!= tyZ?

A relation is similar to an infixed function application, and like equality delivers the
type of the right hand operand for the continued form.
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_rell rel a rell \(pred)

inf iXcpred/ty!]

ty! Type

ty! = rhpar?

On completion of a relation or equality, a predicate is delivered:

topred

tY?, ty! : Type

ty! = predicate

Note that with this specification, the terms need not be completely defined, although
the predicate result is. This allows an expression such as 0 e dam ( ) to type check
correctly, even though it is still generic. This is allowed because the actual type may
only be fixed as a result of the type checking of a complicated predicate involving
several relations.

Predicates

In order to resolve various syntactic ambiguities, both predicates and terms are
produced as a result of the expansion of the syntax rule for pred. In effect a
predicate is formed by combining terms using the loosely binding operators of the
predicate calculus. Once it has been established that a term is destined to be a
predicate there are three allowable possibilities for the type: it may be a predicate,
undefined or a schema. The last case breaks down into two according to whether the
predicate is a schema inclusion in disguise and destined for the hypothesis part of a
theorem or a predicate at any other position: in the former case the signature is
merged into the current scope, in the latter it must be present within the current
scope. The latter case is detected syntactically and checked using the functions
check...pred and unstack_pred which occur throughout the syntax in situations such
as the following:

109xp =
lo9expl,
logexp <unstackpred-ptype> iff lo9_expl
<checkpredl-ptype--type>;

checkpredn

ty?, ty! : Type
rep! seq Char

(ty? predicate v ty? = typeundefined v Schema)
rep! - 'Predicate required here"
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schemawron

SEnv
ty?. ty! t Type
rep! : seq Char

Schema A -Schemaok
ty! predicate
rep! "Schema identifiers not present in this environment"

checkpred e Normalise > check-predn v schema_.rons v Schemaok

The other function. unstack.pred. 's not tequired to deliver a type:

unstack pred e check-pred\(ty!)
2-preds keeps member, equsls, rel, to-pred,

checkypred, unstack-pred
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CHAPTER 18

SCHEMA EXPRESSIONS

12.datatypes :Module)

[2_scopes :Module[

Quantified schema terms

quant-sexp = squant <new..scope> dec_list
dot schematerm <subtract_scope-ptype--type>;

A new scope is formed for the quantified identifiers, which must all be present and
with the correct type within the schema type. The new schema type is the difference
between the two. assuming this is not empty.

subtractscopel

-Env

ty?, ty! : Type
rep! : seq Char

ty! = powerset(schema-type ids')

dom good_ids = dam ids -*
rep! = "All identifiers quantified"

-(dom good_ids G dom ids) -*
rep! = "Identifier to be quantified not present"

"in schema"
bad-ids * {}-

rep! = "Quantified identifier has inconsistent type"
where

ids a schematype-'(powerset "I ty?)
quants a (hd blocks).ids

bad_ids a quants inconsistent ids

goodids a badids 4 quants

ids' a dom 9ood_ids 4 ids

subtractscope a subtract..scopel J end-scope

Logical schema expressions

The infixed operators all have a similar form, exemplified by:

lo-_sexp =
lo9_sexpl,
logsexp ziff los-sexpl <stype2-ptype-ptype--type>;

The two schemas may be combined if their signatures are consistent.
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stypeZ

tyl?, ty2?, ty! : Type

rep! : seq Cher

ty! = powerset(schematype(idsl U idsV'))

bad_ids * {} - rep! = "Schema terms inconsistent"
where

idsl * schematype'(powerset "I tyl?)
idsZ a schematype1'(powerset-I ty2?)

badids a idsl inconsistent ids2
i.-7' a bad ids 4 ids2

The special purpose schema expressions

spec-sexp =
specsexp zhide ipar idlist rpar <hideids-pidlist-ptype--type>,
spec sexp zhide reference <hideref-ptype-ptype--type>,
specsexp zcmp specsexpl <scompose-ptype-ptype--type>,
spec sexp zpipe specsexpl <pipe-ptype-ptype--type>,
specsexp zovr spec__sexpl <soverride-ptype-ptype--type>,
specsexpl;

For hiding it is simply necessary to check that the identifiers are present in

the schema type, and then remove them.

hideids _

idlist9 : seq Id; ty?, ty! : Type
rep! : seq Char

rng idlist? = dom ids
rep! = "All identifiers hidden"

'(rn idlist? c dom ids) -o
rep! = "Identifier to be hidden not present in schema"

ty! = powerset(schematype ids')
where

ids ! schematype-'(powerset "I ty?)

ids' a rng idlist? 4 ids

For hiding with a schema it is necessary to check that the name is indeed that of a
schema and that it is compatible with the schema to be hidden.
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hideref-ok

tyref?, tyschema?, ty! : Type

rep! : seq Char

Schema[tyref?/ty?]

ty! = powerset(schema_type ids')

bad-ids {} - rep! = "Schemas inconsistent"

ids' = {}-
rep! = "All identifiers hidden"

-(9oodids r ids) -*
rep! = "Identifier to be hidden not present in schema"

where
idsref a schematype''(powerset tyref?)

ids e schematype-(powerset"I tyschema?)

bad-ids a idsref inconsistent ids

9oodids a badids 4 idsref

ids' a ids \ good_ids

hideref.wrons

tyref?, tyschema?, ty! : Type

rep! : seq Char

"Schema[tyref?/ty?]

rep! = "Only schemas may be used for hiding"

ty! = tyschema7

hideref a hiderefok v hideref_wrong

For the other schema operations, a few extra functions on sets of identifiers are
needed. First of all, ids_with_decor delivers that part of a look-up function where
the identifiers have a given decoration.

idswith-decor a
X decor Att

X ids Id-oType
. (ident : dom ids I ident.att = decor} I ids

Next. ids with_basename delivers that part of a look-up function such that the
identifiers have no attribute, have the same base name and version in the decorated
function and deliver the same type.

ids_with_basename a
X ids, decids Id-oType

{ident : dom ids
I ident.att = noatt

A (3 ident' : dom decids
. ident'.name = ident.name
A ident'.version = ident.version
A decids ident' = ids ident)

ident - ids ident
}

For schema composition, find the set of identifiers present in both schemas in primed
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and unprimed forms and take the intersection: this should be non-empty for schemas to

be composed. The resulting type is simply that of the merged schemas.

scompose

tyl?, ty2?, ty! : Type

rep! : seq Char

ty! = powerset(schematype (ids2 U good-ids))

undashedidsl n undashedidsZ = {} -*
rep! = "Schemas cannot be composed"

badids s {} rep! = "Schemas inconsistent"
where

idsl a schematype-'(powerset-I tyl?)

idsZ a schematype'Itpowerset
-I tyZ?)

undashedidsl e ids__ith_basename(idsl,
(ids_withdecor (dashes 1)) idsl)

undashedids2 a ids_with_basename(idsZ,
(ids_with decor (dashes 1)) ids2)

badids a idsl inconsistent ids2

sood-ids a badids 4 idsl

For piping it is necessary to find identifiers in one schema which have the same base
name and version as those in another schema:

samebase a
X idsl, idsZ : Id -Type
{ident % dom idsl
1 3 ident' : dam idsZ
. ident'.name = ident.name
A ident'.version = ident.version
A idsl ident = ids2 ident'
ident - idsl ident

-pipe

tyl?, ty2?, ty! : Type
rep! : seq Char

ty! = poerset(schematype (idsZ' U sood_ids))
bad-ids {} _# rep! = "Schemas inconsistent"

pipedoutputs = {} rep! = "Schemas cannot be piped"
where

idsl a schematype(powersetI tyl?)
idsZ e schematype1'(powerset "I ty2?)

outputs a ids_.Hith_decor bang idsl
inputs e ids_with decor query idsZ

piped-outputs a samebase(outputs, inputs)
piped-inputs a same_bse(inputs, outputs)

ids1' a idsl \ pipedoutputs
idsZ' a ids2 \ piped-inputs

bmd-ids a idsl' inconsistent idsZ'

soodids e bad ids 4 idsl'
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The override function is equivalent to a logical operation as far as type checking is
concerned:-

soverride & stypeZ

The pro condition is simply another variation on hiding:

spec.sexpl =
spc_sexpZ,
pre spec.sexpZ <pre-ptype--type>;

-pre

ty?, ty! : Type
rep! : seq Char

ty! = powerset(schematype (ids \ preids))

preids = {}
rep! = *Schema not suitable for pre-condition"

where
ids a schematype-'(powerset-I ty?)

afterids a idswith_decor (dashes 1) ids
preids e afterids U ids_withdecor bang ids

Finally, all the above operations presuppose an input type made up from a schema;
this is checked at schema reference:

spec-sexpz =
ipar schema-term rpar,
ipar schema-term rpar rename,
reference <checkschema-ptype--type>,
schema;

check_schema

ty?, ty! : Type
rep! : seq Char

-Schema -#
ty! = powerset(schema_type {ident . typeundefined})
rep!= "Not a schema type"

where
ident a w Id

I name = noname A version = noname
A Ott =noatt
* eld

Schema -* ty! ty?

2_schemaops keeps subtractscope, stypeZ, hideids, hideref.
scompose, pipe, soverride, pre, checkschema
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APPENDIX

THE 2 SYNTAX

BAS ICS

id #as provided by lexical analysis, including
decoratioan#

document 0 a specification module #
decor #?,!,' or decor #

# General brackets and separators #

endz end of 2 Z~ue
ni hard new line#
semi##
ipar #0s
rpar #)#
comma #, or comma#
lsqb #[ or lsqbN
ilsqb # [ in a version = instentiation#
rsqb #] or rsqbw
si # start indentation#
ei # end indentation#
keep N export indicator #
finish # end of file#

# Declarations and definitions #

colon #: or Colon#
cbar #I constraint barN
def #a or def syntactic equivalence for termns#
sdeF N or sdek-f syntactic equivalence for schema terms#
becomes :: for datatype definitions#
bbar "I (branch separator)Ns
lans #<< (left angled bracket for disjoint union*~
rang #3, (right " )#
sr # start vertical rule#
er N end vertical ruleN
ge N unique (generic) definition N

N Identifiers N

dlr#$
for N/ (renaming*N
underline N_ or underline (place holder for renaming*#
inset N infixed generic sets N
preset N prefixed generic sets N
postset N postfixed generic sets N
op N infix operatorO
encop N lhs of enclosed operatorN
distinop N lhs of distributed infix operator#
distpreop N lhs of distributed prefix operatorN
eop N delimiter of two part operators#
preop " prefix operator#
postop # postf ix operator#
sconst # numbers and such #

a Theorems #

turnstile N .(theorem )m
th Ustart theorem#
eth 0 end theorem"

a Predicate Notation



all U U

exi #3 or exiM
exil # unique 3#
wherel 0 artificial where markers#
whereZ # #
endwhere # #
dot U. (such that)*
equals #=#
member #e#
rel # relational operator#
iff*a
implies #-#
and #A#

or #vft
not N-#

# Term notation - for sets and objects #

set U{ or setbra#
eset #}U
explicitset # used to one-track explicit sets and

comprehensions#
lambda #
mu # j
iseq
rseq U)#
proj U. (projection)#
theta #8 tuple constructor"
prod #x cartesian product#
powerset OP or powerset#
nat #
char # Char#

# Scheme notation #

Zexi #3#
zall U#U
ziff #"
zimplies #.44
zand #A
Zor OvU
znot #,#
zhide #\#
pre # pre#
zcmp # (bold j) schema composition #
zpipe #) piping operator u
zovr No (bold e) schema over-ride U
sch #I (start schema bracket)a
esch #] (end schema bracket)U
sb # start schema box (after name)*
st U middle line of schema box#
esb U end schema box#

RULES

z_text =
finish <return-I>,
z_phrase finish <return-l>,
z_phrase zsep z_.text;

z_sep = list_.sep, endz;

list-Sep =
semi,
ni;
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Sr-U

z_phrase = <storemon-mon> zphrasel;

zphrasel =
givenset..def,
definition,
constraint,
theorem,
import,
export;

u Given Set Declaration u

givenset_def = lsqb givenids rsqb;

givenids = id <givensetdef> givenjidsl;

given_idsl = S, comma given_ids;

# Definition #

definition =
axiomaticdef,
syntacticdef,
datatype def,
schema_def;

Global Constraint #

constraint = pred;

# Theorems #

theorem =
turnstile pred <unstackpred-ptype>,
th thl turnstile pred_list <unstacksred-ptype><endscope> eth;

#don't understand sb and eb at this point in Oxford syntax #

thl =
<newscope>,
gen.params,
<new scope> hyps,
gen_params hyps;

# a scope for the declarations in the theorem is always created,
even if there aren't any. If there are any generic parameters,
the scope created for that is used, otherwise one is explicitly
created.

N

hyps =
hyp,
hyp listsep hyps;

# NB schema_term omitted because of ambiguities with schema
reference in pred in hyp below

#

hyp =

pred <check_predschema-ptype>,
dec,
dec cbar pred <unstack-predmptype>;

w pred on its own includes schema-reference #

N Import #
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PW~ ----

import document <newdoc--docmap> importl <adddoc-pdocmap>;

importl

decor <decdoc-pdocmap--docmap>,
instantiat ion <instdoc-pinst-pdocmap--docmap>,
decor <decdoc-pdocmap--docmap>
instantiation <instdoc-pinst-pdocmap--docmap>;

wExport

export =id <keep> keep idslist <return-2>;

ids =id, inset, preset, postset, op, rel, encop eop, distinop eap.
distpreop eop, preop, postop;

idslist = ids <keep~id> idslistl;

idslistl = S, comma idslist;

# identifiers, names and references #

reference =
id <reference--type> ref2,
id dir <check-no_att> id <docjreference--type> refZ;

ref2 =
<anonjinst-ptype--type>,
instantiation <id-inst-ptype-pinst--type>;

instantiation = ilsqb inst _list rsqb;

inst _list = inst _ term_list, binding list, rename_list;
agathered together to resolve various one-track problems#

inst _term-list =
term <tmll-ptype--inst>,
term <tml1-ptype--inst> comma inst_termlistl;

inst _termlistl=
term <tmlZ-ptype-pinst--inst>
inst _termlist2;

inst_termlist2 = S, comma inst_termlistl;

bindingjlist =b1l, bli comma bindingjlistl;

blI
id equals <bli-- id> term <bl2-pid-ptype-- inst>;

bindinsjlistl =
b12, b12 comma binding-listl;

b12 =
id equals 'bli--id>
term <bl3-pid-ptype-pinst-- inst>;

renamejlist =
id for id <rnlI--inst>,
id for id <rnll--inst> comma rename-listi;

rename-listi
id for id <rnlZ-pinst--inst> rename_listZ;

rename_listZ - S, comma rename_listi;



Axiomatic definition a

axiomatic-def =
1 iberaldef,
un ique def.
gener icEdef;

libersld.ef =
910ba1_dec.
global_dec cbar pi-ed (unstackpred-ptype>.
sr def..body er;

def-body =
global_dec list,
global_dec-list st predjlist (unstackjpred-ptype>;

unique-def ge def-.body er;

seneric-def=
global_id <start..idlist--idlist> gen~params (newscope>
colon term <dec-ids-pidlist-ptype>
cbar pred (unstackpred-ptype>(end..gendef>,
ge gen~params (new~scope) def...body er (endSendef>;

gen~params = lsqb (newscope) given~ids rsqb;

global-dec-list
globaljdec.
global~dec list.,sep global_dec_list;

global-dec=
global _id_list colon termt (decids-pidlist-ptype>;

global idlist=
glo&bid (start _idlist--idlist>,
global _id (start _idlist--idlist> comma global _id_listi;

global _id-listl

globalid <stackjidlist-pidlist--idlist),
global.id (stack_idlist-pidlist--idlist> comma globalid-listl;

globalid

id,
id underline (globalsym-l),
underline id (globalsym-Z>.
id underline id (global..sym-5>.
ipar underline id underline rpar <9lobalsym-3>,
underline id underline (global~sym-4>,
id underline id underline (globalsvym-G>,
underline id underline id (global.s'm-?>;

uSyntactic definition #

syntacticidef
syn..def i d,
globaljd <start _idlist--idlist> genparams (new~scope)
def term (syn-def-pidlist-ptype> (end..sen..def>,
ge gen..params (newscope) syn~def.list er (end..gendef>;

syn-def..jd =
global..jd <start_idlist--idlist> def term <syndef-pidlist-ptype);

syndeflist=
syndef,
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syndef listsep syndefjlist;

syn..ef =
syndef~id,
syn~defj ds;

syndef_ids -
id id <prepostsymbol--idlist> def term (syn...def-pidlist-ptype).
id id id <insetsymbol--idlist)

def term <syn.def-pidlist-ptype>;

" various sorts of pre and post generic set definition, depending
on whether the ids occur in the generic parameters or not N

" Data type definition #

datatypedef =id (dt~def--id> becomes branches (unstackid-pid>;

branch =
id <dt _constent-qid),
id <dt_const_ id--id) lang term rang (dtc.onstructor-ptype-pid-qid);

branches =branch, branch bbar branches;

# Schema definition

schemajef =
id (start _idlist--idlist>
schema..deFinition <syn-def-pidlist-ptype>,
id (start_idlist--idlist> gen~params
schema_definition (endscope>(syndef-pidlist-ptype);

schemaedefinition =
<check~idschema-pidl ist--idlist) sdef schema_:term,
(check~idschema-pidl ist--idi ist> schema;

" only boxed forms should really be allowed, but this is not checked#

" Schemes

schema
sb <new..scope> dec-list (scopeto_schema_type--type) esb,
sb (new~scope) decjlist
st predj i st (unstack~pred-ptype>(scopetoschema.ype--type>. esb,
sch <newscope) dec_list (scope_ to_schema_type--type> esch,
sch <new.,scope> dec_list
cbar Pred (unstack-.pred-ptype>(scope.Ao.schema type--type) cinch;

SLists of predicates and declarat ions #

prad~lst
pred.
pred (unstackpred-ptype> iist.,sep pred-list;

dec.list
dec.
dec list-sep dec-list,
i ncl1usion.
inclusion list~sep dec_list;

dec -id-list colon term <dec~ids-pidlist-ptype>;

idjlist M
id (start-idlist--idlist>,
id (start-idlist--idlist> comma id'.istl;
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idlistl -=dit-ils>id <stack-idlist-iis-dlt)
id (stuck-idlist-pidlist--idlist> comma idlistl;

inclusion =reference <open..schema-ptype>;

" and check reference is to a schema_term 0

" Explicit construction terms #

explicit_.constr
tuple.
explicit~set eset <empty..set-'-type>,
explicit ..set termi istl eset (explicit__set-ptype--type>,
lseq rseq (emptyjlist--type>,
Isetq termlistl rseq (explicitjlist-ptype--type>;

# explicit..set above is a pseudo terminal symbol inserted by a
look-ahead function to resolve the problem of disentangling (a, b, c)
from (a, b, c: T). The look-ahead function looks ahead while
encounter ing id comma: if terminated by anything other than colon, the
explicit~set symbol is delivered instead of set. #

termlistl =uterms of the same type N
term,
term comma termlistla;

termlistla=
term <check-tys-same-ptype-ptype--type>,
term <check__tys-same-ptype-ptype--type) comma termi istla;

tuple=
ipar term (first_tuple-ptype--type> comma termlist2 rpar,

theta reference (theta-ptype--type>;
# the reference is to a schema #

termlistZ =#terms for a tuple #
term <next_:.tuple-ptype-ptype--type> termi ist~a;

termlistZa

comma termlistZ;

# Closed terms #

aform =
<nat--type> nat,
<char--type> char,
(sconst-lv--type> sconst,
reference,
aform proj id (proj-ptype--type>,
Ipar product rpar,
expl ici t~constr,
set (new_scope> dec-list comp_,.set eset,
lpar partials rpar,
encop term cop <funapp-ptype-ptype--type>,
wherel <newscope> ax_jdec_list (unstack..pred-ptype>
whereZ pred_list <end-.scope><check..pred-ptype--type> endwhere,
wherel <new scope) syndeflist
whereZ pred list <endscope><checkpred-ptype--type> endwhere,
ipar pred rpar;
# allows bracketted predicates...

product =
term <first.prod-ptype--type> prod
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productl 1 end..prod-ptype--type>;

producti =
term (next..prod-ptype-ptype--type),
term (next..prod-ptype-ptype---type> prod product 1;

comps*et
<scapetotuple--type).
cbar pred <unstack.pred-ptype><scopetotuple--type),
dot term <set-ptype--type>,
cbar pred <unstack..pred-ptype) dot term <set-ptype--type);

ax..dec-list =
decjlist cbar pred,
sr dec..jist st predjlist er;
# sr and er because I likce it that way ...

partials=
underline rel underline (partrel--type>.
underline op <funop---type) form2 (partopl-ptype-ptype-type>,
inform op underline <partoP2-ptype--type>.
underline op underline <funop--type>,
underline distinop (funop--type>

term eap <partopl-ptype-ptype--type>,
inform distinop underline eop <partop2-ptype--type>,
underline distinop underline cop <funop--type>.
distpreop underline cop underline <funop--type>,
distpreop <funop--type>

term eop underline <partopl-ptype-ptype--type>,
distpreop underline cop <funop--type>

form3 <partopl-ptype-ptype--type>,
encop underline cop <funop--type>,
preop underline (funop---type>,
underline postop (funop--type>;

SFormulae

formula=
formi inset <setop--id> formula <inset-pid-ptype-ptype--type>,
for ml;

formi
forml op <funop--type> formZ (infix-Ptype-ptYpe-ptype--type>,
formZ;

form2 =
form2 forms (funapp-ptype-ptype--type>,
form3;

form3 -
preop (funop--type> form3 <funapp-ptype-ptype--type>,
Preset <setop-- id> form3 <set-instl-pid-ptype--type>,
distpreop <funop--type>

term eop form3 <distpreop-ptype-ptype-ptype--type>,
powerset form3 <powerset-ptype--type>,
form4;

form4a
formi distinop <funop--type>

term eop <inf ix-ptype-ptype-ptype--type>,
form4 postop <postspp-pt>'pe--type>,
form4 postset <set~..inst-ptype--type>,
*form;

#Comprehension terms



comprehension=
lambda (new-lambda..scope) dec_list lambda_.set <lambda-ptype--type>,
mu (newscope> dec_list lambda..set <endscope>;

lambda-set =
dot term,
char pred <unstack..pred-ptype> dot term;

a Terms a

term =comprehension,
formula;

# Atomic predicates 0

apred =
si pred_list ei,
term;

# term includes term term (set membership), schema reference and
bracketted predicate

# Relat ions 0

rel-exp =
term member term (member-ptype-ptype--type),
term equals equals -tail (to-pred-ptype--type>.
term rel (funop--type) rel _tail (topred-ptype--type>,
apred;

equals_tail=
term <equals-ptype-ptype--type> tail;

tail

rel (funop--type> rel_..tail.
equals equalsta i ;

rel _tail=
term (rel-ptype-ptype-ptype--type> tail;

# Logical expressions #

log.exp=
log-_expl,
log-exp (unstackpred-ptype> if f logRxpl
<checkpred-ptype--type>;

log-jeXPl =
log~expZ,
logexpl (unstackpred-ptype> implies los-exp2
(check~pred-ptype--type>;

log..expZ =
logexp3,
log..expZ (unstack-.pred-ptype> or log-exp3
(check pred-ptype--type>;

logeXP3=
log-exp4,
109..exp3 (unstack-.pred-ptype> and log..exp4
<check..pred-ptype--type>;

log..exp4
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relexp,
not 1og.expi <check,.pred-pty-pe--type>;

wQuantified expressions

quantexp =
quent (new..scope> dec~list
dot pred <end..scope><check~pred-pty~pe--type>,
quent (new..scope> decj 1st cer pred (unstack~pred-ptype)
dot pred <endscpe><check.pred-ptype--type>;

quent = xi. exil, all;

SPredicates #

pred =
quant..exp,
10exp;

SSchema terms

schema_term =
quant~sexp,
lo9-Sexp;

quantsexp =squant (newscope) dec_list
dot 5chema_term (subtract~scope-ptype--type>;

squant = zexi, zall;

a Logical schema expressions

lo9...exp=
log-sexpl.
logsexp Ziff loqsexpl (stype2-PtyPe-ptype--type>;

logsexpl =

lo9S-expl z implies 10952exp2 <stypeZ-pt>ype-ptyPe--tyPe>;

los.5exp2 =
los-sexp3,
log~sexp2 zor log.sexp3 (stype2-ptype-ptyPe--type>;

los~sexp3 =
los~sexp4,
1os-sexp3 zand 1095sexp4 <stype2-ptyPe-ptype--type>;

lo9~sexp4 =
spec..sexp,
znot log...sexp4;

aSpecial-purpose scheme express ions

spec-sexp =
spec..sexp zhide ipar id~list rpar (hideids-pidlist-ptype--type>,
spec.sexp zhide reference (hideref-ptype-ptype--type>,
spec..sexp zemp spec..sexpl (scompose-ptype-ptype--type>.
spec..sexp zpipe spec.sexpl <Pipe-ptype-ptype--type>,
specsexp zovr specsexpl (soverride-pt.pe-ptype--type>,
Spec-sexpl;

specsexpla
spec-sexp2.
pre spec-sexpZ <Pre-pty'pe--type>;



...... rlueist rsqb <id~inst-pty'pe-pinst--type>.
decor <decorute-ptype--type>;

spec...sexpZ =
iper scheme-term rpur,
ipar scheme-tearm rpar rename,
reference <check_..schem-ptype--type),
schema;
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