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SECTION I

INTRODUCTION

In this report the integral equation for the linearized
supersonic unsteady potential flow over a wing will be derived
and the special properties of its solutions will be discussed by
means of limiting cases that can be treated analytically. As in
every formulation, by means of an integral equation, the basic
prerequisite is a fundamental solution. The expression from
which we start here represents a local source with arbitrary time
dependence in a system of coordinates fixed with respect to the
wing. (The undisturbed air moves with respect to this system of
coordinates from left to right.) Only solutions representing
cutgoing waves are admitted. The fundamental solution used in
the integral equation represents a time dependent doublet; it is
obtained from the expression for a source by a differentiation
into the direction normal to the planform, Use of such a
formulation in subsonic flows 1is shown in References 1 and 2.

The corresponding solutions for supersonic flow are given by the
same formula. Nevertheless, an ambiguity aries. It seems as if
one has two instead of one fundamental solution, each of which
satisfies the flow differential equation in the region in which
the derivatives exist. At this stage, the typical phenomena of
supersonic flow are encountered. OCne has regions of influence,
with a boundary given by the surface of the Mach cone through the
point where the source is leccated. Along this surface the
fundamental solutions are singular. Outside the Mach cone they
are identically equal to zero. One might try to resolve the
above mentioned ambiguity by discussing whether the partial
differential equation for the potential is satisfied in the sense
of generalized functions as one passes through the surface of the
Mach cone. Some ideas which lie in this direction are found in
Appendix C. The ambiguity is resolved in Section II.

The point of departure is the fundamental solution for a
time dependent local source in a system of coordinates at rest
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with respect to the unperturbed air. In this formulation, no Cf
ambiguity is encountered. Next one proceeds, still in the same »
coordinate system, to a distribution of such sources along the x- Fi
axis; and subsequently, by a specialization to a localized time ﬁ,
dependent source moving along the x-axis from right to left with gﬁi
the desired free-stream velocity. Finally, a transformation to .'
coordinates in which the undisturbed air moves with the desired é?
free stream velocity from left to right is carried out. This :i
gives the desired fundamental solution (a local time dependent :’
source in this last system of coordinates). This procedure is f¥
applicable for subsonic as well as supersonic flows. 1In subsonic r'
flow one finds, of course, the particular solutions used ?'
previously. In supersonic flow one finds the sum of two 3'
expressions, each of which satisfies the flow differential ;'
equation where the derivatives exist. The derivation gives only e
one linear combination of these expressions and thus removes the :?
ambiguity. ;E‘
In Section III, familiar formulae expressing the upwash in 2"
terms of the motion and/or deformations of the wing are derived. ;ﬁ
Section IV formulates the integral equation. The flow field ;ﬁ,
is represented by time dependent doublets distributed over the 5
planform. The source strength in its dependence upon time and !t
location on the planform is unknown at this stage. An essential ;:
part in the formulation of the integral equation is a limiting '?:
process by which one determines the upwash due to this doublet a;
distribution as one approaches the planform from above or below. °
(The results are the same.) In the final formulation, this 5&
limiting process no longer appears. S%
N
In the actual computation, the upwash due to the motions Ea‘
and/or deformations of the wing is built up from expressions each L2
of which is the product of some function of coordinates within iﬁ:
the planform and a Hamilton step function in time. It is then $i‘
sufficient, if one solves the integral equation (separately for §$
each function of the planform coordinates for this special time o
dependence). For such an upwash, the flow tends towards a steady :;?
o
3
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state. In contrast to subsonic flows, the steady state is
reached within a finite time. The essential physical phenomena

occur during this transition time,.

Section V deals with two limiting cases that can be treated
analytically. The first one, the two-dimensional steady flow, is
very simple; the contributions of the integrals in the integral
equation are zero. The second example is the one-dimensiocnal
unsteady flow. Again, the given upwash is built up by step
functions in time, (There is no dependence upon the point of the
planform under consideration.) For a step function, one can
determine the region in which the integrand is different from
zero. Within these regions the iterations can be carried out in
a closed form, and one obtains the expected result. For a
general upwash (but still with the time dependence given by a
step function), the regions of integration are the same, except
that there are no doublets upstream of the leading edge. The
example shows that the integrands jump from a finite value to
Zzero, as one passes its integrands over the boundary of the
region integration. The boundaries of the regions of integration
do not coincide with the subdivisions of the planforms imposed by
a discretization. In an actual program, one must therefore
decide whether to allow these jumps to be smoothed out, or

whether it is preferable to identify these boundaries.

In the initial stage of numerical experimentation with a
program, examples in which analytic solutions are available are
useful. In Section VI an exact solution for the two-dimensional
problem with a straight leading edge normal to the flow direction
is derived. This is possible because the flow field can then be
represented by a source distribution (rather than by a doublet
distribution), and because the strength of the sources is
directly given by the prescribed upwash. Again, a step function
gives the time dependence of the upwash., If the distribution of
the upwash over the planform is sufficiently simple, for
instance given by polynomials in the coordinates, then the

integrals that arise can be evaluated analytically. 1In testing a
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LY
. numerical procedure, one will solve the same problem by means of p

& the integral equations for the doublet distribution and examine

o how well one recovers the analytical results for the potential. ;

%

\

N 4
. In Appendix A certain integrals are evaluated analytically. .
" Appendix B determines the shape of the regions of integration, if

L' one evaluates the integrals at a distance from the planform.

- Originally, this was done for the purpose of an extended

}{ discussion of the one-dimensional unsteady problem. (The .
. treatment in Section V is restricted to points of the planforms.)

s The shape of the regions of integration obtained in this Appendix '

N can hardly be foreseen on the basis of the results of Section V. .

\ Again, the time dependence is given by a step function. If the .
v

time after the step is small, then it is insufficient for the
N perturbations to propagate the point off tne planform under k
) consideration; regions of integration do not exist. If the time -
is slightly larger than a certain cutoff value, the region of K
$ integration is a circle for one of the expressions in the upwash
~ integral; for the other expression there is no region of
2 integration. Regions of integration of this type are not present

5 if one evaluates the upwash at the planform. Beyond a further

K- cutoff point, one finds nonvanishing regions of integration to

, both terms in the upwash integral. Their boundaries are formed

&

2 by a nyperbola and parts of a circle. These regions deform
.~ steadily into those which one encounters if the upwash is
. evaluated at the planform, N
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ol SECTION II
LY THE FUNDAMENTAL SOLUTION
i?
‘sé The point of departure of this report is a fundamental
K " solution which represents a source located at a fixed point in a
,hu' system of coordinates with respect to which the air moves with
oA the constant velocity U. The strength of the source depends upon
}%’ time. In the integral equation from which the flow field is
;2 determined, one needs the expression for a doublet. It is
5? obtained from that for a source by a differentiation. In the
. Subsonic case, the expression for the source can be derived
‘5§ directly from the partial differential equation for the potential
P .
,j: linearized for small deviations from a parallel flow with this
;53 velocity U. It is not entirely obvious how to make the
. transition to supersonic flows; in fact, in an initial attempt
;;i the author was led to an erroneous result. A clear cut answer is
,5: obtained if one starts with a particular solution which
~n represents a time-dependent source at a fixed point in a
* ¢ coordinate system which is at rest with respect to the surround-
E; ing air, and subsequently derives from it the expression in a
-:} system which moves with respect to the air. Similar approaches
.ﬁ: can probably be found in the literature. The derivation is shown
: here in order to make this report self-contained.
){E Let x, y, z be a Cartesian system to coordinates, t the
,:g time, a the velocity of sound in the undisturbed field, L a
N characteristic length, and $(§,§,£,E) the potential. The
- differential equation for the linearized potential in air at rest
’:§ is then given by
e - - 1 -
o ot v -5 6__ =0 (1)
34 XX yy 2z a tt
:E Introducing dimensionless quantities
2‘:‘ %X = X/L, 7 = y/L, z = z/L, © = at/L (2)
‘2 =, v~ s o= =1=- = = - =
N ¢(x,y,z,t) = a L ¢(x,y,z,t)
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where one expresses ;,;,2, and t on the right-hand side by
X,y,z and t, one obtains

o__+6__ +¢__-¢__ =0 (3)
XX vy z2 tt

Hence, for a perturbation with spherical symmetry

St
]

1
"

o

;. + 2
rr r

where

ro= (3% 0+ ¥8e 29

1/2
The particular solution for an outgoing spherical wave is then
given by

¢ = + £(L - 1) (4)
r

Here f 1is an arbitrary function of its argument. The potential
equation is an expression for conservation of mass. No mass
sources arise for r 0, for there the partial differential
equation is satisfied, but at r = 0, mass emerges. This is seen
in the following manner. The expression (4) gives a radial
velocity

)=

where f' is the derivative of f with respect to its argument. The
mass flow through a surface with radius r is then

“Ump[f(t-r) - rf'(t-r)]
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where p is the density. Then for r o= 0, one has

Rl L RS S

mass flow = -Umpf(t).

Except for the factor -4mp, which will be unessential in future

bl

developments, the strength of the source at time t is given by

~ )
f(t). B
N

Next, we consider a distribution of such sources along the x :ﬁ
axis. One then obtains an axisymmetric flow field. It is :;
sufficient to consider the flow in a meridian plane with ;*

coordinates x and 9 where § is the distance from the axis of '

~ -~ / A

symmetry. Later, y will be replaced by (y2 + oz )1 2, fﬂ

- -~ - *
For a source at the point x = £, y = 0, one has ::
1/2 2
FE,X,7) = [(x-8)%+ ¥°] (5) 7

-

- .}

Let the time dependent source strength per unit length of the x -~
axis at the station §=§ be given by f(E,é) (an unessential factor r
-4np is omitted). Then, -
- - - - f-r(f % v) F ~ N

o(x,y,t) =J[ f(f f(ﬁ’f’y)’a) dg (6) I

r(g,x,y) 5
2

g

This expression is now specialized to a source moving in the ::
negative x direction with the velocity U. 1In the xt system, it :j
- Y

then moves with the dimensionless velocity M = U/a. As a first ;u
step, we choose 7
~

o,
-~ - -~ - -~ n’

fit,g) = g(gré(t-1) !

"

- . ) . . . »
where 6(t-1) is the Diract delta function. Considering 1 as a e
function of E, one obtains a source which wanders along the E }
- - - -
axis and has strength g(£) at time t = 1(£). Nc mass is expelled ﬁ.
at this station for t # T(é). The mass expelled in an interval -?‘
1(E)-e < t < 1(E) + ¢ with € arbitrarily small, is g(£). Now we !h
\)
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"
:f choose T(E) so that in a coordinate system, moving to the left
‘ﬁ with respect to the §,§ system with the dimensionless velocity M,
! the source is always at the origin.
i Then
o
v I
v _ .
E = -Mrt,
l' (7)
. ()= -M7E
L Substituting this into Eq. (6), one obtains
> +® 1
1\ -~ = = -l -, =~ = v
X 5(3.7.0) -] BLENS(E+M E-r(E,x,y))dE (8) ;
s e r(g,x,y)
-
& To utilize the defining properties of the deita function, we
ﬁ: choose, instead of E, the argument of the delta function as .
f variable of integration
4
; toe M - B(E,%,Y) - v .
> :
s Y
kv ~ -~ N
4 - - ~ K
\ (M1« X2 J4E - av (9) ,
r L
. ) .
.‘ - Mr
] dg/dV = M(i—g)* E\ ::
Eq. (8) now assumes the form X
q 3
g 33,58 -] Me(E)8(vidy (10) X
. M(x-£) + r :
A
’ here, E is regarded as a function of E,;,}, and v. We determine R
y the values of £ for which the argument of the delta function, :
A namely v, vanishes. Then from the first of Egs. (9)
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FREEL

Mt o+ £ - M- 0 (11)

[ 4

It is convenient to introduce

LIS
faal
+
=
=
1l
hal

Y

BRIk
>t
)
=
1]
>

(12)

o One tnen obtains from Eq. (11)

¢ r o= £/M (13)

Since r is positive, it follows from the last equation that only

such values of £ are admissible in Eq. (10}, for which £ is

e u ol
P LI AR

positive., After expressing r in terms of £, x, and y, oOne

»

obtains from Eq. (13)

D b

rrL
.-

At
4" .__. I'. .
W
[}
=
—
—
=
I
Kaal
-
~

.
Ky

This quadratic equation for £ has the solutions

S P
Y H %1

- - . «
£, - M(1-MY) Tromx » (x7 ¢ (1-n%yy) )

-
[
i

1,2 (14)

‘I"
Valy

One has tor M <1

l. I. .‘
[N

1

pl
<

2. 2,
|LxS + (1-M7)y"]

e}
i
¢ a o

/2|>|x

e
. o
.

The sign of the expression within the brackets in Eq. (14) is

[

A A

therefore determined by the sign of the square root. But, we had

wal

observed above that only positive values of § give positive

>

values of r. If M < 1, only the positive sign of the square root
is applicable.
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For M > 1, cone obtains rea. values of £ only if the radicand

£

is positive, i.e., for
x“- (M =1)yC > 0.

The present discussion refers Lo tie points for which the
argument of the delta function vanishes, i,e., for which the
contributions to the potential, in kg. (10), is different from
zero. The last equation defines a forecone (x<0) and an
aftercone (x>0} of *he point x-3, v=U. As in steady supersonic
flows the potential of a source at %x=3, y=0) i{s different from

zero only within the fore- and aftercone.

We write the expression E

ot

2 -1 - 2 s N g

£, = M(MT-1) TTIMx ¢ (xS - (MT-1)yt) ) (15) o

N

e

. ~e

For M > 1, the sign of the expression within the braces is g:
determined by the sign of Mx. As £ 1is positive, only positive L d
values of x are admitted. This restricts the values of x and y ::
to the aftercone of the origin in the xy-system., Both signs of :&
the square root are admissible. i;

(4

g

After introducing x and y and expressing r by Eq. (13), the

2
g

4
lﬁ)\

denominator of the integrand in Eq. (10), evaluated for

v = 0, 1is found to be

=
>
1
™
+
i
1}
2L
® {&"‘,"‘t'l

Mx - Mgi + Ei/M

v .
»
L]

S

24y : N
M Ei i=1,2. xj

W

Mx +(1-M

Substituting £;» Eq. (14), one obtains (both for subsonic and
superscnic flow) for v = 0,

o} el
2+ (1_M2)y6:]1/u
With tnis result, one obtains furthermore from Eq. (9)
10
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o
;.'
\
. dg Mp
) —_— =
[/
dv t[x2+ (1—M2)y2]1/2
o) v=0
.
‘,.'\
: This shows that at the point where v = 0, ¢ will increase or
;& decrease, depending upon the sign of the square root.
o Now one can evaluate the integral in Eq. (10) on the basis
=
;q of the definitions of the delta function
A C
e Jf §(v)dv = 1
-€
! _b' §(v) = 0, v « 0
~
- One obtains
[+
. ﬁg(éi)
- o(x,y,t) - % [x2+ (1-M2)y° 1172
o
vo Here, according to Eq. (12),
.::\ - -
p Ei = Ei - Mt
}_ The values of 51 are obtained from Egq. (14); only positive values
,:F of Ei are admitted. We have found that for M < 1, only the
:: positive sign of the square root in Eq. (14) is admitted; for
/.
. M > 1, both signs will occur. One thus has for M <1
o SR.5.5) oM Z(-ME+M(1-M77" (=Mx+ (x4 (1-M2)y2) 172y ]
- ' 2 2,.24172 (16a)
39 [x“+(1-M)y°]
A
N,
2 and for M > 1
3
-~ oo M
o ¢(x,y,t) = = 5T,
> [x° - (Mg-1)y‘] 2 (16b)
o
. -~ ~ - > /
3 [B(-Mt - M(MZ-1) T (-Mx+ (x2-(M%-1)y2) 17 2]
-\.:
e ~ 2 - 2 2
- +g(-Mt - M(M°-~1) 1[-Mx -~ (x"-(M2—1)y2)1/ |
l"
NG 2 172
for x > 0, |y|] < (M"-1) ""x,
l.‘
1 \:
D) ”l
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So far, the analysis has been carried out in the x,y,t system.

This is the system which is at rest in the surrounding air. The
variables x and y appearing in the last equation have been
defined in Eq. (12); they have been introduced to simplify the
calculations., Accordingly, one should express in the above
formulae x and y by i, and }. To obtain the corresponding
expression in a system of coordinates in which the source is
stationary, one must transform to a system of coordinates which
moves with the source, i.e., 1t moves with the dimensionless
velocity M from right to left. Accordingly, one must set

~ - ~

¢(X:Y.E)=¢(§-Mt.9»i)

But x and § are identical with the coordinates x and y introduced
in Eq. (12). The right-hand sides of Egqs. (16) have therefore
already the desired form if the step from x to x is not carried

out. To simplify the expression further, we set
Mg(-ME) = g(E)

One will remember that we restricted ourselves to one meridian

plane with coordinates x and §. In general, one must replace

-0 -
y“by Y2 + 22 = y2 + 22. Then one has

for M < 1,

ge-(1-M2) Tr-mx + (x2+(1-M2) (y%+ 22))"27)

¢(x,y,2,t) g
[x2 + (1-M2)(y%+ 291772 an
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R
. and for M > 1,

)

i 0(x,y,2,t) = [x°-(M2-1) (y2+2%)17172

)

o felte(?-1) 7 Lomxs (x2-(M2-1) (y222)) /2]

o (18)
eg(te(M2-1) T [-mx-(x2-(M2-1) (y2422)) 1/27)

o

o\ . 2_,\-1/2 .

oy for x > 0, y < (M -1) X, Ootherwise ¢=0,.

3

* The different appearance of the fundamental solutions in

e subsonic and supersonic flows finds an explanation in Figures 1a

V’ and 1b which show, at a fixed time t, perturbations in a medium

fd: at rest caused by momentary emissions of mass from a point moving

> from right to left with the dimensionless velocity M. It is

o assumed that at t = 0, the point where the perturbation occurs

" arrives at the origin of the x,y system. For M < 1, the

:; perturbation generated from the individual points lie on ciEcles

v nested within each other. If the perturbations sStarted at x = =

t at a time t = -=, then these circles cover the entire x,y plane.

}ts Only one circle goes through a given point x,y. The center of

_;ﬁ this particular circle gives the point of the x axis from which

2 the perturbation started.

e If M > 1, then all circles lie within a cone through the

;E point x = -Mt,y = 0. (One will remember that the picture is

; drawn for a fixed time t.) Inside the cone one finds two

ﬁz circles going through each point. More familiar is the

:; interpretation of these figures as perturbation introduced at

o some point (x,y) of a coordinate system in which the air moves

EE with the dimensionless velocity M from left to right. The

?ﬁ perturbations are then found on expanding circles whose center

- moves With the air particles, (Since these are figures referring

f: to just one instant in time, both interpretations are possible.)

j; All further discussions will be carried out in the x,y,t system.

:t For an oscillatory source, one has

.;
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Figure 1. Perturbations at a Fixed Time Generated by a Source .
Moving from Right to Left with Constant Subsonic 3
Velocity (Fig. la) and Constant Supersonic Velocity )
(Fig. lb). For Supersonic Flows, the Circles Share an
Envelope formed by a Pair of Straight Lines, N
14 v
{l
LT AT APTLICY U R SRR AN AR S ST A I A AT T I BN TP . :
o O I S SR N I I Ay A O I A e NN RIS P \'-.,\{'-'_‘-_._.'-,‘-,'v,\‘.-,'-,'-{-.,\‘ﬁ_.\;,\ AT T R .‘



. “gta A2 e A" Sie aia" v .an Nl Al S s S wreyTy
v ¢ B AN AR AN SR Y B A RA A R A (A A TS A A St A S A Sl I A AR S Al Aol Sl R e A r AR A SN S

- o oM. -~ SN

)
~
Ly
'
~
2
j: g(t) = exp(ivt)
& Then, for M < 1,
s,
‘l
N 2 2,,. 2. 2.-1/2
-_: o(x,y,z,t)= [x“+(1-M%)(y“+ 2]
L (19)
" - /
: exp(iv(t-M(1-M2) " [-Mx+ (x%+(1-M%) (y2+2%))1727)
na for M > 1
"-
\ —_
" ¢ (x,y,2,t)= 2[x%+(M2-1) (y2+ 2217172
¥ (20)
o
rl
. - - /2
- exp(1v(t-M(M2-1) 1x))cos(v(M2-1) 1(x2-(M2—1)(y2+22))1 )
X
‘j x >0, Jy|] « (M2-1)-1/2x.
N
‘f_ Cne notices the occurrence of the cosine instead of an exponential
-
Y function with imaginary argument. The difference in appearance 1is
:? the reason why a direct transition from the subsonic fundamental
- solution to the supersonic fundamental solution is not possible.
The phenomenon has a counterpart in the general unsteady case.
f¥ As (x2 ~ (M2-1)(y2+ 22)) tends to zero, (i.e., as one approaches the
- Mach cone through the point x = 0, y = 0), the arguments in the two
~ expressions in Eq. (18) approach each other and one can develop g
m) with resgpect to
o
A 2 2,2 2. 2y 1/2
LY (MT=1)(x"-(M -1)(y"+ 2%))
I.:
-’,-
™,
3
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One obtains

oL

N4 'ﬂ.

1 1

¢ (x,y,z,t) = 2[x2-(M2—1)(y2 + 22)]- /Z[g(t—M(M2—1>' X

7

1 1

oy
"

s o221 g (eemBa1) T ) (M2-1) TR (xR (3R 29

,\' sl

+ (1/2u)(M2-1)'1gIV(t-M(M2-1)x)

AN O
“.'\.‘" ?\I*:’q.

(M2-1) " (x2-(M2-1) (y2+22)) 24,

.
.

A
‘;-"-

This situation can be expressed in the following manner. Let

~ -~
[

*‘::‘}

R = [x2-(M2-1)(yo+2z2)]1 /2,

2

At the Mach cone one has R=0. Then one has, from Eq. (18)

(RN A
o oL

-1 2 .. -1 2 -1 w2
¢(x,y,z,t)=R " {g(t+(M"-1) "(-Mx+R))+g(t+(M"-1) " (-Mx-R)} ]

by

®

For fixed t and x, the term within the braces is an even function e
cf R. fz‘

3, .

)
L
» v

The original particular solution in the xy-system is valid
throughout the xy-plane, (which is fixed with respect to the

v

undisturbed air) although, because of the introduction of the § J:'
function for f, the individual perturbations are restricted to 3{‘
circles and large regions of the plane remain free of ;%
perturbations., Since the final expression in the xy-system {in :'
which the air moves) is obtained merely by a coordinate ;gf
transformation, the results are valid in the entire xy-plane, in £$
spite of the singularity which occurs at the surface of the Mach &?
cone. This means that the partial differential equation for ¢ is ‘:.
satisfied, even as one passes through this surface. EE;
v
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SECTION III
UPWASH CONDITIONS

Let

x = xL, y=yL,z=zL,t=tL/a

i.e., X, y, z, and t give a system of coordinate corresponding to
X,¥,2,t, but before these coordinates have been made

dimensionless. Let

A A A A A

o(x,y,z,t) = 5L¢(x,y,z,t) = al¢(x/L, y/L,a’/L,at/L)

Let the deformation and/or motion of the wing surface be
given by

A A A

D(x,y,E).

The upwash condition is then expressed by
¢ ~= U §2—+ 32“
z ax 3t

This is now written in the nondimensional form. Let

A A A

D(x,y,t) = LD(x/L,y/L,at/L)

Then
d)" = 54121 aD" = DX' aD‘ = 5'3—5_
Z X 3t
Since U/a = M, one obtains
¢ZQMDX + Dt (21)
17
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SECTION IV

THE INTEGRAL EQUATION FOR TIME-DEPENDENT SUPERSONIC FLOWS

General time dependent supersonic flows over a wing whose
planform lies in the xy-plane can be represented by doublets
(oriented in the z-direction) distributed over the planform and,
if one has a subsonic trailing edge, over part of the wake.
Fundamental solutions for such doublets are obtained from those
for sources by a differentiation with respect to z. (In the
present context a normalization of the sources cr doublets is not
needed.) The evaluation of the upwash due to this (unknown)
doublet distribution requires a further derivative with respect
to z. The desired integral equation for the doublet distribution
is obtained by equating the upwash so found, with the upwash
prescribed by the upwash condition Eq. (21).

Let £n be a system of Cartesian coordinates in the plane of
the planform; & corresponds to x and n to y. Let the doublet
strength at a point of the planform (£,n) be given by h(t,&,n).
Let furthermore

2

g - (M2 - )17z

(22)

To obtain the potential due to a source at the point £=x, n=y,
one must replace on the right hand side of Eq. (18) x by (x-§&)
and y by (n-y).

We introduce

2 172

R = [(x-£)° - 8°2° - 8%(n-y)°] (23)

and

ret = 8_2[M(x-£) + RJ (2u)

1,2

18
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here the upper and lower sign pertain to the former indices i=1
and i=2.

The symbol ret stands for retardation. Roughly speaking,

it gives the time required for a perturbation to propagate from a
point £,n to a point x,y,z.

In the coming discussions x,y and t are kept constant. In
some of the functions that will occur, these quantities are not
listed as arguments.

The potential due to a source distribution in supersonic
flow is then given by

¢>(S)(t,x,y,2) = J(J((1/R)[h(t_ret1(X’ngvn)!grn)

+ h(t-ret(x,y,£,n),&,n)]dgdn (25)
2
The region of integration comprises all points of the
planform and sometimes of the wake, that lie within the forecone
of the point x,y,z, for only then is R real and x-§ > 0. The
houndary of the region consists of the hyperbola R=0,

Eq. (23) and of the leading edge. The vertex of the hyperbola
lies at

(x-£) = Bz, n=y (26)
for z > 0

To bring the portion of the boundary formed by this
hyperbola into a simple form we introduce

n-y + 8 'qn (27)
with q(x-£,z,B) = [(x-é:)z-fszz‘gjw2 (27a)
aq -822
One notes 32 = 3 (28)
Then R = q(1-72)"72 (29)
19
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dn = 8 'qdn (30)

The hyperbola R=0 is then transformed into three straight
lines in the &n plane

Only the line q = 0 depends upon z. The condition g=0

becomes
X-§ = Bz

Let 50 be the smallest value of { which occurs within the region
of integration. Eq. (25) can be written in the form

x-Bz
$°(t,x,y) = f (J,(8y2) *+ J,(E,2))dg

Eo

where after substitution of the retardation

J1,2(£.Z)

woper &)
-1 -2.-1/2

B (1-02) "1 2n(t-8"2[M(x-£) +q(1
(€)

-22)127,e, y+8 qmran (32)

nlower

For simplicity x,y, and t are not shown as arguments of J1 and
J2. For those values of g for which the upper and lower limits
of n are formed by the hyperbola R=0 these limits are +1. For

values of E where one or both limits for n are formed by the

D
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leading edge the limits depend upon £ and z. At those [iTits the
potential and therefore also the function h is zero.

To cbtain the potential of a doublet distribution, with the
doublets oriented in the z direction, one must differentiate this
expression with respect to z. We consider first a region £ <EAxX
where 51 is sufficiently close to x so that the limits of
n are + 1. Let ¢(S'I) and ¢(d’I) be the contributions to the
potentials ¢(s) and ¢(d) from this region. The point of
departure 1is

Ji(8,2) + J,(g,2) )de (33)

In differentiating this expression with respect to z one obtains
one term denoted by ¢(dIa) due to the differentiation with
respect to the upper limit and a second term, denoted by ¢

due to the differentiation of the integrand.

(dIb)

One finds

¢(dIa) = -B[J1(€1’Z) + J2(€1’Z)]

E=x-B2

According to Eq. (27a) one has g = 0 for £ = x-8z; the function h
in Eq. (32) is no longer dependent upon n. Now

+1

=D - -
J (1-72)"" 247 -
-1

Therefore

1

¢(dIa) -2nh(t-Mg~ z, X-8z2,y) (34)

The dependence of the functions J, and J, in Eq. (33) upon z

enters through the function q (see Eq. 32). As q appears in two

21
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of the arguments of the function h one obtains from each of the
functions J1 and J2 two terms for their derivatives with respect
to z (superscripts b and c¢). We denote derivatives of h with
respect to its first second or third argument respectively by
(', 12 and n'3). Then with Eq. (28)

(8J1(b)/az) . (aJéb)/az) -
“
- 287" _1f{h(])(t-8_2[M(x-£)+q(1-52)1/2].E.y+8_1qﬁ]
-1
n U (=872 M(x-E)-q(1-72)""?], e, y+8 Tqn) }dn (35)
and

(aJ1(C)/az . (3J2<C)/az)

-+

—_,—— -

ez VR G-n2y V2003 (pop T2 M-8 +q(1-02) 2 e,y T e

h 3 (e-872[M(x-£)-q(1-79) %) €, y+8 Tqn) dn (36)

At the upper limit of the integral (31), one has q=0. The factor
q_1 in the last Eqs. (35) and (36) might cause the integrals in
Eq. (31) to diverge, but because of the special form of these
equations this does not happen; the reasons are different in the
two cases. In Eq. (35) the two terms of the integrand agree for
q=0, except for the signs. Accordingly, the integrand is 0(q);
observing that for q=0,

Xx-E=82z

and

22
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1im 691 L 1m0 (1) | onncex,y) (38)
2+0 z-+0
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dn = 7/2

one finds

lim [(aJ1(b)/az)+(aJ2(b)/az)) w —zn8 30 T Y (t-g T Mz x5z, y)
q»0
Regarding Eq. (36) one observes that
1
f n(1-72) 7120 03) (872 M(x-£)+q(1-02) /2] £, y)dR=0 (37)

-1

because of the antisymmetry of the integrand with respect to n.
Notice that only the last argument of h(3)differs in Eq. (36) and
(37). Subtracting the two forms of Eq. (37) from Eq. (36)

developing the expressions with respect to the last argument and
observing that

one obtains

lim ((8J1(C)/az)*(aJZ(c)/az))=—zn6_1h(3’3)(t-B_le,x-Bz,y)
q»0

Again this expression is bounded. This procedure requires that
one carry out the integration with respect to ﬁ first. One can
now carry out the limiting process 2z»0. Since the z derivatives
of J1 and J2 contain a factor z, their contributions vanish in
this limit. One therefore obtains
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Accordingly, the function h represents, except for the factor

-2n, the potential at the upper side of the wing.

In order to obtain the upwash due to the expression ¢(dI)

one must form the derivative with respect to z and subsequently

perform the limiting process z+0. One obtains from Eq. (34)

(dIa)

lim ¢, 2n[Ms"h(1)(t,x,y) + Bh(z)(t.X.y))

q»0
or in more conventional notation

d)(dIa)

. -1
lim N = 2n(Mg ht(t,x,y) + th(t.X.y))

7+0

Eqs. (35) and (36) have the form zF(z). Then

lim %E (zF(z)) = F(0)

z~0
Taking into account that q| = X - { one obtains
z=0
X +1
lim ¢;d1b)=f§%—[f{s"[h(1’(c—s’2[M<x—a>+<x—g)(1—62>‘/2J,5.y+s"’<x-a>ﬁ>
z+0
13 -1

h Y (- M(x-E) - (x-£) (1-0) 2 ey T (x-E) M) ]

A -n2y 23 (oo B Mix-£) - (x-£) (1-02) V2] e yes T k-

n 3 (e-872M(x-£)-(x-£) (1-79) 2] e y+8 Tix-£)m) ] }dn

In the contribution of ¢(SII) ¢(S) one has q#0. The upper

limit of §, namely E], is fixed. In differentiating J1 and J2
with respect to z one obtains, in principle, contributions from
the z-derivatives of the limits Elower and Eupper' While these
limits are fixed in the En-system they will depend upon 2z in the

fn-system. These limits are given by the leading edges and there
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h=0. At subsonic leading edges a square root singularity
appears. There might be a question whether or not this has an
effect on the second derivative with respect to z. This has been
discussed in considerable detail for the steady case (Ref. 4)
with the result that in the limit 2z»0 there are no contributions
due to these limits. One therefore finds

lim ¢éSII) -0
z~0
Moreover, lim ¢édll) will have the same integrand as ¢;dl); only

z+0
the region of integration is different Returning to the original

coordinate n one obtains the following expression.

Let
R = [(x-£)2 - 82(n-y)%] "2 (39)
-2
ret = 8 “[M(x-£) + R]
Then
03(t,x,y,2=0) = 2n(M8™'h (t,x,y) + Bh (t,x,y))
*Jf{h(1)(t-ret,,E,n)-h(1)(t-ret2.£,n)

-82((n—y)/R)[h(3)(t-ret1,E,n)+h(3)(t-ret2.€.n)]}?gég?g (40)
X-£

The region of integration has as boundaries the leading edge and
the two Mach waves through the point (x,y) into which the
original hyperbola degenerates for z+0. Equating this expression
with the upwash found in Eq. (21) one obtains the desired
integral equation for the n(t,x,y). From Eq. (38) one obtains
the potential and hence all quantities of physical interest. The
integrands in Eq. (40) occur with a retarded time argument. In

essence they are known from the results for preceding time steps.
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If data up to a certain time are known, then Eq. (40) allows one

to evaluate ht(t.x.y). This is the essential step in an
integration procedure.

We add the following observation. In most of the practical
problems the upwash computed from the displacement and or

deformation of the wing Eq. (21) can be written in the form

wit,x,y) = T ck(t) wk(x,y)
k

where the number of functions wk(x,y) is rather small. These
functions are considered as known. Whether or not the functions
ck(t) are known in advance depends upon the nature of the
problem. In aeroelastic problems the determination of the
aerodynamic response is done in a preparatory phase and then the
deformation are not yet known. In the aeroelastic equations the
ck(t) will then appear as dependent variables. It is practical
to express the functions ck(t) in the form

c (t) = ciO) . }ck(r)H(t-r)dr (41)

Here ék denotes the derivative of Cy with respect to its

argument and H(t) 1s the Hamilton step function

H(t) 1, fort >0

H(t) 0, for t <O

One observes that H(t-1) = 1 in Eq. (41) because t>t. We assume
that no perturbations are present at t = O.

Accordingly, it suffices if one solves the integral
equations for

wit,x,y) = wk(x,y) H{t-1)

26
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separately for all functions wk(x,y) that are of interest. Since

t does not occur explicitly in the formulation of the problem, it
is even sufficient if one solves it for

wit,x,y) = wk(x,y)H(t).

All other solutions can be built up from results obtained
with these expressions for the upwash., Since for t>0, H(t) is
independent of t, the solution for h(t,x,y) represents the
transition to a steady state with the boundary condition

W = wk(x,y). This happens within finite time,

To become familiar with the special properties of the

integral equation, we consider special cases in the next
Sections,
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SECTION V

SPECIAL CASES

A nearly trivial example is obtained for a two dimensional
1
steady flow in the xz-plane. Then w = w(x), Wy o= 0, h( ). ht =0
h(3) hy = 0. The integrals in Eq. (40) vanish and one obtains

W o= w(x) = 2ngh t

One has, according to Eq. (38)

o ¢ = -2mth(x)

;

o By definition Wwo= b,

o

W Therefore, from Eq. (40)

o

k ¢Z = -B¢x, valid for z=0 ]
- This relation is a solution of the equation for two-dimensional

Y

N steady flow

': 2

. B oyx * $pp ° 0.

& f
t More insight is obtained by the one-dimensional unsteady

2 case, Here all solutions can be built up from the solution of

”

T the problem with
2 W= w(t) = H(t)

o,

‘.

ﬁ From the partial differential equation, which in this case

) simplifies to

_-f

{ ¢zz ¢tt =0, :

one expects to find

. .
" ;
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We therefore set, tentatively,

ht = cH(t) , hx = 0, hy =0 (43)

where the constant ¢ remains to be determined. The integral

equation then gives

6, = H(L) = clonMg ™ 'H(t) + I, - 1] (uh)
where
_2 +
Lo, - [(H(t-8 (Méx-ﬁ)—R) dEdn (44a)
! (x-£)

2 1/¢
R = [(x-£)% - 8%(n-y)°]1/%
We immediately set x=0 and y=0 (since all points of the xy-plane

are equivalent) and consider a fixed time t, The region of

integration lies between the Mach waves through the point

i.e., between the straight lines

As a further boundary one has the curve for which the arguments
of the functions H vanish

t-87°(-ME+R) = O (L5)
The more general case, in which R is given by

2_2 2

R = [(x-£)° - 8%2° - 8° (n-y)°)'72
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-~ is discussed in Appendix B. One finds for both signs of R
N in Eq. (44a)
N 2 2 2 2
E: (E-(x-Mt))“ + (n-y)< = t° - 2
; !
Y .
~ This is a circle with center at § = x-Mt, n=y and radius
2 _2\1/2
= (t7-27) . :
V v .,
4 g
v In the present case z=0, x=0, y=0. The last equation
.:.r
o reduces to
(£+Mt)2 + n2 - t°,
_j The areas of integration for the integrals I1 and 12 are y
s then given respectively by Figures 2a and 2b. Since in the areas
N of integration H=1, one obtains
v [[dgdn ;
" L -1 =" )72 N
" g !
¥ where the area of integration is the circle
s (g+Mt)2 + 0 = t°
s
- Setting
) £ + Mt = £t .
P ;
3 ~ g
“~ '.
o n = nt y
one obtains :
. U ;
I,-1, - J(—QQQHE , £2 + n? < :
T (g-M) i
-. X
b, A
. N
j -
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Figure 2a. Regions of Integration for 2z=0 at Different Times.
The Boundaries are Formed by the Mach Lines and by
Parts of Circles.
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4 First integrating with respect to n one obtains J
"] a
i +1 . ~ [
> } [ dgr-g3)1/2 3
" Li-1, =2 5 -
” -1 (g-M)
| The integral can be evaluated in terms of elementary functions
. (Appendix A). N
<
X I,-I, = 2n(1-(M/8)) )
[ Substituting this into Eq. (44) one obtains 3
4
Y .
" H(t) = 1 = ¢ 27 .
- _1 h
) Hence ¢ = (2m)
..
'- .
- With Eq. (43) one finds ;
A )
b -1
p h, = (2n ) H(t)
- .
N and therefore ,
% ¢, = -H(t)
N 4
X This is indeed the result anticipated in Eq. (42)
k., The jump of ¢t at t=0 encountered here is typical for -
. problems whose time dependence is given by a step function. This :
- is no reason to abandon such an approach; it is the key step to N
> the solution for general time dependence. It may, however, make .
, special measure in a numerical approach necessary. ¢ and its ¢
. .
’ derivatives are functions of t, x and y. In the numerical work N
9 one will therefore generate tables which, for individual points -
b (x,y) of the planform, give ¢ (and probably also ¢t) as functions
of t. ¢t and ¢n appear in the integral equation with the first q

w e &
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: argument t-ret, where the retardation depends on x-§ and n-y. In
b general an interpolation will be necessary, to find the
f, quantities in question for these arguments.

% As far as the determination of the integrands at given
iz points (£,n) is concerned, this does not generate a difficulty.
3 One will always have t=0 as first value of the independent

‘q variable in the above mentioned tables for the selected points

E (x,y). If the argument t-ret < 0, one always obtains zero; for
l% t-ret > 0, one will use interpolation.

In this example, we have seen that the vanishing of ¢t for

i t-ret1 < 01 defines a boundary for the region of integration.
P Describing the situation in a different manner, we consider the
,j integrand versus n at a fixed value of g, Figure 3. At t-ret =0

. the integrand Jjumps from zero to some finite value. The jump

ié will in general not occur at one of the chosen points (x,y). If

:E one uses interpolation then one replaces the jump by a ramp. The

:: error so introduced will be small, if the points (£,n) are

:1 closely spaced. It may, however, be preferable, to identify in

. advance the point where the jump occurs (here the value of n) and

3 modify the integration formula accordingly.

} Some numerical experiments will be needed to arrive at a

satisfactory compromise between complexity of the programs,

i computational labor, and accuracy.

-? In the next section we treat by analytical means the two-

,E dimensional problem with a supersonic leading edge and

. w(x,y) = H(t). In this case one can represent the solution by a

~ distribution of known sources and find the potential by a direct

3 integration. The result can serve to test the accuracy of

: numerical approaches where the same problem is solved by means of -
. the integral equation (which uses the concept of a doublet

distribution).

> )
b
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Integrand versus n at a Fixed Value of ¢.

Actual Integrand

+——Smoothed Integrand

——O~ —O- o O

\ 2

Boundary Point of the Region
of Integration (t-ret)=0

The Circles

are Points at which the Integrand is Tabulated if

the Problem is Discretized.

If the Boundary Point of

the Region of Integration is not Identified then the
Jump at the Boundary will be Smoothed out over one

mesh.
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SECTION VI

THE TWO-DIMENSIONAL PROBLEM WITH A STRAIGHT SUPERSONIC
LEADING EDGE

The problem can always be reduced to one in which the
leading edge is normal to the flow direction, by considering only
the velocity component normal to the leading edge.

If the potential is represented by sources with strength
h(t,g,n), then according to Eq. (38), taking into account that

82(t,x,y) = 0%(t,x,y) = -2nh(t,x,y)
We choose
wit,x,y) = 2mH(t)
then
h(t,g,n) = -H(t)

and from Eq. (25)

6¢% (t,x) - —ff1/R[H(t-s'2[M(x—£>+R])+H(c-e'2[M<x-a)-RJdgdn

R = [(x-&)2 - anz]”2

The areas of integration can be reduced to those points of the
plan form for which the arguments of the unit step function H are
positive. Accordingly one writes

L)

0% (t.x) - _[jf q%gg ) JJ dgdn)
Ry R>

where R1 and R2 are the respective areas. The regions K, an! K

are bounded by the Mach waves through the point f=x, n=0, i.¢
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!
X
"
-1
N n=+8 (x-£) (47)
'F.-
8 and portions of the circle
o
o
- (x-€ - Mt)Z + n® = t? (48)
-«
o This circle is tangent to the Mach waves. Tangency occurs at
< 2
;ﬁ X-& = M M1 . These points of tangency divide the circle into
ayd
hﬁ two parts; they constitute portions of the boundaries of R1, and
b R,. Furthermore the regions R, and R, are restricted to the
planform.
I
i We call temporarily basic regions of integration the regions
L] I3
" with the boundaries given by Eq. (47) and (48). Their shape is

[t

seen in Figure 4, case a. The actual regions of integration R1

and R2 differ from these basic regions on account of the fact,

“on" g
] f.f‘,"_'

that upstream of the leading edge there is no upwash and

)

éﬁ therefore no sources are encountered. For fixed t the shape and
Py size of the basic regions of integration is always the same. If
'#? x is varied then the entire figures shift in the x direction.

;ﬁ For different values of x different parts of the basic regions of
'j integration are cut off by the leading edge. Thus one obtains

\f different cases depending upon the value of t/x. They are shown
:; in Figures 4, In determining which configuration applies in a

iﬁ specific case one remembers that the most upstream point of the
:2 circle lies at g=x-(M+1)t, the point of tangency between the Mach
:2 wave and the circle lies at £=x~M_1(M2-1)t, and the most

. downstream point of the circle lies at 5=x-(M-1)t2. The leading
5; edge lies at £=0. One thus obtains the following cases,

';2 Figures 4.

o
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y Edge Edge Normal to the Flow

. Direction. )
o Case b 1
- For each Value of x one

- has two Different Areas
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Shape of the Areas of
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Case a t/x < (M+1)

1

- 2> -
Case b (M+1) | < t/x < M(M°-1)"!

-1 1

,. Case ¢ M(M2—1) < t/x < (M-1)7

Case d (M-l)-1 < t/x%

S
N We introduce
L
o

ng
X—Ey'

then n = 8 'n(x-£) (49)

¥
L3

Ny

P B

"2.1/2

and R (x-£){(1-n")

L] ,'»

The integrals in Eq. (46) then assume the form

4§ %
»

™w
\
—_
—
—
|
Q.
PO
Q
-
N

The integrations with respect to £ are carried out first. To

B b XA
<A SN

det~rmine the limits of integration, we determine the points of

.
.

intersection of the straight lines fi=const in the gn-plane with
the circle that forms part of the boundary of the region of
integration. Substituting the definition of #, Eq. (49), into
the equation of the circle, Eq. (48), one obtains

..t "l .‘ ’ .‘ ;

A4
l' Y

)
LA N

(]
»
s

((x-E)-Mt)Z + (x-£)°n°/(M°-1)=t?

.l
a

y
$oa

This equation is first solved for (x-£), but the result is
written down for .

il

RSN

Pl
NN Y
PR

N

- 2 n 2 ~
M - - -

-I': Let 81(\']) = 22_(.&_% , Bq(n) - t(M 1)(1 :}

n

2 2 2
";-s. M=-(1-n7) M™-(1-n")
‘

1/
) 2

(50)
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Then the two roots for £ are

]

£, = x - (B,(n) + By(n))

~

E5 = x - (81(n) - Bz(n))

~

These are the lower limits for £, if the line n=const ends on the
circle. If the line £=const ends at the leading edge, £=0.
Thus the lower limit is given Dby

in the region R, by max(0,&,(n))

and in the region RZ by max(O,gz(n))

The upper limit is always £=x

~

Then one obtains along a line n=const

st = X - max(O,a,(n)

~

min (X’BT(H) + 82(n)) in the region R1

min (x,B1(n)—82(n)) in the region R

—
Q.
Kol

It

2

Thus

~

n=1 . - ~ n=¢‘| . ~ ~
¢(S)(t ) - -8'1[ ( mln(x,B1(n)+82(n))d; . ( mln(x,B1(n)-82(n)d;]
- J (1_‘2)1/2 - ) _t2.1/2
n=—‘] n n=_1 (1 n )

(51)

The transition from one form of the minima to the other occurs at
the points of intersection of the circle
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:
: (x-E-Mt)2 + n2=t2
K. with the leading edge, i.e., the line £=0. Hence, characterizing
} these points by a subscript O :
s
N 211/
A ng = * [tz- (x-Mt)<]1/2
5 Now, for £=0
Ny = Bno/x

i Then :
* €
-
-’ - t t 1/2 K
? Ng = *B(Z(M+1)=1) (1-2(M-1)))
% - 2rct. 1 1 £y 1/2 :
- or ng = 805 g - )1 7° (52) X
" 0
'
(
o The transition from one form of the minima to the other then
4 occurs for
- -~ A
._: ﬂ‘ no .

The form of g shows that the points of intersection are real A
1 d
i only if
o -1 -1 !
. (M+1) < t/x < {(M-1) )
; Now specific expressions for the minima can be listed.
-
A -1
-~ Case a: t/x < (M+1) .
b '
- - i = X
X for -1 < n <1, min (x,B,+B,) B, + B, :
N ;
N min (x,B,-B,) = B, - B, :
N >
-': 41 .
4 ]
b, .
L7
:(‘. f.-f%:‘if, B R I T L I T R A R A L R G R 4, 0 A s U S ¢ 2,
A s . in.Y ) X ) . T ¥V I IR TR INS. » d 5 . A , W Wiy, |
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>
-
at
"\
N -1 2 -1
- Case b: (M+1) < t/x < M(MT-1)
i for —!nOI <n < |n0| , min (x,B1*B?) = X
",
o, - ~
g for -1 < n < -|ng}
¢
> and |n0| < n <1 , min (x,B1+82) = B1 + 82
A
. -
ﬁ for -1 < n < + 1, min (x,B1—B2) = B1 - 82
2 -1 -1
Case c: M(M®-1) < t/x < (M-1)
v,
’. ~
- for -1 < n <1 min (x,B1+BZ) = X
) ~ ~
~ for -1 < n < -]n0|
% . | .
. and |ng| < < min (x,B,;-B5) = x .
s for - |no] < n < ]no] min (x,B1—82) = B1 - 82
< Case d: M-1)"" < t/x
™~ f
for -1 < n <1 min (x,B1+82) = X 1
? min (x,81—82) = X
I
These expressions are now substituted into Eq. (51), the
Y resulting integrals are combined in such a manner that the limits
"} ~ ~ ~ ~ ~ ~
’ are either n=-1 and n=+1, or n=-nq and n=+n,. One obtains
-:. ‘l
Y Case a, t/x < (M+1)
%
:‘ +1 ~ +1 ~
” (B,+B,)dn (B,-B,)dn
- o(t,x) = s 1 [ 122 N i i A
~ ’ J (1 2172 J ~2. 172 Kk
A -3 -n") 2y (™)

y2
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P
A
‘
o[ Byan 2
’ o(t,x) = -28 J ?1—1'?)-1‘75 .
-1
-‘l 2 ‘:
Case b, (M+1) < t/x < M(M™-1)-1 N
w
S
- ~
-~ +n ~ ~ *
+1 +1
_ ( (B,+B,)dn ( x-(B,+B,)dn (B,-B,)dn .
dp(t,x) = -8 ! _.1 2 + ___1_2___._ + [ ~l_,_2__._ 1
! ~ ‘/ ~ ~ /
R S Y TN .
o -
-~ +n -~ !
iy }1 B, dn (O x-(B,+B,)dn ;
olt,x) = =8 " {2 ] —epyym v 3773 ”
; (1-n7) A (1-n7) A
-ny 2‘
2 -1 -1 4
Case ¢, M{(M -1) < t/x < (M-1) A
.
~ ~ (
+n +n -
+1 - +1 - 0 ~ 0]
~ - B,-B,)dn
-1 xdn ( xdn xdn ( ( 1 2
o(t,x)=-8 || —=30—sdn + dn —_— 75+ —
R T N B Rt L L G T S
"o "o N
+n -~
+1 - 0 :
-x+B,-B,)dn £
-1 ( dn [ (-x+By-B, :
o(t,x) = -8 {2x — 75 ¢ :
J_1 (1_?]2)172 ) (1-82)172 N
~
’no W
N
)
-1 “~
Case d, (M-1) < t/x
+1 ~ ._
o(tx) = -287'x J{ =373 3
_1(1'ﬁ ) N
The integrals occurring in these expressions can be expressed by ;
&)
elementary transcendental functions -

]
&

J—_—qg_773 = arc sinf ’
(1-8<) /¢ ;
(]
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. One obtains with Eq. (50)

" B dﬁ a / ~

: J( s - tHee) l{_éqn e PR LR e /

- (1-27) ‘MT-1+7 (M™-1)

>

b [ Bpdh A

| —575 = tBarctg 7

v J(1_ﬁ2)1/2 B

- B.df - -

: [ ™ 2 [ df M A

: ——5—775 = tM(M°-1) 75 = tBarctg (g —-- ) !

I A A A 1 A2 17—

J(1-n2)1 2 J(M2-1+n2)(1-n2) 2 B (1-55172

N .

" These formulae can be verified by differentiation. Regarding the last Y

L expression, it is shown in Appendix B how it can be derived from an

r, integral found in Ref. 3.

« One then obtains the following specific formulae A

2

- -1

Q for t/x < (M+1) y

l

g~ ¢(x,t) = -2tm = -2xw(t/x) K,

.; »

L -1 2 .. -1 ;

- for (M+e1) ' < (t/x) < M(M“-1) ;

- y

" p(x,t) = -2x{n(t/x) +3-1arc sin 9 ;

- (1

% . . ‘

" n n !

~ -(t/x) arctg (ﬂ ————9————) - (t/x)arctg —9] )

. 8 ~2\1/2 8 ,

(1-74)

b2 X o :

N for M(M™=1) < t/x < (M-1) .

N )

? .

.4. ﬁ

- -1 R M 0

4 o(t,x) = -2x[8 1n-8 arc sin A, + (t/x) arctg (3 e —

. 0 8 A 2\1/2 ’

v (1‘710 ) J

- -

N o )

; - (t/x) arctg (—)]

: ;

N

\' ny

‘

. L]
s
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p(t,x) = —2x8-1n.

ey

. v

is found in Eq. (52).

Ly

It is probably best to evaluate the expressions for fixed t,
a function of x.
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APPENDIX A

EVALUATIUN OF

The integral

SOME INTEGRALS

1
L. [asn-e)'7e
o 5
_p (8M)
can be decomposed into
+1
5 2_
R S .
¥ : (£-M)
One has
+1
( dg
) 5 = arc
b a3t

The other integrals are found in tables,

Formula 236, 3c

( dx _ 1
5 =
J(X_a)(a__x2)1/2 (02-22)172
Therefore
+1
[ dg
Ve-my(1-g2)172
-1
£E=+ 1
= ! arc sin 1=
RN IV D M-
(M-1) el
S slare sinL:~—3r“ in
(M2_1)172 M-
47

arc sin

sing

a_-ax
alx-

+1

RIR
— %

1]

for instance Ref.

[a] > a
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Formula 236, 3a of Ref. 3 reads
e o (@22 oy gyal
J(x_a)k(az_x4)1/2 (k_1)(a2_a2) (X_a)k-1 J(x-a)k'1(a2-x2)‘/2
f dx
- (k-2) - ]
J(X_a)k 2(a2_x2)1/2
Hence for k=2
+1 +1
[ dg o [<1-52)‘/2 oy de |
demiaehe g B Vw72 ]
- M7
(M2-1)372
Thus
?1d£(1-£2)1/° ( oM M ) ( M)
a(=1 + ——<2_ - 2 ) =10 (-1 ¢+ =
{1 (g_M)z (M2_1)1/ (M2_1)1/2 B

In the next integral, a decomposition is carried out, so
that the first order poles are displayed.

[ dn o] f[ l“""“f‘ - 1_ ]dn
S 02y Gony 72 T 218 )0 iy (1-09) 2 (neig) (1-02) 172
Therefore
[ dn 1 ( dn
— = —~ Im |— (A.1)
J(n2egdy(1-n2y172 B Vin-is)(1-n2)172

Now one finds in Ref. 3, formula 236, 3¢

2
- S log :zﬁ:éitL(%i:zfl&ii:&%lllif
(x-a)(a2-x2) 172 (a?=a?)T72 x-a

Specializing for a-1, a=if, x=n, onc obtains, with BZ=M°-1,

48
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(—isn+1+M<1-n2)‘/ |

2 1/2)

which can be disregarded.

( dn

A R v A e S A S SRR L G S R G SR

L2282y (1-n2)

Therefore, from Eq. (A.1)

49

.-\_ ¢

et

e e et s
LN )
.

WY s

-Mn)]+logi]

f dn 1
= -5 log —
Sa-iy(-n8y172 - n-1é
. 2.1/2 .
1 1 (=ign+1+M(1-n") Y(n+iB)
T w08 2.7
n +8
1o M =n®) ! 2eig (1-n?) T2 (e (1 20%)
= - Og
M > 2
n +g
L 23172
« plrog M) (g(1-n?)12
n+8

The last term in the bracket is a constant of integration
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;ﬁ APPENDIX B
. REGIONS OF INTEGRATION FOR z#0
2
:; Before he discussed the one-dimensional time dependent flow
;:E for z=0 (Section IV), the author investigated this problem for
: z#0. One obtains, as expected, the results usually derived from
xx the partial differential equation. In this appendix an
':S intermediate result is shown, namely how, for fixed x,y,z, the
’Ei regions of integration change with time. In Section IV the
aall corresponding regions have been shown for z=0. It is of interest
N to observe the relation between these cases.

It is assumed that the time dependence of the upwash is
given by a Hamilton step-function. The arguments are given by

'y J'L.Is o

ALY

f:f .

~. arg; 5, = t - ret =t - g "(M(x-g) * R) (B.1)
1 '

! -,,.

i: with

= 2

o R = [(x-£)2 - 8%(n-y)" - 8°22])172 > 0.
.‘:\

-

. The areas of integration at fixed x,y,z,t are characterized by
oo the conditions, that R is real, and that arg, > 0, arg., > 0. In
Y 2
,:< the present special example, all points of the E£n-plane are
i: equivalent, there is no leading edge. 1In the general case the
- region of integration has the same boundaries, except that points
.~ (£,n) upstream of the leading edge are excluded.

:;Z Part of the boundary of the region of integration is given
‘5; in the gEn-plane by the hyperbola R=0
2

. 2 2 §

It (x—e’,)2 - Bz(n-y)2 - 8727=0 (B.2)
G

e
o
:; In the interior of the hyperbola R>0. Only the branch for which
)

g x-£ > 0 is of interest.
s
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2
:: The vertex of this hyperbola lies at
s
£ = x-Bz; z > 0)
, n =Y
{. Its asymptotes are given by
.:: -1
<. n-y =+ 8 (x-¢)
Other porticns of the boundary of the region of integration
’ﬁ are given by the curve along which arg, or arg, vanish.
b <
o, Substituting 8° one obtains from Eq. (B.1)
{l
Y 2 2 2 2 21172
(MZ-1)t = M(x-£) = + [(x-£)% - (M2-1)(n-y)? - (M®-1)2°]
-
{I . - : . .
v Squaring both sides to remove the square root and dividing by
i& M2-1, one obtains
-
P
2 Moe? - 6% - aMx-E)E ¢ (xm8) + (n-y)? ¢ 2%-0
.
-
\
R (£-(x-M£)? + (n-y)? = t2-7° (B.3)
)
.
L
=$ This is a circle with center at £=x-Mt, n=y and radius
o (t2-z2)1’2. One surmises that the hyperbola R=0 is tangent to
-y this circle. Elimination of (n-y), from Eqs. (B.2 and B.3) gives
;i the values of ¢ (or rather (x-§)) for the points of intersection
:: of the two curves. Actually, this process eliminates z at the
N same time. One obtains
o ]
% (M(x-£) - (M-1)t)2 = 0 :
,u '1
P 1
’ The fact that one obtains a double root for x-f£ indicates that
the curves given by Eqs. (B.2 and B.3) are tangent to each other !
L)
. !
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(if they have points in common at all). The points of tangency ;l
lie at s
]
‘
»
n
M2 -1 f
. £ =X - — - >
o
The corresponding values of n are found from Eq. (B.3) o
]
2 ~J
' (n-y)? = + M 2] 2 - 2° NG
The points of tangency divide the circle for which arg, = 0 ;;
and arg, = 0 into two parts. At the point of tangency as along ;.
the entire hyperbola, R=0. In the interior of the hyperbola {;
R > 0. If one travels along the circle starting at the point of -
tangency in the direction of decreasing (x-£), then arg, (upper ;
sign of R) is zero, and arg, becomes positive; this portion of f
the contour is therefore the boundary of the region there -
arg, > 0. The portion of the circle for which x-§ is greater E
than the value for the point of tangency is the boundary of the $
region for which arg, > 0. e
)
The smallest value of t, for which points of tangency exist, t,
§
arises if the circle is tangent to the hyperbola at its vertex. dﬁ
Then (n-y) = 0 and ¢
)
at
" _ i
¢ = M(Mo-1)" 12, R4
"]
1
This, however, is not the smallest possible of these circles. i,
N,
The radius is given by (t2-z2). The smallest circle therefore :'
arises for t=z. This is a point in the interior of the -t
hyperbola, There R > 0. These circles in their entirety are -f
boundaries of regions where arg, > 0. One thus obtains the iC
sequence of boundaries shown in Figure 5. Those boundaries in ﬁ§
Figure 5b that consist of full circles are not present if z=0, !¢
!
]
o,
|
)
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Figqure 5a. Regions of Integration for z#0 at Different Times.
The Boundaries are Given by Parts of Circle and by

Parts of an Enveloping Hyperbola.
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APPENDIX C

DISCUSSIONS RELATED TO FUNDAMENTAL SOLUTIONS

Fundamental solutions can, of course, be derived directly
from the partial differential equation for the perturbation

q potential in a system of coordinates in which the air is in
motion. Here one has
S(MP-1)6,, @ L v 9, 2Me, = b .= O (c.1)
XX Yy 22 xt te )
! Let
X = I R ST ¢ L DARE (c.2)

and consider perturbations which are harmonic in time

Then

Px T Oyy

~

A A A A

The derivative ¢; is suppressed if one introduces

One obtains

-¢

XX

vy

= ¢{x,y,z) exp (ivt) (C.3)
. -~ 2 ~
2ivM T . v
o, + - ¢ =0 (Cc.4)
M2-1 X Moo
= ; exp (:%Xﬂ;) (C.5)
M~ -1
- v2 -~
ST ol - ¢ =0 (C.6)
27 (M2-1)2

Particular solutions are obtained as follows. Let

A

-, ~ "y )

e P e e e T Y

(y= + 27)
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and assume that ¢ depends upon R only; then

P s

®RR

VA

2L,

This is solved by

5 = (1/R) exp (iév
M= -1

JR

f")"."'."'.’. LS

Returning to the original coordinate one has

<

R2 = x2 - (M2—1)(y2+22)

p 3

i vMx iv
2 .13
M~ -1 M™ -1

1 4

= (1/R) exp(ivt R)

These are, of course, the particular solutions encountered in Eq.

A

(20). But the present derivation does not show, which linear

combination should be taken. Besides, it is not clear, whether

.l‘. 6

the continuation of these particular solutions outside of the

cone R > 0, is given by ¢ = 0. We shall see, that this is not
always the case.

ALSCNEND

Eq. (C.6) has no physical significance because of the

splitting off of the factor exp(=3> x) in Eq. (C.5). Since this
M

” '_‘ q‘-l

factor depends upon v this procedure has no counterpart in the
general nonsteady problem. The following observations may,
nevertheless, be of interest.

|
Y ANS

Let

LRl T

Then one has

r
*
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It is remarkable that in this equation ¥ occurs in the second
power, while in the solution Eq. (C.7) it appears in the first
power., If, however, one separates in Eq. (C.7) real and
imaginary part one has

Fcos(vR), and gsin(vR) (C.9)
and the development of thesec expressions proceed in powers of v2.
One can think of solving Eq. (C.8) by a development with respect
2

to v To the lowest order one then has

¢’RR
with the solutions
$ = (1/R) and ¢ = 1

¢=(1/R) is the first term of the development of (1/R) cos VR, ¢=1
is the first term of the development of (1/R) sin vR (after
multiplication by v-1).

There is a remarkable difference in these expressions which
will be explored further in this appendix. The solution ¢ = 1/R
is real only within the Mach cone. But it can be continued
outside by ;=O, and the expression satisfies the differential
equation even as one passes through the Mach cone.

The expression ¢=1 holds everywhere. But because of the
nature of supersonic flows one does not admit perturbations
outside of the aftercone of the point xyz. Therefore, one is
inclined to set ¢=0 outside of the aftercone. But then one fails
to satisfy the flow differential equation as one passes through
the cone.

We discuss the case v=0 further; it is the first step in a
development with respect to ©. The function ¢ is the
perturbation potential, its gradient describes the perturbations
in the velocity field. Let us discuss the perturbations in the
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mass flow vector p; (where p is the density). Let p, be the
density of the basic flow
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and

One has
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The perturbation in the pressure Ap is found from Bernoulli's
equation

1,

W
2
)

“p U,
2
Then -pOU¢X/a = -pOM¢x/a

Therefore
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pU = P (1Mo, /a) (8 (Urg ) +& 0 +& )
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The potential equation expresses conservation of mass.
satisfied, then one has
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div(pw) = 0

o
o,

and for the linearized form of the potential equation
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div(spw) = O.
In the cylindrical coordinates x,y this equation assumes the form
2(yblpu), v =2(yalpw)y) = 0
Ix X ay

This equation is satisfied by introducing a "stream function" Ay
for the perturbed flow

yA(pG>X - amby

.
yA(pw)y —2nwa

Then
Ay = 2n}(yA(p§)xdy - yA(p;)dx)

If one chooses two points A and B (Figure 6) and connects them by
some curve and evaluates the last integral along this curve, then
the result is independent of the choice of this curve.

Therefore, Ay is a function of x and y. The difference AwB-AwA
is the perturbation in the mass flow passing through the
axisymmetric surface generated by rotating the curve AB with the
meridian plane around the x axis. Since Ay depends upon x and y
only, one can draw "stream lines" of the undisturbed flow (lines
Av=const). The total mass flow through the surface AB is, of
course, the mass flow due to the unperturbed flow plus the
contribution of the perturbation.

This is applied to the fundamental solution (Figure 7)

_ s
o = (x2-(P-1y2H) V2 o0, Jypam®an T 2

Then

o, = x(x =(m7-1)y) 738
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Figure 7. Potential at Fixed Value of x versus y in a Supersonic ‘
Source Flow. The Asymptote Corresponds to the Mach Cone.

S N '-‘ "

¢

63

S
el

L

Pk )

T,

* ne Y Al . e ne . oy . . . e
e A \w. -3,-;.,\\ o) '\'.\J,'. N .(," ,, o ) .,,\-"\ ! WA _.\J,',._»_‘ VRSN, .....;.'_..4

'




00 Y AN LU N P LLE LY,

n
Ev-:
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-,
y 2 2 2,-3/
i ¢y = (M2-1)y(x -(M"-1)y"7) 372
o > 2 > » 2 2 2,-3/2
o ACpw) = (M™-1)(e,x + e y)(x"=(M"-1)y")
. y
.‘J
o
Y This shows that the stream lines pertaining to the perturbation
are radii y/x = const, although the pertinent velocity vectors
7
}:; have a different direction. For simplicity we set in the
r.
;; following discussions M2-1=1. Let us determine the values of Ay
f:j as functions of y/x We set AY=0 for y/x=0. It suffices if we
e carry out the integration along a line x = const. VLet y/x = a1
:Q; a, a,
1% - -1 /7
Ny aula,) = 2n | XYY oo 2020 =1/2 o 12)=1/2
o 1 J 2_.2,\3/2 1
’ 0 (X -y )
JQ
Y
A" As a,»1, Aw(a1)»w; the mass flow due to the perturbation within
'3 the Mach cone is infinite.
WAr
A
& According to the derivations of Section I, the particular
Q solution ¢ = (x‘?-yz)—”2 is valid throughout the xy plane, for
-
'ﬁ y/x > 1 it should be continued by ¢=0, and one must take into
:ﬁ account the infinite jump at y/x=1.
To get some insight, we replace the jump by a narrow
N
2 transition region 1-¢ < y/x < 1 (Figure 8). There we set
7
U
-~ 1 1-y/x 1 1 y
v ¢ = = ———75—=75(z - %) (C.10)
. x[1_(1_(_:)2]1/2 (2_6)1/26372 x 2
ﬁ- At y/x = 1-e, this matches the original expression
S 2__2,-1/2
- ¢ = (x“-y°)
%; At y/x = 1, it gives 0; i.e., it matches the outer field y=0. We
iﬁi compute the perturbation mass flow in the transition region:
Il
’ {
- |
; |
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Figure 8. Modified Potential at a Fixed Value of x Versus y for
a Supersonic Source, The jump at the Mach Cone is
Replaced by a Transition in a Narrow Region.
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y=Xx
—ome 372 (2-¢)71/2 f (-— + 2Y)yay
J T2t 3
y=x(1-¢)
y/x=1
=2n£_3/2(2—€)-1/2[((1/2)(y/x)2- (2/3)(y/x)3]‘
y/x=1-¢

One obtains for € small as mass flow in the transition region

€-1/22—1/2

-2w
The perturbation mass flow between y/x=0 and y/x=1-e from the
original expression ¢ 1is

on [(2e)71721]

The total mass flow between y/x=0 and y/x=1 is therefore -2m.

The physical picture for the perturbation mass flow (not for
perturbation velocity) is a very concentrated inflow in the
transition region and an outflow for y/x < 1-e, which becomes
very large as y/x approaches (1-¢). The total inflow exceeds the
outflow by m (Figure 9).

In the transition region the potential equation (the
equation for conservation of mass) is not satisfied, in other
words, one will find sources. This is seen in detail if one
computes the perturbation mass flow through a conical surface
y=ax, 1-€¢ < a > 1, extending from X to X5 We choose X4 < X5
then the following expression is an outflow from the region

y/x > a, for one travels around the region in the positive sense.
The potential is given by Eq. (C.10). One has

dy = adx
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Figure 9. Perturbation Mass Flow Vector in Supersonic Source Flow
at Some Radius within the Mach Cone. The Perturbation
Mass Flow is Finite in Radial Direction; the Vector
tends strongly to Infinity as one Approaches the Surface
of the Mach Cone, The Total Mass Flow within the Mach
Cone is Infinite. Concentrated Flow Back at the Surface
of the Mach Cone, exceeding the Total Outflow by zT,
Therefore the Total Configuration Amounts to a Source
with Negative Strength.
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The perturbation mass flow through this section for M2-1 = 1 is

. o
then given by »

| ’;2 72 -
& 2w ] (—¢xdy - ¢ydx) - -2ma | (-adpx + ¢y)xdx >
: x1 x1 v
b

X2 “

-— - 'Jl

2TaE 3/22 172 | (a(—l - gg) + —l)xdx e

J Z 2 2 .

’ X X X ”

1 v

- - -

= 2ma(1-a)(1+2a)e 3/22 1/210g(x2/xy) n

N

_‘\-

For o close to one, one obtains o

[
LY

6.27172 ¢73/2 1 1og (x,/x;)(1-a) (c.11) 2

v _a_ 0

L)

' r
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[

There is no flow through the line a=1. In the transition region

1-a < €. The last expression is therefore log(xz/x1) 0(g°1/2),

The expression (C.11) is the outflow from the region

X < x < X5y O < y/x < 1, since there is no net flow through the

combined cross sections X=X, and X=X5. The expression therefore
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represents the total of the sources within the region just
described. This total behaves as 5_1/2 as z+0,.

- \.5' .

P
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There is an outflow as one approaches the line y/x=1-¢ from

N

above, and no outflow as one approaches it from below. At the o
. . )
line y/x=1-e one therefore has concentrated sinks, which swallow ~

L)
[
»
W

the total of the sources from the region a < y/x) < 1,

The sources in the interior of the region and the sinks

PR

along the boundary y/x=1-¢ can be combined to form doublets.

Since the distance between the sources and sinks is O(e) the
1/2

[} Catw s
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total doublet strength of the transition region is 0(e
is the interpretation for the source solution.
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If one tries to use a similar interpretation for a potential

-
]

1, y/x <1
¢ = O y/x > 1

which is the first term of a development of % sin v R, one finds
that the flow in the transition region through cross sections

; X = const is proportional to X5 The total source strength in
the transition region is obviously not zero, these solutions are
therefore not admissible. At least for flows that are periodic
in time this shows, that only the first of the expressions shown
in Eq. (C.9) can be used to form a fundamental solution.
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SUMMARY

The report derives an integral equation for the linearized
supersonic unsteady potential flow over a wing. Every integral
equation formulation for a problem that appears originally in the
form of a partial differential equation presupposes the
availability of a fundamental solution. Such a fundamental
solution is available for the problem at hand in the literature.
It is rederived here to show its particular properties; further
discussions are found in Appenaix C. The integral equation
originally obtained requires that one carry out a limiting
process in which one approaches the planform from above or below.
This formulation is brought into a form in which this limiting
process no longer appears and one works solely with information
available at the planform. Examples which can be treated
analytically bring some properties which have a bearing on a

numerical approach into sharper focus.
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