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AFOSR.1E. 88- 03
Abel Inversion Using Transform Techniques

Dennis R. Keefer, L. Montgomery Smith and S. L Sudharsanan

Center for Laser Applications
The University of Tennessee Space Institute

Tullahoma, Tennessee 37388

Abstract - A method is presented for calculating the reconstruction of a circularly symmetric two-dimensional
function from its projection, a relation known as the Abel inversion. This technique differs from techniques
used previously by using integral transforms for its implementation. The frequency-domain analysis allows for
experimentally obtained data, which is often noisy and off-center, to be dealt with in a systematic, rational
manner. The formulation of the Abel inversion in terms of transforms, the filtering of the noise, and the estimate
of the off-center shift are discussed. Sample calculations of simulated noisy data and the application of the method
to an image of a laser sustained plasma are presented.

L Introduction

Optical emission or transmission is often used to obtain experimental diagnostic measurements of axially
symmetric sources such as plasmas, flames, and rocket and jet engine plumes. The line-of-sight projection of the
emission or transmission coefficients onto a one-dimensional axis can be used to determine their two-dimensional
radial structure. As is the case in most inverse problems, however, the conditions are ill-posed, and so considerable
difficulty can arise when processing real experimentally acquired data that has inherent uncertainties.

The reconstruction of a circularly symmetric two-dimensional function from its projection onto an axis is
known as Abel inversion or inverse Abel transformation of the projection. The measured intensity, r(z), is given
in terms of emission coefficients, e(r), through the Abel transform'

1(z) r(r)d 1)

where z is the displacement of the intensity profile and r is the radial distance in the source. The measured
intensity i(z) is the one-dimensional projection of the two-dimensional circularly symmetric function having e(r)
as a radial slice. The inversion integral, or the inverse Abel transform, is given by,

c(r)- Zr dyz2 dx (2)

In practice, the application of equation (2) is made difficult because of the singularity in the integral at the
lower limit and because the derivative of the projection tends to greatly enhance the noise corrupting the data.
Furthermore, the intensity is usually not available as a continuous function and so is known only at discrete
sample points. Several approaches based upon geometrical techniques or numerical methods using polynomial
fits have been used to perform the inversion. Nestor and Olsen2 transformed the variables according to r2 - v
and z 2 - u so that the inversion integral can be approximated by a simpler sum. Bockasten3 fitted third degree
polynomials to the data points.and approximated the integral by a sum. However, these methods require prior
smoothing of the data and are'not considered complete in themselves.

Later, least squares curve fitting methods were employed and were found to yield better results than the exact
fit methods when applied to noisy data. Frteeman and Kats4 used a single polynomial curve to fit the data. Fourth
order polynomials were found to give the best results among trials using up to twelfth order polynomials. Cremers
and Birkebaks compared several inversion techniques and showed that the least squares curve fitting techniques
are more favorable than the exact fit methods. Short descriptions of several other techniques and comparisons
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of these various techniques can be found in reference 5. Shelby6 divided the data into several intervals and
used a least squares polynomial fit technique in each interval to smooth the scattered data. The inversion was
then performed analytically and summed over the intervals to obtain emission coefficients. Maldonado et S.O

expanded e(r) in a series of orthogonal polynomials and derived a method to find the expansion coefficients from
the intensity data.

All of these methods have drawbacks. The singularity In the lower limit of the integral causes problems for
the numerical methods, but these are avoided by the analytical methods. The smoothing techniques used are
essentially a kind of lowpass filtering having undetermined filter characteristics. When the inversion is performed,
the spectral characteristics of the noise, of the desired signal and of the smoothing algorithm are not considered.
Therefore, the possible problems of loss of information and distortion are neglected. Use of the Abel integral
implies an assumption that the input data will be symmetric, but the measured intensity data often exhibit some
degree of asymmetry, and the exact axis of symmetry is not usually known a priori. Determination of the axis of
symmetry is often chosen using ad hoe methods. The smoothing techniques consume a large amount of computer
time and the error propagation calculations are tedious6 .

We have developed a method based upon integral transforms that removes many of the difficulties and
uncertainties associated with these earlier techniques and, by using the fast Fourier transform (FFT) algorithm
to implement the procedure, greatly reduces the computation time. This technique is substantially different from
earlier methods in its use of transform techniques and frequency domain analysis. Several principles of digital
signal processing and spectral analysis are employed to solve the problems associated with the processing of
actual, noise-corrupted, asymmetric data.

In Section II the Abel inversion integral is reformulated in terms of the Fourier and Hankel transforms. This
reformulation is then used to handle many of the ill-posed conditions encountered when analyzing actual noisy
data, and the methods for doing this are outlined in Section III. Numerical experiments demonstrating the validity
and applicability of the inversion scheme are presented in Section IV, together with an recent application of the
method to an image of a laser sustained plasma.

H. Reformulation of the Abel inversion

The reformulation of the Abel inversion in terms of integral transforms can be derived beginning with equation
(1). With the substitution r = % , the projection can be written

1(Z) = 7 E(Vf ,'")dy. (3)

The one-dimensional Fourier transform of equation (3) is

FT1(s)[- 7 e(VIS-1/+)ep(-jrzq)dzdy. Q4
If the variables of integration are changed from cartesian to polar coordinates, it can be shown that' U

FT(I(z))= 21r fPr(r)J.(2rrq)dr (5)

where J.(.) denotes the zero-order Bessel function of the first kind. The right hand side of equation (5) is the
zero-order Hankel transform of c(r). Thus, the emission distribution of the plasma may be recovered by taking ICS

the inverse Hankel transform of the Fourier transform of the projected intensity:
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e~)-29 qJ*(2wrq) J (zsezp(-j2s-q)dxdq. 
(8)

0 -00

Equation (6) is mathematically equivalent to the Abel inversion integral given in equation (2), but has several

advantages in its implementation with regard to actual data analysis. First, it avoids the difficulty associated

with the singularity at the Iowe limit of Integration. Second, following ins the Fourier transform of (X), filters

may be applied directly in the frequency domain to reduce the noise which often corrupts the experimentally

acquired data and thus smooth the signal in a known, systematic manner. As will be shown in the following

section, the Fourier transform also allows the implementation of an algorithm to Center the data on axis and

to make it symmetric. Finally, equation (8) can be numerically evaluated using discrete fast Fourier transform

algorithms available in software or on vector arMy processor to decrease computation time compared to the

techniques used previously.

i. Application of the inversion scheme to noisy data

To apply equation (6) to actual experimzentally-acquired data, it was necessary to take into account that, in

general, the projected intensity measurement recorded by the detector is: a) shifted by some unknown amount

from the center axis, b) corrupted with additive random noise, and c) sampled at some fixed interval into a

digital signal. The resulting data was thus modeled as d(m) w 1(m + Am) + n(m), where m is the discrete

sample number, Am is the shift from the origin, and in(m) is a random process. Frequency domain techniques

were employed to handle the problems associated with thes effecs in the inversion.

The Fourier transform of the projected intensity was approximated by the discrete Fourier transform al-

gorithm, which could be quickly calculated using FFT array processing hardware. Following the FFT, filters

could be applied to the spectrum of the data directly in the frequency domain simply by multiplication with the

desired frequency response function. Because of the baseband nature of the signal of interest, a lowpass filter

was suitable for removing the high frequency components of the noise while preserving the information about

the signal contained in the lower frequencies. The filter design was accomplished using standard optimization

programs for the desired passband-stopband specifications.

Determination of the shift of the data from the origin and the subsequent centering of the data was also

performed in the frequency domain. If D(k),G(k) and N(k) represent the discrete Fourier transforms of the

acquired data, the properly centered projected intensity, sad the nois remaining on the signal after application

of the filter, respectively, then they are related by

D(k) = G(k)ezp(j2,kAm/M) + N(k) 
(7)

where M is the total number of points in the discrete Fourier transform. This may be rewritten

G(k)w D(k)ezp(,2rkAinIM) - N(k) (8)

where the noise has been assumed stationary so that multiplication of its spectrum by a phase term does not Change

its statistical properties, and so N(k)ezp(-,2rkAm/M) can be replaced by N(k) without loss of generalization.

Because the intensity is a real, even function in signal space, its Fourier transform in frequency space is also

real and even. Thus, G(k) in equation (8) is real and even, and any im.aginary components are necessarily due to

noise. This allows equation (8) to be broken up into two equations

G(k) = DR(k)cos(2 k.'An/M) + Dg(k)sin(2rkAm/Jf) - NR(k) (9a)

0 D,(k)coI(2xkAmMl - Dn1k)hinl2-rkA~hmhf) - Nt(k) (9b)



where the subscripts R and I correspond to the real and imaginary components of each function. Equation (9b)
allows the imaginary portion of the noise spectrum to be written explicitly in terms of the transform of the data,
D(k), and the shift of the data from the origin, Am.

The noise, n(m), was further assumed to be an uncorrelated bandliznited Gaussian random process. Its
spectral components could thus be modeled as independent Gaussian random variablesO each with probability
density function

p.(NI(k)) = s=pI- - -- (10)

Substituting equation (9b) into equation (10) and taking the ensemble probability density function over all values
of k as the product of the individual probability density functions yields the conditional probability density of
D(k) given Am as

2(,),m e-p(- gh jMl2 D(k)cos(2NkAm/M) - Djt(k)sin(2zk~ m/M)J2 ). (11)

Maximizing this probability density function with respect to Am provides a maximum likelihood estimator for
the shift. The resulting transcendental equation for the estimate, Am, is

M/2- 1

k(Dj(k)D,(k)cos(4xkAm/M) - iDia(k) - D(k)Jsin(4rkdm/M)) = 0. (12)
knO

Equation (12) was solved iteratively to determine an estimate for the shift. Each spectral component of
the data was then multiplied by the phase term ezp(-j2kA'm/M) to shift the data back to its proper location
centered about the origin. Following this multiplication, the imaginary components remaining in the spectrum of
the data were by assumption due to noise, and so were set equal to zero to fully symmetrize the data and further
reduce the noise. If sufficient data is available to provide ensemble averages, this noise can be used to find the
statistical properties of the remaining real portion of the noise corrupting the signal, but this approach has not
been taken.

The inversion scheme was completed by taking the inverse Hankel transform of the spectrum of the filtered
and centered data. This integral transform was approximated by a discrete summation, and computation time was
reduced by using Candel's algorithm10 . Further reduction in computation time was achieved by a modification
to this algorithm which requires only half the additions of the Candel method1 1 .

As a final step in the data analysis, a study of the effects of noise on the errors in the inverted signal was
made. If the input noise corrupting the intensity data is assumed to be a wide-sense stationary, bandlimited
random process, then the variance of the inverted output noise as a function of the radial coordinate r can be
expressed

vafn.(r)j = iJq)*G.(9)J.2(2rq) + Y42 (2rrq)]dq (13)

where G,(q) is the power spectral density of the input noise. For the often-assumed case of bandlimited white
noise with variance 2BN, and bandwidth B, the variance of the output noise has been found to be approximately
equal to

tPufino(r}I - °B2 (14)

for sufficiently large r. These equations served as a guide in the design of filters for preprocessing the data, and
provided a benchmark for the probable errors in the inverted data.



IV. Numerical and experimental results

A number of numerical experiments have been carried out using both noise-free and noisy data to evaluate
the performance of the integral transform method implemented using discrete transforms'. These numerical
experiments using noise-free Gaussian and semi-elliptic data established the accuracy of the modified Candel
method for the Hankel transform. Numerical experiments using noisy data were performed to establish the
validity of the method used to symmetrize the data and to evaluate the effectiveness of the optimal filters used
to smooth the data.

A noisy trial function having a known inversion was generated by sampling a Gaussian function defined as,

m
2

It,(M) = P(-21) ; m= , ,..., 127. (15)

The Abel inversion of Is (m) with an even extension in negative m axis is theoretically given by,'

e(l)= --- p(--) ; I = 0, 127. (16)

A zero mean sequence of random numbers having a Gaussian density function with a variance of .001 was
generated and added to the sequence of equation (16) which was then shifted by two integer sample points. Also,
the sequence was zero padded so that the filtering by discrete Fourier transforms produces a linear convolution
filtering. This trial sequence is shown in Figure 1.

1.5

,(i)

; 1.0
|W

0.5

0.0-

-0.51~
0 50 100 150 200 250 300

Figure 1. Generated noisy and shifted trial sequence Ij (m).
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The result obtained when this trial sequence was inverted without filtering or symmetrising is shown in
Figure 2. The same trial function was then inverted using the symmetrising procedure and an optimal filter
having a pasband from 0.0 to 0.0525 and a stopband from 0.0725 to 0.5. The result from this inversion is shown
in Figure 3. Other, more easily generated filters were found to produce similarly satisfactory inversions.

A principal advantage of this integral transform method is its computational efficiency. It has been applied
to the inversions of a large number of images obtained from experiments with laser sustained plasmas12 . Each of
these digitally sampled images consisted of 512 radial scans of the plasma and each radial scan consisted of 240
sample points. The inversion of 512'sets of 240- point data consumed about eight minutes of CPU time when
processed by the integral transform method, in contrast to a 20 hour CPU time required for a curve-fit inversion
using the method described in reference 6. The data analysis was carried out using a Masscomp MC500 Micro
Supercomputer. The symmetrizing procedure generally consumed about five to seven iterations for each set of
data. Contour plots of the intensity and the emission coefficient for one of these images are given in Figure 4
and Figure 5. This particular image illustrates the performance of the method for intensity profiles which exhibit
some asymmetry and which result in inversion profiles that are peaked on-axis (eg. 49 mm), fiat-topped (eg. 45
mm) and having off-axis peaks (eg. 43 mm).

IV. Conclusions

A new integral transform method has been developed for the Abel inversion of measured intensity data in
the presence of noise. The integral transform method has a number of advantages compared with the existing
curve-fit techniques. The curve-fitting methods do not consider the spectral characteristics of the noise and the
desired information, or address the problem of symmetrizing the experimental data. The Abel inversion or the
inverse Abel transform is performed by the Fourier transform followed by the inverse Hankel transform. The
efficiency of the well known FFT is exploited in the evaluation of both the Fourier and inverse Hankel transforms.
This fast technique is made applicable to noisy and off-center experimental data by frequency domain filtering
and a maximum likelihood estimator derived from the assumed noise characteristics.
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Figure 2. Inversion of 11(m) without filtering or symmetrizing.
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Figure 3. Inversion of 11 (m) using filtering and symnietrizing technique.
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Figure 4. Contour plot of the projected intensity image data for a laser sustained plasma.
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Figure 5. Contour plot of the emission coefficient image obtained by the inversion of data in Figure S.
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