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SECTION I

INTRODUCTION b

In this report the integral equation for the linearized

supersonic unsteady potential flow over a wing will be derived

and the special properties of its solutions will be discussed by

means of limiting cases that can be treated analytically. As in

every formulation, by means of an integral equation, the basic

prerequisite is a fundamental solution. The expression from

which we start here represents a local source with arbitrary time

dependence in a system of coordinates fixed with respect to the

wing. (The undisturbed air moves with respect to this system of

coordinates from left to right.) Only solutions representing

outgoing waves are admitted. The fundamental solution used in

the integral equation represents a time dependent doublet; it is

obtained from the expression for a source by a differentiation

into the direction normal to the planform. Use of such a

formulation in subsonic flows is shown in References 1 and 2.

The corresponding solutions for supersonic flow are given by the

same formula. Nevertheless, an ambiguity aries. It seems as if

one has two instead of one fundamental solution, each of which

satisfies the flow differential equation in the region in which r
the derivatives exist. At this stage, the typical phenomena of

supersonic flow are encountered. One has regions of influence,

with a boundary given by the surface of the Mach cone through the

point where the source is located. Along this surface the

fundamental solutions are singular. Outside the Mach cone they

are identically equal to zero. One might try to resolve the

above mentioned ambiguity by discussing whether the partial

differential equation for the potential is satisfied in the sense

of generalized functions as one passes through the surface of the

Mach cone. Some ideas which lie in this direction are found in

Appendix C. The ambiguity is resolved in Section II.

The point of departure is the fundamental solution for a

time dependent local source in a system of coordinates at rest

L%
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with respect to the unperturbed air. In this formulation, no

ambiguity is encountered. Next one proceeds, still in the same b

coordinate system, to a distribution of such sources along the x-

axis; and subsequently, by a specialization to a localized time

dependent source moving along the x-axis from right to left with r

the desired free-stream velocity. Finally, a transformation to 0

coordinates in which the undisturbed air moves with the desired

free stream velocity from left to right is carried out. This

gives the desired fundamental solution (a local time dependent

source in this last system of coordinates). This procedure is

applicable for subsonic as well as supersonic flows. In subsonic

flow one finds, of course, the particular solutions used

previously. In supersonic flow one finds the sum of two

expressions, each of which satisfies the flow differential

equation where the derivatives exist. The derivation gives only

one linear combination of these expressions and thus removes the

ambiguity.

In Section III, familiar formulae expressing the upwash in

terms of the motion and/or deformations of the wing are derived.

Section IV formulates the integral equation. The flow field
is represented by time dependent doublets distributed over the

planform. The source strength in its dependence upon time and

location on the planform is unknown at this stage. An essential

part in the formulation of the integral equation is a limiting

process by which one determines the upwash due to this doublet

distribution as one approaches the planform from above or below.

(The results are the same.) In the final formulation, this

limiting process no longer appears.

In the actual computation, the upwash due to the motions

and/or deformations of the wing is built up from expressions each

of which is the product of some function of coordinates within

the planform and a Hamilton step function in time. It is then

sufficient, if one solves the integral equation (separately for

each function of the planform coordinates for this special time

dependence). For such an upwash, the flow tends towards a steady

2



VV

state. In contrast to subsonic flows, the steady state is

reached within a finite time. The essential physical phenomenap, occur during this transition time.

Section V deals with two limiting cases that can be treated

analytically. The first one, the two-dimensional steady flow, is

very simple; the contributions of the integrals in the integral

equation are zero. The second example is the one-dimensional

unsteady flow. Again, the given upwash is built up by step

functions in time. (There is no dependence upon the point of the

planform under consideration.) For a step function, one can

determine the region in which the integrand is different from

zero. Within these regions the iterations can be carried out in

a closed form, and one obtains the expected result. For a

general upwash (but still with the time dependence given by a

step function), the regions of integration are the same, except

that there are no doublets upstream of the leading edge. The

example shows that the integrands jump from a finite value to

zero, as one passes its integrands over the boundary of the

region integration. The boundaries of the regions of integration

do not coincide with the subdivisions of the planforms imposed by

a discretization. In an actual program, one must therefore

decide whether to allow these jumps to be smoothed out, or

whether it is preferable to identify these boundaries.

In the initial stage of numerical experimentation with a

program, examples in which analytic solutions are available are

useful. In Section VI an exact solution for the two-dimensional

problem with a straight leading edge normal to the flow direction

is derived. This is possible because the flow field can then be

represented by a source distribution (rather than by a doublet

distribution), and because the strength of the sources is

directly given by the prescribed upwash. Again, a step function

gives the time dependence of the upwash. If the distribution of
the upwash over the planform is sufficiently simple, for

instance given by polynomials in the coordinates, then the

integrals that arise can be evaluated analytically. In testing a

'e_. 10 1



numerical procedure, one will solve the same problem by means of

the integral equations for the doublet distribution and examine

how well one recovers the analytical results for the potential.

In Appendix A certain integrals are evaluated analytically.

Appendix B determines the shape of the regions of integration, if

one evaluates the integrals at a distance from the planform.

Originally, this was done for the purpose of an extended

discussion of the one-dimensional unsteady problem. (The

treatment in Section V is restricted to points of the planforms.)

The shape of the regions of integration obtained in this Appendix

can hardly be foreseen on the basis of the results of Section V.

Again, the time dependence is given by a step function. If the

time after the step is small, then it is insufficient for the

perturbations to propagate the point off the planform under

consideration; regions of integration do not exist. If the time

is slightly larger than a certain cutoff value, the region of

integration is a circle for one of the expressions in the upwash

integral; for the other expression there is no region of

integration. Regions of integration of this type are not present

if one evaluates the upwash at the planform. Beyond a further

cutoff point, one finds nonvanishing regions of integration to

both terms in the upwash integral. Their boundaries are formed

by a nyperbola and parts of a circle. These regions deform

steadily into those which one encounters if the upwash is

evaluated at the planform.

1



SECTION II

THE FUNDAMENTAL SOLUTION

The point of departure of this report is a fundamental

solution which represents a source located at a fixed point in a

system of coordinates with respect to which the air moves with

the constant velocity U. The strength of the source depends upon

time. In the integral equation from which the flow field is

/ determined, one needs the expression for a doublet. It is

obtained from that for a source by a differentiation. In the

subsonic case, the expression for the source can be derived

directly from the partial differential equation for the potential

linearized for small deviations from a parallel flow with this

velocity U. It is not entirely obvious how to make the

transition to supersonic flows; in fact, in an initial attempt

the author was led to an erroneous result. A clear cut answer is

obtained if one starts with a particular solution which

represents a time-dependent source at a fixed point in a

coordinate system which is at rest with respect to the surround-

ing air, and subsequently derives from it the expression in a

system which moves with respect to the air. Similar approaches

can probably be found in the literature. The derivation is shown

here in order to make this report self-contained.

Let x, y, z be a Cartesian system to coordinates, t the

time, a the velocity of sound in the undisturbed field, L a

characteristic length, and O(x,y,z,t) the potential. The

differential equation for the linearized potential in air at rest

is then given by

~11
-2 -

xx yy zz a tt

Introducing dimensionless quantities

x - x/L, y - y/L, z = z/L, t - at/L (2)

(x,y,z,t) = a L l(x,y,z,t)

I%
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where one expresses x,y,z, and t on the right-hand side by

x,y,z and t, one obtains

4 + 4 + 4 - 4, 0 (3)
xx yy zz

Hence, for a perturbation with spherical symmetry

- 2-

rr r r t t

where

- 2 +-2 -2 1/2
r (x 2 + y + z

The particular solution for an outgoing spherical wave is then

given by IN

4, = - f(t - r) (4)
r

Here f is an arbitrary function of its argument. The potential

equation is an expression for conservation of mass. No mass

sources arise for r * 0, for there the partial differential

equation is satisfied, but at r = 0, mass emerges. This is seen

in the following manner. The expression (4) gives a radial

velocity

,= 2- -2 f(t-r) - f'(t-r)
r - r

r

where f' is the derivative of f with respect to its argument. The

mass flow through a surface with radius r is then

-4up[f(t-r) - rf'(t-r)]

6
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where p is the density. Then for r 0, one has

mass flow = -47pf(t). N
Except for the factor -4ffp, which will be unessential in future

developments, the strength of the source at time T is given by

f( t) .

Next, we consider a distribution of such sources along the x

axis. One then obtains an axisymmetric flow field. It is.

sufficient to consider the flow in a meridian plane with

coordinates x and y where y is the distance from the axis of

symmetry. Later, y will be replaced by (-2 + z21/2

For a source at the point x = F, y = 0, one has

r( ,xy) = [(x~_)2+ -2 1/2 (5)

Let the time dependent source strength per unit length of the x

axis at the station x=& be given by f(t,C) (an unessential factor

-47p is omitted). Then,

x Ptd (6)
)r( ,x, )

This expression is now specialized to a source moving in the

negative x direction with the velocity U. In the xt system, it

then moves with the dimensionless velocity M - U/a. As a first

step, we choose

where 6(t--r) is the Diract delta function. Considering T as a

function of , one obtains a source which wanders along the

axis and has strength g( ) at time t = -(E). No mass is expelled

at this station for t A T( ). The mass expelled in an interval

t( )-e < t < T(C) + c with E arbitrarily small, is g( ). Now we

7



choose r( ) so that in a coordinate system, moving to the left

with respect to the x,y system with the dimensionless velocity M,

the source is always at the origin.

Then

(7)

')=-M
1

-

Substituting this into Eq. (6), one obtains

'I-0

$(x y~t = g(E)6(t+ M-1 C- r ( &, x 'y ) ) d (8

-. r( ,x, y)

To utilize the defining properties of the delta function, we

choose, instead of , the argument of the delta function as

variable of integration

t + M - - r( ,x,y) = v

[M -1  + --= ]d = dv (9)

r

Mr
d /dv=

d~/v =M(x-E)+ r

Eq. (8) now assumes the form

,-t f Mg( )6(v)dv (10)

M(x- ) + r

here, is regarded as a function of t,x,y, and v. We determine

the values of for which the argument of the delta function,

namely v, vanishes. Then from the first of Eqs. (9)

,; 8
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Mt + - Mr 0 (11)

It is convenient to introduce

F + Mt f

x + Mt = x (12)

y y

One then obtains from Eq. (11)

r IM (13)

Since r is positive, it follows from the Liist equation that only

such values of are admissible in Eq. (10), for which F is

positive. After expressing r in terms of , x, and y, one

obtains from Eq. (13)

SMI(x_,) + .2 = .

This quadratic equatir)r for has the solutions

-I(x ( 2 1/2] i 1,2 (14)F i = M ( I M F [ - t~ ( x ( I y I 1, (1 4

One has for M <

ILx- + (1M )y] *I>11

The sign of the exprossion wi t.hin the brackets in Eq. (14) is

therefore determined by the sign of the square root. But, we had

observed above that only posltiv(l values of F, give positive

values of r. If M < 1, only the positive sign of the square root

* is applicable.

, .
9
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For M > 1, one obtains real values Of F~Only if' the raidicand 0

is positive, i.e., forb

x - M - y, > 0

The present disrcuss ion rt,! erz; to t poinat,-,for, which the

argument of the delta fun t ion vanrishes, i.e., for which the

contributions to the potontial, in FEq. (10), is different from

zero. The last equat ion de7f ines a f'oren.one ( x<KG) and an

aftercone (x) of *the p)iitl x-,, v=Q . As in V:k2,-,dy supersonic

flows tho2 potential of a source ait x=-,, y=') is different from

zero Only within the fore- and aifter'cone.

We write the express ion

K=M(M- [Mx +(xL (M'- )Y') 1(5

For M > 1 , the sign of' the expression within the braces is

determined by the sign of Mx. As F, is positive , only positive0

values of x are admitted. This restricts the values of x and y

to the aftercone of the origin in the xy-system. Both signs of

the square root are admissible.

After introducing x and y and expressing r by Eq. (13), the

denominator of the integrand in Eq. (10), evaluated for UU-

v =0, is found to be

M(x- ) + r =Mx - MK. + 1M

-MX +(1-M 2 M i =1,2.

Sustttig 'Eq. (14), one obtains (both for subsonic and

supersonic flow) for v = 0,

r [ 2
+2 21/

Mkx-C) + r x+(1-M )y]

With this result, one obtains furthermore from Eq. (9)

10

dC 0



__ Mr 22/
dv ±[x2+ (1-M 2)y2112

v=O

This shows that at the point where v = 0, , will increase or

decrease, depending upon the sign of the square root.

Now one can evaluate the integral in Eq. (10) on the basis

of the definitions of the delta function

+C

6(v)dv 1

-C

6(v) 0 0, v 0

One obtains

V mg( .

$(x,y,t) = 2 2)y 1/2
i -+ M )y

Here, according to Eq. (12),

- Mt

The values of are obtained from Eq. (14); only positive values

of i are admitted. We have found that for M < 1, only the

positive sign of the square root in Eq. (14) is admitted; for

M ) 1, both signs will occur. One thus has for M < 1

-(x,,t M g(-Mt+M(I-M 2) (-Mx+(x2 +(-M2)y ) I/2)]
[x2 +(i-M 2)y2 I/2 (16a)

and for M > 1

i,,) 212 (16b)
[x -(M -1)y

{g(-Mt - M(M 2-1) -[-Mx+(x 2-(M2-1)y2)
2

- M2-1 2 2 2 12
+g(-Mt - M(M2-1)-[-Mx - (x--(M -)y

for x > 0, IjY < (M 2-1) 11 x.

IVV
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So far, the analysis has been carried out in the xy,t system.

This is the system which is at rest in the surrounding air. The

variables x and y appearing in the last equation have been

defined in Eq. (12); they have been introduced to simplify the

calculations. Accordingly, one should express in the above

formulae x and y by x, and y. To obtain the corresponding

expression in a system of coordinates in which the source is

stationary, one must transform to a system of coordinates which

moves with the source, i.e., it moves with the dimensionless

velocity M from right to left. Accordingly, one must set

X *X + Mt

y =y

0(x, y, y, .<:t:',t

But x and y are identical with the coordinates x and y introduced

in Eq. (12). The right-hand sides of Eqs. (16) have therefore

already the desired form if the step from x to x is not carried

out. To simplify the expression further, we set A

Mg(-M=) g(0

One will remember that we restricted ourselves to one meridian

plane with coordinates x and y. In general, one must replace
-2 -2 2 2 2
y by y + z - y + z Then one has

for M < 1 "j,

(x'y'z't g(t-(1-M 2 )-1 [-Mx + (x +(1-M)(y + )) )

2 2 2 2 (17)

[x + (1-M )(y+ Z )

12
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and for M > 1,

0(x,y,z,t) = [x 2-(M 2-1)(y 2+z2)1
- 2

2 -1 2~2) 1/2

{g(t+(M 2-1) -1[-Mx+(x 2-(M2-)(y2+z 2) 11

(18)

+g(t+(M 2  1)-1 [-Mx-(x 2 (M2 _1)(y 2  2)) 1/2

for > , y< (2 I-1/2
for x > 0, y < (M -1) x, otherwise €p=0.

The different appearance of the fundamental solutions in

subsonic and supersonic flows finds an explanation in Figures la

and lb which show, at a fixed time t, perturbations in a medium

at rest caused by momentary emissions of mass from a point moving

- from right to left with the dimensionless velocity M. It is

assumed that at t = 0, the point where the perturbation occurs

arrives at the origin of the x,y system. For M < 1, the

perturbation generated from the individual points lie on circles

nested within each other. If the perturbations started at x =

at a time t - , then these circles cover the entire x,y plane.

Only one circle goes through a given point x,y. The center of

this particular circle gives the point of the x axis from which

the perturbation started.

If M > 1, then all circles lie within a cone through the

point x = -Mt,y = 0. (One will remember that the picture is

drawn for a fixed time t.) Inside the cone one finds two

circles going through each point. More familiar is the

interpretation of these figures as perturbation introduced at

some point (x,y) of a coordinate system in which the air moves

with the dimensionless velocity M from left to right. The

perturbations are then found on expanding circles whose center
moves with the air particles. (Since these are figures referring

to just one instant in time, both interpretations are possible.)

All further discussions will be carried out in the x,y,t system.

For an oscillatory source, one has

13
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7- 77 e ;... .- 7- -77v x;

g(t) - exp(ivt)

Then, for M < 1,

? 2+ M2 2 2]-1/2

(x,y,z,t)= [x 2 (1-M )(y + z ]

(19)

2 12 2) Y2 2 1,12exp( iv(t-M(1 -M 2  -[Mx+ (x2+ (I-M 2 ) (2 z ) /

for M > 1

p(x,y,z,t)= 2[x 2+(M2 -1)(y 2+ z2 -I / 2

(20)

exp(i(t-M(M2 -1)-Ix))cos( (M 2 -1 (x2_(M2_l)(y2+z2 1/2

x > 0, Jyl < (M 2 -)- 11 2x.

One notices the occurrence of the cosine instead of an exponential

function with imaginary argument. The difference in appearance is

the reason why a direct transition from the subsonic fundamental

solution to the supersonic fundamental solution is not possible.

The phenomenon has a counterpart in the general unsteady case.

As (x2 - (M 2-1)(y 2+ z2 )) tends to zero, (i.e., as one approaches the

Mach cone through the point x - 0, y - 0), the arguments in the two

expressions in Eq. (18) approach each other and one can develop g

with respect to

(Me-1)(x2_ (M 2-1) (y 2+ z2)) 
2

,,I

15



One obtains

2 2 2 2 - 1/2 2 -4(x,y,z,t) = 2[x -(M2-1)(y z )] [g(t-M(M-1) x

-(1/2(M2 1) -g (t-M(M 2-1) -x)(M 2-1) -2(x 2-(M 2-1)(y ))2+,z

(12')(2  -1 IV 2
" (1/24)(M -1) g (t-M(M -1)x)

2_ -J4  2_ 2_ 2 2 2
(M -1) (x -(M -1)(y2 z2))2... -+-

2.

This situation can be expressed in the following manner. Let 0

2_ 2_ 2 2 -1/2
R - Ex -(M -1)(y +z2 -

S

At the Mach cone one has R=O. Then one has, from Eq. (18)

p(x,y,z,t)=R- 1{g(t+(M 2-1) -1(-Mx+R))+g(t+(M 2-1) -1(-Mx-R))}

For fixed t and x, the term within the braces is an even function

of R.

The original particular solution in the xy-system is valid

throughout the xy-plane, (which is fixed with respect to the

undisturbed air) although, because of the introduction of the 6

function for f, the individual perturbations are restricted to

circles and large regions of the plane remain free of

perturbations. Since the final expression in the xy-system (in

which the air moves) is obtained merely by a coordinate

transformation, the results are valid in the entire xy-plane, in

spite of the singularity which occurs at the surface of the Mach

cone. This means that the partial differential equation for is

satisfied, even as one passes through this surface.

16
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SECTION III

UPWASH CONDIT'TIONS

Let

x =xL, y=yL,z=zL,t=tL/a

i.e., x, y, z, and t give a system of coordinate corresponding to

x,y,z,t, but before these coordinates have been made

dimensionless. Let

p (x,y,z,t) = aL(x,y,z,t) =aLp(x/L, y/L,a/L,at/L)

Let the deformation and/or motion of the wing surface be

given by

D(x,y,t) .

The upwash condition is then expressed by

aD @D

z ax a

This is now written in the nondimensional form. Let

D(x,y,t) =LD(x/L,y/L,at/L)

Then

D D 3D -aD
q,.. -n- D , -mw- =a

z ax ; t

3ince U/a =M, one obtains

=ZMD + Dt (21)

17



SECTION IV

THE INTEGRAL EQUATION FOR TIME--DEPENDENT SUPERSONIC FLOWS

General time dependent supersonic flows over a wing whose

planform lies in the xy-plane can be represented by doublets

(oriented in the z-direction) distributed over the planform and,

if one has a subsonic trailing edge, over part of the wake.

Fundamental solutions for such doublets are obtained from those

for sources by a differentiation with respect to z. (In the

present context a normalization of the sources or doubleis is not

needed.) The evaluation of the upwash due to this (unknown)

doublet distribution requires a further derivative with respect

to z. The desired integral equation for the doublet distribution

is obtained by equating the upwash so found, with the upwash

prescribed by the upwash condition Eq. (21).

Let q be a system of Cartesian coordinates in the plane of

the planform; corresponds to x and n to y. Let the doublet

strength at a point of the planform ( ,n) be given by h(t,C,q).

Let furthermore

= (M - 1) / 2  (22)

To obtain the potential due to a source at the point =x, n=y,

one must replace on the right hand side of Eq. (18) x by (x-)

and y by (n-y).

We introduce

R = [(x-8) 2 
-22 -2(n-y)2]1/2 (23)

and

-2_ret = 5-[M(x-) + RI (24)
1,2

18
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here the upper and lower sign pertain to the former indices i=1

and i=2.

The symbol ret stands for retardation. Roughly speaking,

it gives the time required for a perturbation to propagate from a

point CT, to a point x,y,z.

In the coming discussions x,y and t are kept constant. In

some of the functions that will occur, these quantities are not

listed as arguments.

The potential due to a source distribution in supersonic

flow is then given by

(S).(s)(t,xy,z) (I/R)[h(t-ret1 X y, TI , T1

+ h(t-ret(x,y, ,n), ,n)]d~dn (25)

2
The region of integration comprises all points of the

planform and sometimes of the wake, that lie within the forecone

of the point x,y,z, for only then is R real and x-E > 0. The

boundary of the region consists of the hyperbola R=O,

Eq. (23) and of the leading edge. The vertex of the hyperbola

lies at

(x-E) = 8z, n=y (26)

for z > 0

To bring the portion of the boundary formed by this

hyperbola into a simple form we introduce

,. ,-n y -1 -

n=y + a qn (27)

with q(x-&,z,8) = [(x- ) 2 2z2] I /2 (27a)

_2z
One notes q 3 z (28)

3z q

Then R - q(1-n2/2 (29)

19
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dn = B-qdn (30)

The hyperbola R=O is then transformed into three straight

lines in the Fn plane

and q= 0

Only the line q = 0 depends upon z. The condition q=O

becomes

X- = Bz

Let O be the smallest value of which occurs within the region

of integration. Eq. (25) can be written in the form

x-Bz(t,x,Y) ( (i Z )  + J 2 (E,z))dC (31)

&o

where after substitution of the retardation

1 ,2 (
& z) -

* upper

B - if-2 -1/2 - 2 -2 1/2 - 1--
i (-n )I h(t-6 [M(x- )+q(-n ) I],E,Y+a qn)dn (32)

lower

For simplicity x,y, and t are not shown as arguments of J1 and

For those values of for which the upper and lower limits

, of n are formed by the hyperbola R-0 these limits are +1. For
values of C where one or both limits for q are formed by the

S20
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leading eage the limits depend upon and z. At. thos. i s he

potential and therefore also the function h is zv-ro.
I

To obtain the potential of a doublet distritution, with the

doublets oriented in the z direction, one must differentiate tlhis

expression with respect to z. We consider first a region 1< <x

where I is sufficiently close to x so that the limits of
n ae +1.Let4~(s,I) (d, I)

are + 1. Let ( and , be the contributions to the
(s) (d)"

potentials 4( and ( from this region. The point of

departure is

( ,I) f

(J1 (,z) 2 ( ,z))d (33)

N..

In differentiating this expression with respect to z one obtains
(dIa)

one term denoted by 0 due to the differentiation with (dIb) e
respect to the upper limit and a second term, denoted by 4 jd b

due to the differentiation of the integrand. .

One finds

(dla) +¢(d~ ) = _8[ 1(&lZ )  + de2( 1'z)]l,

According to Eq. (27a) one has q = 0 for = x-Bz; the function h

in Eq. (32) is no longer dependent upon n. Now

+ -

-n -)-/2 d =

-1

Therefore

0(dIa) = _27h(t-MS- 1 z, x-z,y) (34)

The dependence of the functions J and J in Eq. (33) upon z
1 2

enters through the function q (see Eq. 32). As q appears in two

21
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of the arguments of the function h one obtains from each of the

functions J1 and J2 two terms for their derivatives with respect

1 2 2 3
to z (superscripts b and c). We denote derivatives of h with

respect to its first second or third argument respectively by

h h (2  and h Then with Eq. (28)

(J 1 (b)/3z) + (aJ(b)/ z ) 

+1

-h q 1h - )1/2 ],,y+ -qn)}d q (35)

and

(a 1 (c)/3z + (aJ2 (c)/az)

+1

-i (- 2 -1/21h(3) 2M2/2 q-1q-T-z 1 )t - M - )+q(1 - 2 /2 , Y - -1T

-1 2

h(B - -2 M x -q(1- )I/ ], ,y+B- qn d1 (36)

At the upper limit of the integral (31), one has q=0. The factor

q in the last Eqs. (35) and (36) might cause the integrals in

Eq. (31) to diverge, but because of the special form of these

equations this does not happen; the reasons are different in the

two cases. In Eq. (35) the two terms of the integrand agree for

q=O, except for the signs. Accordingly, the integrand is O(q);

observing that for q=O,

X- -Sz

and

22
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'p

+1
-2 1/2-= /(1-n) d /2

-1

one finds

ne ((aj (b)/z)+(aj 2(b)/3z)) =-z B-3h(1,1)(t-a-1Mz x-Bz y)
q+O

Regarding Eq. (36) one observes that I

2 - 2-2(3)t--2[M(x- q -2) 1 / 2 ]  i- y)dO
-1

because of the antisymmetry of the integrand with respect to n.(3)
Notice that only the last argument of h---differs in Eq. (36) and

(37). Subtracting the two forms of Eq. (37) from Eq. (36)

developing the expressions with respect to the last argument and

observing that

+1 -r n 2dn i
J (1_-2 1/2 2

(1n)-1)

one obtains 4

lim ((aJ 1 (c)/az)+(aJ2 (C)/az))=-zf -lh(3 ,3)(t-B-1Mz,x-Bz,y)
q O

Again this expression is bounded. This procedure requires that

one carry out the integration with respect to n first. One can

now carry out the limiting process z4O. Since the z derivatives

of J and J contain a factor z, their contributions vanish in

this limit. One therefore obtains

lim 4(dl) = lim (dla) = -27rh(t,x,y) (38)
z+O z4O

.
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Accordingly, the function h represents, except for the f,ictor

-2n, the potential at the upper side of the wing.

In order to obtain the upwash due to the expres.3ion )

one must form the derivative with respect to z and subsequently

perform the limiting process z+O. One obtains from Eq. (34)

.(aia) = 2 (Ma-lh(l (t x,y) + h(2) (tx,y))

or in more conventional notation

lim (dIa) = 27(Ma-lht(t,xy) + h (t,x ,y))lira z ' x
z.O

Eqs. (35) and (36) have the form zF(z). Then

d
lim - (zF(z)) = F(O)

z*O dz

Taking into account that qi = x - i one obtains
z=O

x +1
(dIb) .fdC ( l-1[h(1 )(t_B-2[M(x_ )+(x_ )(l_ n2)I/2] , y, -1(x_ )n)

lim -
z.O

.1 -1Z-O-2

-h (1) (t-6- [M(x-c/-(x- ) ( - 2) 112] F , ,y -+ x n ]1

( -2 -1/2 [ (3) -2[M(x_-)_(x_-2 1/2] , y -1 (x

1/2 ] , , y * a - 1 (x- )-)] }dn

(sI) (s)
In the contribution of 0 one has q O. The upper

limit of E, namely &,1 is fixed. In differentiating J1 and J2

with respect to z one obtains, in principle, contributions from

the z-derivatives of the limits lowe r and , upper' While these

limits are fixed in the Fn-system they will depend upon z in the

Fn-system. These limits are given by the leading edges and there

", 24
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h=O. At subsonic leading edges a square root singularity

appears. There might be a question whether or not this has an

effect on the second derivative with respect to z. This has been
aiscussed in considerable detail for the steady case (Ref. 4)

with the result that in the limit z+O there are no contributions

due to these limits. One therefore finds

(sII) 0

lim z0
z-*O

li ,(dli) (dl)
Moreover, lim z will have the same integrand as 0z ; only

z+O
the region of integration is different Returning to the original

coordinate n one obtains the following expression.

Let

R = [(x-() 2  
- 2( y) (39)

ret = 2[M(x- ) R]
1,2 +R

Then

0 z(t,x,y,z=O) = 2 (M ht(t,x,y) + hx(t,x,y))

2B (3) (3)____T
((n-y)/R)[h h(tret1,,n).h (3)(t-ret2 )]} ddn (40 )

The region of integration has as boundaries the leading edge and

the two Mach waves through the point (x,y) into which the

original hyperbola degenerates for z4O. Equating this expression

with the upwash found in Eq. (21) one obtains the desired

integral equation for the q(txy). From Eq. (38) one obtains

the potential and hence all quantities of physical interest. The

integrands in Eq. (40) occur with a retarded time argument. In

essence they are known from the results for preceding time steps.

.5.
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If data up to a certain time are known, then Eq. (40) allows one

to evaluate ht(t,x,y). This is the essential step in an

integration procedure.

We add the following observation. In most of the practical

problems the upwash computed from the displacement and or

deformation of the wing Eq. (21) can be written in the form

w(t,x,y) = c k(t) W k(X,y)

k

where the number of functions wk(x,y) is rather small. These

functions are considered as known. Whether or not the functions

c k (t) are known in advance depends upon the nature of the

problem. In aeroelastic problems the determination of the

aerodynamic response is done in a preparatory phase and then the

deformation are not yet known. In the aeroelastic equations the

c (t) will then appear as dependent variables. It is practical
k

to express the functions ck(t) in the form

C k(t) = ck O )  + (-t)H(t- )dT (41)

Here Ck denotes the derivative of ck with respect to its

argument and H(t) is the Hamilton step function

, H(t) = I , for t > 0

H(t) = 0 , for t < 0

One observes that H(t-T) 1 1 in Eq. (41) because t>T. We assume

. that no perturbations are present at t = 0.

Accordingly, it suffices if one solves the integral

equations for

w(t,x,y) = Wk(x,y) H(t-T)

26
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I 1W

separately for all functions wk(x,y) that are of interest. Since

t does not occur explicitly in the formulation of the problem, it

is even sufficient if one solves it for

w(txy) = Wk(xy)H(t). -
k)

All other solutions can be built up from results obtained

with these expressions for the upwash. Since for t>O, H(t) is

independent of t, the solution for h(t,x,y) represents the

transition to a steady state with the boundary condition

W = Wk(X,y). This happens within finite time.
kWX-

To become familiar with the special properties of the

integral equation, we consider special cases in the next

sections.

.
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SECTION V

SPECIAL CASES

A nearly trivial example is obtained for a two dimensional

steady flow in the xz-plane. Then w = w(x), w t = 0, h = ht = 0

h 3
= h = 0. The integrals in Eq. (4 0 ) vanish and one obtains

Y

w = w(x 2T h t

One has, according to Eq. (38)

4) = -27h(x)

By definition w =z

Therefore, from Eq. (40)

4z = -8x' valid for z=0

This relation is a solution of the equation for two-dimensional

a' steady flow-a'

4 Czz 4 = 0.
2xx zz

More insight is obtained by the one-dimensional unsteady

case. Here all solutions can be built up from the solution of

5, the problem with

w = w(t) - H(t)

From the partial differential equation, which in this case

simplifies to

azz tt = 0,

one expects to find

28
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=('42)

t z

We therefore set, tentatively,

h =cH(t) ,h = 0, h =0 (43)
t xy

who*re thp eonstant c remains to be determined. The integral

equation then gives

z H(t) =c[21TMB-1 H(t) 1 1- 21 (44

where

I (H( t_- (M( x- 2-R) d~dn (144a)
1,2 J (x- ) 2

R [(x_ 02 - a2(ny2l/2

We immediately set x=0 and y-0 (since all points of the xy-plane0
are equivalent) and consider a fixed time t. The region of

inerainlies between the Mach waves truhthe point

C=x=0 9=y=O 6N

i.e., between the straight lines ..

TI =B VOK

As a further boundary one has the curve for which the arguments

of the functions H vanish -

t-B (-M&,+R) 0 045

The more general case, in which R is given by

R A'

29
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is discussed in Appendix B. One finds for both signs of R

in Eq. (44a)

S( _ _M ) 2 2 = 2 2
("-(X-Mt)) + (n-y) 2 t - z

This is a circle with center at x-Mt, n=y and radius

2_ 2 1/2(t z

In the present case z=O, x=O, y=O. The last equation

reduces to

2 2 2
( +Mt) + n = t

The areas of integration for the integrals I and 12 are

then given respectively by Figures 2a and 2b. Since in the areas

of integration H=1, one obtains

2fd~dn
1 2 JJ 2

where the area of integration is the circle

( +Mt)
2  + n 2  = t 2

Setting

+ Mt &t

one obtains

-  = - r (2_M)2 + (1

30
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Figure 2b. Regions of Inteczration for z=0 at Different Times..
The Boundaries are Formed b', the Mach Lines and Parts-
of Circles.
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First integrating with respect to n one obtains

+1

1112 = J d - 2

The integral can be evaluated in terms of elementary functions

(Appendix A).

1 .1 2Tr(1-(M/ ))
1 2

Substituting this into Eq. (44) one obtains

H(t) 1 = c 27r

Hence c = (2n) 1

With Eq. (43) one finds

-1

h t  = (2r ) H(t)

and therefore

- -H(t)

This is indeed the result anticipated in Eq. (42)

The jump of 0t at t-O encountered here is typical for

problems whose time dependence is given by a step function. This

is no reason to abandon such an approach; it is the key step to

the solution for general time dependence. It may, however, make

special measure in a numerical approach necessary. 4 and its

derivatives are functions of t, x and y. In the numerical work

one will therefore generate tables which, for individual points

(x,y) of the planform, give 0 (and probably also t) as functions

of t. t and @ appear in the integral equation with the first

33



argument t-ret, where the retardation depends on x-F and r-y. In

general an interpolation will be necessary, to find the

quantities in question for these arguments.

As far as the determination of the integrands at given

points ( ,n) is concerned, this does not generate a difficulty.

One will always have t=O as first value of the independent

variable in the above mentioned tables for the selected points

(x,y). If the argument t-ret < 0, one always obtains zero; for

t-ret > 0, one will use interpolation.

In this example, we have seen that the vanishing of t for

t-ret1 < 01 defines a boundary for the region of integration.

Describing the situation in a different manner, we consider the

integrand versus n at a fixed value of , Figure 3. At t-ret = 0

the integrand jumps from zero to some finite value. The jump

will in general not occur at one of the chosen points (x,y). If

one uses interpolation then one replaces the jump by a ramp. The

error so introduced will be small, if the points ( ,n) are

closely spaced. It may, however, be preferable, to identify in

advance the point where the jump occurs (here the value of n) and

modify the integration formula accordingly.

Some numerical experiments will be needed to arrive at a

satisfactory compromise between complexity of the programs,

. computational labor, and accuracy.

- In the next section we treat by analytical means the two-

dimensional problem with a supersonic leading edge and

w(x,y) = H(t). In this case one can represent the solution by a

distribution of known sources and find the potential by a direct

integration. The result can serve to test the accuracy of

numerical approaches where the same problem is solved by means of

the integral equation (which uses the concept of a doublet

.* distribution).
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Actual Integrand

-- Smoothed Integrand

Boundary Point of the Region
of Integration (t-ret)=O

Figure 3. Integrand versus n at a Fixed Value of . The Circles
are Points at which the Integrand is Tabulated if
the Problem is Discretized. If the Boundary Point of
the Region of Integration is not Identified then the
Jump at the Boundary will be Smoothed out over one
mesh. S
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SECTION VI

THE TWO-DIMENSIONAL PROBLEM WITH A STRAIGHT SUPERSONIC
LEADING EDGE

The problem can always be reduced to one in which the

*leading edge is normal to the flow direction, by considering only

the velocity component normal to the leading edge.

If the potential is represented by sources with strength

h(t, ,i), then according to Eq. (38), taking into account that

3 (t,x,y) = d(t,x,y) = -2rh(t,x,y)

We choose

w(t,x,y) = 2rH(t)

then

h(t, ,I) = -H(t)

and from Eq. (25)

4( ) (t,x) = - R[H(t -2[M(x- ) R])+H(t-B [M(x- -R]ddq

R [(x-_) B2n2
1 2

The areas of integration can be reduced to those points of the

plan form for which the arguments of the unit step finction H are

positive. Accordingly one writes

- R R R
R1  R2

where R I and R 2 are the respective areas. The regions H1 an '

are bounded by the Mach waves through the point F,-x, n-0, i.,.,
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+ B-1 x-('47)-I)

and portions of the circle

(×_ _ Mt)2 + 2 t (48)

This circle is tangent to the Mach waves. Tangency occurs at

M t. These points of tangency divide the circle into

two parts; they constitute portions of the boundaries of R1 , and

R2 . Furthermore the regions RI and R2 are restricted to the

planform.

We call temporarily basic regions of integration the regions

with the boundaries given by Eq. (47) and (48). Their shape is

seen in Figure 4, case a. The actual regions of integration RI

and R2 differ from these basic regions on account of the fact,

that upstream of the leading edge there is no upwash and

therefore no sources are encountered. For fixed t the shape and

size of the basic regions of integration is always the same. if

x is varied then the entire figures shift in the x direction.

For different values of x different parts of the basic regions of

integration are cut off by the leading edge. Thus one obtains

different cases depending upon the value of t/x. They are shown

in Figures 4. In determining which configuration applies in a

specific case one remembers that the most upstream point of the

circle lies at =x-(M+1)t, the point of tangency between the Mach
wave and the circle lies at C=x-M- 1 (M2 -1)t, and the most

downstream point of the circle lies at C=x-(M-1)t 2  The leading

edge lies at C=O. One thus obtains the following cases,

Figures 4.
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Leading
Edge

*Case a

Figure 4. Boundaries of Integration
for Fixed z and Different

-Values of x in a Supersonic
Leading Flow with Straight LeadingEdge Edge Normal to the Flow

Edge Direction.

Case b
For each Value of x one

> has two Different Areas
of Integrations. The
Shape of the Areas of
Integration is the same
for all Values of x,
except that Parts
Upstream of the Leading
Edge must be Excluded.

Case c

>

C>

Case d
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Case a t/x < (M+1)

Case b (M+1)-I < t/x < M(M2_1)-1

Case c M(M 2_)-1 < t/x < (M-)-I

Case d (M-1)-I < t/x

We introduce

-̂  rB t e n -1

T =t x-&, = n(x- ) (49)

and R = (x- )(1-n2 )I 2

The integrals in Eq. (46) then assume the form

( i _ 2 ) 1 1/2

The integrations with respect to are carried out first. To

de"'-rmine the limits of integration, we determine the points of

intersection of the straight lines fi=const in the en-plane with

the circle that forms part of the boundary of the region of

integration. Substituting the definition of fi, Eq. (49), into

the equation of the circle, Eq. (48), one obtains

2 2^2 2_
((x-&)-Mt) + (x-&)2n /(M2 - t

This equation is first solved for (x- ), but the result is

written down for &.

2 2 21/12
tM(M_ ) t(M l )(1-n) I (2

Let B1 ( 2r_ ) , B,(r) (52
-1 

2 - I 2 (5O)
39

".

" 39



Then the two roots for are

x- (B1 B2 ())

'2 X - (B 1(n) - 2

These are the lower limits for E, if the line n=const ends on the

circle. If the line =const ends at the leading edge, =O.

Thus the lower limit is given by

in the region RI  by max(O, ,(n))

and in the region R2 by max(O, 2 (n))

The upper limit is always =x

Then one obtains along a line n=const

d = x - max(O, 1 (n)

= min (x,B 1 (n) + B2 (n)) in the region RI

jd = min (x,B 1 (n)-B 2 (n)) in the region R2

Thus

- =1n=+
" (S) i min(xB 1 (n)+B 2 ()) r min(xB 1 (n)-B 2 (n) ^

(tx) 2 1/2 ^ + -2 1/2d1 n di ]n
n=-i (1-a) n=(1-n )

',.

(51)

°,

.. The transition from one form of the minima to the other occurs at

the points of intersection of the circle
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2 2=2(x- -Mt) + T =t

with the leading edge, i.e., the line F,=O. Hence, characterizing

these points by a subscript 0

no = + [t 2 - (x-Mt) 2]1/2

Now, for =O

Then

t t 112

or = i t /2 (52)or no /B x M+1 (-1 x

The transition from one form of the minima to the other then

occurs for

n= n
^0

The form of n0 shows that the points of intersection are real

only if

v (M-7) < t/X < (M-1)

Now specific expressions for the minima can be listed.

Case a: t/x < (M+1)

for -1 < n < 1 min (x,BI+B 2  B 1  + B2

min (x ,B1 -B2) = B 1  - 2

41
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Case b: (M+I) < t/x < M(M -1)

for -IioI < n < nol , min (x,BI+B 2 ) = x

for -1 < n < -Inol

and Inoo < n < 1 min (x,BI+B 2 ) = B1  + B2

for -1 < n < + 1, min x,B -B B2

Case c: M(M 2 1) - 1 < t/x < (M-I 1

for -1 < < I min (x,BI+B 2 ) = x

for -1 < n < -1nol

and Ino < n < 1 min (x,BI-B 2 ) x

1 2
for - InOl < -i < I TO I min (x,BI-B 2 )  B1 B B e

-1Case d: (M-1) < t/x

for -1 ( n < 1 min (x,BI+B 2 ) = x

min (x,B 1 -B2 ) = x

These expressions are now substituted into Eq. (51), the

resulting integrals are combined in such a manner that the limits

are either n=-1 and n=-1, or n=-n 0 and n-=+n O * One obtains

Case a, t/x < (M+1)
1

"# +1 ^ +1^
1- I (B,+B2 )dn (B 1 -B 2 )dn

-(t,x) 1 2 ( 1 - 2 )d- -  + 1 -1 "2) 1/21
-1 (1 ~ -1 -

42
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+I-( B dn
(P(t,x) = -28 12 712 2

-1

2w

Case b, (M+1) < t/x < M(M 2 -1)-1

S + n +1 1
(B +B 2)dnu x-(B 1 +B2 )dn [ (BI-B 2 )dn

0(t,x) = - 11 7 2 /2 +  (1 2 1/2 + 2) 1/2'
-1 (1-f ) -(o -1 (1- "

BB 1d -(B1 +B 2 )dn

+ +
-1[ Bl-n ) x-B+2d

Case c, M(M 2-1) < t/x < (M- 1

+1 ^ +1 +n 0  + B

f xd rl f xd - - f xdn (B1 B2)dn4(tx) 1 ] (-- 1 2 dn 1 Ti- +dnj _2 /2 j 2 1/2
21  j 22 112 1 2 d

-1~~~ (1f I + T-f2) 1

+ ~ r TI^ .

+1 + 0f dnI f (-x+B -B2)dn

* (t,x) 1 - 1 2x n2 17Z + 77 172-"

'0 
%

Case d, (M-l) < t/x

+I1
-I [ dn( t , x ) - -2 B -x 2 1

The integrals occurring in these expressions can be expressed by

elementary transcendental functions

( /2 arc sin

43
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One obtains with Eq. (50)

F B2dn 2 Me  F d = 2 1 /2B 2~ /2 = t(M 1) 2 t(M -1) arctg 21/2
2 112 -t, 2211112

(-fV)' -+ (M-1

B 2 )fI/2 = t~arctg

B1d M2 _  d 2V = t(aretg M

J i2 )I/1 = tM(M 1) (M 2_1+f2 )(_ 2)172 (1-I2)72)

These formulae can be verified by differentiation. Regarding the last

expression, it is shown in Appendix B how it can be derived from an

integral found in Ref. 3.

One then obtains the following specific formulae

-1
for t/x < (M+1)

p(x,t) = -2tiT = -2xir(t/x)

for (M+1) -1 < (t/x) < M(M -1) - I

4(x,t) = -2x[L(t/x) +8-arc sin n0

-(t/x) arctg (M O (t/x)arctg 0]

2f 2-11

for M(M 2-1) < t/x < (M-1) -

-(tx) = -2x[ T-6 are sin + (t/x) arctg M 0
0 6 -fi2 17/2)

(lo

- (t/x) arctg -0)]

4 4

< 'S
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for (M -1) < t/x .%

$(t,x) = -2x6 -  
7i.

nO  is found in Eq. (52).

It is probably best to evaluate the expressions for fixed t,

as a function of x.

r
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APPENDIX A \

EVALUATION OF SOME INTEGRALS

The integral

2 )1/2
I = 2

can be decomposed into

2M -M __1 ___

-M-1, )_1_1

One hasS

____dF =arc sine T n

The other integrals are found in tables, for instance Ref. 3,

Formula 236, 3c

dx a ar sinx
7 2 2 a/2 2 2 1/2a(x-ca)(a -x ) c a a7

Therefore

+1 .

2 1/2

2 11 0

1, 1 +M' I
-[M ~ 7 Tarc sin -f-ar 1-i --

(M2  12 sn- 1 -r i (M~1 /

47
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Formula 236, 3a of Ref. 3 reads

d -1 (a2 _x 2)/2 ) dx

ka2 2 172= 2 -k-1 -- (2k-3)a J k-1 2 2 1/2
x-a) (a -x ) (k-1) (a -a2 ) x aX)  (x-a) a -x

- (k-2) r dx ]2 112
J(xa)k2 (a 2 -x2)

Hence for k=2

+d - 2 1 /2
I'dC I L - M d 2C /2

2 ( 2 /2- 1M 2  T-M) J (F-M)(O- )

M7r
_ - 3/2

(M -1)3 2

Thus

, +1 2 1/2 2M
dC(1-g 2 ) = (-1 + - 1/2 M 1/2 I

(C-M) 2 (M-1) (M2 -1)1
b -1

In the next integral, a decomposition is carried out, so

d that the first order poles are displayed.

f dn 1 1 _1
"- ) 2 .B2 2 172 =  I J (-iB)( l )2 2-d n)

"." (n +a ( - )(qi)(1-n

. Therefore

-mdn I I dn (A.1)

2 2- 211 6 2 1/2

* Now one finds in Ref. 3, formula 236, 3c

2 2 2 2 2 1/2
....- 1log - x(a ( -a )(a -x

" " J(x-a)(a 2 -x 2 )  /  (a 2 - a 2  1 - x-

Specializing for a=1, a=i6, x=n, one obtains, with M2-I,

48
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( dn 1 -i~n+1 +(I-n 2 1

~Y7~ ~ logTI ( - B)(1 -72 : M og n-iB)

2 1/21 (-i~n*1+M(1-n ) )(rn+iB)
- log 2 2

fl +B

2 1/2 2 1/2 2 1/2

1 l Mn(M+( - + i (1- ) (M+(I- ) )
-Mlog 2 2

2 112

-1[logM1-n 2 ) 1/2 l-n2) 1/2M2+ 2 -q +oi

The last term in the bracket is a constant of integration

which can be disregarded.

Therefore, from Eq. (A.1)

dn 2-72 arc tg 1/2J~n2 B2)(1-n M6(1-n 2

I
o

-p
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APPENDIX B

REGIONS OF INTEGRATION FOR z O

Before he discussed the one-dimensional time dependent flow

for z=O (Section IV), the author investigated this problem for

ziO. One obtains, as expected, the results usually derived from

the partial differential equation. In this appendix an

intermediate result is shown, namely how, for fixed x,y,z, the

regions of integration change with time. In Section IV the

corresponding regions have been shown for z=O. It is of interest

to observe the relation between these cases.

It is assumed that the time dependence of the upwash is

given by a Hamilton step-function. The arguments are given by

argl 2 = t - ret = t - 2(M(x- ) + R) (B.1)

with

[(x-)2 - 2(n-y)2 2 2 > 0.

The areas of integration at fixed x,y,z,t are characterized by

the conditions, that R is real, and that arg I > 0, arg 2 > 0. In

the present special example, all points of the En-plane are

equivalent, there is no leading edge. In the general case the

region of integration has the same boundaries, except that points

( ,n) upstream of the leading edge are excluded.

Part of the boundary of the region of integration is given

in the Cn-plane by the hyperbola R=O

(x-0) 2 - (-y) 2 2 - 22 (B.2)

In the interior of the hyperbola R>O. Only the branch for which

x- > 0 is of interest.
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The vertex of this hyperbola lies at

= x-jz; z > 0)

n =y

Its asymptotes are given by

ri-Y = + I (x-)

Other portions of the boundary of the region of integration

are given by the curve along which arg I or arg 2 vanish.

Substituting 2 one obtains from Eq. (B.1)

(M2 -1)t - M(x-C) = + [(x-C) 2 - (M 2 -1)(n-y)2 - (M 2 -1)z 2]1 / 2

Squaring both sides to remove the square root and dividing by

M2-1, one obtains

M 2t - t2 - 2M(x-C)t + (x- ) 2 + (n-y) 2 + z =0

or

2 2 2 2 (B.3)

(&-(x-Mt)) + (9-Y) =t _-z(B3

This is a circle with center at C=x-Mt, n=y and radius

(t -z ) I  One surmises that the hyperbola R=O is tangent to

this circle. Elimination of (n-y), from Eqs. (B.2 and B.3) gives

the values of C (or rather (x-C)) for the points of intersection

of the two curves. Actually, this process eliminates z at the

same time. One obtains

2_ 2
(M(x-C) - (M-1)t) = 0

The fact that one obtains a double root for x-C indicates that

the curves given by Eqs. (B.2 and B.3) are tangent to each other
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(if they have points in common at all). The points of tangency -'

lie at I

x M -1

The corresponding values of q are found from Eq. (B3

2_
2= M2-1 t2 2

The points of tangency divide the circle for which arg, = 0

and arg2 = 0 into two parts. At the point of tangency as along

the entire hyperbola, R=O. In the interior of the hyperbola

R > 0. If one travels along the circle starting at the point of

tangency in the direction of decreasing (x- ), then arg I (upper

sign of R) is zero, and arg 2 becomes positive; this portion of

the contour is therefore the boundary of the region there

arg I > 0. The portion of the circle for which x- is greater

than the value for the point of tangency is the boundary of the

region for which arg 2 > 0.
I

The smallest value of t, for which points of tangency exist,

arises if the circle is tangent to the hyperbola at its vertex.

Then (n-y) = 0 and

t = M(M2-1 z. .

This, however, is not the smallest possible of these circles.

The radius is given by (t 2-z ). The smallest circle therefore

arises for t=z. This is a point in the interior of the

hyperbola. There R > 0. These circles in their entirety are

boundaries of regions where arg, > 0. One thus obtains the

sequence of boundaries shown in Figure 5. Those boundaries in

Figure 5b that consist of full circles are not present if z=0.

5.
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APPENDIX C

DISCUSSIONS RELATED TO FUNDAMENTAL SOLUTIONS I

Fundamental solutions can, of course, be derived directly

from the partial differential equation for the perturbation

potential in a system of coordinates in which the air is in

motion. Here one has

-(M2-1xx yy xt t,

Let

2_1/2' (2_ 1/2(C)x = x, y y(M-1) , = z(M-1)(C.2)

and consider perturbations which are harmonic in time

€ = p(x,y,z) exp (ivt) (C.3)

Then

n - 0 (C.4)'

-xx + 0 + ¢zz M2 0 + -_ Ite

The derivative x is suppressed if one introduces

exp (- i---- X) (C.5)

One obtains

+ 2 0 + 0 (C.6)

xx yy (NI2 _ 2-1)

Particular solutions are obtained as follows. Let "

2 2 '2 '-2RH = 7 (y +

57
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and assume that p depends upon R only; then

2

+ 2 - 0__ A 0
eRR + + 2_1

This is solved by

(1/R) exp )R (C.7)
M -_1

Returning to the original coordinate one has
W

S2 2 2 22
R =x (M _1)My +Z)

= (1/R) exp(ivt - iVMx + iv R)

M 2 _1 - M21

These are, of course, the particular solutions encountered in Eq.

(20). But the present derivation does not show, which linear

combination should be taken. Besides, it is not clear, whether

the continuation of these particular solutions outside of the

cone R > 0, is given by 0 0. We shall see, that this is not

always the case.

Eq. (C.6) has no physical significance because of the

splitting off of the factor exp( 2 x) in Eq. (C.5). Since thisex t2_--

M -1
factor depends upon v this procedure has no counterpart in the

general nonsteady problem. The following observations may,

nevertheless, be of interest.

Let

V

M2 -1

Then one has

0 + + 0 0 (C.8)
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It is remarkable that in this equation 1 occurs in the second

power, while in the solution Eq. (C.7) it appears in the first %

power. If, however, one separates in Eq. (C.7) real and

imaginary part one has

1 % .
-fcOS(VR), and Rsin(\R) (C.9)

and the development of these expressions proceed in powers of v

One can think of solving Eq. (C.8) by a development with respect

to v To the lowest order one then has

'RR + R ¢R 0 V

with the solutions

= (1/R) and = 1

0=(I/R) is the first term of the development of (I/R) cos vR, 4-.

is the first term of the development of (I/R) sin vR (after 0
multiplication by v

There is a remarkable difference in these expressions which

will be explored further in this appendix. The solution /R - IR

is real only within the Mach cone. But it can be continued

outside by 0=0, and the expression satisfies the differential

equation even as one passes through the Mach cone.

The expression 4=I holds everywhere. But because of the

nature of supersonic flows one does not admit perturbations 0

outside of the aftercone of the point xyz. Therefore, one is
inclined to set 0=0 outside of the aftercone. But then one fails

to satisfy the flow differential equation as one passes through

the cone. S

We discuss the case v=O further; it is the first step in a

development with respect to . The function * is the el

perturbation potential, its gradient describes the perturbations

in the velocity field. Let us discuss the perturbations in the
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mass flow vector pw (where p is the density). Let po be the

density of the basic flow

4 + e'

Apw = pw- p Ue '

Now

w = e + Awx

+ +
Aw = , e + 4, e + e

x x y y z z

and = o+ Ap

One has dp = 1/a2
dp

The perturbation in the pressure Ap is found from Bernoulli's

equation

Ap - -PoUx x

2
Then Ap = -poU0 /a = -p M /a

Therefore

= p,(-Mo x/a)(e x(U+, x) e 4, 0Y ..pw Po1x- yy ."

Apw 2 + + +
P ex(y )ey y ezz -

The potential equation expresses conservation of mass. If it is

satisfied, then one has

div(pw) = 0

and for the linearized form of the potential equation

.. 1
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div(Apw) = 0.

In the cylindrical coordinates x,y this equation assumes the form .

9V
-- (yA(P~x + 5 (yA(pw)Y) = 0

This equation is satisfied by introducing a "stream function" Ay

for the perturbed flow -

yA pw) x = 2iAy q,

yA(pw) : -2-A x

Then

Ai = 27T (yA(pw)dY - yA(pw)dx) %

If one chooses two points A and B (Figure 6) and connects them by

some curve and evaluates the last integral along this curve, then •

the result is independent of the choice of this curve.

Therefore, Aip is a function of x and y. The difference APB-A ..

is the perturbation in the mass flow passing through the

axisymmetric surface generated by rotating the curve AB with the I

meridian plane around the x axis. Since A depends upon x and y

only, one can draw "stream lines" of the undisturbed flow (lines

A :=const). The total mass flow through the surface AB is, of

course, the mass flow due to the unperturbed flow plus the

contribution of the perturbation.

This is applied to the fundamental solution (Figure 7)

-(x2(M2-1)y ) 1 2  X>O, IY <(M 2 1)-112 •

d.-

Then

2 2_ 2 -3/2

Px -X(x -(M 2 -1)y ) •
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NP:

2 2 2 2 -3/2
= (M -1)y(x -(M -1)y2)

2- 1 -( + 2_ 2_ 2-3/2A(pw) = (M -1)(ex + eyy)(x -(M I )y
x y

This shows that the stream lines pertaining to the perturbation

are radii y/x = const, although the pertinent velocity vectors

have a different direction. For simplicity we set in the
2

following discussions M -1=1. Let us determine the values of' Ai

as functions of y/x We set Ap=O for y/x=O. It suffices if we

carry out the integration along a line x = const. Let y/x = a

a y2 -y2 /  2r((I-a) -1)

Mp(a I) = 2n 2 xydy _2 2 /2 2-1/2
Ap( a2T J (x 2 Y 2 ) 3 2  = 1x x y10

As ai-1 , AP(a 1 )4-; the mass flow due to the perturbation within

the Mach cone is infinite.

According to the derivations of Section 1, the particular

solution X (x -y 2 is valid throughout the xy plane, for

y/x > 1 it should be continued by 0=0, and one must take into

account the infinite jump at y/x=1.

To get some insight, we replace the jump by a narrow

transition region 1-c < y/x < 1 (Figure 8). There we set

1 1-y/x - (C.10)
x[1-(-) 2]1/2 E (2-) /2 37 2(l x

o At y/x = 1-c, this matches the original expression

,(
2 _y2) -1/2i" ¢ : (x -

At y/x 1 1, it gives 0; i.e., it matches the outer field y=0. We

compute the perturbation mass flow in the transition region:
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Figure 8. Modified Potential at a Fixed value of x Versus y for
a Supersonic Source, The jump at the Mach Cone is
Replaced by a Transition in a Narrow Region.
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y=x
_2-ff -3/2 (2-:) -112 1 +_/ 2yI)ydy]/ ( 2  + X3

y=x(1 -z)

y/x=l

=2Te-3 /2 (2-c) -/
2 [ (1/2) (y/x)

2 - (2/3)(y/x)
3]i

y/x=I -E

One obtains for c small as mass flow in the transition region

2 1 -1/2 -1/2

The perturbation mass flow between y/x=O and y/x=1-E from the

original expression ¢ is

21T [j2c) 1 1 2 _1]

The total mass flow between y/x=O and y/x= is therefore -2a.

The physical picture for the perturbation mass flow (not for

perturbation velocity) is a very concentrated inflow in the

transition region and an outflow for y/x < 1-E, which becomes

very large as y/x approaches (1-c). The total inflow exceeds the

outflow by n (Figure 9).

In the transition region the potential equation (the

equation for conservation of mass) is not satisfied, in other

words, one will find sources. This is seen in detail if one

computes the perturbation mass flow through a conical surface

y=cax, 1-c < a > 1, extending from x1 to x2 . We choose x1 < x 2

then the following expression is an outflow from the region

y/x > a, for one travels around the region in the positive sense.

The potential is given by Eq. (C.10). One has

y = ax

dy = adx
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Figure 9. Perturbation Mass Flow Vector in Supersonic Source Flow
at Some Radius within the Mach Cone. The Perturbation
Mass Flow is Finite in Radial Direction; the Vector
tends strongly to Infinity as one Approaches the Surface
of the Mach Cone. The Total Mass Flow within the Mach
Cone is Infinite. Concentrated Flow Back at the Surface
of the Mach Cone, exceeding the Total Outflow by zT.
Therefore the Total Configuration Amounts to a Source
with Negative Strength.
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2The perturbation mass flow through this section for M -1 1 1 is

then given by

x 2  2 -

5.-.

21 - dy 2dx) +-2na (-1)x + .y)xdx

xl X

x2
-3/2 -1/21 2c +2~ ~ 2T otE c(!)xdx
2Tcx 2 2 (c( 2 - 2

xx
or

= 27c(1-a)(1+2(x)s -3/2 2- /2log(x 2 /xy)
2 ,

For a close to one, one obtains

.5.'
3112 -3/2

6.21/2 C- I log (x2 /x1 )(1-a) (C.11)
.5k'

There is no flow through the line a=1. In the transition region

1-a < E. The last expression is therefore log(x 2 /xI ) O(E-112

The expression (C.11) is the outflow from the region

x1 < x 2 , xa < y/x < 1, since there is no net flow through the

combined cross sections x=x I and x=x 2. The expression therefore

represents the total of the sources within the region just P
described. This total behaves as c1 as z.O.

There is an outflow as one approaches the line y/x=1-E from

above, and no outflow as one approaches it from below. At the

line y/x=l-E one therefore has concentrated sinks, which swallow

the total of the sources from the region a < y/x) < 1

The sources in the interior of the region and the sinks

along the boundary y/x=1-E can be combined to form doublets.

Since the distance between the sources and sinks is O(E) the

total doublet strength of the transition region is O(e 12). This V..

is the interpretation for the source solution.
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If one tries to use a similar interpretation for a potential

= 1, y/X < 1
Nj,

= 0 y/x 1 I ,N

which is the first term of a development of sin v R, one finds 0

that the flow in the transition region through cross sections

x - const is proportional to x 2 . The total source strength in

the transition region is obviously not zero, these solutions are

therefore not admissible. At least for flows that are periodic

in time this shows, that only the first of the expressions shown

in Eq. (C.9) can be used to form a fundamental solution.
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SUMMARY

The report derives an integral equation for the linearized

supersonic unsteady potential flow over a wing. Every integral

equation formulation for a problem that appears originally in the

form of a partial differential equation presupposes the

availability of a fundamental solution. Such a fundamental

solution is available for the problem at hand in the literature.

It is rederived here to show its particular properties; further

discussions are found in Appendix C. The integral equation

originally obtained requires that one carry out a limiting

process in which one approaches the planform from above or below.

This formulation is brought into a form in which this limiting

process no longer appears and one works solely with information

available at the planform. Examples which can be treated

analytically bring some properties which have a bearing on a

numerical approach into sharper focus.
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