s, B B ey,

JE

=

v

-t

s e ctmeay e em——

—

fC

-
w
-
)

l':t!léf:l':l':E

EE

‘2 'r&
22

125“3114»

“ e

yF— -

- -

\\\\\ﬁ
\\\\\1 =

66/ €6LV-AQVv

-

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Report 87017

Title: Review of the type checking and scope rules of the specification
language Z
Author: C T Sennett
Date: November 1987
Summary

This report gives the detailed type checking and scope rules for the specification
language Z in the form of an implementation specification for a type checking tool
for Z, written in Z itself.

Copyright

Controller HMSO London
1987

CONTENTS

1. Introduction 1
2. Basic representations S
3. The identifier environment 9
4. Unification of Z types 14
S. Normalisation of types 22
6. References to identifiers 24
7. Anonymous instantiation 3t
8. Formation of instantiations 34
9. Named instantiation 38
10. Given set definitions and generic parameters. 41
11. Declarations and inclusions 44
12. Syntactic, datatype and schema definitions 48
13. Operator and generic set definitions. 51
{4, Primitive types s7
15. Tuples, products, theta terms and comprehensions 61
16. Function application and partial application 65
17. Relations and predicates. 69
18. Schema expressions 72
References, 77
Appendix: the Z syntax 78

© Accegsion PFor

(NTTS sRARI @ |

DTIC TAB g
Unanznounced]

Justification__________l

By
Distributton/

Avatlability Codes

Avail and/or
Dist Speaial

F"

T

————

CHAPTER |
INTRODUCTION

The purpose of this report is to review in detail the type checking and scope rules
for the specification language Z. At present no definitive description of the language
exists, although it is sufficiently well defined for the informal use which is currently
made of it. The production of tools to process the language requires a complete
definition during the production of which a number of decisions are made concerning
various compromises between mathematical elegance and efficiency of implementation.
It is the purpose of this report to review these in detail, using as a basis the syntax
developed by King et al [1987, see also Sufrin 1986]. This will be referred to as the
standard syntax. Rather than following this language definition mechanically some
changes have been made,with the following motivations:
This report is concerned particularly with tool implementation, so a version of the
syntax has been produced enabling syntax and type checking to be completed in
one pass. Changes introduced under this heading do not affect the appearance of
the language, but in some cases a syntactic check is replaced by a semantic check.

In some cases variations have been introduced which are a matter of personal

preference. The production of variant languages in this way is actually a necessary

step towards the goal of the production of a robust and usable language standard.
€ i A

Most of the other cases consist not so much in change from what has been
published elsewhere as a specification of the detailed meaning of the language for
those areas which have not been described in detail, in particular the scope rules
and the properties of the type system.

In contrast to the work of Spivey [1985), which is concerned with the formal
semantics of the language, this report deals with aspects of the implementation of
tools to process the language. Because of this, the report has been produced in the
form of an implementation specification for a type checking tool for a language which
bears a more than passing resemblance to Z but which represents the preferences of
the author in those areas where the Z rules are debateable.

Z is based on typed set theory so that terms in Z have a type which corresponds to
the largest set of which the term could be a member. This is not the same set for
every term (the set of all sets) for the usual reasons, but instead types are associated
with given sets, schemas and sets which may be constructed from them using the
powerset and tuple constructors. Thus in contrast to programming languages, functions
do not have a special type constructor but have the same type as relations (powerset
of 2-tuples) which allows some useful expressions to be constructed without the need
for special coercions.

From an implementation point of view, the most interesting aspect of type checking is
in the limited polymorphism present in Z, in which some terms may have a generic
type. In dealing with these terms the ideas of Milner [1978] have been followed and
developed to cover the various constructions available in Z. The greatest difference
in this area between Z and the language described in Milner’s paper, or the related
language ML, is that in ML all types are inferred whereas in Z the types (which may
be polytypes) are given in a signature. This leads to rules for the handling of
polymorphic signatures and also for the use of those signatures at positions where the
corresponding identifiers are being defined. This will be discussed in more detail later.

The specification itself is interesting as an example of a Z specification for a
reasonably large program; this report is a complete Z spe=ification although it has
not been passed through the tool it specifies as the implementation remains to be
done. Consequently it no doubt contains errors, but the report is being issued now
with 8 view to contributing to the debate on the precise form of the language. The
production of the specification has been rewarding so it is worth recording some of

— , o ani ~

the reasons for feeling satisfied with the process. Apart from the obvious one of
having a precise statement of the problem, these are as follows:

1. An extensive specification in Z may be produced quickly. This has a number of
advantages. It is for example possible to understand the problem as a whole and
design an appropriate module structure for the implementation without having
to find this out the hard way at the implementation stage. This is particularly
the case in the question of the design of data structures. A standard trauma in
program development is to discover that the data structure one has been
successfully using in the previous twenty modules does not have the capability
to implement some feature required in the twenty first, leading to massive
re-compilations. By having a complete specification for the whole problem, the
capabilities required of the data structures can be made visible at the outset of
implementation.

i

The formal specification is particularly useful when it comes to expressing
error cases. There is an undoubted psychological reluctance to treating these
properly and the fact that Z provides a compact notation for stating the error
conditions as an increment to the standard case is an aid to overcoming this
barrier,

3. The Z notation is an excellent means of communication between specifiers
and implementers. The underlying set theory is easily understood and the
notation is compact enough not to obscure the overall structure with
irrelevant detail,

4. A particularly important part of what one might call the Z specification
technique is the mathematical toolkit, the standard set of Z mathematical
functions and operators which enable one to build specifications rapidly.
Apart from the characteristic Z schema structures, the expressive power of
the notation largely rests on this very useful library of functions.

S. Z is fun!

The structure of the design specification

The tool envisaged to meet this specification completes syntax analysis and type
checking in one pass, so the specification must be for a set of compiling operations on
the concrete syntax, rather than operations on the abstract syntax. A one~pass type
checker will require declaration before use rules and a simple scheme of lexical
snalysis. No apology is offered for this, and none should be required by anyone who
has suffered from trying to understand a specification where declaration before use
does not apply.

The specification for each compiling operation must include the position within the
syntax at which the operation is employed; the inputs to the operation in the form of
lexical values (the identifiers encountered, the values of numerical constants etc); the
state variables appropriate to the operation, most notably the identifier environment
giving the relation between identifiers and their types; and finally, values constructed
during the course of compilation, such as the types of sub-expressions. To indicate
the relstionship between these various items and the specification itself, the syntax
notation employed in the syntax transforming tool SID will be used [Foster 1968, but
see also Currie 1984). This may be briefly described by means of un example. The
following fragment of input to SID gives a syntax for numerical expressions, together
with compiling functions to evaluate the resulting integer.

BASICS

number # decimal numbers sssembled sccording to the ususl
convention ®

orb n(n

erb ") u

~—— v — -

-~ R
'ﬁ T A autn &

plus #+ 8

minus ® -

multiply " nn

divide ® /

RULES

expression = expression addop term <opaction-pint-pint-pint--int).,
term;

term = term multop primary <{opaction—-pint-pint-pint-—int>,
primary;

primary = {number-lv--int> number.,

addop primery <{monadic-pint-pint——int)>,
orb expression crb;

anyop = addop.,
multop:;
addop = {operator-1--int> plus.

{operator-2--int> minus;

multop = {operator-3--int> multiply.,
{operator-4--int) divide:

The first part of this fragment, under the heading BASICS lists the identifiers to be
used to stand for the terminal symbols of the syntax. The syntax rules appear in the
second part of the fragment, under the heading RULES: an equals sign terminates the
name of the rule, a comma separates alternatives and a semi-colon terminates the
definition of the rule. Each alternative within the definition is a sequence of rules or
terminal symbols or compiling functions, the latter being indicated by angle brackets.
SID is able to transform this syntax into a one-track form and outputs a program
which will perform the appropriate syntax analysis. Where compiling functions have
been included the analyser will call them at the appropriate place in the symbol
stream: for example, in the rule for expression above, the function opaction will be
called to form each intermediate result in an expression like S+4+3,

Within the angle brackets, the name of each compiling function is followed bv strings
involving minus signs. Each minus sign introduces a parameter to the function, a final
double minus indicates the type of the result. The analyser stacks every result using a
different stack for each type: thus opact ion above leaves an integer on the stack of
integers. Parameters to the compiling functions can only come from the stacks, so
following each minus sign is the type of stack from which the value of the parameter
is to be obtained and which will be supplied by the analyser when the function is
called: the type will be preceded by a p or a q according to whether the value is to
be supplied by a "pop” or a "top” operation. With this notation, it is useful to think
of the syntax rules as delivering values onto the appropriate stack. Thus opaction in
the rule for expression above takes the integer delivered by the term, the integer
corresponding to the operation (+ or -) and the integer corresponding to the previous
subexpression and combines them to produce a new integer which will be the result of
the expression, which may be thought of as the result of the whole phrase.

There are two other forms of parameter which are allowed to compiling functions.
These are -1v, in which case the lexical value of the symbol to the right will be
supplied, and -n, where n is a small integer representing the value to be supplied.
This latter case is used when a number of compiling functions are simple variations on
a common theme: in this example the operstor function presumably simply stacks its
parameter to indicate to apact ion which action is actually required.

After this lengthy excursion into the details of SID, it is now possible to give
the conventions for specifying the compiling functions. These are:

1. Each compiling function is specified by 8 Z schema definition of the same name.
2, Each specification is preceded by the fragment of SID syntax which uses it.

3. Each parameter to a compiling function is represented as an input to the
operation (using ?).

4. The result of each function is represented as an output (using Y.

In the specification which follows, each chapter is a Z document. As the
implementation is based on the Flex computing concepts [Foster et al 1982), which is
an object oriented machine, documents are represented by module values, rather than
the name of the document as in the standard syntax. These modules appear in the text
as icons: Z_spec :Module] one for each document imported. The compiling functions
for creating and using these module values are not defined in this specification as
they are peculiar to the Flex architecture adopted. The Z syntax has also been
extended to include an export statement in the form:

document keeps id, id,...
which indicates the identifiers made available when the document is incorporated.

Most of the strategy of type checking is discussed in the datatypes chapter which
contains correspondingly more descriptive text compared with the other chapters
which are concerned with the details of type checking. The appendix contains the
complete syntax.

—

CHAPTER 2
BASIC REPRESENTATIONS

Identifiers

The lexical analyser has the task of sorting out base names and decorations and
produces a member of the set Id, defined by a schema below, for every identifier
encountered. The base name is represented by a line of characters, which may be
emboldened, underlined or not:

weight ::= light | bold | underlined | underbold
decline 2 [1 : seq Char:; w : weightl
Name ::= noname | line¢decline»

In fact, as far as the specification is concerned, Name could be a given type, but this
does at least indicate that lexical items are emboldened or not as a whole. Decoration
is either a subscripted string (a version) or an attribute or both. The version is
represented by a sequence of Name to allow for an arbitrarily complex label. An
attribute is one of exclamation mark, query or a series of dashes: the view has been
taken that these are mutually exclusive, so identifiers of the form x!{! or x?! are
illegal. Consequently it is possible to define a datatype Att to indicate the possible
attributes of an identifier.

Att ::= noatt | bang | gquery | dashes«N»
The integer parameter of the dashes constructor is the number of dashes.

Each identifier has a syntactic status which is used by the lexical analyser to decide
what sort of terminal symbol the identifier should be: the syntactic status is by
default that of an ordinary identifier, but may be changed during the course of
compiling a definition to be that of an infixed or other operator, or a generic set.

Synstatus ::= ident | op | encop&«Name® | distinop«Name®
| distpreop&Name® | preop | postop | rel
| preset«Name® | postset«Name® | inset&«seq Named

The Name parameter of the constructors for the operators is the closing eop. For the
sets, the name parameter indicates the generic parameter identifier or identifiers, used
when the set is being instantiated. Identifiers are represented by the schema below,
which indicates that only one version is allowed and version and attribute may be
supplied in either order and represent the same identifier. That is, x! 1 is the same

identifier as xq !

Id

name. version : Name
att : Att; synstat : Synstatus

Lexical values

The decoration of identifiers is handled by the lexical analyser, rather than
syntactically, so the output from lexical analysis is an identifier, even when the
decoration appears on its own (as in schema terms). It is convenient for the lexical
analyser to buffer these identifiers and decorations in a global queue which forms the
part of the lexical state visible to the compiling functions:

LexState _____ ___ _LexStated ____
l_ idlist : seq Id LexState

idlist =)

As a result, lexical values delivered by the SID generated syntax analyser need only
distinguish integers, characters and strings, to handle explicit denotations for these
values,

LexVal ::= num&2» | char<«Char®» | string«seq Char»

Representation of types

A representation of types is proposed in Spivey [1985], but it has been found
necessary to extend this, for three reasons:

1. It is necessary to cater for the distinction between generic and given types.

2. For the implementation of type checking in expressions it is necessary to infer
the types of instantiation for generic identifiers. This has been done by the
introduction of types constructed from type variables, which may be substituted
by an inferred type value.

3. Also for the purposes of the implementation, the datatype has been
extended to include predicates and an undefined type, which is used for
undeclared identifiers.

Type variables are represented by type names TName, which refer to values in a type
environment (which will have type TName « Type): substitutions are brought about by
altering the type environment. The type names are introduced as a given set:

[TName)

given«Id» | powerset «Type» | tuple«seg Type»
| schema_type«ld e Typey

| generic«(N x Id)» | variable<TName»

| predicate | type_undef ined

The elements of this disjoint union will be discussed in turn.
1. Given sets
A given set must be treated as atomic throughout the document, and may only be
changed as a result of the instantiation of a previously compiled document.
Consequently it must be distinguished from a generic type, which may be instantiated
at different types within the document which defines it, The Id is the identifier of
the given set, unique within the document. This type is also used for data types.
The types 2 and Char are datatypes and built-in to the extent that numbers and
strings are recognised as having the appropriate type. For the purposes of this
specification, it will simply be asserted that these two types exist:

Ztype, Chartype : Type

!t may be observed at this point that datatypes are one of the few constructions
in Z which are not allowed to be generic. One can imagine a construction like

[T) Tree ::= leaf¢«Ty | nodee«T Tree x T Tree»

—p~—— -

(A

for polymorphic tree structures for example, which would be useful. To cope with
this, the type representation would have to be extended with a generic data type
constructor dependent on a sequence of types (the generic parameters) and an
identifier, the data type name. This identifier would have a value within the
environment corresponding to a (preferably postfix) generic set instantiating a tuple as
a parameter and delivering the appropriate type. This extension has not been made,
mainly because the semantics of such data types have not been specified, but there
seems to be no reason to suppose that this extension would introduce inconsistencies.
This, of course, is not an argument for including it.

2. Powersets, tuples and schema types
These are standard type constructors, as given by Spivey.
3. Generic and variable

Generic types may either be instantiated by name or anonymously; in the latter case
the type of their instantiation is inferred from their use, using the algorithm specified
by Milner. To correspond to these two usages are two different representations,
generic and variable. A generic type is constructed from an identifier corresponding
to the generic parameter and an integer: the integer is for instantiation with a list of
terms, rather than by name. A generic type is treated as atomic within the generic
definition which uses it and elsewhere it is used to create the appropriate type on
named instantiation. When, on the other hand, type instantiation is done by inference,
a variable type is created from the generic type to allow substitution of the inferred
type of instantiation for the generic type. The variable type is represented by a type
name, which is used to refer to a type environment where the substitutions are
actually made. By this means, one substitution accounts for all instances of the generic
type within the type representation. (An example of a multiple instance is the
identity relation which has type P(T x T), where the T are generic. An instance of
the identity must be inferred to have type PF{2 x 2) as soon as either the domain or
range are found to be integers.) A new type variable is created for each generic type
on every occasion when the identifier bearing that generic type is instantiated. This
is done by using a new name, drawn from the given set of type names, Tname, and
different from any other name currently in use, for each of the differing identifiers in
the generic type. Type checking of an expression involving such type variables is
done using type unification which will result in some substitution of types for the set
of names. Variable types only have a meaning within an environment giving the
substition of types for names, which. is maintained as part of the global state.

4. Predicate

This is a special built-in type, not accessible to the user, which is used to unify the
type checking of terms and predicates. For various reasons, both terms and predicates
are members of the same syntactic class, so it is helpful to have a special type to
distinguish them semantically.

5. Undefined

This is a type for undeclared identifiers, used to suppress type checking and
consequential spurious error messages.

A subset of these types are the atomic types, defined by:

AType & rng generic U rng given U {predicate, type_undefined}

v

.

Z_datatypes keeps
Name, noname, line, decline.
Att, noatt. beng, query, dashes:
Synstatus., ident, op, encop, distinop, distpreop, preap,
postop., rel, preset. postset., inset.
Id, LexState, LexStatel, LexVal, num, char. string.
TName. Type, given, powerset, tuple, schema_type, generic,
variable. predicate, type_undefined. Ztype, Chartype, AType

P

A
4
)
]

CHAPTER 3
THE IDENTIFIER ENVIRONMENT

|e_datatypes :Module]

The identifier environment gives the types associated with each identifier. It is made
up of scopes such as those associated with the global document, or the local
declarations of a schema, and scopes from imported documents. A scope defines a
look=up function, (Id«Type), for the identifiers which have been declared at the
same static level: the rule of declaration before use is followed, so the scope can be
changed incrementally as new identifiers are declared. A new scope is created at the
beginning of a document, for the local declarations in a schema, a theorem, a
comprehension and in many other places. Associated with each scope is a sequence of
types used to calculate the characteristic tuple corresponding to a scope.
Cnaracteristic tuples are used to calculate the types of)\ expressions and other
comprehensions. For these constructions the type is regarded as a tuple formed from
the declaration list, in which each identifier and inclusion contributes a member in
the order in which they were introduced. For the particular case of X\ expressions,
the characteristic tuple is a somewhat dubious concept if two inclusions have a part
of the signature in common. For example, within the context of the schema definitions
Aali, j: NJandB a [j, k : NI, X A; B « j has the type (A x B) =N,
which leads to difficulties when the function is applied to a tuple in which the
components differ. The view has been taken that inclusions with overlapping
signatures in this way are an error when used to make up a \ expression, so some
indication needs to be kept within the current scope that it is destined to form the
parameter of a A expression. This is done using the datatype:

scope_type ::= lambda | mu
Also associated with each scope is an integer used to keep track of the order of
generic identifiers. This is gathered together with the other information to form a
Block:

Block

ids : Id+Type; ctuple : seq Type
st : scope_type; last_generic : N

J

An imported document also introduces a set of identifiers, but these are not allowed to
override previous declarations. This is for reasons of good practice rather than
logical consistency, because it is not a good idea to have the same identifier present
with two different meanings within the same document. However, an identifier in a
document overrides the same identifier in a previously introduced document for
reasons of efficiency: it is hard to keep track of all uses, within the current
document, of identifiers from external documents and it is unreasonable to expect
external documents to have no identifiers in common. This behaviour may be modelled
using the following definitions. First of all, the identifier environment itself:

_Env

blocks : seq, Block
docs : seq,(Id+=Type)
docnames : Id«Id«Type

rng docnames = rng docs

A particular imported document may be searched using a document name and the
function docnames; alternatively all documents may be searched using docs. The

Sy

——py

constraint ensures that either method uses consistent look-up functions. There is

always one block present in the sequence of blocks, namely the global scope of the
current document, and there is always one document, the Z library.

An override function may be defined for sequences of look~up functions as follows:

/o_ ¢ seq,(IdwType)=(Id«Type)

Y1 : seq(Id+Type)
. 1 e /ol =hd]l

1
8l =
1>1 s /o1 =1(/0(t11))e (hdl)

J

where o is the relational overrride operator. This function delivers a look-up
function in which the identifiers defined in scopes near the beginning of the sequence
override those at the end, the implication being that scopes are stacked rather than
queued. The function find env delivers the type of an identifier stored in a given

environment:

find : Env—aId«Type

Y env : Env

o find env = docids e blockids
where

docids & /e env.docs
ids & X\ Block « ids
blockids ¢ /e (env.blocks 5 ids)

»

and find_doc finds from a given document:

find_doc 2 X\ env : Env; ident : Id

| ident e dom env.docnames
« env.docnames ident

Declarations and inclusions change the look-up function and characteristic tuple in
the current scope and nothing else, so it is convenient to define the schema:

AEnv

rEnv; Env’
O8Block

8Block = hd blocks A 8Block’ = hd blocks’
tl blocks = tl blocks’

docs’ = docs A docnames’ =
st’ =

docnames
last_generic

st A last_generic’ =

pd

The initial environment consists of one empty block and a set of documents making up
the Z library:

10

2_lib : seq(Id+Type)
Z_lib_names : Id+»I1d+Type

empty_block a p Block
ids = {} A ctuple = () A st = mu
A last _generic = 0
+ 6Blaock

__EnvD
Env

blocks = (empty_block)
docs = 2_1ib
docnames = Z_lib_names

]

Entering and leaving a scope

On entering a scope a new empty block is added to the environment, on leaving it,
the current block is removed:

__newW_scope —~ ,~—endscope ______
Eav; Env’ Env: Env’
blocks’ = empty_block cons blocks blocks' = tl blocks
docs’ = docs docs’ = docs
docnames’ = docnames docnames’ = docnames

and entering a)\ expression is a simple variation:

~ new_lambda_scope

Env: Env’

blocks’ = lambda_block cons blocks
where

lambda_block 2 y Block
| ids = {} A ctuple = ()
A st = lambda A last_generic = 0
. eBlOCk

docs' = docs
docnames’ = docnames

Adding new identifiers to an environment

In standard Z it is possible to redeclare an identifier, providing the types are
compatible. This seems to be a somewhat dubious facility as it may lead to some user
mistakes going undetected, besides allowing for the implicit introduction of additional
constraints which ought really to appear explicitly in a predicate. In addition the
effect on the characteristic tuple of the environment is questionable. For this reason,
a new declaration is not allowed to over-ride an existing declaration within the
current block. In the general case, declarations involve a sequence of identifiers each
to be given the same type so the declaration operation is:

11

_Declere
AEnv
new_ids : seq Id: ty : Type
rep! : seq Char

ids' = i1ds U good_ids
ctuple' = ctuple™(new_ids 5 (A Id « ty))
bad_ids # {} «» rep! = "ldentifier declared twice”
where
bad_ids 2 rng new_ids N dom ids
good_ids ¢ {ident : rng new_ids
| ident ¢ dom ids
. ident -~ tY}

Schema merging

In this case added identifiers are ajlowed to be present in the current scope, provided
they have the same type. The following function delivers the inconsistent identifiers:

Ja A x: y: IdwType
e {ident : Id
| ident € dom x N dom y
A x ident = y ident

(_ inconsistent

- -—

Note that schema merging is done after type normalisation {see chapter 5) which
removes all variables from a type, so a simple test for equality of types is all that is
required, rather than type unification. This corresponds with the rule that types for
identifiers stored within the environment should be fully defined. The new scope is
formed by merging the consistent part of the look-up function:

__Merge

AEnv
merge_ids : Id+=Type
rep! : seq Char

ids’ = good_ids U ids

bad_ids # {} =+ rep! = "Identifiers inconsistent”
where
bad_ids e merge_ids inconsistent ids

good_ids 2 bad_ids ¢ merge_ids

The basic operation for a schema inclusion is given by adding a check for overlapping
schema signatures and a calculation of the characteristic tuple of the scope. This is
always done, even in the global scope, for reasons of simplicity.

12

)

—p— el s

_ Include

Merge

common_ids # {} A bad_ids = {} A st’ = lambda =
rep! = "Overlapping schemas in A expression"
ctuple’ = ctuple snoc schema_type merge_ids
where
bed_ids 2 merge_ids inconsistent ids

common_ids ¢ dom merge_ids \ dom ids

Note that the constraint on bad_ids in the schema above is there to give the schema
a well-defined meaning and is required because of the simple way in which error
reporting is being modelled. In the actual implementation both inconsistent and
overlapping identifiers should be reported and in the rest of this specification, in
similar situations, rep! will be given multiple values.

Tests on schemas

A useful check for a schema type, used elsewhere in this specification, is

__ Schema

ty? : Type

ty? € rng powerset
powerset-! ty? € rng schema_type

)

For some schema references, each identifier must be present and with the
correct type:

__ Schema_ok

ZEnv
ty? : Type

ty? € rng powerset
ty € rng schema_type

schema_type? ty € find 8Env
where
ty 2 powerset-l ty?

Z2_scopes keeps lambda, mu, Block, Env, find, find_doc., new_scope.
end_scope. new_lambda_scope, Declare, inconsistent,
8Env, Merge, Include, Schema, Schema_pk

13

— - v -

CHAPTER 4
UNIFICATION OF Z TYPES

|2_datatypes :ﬁoaule!
Generic types

Most useful general purpose mathematical functions are generic, that is, they are
defined for a range of types. A typical example is the function dom which may be
applied to any relation, no matter what its type, to give the domain of application.

Z supports this facility by allowing most constructions within the language to be
generic, the type parameters being supplied with the definition. To check types
during the course of an expression such as dom R, where R is a relation, it is
necessary to know the particular type which this instance of dom should have. This
can be provided by the user using the named instantiation facilities, but this would be
impossibly tedious for functions like dom which are used so extensively. In fact it is
possible to infer the required type for a generic term from its use, using an algorithm
due to Milner [1978], and this is the approach adopted here.

The algorithm has two parts: in the first part, generic types are instantiated as a
type expression in which the generic components have been replaced with variables.
This process is specified in the module concerned with anonymous instantiation,
(chapter 7). The second part of the type inference process occurs during the various
forms of type checking which appear within the compiling functions throughout this
specification. These all eventually involve some test for type equality: this may be a
simple test if the types are not generic, but if they are, the type inference algorithm
enables them to be judged equal if a substitution of types for the variables within the
generic types could be found which would make them equal, for this can be the type
of instantiation of some generic term. The process of substituting expressions for
variables in order to make two terms equal is called unification and a theorem due to
Robinson [1965] asserts that an algorithm exists to find the minimum substition for any
two terms which will in fact unify, and the specification of this algorithm,
particularised for the Z type expressions, is the subject of this module.

Type unification

In this implementation, the variables in a type expression are represented by type
names drawn from the set TName and a type environment Tenv, a function from names
to types.

Tenv & TName + Type

The substitution of a type for a variable is brought about by changing the type
environment, which as a result contains the set of substitutions appropriate for the
types under consideration. The unification algorithm is represented by a function
unify, which takes the current type environment and two types and delivers, if
possible, a new type environment in which the two types are equal; otherwise a reply
is delivered with the new environment containing the substitutions made before the
incompatibility was discovered. The type of the result of unify is given by the
schema Uresult:

Uresult

tenv' : Tenv
rep! : seq Char

unify : (Tenv x Type * Type)—Uresult

The unification function will be specified incrementally in terms of the various cases

14

=

——

for the structure of the type input values, ending up with a global constraint which
defines the function. For this it is useful to gather up the parameters and result of
unify into the schema:

Unipars

tenv: Tenv: tyl., ty2 : Type
Uresult

J

First of all, the unification of types which are variable but for which a previous
substitution has been made is specified as follows:

Puns
rUn ipars

tyl € rng variable A n1 € dom tenv =
8Uresult = unify(tenv., tenv nl, ty2)
where
nl & variable? tyl
A
tyZ € rng variable A nZ € dom tenv =
8Uresult = unify(tenv, tyl, tenv n2)
where
nZ & variable! ty2

3

Immediately after instantiation, a type variable has no type substituted for it,
represented by its absence from the domain of the type environment. If a substitution
does exist, the name will be present in the type environment and the substituted types
are unified. Note that a proof obligation has been incurred for the case where both
types are variables, in which case it is necessary to show that the two constraints
may be satisfied simultaneously: this will only be the case if substitutions for both
type variables are taken into account.

A variable for which no substitution exists may be substituted by any type which

does not depend on this variable. This can be checked using the following
function which gives the unassigned names in a type.

15

v

names : (Tenv x Type)-+P TName

1

Y tenv : Tenv; ty : Type; result : P TName
| result = names(tenv, ty)
e ty € AType A result = {3

v
ty € rng variable
n ¢ dom tenv A result

{n}

v
n € dom tenv A result = names_in_type(tenv n)
where

n a variable? ty

v
ty € rng powerset A result = names_in_type(powerset ty)
v
ty € rng tuple A result = U names_in_typelrng(tuple? ty))

ty € rng schema_type A

result = U names_in_typelrng(schema_type? ty))
where

nemes_in_type 2 A ty : Type « names(tenv, ty)

Either type may be a variable, giving rise to two schemas for substitution. If both
types are variables, either may be substituted for the other. If one of the

types is dependent on the other, the only allowable case is for both types to be
equal, in which case no substitution is required.

__RHsubs

Unipars

ty2 € rng variable A nZ # dom tenv

nZ ¢ names{tenv, tyl) a
tenv’ = tenv U {n2 » tyl} A rep! = 0K~

nZ € names{tenv, tyl) A tyl = ty2 A
tenv’ = tenv A rep! = "0K"

nZ € names(tenv, tyl) A tyl = ty2 A
tenv' = tenv A rep! = "Illegal type”

where
nl a variable?! ty2
— LHsubs -
Unipars
tyl € rng variable A nl ¢ dom tenv
nl & names(tenv., ty2) A
tenv’ = tenv U {nl w» ty2} A rep! = "0OK"
nl € names(tenv, ty2) a tyl = ty2 A
tenv’' = tenv A rep! = "0K"
nl « names(tenv, ty2) A tyl = ty2 A
tenv’' = tenv A rep! = "Illegal type”
where
nl & variable? tyl

16

The remaining schemas cover the non-variable cases, given by this schema:

-

Novars

Unipars

tyl ¢ rng verisble A ty2 ¢ rng variable

4

The undefined type is used for undeclared varjables and suppresses some consequential
error messages. It is defined to unify with any type.

r.Undef‘ined —_
Unipars
tyl = type_undefined v ty2 = type_undefined
tenv’' = tenv A rep! = "OK"

All other atomic types unify if they are the same:

__Uniatoms

Unipars

tyl € AType \ {type_undefined}
ty2 € AType \ {type_undef ined}
tenv' = tenv A tyl = ty2 A rep! = "0K"

Powersets unify if they are constructed from types which unify:

__Unipowers

Unipars

tyl € rng powerset A tyZ2 € rng powerset

eUresult = unify(tenv, tya, tyb)
where

tya 2 powerset tyl
tyb & powerset? ty2

Tuples require the unification of sequences, which is defined to occur between pairs
of sequences of the same length and to terminate at the end of the sequence or when
corresponding elements of the sequence fsil to unify. Each unification takes place

within the type environment resulting from previous unifications in the sequence.

17

unifyseq : (Tenv = seq Type x seq Type)<«Uresult

Y tenv : Tenv; tysl, tysZ2 : seq Type | #tys] = #tys2 = 1
o unifyseq(tenv, tysl, tysZ2) = unify(tenv, hd tysl, hd tys2)
U tenv : Tenv: tysl, tysZ2 : seq Type | #tysl = wtysZ2 > 1
e url.rep! = "0K" A
unifyseq(tenv, tysl, tys2) =
unifyseq(url.tenv’', tl tysl, tl tys2)

v
url.rep! = "0K" A
vnifyseqltenv, tysl, tys2) = url
where
url 2 unify(tenv, hd tysl. hd tys2)

Unituples

Unipars

tyl € rng tuple A ty2 € rng tuple A #tya = #tyb
8Uresult = unityseq(tenv, tya, tyb)

where
tya & tuple? tyl
tyb a tuplet tyZ2

—

The unification of sc'remas differs from the scheme proposed by Spivey [1985), which
it is felt may be corfusing to users. In this, the standard scheme, schemas unify if
their identifiers arz identical and corresponding types unify. This leads to problems
because one requires expressions like 8STARTE = §STATE' to type check correctly, so
an additional rule s made that decoration does not change the type of a schema.
Unfortunately, if the decoration is bound in with the schema, either by providing it
explicitly in the signature or within a schema definition such as T & S' the types
become different and may not check in situations in which the defining terms would.
In this particular example T and S would not have the same type and neither would T
and S', which is courter~intuitive. In addition it is not clear what type should be
ascribed to s in the declaration s : S’ or finf 2 X\ S; ' « term.

The scheme adopted here uses the alternative discussed by Spivey, in which schema
types unify if the identifiers agree modulo any decoration common to all of the
identifiers in one schema, and the corresponding types unify. This means that although
the underlying type representations differ, the predicate 8STATE = 8STATE"' still
type checks correctly and the term (8STATE., BSTATE') will also type check as a
member of a homogeneous relation on STATE. In addition, any types which woula
agree (in the sense of forming a correctly type checked expression) under the
standard scheme, will also agree under this one, but some types will agree under this
scheme which will not agree under standard one. However, checks on schema merging,
and the schema operations generally, are applied to the type representation, so some
operations are not allowed under this scheme which would be under the standard. A
typical one would be § : STATE; s' : STATE' which does not form a suitable
identifier pair for schema composition (whereas s, s’ : STATE would). It is, in fact
debateable which of the two approaches will be less confusing to the users, but it is
in any case a fine distinction and hardly observable to tha user, so there does not
seem to be a problem with adopting this approach. The advantage of the approach is
that the type now contains all the information necessary for checking schema
operations and inclusions, which considerably simplifies the implementation.

The implementation must check the types within the schemas one at a time, so the

18

specification defines an ordering within the identifiers of the schema and uses this to
construct the sequence of types to be checked.

order : P Id—~seq Id

U ids : P Id; list : seq Id
| list = order ids
e rng list = ids A dom list =1 .. #ids

This is not a complete specification as the identifiers are required to be totally
ordered such that the addition of a decoration does not alter the order. The
specification of this requirement in 8 way which does not constrain the

implementation and does not occupy a page of text is beyond the author’s current
ability in Z.

Checking identifiers modulo a decoration requires a function to remove either a
version or an attribute or both from an identifier as below:

decchange ::= discard | keep
undecorsate & X\ a,Idv : decchange
o w Id’
| mame' = name A synstat’ = synstat
a = keep A 8tt’ = att
v 8 = discard A att' = noatt

v = keep A version' = version
v vV = discard A version' = noname
« 81d’

An attribute or version may only be discarded if it is common to a set of identifiers,
represented by the following two schemas:

__common_attribute

. ,=Common_version ________
ids : P Id ids : P 1Id
3 att : Att 3 v : Name
« Y ident : ids « ident.att = stt : e U ident : ids
N « ident.version = v

e

Note that we have stopped short of distinguishing between differing numbers of
dashes. These two schemas may be used to define the function which gives the
decoration change required:

what_dec ¢)\ ids : P Id
e« v ® Vv : decchange
| common_sttribute A @ = discard
v "common_sttribute A @ = keep
common_version A v = discard
v “common_version A v = keep
. (.r V)
With this one can define the unification of schemas as follows;

19

_Unischema

Unipars

tyl € rng schema_type A ty2 € rng schema_type

idsla = ids2a
8Uresult = unifyseq(tenv, tysa, tysb)
where

tysl a schema_type! tyl

tys2 2 schema_type! ty2

dechl 2 what_dec dom tysl

dech2 a what_dec dom tys2

idsl 2 order dom tysl

ids2 2 order dom tys2

idsla a2 idsl 3 undecorate dechil
a8

ids2a ids2 3 undecorate dech?2
tysa 2 idsl 3 tysl
tysb 2 idsZ 3 tys2

Thus the specification for the unification of non-variable types is:

Non_vars 2 Uniatoms v Undefined v Unipowers v Unituples
v Unischema

with error case:

__Typewrong
r Unipars
\ “Non_vars A rep! = "Incompatible type” A tenv’' = tenv

The various cases may be collected together into one schema

UNIFY @ Puns A ((RHsubs v LHsubs)
v (Novars A (Non_vars v Typewrong)))

to give a definition of the unify function as:

—-

Y Unipars « BUresult = unify(tenv, tyl, ty2) e UNIFY

20

Type

checking operations

Type

checking takes place within the type environment which gives the current

assignment of types to names. For generic type instantiation it is necessary fo create
names unique to the current type environment, so the state for type checking
operations must maintain the set of valid names.

_ TypeState

tenv : Teny
valid_names : P TName

dom tenv © valid_names

J

Final

iy, a general purpose operation to check il two types are the same:

__ Typelheck
ATypeState; UNIFY

val id_names' = valid_names

omed

Z_type_unify keeps Tenv, TypeState, Typelheck

21

R ——— T —— S —— g

CHAPTER §

NORMALISATION OF TYPES

[Z_datatypes :Module]
[Z_type_unify :Module]

As a result of type checking operations the type produced for an expression may
contain a number of variables, all of which should, at various points in the syntax
such as declarations, have a substitution present within the type environment.
Normalisation is the name used for the process of transforming a type by carrying out
the substitutions implicit within the environment and should result in a type containing
no variable elements, and in a standard form. (Note that this use of the term is
different from the normal Z usage which refers to the general process of deriving a
type from a term.) Only types which have been normalised may be directly compared:
in all other cases types should be unified using the TypeCheck operation.
Normalisation is carried out using the following function:

normalise : (Type x (TName +«Type)) —Type

This is defined according to the subsets of type as follows:

—_ NPars

ty : Type
tenv : TName +« Type
result : Type

Nvar
r NPars

ty € rng varisble
n € dom tenv A result = normalise(tenv n, tenv)

v

n ¢ dom tenv A result
where

n 2 variablel ty

ty

— NPowers
NPars

ty € rng powerset
result = powerset(normalise(powersets ty, tenv))

__Ntuples
NPars

ty € rng tuple
result = tuple(tuple? ty 3 norm)
where
norm & A ty : Type « normalise(ty, tenv)

22

7N

— Nschema
NPars

ty € rng schema_type

result = schema_type(schema_type™? ty ; norm)
where

norm 2 A ty : Type . normalise(ty, tenv)

__NAtom
NPars

ty € RType A result = ty

J

NORM & Nvar v NPowers y Ntuples v Nschema v NAtom
Y NPars « result = normalise(ty., tenv) es NORM

After normalisation the type should contain no type variables, so define a function to
count them:

1

names_in_type : Type =P TName

ty : AType « names_in_type ty = {)
ty : rng variable « names_in_type ty = {variable! tyl}

ty : rng powerset

names_in_type ty = names_in_type(powerset ty)

ty : rng tuple

names_in_type ty = U names_in_type(rng(tuple? ty))

ty : rng schema_type

names_in_type ty = U names_in_typelrng(schema_type! ty))

e LT e Qe T T T

The normalisation operation must be applied to all user-defined types:

—Normalise

ty?, ty! : Type
ETypeState
rep! : seq Char

ty! = normalise(ty?, tenv)
#(names_in_type ty!) » 0
- rep! = "Type not completely specified”

2_type_norm keeps Normalise

23

-

CHAPTER 6
REFERENCES TO IDENTIFIERS

[_datatypes :Module]
[2_scopes :Module]

Ordinary references

The syntax for references is:

reference =
id {reference--type> refl,
id dlr <{check_no_att> id <{doc_reference--type> refl;

A reference delivers a type which is the value of an identifier in the current
environment (instantiation is dealt with later). The identifier is obtained from the
lexical analyser’s state variables and looked up in the current environment to find its
type.

__Topld - _ref_ok .
ALexState EEnv
id! : Id id? : Id;: ty! : Type
id! = hd idlist id? € dom(find 8Env)
idlist® = tl idlist ty! = find 8Env id?

If ref_ok cannot be satisfied, the identifier is undeclared. This may not be an error
as there are various identifiers which are conventionally formed from existing
identifers, namely decorated schemas and schemas used with A and E. The first use of
these identifiers when they have not been defined, and a schema of the appropriate
base name has, will result in the declaration of the appropriate schema term. First of
all, to express this, it is necessary to define a function to carry out the decoration
and which expresses the rule that !, ? or a version may only be applied once.

24

—

decorate_with _ : (Name x Att)= (Id«Id)

U new_version : Name; nen_att : Att
. de:iorlzte_uith(new_version, new_att) =

| new_version # noname =s version = noname
new_att € rng dashes = att = noatt att € rng dashes

new_att = bang v nenW_att = query = att = noatt
o p Id'

| name' = name
new_version = poname =+ version' = version
new_version # noname =+ version’ = new_version
att = noatt = att’ = new_stt
nen_stt = noatt = att’ = att

new_att # noatt A 8tt # noatt =
att’ = dashes(dashes™ att + dashes new_att)
synstat’ = synstat
« 01d’

Identifiers beginning with 4 or £ which have not been declared, but for which a
schema definition for the identifier formed from the name without the initial Greek
letter exists will have a new schema definition created automatically. The new schema

involves decoration with a dash, and the schema must be capable of being decorated
in this way:

25

__derived_id

EEnv
id?, id! : Id; ty! : Type

first_char = "4’ y first_char = 'E’
id’ € dom(find 8Env)
ty' € rng powerset A powerset! ty' € rng schema_type
dom ids & dom decorate
ty! = powerset(schema_type ids’)
id! = id?
where
first_char a2 hd(line?! id?.name).]
id" 2 p Id
| name = line(edecline’)

where
| bdecline

8decline = line? id?.name
1" =t1l 1 AW =w
version = id?.version
att = id?.att A synstat = id?.synstat
« 81d
ty' a find 8Env id’
ids 2 schema_type'(powerset! ty’)
decorate 2 decorate_with(noname, dashes 1)
ids' a {id®' ¢ Id; ty : Type
| 3 ident : dom ids

| id" = decorate ident « ty = ids ident
i id" » ty

—_—

The same possibility for implicit declaration exists for an undeclared identifier with a
decoration, if a schema definition exists for the undecorated identifier. Note that for
reasons of simplicity the view has been taken that the base name version must have
been defined, which precludes the decoration of an imported schema if the defining
document has been renamed, because this simply imports the decorated names. As
with the derived schema, the decorated schema must be capable of being decorated

in the way required,

26

~

decorated_id .

F ZEnv

id?, id! : Id; ty! : Type

ident € dom(find 6Env)

ty € rng powerset A powerset! ty € rng schema_type
dom ids € dom decorate

ty! = powerset(schema_type ids')

id! = id?
where
ident 2 y Id
| name = id?.name
versipn = noname
att = noatt A synstat = id?.synstat
. 8ld

ty & find eEnv ident
ids & schema_type(powerset! ty)
decorate 2 decorate_with(id?.version, id?.att)
ids' 2 {id" : Id; ty : Type
)} 3 ident : dom ids
| id’ = decorate ident « ty = ids ident
)o’ id' ~ ty

All error cases are treated as an undeclared identifier, which is a bit unfriendly in
the case of incompatible decorations:

ref_wrong

—
ZEnv

id?, id! : Id; ty! : Type
rep! : seq Char

~(decorated_id v derived_id)
rep! = "Identifier undeclared”
ty! = type_undefined

id! = id?

SR |

For the three undeclared cases, it is necessary to ensure that the identifier created
is declared, so that a subsequent declaration will be ignored and not give rise to
inconsistency.

__decid

Declarery n /4y
id? : Id: ty! : Type

new_ids = (id?) A ty! = ty?

undeclesred & (derived_id v decorated_id v ref_wrong) »
decid\(rep!, new_ids)

reference ¢ Topld » (undeclared ® ref_ok)

27

A decoration may also be applied to a schema term in the following situation, where
spec_sexpl is a syntax rule occuring in the expansion of the rules for special
purpose schema expressions.

rename =
lsqb rename_list rsqb <id_inst-ptype-pinstantiation--type>,
decor <{decorate-ptype-—-typed:;

spec_sexp2 =
lpar schema_term rpar.
lpar schema_term rpar rename.
reference <check_schema-ptype--type>.,
schema;

The compiling functions is a simple variation of the above: the decoration required is
found in an identifier left at the head of the lexical analyser’s queue.

__decorate_ok

id? : Id

ty?, ty! : Type

rep! : seq Char
ty! = powerset(schema_type ids’)
dom ids € dom decorate

where

ids 2 schema_typel(powerset? ty?)
decorate 2 decorate_with(id?.version, id?.att)
ids' a2 {id' : Id; ty : Type
| 3 ident : dom ids
| id" = decorate ident « ty = ids ident
i id’ » ty

The only error case occurs with incorrect decorations as the syntax ensures that the
type of a schema term is always a schema type.

__decorate_wrong

id? : Id
ty?, ty! : Type
rep! : seq Char

ty! = ty?
<(dom ids & dom decarate) = rep! = "Incorrect decoration”
where

ids 2 schema_type-!(powerset! ty?)
decorate 2 decorate_with(id?.version, id?.att)

decorate 2 Topld » decorate_ok v decorate_wrong

Document references

Document references are preceded by a document name, which must contain no
attributes. If they are present an error is reported and they are discarded.

28

L e o e o

_check_no_att

OLexState
rep! : seq Char

(hd idlist).att = noatt =+ idlist’ = idlist
(hd idlist).att # noatt =
. rep! = "Document reference may not contain attributes”
hd idlist’ = p Id
| nesme = ident.name
version = ident.version
) att = noatt
synstat = ident.synstat
where
ident 2 hd idlist
* BId

tl idlist’ = tl idlist

Toplds

F AlLexState
id!, doc! : Id

id! = idlist(2) A doc! = idlist(1)
idlist’' = tl(tl idlist)

doc_ref _ok .
\ ZEnv

id?, doc? : 1Id

ty! : Type
h (8Env, doc?) € dom find_doc

id? € dom(find_doc(8Env, doc?))
ty! = find_doc(eEnv, doc?) id?

3

If the identifier is not present in the document an error is reported without
3 attempting to look for decorated versions: this is a somewhat debateable decision.

doc_ref_wrong “
T-EEnv

id?, doc?, id! : Id

ty! : Type

rep! : seq Char

(6Env, doc?) ¢ dom find_doc A rep! = "No such document”

geEnv. doc?) € dom find_doc
A id? ¢ dom(find_doc(eEnv, doc?))
A rep! = "ldentifier undeclared”

ty! = type_undefined

29

s

doc_reference & Toplds » (doc_ref_ok v doc_ref_nrong) »
decid\(rep!, new_ids)

Z_references keeps reference. decarate, check_no_att,
doc_reference

30

y— " e e -

CHAPTER 7
ANONYMOUS INSTANTIATION

Z_datatypes :Module
[_scopes :Module]
Z_type_unify :Module]

The relevant extract from the syntax is:

reference =
id <reference~--type> ref2,
id dlr <check_no_att> id {doc_reference--type> ref?:;

ref2 =
Canon_inst-ptype--type>.,
instantiation <id_inst-ptype-pinstantiation--typed;

For anonymous instantiation, the input type ty? will be the type of the identifier as
given by the identifier environment: the output type ty! is the instantiated type,
which, if the type is generic, must be suitable for the application of the type
inference rules. Consequently it is necessary to find the generic identifiers within the
type. This is slightly complicated by the fact that at a defining occurence of an
identifier, for example the predicate part of an axiomatic definition, types dependent
on the generic parameters should not be instantiated at differing types. If this rule is
not followed, it is possible to create some inconsistencies. For example, defining a
generic function f ¢+ S =T, where S and T are generic, should result in an error if
the predicate contains f = A\ 5§ : S « s, as the delivered type must be the same as
the parameter. Within a generic definition, the identifiers for the generic parameters
are still in scope, so this gives a test as to which generic types should be instantiated
as variables and which should not: the true generics are those which appear in the
type, but are not currently defined within the environment, The effect of this rule is
that generic schemas used as an inclusion within a generic schema definition which is
generic in the same identifiers will, if instantiated anonymously, be treated as the
same generiCc parameters. The effect is as if the new generic definition extends the
old one, which is probably what is intended.

Note that variable types are only created for the purposes of anonymous instantiation,
so that the type derived from the identifier environment and supplied by reference
will contain no variable component. This is.checked using the type normalisation
function (see chapter 5) which is always used prior to declaring an iden:ifier with a
given type. First of all then, a function to give the true generics within a type:

3t

ids_in_type : (Env x Type)=P Id

Y env : Env
. Y ty : rng generic

. ident € generic_ids A ids ty = {}
v ident & generic_ids A ids ty = {ident}
where
ident : Id

In: Nty =genericln, ident)
ty : AType \ rng generic « ids ty = {}
ty : rng powerset « ids ty = ids(powerset! ty)
ty : rng tuple « ids ty = U ids(rng(tuple? ty))
ty : rng schema_type

e ids ty = U ids{rng(schema_type! ty))
where

ids 2 A\ ty : Type « ids_in_typelenv, ty)

generic_ids 2 {igent : Id

n :
« find env ident =
powerset (generic(n, ident))

Tcaada

The instantiation of a non-generic variable is straightforward:

__Non_gen_var

=TypeState
ZEnv
ty?, ty! : Type

ids_in_type(8Env, ty?) = {}
ty! = ty?

J

For generics we need a mapping from the generic identifiers to a unique set of names,
not currently existing within the environment:

__Newnames

ATypeState

ZEnv

ty? : Type

sub! : Ids TName

tenv = tenv'

dom sub! = ids_in_type(8Env, ty?)
rng sub! N valid_names = {}
valid_names’ = valid_names U rng sub!

J

Given a mapping from identifiers to names, the following function produces a variable
type from a generic:

32

inst_type : (Type x (Id+TName))+wType

Y s : IdwTName
«¥Y ty : rng generic
. ident € dom s A inst_type(ty, s) = variable(s ident)
v ident ¢ dom s A inst_typel(ty, s) = ty
where
l ident : Id

I 3n : Nty =genericln, ident)
Y ty : AType \ rng generic « inst_type(ty, s) = ty
Y ty : rng powerset
« inst_typel{ty, s) = powerset(inst_type(powerset! ty, s))
Y ty : rng schema_type

« inst_type(ty, s) = schema_type(schema_type! ty ;3 inst)
where

inst 2 A\ ty : Type « inst_type(ty, s)
U ty : rng tuple

o inst_type(ty, s) = tuple(tuple? ty 5 inst)
where

inst 2 Aty ¢ Type « inst_type(ty, s)

which may be used to create the new type from the one given by reference:

__ Gen_var

ETypeState
sub? : Id -+ TName
ty?, ty! :Type

ty! = inst_type(ty?, sub?)

The total operation for anonymous instantiation is

anon_inst & Non_gen_var v (Newnames » Gen_var)
2_snon_inst keeps anon_inst, ids_in_type

33

et e iR i T

A

CHAPTER 8
FORMATION OF INSTANTIATIONS

[(_datatypes :Module|
[_scopes :Module]

[_references :Module]
[_type_norm :Module|

Named instantiation is applied to identifiers having a generic type and brings about
the replacement of the generic components in the type of the identifier with the
types given for this particular use of the identifier. The given types may be
introduced in the form of a list of types, in which case the generic components are
given by the order in which they were introduced in the generic definition which
assigned a type to the identifier, or they may be introduced as a mapping between
identifiers and types, to indicate which particular generic component is to be
instantiated. Because of the syntactic difficulties of distinguishing between
instantiation and schema renaming (both begin with an opening square bracket and can
carry on with an identifier), both are treated as belonging to the same syntactic class,
so the representation of an instantiation must cover both possibilities. This leads to
the following datatype definition for the representation of an instantiation:

Instantiation ::= term_list«seq Type» | binding_list«Ild«Type»
| rename_list«Id-w=Id»

The relevant syntax for the formation of a term list instantiation is:

instantiation = lsqb inst_list rsqgb:

inst_list = inst_term_list, binding_list, rename_list;
#gathered together to resoclve various one-track problems#

inst_term_list =
term <{tmll-ptype-~-instantiation>,
term <tmll-ptype--instantiation> comma inst_termlistl;

inst_termlistl =
term <tml2-ptype-pinstantiation—-—instantiation> inst_termlistZ;

inst_termlist2 = $, comma inst_termlistl;

The compiling functions tmll and tml2 form the instantiation from the component
terms, each of which must stand for a type. This is because the generic identifiers
have powerset type so that they may be used in a signature and consequently they
may only be instantiated as sets. This is checked in the operation below, which
removes the powerset constructor to form the type which will be stored in the
instantiation.

Check_typen

ty?, ty! : Type: rep! : seq Char

ty? € rng powerset A ty! = powerset! ty?

\'
ty? ¢ rng powerset A ty! = ty?
A rep! = "Incorrect type for instantiation”

Wy

As well as this check, the view has been taken that instantiations ought to be
defined, as otherwise it would be possible to instantiate a generic term with the

empty set for example. Consequently an additional check is made to ensure that the
type is normalised.

Check_type 2 Normalise » Check_typen

The operation tml1l forms the first element in the term list instantiation:

_tmlla

ty? : Type; inst! : Instantiation

inst! = term_list (ty?)

tmll 2 Check_type » tmlla

while tml2 is for subsequent elements

_tmlZ2a \
ty? : Type; inst?, inst! : Instantiation
inst! = term_list(term_list? inst? snoc ty?)

tml2 2 Check_type » tml2a

There are similar operations for binding lists and rename lists:

binding_list = bll, bll comma binding_listl;
bll =
id equals <bll--id> term <blZ2-pid-ptype--instantiation);
binding_listl =
bl2, blZ comma binding_listl;

bl2 =
id equals <bli--id> term
<bl3-pid-ptype-pinstentiation-~instantiation>;

r_l::ll —_ _bl2a -
OLexState id? : Id;: ty? : Type
id! : Id

inst! : Instantiation

id! = hd idlist
idlist' = t1 idlist

inst! = binding_list {id? w» ty?}

bl2 e Check_type » bl2a

Note that a compiling function bl1 is required because the term may alter the
identifier queue. For subsequent terms in the binding list, a binding mentioning the
same identifier twice is ignored and an error reported.

35

__bl3a

id? : Id;: ty? : Type; inst?, inst! : Instantiation
rep! : seq Char

id? ¢ dom tys A inst! = binding_list(tys U {id? » ty?})

v
id? € dom tys A
rep! = "Identifier occurs twice” A inst! = inst?
where

tys a binding_list! inst?

bl3 2 Check_type » bl3a

Compiling a rename list is easier because only identifiers are involved.

rename_list =
id for id <{rnll--instantiation>,
id for id <rnll--instantiation> rename_listl;

rename_listl =
id for id <rnlZ2-pinstantiation—-instantiation> rename_list2;

rename_listZ = $, comma rename_listl:

rnli —_
F-ALexState
inst! : Instantiation

inst! = rename_list {idlist(l) » idlist(2)}

idlist’ = tl(tl idlist)

\]

Various obvious error cases are dealt with in the compiling function for subsequent
elements in the rename list.

rnl2

AlexState
inst?, inst! : Instantiation
P rep! : seq Char

-

idlist(l) ¢ dom idmap A idlist(2) ¢ rng idmap
inst! = rename_list(idmap U {ldltst(l) - |d1|st(2)})

v
idlist(1) € dom idmap A
rep! = "Identifier occurs twice®” A inst! = inst?

v
idl 5t(2) € rng idmap A
12p! = "Coincidental renaming™ A inst! = inst?

idmap a rename_list?! inst?
= t1(tl idlist)

Z_mk_instantiation keeps Instantiation, term_list, binding_list.
rename_list, Check_type, tmll, tml2,
bll, bl2., bl3, rnll, rnl2

37

CHAPTER 9
NAMED INSTANTIATION

[_datatypes :Module]
[Z_scopes :Module]
[_mk_instantiation :Module]
[_anon_inst :Module|

The relevant syntax is that associated with references:

reference =
id <reference~--type> ref2,
id dlr {check_no_att> id {doc_reference--type> ref2;

ref2 =
<anon_inst-ptype-—-type>,
instantiation {id_inst-ptype-pinstantiation-—-type>;

There are three similar cases for named instantiation, depending on the type of the
instantiation. Note that as a result of combining schema renaming with instantiation it
is possible to rename a schema within an inclusion, which turns out to be a useful

facility, so it has not been disallowed.

Two functions will be defined which carry out term list and binding list instantiation.
They are very similar and may be defined according to the elements of type. First of

all, a function for term list instantiation:

tl_inst : (Type x seq Type)—Type

g ty, result : Type; s : seq Type

| result = tl_inst(ty, s)

e« 3 ident : Idi n : N | ty = generic(n, ident)
e N € dom s = result = s n

N ¢ dom s = result = ty

\'
ty € AType \ rng generic A result = ty
v
ty € rng powerset

A result = powerset(tl_inst(powersets ty, s})
v

ty € rng tuple

result = tuple(tys ;5 inst)
where

tys & tuple? ty

inst 2 A\ ty : Type « tl_inst(ty, s)
v

ty € rng schema_type

result = schema_type(tys 3 inst)
where

tys 2 schema_type ty

inst 2 Aty : Type « tl_inst(ty., s)

Binding list instantiation:

38

——— e~ — — —

bl_inst : (Type x (IdwTypel)lwType

U ty, result : Type; s : Id=Type
| result = bl_inst{ty, s)

ident ¢ dom s = result = ty

v
ty € rng powerset

v

ty € rng tuple

result = tuple(tys 3 inst)
where

tys 2 tuple! ty

v
ty € rng schema_type

where
tys 2 schema_type! ty

e 3ident : Id: n : N | ty = generic(n, ident)
« ident € dom s = result = s ident

v
ty € AType \ rng generic A result = ty

A result = powerset(bl_inst{(powersett ty, s))

inst 2 A\ ty : Type « bl_inst(ty, s)
result = schema_type(tys 3 inst)

inst ¢ A\ ty : Type « bl_inst(ty, s)

The function for schema renaming is an extended composition:

schema_rename_ : ((IdwType) x (Id+wId))« (Id=Type)

where
idmap' 2 \ ident : Id
e u ident' : Id
| ident € dom idmap
ident ¢ dom idmap
o ident’

U schema_ids : Id«Type; idmap : IdwId
. schema_rename(schema_ids, idmap) = idmap' 3

3 schema_ids

- ident’ = idmap ident
= ident’' = ident

The operation for instantiation checks error cases,
are correct.

|

but instantiates as many types as

7

__ inst -
ZEnv

ty?, ty! : Type

inst? : Instantiation

rep! : seq Char

inst? € rng term_list

ty! = tl_inst(ty?, s)

#dom s > #(ids_in_type(8Env, ty?)) =
rep! = "Too many terms”

where
s 2 term_list! inst?

inst? € rng binding_list

ty! = bl_inst(ty?, s)

~(dom s ¢ ids_in_type(8Env, ty?)) =
rep! = "Not generic in this identifier”
where
s & binding_list?! inst?

while that for schema renaming is

__rename

ZEnv

ty?, ty! : Type

ingt? : Instantiation
rep! : seq Char

inst? € rng rename_list
~Schema A ty! = ty? A rep! = "Only schemas may be renamed”

¥ bad_ids # {} =
rep! = "Identifiers not defined in this schema®

ty! = powerset(schema_type schema_rename(ids, good_ids))
where
ids a2 schema_typel(pouwerset? ty?)

idmap 2 rename_list! inst?
bad_ids 2 rng idmap \ dom ids
good_ids 2 idmap D dom ids

After named instantiation or schema renaming, any generic types remaining are
instantiated anonymously:

id_inst 2 (inst v rename) » anon_inst
Z_named_inst keeps id_inst, inst

40

gp—

CHAPTER 10
GIVEN SET DEFINITIONS AND GENERIC PARAMETERS

[E_datatypes :Module]
[_scopes :Module]

Given set definitions

The syntax for given set definitions is very simple:

given_set_def = lsqb given_ids rsgb;

given_ids = id {given_set_def>, given_idsl;

given_idsl = $, comma given_ids:;

The rule given_ids is also used for the parameters in generic definitions. Given set
identifiers and generic parameters must be unique within the current scope and are
not allowed to have attributes or versions. This is partly because of the form chosen
for the syntactic status of generic sets, but it does seem to be a reasonable

restriction.

__check_given_id

ALexState
rep! : seq Char
ident! : Id
ident.att % noatt v ident.version # noname =
rep! = "Parameter identifiers may not be decorated”
ident! = p Id
| name = ident.name A version = noname
AIjtt = noatt A synstat = ident.synstat
« 8
where
ident hd idlist

it p

idlist’ tl idlist ’

__given_set_error

ZEnv
ident? : Id
rep! : seq Char

ident? € dom (hd blocks). ids
rep! = "Identifier for given set already declared”

ot

The type of T in [T} is just powerset of given of T in the outermost block, or
generic of T in an inner block, combined with the serial number to allow for
sequential instantiation. The global scope is detected by the fact that there is only

one block in the environment.

41

— T

SR G

N
N — s~ ¢

_.9iven_set_ok

Env; Env’
ABlock
ident? : Id

8Block = hd blocks A 8Block’ = hd blocks’
tl blocks = t1 blocks’
docs’ = docs A docnames’ = docnames
st’ = st
last_generic’ = last_generic + 1
ident? & dom ids

ids’* = {ident? » ty} U ids
where

ty : Type

#blocks = 1 = ty = powerset(given ident?)
#blocks > 1 =
ty = powerset(generic(last_generic’, ident?))

-~

In this schema, it has been necessary to expand declare, because of the change to
generics.

given_set_def & check_given_id »
(given_set_error v given_set_ok)

Generic definitions

For generic parameters an extra scope is introduced to contain the identifiers and
1their types:

gen_params = glsqb <{new_scope> given_ids rsgb;

A further scope is created to contain the newly declared identifiers, after which the
usual declaration and definition functions (see later) are used:

gener ic_def =
global_id <stert_idlist--idlist)> gen_params <{new_scope>
colon term {dec_ids-pidlist-ptype>
cbar pred <{unstack_pred-ptype><end_gen_def>,
sr gen_params <new_scope)> ge def_body er <{end_gen_def);

At the end of the generic definition the current scope is merged with the outer one
and the generic parameter scope thrown away:

42

__scope_to_ids __Merge_ids

Env;: Env Mer ge

merge_ids : Id«Type m_tuple : seq Type
m_tuple : seq Type

ctuple’ = ctuple~™m_tuple

merge_ids = (hd blocks). ids

m_tuple = (hd blocks).ctuple
blocks' = tl(tl blocks)
docs' = docs

docnames’ = docnames

—

The characteristic tuple will not be used at the global level, but the declarations
are appended here for consistency.

end_gen_def & (scope_to_ids 3 Merge_ids)\(merge_ids, m_tuple)
Z2_given_sets keeps given_set_def, end_gen_def

43

CHAPTER 11

DECLARATIONS AND INCLUSIONS

[f_dstatypes :Module]

[_scopes :Module]

[f_type_norm :Module]

Declarations

The commonest form of definition is the declaration, which appears in the form of a
declaration list, repeatedly throughout the syntax.
as follows:

The syntax for a declaration is

id_list =
id {start_idlist--idlist>,

idlistl =
id <stack_idlist-pidlist--idlist>,

dec = id_list colon term <dec_ids-pidlist-ptyped:

id {start_idlist--idlist> camma idlistl;

id {stack_idlist-pidlist--idlist> comma idlistl;

start_idlist

F_ALexState
idlist! : seq Id

———

idlist!
idlist’

(hd idlist)
tl idlist

The stacking function checks for repeated identifiers:

stack_idlist

The declaration gives a list of identifiers and a term to define their type. As term
may alter the lexical state, it is necessary to stack the identifier list, rather than
using the lexical analyser’'s queue of identifiers:

OlexState
idlist?, idlist! : seq Id
rep! : seq Char
ident € rng idlist? —
idlist! = idlist? A rep! = "Identifier declared twice”
ident ¢ rng idlist? =
idlist! = idlist? snoc ident
idlist® = tl1 idlist
where
ident 2 hd idlist

44

The identifiers may be declared if the term in the declaration specifies a type and
the type is compatible with the syntactic status of the identifier. In the standard
syntax the syntactic status may only be set for a global identifier and this rule has

—-

been followed in the syntax given here. However the same compiling function is used
for global and local declarations so the generalisation of this rule would be a
syntactic change only. In checking the syntactic status, it is necessary first of all to
check that the syntactic status of the identifier is compatible with the other members
of the list of identifiers being declared. For this the arity of the function is needed
and an indication of whether the identifier is to be a relation or not. This is given as
an integer by the following function.

srity a A\ Id e« pn: 0..3
| synstat = ident = n = 0

synstat = preop v synstat = postop
v synstat € rng encop = n = 1

synstat = op v synstat € rng distinop
v synstat € rng distpreop =» n = 2

esynstat = rel «= n = 3
o N

The check for correct status is given by

— status_ok

idlist? : seq Id
n: 0..3
ty?, ty! : Type

n = aritylhd idlist?)
Y ident : rng idlist? « arity ident = n
ty! = ty?

with error case:

r_status_error

idlist? : seq Id
rep! : seq Char
n: 0..3

ty?, ty! : Type

n=aritylhd idlist?)

~(Y ident : rng idlist? « arity ident = n)
rep! = "Mixture of operator symbols”

ty? = type_undefined

No corrective action is taken to remove consequential errors. The type check takes

place after normalisation so the test for correct type need not take account of type
variables.

45

s

type_ok

n: 0..3; ty?, ty! : Type

n=0 A ty? € rng ponerset A ty! = ty?
vn=1
3 tyl, ty2 : Type
o ty? = powerset(powerset(tuple(tyl, ty2)))
ty! = ty?
VI"\:Z
3 tyl, ty2, ty3 : Type
e ty? = powerset(powerset(tuple(tuple(tyl, ty2), ty3)))
ty! = ty?
vn=3

3 tyl, ty2 : Type
e ty? = powerset(powerset ty')

ty! powerset (powerset (tuplel{ty', predicate)))
where

ty’' a tuplef(tyl, ty2)}

1]

In the error case the symbols will be declared with undefined type, to reduce
consequential errors;

__type_error

rep! : seq Char
n: 0..3; ty?, ty! : Type

~type_ok

n=0 = rep! = "The term given is not a type”

nx0 =+ rep! = "Inappropriate type for operator symbol”
ty! = powerset type_undefined

The declaration is simply given by

declare_ids

Declarer; 1 ist?/new_ids]
ty? : Type

ty? € rng powerset A ty = powerset’! ty?

]

and the compiling function by

dec_ids 2 (status_error v status_ok) » Normalise »
(type_error v type_ok) » declare_ids\(ty)

Inclusions

inclusion = reference {open_schema-ptype>;

For schema inclusions it is simply necessary to merge in the schema identifiers into

46

-

< - ——— - — - - - Tt T T g oo - e~ v vy —— ey —
D ———

the current environment, after checking that the reference is to a schema and that
it does not have an undefined type.

__ include_schema

Schema: Include

merge_ids = schema_typel(powerset ty?)

__not_schema_term

e —————
ty? : Type

rep! : seq Char

~Schema

rep! = "Not a schema term”

open_schema & Normalise » (include_schema\(merge_ids)
v not_schema_term
)

A schema inclusion may also appear in a hypothesis where it appears syntactically to
be a predicate:

hyp =
pred <{check_pred_schema-ptype>,
sdec_list cbar pred <unstack_pred-ptype>;

The allowable types for a predicate at this point in the syntax are predicate, the
undefined type or a schema; if it is not one of those, an error is reported. If it is a
schema then it is included.

__pred

ty? : Type
rep! : seq Char

ty? = predicate v ty? = type_undefined v not_schema_term

Note that predicates should contain no type variables, so the type must be normalised
to give a specification for the compiling function as

check _pred_schema & Normalise »
(pred v (“pred A include_schema\(merge_ids)))
Z2_dec_and_inc keeps start_idlist, stack_idlist, dec_ids.
open_schema, check_pred_schema

47

——

CHAPTER 12
SYNTACTIC, DATATYPE AND SCHEMA DEFINITIONS

[Z_datatypes :Module]
[f_scopes :Module]
E_trre_narm :Module]
@ec_and_inc :Module]

Syntactic definitions

Like declarations, syntactic definitions occur at various points in the syntax and, for
the non-generic cases are very similar to declarations. The main difference from the
type-checking point of view is that whereas in x : term, term must have the type
of a set of the type of x, in x 2 term, they have the same type. Consequently,
syntactic definitions are made to appear like declarations. The syntax for the
syntactic definition of a single identifier is

syn_def_id =
global_id {(start_idlist—-idlist> def term <{syn_def-pidlist-ptype>;

and it is imply necessary to add a powerset to the type of the term to have an
equivalent operation to declaration:

__add_powerset _____ syn_def & add_powerset » dec_ids
ty?, ty! : Type

ty! = powerset ty?

Datatype definitions

datatype_def = id <{dt_def--id> becomes branches <unstack_id-pid>;

branch =
id <dt_constant-~qid>,
id lang term rang <dt_constructor-ptype~-qid>;

branches = branch, branch bbar branches:;

For a datatype definition, the identifier must be declared immediately because the
definition is allowed to be recursive. Datatypes are in fact allowed to be mutually
recursive, but in order to keep to the declaration before use rule, datatypes used
before being defined in a datatype definition must have been previously introduced as
a given set. For this reason, the merge operation is used rather than declare. Apart
from this case of introduction as a given set, the view has been taken that datatype
names should be unique, not only within the current document but also within any
referenced documents, including the standard library. This avoids some problems of
confusing types and allows datatypes to be uniquely specified from their name and to
have the same type as a given set,

48

dt_dec

Merge
AlexState
id! : Id

id! = hd idlist
~(id! ¢ dom(find 8Env)
v find 8Env id! = powerset(given id!))
rep! = "Datatype not unique”

merge_ids = {id! » powerset(given id!)}
ctuple' = ctuple
idlist' = t1 idlist

di_def & dt_dec\(merge_ids)

The datatype constants are straightforward:

. dt_constant_dec

Declare

AlLexState

id? : Id

new_ids = {(hd idlist) a ty = given id?
idlist’ = tl idlist

dt_constant & dt_constant_dec\(new_ids, ty)
For the constructor functions, the requirement that recursive references to the
datatype involve only finite sets is regarded as a proof obligation, rather than a
failure of type checking.

_.dt_constructor_dec

Declare
OlexState
id? : Id; ty? : Type

new_ids = (hd idlist)
idlist® = t]l idlist
ty = powerset(tuple{ty?. given id?))

dt_constructor # Normalise » dt_constructor_dec\(pew_ids. ty)
On the completion of a datatype declaration, the SID Id stack must be reset using the
unstack _idfunction, but as the SID stacks are not modelied in the specification, the
corresponding operation is not specified here.

Schema definitions

For compatibility with declarations and definitions, the schema name is stacked as a
list of identifiers and the schema is declared using syn_def.

49

schema_def =

id {start_idlist--idlist>

schema_definition {(syn_def-pidlist-ptype>.,

id (start_idlist--idlist> gen_params
schema_definition <(end_scope>{syn_def-pidlist-ptype):

schema_definition =
{check_schema_id-pidlist-——idlist> sdef schema_term,
{check_schema_id-pidlist——idlist> schema:;

For a schema name, the identifier must be undecorated:

__check_schema_id

idlist!, idlist? : seq Id
rep! : seq Char

schema_id.att = noatt v schema_id.version # noname ==

rep! = "Schema name must be undecorated”
idlist! = (id")
where
schema_id 2 hd idlist?
id" 2 w Id

| name = schema_id.name
version = ngname A att = noatt

synstat = ident
« 8ld

The syntax for schemas is

schema =
sb <new_scope> dec_list {scope_to_schema_type--type> esh,
sb <{new_scope> dec_list
st pred_list <unstack_pred-ptyped><{scope_to_schema_type--typed esb,
sch <{new_scope> dec_list <{scope_to_schema_type~-~type> esch,
sch <{new_scope) dec_list
cbar pred <unstack_pred-ptype><{scope_to_schema_type--type> esch:

For a schema, the type is derived from the scope which was created for the schema
signature, and the scope discarded:

scope_to_schema_type

—
end_scope
ty! : Type

ty! = powerset(schema_type (hd blocks).ids)

The function unstack_pred disposes of the type produced by pred_list, and will
be discussed later.

2_syn_data_schema_def keeps syn_def, dt_def, dt_constant.
dt _constructor, check_schema_id.
scope_to_schema_type

50

7T

CHAPTER 13
OPERATOR AND GENERIC SET DEFINITIONS

[f_datatypes :Module]
[_scopes :Module]
Z_type_norm :Module]

Declaration of operator symbols

At various points within the syntax it is possible to indicate the syntactic status of
the identifier being defined so that it becomes an infix, postfix or prefix operator
symbol or relation, with a consequential constraint on its type. The syntactic status is
dealt with immediately after encountering the identifier in the definition while the
compatibility of the type with the arity of the symbol is checked on completion of
the declaration.

global_id =
id

[N=N3

id underline <global_sym-1),

underline id <global_sym-2>,

id underline id {gleobal_sym-5>,

lpar underline id underline rpar <{global_sym-3>,
underline id underline <global_sym-4>,

id underline id underline <global_sym-6>,
underline id underline id <global_sym-7>;

__global_sym

OlLexState
n? :1..7

hd idlist’ = p Id; Id’
leld = hd idlist

name' = name A versian' = version A att’ = att
synstat’' = syn
where
syn : Synstatus
n? = 1 =+ syn = preop
n? = 2 =+ syn = pastap
n? = 3 = syn = op
N? = 4 = syn = rel
n? = 5 = syn = encop(idlist 2).name
n? = 6 = syn = distpreoplidlist 2}).name
n? = ? = syn = distinoplidlist 2).name

« 81d’
n? >4 = tl idlist’
n? <4 =t]l idlist’

t1(tl idlist)
tl idlist

]

Syntactic_definition of generic operators

During a generic syntactic definition, the syntactic status of an identifier may also be

Si

defined, but in this case the parameter positions are indicated by the presence of
generic types. In this one pass system, the syntactic status of the identifier is
established at the definition itself, so the various sorts of syntactic definition all
appear to be a succession of up to three identifiers. The syntax below provides the
semantic functions to enable this to be sorted out.

syn_def_ids =
id id <prepostsymbol--idlist> def term <{syn_def-pidlist-ptype>,
id id id <insetsymbol--idlist>
def term <syn_def-pidlist-ptype>;

Prefix and postfix generic set definitions are syntactically equivalent to id id but
may be distinguished semantically by whether the identifiers have been declared and
whether they are generic types or not {one should be undeclared, one should have
generic type). This is done by the prepostsymbal compiling function which delivers
an identifier list containing a single identifier which is the generic set. The first case
is with the first parameter the generic type and the second a postfixed generic set.

— check_genparl

ZEnv
AlLexState
idlist! : seq Id

idlist(1) € dom(find 8Env)
ty € rng powerset

powerset™! ty € rng generic
where
ty & find 8Env (idlist(1))
idlist(2) ¢ dom(find 8Env)
idlist! = (p Id; Id’
| 8Id = idlist(2)

name’ = pame A version' = version
att’' = ott A synstat’ = postset (idlist(1)).name
o 8ld’

)
idlist’' = tl(tl idlist)

In the second case, the first identifier is a prefix generic set and the second the
generic type:

s2

r_check_senparz

ZEnv
OlexState
idlist! : seq Id

idlist(1) ¢ dom(find 8Env)
idlist(2) € dom(find BEnv)
ty € rng powerset
powerset! ty € rng generic
where
ty 2 find 6Env (idlist(2))
idlist! = (p Id; Id’
| 8ld = idlist{1)
name' = name A version' = version
att’ = att A synstat’ = preset (idlist(2)).name

« 6ld’
)

idlist’ = tl(tl idlist)

For the error case, the identifier list is constructed arbitrarily using the first
identifier.

genpar_error

r—ALexState
idlist! : seq Id
rep! : seq Char

idlist! = (idlist(1))
rep! = "Incorrect operator definition”
idlist’' = tl(tl idlist)

prepostsymbol 2 genpar_error e (check_genparl v check_genpar2)

For infixed operators, a succession of 3 ids, the generic parameters must be the
outermost identifiers. These are checked to be generic and the middle identifier
made into an infixed generic set.

3

r_pars_pk —_

ZEnv

OLexState

idlist(1) € dom(find 8Env)
ty € rng powerset

powerset ty € rng generic
where
ty &2 find 8Env (idlist(1))

idlist(3) e dom(find 8Env)
ty € rng powerset

powerset ty € rng generic
where
ty 2 find g8Env Cidlist(3))

idlist(2) ¢ dom(find 8Env}

. pars_not_ok

EEnv
AlexState
rep! : seq Char

-pars_ok

rep! = "Incorrect identifier for parameter of generic”
" operator”

J

In either case the middle identifier is made into an infixed generic set, constructed
from the parameter names. These are used when the generic set is instantiated (see
{ below).

N\ __make_inset

OLexState
idlist! : seq Id

idlist! = (p Id; Id’
| 8ld = idlist(2)
name’ = name A version' = version A att' = att

synstat’ = inset((idlist(1)).name,
Cidlist(3)).name)
)- eld’

idlist’” = t1(tl(t]l idlist))

insetsymbol & (pars_ok v pars_not_ok) A make_inset

—y " "

Instantiation of generic sets

[Z_mk_instantiation :Module]
[Z_named_inst :Module]

formula =
forml
forml;

inset {setop-—-id> formula <inset-pid-ptype-ptype--type>.
forml =
%é;mZ;
formz =
%A;ma:
form3 =

é;éset {setop—-id> form3 <set_instl-pid-ptype--type>.,
farm4;

formé¢ =

fo;mﬁ postset <{set_instZ-ptype--type>.,
aform;

The compiling function setop is simply required to stack the name of the identifier:

r__sna't.l:n:a \
DlLexState
ident! : Id

ident! = hd idlist A idlist’ = tl idlist

r—t

To carry out the instantiation, a binding list instantiation is made up using the name
stored with the syntactic status of the generic identifier:

_set_inst

inst! : Instantiation
ty?, ty! : Type
ident? : Id

ZEnv

ingt! = binding_list{ident ~ ty?}

ty! = find eEnv ident?
where

ident & u Id
| name = preset-! ident?.synstat
version = nponhame

att = noatt A synstat = ident
« 8ld

SS

and the compiling functions are given by

set_instl & Check_type » set_inst » inst
set_inst2 & setop » set_instl

For the infixed generic sets, two sets have to be instantiated

__ inset_inst

inst! : Instantiation
tyl?, tyr?, ty! : Type
ident? : Id

ZEnv

inst! = binding_list{idl » tyl?, id2 w» tyr?}
ty! = find 8Env ident?

where
idl 2 p 1Id
| name = (inset! ident?.synstat) 1
version = noname
att = noatt A synstat = ident
« 8ld
id2 & u Id

| name = (inset™! ident?.synstat) 2
version = noname

att = noatt A synstat = ident
. 6ld

inset & Check_typery 1%/t07, ty11/ty!]
b A Check_typery ra/ey2, tyri/ty!)
» inset_inst » inst

Z2_op_def keeps global_sym, prepostsymbol., insetsymbol.
L setop, set_instl, set_inst2, inset

S6

CHAPTER 14
PRIMITIVE TYPES

[¢_datatypes :Module]
E_type_unify :Module]
[@_scopes :Module]

Explicit constructions

explicit_constr =
tuple,
set eset <empty_set--typed.,
explicit_set termlistl eset <explicit_set-ptype--type>,
lseq rseq <empty_list-—type>,
lseq termlist]l rseq <explicit_list-ptype--typed;

In the syntax above, explicit_set is a terminal symbol inserted by a look-ahead
function in the lexical analyser to resolve the problem of disentangling {a, b, c}
from {a, b, c : T...}. The compiling functions required are relatively trivial; for
an empty set the type required is powerset of variable:

r_empty_set

ATypeState
ty! : Type
ty! = pcwerset(variable n)
tenv' = tenv A valid_names’ = {n} U valid_names
where
n : TName | n ¢ valid_names
and similarly for an empty list:
_empty_list .
ATypeState
ty! : Type
ty! = powerset(tuple(2type, variable n))
tenv' = tenv A valid_names’' = {n)} U valid_names

where
n : TName | n ¢ valid_names

An explicit set is a powerset of its elements:

_explicit_set ___

ty!, ty? : Type

ty! = powerset ty?

|

and similarly for an explicit list:

s7

T

—explicit_list

ty!, ty? : Type

ty! = powerset(tuple(Ztype, ty?))

—

Both sets and lists must be made up of elements of the same type:

termlistl = # terms of the same type #
term,
term comma termlistla;

termlistla =
term <{check_tys_same-ptype-ptype--type?., A
term <{check_tys_same-ptype-ptype--type> comma termlistla:;

An arbitrary choice is made to deliver the first type in the series:

__check_tys_same

TypeCheck 4,17/4y1, ty2?/ty2)
ty! : Type

ty! = ty2?

Special constants

The various constants appear as members of the atomic formulae:

aform =
<{nat--typed> nat,
{char--type> char.
{sconst-lv--type> sconst,

The special constants are the numbers and strings, distinguished by the type of the
lexical value delivered by the lexical analyser.

__sconst
Iv? : LexVal; ty! : Type

1v? € rng num A ty! = Ztype
v
1v? € rng char A ty! = Chartype

v
lv? € rng string A ty! = powerset(tuple(Z2type, Chartype))

3

The terminal symbols nat and char are ¢ and Char respectively; they are buiit into
the syntax in this way in order to prohibit their re-definition.

58

r__na't - ~ Char
ty! : Type ty! : Type
ty! = powerset Ztype ty! = powerset Chartype
J J
Projections
aform =

aform proj id <{proj-ptype~-~type>,

A projection may only be applied to a schema type and must identifiy a member of
the schema's signature. In the error cases the type is left unchanged.
proj_ok

BlexState
ty?, ty! + Type

ty? € rng schema_type
hd idlist € dam idmap
ty! = idmap{hd idlist)

where

idmap & schema_typel ty?
idlist’ = t]l idlist

p—

not _schema <
AlexState
ty?7, ty! : Type
rep! : seq Char

t¥? ¢ rng schema_type

idlist’ = tl idlist

ty! = ty?

rep! = "Projection may only be applied to schemas”

_.id_not_in_sig
ALexState '
ty?, ty! : Type
rep! : seg Chor

ty? € rng schema_type

hd idlist ¢ dom(schema_type ty?)

ty! = ty?

idlist’ = t1 idlist

rep! = "Identifier not defined in schema”

§9

-

~ —————

A
|
)
1

proj 2 not_schema v id_not_in_sig v proj_ok

Zprimitives keeps empty_set, empty_list, explicit_set.,
explicit_list, check_tys_same.,
nat., char, sconst, proj

_ y———

CHAPTER 1§
TUPLES, PRODUCTS, THETA TERMS AND COMPREHENSIONS

[_datatypes :Module]
[f_scopes :Module]

F_type_unify :Module]
@ erimitives :Module]

Syntax
tuple =
lpar term comma termlistZ2 rpar.,
theta reference <{theta-ptype--typed:;
the reference is to a schema
termlist2 = #terms for a tuple #
term <first_tuple-ptype--type>,
term <first_tuple-ptype--type> comma termlistla;
termlistla =
term <{next_tuple-ptype-ptype—-typed,
term <next_tuple-ptype-ptype--type> comma termlistla;
Tuples

An explicit tuple is easily compiled as it is simply a matter of combining the types
into a list:

__first_tuple | _next_tuple

ty?, ty! : Type ty?, tuple?, ty! : Type

ty! = tuple(ty?) ty! = tuple((tupleltuple?) snoc ty?)

Theta expressions

A theta expression forms a tuple, having a schema type, from identifiers defined
within the current environment and members of the schema referenced. Unlike a simple
schema reference the type of the delivered result is an element, not a set. As the
theta expression only involves a reference, rather than an expression it is not
necessary to use type unification.

—theta_schema _______

Schema_ok
ty! : Type

ty! = powerset! ty?

For the error cases, the type is passed through unchanged:

61

——
r_not_schema —
ty?, ty! : Type
rep! : seq Char
~Schema
ty! = ty?
rep! = "Schema required here”
schema_undef ined .
FEEnv
ty?, ty! : Type
rep! : seq Char
Schema A ~Schema_ok
ty! = ty?
rep! = "Schema identifiers not present in this enviranment”
theta 2 not_schema v schema_undefined v theta_schema
Products

product = term <first_prod-ptype-~type> prod productl
{end_prod-ptype--type>;

product] =
term <next_prod-ptype-ptype--type>,
term <next_prod-ptype-ptype~-type> prod productl:

A Cartesian product is formed from sets and forms a set of tuples of the constituent
types. The compiling functions are similar to those for tuples with the additional
complication of removing powerset constructors: to avoid problems with type variables,
this has to be done by type checking against a type consisting of a powerset of a
new variable type. The powerset constructor for the tuple is added at the end of

the product.

r_prod . =~ first_member
TypeCheck(yy2/1y1, ptype/ty2] ty?. ty! : Type
ty! : Type
ty! = tuple(ty?)
—t

ty! = varisble n
valid_names’ = valid_names U {n}

where
| n : TName

[n ¢ valid_names
ptype = powerset ty!

J

first_prod a prod\(ptype) » first_member

62

The same procedure is applied to subsequent members of the product, with the result
being added to the end of the list:

next_member

I—prod[this_prod/ty!]
prod?, ty! : Type

ty! = tuple((tuple™? prod?) snoc this_prod)

next_prod & next_member \(ptype. this_prod)
Finally, the powerset constructor is added at the end of the product:

_—end prod __________

ty?, ty! : Type

ty! = powerset ty?

Compreheasion terms

comprehension =

schema.,

set {new_scope> dec_list comp_set eset,

lambda <new_lambda_scope>

dec_list lambda_set <{lambda-ptype--type>.

mu <new_scope> dec_list lambda_set <end_scape’;

comp_set =
{scope_to_tuple--type>,
cbar pred <{unstack_pred-ptype><{scope_to_tuple--typed.
dot term <{set-ptype--type).,
cbar pred <{unstack_pred-ptype> dot term <(set-ptype--type);

lambda_set =
dot formula, _
cbar pred <unstack_pred-ptype> dot formula;

The standard set comprehension is defined to deliver a set of tuples, formed either
from the characteristic tuple of the declarations in the comprehension or as provided
by the example term. A new scope is created on entry to the comprehension and
converted into a tuple using the function below.

tuple_of_scope

— -
AEnv
ty! : Type
wctuple > | = ty! = powerset(tuple ctuple)
sctuple = 1 «» ty! = powerset(hd ctuple)

scape_to_tuple & tuple_of_scope 3 end_scope

The set function is called when an example term is provided and adds a powerset to

63

its input type and ends the current scope. Consequently it is a composition of
previously defined operations:

set & explicit_set 3 end_scope

The X\ comprehension uses the scope for the parameter type and the example
term for the result type:

__ lambdal \

scope_to_tuple“ypar Iyl
ty!, ty? : Type

ty! = powerset(tuple{powerset! typar, ty?))

lambda & lambdal\(typar)

2_tuples keeps first_tuple, next_tuple, theta.
first_prod, next_prod, end_prod,
scope_to_tuple. set. lambds

CHAPTER 16
FUNCTION APPLICATION AND PARTIAL APPLICATION

[_datatypes :Module]
[Z_scopes :Module]
Z_type_unify :Module)
[Z_references :Module]
[Z_anon_inst :Module]

fante

Type checking for function application

Most of the syntax for function application is concerned with indicating the binding
of the various forms of operator, and then, for the infixed forms, assembling the
parameters into tuples,

formula =
formi;
forml =

forml op <{funop—-type> formZ <infix-ptype-ptype-ptype--typed,
forme:

formZ =

form2 form3 <{funapp-ptype-ptype--type>,
form3;

form3 =
preop <{funop--type> form3 <{funapp-ptrpe-ptype--typed.

distpreop {funop--type>

term eop form3 {distpreop-ptype-ptype-ptype--type>,
$ouerset form3 <{powerset_fn-ptype--type’>.
orm4;

form¢ =
form4 distinop <funop--type®>

term eop <infix-ptype-ptype-ptype--typed.,
form4 postop <{postapp-ptype--type>,

aform;

The specification for the basic type checking of function application is, loosely, that
given a supposed function, of type tl, an argument of type 12, one creates a new type

t3 which will be the type of the delivered result. The type checking consists in the
unification of tl with 12 => t3.

6S

__ funappl

Typelheck ¢y nv/ty1, fun/ty2)
par?, ty! : Type

ty! = variable n
valid_names’ = valid_names U {n}

where
n : TName

n ¢ valid_names
fun = powerset(tuple (par?, ty!'))

funapp2 & funappl\(fun)
Note that this is not a complete specification for the compiling function funapp as it
is necessary to take account of the possibility of term term being a set membership
predicate. This is dealt with later.

The function funop is used when an operator symbol has been recognised, and is
equivalent to an identifier reference followed by anonymous instantiation.

funop 2 reference 3 anon_inst

For infixed application it is necessary to calculate the parameter type:

__infixl

funapp2
rhpar?, lhpar? : Type

par? = tuple (lhpar?, rhpar?)

infix 2 infixi\(par?)

and postfixed application is a combination of an operator symbol and function
application,

postapp 2 f““"p[fun!/ty!] > funapp2

The specification for distpreop is the same as that for infix: the implementation
differs only in the order of the parameters, which is determined by the order in
which the types are stacked which differs in the two cases.

The powerset function is completely trivial:

—powerset _fn ________

ty?, ty! : Type

ty! = powerset ty?

66

A

Type checking for set membership

This is syntactically the same as function application (term term), but indicates a
predicate rather than a term. Type checking of this phrase assumes function
application; if this fails, type checking for set membership is tried; if this fails the
reply for function application is delivered.

’__f‘unapp_ak —_— __setmem .
funappZ TypeCheck(o17/1y1, set/ty2]
mem?, ty! : Type
rep! = "0K"

set = powerset mem?
ty! = predicate
rep! = "0OK”

funapp & (funapp2 e (setmem\(set))) e funapp_ok

Partial application

Partial application consists of operator or relation symbols considered as a term in
their own right, and infixed operators with one parameter supplied. The syntax is
fairly complicated to take into account the various forms of operator, but only a small
number of compiling functions are required.

partials =

underline rel underline <{partrel--type>.
underline op <funop--type> formZ <{partopl-ptype-ptype--type.
aform op underline <partopZ-ptype--type>.,
underline op underline <funop--type>.
underline distinop <{funop-~typed>

term eop <partopl-ptype-ptype--typed.
aform distinop underline eop {partopZ-ptype—-type>.,
underline distinop underline eop <funcp--type>.
distpreop underline eop underline {funop--type>.
distpreop {funop--type>

term eop underline <{partopl-ptype-ptype-—typed,
distpreop underline eop <{funocp--type>

form3 {partopl-ptype-ptype--type>,
encop underline eap <{funop--typed,
precp underline <{funop--type>.
underline postop {funop--type>:

If no parameters are supplied for operator symbols then the type of the symbol is all
that is required; however, for a relation it is necessary to remove the predicate
result from the type. This can be done directly as it is derived from the identifier
look-up.

_reltype

ty?, ty! : Type

ty! = pawerset(hd tys)
where
tys 2 tuplet(powerset ty?)

67

partrel & (reference » reltype) 3 snon_inst

For partial application proper, a variable type is supplied for the missing parameter,
and then the function infix is used to calculate what the result type would be. This
then gives the type for the partial application as a function from the variable type
to the result type. When the left hand parameter is supplied this is

partop

i"‘r-'x[tyres/ty!]
ty! : Type

lhpar? = variable n

valid_names’ = valid_names U {n}
where
| n : TName

rn € valid_names
ty! = powerset(tuple(lhpar?., tyres))

partopl & partop\(tyres. lhpar?)

The right hand parameter case is a simple variation on this.

partopZ 2 funop[;un!/ty” »

P3tOP(hpar ?/rhpar?, rhpar?/lhpar?)\(tyres: rhpac?)

Z_funapps keeps funop, infix, postapp., powerset. funapp,
partrel, partopl, partop2

Ty

A

e

CHAPTER 17
RELATIONS AND PREDICATES

[Z_datatypes :Module]
[_scopes :Module|
[Z_type_unify :Module]
[Z_type_norm :Module]
[E_funapps :Module]

Relations

Relations involve a straightforward variation on type checking for function
application. The syntax is

rel_exp =
term member term <member-ptype-ptype--type>.
term equals equals_tail {to_pred-ptype--type>,

term rel <{funop--type> rel_tail <to_pred-ptype--typed>,
apred;

equals_tail =
term <equals-ptype-ptype—--type> tail;
tail =
sl

rel <funop--typed rel_tail.,
equals equals_tail:

rel_tail =
term {rel-ptype-ptype-ptype--type> tail:;

The specification for set membership is:

_ member 1

member 2 member1\(set)

TypeChecktset7/ty1, set/ty2]
mem?, ty! : Type

set = powerset mem?
ty! predicate

|

while that for equality allows for the continued form and delivers the type of the
right hand operand:

__equals

TypeCheck[ty17/ty1, ty2?/ty2]
ty! : Type

ty! = ty2?

o

A relation is similar to an infixed function application, and like equality delivers the
type of the right hand operand for the continued form.

69

r_rell —— ., rel e rell \(pred)

inﬁx[pred/ty!]
ty! : Type

ty! = rhpar?

)

On completion of a relation or equality, a predicate is delivered:

__to_pred

—————

ty?, ty! : Type

ty! = predicate

e

Note that with this specification, the terms need not be completely defined, although
the predicate result is. This allows an expression such as @ € dom () to type check
correctly, even though it is still generic. This is allowed because the actual type may
only be fixed as a result of the type checking of a complicated predicate involving
several relations.

Predicates

In order to resoive various syntactic ambiguities, both predicates and terms are
produced as a result of the expansion of the syntax rule for pred. In effect a
predicate is formed by combining terms using the loosely binding operators of the
predicate calculus. Once it has been established that a term is destined to be a
predicate there are three allowable possibilities for the type: it may be a predicate,
undefined or a schema. The last case breaks down into two according to whether the
predicate is a schema inclusion in disguise and destined for the hypothesis part of a
theorem or a predicate at any other position: in the former case the signature is
merged into the current scope, in the latter it must be present within the current
scope. The latter case is detected syntactically and checked using the functions
check_pred and unstack_pred which occur throughout the syntax in situations such
as the following:

log_exp =
log_expl.
log_exp <unstack_pred-ptype> iff log_expl
<check_predl-ptype--type);

_. check_predn

ty?, ty! : Type
rep! : seq Char

~(ty? = predicate v ty? = type_undefined v Schema)
- rep! = "Predicate required here”

)

70

~- schema_wrong
EEnv

ty?, ty!l :+ Type
rep! : seq Char

Schema A -Schema_ok
ty! = predicate
rep! = "Schema identifiers not present in this environment”

3

check_pred & Normalise » check_predn v schema_wrong v Schema_ok
The other function, unstack_pred, is not required to deliver a type:
unstack_pred & check_pred\(ty!)

Z2_preds keeps member. equals, rel, to_pred.
check_pred, unstack_pred

7

A

CHAPTER 18
SCHEMA EXPRESSIONS

[_datatypes :Module]

[_scopes :Module]

Quantified schema terms

quant_sexp = squant <new_scope> dec_list

dot schema_term <{subtract_scope-ptype--type>:

A new scope is formed for the quantified identifiers, which must all be present and
with the correct type within the schema type. The new schema type is the difference
between the two, assuming this is not empty.

__subtract_scopel .

ZEnv
ty?, ty! : Type
rep! : seq Char

ty! = powerset(schema_type ids’)
dom good_ids = dom ids =+
rep! = "All identifiers quantified”
~(dom good_ids € dom ids) =s
rep! = "ldentifier to be quantified not present”
"in schema”

bad_ids # {} =
rep! = "Quantified identifier has inconsistent type”

where

ids 2 schema_type{powerset-! ty?)
quants 2 (hd blocks). ids

bad_ids & quants inconsistent ids
good_ids 2 bad_ids 4 quants

ids’ a dom good_ids ¢ ids

subtract_scope 2 subtract_scopel 3 end_scope

Logical schema expressions

The infixed operators all have a similar form, exemplified by:

log_sexp =

log_sexpl.
log_sexp ziff log_sexpl <(stype2-ptype-ptype--typed;

The two schemas may be combined if their signatures are consistent.

72

— stype2

tyl?, ty2?7, ty! : Type
rep! : seq Char

ty! = powerset(schema_typel(idsl U ids2’))

bad_ids # {} =» rep! = “Schema terms inconsistent”
where
idsl 2 schema_type-l(powerset tyl17?)

ids2 ¢ schema_type(powerset! ty27)
bad_ids 2 idsl inconsistent ids2
ids?' 2 bad ids €4 ids2

The special purpose schema expressions

spec_sexp =
spec_sexp zhide lpar id_list rpar <hideids-pidlist-ptype--type>,
spec_sexp zhide reference <hideref-ptype-ptype--trpe>,
spec_sexp zomp spec_sexpl {scompose-ptype-ptype--typed.
spec_sexp zpipe spec_sexpl {pipe-ptype-ptype--type>,
spec_sexp zovr spec_sexpl {soverride-ptype-ptype--type>,
spec_sexpl:

For hiding it is simply necessary to check that the identifiers are present in
the schema type, and then remove them.

__hideids ,
idlist? : seq Id; ty?, ty! : Type
rep! : seq Char

rng idlist? = dom ids =
rep! = "All identifiers hidden”
~(rng idlist? ¢ dom ids) =
rep! = "Identifier to be hidden not present in schema”
ty! = powerset(schema_type ids’)
wher e
ids 2 schema_type!(powerset ty?)
ids' 2 rng idlist? 4 ids

For hiding with a schema it is necessary to check that the name is indeed that of a
schema and that it is compatible with the schema to be hidden.

73

__hideref_ok —
tyref?, tyschema?, ty! : Type
rep! : seq Char
Schemaryyref?/ty?)
ty! = powerset(schema_type ids’)
bad_ids = {} = rep! = "Schemas inconsistent”
ids’ = {} =
rep! = "All identifiers hidden”
~({good_ids € ids) ==
rep! = "Identifier to be hidden not present in schema”

where
idsref 2 schema_typel(pouerset! tyref?)

ids 2 schema_type'(powerset-! tyschema?)
bad_ids 2 idsref inconsistent ids
good_ids 2 bad_ids 4 idsref

ids’ a2 ids \ good_ids

__hideref_wrong

tyref?, tyschema?, ty! : Type
rep! : seq Char

-'s‘:hema[tyref?/ty?] nd
rep! = "Only schemas may be used for hiding”
ty! = tyschema?

hideref & hideref_ok v hideref_wrong

For the other schema operations, a few extra functions on sets of identifiers are
needed. First of all, ids_with_decor delivers that part of a look-up function where
the identifiers have a given decoration.

ids_with_decor 2
\ decor : Att
e X ids : Id+Type
« {ident : dom ids | ident.att = decor} 4 ids

Next, ids_with_basename delivers that part of a look-up function such that the
identifiers have no attribute, have the same base name and version in the decorated
function and deliver the same type.

ids_with_basename 2
X\ ids, decids : Id+Type
« {ident : dom ids
| ident.att = noatt
A (3 ident’ : dom decids
o ident’.name = ident.name
A ident’.version = ident.version
A decids ident' = ids ident)
i ident » ids ident

For schema composition, find the set of identifiers present in both schemas in primed

74

and unprimed forms and take the intersection: this should be non-empty for schemas to
be composed. The resulting type is simply that of the merged schemas.

. Scompose v
tyl?, ty2?, ty! : Type
rep! : seq Char

ty! = powerset(schema_type (idsZ U good_ids))

undashed_idsl N undashed_ids2 = {} =
rep! = "Schemas cannct be composed”

bad_ids # {} = rep! = "Schemas inconsistent”

where
idsl schema_type!(powerset! tyl?)

2
idsé & schema_type-ilpowerset ty27?)

undashed_idsl 2 ids_with_basename(idsli.
(ids_with_decor (dashes 1)) idsl)

undashed_ids2 2 ids_with_basename(idsZ.,
(ids_with_decar (dashes 1)} ids2)

bad_ids & ids! inconsistent ids2
good_ids & bad_ids 4 idsl

For piping it is necessary to find identifiers in one schema which have the same base
name and version as those in another schema:

same_base 2
X idsl, idsZ : Id=Type
« {ident : dom idsi
| 3 ident’ : dom ids2
« ident’.name = ident.name
A ident’.version = ident.version
A idsl ident = idsZ2 ident’
i ident ~» idsl ident

pipe -

tyl?, ty2?, ty! : Type
rep! : seq Char

ty! = powerset(schema_type (idsZ2’ U good_ids))
bad_ids # {} = rep! = "Schemas inconsistent”
piped_outputs = {} = rep! = "Schemas cannot be piped”

where
idsl & schema_typei(powerset tyl?)

ids2 & schema_typel(powerset-! ty27)
outputs 2 ids_with_decor bang idsl

inputs & ids_with_decor query ids2
piped_outputs 2 same_base(outputs, inputs)
piped_inputs 2 same_base(inputs, outputs)
idsl® ¢ idsl \ piped_outputs

ids2’' & ids2 \ piped_inputs

bad_ids ¢ idsl’' inconsistent ids2’
good_ids & bad_ids ¢ idsl’

75

The override function is equivalent to a logical operation as far as type checking is
concerned:

soverride 8 stypel

The pre condition is simply another variation on hiding:

spec_sexpl =
spec_sexpl,
pre spec_sexpl {pre-ptype--typed:;

__pre N

ty?, ty! : Type
rep! : seq Char

ty! = powerset(schema_type (ids \ preids))

preids = {} =»
rep! = "Schema not suitable far pre-condition™

where
ids 2 schema_typel(powerset! ty?)

afterids 2 ids_with_decor (dashes 1) ids
preids & afterids U ids_with_decor bang ids

Finally, all the above operations presuppose an input type made up from a schema;
this is checked at schema reference:

spec_sexpl =
lpar schema_term rpar,
lpar schema_term rpar rename,
reference {check_schema-ptype--type>.
schema;

__check _schema .

ty?, ty! : Type
rep! : seq Char

-Schema =

ty! = powerset(schema_type {ident ~ type_undefined})
rep! = "Not 3 schema type”

where
ident 2 v Id

| name = noname A version = noname
A att = noatt
« gld

Schema - ty! = ty?

2_schema_ops keeps subtrect_scope, stype2, hideids., hideref,
scompose, pipe, soverride, pre, check_schema

76

A

REFERENCES

Currie 1 F. Private communication, 1984, Most of the information on SID is stored as
on-line documentation in the Flex computing systems.

Foster J M. "A Syntax Improving Program”, Computer J, vol 11, no 1, pp 31 - 34,
May 1968.

Foster J M, Currie I F, Edwards P W. "Flex: a working computer with an
architecture based on procedure values”, Proc International Workshop on High
Level Language Computer Architectures, Fort Lauderdale, Maryland, USA, 1982.

King S, Sorensen I H, Woodcock J. “Z: Grammar and Concrete and Abstract Syntaxes”,
version 1.1, July 28 1987, Programming Research Group, University of Oxford,
1987.

Milner R. "A Theory of Type Polymorphism in Programming®, J Comp and System
Science vol 17, p 348, 1978.

Robinson J A. "A machine-oriented logic based on the resolution principle™ J Assoc
Comp Mach, vol 12, pp 23 - 41, 1965.

Spivey J M. "Understanding Z: a Specification Language and its Formal Semantics”,
D Phil thesis, Programming Research Group, University of Oxford, 198S.

Sufrin B A. "Z Handbook, Draft 1.1°, Programming Research Group, University of
Oxford, 1986.

7

BASICS
id

document
decor

APPENDIX
THE 2 SYNTRX

as provided by lexical analysis, including
decoration#

g specification module

#?7,!,’ or decor #

»# General brackets end separators #

endz
nl
semi
lpar
rpar
comma
lsab
ilsagb
rsqb
Si

2i
keep
finish

end of Z picture#s
hard new line#

CH)

L€

#)n

#, or commas

#l or lsgbn

[in @ version = instantiations
#] or rsqb#

start indentations
end indentations
export indicator #
end of file#

RN

Declarations and definitions »

colon
cbar
def
sdef
becomes
bbar
lang
rang
sr

er

ge

8 Identifiers &

dlr

for
underline
inset
preset
postset
op

encop
distinop
distpreop
eop

preop
postop
sconst

Theorems »
turnstile

th
eth

#: or colons

#| constraint bar#

#2 or def syntactic equivalence for terms#

#a or sdef syntactic equivalence for schema termss
::= for datatype definitions#

#| (branch separator s

#¢ (left angled bracket for disjoint union)s
#» (right " " . " 8
start vertical rules

end vertical rules

unique (generic) definition

L3 10

#/ (renaming)s

#_ or underline (place holder for renaming)l#
infixed generic sets #®

prefixed generic sets #

postfixed generic sets #

infix operators

lhs of enclosed ocperators

lhs of distributed infix operators
lhs of distributed prefix operators
delimiter of two part operators#
prefix operator#

postfix operators

numbers and such #

TERETRTITRTRTRER

b (theorem)s
start theorems
end theorems

Predicete Notstion

78

all
exi
exil
wherel
where2
endwhere
dot
equals
member
rel
iff
implies
and
or
not

Term notation -

set
eset
explicit_set

lambda
mu

lseq
rseq
Proj
theta
prod
power set
nat

char

Schema notation

zexi
zall
ziff
zimplies
zand
zor
znot
zhide
pre
zcmp
Zpipe
zovr
sch
esch
sb

st
esb

RULES

z_text =

ubis

#3 or exi#

unique 3¢

artificial where markerss
#H

o

#e (such that)s

H=t

seH

relational operators
Helt

bt

LN

Hoo

o

for sets end objects #

#{ or setbra#

3]

used to one-track explicit sets and
comprehensions#

#in

sus

H(#

#)s

#. (projection)s

#8 tuple constructors

#x cartesian product#

#P or powersets

u2s

Chars

]

#3in

ubtn

Hett

ot

AR

"ays

HoH

#\n

pres

#3 (bold ;) schema composition #
#» piping operator #

#e (bold o) schema over-ride #®
#l (start schema bracket)

#] (end schema bracket s

start schema box (after name)#
middle line of schema box#

end schema box#

finish <return-1>,
z_phrase finish <return-1>,
z_phrase z_sep z_text:

z_sep = list_sep, endz:;

list_sep =
semi ,
nl;

79

A .

' ~ - —y— —_——— —

z_phrase = <store_mon-mon> zphrasel:;

L]

zphrasel
given_set_def .
definition,
constraint,
theorem,
import.,
export;

Given Set Decleration u
given_set_def = lsqb given_ids rsqb;
given_ids = id <given_set_def> given_idsl;
given_idsl = $, comma given_ids:;
Definition

definition =
axiomatic_def s
syntactic_def,
datatype_def.,
schema_def';

Global Constraint
constraint = pred;
Theorems

theorem =
turnstile pred <unstack_pred-ptype>,
th thl turnstile pred_list <unstack_pred-ptype><end_scope> eth:

stdon’t understand sb and eb at this point in Oxford syntax #

thl =
<new_scope>.,
gen_params,
<new_scope> hyps.,
gen_params hyps;

a scope for the declarations in the theores is always created.
even if there aren’'t any. If there are any generic parameters.
the scope created for that is used, otherwise one is explicitly
created.

o

hyps =
hyp;
hyp list_sep hyps:

NB schema_term omitted because of ambiguities with schema
reference in pred in hyp below

o

hyp =
Sred <check _pred_schema-ptype>.,
ec.,

dec cbar pred <unstack_pred-ptype>;

pred on its own includes schema_reference

Import =

80

-—— g v -

import = document <newdoc--docmap> importl <adddoc-pdocmap>:
importl =
r
decor <decdoc-pdocmap--docmap>,
instantistion <instdoc-pinst-pdocmap--docmap>.
decor <decdoc-pdocmap--docmap>
instentistion <instdoc-pinst-pdocmap~-docmap>;
Export u

export = id <keep> keep idslist <return-2>:

ids = id, inget, preset, postset, op. rel., encop eop, distinop eop.

distpreop eop, preop, postop:;
idslist = ids <keep_id> idslistl;

idslistl = $, comma idslist:

identifiers, names and references

reference =
id <reference-~type> ref2.,
id dlr <check_no_att> id <doc_reference--type> refl;

ref2 =
<anon_inst-ptype--type>,
instantiation <id_inst-ptype-pinst--type>;
instantiation = ilsqb inst_list rsaqb;

inst_list = inst_term_list, binding_list, rename_list;
sigathered together to resclve various one-track problemss

inst_term_list =
term <tmll-ptype~-inst>,
term <tmll-ptype--inst> comma inst_termlistl;
inst_termlistl =
term <tmlZ-ptype-pinst--inst>
inst_termlist2;
inst_termlist2 = $, comma inst_termlistl:
binding_list = bli, bll comma binding_listl;

bll =
id equals <bll--id> term <bl2-pid-ptype--inst>;

binding_listl =
bl2, blZ2 comma binding_listl;

bl2 =
id equals <bll--id>
term <bl3-pid-ptype-pinst--inst>;
rename_list =
id for id <rnll--inst>,
id for id <rnll--inst> comma rename_listl;

rename_list]l =
id for id <rnl2-pinst--inst> rename_list2;

rename_list2 = $, comma rename_listl;

81

& Axiomatic definition #

axiomatic_def =
liberal_def.,
unique_def,
gener ic_def;

liberal_def =
global _dec,
global_dec cbhar pred <unstack_pred-ptype>.
sr def_pody er;

def_body =
global _dec_list.,
global_dec_list st pred_list <unstack_pred-ptyped;

unique_def = ge def_body er:

qgener ic_def =
global_id <start_idlist--idlist> gen_params <{new_scope>
caolon term <dec_ids-pidlist-ptyped
char pred <unstack_pred-ptype><end_gen_def>,
ge gen_params <{new_scope> def_body er <end_gen_def>:

gen_params = lsgb <{nhew_scope> given_ids rsab;

global_dec_list =
global _dec,
global_dec list_sep global_dec_list:

global_dec =
global_id_list colaon term (dec_ids-pidlist-ptyped:

global __id_list =
global_id <start_idlist-~idlist),
global_id <start_idlist-~idlist> comma global_id _listl;

slogal_id_listl =

siobal_id {stack_idlist-pidlist——idlist>,
global_id (stack_idlist-pidlist--idlist> comma global_id_listl;

globgl_id =

[X-K}

id underline <{global_sym-1>,

underline id <qlobal_sym-2>,

id underline id <global_sym-5>,

lpar underline id underline rpar <global_sym-3>,
underline id underline <global_sym-4>,

id underline id underline <global_sym-6>.
underline id underline id <global_sym-7>;

Syntactic definition

syntactic_def =
syn_def_id.
alobal_id <start_idlist--idlist)> gen_params <{new_scope>
def term <syn_def-pidlist-ptype> <{end_gen_def>,
ge gen_params <{new_scope> syn _def_list er <end_gen_def>;

syn_def_id =
global_id <start_idlist-~idlist)> def term <{syn_def-pidlist-ptyped;

syn_def_list =
syn_def,

82

- - R N et

syn_def list_sep syn_def_list;

syn_def =
syn_def_id,
syn_def_ids;

syn_def_ids =
id id <prepostsymbol--idlist) def term {syn_def-pidlist-ptyped,
id id id <insetsymbol--idlist>
def term <{syn_def-pidlist-ptype>;

various sorts of pre and post generic set definition, depending
on whether the ids occur in the generic parameters or not #

Data type definition #»
datatype_def = id {dt_def--id> becomes branches <{unstack_id-pidd>;

branch =
id <dt_constant-qid>,
id <dt_const_id--id> leng term rang <{dt_constructor—-ptype-pid-gqid>;

branches = branch, branch bbar branches:;
Schema definition

schema_def =
id {start_idlist--idlist>
schema_definition <syn_def-pidlist-ptype>.
id <start_idlist--idlist)> gen_params
schema_definition <end_scope>{syn_def-pidlist-ptyped;

schema_definition =
{check_id_schema-pidlist-~-idlist> sdef schema_term.
<check_id_schema-pidlist--idlist> schema:;

only boxed forms should really be allowed, but this is not checked#
Schemas

schema =
sb <neu_scope) dec_list <scope_tc_schema_type~--type> esb,
sb <new_scope> dec_list
st pred_list <unstack_pred-ptyped<scope_to_schema_type--typed eshb,
sch {new_scope> dec_list {scope_to_schema_type--type> esch.,
sch <new_scope> dec_list
cbar pred <{unstack_pred-ptyped<{scope_to_schema_iype--type> esch;

¢ Lists of predicetes snd decleretions #

pred_list =
pred,
pred <unstack_pred-ptype> list_sep pred_list;

dec_list =
dec ’
dec list_sep dec_list,
inclusion,
inclusion list_sep dec_list;

dec = id_list colon term <{dec_ids-pidlist-ptyped;
id_list =

id {start_idlist-—idlist>,
id <start_idlist--idlist> comma idlistl:

83

idlistl =
id {stack_idlist-pidlist--idlist>,
id <stack_idlist-pidlist--idlist> comma idlistl;

inclusion = reference {open_schema-ptype);
and check reference is to a schema_term
Explicit construction terms

explicit_constr =
tuple,
explicit_set eset <empty_set--type>,
explicit_set termlistl eset <{explicit_set-ptype--type>.,
lseq rseq <empty_list--type>,
lseq termlistl rseq <explicit_list-ptype--typed;

explicit_set above is a pseudo terminal symbol inserted by a
look-ahead function to resolve the problem of disentangling {a, b,
from {a, b, c: T}. The look-ahead function looks ahead while

encountering id camma: if terminated by anything other than colon, the

explicit_set symbol is delivered instead of set. #

termlistl = # terms of the same type #
term,
term comma termlistla;

termlistla =
term <{check_tys_same-ptype-ptype--type>,
term {check_tys_same-ptype-ptype--type> comma termlistla;

tuple =
lpar term <first_tuple-ptype--type> comma termlistZ rpar.,

theta reference {theta-ptype--typed:;
the reference is to a schema

termlistZ2 = #terms for a tuple #
term <next_tuple-ptype-ptype-—-typed termlistla;

termlistZa =
comma termlistZ;
Closed terms

aform =
<nat--type> nat,
{char~--type> char,
{sconst~lv--type> sconst.
reference,
aform proj id <proj-ptype--type>,
lpar product rpar,
explicit_constr,
set <{new_scope) dec_list comp_set eset,
lpar partials rpar,
encop term eop <funapp-ptype-ptype--typed,
wherel <new_scoped ax_dec_list <unstack_pred-ptype’>
wherel pred_list <end_scope){check_pred-ptype--type) endwhere.,
wherel <{new_scope> syn_def_list
where2 pred_list <end_scope>{check_pred-ptype--type> endwhere.
lpar pred rpar;
®# allows bracketted predicates...®

product =
term <first_prod-ptype--type> prod

84

c}

productl <end_prod-ptype-—-type);

productl =
term <next_prod-ptype-ptype--typed,
term <next_prod-ptype-ptype--type> prod productl;

comp_set =
{scope_ta_tuple--typed.
cbar pred <unstack_pred-ptype><{scope_to_tuple--type>,
dot term <{set-ptype-~typed,
cbar pred <{unstack_pred-ptype> dot term <{set-ptype-~type;

ax_dec_list =
dec_list cbar pred,
sr dec_list st pred_list er:;
sr and er because I like it that way...®

partisls =

underline rel underline <partrel--typed,
underline op <funop--type> form2 <partopl-ptype-ptype--type>,
aform op underline <partop2-ptype-~type),
underline op underline <{funop--type>.
underline distinop <funop~-type>

term eop {partopl-ptype-ptype--typed.
aform distinop underline eop <partopZ-ptype--type’.,
underline distinop underline eop <funop--type>,
distpreop underline eop underline {funop--type>.
distpreop <{funop--type>

term eop underline {partopl-ptype-ptype--type>.,
distpreop underline eop <{funop--typed>

form3 <{partopl-ptype-ptype--type’,
encop underlire eop {funop--type>,
preop underline {funop--type>,
underline postop <funap--typed:

Formulee »

formula =

;ormi inset <{setop--id> formula <{inset~pid-ptype-ptype--type),
orml;

forml =

:ormé op <{funop--type> formZ <infix-ptype-ptype-ptype——type>,
ormd; ,

form2 =

form2 form3 <funapp-ptype-ptype--typed.,
form3;

form3 =
preop <funop—-type> form3 {funapp-ptype-ptype--type>,
preset <{setop--id> form3 {(set_instl-pid-ptype--type>,
distpreop <{funop~~type>
term eop form3 {distpreop-ptype-ptype-ptype--type>.
gowe;set form3 <{powerset-ptype-~type>,
ormé;

form4 =
form¢ distinop {funop--type>
term eop <infix-ptype-ptype-ptype--type>,
form4 postop <postapp-ptype--typed,
f?rmﬁ postset <{set_inst2-ptype--type>,
sform;

Comprehension terms

8S

'——-vv*‘ _— MR i] - -

comprehension =
lambda <new_lambda_scope> dec_list lambda_set <lambda-ptype--type>,
mu <{new_scope> dec_list lambda_set <end_scope):;

lambda_set =
dot term.,
cbar pred <unstack_pred-ptype> dot term:;

u Terms #»

term = comprehension,
formula;

Atomic predicates

apred =
si pred_list ei,
term;

8 term includes term term (set membership)., schema reference and
bracketted predicate
"

Relastions

rel_exp =
term member term <member-ptype-ptype--type>.
term equals equals_tail <to_pred-ptype—-type,
termdrel {funop—-type> rel_tail <to_pred-ptype--type>,
apred;

equals_tail =
term <equals-ptype-ptype--type> tail;

tail =
$

rel {(funop--type> rel_tail.
equals equals_tail:;

rel_tail =
term <{rel-ptype-ptype-ptype-~type> tail:;

Logical expressions

log_exp =
log_expl,
log_exp <unstack_pred-ptype> iff log_expl
{check_pred-ptype~--type);

log_expl =
log_exp2.,
log_expl <unstack_pred-ptype> implies log_exp2
<check_pred-ptype--typed;

log_exp2 =
log_exp3,
log_exp2 <unstack_pred-ptype> or log_exp3
<check_pred-ptype--typed;

log_exp3 =
log_exp4.
log_exp3 <{unstack_pred-ptype” and log_exp4¢
{check_pred-ptype--typed;

log_exp4 =

86

T anndl A

rel_exp,
not log_expt <{check_pred-ptype--typed:

Quantified expressions

quant_exp =
quant <new_scope> dec_list
dot pred <end_scope>{check_pred-ptrpe—-type>,
quant <new_scope> dec_list cbar pred {unstack_pred-ptype>
dot pred <end_scope>{check_pred-ptype--type>:

quant = exi, exil, all;
Predicetes »

pred =
quant_exp.,
log_exp;

Schema terms

schema_term =
quant_sexp.
log_sexp:

quant_sexp = squant <new_scope) dec_list
dot schema_term <{subtract_scope-ptype--type’;

squant = zexi, zall:
Logical schema expressions

log_sexp =
log_sexpl.,
log_sexp ziff log_sexpl <stypeZ-ptype-ptype-~typed;

log_sexpl =
log_sexp2.,
log_sexpl zimplies log_sexp2 (stypel-ptype-ptype--type;

log_sexp? =
log_sexp3,
log_sexpZ zor log_sexp3 <{stype2-ptype-ptype--type>;

log_sexp3 =
log_sexp4.,
log_sexp3 zand log_sexpt <{stypel-ptype-ptype--type’;

log_sexp4 =
spec_sexp,
znot log_sexp4;

Specisl-purpose scheme expressions &

spec_sexp =
spec_sexp zhide lpar id_list rpar <hideids-pidlist-ptype--typed,
spec_sexp zhide reference (hideref-ptype-ptype--typed,
spec_sexp zcmp spec_sexpl <{scompose-ptype-ptype--type>,
spec_sexp zpipe spec_sexpl {pipe-ptype-ptype~-type).
spec_sexp zovr spec_sexpl {soverride-ptype-ptype-~type>,
spec_sexpl:;

spec_sexpl =

spec_sexp2,
pre spec_sexpZ <pre-ptype--typed;:

87

rename =

lsqb rename_list rsqb <id_inst-ptype-pinst--type>.
decor <{decorate-ptype--type’;

spec_sexpl = ‘
lpar schema_term rpar.
lpar schems_term rpar rensme., 4
reference <{check_schema-ptype-—typed,
schema;

88

N

DOCUMENT CONTROL SHEET

Overall security classification of sheet UNCLASSIFIED

....... S e I

{4 far us possible this sheet should contain only unclassified information, 1f it is necessary to enter
classified information, the box concerned aust be marked to indicale the classification eq (R)

(C)er (S))
1. DRIC Reference (if known) | 2. Originator's Reference |3. Agency Reference 4. Report Security ‘]
REPORT 87017 UNCLASSIFMS”RB“M
5. Driginator's Code (if 6. Originator {Corporate Author) Nase and Location
778400 knovn) | RSRE, SAINT ANDREWS ROAD, MALVERN, WORCS WR14 3PS

S5a. Sponsoring Agency's

6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title
REVIEW OF TYPE CHECKING AND SCOPE RULES OF THE SPECIFICATION LANGUAGE Z

Ta. Title in Foreign Language [in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials| 9{a) Author 2 9(b) Authors 3.4... 10. Date og. ref.
SENNETT C T 1987. 11 84
11, Contract Nusber 12. Period 13, Project 14, Other Reference

15. Distridution statesent

Descriptors (or keywords)

continue on separate piece of pacer

Abstract

This report gives the detailed type checking and scope rules for the
specification language Z in the form of an implementation specification
for a type checking tool for Z, written in Z itself.

$80/48

JPTG W)

P

- — it i s -

