RE—
A Subsidiary of Bolt Beranek and Newman Inc.

AD-A193 761

BBN lLaboratories incorporated == 5

-

ROV

AR

[3
-

L e v e
L3 .l ll ‘! .l

oy L

ﬁf“‘ [

me T

ol o gl o

Report No. 6813

INTERIM REPORT

April 1988

E Submitted to:
Advanced Research Projects Agency

E: 1300 Wilson Blvd.
' Arlington, VA 22209

o Office of Naval Research
E Department of the Navy

Arlington, VA 22217-5000

BISTRBUTION STATEMENT T A

Approved for public relecrs;
Matdbution Tnlimited

e s 5

&'-“ A Rl W AU W BT R IS Raf RV Rl St T L RS LS AR R VRS AL

b §

s
55

e I

INTEGRATION OF SPEECH AND NATURAL LANGUAGE

D. Ayuso, Y. Chow, A. Haas, R. Ingria, S. Roucos, R. Scha, D. Stallard

G, AR 2810804

G\-i

AAL LU IS T Jo a i BN T SNt D RATI T T I e o ns, TaR Bl M " i S

e UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

READ INSTRUCTIONS
o REPCRT DOCUMENTATION PAGE BEFORE COMPLETING FORM
N T REPORT NUMBER 2. GOVT ACCESSION "01). RECIPIENT'S CATALOG NUMBER
o BBN Report No. 6813
e 4. TITLE (an” Subtitie) $. TYPE OF REPORT & PERIOO COVERED

Interim Report
Dec 30, 1986 - March 31, 1988
6. PERFORMING ORG. REPORT NUWMBER

BBN Report No. 6813

. AYUTHOR(S) 0. CONTRACT OR GRANT NUMBER)

Integration of Speech and Natural Language
Interim Report

e
"'l
~

D. Ayuso, VY. Chow, A. Haas, R. Ingria,

14-87-C—
'! S. Roucos, R. Scha, D. Stallard N00014-87-C-0085
o~ - [y ggﬁriu{;g%%gg}uiysﬂou NAME AND AQORESS 10. ::gﬁn::;*(::srrf.:ull-o.;!:s:, TASK
P 10 Moulton Street
t} Cambridge, MA 02237
11, CONTROLLING OFFICE NAME ANO ADDRESS 2. REPORT OATE
- Otfice of Naval Research April 1988
. Department of th: Navy 13. NUMBER OF PAGES
™ Arlington, Virginia 22217-5000 84
T4 MONITORING AGENCY NAME & AOORESS I/ different {rom Contreiling Office) | 13. SECURITY CLASS. (of thie raport)
ﬁ‘ Unclassified
o. QECLASSIFICATION OOWNGRADING
SCHEDULE
":‘ 18 OISTRIBUTION STATEMENT (of this Report) ..
S bistrlbutlon of the document is unlimiied. It may be released

to the Clearinghouse, Dept. of Commerce, for sale to the general public.

;I, 17. OISTRIBUTION ETATEMENT (of the sbetract entered in Bloch 20, Il ditferent (remn Report)
r

O -

'

¥ 8. SUPPLEMENTARY NOTES

.

™

19. XEY WOROS (Continue on revarse aide If necessary and .dentiiy by block number)
Unification grammars, parsing, natural language processing, Compositional

k. semantics, Intensional logic, Higher order logic speech recognition,
speech understanding, hidden Markov models, -~

(A% i
Ny o 9€

o plrren = T4

1 '- -

- 20 ABSTRACT (Centinue on raveres sids (t hecessary and identily by bleck number) i

We-presant--in this inter: reportfour work on integratiﬁg speech and

o natural language processing for speech understanding. We describeSthe
:3 components of the system: the unification grammar and corresponding parser,

the higher order intensional logic and the type system used for semantic)
- interpretation, and the search stracegy used for speech understanding. i/, {:i(¢’
!'5-
;':' FORM
>, EDITION OF 1 NNV 83 15 OBSOLETE
p3 DD\ Jawn W73 " ' UNCLASSIFI

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

o
(e

Lt B b St B8 RAURT DT §FLS A0 BV R LU S Tt 5.5 38 Uoh B0 SN BERE SRV LS 50 0t S B Tt Tt R b R L LS T R Tt ol Bt b ROV AV GV 0 Sl el |

- Report No. 6813

L oo}
v,

. ARPA Order Number 5947

Contract Number N00014-87-C-0085

Contract Duration: 30 Dec 1986 - 29 Dec 1988

Principal Investigators: Dr. Salim Roucos (617)873-3452
Dr. Remko Scha (617)873-2670

»

;
4

INTEGRATION OF SPEECH AND NATURAL LANGUAGE
INTERIM REPORT

D. Ayuso, Y. Chow, A. Haas, R. Ingria, S. Roucos, R. Scha, D. Stallard

April 1988

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
e Defense Advanced Research Projects Agency or the U.S. Government.

LSESLEVHL TR SEREE CLER CREGU T W S LEL CL CERR L L ARCACR AL SR Tl TR CO O TR B0 A A e T A T DA AT e SO O T &’QC‘):{

«

—

Report No. 6813 RBN Laboratories Incorporated

‘- Table of Contents

t_, Executive Summary : 1
)
» 1. The Syatactic Component 5
v 1.1 The Grammar Formalism 5
1.1.1 The Relation between The Grammar and the Lexicon 6
Lo 1.1.2 Optional Elements 8
g 1.1.3 “*‘Meta-rules’” and Feature Value Default Mechanisms 8
) 1.1.4 Trace Flags 8
o« 1.2 The Parsing Algorithm 9
V: 1.3 Qualitative Measures of Coverage 11
W 1.3.1 The Top Level Constructions 12
1.3.2 Clausal Constructions 12
~ 1.3.3 Verb Phrase Constructions 14
-:‘-j 1.3.4 Auxiliary Constructions 15
1.3.5 Noun Phrases 16
_ 1.3.6 Adjective Phrase Constructions 19
¥ 1.3.7 Adverbial Constructions 20
& [.3.8 Other Constructions 20
1.4 Quantitative Measures of Coverage 21
“h, 1.4.1 Grammar Size 2
ﬁ 1.4.2 Syntactic Coverage 21
1.4.3 Perplexity 21
[.4.4 ‘Ambiguity 23
e 1.4.5 Overgeneration 25
o 1.5 Future Plans : 26
1.5.1 Extending Coverage 26
1.5.2 Reducing Spurious Ambiguity 28
2 ! 1.5.3 Changes to the Grammar Formalism 28
2. The Semantic Component 29
P{'
s 2.1 Introduction 29
2.2 The Nature of Semantic Knowledge 29
s 2.3 System Design Overview Accession For 33
kit 2.4 The Logic IMNT I"_WGRA&I_‘-E‘_ 35
2.5 Example of Processing ’ D'"I(f . 38
d# 2.6 The Semantic Framework System - D O 40
3 2.6.1 Introduction | Unonuounced a 40
- 2.6.2 Logical Expressions as Data Abstractions | Justifiontion | 41
2.6.3 Functions for Defining Constants T 42
¥ 2.6.4 Functions for Extending the Language IRy 42
:-{ 2.6.5 Translations and Transformations P nyse ritution/ 43
2.6.6 Functions for Comparing Types ! e o “-— P 44
2.6.7 Syntax Checkers for Logic Expressions i Shy tedes 46
o Avall ave/or
Diat | Zpeoiad
! \ | ’
e] P/ | i
A ! i
N LA
™ .
i
‘} 3y

o e M o 1 o By o AN e S T L o T L T R A o G O A R AT, O Y vy

P Y

e
-l " e
;% BBN Laboratories Incorporated Report No. 6813 e
)
) -
N 1‘:
o &
e, ‘
e, .
= 2.7 Accomplishments over the Last Year 46 fm
2.7.1 Implementation Status 46 L)
L 2.7.2 Theoretical Issues and Publications 47 o
n 2.7.3 Future Work 47
o | &
;-sh 3. Speech and Natural Language Integration 49 W
A
i 3.1 Speech 50 3
[, 3.2 Integration oi Speech and Syntax 52 n
N 3.2.1 The Time-Synchronous Speech Parser 52
o 3.2.2 The Word-Synchronous Speech Parser 54 ~
o 3.3 Integrating Semantics 56 s
3.4 System Implementation 57 K
1.4.1 Silence Handling 57
3.4.2 Search Strategies 57 }f‘(
3.5 Current Status and Future Work 59 ,.'_:}
References 61 b4
-k
4
APPENDIX A. A Parsing Algorithm for Unification Gramnmar 65
Andrew Haas N
A.1 Basic Concepts 67 K
A.2 Operations on Sets of Rules and Terms 68 o
A.3 The Parser without Empty Symbols 70 K
A.4 The Parser with Empty Symbols 73 i
A.S The Parser with Top-Down Fiitering 75 -
A.6 Discussion and Implementation Notes 81 o
g
23
§u
1
&
i7
s,:
¢
AL
<4

"]

S A T T AT N A IS o, At b b T R T A N R T R My Ty N W TR S L R T N T T T ¥ e N E R T T W R P T M TR TR P T R e T T

-

Report No. 6813 BBN Laboratories Incorporated

A

List of Figures

B 3

Figure 1: Architecture of The Natural Language Processing System 2
Figure I-1: BBN ACFG Parsing Algorithm 11
Figure 1-2: BBN ACFG Resource Management Training and Test Corpus Coverage o)
Figure 2-1: Screen Display of Parsc Tree 39
Figure 3-1: Dynamic Time Warping (DTW) algoriuim 1 51
Figure 3-2: Dynamic Time Warping (DTW) algorithm 2 51
Figure 3-3: Time-synchronous Lattice Parsing Algorithm 53
Figure 3-4: Word-synchronous Parsing Algorithm 55

'r‘; ‘.’g

_,w
A

ST Aot

l.‘ l(‘ l’.

P

S

ra

".1'\ lk 3

aes
m

RN s " - . A e W 5 " P e e . P s R S . a
L-:.’b'\ A A R N R R S SN RO RAR L LU (N A A A L (L P R L TN L R R P LT 00 P (A T VL LR L s Tt i

e

Report No. 6813 ' BBN Laboratories Incorporated

- W l,
et

Executive Summary

t;:’ This 1epont describes the progress during the first year of the project from January 1, 1987 to December 31,

i 1987, During this first year, we have focused on two major activities:

. ¢ Development of the syntax and semantics components for natural language processing.

ar * Integration of the developcd syntax and semantics with speech for speech understanding.

‘_-:: To measure the coverage of the syntactic and semantic components and the performance of the integrated

w system. we use the DARFA 1000-word Resource Management Domain Corpus. This corpus has been used for

- developing a standard speech database for evaluating the performance of speech recognition a!gonthms developed

i"‘-_ under the Strategic Computing Program.

o Our work on natural language processing included the developement of a grammar (syntax) that uses the

r_f-n' Unification grummarz {formazlista (an augmented context free formalism). The Unification grammar formalism. the
rules, and the parsing algonthm are desc.ibed in more detail in Chapter 1. The syntactic phenomenina that the

;:;'_ grammar handles are also described. Currently. the grammar cover 83% of a trwning corpus and 64% of a test

o corpus. The training corpus is examined by the syntax developers and is us2a 10 determine the phenomena that

Fa stiould be handled. The test set is n2ver examired by the syniix developers and its purpose 1s to aillow us to esamate

ﬁ performance on an independent set that would be representative of the ulumate system's pecformance in the field.

o The pursing algorithm extends the algorithm of Graham. Harrison. and Ruzzo [9] from the context-free case to

:::- incorporate unification. The new algonthm is reviewed briefly in Section 1.2 of this report and the paper by Haas
{11] describing the algorithm in detail is included as Appendix A.

§ The semantic component uses a pnncipled mathematical logic- approach for developing a representation of

- meaning and the associated interpretation algonthms. Higher-order intensional logic is used as the logical language.

C;: The semantic interreter uses 4 translation steps to derive the meaning of a parse tree of a sentence: the relationship
among these levels is shown n Figure 1. First, the parse tree is converted to an expression of EFL (English-onented

L Formal Language): at this level. each word (including words with multiple senses) has one EFL constant. Second. a

_':': possibly ambiguous EFL expression is translated to several expressions of WML (World Model Language). Note

) that each EFL constant that cortesponds to an ambiguous word may have multiple WML constants, which can result

'l::‘ in a combinatonal explosion of WML expressions denved from an EFL expresssion. Not all combinations are

=2 meaningful. however. Meanungless combinauons are filtered out: they are recognized by a module that uses the rvpe

‘ system of the logical language. The third transliuon converts the remaining set of WML expressions to expressions

‘E\ ot DBL Data Base Language), which are {inally converted to vilue expressions by evaluating the DBL expression
against the data base. At the value stage, presuppositon failure can be detected.

i

. We have completed the basic framework of the semantic component, implemented the type system, and have
1.cuded semantic knowledge to demonstrate interpretation on a small set of sentences. In the coming year, we plan

t’s to increase the semantic coverage signilicantly to yield a useful system.

-'.’ " N

o+ 1

L

M M WA W e D W P N S T T W .'V{

A TN R A o Ao N DU W W W L W W o P W o W oA o o W

3 | 5
Y BBN Laboratories Incorporated Report No. 6813 a
WORD SEQUENCE
{ 7
[4N
Syntax 1
Parse ‘&‘
Trees
—rCexicon > 3
‘/ 1.:
General
Semantics Compositional Fu
Semantic Rules &
Generai
Sermantic EFLs NATURAL LANGUAGE x:
Expresslons o UNDERSTANDING 8
omain
Domain ‘/' MOdel E“
Semantics ~
\ EFL—> WML
Domain Rules K
Semantic WML(s) ot
Expressions
Conversion to %‘
Database —» WMI#Gl’esDBL -
Language o
“::
Database | . ccttoe e o
Query ;DBL !
_)
. RESPONSE
Query > Application FORMULATION -
Evaluator Database 0
Response cvL T E
;-:,‘
Response =
Presentation
.
voY oy :
."_'
Speech Text Graphics o
LI
!
Figure 1: Architecture of The Natural Language Processing System e
. .'\
R
2
o2
e
DN T8 T I L AN N A o T T PO DT 0 O AT TAIDU T D A n."[h.'_‘-.‘vnrpxp.'“mu.n.rmmﬂm_muinﬁ_ﬁm.J

e

)

X

S5

Py
-l—'

.y
L4

B 4

-~

2 T |
N

e
:'.";J‘

e

s

l-"

I“
>,

1Y

Report No. 6813 BBN Laboratories Incorporated

The work on integtation has led 1o the development and implementation of a search strategy that integrates the
vnification syntax, compositional semantics, and hidden Markov word models into an algorithm that finds the best
interpretation of the input speech. The search therefore integrates natural language knowledge sources and uses
their constraints to find the word transcription and meaning of input speech. The search is based on the parsing
algonthm that has been developed for the syntax, and applies semantics as a post process. The parser is used to find
a set of grammatical sentences that have a high acoustic likelihood score given the speech. This set of sentences is
ordered by decreasing likelihood. The semantic compongent is then applied as a post process on this set of sentences
1o determine the highest scoring meaningful utterance. That sentence is the recognized sentence. The search is
currently implemented and has run on a few sentences. We cxpect in the coming year to improve the etficiency of

the search, and 10 evaluate the speech undersianding performance on a set of speakers.

In addition to the above accomplishments during this first year. we have also demonstrated the serial
connection of speech recognition with a natural language component. In this case, the speech uses a language model
that 1s different from the syniax and semantics components of natural language processing. This approach is not
optimal and we think it is only applicable tor applications of very low perplexity (less thun 50). The integrated
approach described above is required for larger perplexity tasks. Nevertheless, the sertal demo is useful to
demonstrate speech understanding in an actual task, due *, its speed in recoguition. The speech component had a
vocabulary of 600 words and a finite state grammar with a perplexity of 40. The recognized word stnng was passed
to the natural language componem which interpreted the request, accessed the database system, and presented the
ouput usmng ke « simialaaon of the OSGE graplucs systein. This deioustration was capatle of andiiag die deo
scenario and was n. considered as a robust system. The seral connection was demonstrated on two occasions:

se b P progrum nandger &l oier W sl penwipuns of e Sumesc Conpeding Speech Progrum ruestiog ob
October 13-15. 1987.

The remaining chapters of the report describe our work on syntax in Chapter 1. on semantics in Chapter 2, and
on the integration strategy in Chapter 3.

R T T i I T T e R R T Y s e Al S TS A L. Gl LT B D L Sl Bl A SRS TN PR 0 Ao S e !

TR T RN e

L

BBN Laboratories Incorporated

g’ S T I S S et NN AT Pt

Report No. 6813

W

L—‘.‘

o

i
A

oo

43

LSt

WY O W W M\ W W PO W W W W0y ¥ T MNP e S W M A AT AT A M A T T T R R g R e T By e

Y :
b Report No. 6813 BBN Laboratories Incorporated
b
!- 1. The Syntactic Component
“* This chapter descnibes the syntactic component of the BBN Spoken Language System. This component uses a
:;‘ broad-coverage grammar written in an augmented phrase structure grammar formalism and parsed using an
algorithm based on the CKY algonthm for contexi-tree grammars. Section 1.1 discusses the format of the syntactic
! grammar at a relatively high level. Section 1.2 introduces the algorithm that 15 used to parse the grammar. Sections
o 1.3 and 1.4 describe the coverage of the grammar, both in descriptive linguistic terms and in more quantitative
. measures. Section 1.5 outlines the work on the syntactic component that is currently planned. on the basis of what
:;;'. has already been done.
v
5 [.1 The Grammar Formalism
o
» The BBN Spoken Languag? System uses a grammar formalism based on annotated phrase structvre rvles: this
~ formalism 1s called the BBN ACFG (for Annotated Context Free Grammar), It is, tierefore, in the tradition of
W augmented phrase structure grammars such as those of Harman [12] and Heidom [13], [14], althougn its immediate
inspiration is Generalized Phrase Structure Grammar (GPSG) [8). In suct grammars, rules are made up of elements
i that are not atomic calegories but, rather, are complex symbols consisting of a category label and feature
specifications. Rules in the BBN ACFG corsist of grammatical symbols—e.g. represenung a part of speech, such
5 as N, for noun—that take a specified set of arguments (also referred 10 as features). These, in tum, may take
Qﬁ arguments of their own. For example, in the current grammar. nouns and verbs contain AGREEMENT as an
argunient. AGREXMENT, in turn, takes the arguments PERSON and NUMBER. Arguments such as PERSON and
| E NUMBER that do not take arguments but only assume simple feature values can have either constants or variables as
- values. Variables begin with a colon: constants are unary lists. For example, PERSON can take on one of the values
. (1ST). (2ND), (3RD), and :P: NUMBER, the values (SINGULAR), (PLURAL) and :N. Arguments that take
::'f arguments of thewr own, such as AGREEMENT, can also take either constants or variables as their values. Agzan,
) variables begin with a colon: constants, however, are multiple element lists whose first element is fixed across all
o values. For AGREEMENT. for example, this is AGR. Moreover, since the arguments to a feature such as
~ AGREEMENT may themselves be either constants or vanables, it is possible to have partially specinied vilues for
such features. Here are some examples of fully and partially specified argumep!s for AGREEMENT.
= (AGR (1ST) (PLURAL))
! (AGR (3RD) (SINGULAR))
(AGR (2ND) :N) ;; (number unspecified)
e (AGR :P (PLURAL)) ;: (person unspecified)
;_::' :AGR ;¢ (agreement completely unspecified)
o Vanables can be used in different elements of a rule as a means of imposing feature agreement. The
following rule from the current grammar illustrates this agreement 1echanism:'
:-'.\ . "This is 1 simplified version of the rule; features that are irrelevant for the purpuses of the present discussion have been omitied.
!
® 5

e e »

R el P R L I T T SR P W A vn S P lrs

e e L
PLIN I

TP Y e g E

P AT TSN L S AP TS s e 3%

T
'_‘-,:;\ \’.\
A ' 1
%‘é BBN Laboratories Incorvorated Report No. 6813 ‘e
0
ﬁn?‘: N
l\.p. ¥
W i
Q-P. N
o ;; basic Loplevel declarative clause rule, ensuring subject-verb agreemant
z ((S ... :MOOD (WH-) ...) %
(NP :AGR :NPTYPE ...) i
(VP :AGR :NPTYPE :MOOD ...)
(OPTSADJUNCT ...))2 . i
g
b
This rule states that a declarative ((WH-))* S (sentence) consists of an NP (noun phrase) followed by a VP
(verb phrase) and an optional adjunct. The use of the : AGR vanable in the NP and VP elements of the rule enforces »
agreement of the NP and VP in person and numbe:. Similarly. the :NPTYPE vaniable requires that the subject NP "
be of the type selected by the VP (ultimately, by the head verb of the VP). Finally, the :MOOD vaniable in the S and
VP elements requires that they have the same moed. ":
l}!
The BBN ACFG grammar is strongly typed. Each grammatical symbol has a fixed number of arguments in a .
fixed order. Each argument. intum, has a fixed set of permissible values. f,‘_:
L}
. . g , 5o
I.1.1 The Relation between The Grammar and the Lexicon o
4
In phrase-structure based formalisms. there 1s no formally separate lexicon; lexical items are introduced by K~
phrase structure rules just as syntactic categones (''non-terminals’’) are. For example, in order for a grammar g
writien 1n the ACFG formalism to contain the word *‘given'’, there would need to be a rule of the following sort.
((V (DITRANSITIVE :PASSIVE) :P :N (EDPARTICIPLE)) .'i..
(given)} o v
This rule states that *"given’’ is a past participle ((EDPARTICIPLE)), unspecified for person and number j::‘g
Ny
agreement (:P :N), that it takes a ditransitive complement structure ((DITRANSITIVE)), and that it may appear o
erther in active or passive constructions (: PASSIVE). Note that this rule introduces '‘given’’ in only one of its %
uses, the wizrnsitive (as in ‘‘We have given John the book’’: '‘John was given a book’’). There need to be 3
analogous rules for its other uses. as well. While it might be possible to store all these rules, the storage
requirements for doing so are prohibitive. 'The number of rules for each lexical item is equal to the number of Ef
inflected forms of the item——singular and plura! forms for nouns; posit.ive, comparative, and superlative forms for ¥
adjectives; and all the past. present, and participial forms for verbs-——multiplied by the number of subcategorization
frames* that the lexical item may appear in. Even for a small lexicon, this will result in a large number of rules: for :S
example, for the 1000-word Resource Management corpus, there v ould be over 1200 si*ch rules for nouns, over 5¢¢)
for adjectives. and slightly less than 1000 for verbs a 1otal of approximately 2700 rules. For the multi-thousand W
o
word lexicons needed for robust natural language processing, there would be an explosion in the numbe. of rules Lo
needed.
i
“ACEG rules are represented as LISP lists. The rirst element of the list corresponds to the left kand side of the rule. The rest of the cles..ents b
correspond 1o constituents on the right hand side of the rule.
‘Read as **WH minus’": this lollows the analysis now standard in generative grammar that declarative clauses bear the feature =WH {*'nunus ':'2
WH") and that intenogative clauses, whether they are content questions or yes-ne questions, are +WH (“'plus WH'™"). See Section 1.3.2.1 for -
more discussion of these two types ol question.
See Section 1.1.1.1 for discussion of subcategorization. &c‘*
i
6
>

L S T L L R N R Rt LU RS I LT S LIS DT LRI AT R L T N 0 Bl B B Tt Ul el B B T I B e R T R TR Rt LT S tas s i Sl Ty

[

LA
ot

"‘.r‘u__’; S

LB
KA

R SAPE

TR St

4
-

il
LSg S e

>

=
T

Ay

-

k'

]

I R A s - R R N Tt P Tt It a7 TN A
SRR L L A S R LR R CRC RS SRV RCTR R L R % (O S A T (P 0 T P 0 AL G P gie Oy g et R e AT Nt QR R Aoy

Report No. 6813 BBN Laboratories Incorporated

Because of this. the current version of the BBIV ACFG does not store rules introducing lexical items, but
rather generates them as needed by the parsor on the basis of information stored 1n the lexicon and in conjunction
with a morphology program that handles the regularly inflected forms?: such rules that are created on demand but
not permanently stored are often referred to as **virtual rules’. Thus, while the lexicon has no furmal place in our
system. 1t is ~sed as a repo-ito.y of lexical information (subcate gorization. semantics. morphology. etc.) that is used

to construct the virtual rules that the grammar actually uses.

1.I.1.1 Subcategorization

Virr al rules are also used to ensure that a member of a lexical category (currently V (Verb), N (Noun), and
ADJ (ADJecuve) uppears with the correct complements. Complements are so called. in traditional grammar,
because they *"complete the imeaning’ ™ of a lexical item in some way. For example, a transitive verb requires a noun
phrase to follow 1t: * John fooled the boys'" is grammatical but **~John fooled®'" is not. Complements are lexically
specified n that a given lexical item may or may not require (or permit) a parucular category. Thus. intransitive
verbs forbid a following noun phrase but ma; optionally permut other complements: e.g. ***The sun rose the boys™’
1s ungrammatical. but *"The sun rose over the mountains’’ grammatical, although the phrase ‘“‘over the

mountains " 15 optional: *"The sun rose " is grammatical as well.

The set of conlplements that a lexical item requires is often referred to as a subcategorization frame. While
some formalisms. such as PATR-II [25], place most of the information about subc: tegonization in the lexicon and
contan only a sirgle rule for a category 1n which a lexical item takes complements—currently these are VP for V.
N-BAR for N, and ADJ-BAR for ADJ—the BBN ACFG contains a rule for every subcategorization frame in which
a lexical category can appear. Each such rule is “"indexed’’, as it were.« mnemonically named featurc that must
appear as the value of the subcategorizatio.1 feature of any verb that can . ur in that frame. (In this, it follows
GPSG. which uses a simlar indexing scheme.) The following two rules illustrate this aspect of the BBN ACFG
formalism:

((VP (AGR :P :N) :NPTYPE :MOOD (AUXV (W (W (W (W (W (OAUX))))))

(NOT-NEG)) (WH-) :TRX :TRX (-CONJ))
(V (INTRANSITIVE :NPTYPE) :P :N :MOOD))

((VP (AGR :P :N) :NPTYPE :MOOD (AUXV (W (W (W (W (W (OAUX))j}))!
(NOT-NEG)) (WH-) :TRX :TRY (-CONJ))

(V (TRANSITIVE :MNPTYPE (TAKES-ACTIVE)) :P :N :MOOD)

(NP :AGR (REALNP) (-POSS :POSSCLASS) (WH-) (OBJ (AGR :P :N)) :TRX
:TRY :CNNJC))

The first rule states that a VP may consist of a ¥/ (verb) followed by no other complements if the V bears the
feature (INTRANSITIVE). The second rule savs t cta VP may consist of a V followed by an NP just in case the
verb 15 specitied as being (TRANSITIVE) and cap-.le of uppearing in the active voice { (TAKES-ACTIVE)). As

"lncgularly inflected forms are hsted in the lexical entry of their base torm.

&
* indicat=s ungrammaticahty.

LONE S o N

e T

A

-

PP ol TR R ol g I - - | B
PR PR N AN 4 7 Tt L S N = R P Lot | e

A SN

sed

(&S

s

LLERT v S

T

AN
BEBN Laboratories Incorporated Report No. 6813
t
is usual, the vanables :P. :N. :NPTYPE, and :MOOQD are used to enforce agreement of the V and VP in these .
features. ~a
o
1.1.2 Optional Elements X
Currerlv there are no general mechanisms in the BBN ACFG that permit optional elements . at implement "T
the Kleene star operator, which permits zero or more occurences of a specified element. To implement optionality i
and Kleene star, special categeries are introduced that simulate these operations. -
5
1.1.3 **Meta-rules™ and Feature Value Default Mechanisms @

Some annotated context-free formalisms. such as GPSG, include a mechanism that allows for rules that are, in
some sense. predictabie variants of other rules to be derived rather than being incluced in the object grammar. For
example. GPSG provides a “‘meta-rule’" facility, which, among other things, provides a ineans for desiving the
passive version of transitive VP rules. The BBN ACEG does not have any such m=chanism.’

S T

’-.

A similar mechanism for compacting the size of grammars is some sort of feature defaulting mechanism,
which would allow predictable featuics of one or more elements of a rule to be left unspecified. Currently, the BBN ¢
ACFG provides no such mechanism. It is very unlikely that the grammar formalism will itself provide such a

e

facility. although it might be possible to provide »a interface between the iules wrtten and seen by users and
. . ot
developers and the form of the rules used Y the pa ser. «ﬂ',
- . “}
1.1.4 Trace Flags r
A
WH constituents, such as “‘who’’, “'what™’, **how many ships’’, and ‘‘how long’’ are linked to an empty ~
. . . o _ £\
elent (or trace) that appears in the posiion where the WH constituent is interpreted. For example, in ihe .:“

sentence. **who did John see’” **who"" is linked to an NP trace in the obiect position for the verb ‘‘see’’. In English,
only one trace may appear 1n a single clause: compare: E"‘;
who wonders what John gave Bill t,, A

*

who does Mary wonder what John gave t_, t . .
(e
- e o ‘e LRI] (o
In the first case. "who " 1s interpreted as the subject of the matnx clause and ‘‘what™ is interpreted as the W
object of the complement clause. so there 1S no more than one trace per cluuse and the restriction is satisfied. In the A
second case. “who " 1s inked to the indirect object position of “*gave” tindicated by t, |) and “what™" is linked to o
-

its direct object position (indicated by t,,). resulting in ungrammaticality There are various linguistic and
0y

"Sonie researchers who have tried to implement a Montague style compositional semantics using a GPSG syntax have reported that the
meta-rule mechanism creates problems for the semantics. Thus, while not having meta-rules may increase the size of the object grammar, this ~
may prevent problems in the area of semantics. ‘yg’
N

8

K

RPN ST R TR

j

g |
'S el

'

.
a’s

°08cE

Report No. 6813 BBN Laboratories Incorporated

computational proposals to enforce this restriction. The one used in the BBN ACFG is that of difference lists. first
suggested by Pereira [19].

1.2 The Parsing Algorithm

The algorithm used to parse the BBN ACFG is essentially that of Graham, Harrison, and Ruzzo [9].
hencetorth. GHR. This algorithm, in tum, is based on the familiar Cocke-Kasami-Younger (CKY) algorithm for
context-free grammars. The original CKY algonthm could not be used to parse the BBN ACFG since that algorithm
requires that a grammar be in Chomsky Nomal Form (CNF), i.e. that each rule introducing non-terminal
symbols—essentially the parts of speech, as opposed to the terminal symbols tlexical items and grammatical
formatives)—be of the form

A—=BC
with exactly two non-terminal symbols on the right hand side. A grammar for a natural language will contain rules
that deviate from CNF in the following ways:
rules with 0 symbols on the right hand side

the rules that introduce traces, discussed above in Section 1.1.4, are of this type. Such rules are
often called empry rules.

rules with only 1 symbol on the right hand side
such as the rules introducing intransitive verb phrases, as in:

((VP ...)
(V (INTRANSITIVE :NPTYPE) ...))

Such rules are often called chain rules.

rules with more than 2 symbols on the right hand side
such as the rule introducing ditransitive verb phrases, as in:

((VP ...)
(V (DITRANSITIVE (TAKES-ACTIVE)) ...)
(NP ...)
(NP ...))

Nevertheless. the CKY algonthm is quite simple and powerful. it starts with the terminal elements in a
sentence and builds successively larger constituents thut contain those already found and constructs all possible
parses of the input. The GHR algorithm maintains this aspect of the control s:racture of the CKY algorithm without
forcing the grammar to be in CNF. It does this by adding several mechanisms to CKY. All the chain rules of the
grammr are collected into a special table that is consulted by the parser to determine if a chain rule is possible at
any given point in the parse. All the empty rules ot the grammur are collected into a similar table. Finally. for rules
with more than two svmbols on the right hand side. the mechanism of dorred rules 1s used. A dotted rule is like an
ordinary rule. except that the right hand side 1s divided into two pans by a dot. This dot. in effect. makes the rule
look as if it were in CNF. During the course of a parse, the parser will move the dot from the beginning of the right
hand side of a rule to its end as the elements of the nght hand side are found. Consider the following rule and its
dotted rule equivalents:

. v s

_ L’:}‘i

BBN Laboratories Incorporated ’ Report No. 6813
A—->BCD .
~
[Constituent A consists of the sub-constituents B C D] N
A—> .BCD 5
[A rule that constructs an A, the parser has not yet found any of its sub-constituents] A
A—B.CD -
-':." [A rule that constructs an A; the parser has found a B and is now looking for a C and a D] b
7, J
7 A—BC.D I
s '-_7-
[A rule that constructs an A; the parser has found a B and a C is now looking for a D]
- A—BCD. B
A¥
7 [A consutuent of type A has been found]
& A
*'.— The GHR algorithm will find all the dotted rules that derive an input sentence; this is another way of saying i
:: that it wdl find all the parses for a sentence. Looking at the parsing algorithm as a way of specifying all the -
> . - ny
' grammatical word sequences of English, we may give the algonthm as in Figure 1-1. >
i‘ -
) The procedure used o build constituents out of previously found constituents does not involve simple o0
T matching but rather the process of unification. which matches the feature values in the different elements of a rule,
'-{ as specttied in the rule. As Section 1.1 showed. features muy themselves be complex expressions, so that unification
is a recursive process. Since the GHR algonthm, like the CKY algorntim, deals with context-free grammars, rather ;‘S
:'. than context-tree grammars annotated with features, the use of unification is an extension to the GHR algorithm: see ~
2 (10} and [11] tincluded here as Appendix A) for full details. An important result reported in this work is that there
! 1s a class of ACFGs, called depth-bounded ACFGs. for which the parsing algonthm is guaranteed to find all parses :%
.!'r-j and hal. Depth-bounded ACFGs are characterized by the property that the ‘‘depth’’ of a denivation, i.e. the number
:-: of non-temnal symbols that derive a terminal string, cannot grow unboundedly large unless the length of the string %‘_)
E: also increases. The fact that the parsing algorithm for this class of ACFGs halts is an important result, since B
® unification grammars have the power of a Turing Machine and so. in the general case, cannot be guarenteed to halt.
T
E Moreover, the derivations ruled out by depth-bounded ACFGs are not needed for the analysis of natural languages, 5
1{ so this class of grainmars is linguistically motivated, as well as computationally tractable. L
L}

@ L5y
.
»

E- o

LR
P
-t

m
B
k"

T @RV @ Y

i
55
!

)

o

10

1

P JUIRT e, w ey B MY Cron o R N, = S o0 S —————— . SO . N = o
'L\'t"» {:{:{5‘:):“; RCCER t "’::' ': O -_'I_'-."-:‘?-_"‘-:'i-:f;_{:"gf.:&"-;fk{" e e Lo e O v A W S O W S AN W VAT S e K

‘f:‘
L
Report No. 6213 BBN Laboratories Incorporated
o
.
o
»
. for k=1 to N
for i = k-1 to 0 by -1
%
o dr[i k] =
(if i+l =k
A
{(A > W. o) | We input[i, k])
- else
" ((A > aB. B |
% (A > a. BP) € dr[i, 5]
0
& (B = v.) € dr[],k]}
)
o
& v
. {A>B.B) | (B> a.) € dr[i, k])
. V{(AR->3p8) €P
- ‘here
F;{ Whe K
o N is the length of the input in words
W is a variable ranging over terminal symbo.s (words)
‘ dr[i, k] is the set of dotted rules that spau the input sentence from the ith through kth positions
by input (i, k] 1s the portion of the input sentence trom the ith through kth positions
P is the set of grammar rules (productions)
o
~ Figure 1-1: BBN ACFG Parsing Algorithm
ih J
1.3 Qualitative Measures of Coverage
&
- This section describes the coverage of the curremt ACFG grammar in descriptive linguistc terms. Quantitative
o measures of coverage are presented in Section 1.4.
-t
02
u":'
! 11
L:"-
W T N T T T, S L R T S T L U L W L) ."Z-I‘L\F.I\t\'.M‘Ifm.:fifm{xﬁf;ﬂﬂfﬂrﬂC-!‘i‘lﬁt‘éf‘{ﬂ‘&l

e s x1

PR

el 1

L = & mom

: : »
q -
BBN Laboratcries Incorporated Report No. 6813
e
l\'
A
1.3.1 The Top Level Constructions -
)
The BBN ACFG grammar currently handles the following types of utterances:
e Declarative sentences (** The Eisenhower is in the Indian Ocean®’) Q
M)
e Interrogative sentences (‘‘Is the Eisenhower in the Indian Ocean'’) in various types: the full spectrum is
discussed in Section 1.3.2.1. _
o Imperatives (**Display the Indian Ocean’*) .Gj
o MNP utterances (' The ships in the Indian Ocean"’)
o Utterances made up of single interjections—single words or fixed phrases that constitute complete ':3
utterances (**Over and out’”, **Roger’’) &
o Utterances made up of an interjection followed by a declarative clause (" Yes. the Eisenhower is in the !
Indian Ocean’") E:
‘
o Utterances made up ol an interjection followed by an interrogative clause (**No. is the Eisenhower in)
the Indian Ocean'")
Q’;‘h
o Utterances made up of an interjection lollowed by an imperanve (‘' Yes. display the Indian Ocean’") Y
1.3.2 Clausal Constructions o
The current grammar handles clauses that comprise full utterances (so-called ‘'matrix clauses’’) as well as 0
subordinate clauses of different types. —
\‘;i
1.2.2.1 Matrix Clauses e
The following types of matrix clauses are currently handled:
B3
e Declarative clauses (‘‘The Eisenhower is in the Indian Ocean’’) ﬁ
* Yes-no questions (*'ls the Eisenhower in the Indian Ocean’’) and
Content (*"WH") questions (‘*Who is in the Indian Ocean’’) ;:;'
‘h]
Content questions may involve various types of constituents: o
* Noun Phrases such as *‘who’*, *"what"". * *how many ships’’, etc. -~
* Adjective Phrases such as ‘*how long"’. etc. Y
* Locative and temporal expressions surh as *‘where’’, *‘when’’, etc. -~
* Adverbial expressions such as ‘‘how’’, **why’", etc.
an
Both yes-no and content questions involve a process of *“subject-aux inversion’” in which an ‘*auxiliary e
element’” and the subject are transposed: the ACFG grammar handles all such cases: ot
* modals (**Must Eisenhower go to the Indian Ocean®’) vy
* pertective “have” " (**Has Eisenhower gone to the Indian Ocean™) W
b))

* progressive ““he”" (*‘ls Eisenhower going to the Indian Ocean’’)
« passive ‘‘be”* ("*ls Eisenhower deployed to the Indian Ocean')
«*‘main verb’* ‘‘be’* (*'Is Eisenhower in the Indian Ccean™") "
» auxaliary “*do * (‘*Does Eisenhower have harpoon'*) -

The negated counterpart of each type is also handled:

12

G O, O A DY U e T A 9 P T AT IS B T N D RIS S G A S sR S NE 05 S PE gt h g GO LR ALY ST T VT Y PR PGP RN |

Report No. 6813 BBN Laboratories Incorporated

+ **‘Mustn’t Eisenhower go to the Indian Ocean'”

« **Hasn 't Eisenhower gone to the Indian Ocean™ L
* *‘Isn’t Eisenhower going to the Indian Ocean’’ -
* *‘Isn’t Eisenhower deployed to the Indian Ocean™]
s **Isn't Eisenhower in the Indian Ocean™’ -\:

* *‘Doesn’t Eisenhower have harpoon™

Each of these question rules also allows ADVPs (ADVerb Phrases) of a specified type to appear after

-

o

f

F the subject NP:
-y
| + **Has Frederick ever gone to C3 on personnel readiness’’ A
* **When was Eisenhower last in the Indian Ocean’’ :
b + “*How soon will Wasp next chop to Atlantic Fleet from PACFLT" [
R 4
.] < . . N
1.3.2.2 Subordinate Clause Constructions ol
Ky Subordinate clauses (that is. clauses that make up a subpart of a complete utterance) can be divided into two -&'_..4
L

types:

o

Complement clauses
These are clauses that are introduced as complements to lexical categories, such as verb. noun,
or adjective. and which are permitted or forbidden by individual lexical items. For example,

v
X

P
a

; verbs like “‘believe’” and "‘say’’ take complement clauses introduced by ‘‘that’’ while *‘go™ !
) and ‘‘come”’ do not. Py

| Adjunct clauses These are clauses that are introduced in specified structural positions of phrases and clauses. ‘::
v, independent of the exact lexicai item that heads the phrase or clause. For example, noun phrases .:
; allow relative clauses introduced by WH words or ‘‘that’" but do not permit clausal adjuncts Ly

1 introduced with "*because’’; compare ‘*A/The man who was old came in'" with ***A/The man 4
because he was old came in’". 0

X . . “
E_ Complement Clauses ¢!
5

The following types of complement clauses are currently handled:

o Finite clauses introduced by ‘‘that’":

1. Complement clauses that permit an optional *‘that’’ (‘‘We believe that Eisenhower is in the
Indian Ncean’’ and **We believe Eisenhower is in the Indian Ocean™).

2. Complement clauses that require *‘that’’ (*‘I order that Eisenhower sail to the Indian Ocean™
but not ***I order Eisenhower sail to the Indian Ocean’").

These two types of complement clauses are often called indirect statements.

e Complement clauses that require *‘if** (‘*We wonder if Eisenhower is in the Indian Ocean’").

f
|

e Complement clauses that require '‘whether” (‘*We wonder whether Eisenhower is in the Indian
Ocean’’).

e Complement clauses that require a WH phrase (**“We wonder who/which ship is in the Indian Ocean™").
These three types of complement clauses are often called indirect quesuons.
Adjunct Clauses
The following types of adjunct clauses are currently handled:

¢ Relative clauses introduced by a WH word (‘Get the maximum speeds for carriers which are in
Astona’’)or ‘‘that’’ (**List carriers that are C5 on equipment’').

The current grammar also handles *‘extraposed’’ relative clauses with a WH word or “‘that’” (‘“*Five
ships arrived that were C37").

13

.
‘h

B N O T T L A A o T N e o o T A R o o D o T TR A o Rt L o L O DA A

')

BBN Laboratories Incorporated Report No. 6813

The grammar also handles “*stacked’’ relative clauses (i.e. multiple relative clause on the same head
noun) (‘"Are there any ships which are located in China Sea that are C2°°) and conjoined relative S‘-
clauses. even if one has ‘‘that’’ and tk2 other has a WH word (**Give me a list of the carners that are .

M3 on ASW and which are in New York''). In both these cuses. where both **that”” and a WH word &
appear. they may appear in either seder. .
o W
¢ Clausal adjuncts that appear at the end of finite clauses (*‘Eisenhower is in the Indian Qcean because {'J
there 1s an emergency there ') or infinitival complements (**We believe Eisenhower to be in the Indian =
Ocean because 11 1s needed there’"). a
£
. S . &
1.3.2.3 Clausal Conjunction
In addition to conjunction and stacking of relative clauses. there is general clausal conjunction with “and™” '-\1'
Ly
and “‘or’’.
1.3.2.4 The Immediate Constituents of Clauses E’
Clauses have as their immediate constituents (i.e. the elements that make up a clause) the subject noun phrase, e
a verb phrase (i.e. the verb and its complements) and various adjuncts. Currently, the following elements can appear “4:
as adjuncts:
At
¢ A participial clause (**Redraw the area updating the display'") S':',:
¢ A participial clause introduced by a prepositon (" *Redraw the arca without updating the display ")
o Adverbial expressions of various types (‘ ‘now "', *‘yesterday’", ‘“on the twenty second of May ') s,
¢
o Locative and temporal expressions (‘'at seventy degrees north twenty three degiees east’, “'in the 3
Indian Ocean’’) I
¢ Prepositional phrases introduced by *‘with’" that contain a noun phrase and a predicate phrase (*‘with l-_:
areas off . *‘with system switches set to default values™'. “*with the Shasta’s in bright green™’) "’"‘}
o Extraposed relative clauses with ‘“‘that’* or 1« WH consitutent (see Subsection 1.3.2.2), Q
=
o Sentenual adjuncts introduced by vanous complementizers (*‘after’”, *‘because’, ‘‘unless’’. “‘until’’, Kyt

eIc).

1.3.3 Verb Phrase Constructions

L - As was explained in Section 1.1.1.1, lexical items are linked to the subcategonzation frame(s) in which they i
iy .) R) .
- can appear by means of a subcategonization feature whose values are associated with separate complement rules. ”
- 1
J: For VPs. this is done by means of the arzument SUBCATFRAME on Vs. There are currently 45 verbal -':."_
S w?
in subciategonzation frames, which are denved from an extensive survey [15] of the literature concerning verb
subcategonzanon in English (e.g. [11. [31.[20]. [27].[281. [29]. |30]). Since each of these features may be B
'._7
assoctated with more than one VP rule (e.g. the feature for transitive verbs 1s associated with both an active and a [
passive VP) there are more than 45 separate VP subcategonization rules: in fact. there are 69 such rules. Discusssion
. : . . . : . . . =
of these rules is beyond the range of this section but see [16] for a detailed discussion of each. o
(
f’?;
Ch
14 o
3'-.;

>
& i . T .
N L L N T 5 LT T T T N R M T R Y Y R P Rk M T T e P e A L L e T R R T e i e a0 e W W N W R M ML W MR R

e

LI
O h

5%5

T

¥ orow
«ln
L

te

Pty
N

eJ

SHA R GUME DA AT A A R A T RR TR A LR D b (S Gt R At T el R G AN LA b

Report No. 6813 BBN Laboratories Incorporated

1.3.4 Auniliary Constructions

The BBN ACFG provides the full range of standard VP auxiliary phenomena in English. Since there are no

meta-rules in the formalism (see Section 1.1.3) there is a separate rule for each type of auxiliary element:

» modals (**Eisenhower must go to the Indian Ocean’")

e perfective ‘*have’’ (‘*Eisenhower has gone to the Indian Ocean'")
* progressive ‘'be’’ (*'Eisenhower is going to the Indian Ocean'’)

e passive ‘'be’’ (*‘Eisenhower is deployed to the Indian Ocean'")

¢ ‘'‘main verb'" ‘‘be’’ (**Eisenhower is in the Indian Ocean’’)

o auxiliary **do’" (*'Eisenhower does have harpoon’”)

There is a fixed order to auxiliary elements in English:

» modal elements—which include can, could, mav. might, must. shall, should. w 11[would, as well as "I/
as a contraction for will—precede

o perfective have. which precedes

o progressive be, which precedes

¢ passive be, which precedes

* main verbs

In addition. *‘main verb’’ be follows progressive be and is in complementary distribution with passive be and

lexical main verbs.

The following sentence shows this order:

You must have been being bad or they wouldn’t have gotten angry at you.

While this order is fixed, not all auxiliary elements need to appear all the time; as long as they appear in the
correct order, any subset of them can appear:

Eisenhower must leave.

Eisenhower must have left.
Eisenhower must have been leaving.
Eisenhower has left.

Eisenhower is leaving.

Eisenhower must be leaving.

In addition, ‘‘dummy’’ do can only appear if no other auxiliary element appears. 1t appears in questions. in

negated sentences, and in emphatic statements:

Did Eisenhower reach the Indian Ocean?
Eisenhower didn't reach the Indian Ocean.
Eiserhower did reach the Indian Ocean!

English also contains restrictions on the placement of the sentence level negative elements nor and its
contracted form n't. These negative formatives appear following the first auxiliary element in a clause. If there is
no other auxiliary element in the sentence, do appears, since negatiori innot appear with a simple main verb in
English:

15

N A A AT AT A A AR A,

SEIFZL LA ML) KOSy S

LN, o ok B et s, B ol A . oo B ol ok ol e N

VAR IR AP AR A]

|

{ BBN Laboratories Incorporated Report No. 6813
{
{ .
g
)
1 *John went not/wentn’t.
*John not/Johnn’t went. A%
VS, o X
! John didn’t go.
]
" AN
: The ACFG grammar handles both the order and optionality behavior of the English auxiliaiy system. It also {;‘
: handles the placement of negation.
- >
h Y
1 1.3.5 Noun Phrases
Noun phrases consist of the following elements (where parentheses indicate optionality): o
{Determuner) (Comparative/Superlauve-Adjecuves) (Positive- Adjectives) N-Bar (Adjuncts)/(Relative- o
3
Y clauses) g
\ . ' . _ i o o ' o
) Determiners include those eleme:its typically called determiners: the definite and indefinite anticles (the, a.
1 an). demonstrauves (this. thar), quantifiers (all, some, each, ...). etc. Determiner structure is o
1 discussed in more detail in Section 1.3.5.1. Lu:'n“
Comparztive and Superlative Adjectives
are introduced into noun phrases separately from positive adjectives for both syntactic and X
semantic reasons. The semantic argument 1s simple: it is difficult or impossible to write a 3
; semantic rule that will work for an arbitrary number of adjectives that will work for both fo
r positive and superlative adjectives. There are several symactic facts that also pownt to non-
P positive adjectives being introduced separately from positive adjectives: 3
¢ Superlative and comparative adjectives must precede non-positive adjectives and
cannot be intermixed with one another:
the fastest green ships :::
*the green fastest shups %]
o Superlative and comparative adjectives preferentially select particular noun phrase
adjuncts. Comparative adjectives can co-occur with phrases introduced by than: :
o
a faster ship than the Fredenck X
Superlative adjectives can co-occur with phrases introduc :d by of. 5 2
the fastest ship of the unit b
Positive adjectives impose no such restnctions.
o Superlative adjectives require definite determiners, while positive adjectives impose 3
no such restrictions. o
Positive adjectives are the base (non-compared) forms of adjectives (**green’", **fast’’}. i
An unlimited number of adjectives {positive, comparative, or superlative) are introduced via the ﬂ
optionality mechanism mentioned in Section 1.1.2.
N-BAR introduces the head noun ol the noun phrase together with its coinplements. il any. N-BAR X
rules are discussed in some more detad in Section 1.3.5.2. :.:.'
39
Adjuncts Currently, there is no recursive structure to Noun Phrase adjuncts. i.e. only one adjunct can be
introduced at a time, but this will probably change. Currently, the following constituents can o
appear as adjuncts: by
¢ Adjective Phrases: These are Adjective Phrases cither headed by adjectives that
lexically specify a postnominal position (such as left in ‘“the fuel left’” or adjective 3
A
vj:'
16
e a e T O O A T CUTAN A i o T ST W T, W TR A T MR Xy T

R

w

-

YhY
()

b N

Ny

-5-

!1,"-

[I

R R Y TS R A SOy € R T N R Tl Ul VSR P S SRR g Y < A - R
Erf“z_ T B e T e N NG e e e e G e Y LN NN S

Report No. 6813 ' BBN Laboratories Incorporated

phrases containing a complement. since adjcctive phrases containing complements
cannot appear prenominally in English: compare *‘sufficient fuel’", **fuel sufficient
10 get there'", "**sufficient to get there fuel’". For more discussion of adjective
placement. sce Section 1.3.6.

¢ Participial VPs: *‘the ship approaching port™
¢ Passive VPs: *‘the ship deployed to the Indian Ocean’™
¢ Prepositional Phrases introduced by with, for, or of: ‘‘all ships with harpoon’’,

1 e

““their arrival for the meeting’". *‘equipment of the highest quality™".
¢ Locative and temporal expressions: **the meeting on the seventeenth of July™".

Relative clauses Relative clauses with relative rhat (**all stups that are C1'") and WH words (**all ships which are
C1'"). including **whose ™' (**commanders whose ships are C1'") are handled.

Conjoined relative clanses may also appear here. Thar relatives may be conjoined with WH
relatives. **Stacked'' relative clauses. such as **ships that are in the Indian Ocean that are C1°",
may also appear.

1.3.5.1 Noun Phrase Determiners

The determiner structure of English noun phkrases is one of the most complicated areas of English syntax.
There are a great number of dependencies betwcen the determiner and the classes of nouns that appear as the head of

NP. The determiner uself may have a complex structure with similar dependencies among its elements,

The ACFG grammar ensures that *‘count nouns’ (ie. nouns that can appear with articles, that can be
pluralized. cic.) appear only with count dcterminers. such as ‘“‘every™ (*‘every man’' vs. "**much man’’), etc.. and
that non-count nouns (both **mass' and ‘“abstract™ nouns) (i.e. nouns that typically do not appe-~ with articles, do
not easily pluralize, etc.), appear only with non-count determiners such as “‘much’’ (**'much sand™ vs. ‘**every
sand), etc. It also allows other determiner-noun combinations. such as proper nouns that permit ‘‘the’’ to appear
before them, including ship names (e.g. **The Eisenhower™"), place names (e.g. **the Bering Straits’"), etc.

The ACFG grammar allows the full range of determiners, including quantificational determiners, such as
“every’’ and **how many'’, numenical determiners. including ordinals. cardinals, and fractions, such as ‘‘three’’,
“‘twenty one’’, ‘'three quarters™”, as well as the *‘pre-determiner’’ elements that appear with them, such as ‘‘more
than"’ (**more than six ships™’. "*more than three quarters of the ships™") or **all”” (**all six ships’"), the traditional
articles “‘the’’. *a”’. and '‘an”’, the demonstratives ‘‘this'’. ‘‘that”’, ‘‘thes¢’’, and ‘‘those’’, the possessive
detenniners. which include both **pc.isessive pronouns™ (‘‘my’’, “‘your”, “‘their’’, etc.) and full scale possessive
NPs. as well as other determiner elements. such as “‘both™. ““either™”, *"neither”’, etc. Other, specialized determiner

constructions arc also handlcd. such as **the/my last three vacations™".

Some determuners can appear without any following noun, such as “those’" (as in “"All the ships in Diego

Gurcia are C4 but those 1n Honolulu arc C1'") and such constructions are also handled.

The ACFG grammar also handles **question’” determiners, such as “‘which™” and “"how many’’ and partitive

LRI

determuners, such as "*some '’ and *‘each’” (e.g. ‘'some of the ships'’, *‘each of the ships’’).

17

S R s A

A" AT o P."."d

* % it

Bl

Py

BBN Laboratories Incorporated Report No. 6813

iy
!
X
1.3.5.2 Complements to Nouns m.
N-BAR is the constituent that contains the head noun of a noun phrase and its complements. There are U
currently only |2 subcategorization frames for nouns in the grammar; this reilects the nature of linguistic knowledge .
about complements to noun. While complements to nouns are less numerous than those to verbs, correspondingly c::
less is known about them. In addition to ordinary complements to nouns, N-BAR also contains a limited form of
noun-noun compounding, as in ‘‘readiness rating ", **combat readiness’". and *'combat readiness rating"". -
1.3.5.3 Noun Phrase Conjunction N
v : : . e LR . AR :‘:’
Currently. there are grammar rules for conjunction of two or more noun phrases with *‘and’’ or *‘or”" as well ~
as rules for conjunctions of the form **both NP and NP"" and **either NP or NP™". .
A . N
1.3.5.4 Specialized Noun Phrase Constructions
In addition to the general noun phrase constructions already discussed. there are also specialized noun phrase Y]
constructions. Currently, these include:
time expressions in any of the following forms: %
\
fifteen hundred i
fifteen hundred hours
fifteen hundred hours zulu w?
fifteen hundred zulu .
Time expressions may also be introduced by prepositions, such as *‘at’’. o]
! . o
date expressions in any of the following forms: A}
twenty December ;
December twenty 5
December twentieth : &F
twentieth December
twenneth of December =
the twentieth December _‘
the twentieth of December
as well as date expressions consisting only of the day of the week, ¢.g. ''Wednesday™". Date e
expressions may also be introduced by prepositions, such as *‘on’’ i
vear expressions in either of the forns:
L
nineteen eighty seven ::'-
eighty seven o
latitude and longitude expressions
in any of the following forms: g
s
i‘;’l
i)

LEEY

T 2

18

-}

T P AT AT M T AT AT AT RN BTG R T I M T e T s e e e s

R LB LT 0 R ot L SaF NV S R S A it bl atR a S o

o Y, L Y ¥ s r
E;\ LT SR Y S ot B TN

Report No. 6813 BBN Laborutories Incorporated

one hundred degrees north fifty degrees east

one hundred degrees north and fifty degrees cast

one hundred .. wrees fifty minutes north and fifty degrees forty five minutes east
one hundred degrees fifty minutes nonh fifty degrees forty five minutes east

a latitude of one hundred degrees north and a longitude of fifty degrees eait
latitude one hundred degrees north longitude fifty degrees east

Jautude one hundred degrees north and longitude fifty degrees east

title expressions these include both true title expressions, as well as analogous expressions:

Admiral George Metaxas
Admiral Metaxas

USS Enterpnse

U.S.S. Enterprise

1.3.6 Adjective Phrase Constructions

Adjectives may appear alone and may 2'so be modified by a special class of adverb: such as *‘very'’ or

“how™". Other, more specialized Adje<tive Phrase constructions are wso handled:

<ordinal number> <superlative adjective>
e.g. “'second best”’

<numerical NP> <comparative adjective>
c.g. “'threc miles closer™

<comparative adjective> than NP
c.g. ‘'faster than the Wasp"”

<comparative adjective> than S
¢.g. faster than the Waspis'’

<comparative adjective> PP than NP is PP
e.g. "farther from Guam than the Wasp is from Diego™’

<comparative adjective> than NP PP
e.g. “‘closer than the Wasp to port’’

less <pasitive adjective> than NP

e.g. “less truthful than John'’
less <positive adjective> thar S

e.g. 'less t.gthful than John is™

o
"y
v ..

as <positive udjective> az NP
e.g. “us fast as the Wasp™

ey
O

.

e

as <positive adjective> as S
e.g. "as fast as the Waspis™

PR A 4
LI T

&

1.3.6.1 Complements to Adjectives

Like verbs and nouns, adjecuves also take complements. The complexity of the coniplement system to

adjectives is between that of nouns and verbs. Currently, there are only |1 subcategorization frames, but others will

A

be added. As was the case with the complement system to nouns. there are fewer complement types to adjectives,

but less work has been done in ths area.

19

>

S o N W W N O P o ot T e N T B NI e i L s L e L N N AL S IR U A L U A A R T N AN

BBN Laboratories Incorporated . Report No. 6813 ".—

1.3.6.2 Adjective Phrase Position

* ol

Adjective phrases can appear in three different posiiions (excluding constructions where they appear as
complements): pre-nominally, 1s in “‘the C3 shi="": post-nominally. as in ‘‘the fuel remaining’"; and ir. predicate

position. as w ‘“‘the ship is C3''. Most adjectives can wppear in pre-nominai and predicate position (as **C3 .-2
. Q Q a .z . . A . . ').(.
illustrates) but there are some adjectives that can only appear predicativery (*‘the man is afraid’ vs. ***the afraid N
man’") or post-nominally ("‘presents galore™” vs. '**galore presents’ or ‘**the presents are galore™'). In additon, -
P.'_-'_\' even adjectives that can nomally appear pre-nonimaliy appear post-nominally when they occur with a complement: s
::- compare ““a fathful servart’”, **a servant faithful to his master™", ***u faithful to his master servant’’. The ACFG
L::'- grammar and lexicon handle adjective phrase position correctly. o
he LN
i,'.;:-, ~
! 1.3.6.3 Adjective Phrase Conjunction
A ',Pf;‘
o Currently. there are grammar ruies for cunjunction of two or more djective phrases with **and’" or **or™". -}
0]
o
Bl (1S . £
1.3.7 Adverbial Constructions .
The following typay of adverbial constructions appear in the current graminar: ey
w,
temporal expressions
such as "‘now " and *"when’" as well as temporal NPs. xn
date expressions including date NPs. LS
; manner expressions
S currently only ‘*how™". -
. i
o ‘‘reason’’ of purpose expressions “
3

currently only “'why’".
Adverbial expressions can appear in three positions in a clause: initially, as in **Currently, the Eisenhower is

i

:’:_ ! in Diego™': medially. as in **Eisenhower never went to C5'": and finally, as in "*Eisenhower is in the Indian Ocean
::-..: now’’. Not all adverbs can appear in all three of these positions and the ACFG grammar and lexicon contain
- '.) . . . F
E‘: teatures to ensure that adverbs appear only in the appropnate positions. @
It
o Currently, adverbial expressions only appear in clause medial and final position; the clause initial position will)
I"v ‘
~ be added later. b
. -
L
h o
M N . ny
t;{' L3.8 Other Construetions "
e
-!;I' .
] - : . [
M The ACFG gramniar abso handles preposiuonal phrase constructions and tocative and temporal expressions. Sy
- 0e
Uy i
i
LS
F—"j Lo
®

S

P4
S,
e

o L
‘_l‘, Yy

20 £ D
- L3
&Y
e
.‘
e, LR e N T L T G PR SRRt LI P T TR L AL LR L G RT] R - - . 2 m i .
M e e e e e e e e Ny e N Y e A A N AN T R LA A A R ST LR A T NN

Ty

Report No. 6813 BBN Laboratories Incorporated
!".
o
"I
1.4 Quantitative Measures of Coverage
Ry 1.4.1 Grammar Size
%
The current ACFG grammar contamns 672 rules: of these. 369 introduce grammatical formatives (such as the
._ articles “‘a'’, ‘‘the’’, prepostions, etc.) The remaining 303 rules handle the grammatcal constructions of the
v language.
w:,’
Vi 1.4.2 Svntactic Coverage
b
.b, Syntactic coverage is measured using sentences from the Resource Management domain. These sentences are
divided into two subsets: a training corpus of 79! sentences—this corpus is used as a basis for grammar
Q'_:) development: and a test corpus of 200 sentenc s—these sentences are run through the parser *‘blind’’ (i.e. without
i
& any person actually seeing them) to see how well coverage on the training corpus generalizes to previously unseen
but related matenal. The grammar currently covers 85 percent of the training corpus and 64 percent of the test
f_:: corpus. Figure 1-2 shows the figures for training and test corpus coverage for July, 1987 and October, 1987, as well

as the current coverage.

&y

1.4.3 Perplexity

>

N

For spoken language systems, perplexity is an important measurement. Perplexity is defined as follows:
Q0= 2H

wkhere Q is perplexity and where H is

'I’
o B

H="llog Pw, .. w,)
f:" where w,,n. ...w, represents a set of possible input sentences stacked as an n-long text (typically from a corpus).
N Intuitively, given some prefix (initial substring, possibly null) of a sentence, perplexity represents the number of
possible word choices that are allowed to follow within a given grammar. Here are some sentences trom the
:::' Resource Management corpus with their associated perplexity measurements in the ACFG grammar:

21

R P T i N AT m a T e T e AR P W T Ko P W i T T e e W o O O W O DO W LT

g ® <y \
E:'- BBN Laboratories Incorporated Report No. 6813 ':*:
N .
5: 5
N
" y 3
r\t /a A
o
by -
*‘-‘ T ini 85 % 2
N 80O .l [raining |
\ q
3

64 7%

Test

v &

R":‘ 4 o “ o

N

P{.

o £S!

N 20 4

J‘ rl

- <,

ot ke

03

"?] 4 4 ‘\3\'

: v I L) 8 8 o ‘

. r e

e Jul B7 Oct 87 Ma

= o
. hY

?:j July, 1987 October, 1987 March, 1988 -

ﬁ Training 50% 7% 85% M

?.\' n:.c

i Test 2% 50% 64%

2

’- Figure 1-2: BBN ACFG Resource Management Training and Test Corpus Coverage 2

’. p

T '

®

v .

5 .

.,

i,

F,: u'

°

N e

\‘ "'

E o

g

L

Y
i ,‘ﬁ

S)

s

VR

WL

AL
VS

.

b

.
‘s

Y _w
[}

e

(LAY

"

o L o T o e e e e e e e e e o e T e A O W 0 o T Y OO N

Report No. 6813 BBN Laboratories Incorporated

(1] Show me the Indian Ocean.
630 583 612 583 |
{21 Display thirty degrees south seventy degrees cast.
630 588 613 31 28 10 4
[3] Where are the frigates and carriers?
630 10 583 583 655593
(4] Whatis the readiness of Eisenhower?!
630 655 641 583 655 610
[5] When will Eisenhower be C17?
630 10 583 607 647
[6] Whatis Fredenck's readiness?
630 655 641 649 583
{71 Which ships are faster than Fredenck?
630 654 691 641 o641 583
[8] Display Frederick’'s track.
630 588 616 583

The overall perplexity of these sentences is 314. Some comments about the individual perplexity figures is in
order. First. it should be noted that the possessive morpheme 's is treated as a separate element of the input sentence
by the parser. This explains why there are inore perplexity measures in examples [6] and (8] than there are surface
phonological words. Second, while perplexity is normally high for this grammar. perplexity becomes reduced in
several cases. One of these is the case of collocations—Ilexical items that consist of more than one orthographic
word. such as ““Indian Ocean’’ in example [1]. For the 1000-word Resource Management task, the word *‘Indian"’
only appears as the first element of ‘*Indian Ocean’’; hence, perplexity drops to | after “’Indian’". Another case is
that of subgrammuars, such as that for latitude/longitude expressions, as seer. in example [2]. At the end of the
latitude/longitude expression, word choice 1s down to 4, since only the cardinal compass directions are possible at
that point. Finally, there are certain positions where a general grammar for English allows only a limited number of
possibilities. For example, after the ndverbial question words ‘‘where’” in example [3] and ‘‘when’’ in example [5],
perplexity drops to 10. This is because such question adverbials unambiguously trigger subject-aux inversion
(discussed above in Section 1.3.2.1). Hence, the only elements that can follow these question words are the
auxiliary elements: the modals and the inflected forms ot be, do, and have.

1.4.4 Ambiguity

As the coverage of the grammar increases. two types of ambiguity also increase. First, at any given point in a
sentence. there will probably be more possible ciwices that must be tried. Second. the number of parses that a
sentence has may increase. Information on the number of parses per sentence has been collected for the 128 test
corpus sentences that the current grammar handles. The number of puarses per sentence shows the following

distnbution:

[
L7

i*
e
i-sj ‘-
EF BBN Laboratories Incorporated Report No. 6813 Y
- {
rl
vl
i..’l
Parses per sentence: Number of sentences so parsed:
on
1 35 Kl
2 36 £
3 15
4 19 ;.;
5 3 o
» -
-, 6 6
3 3 -
10 ! =
= 12 6
v 16 1
__‘ < | 8 l Yy
o 29 [x,
i 48 | i
u K
ﬁ: Here is the sorted version of the same list: 'Y
0]
E:r Parses per sentence: Number of sentences so parsed:
. > 36 N
y I 35
- Kl 19
i-:-: ! s ;{'
7 6 6 S
".. 12 6 ™
> 5 3
; 8 3 {%
10 1 -
16 1
18 1 A
29 1 o
48 1 bt
Ths distribution shows a mean of 4 (rounded from 3.875). a median of 2.5, and a mode of 2. %
i
There are various reasonc why a sentence may be treated as ambiguous by the parser. First, it may be the case -
71
that a reasonable grammar for English will produce multiple syntactic interpretations for a given sentence, though E";-
semanuc or pragmatic information may decide : nong thema. This type of ambiguity might be considered '
irreducible. Another type of ambiguity may simply be the result of errors in the grammar, either because a syntactic T
phenomenon has not been handled correctly or because of a typographic error. Such mistakes are corrected when vy
detected. The third source of ambiguity 15 more pioblematic. These are cases where the formalism in which the
"A
grammar 15 written introduces cenzin types of ambiguity that cannot be eliminated by rewriting existing rules or -‘Q
udding new rules. For examples, noun compounds such as ““supphes readiness’” or ““data screen’ are nxm ways e
ambizuous. where n s the number of possible grammatcal number readings of the first member of the nommal o
N
compound (for example, ““data’’ is treated as both singular and plural in the current grammar) and m s the number a
ot subcategorization frames associated with the first member. In some cases, it may be possible to eliminate the
ambiguity by chinges to the formalism. For example. in the present case, the addition of a disjunction mechanisin, »
which would collapse all the separate readings into one, would probably do the job.
W
W
g
24 -
e
& T T I e ™ T A a0 I o W o A T o 5 2 o s N NSO 3 0 Y U MO M o W Wy W W s L WM WA M R M I K‘-’,K‘L!\J

--,..
2 1
y
L A4

“ ".PL\

Report No. 6813 » BBN Laboratories Incorporated

1.4.5 Overgeneration

Another area in which the performance of the current grammar can be measured is that of overgeneration.
Overgeneration results from a looseness of the grammar that resuits in it producing utterances that are not English.®
Overgeneration may be divided into two types. analogous to the linguistic notions of weak generative capacity and
strong generative capacity [5]. Weak generative capacity refers to the set of sentences that a grammar generates (or
accepts). Strong generative capacity refers to the structures that a grammar assigns to the sentences that it generates
(or accepts). For example, cor:-ider two (rather trivial) grammars that both generate the single sentence "*The Wasp
is deployed.”” These two grammars are identical in weak generative capacity. However, if the first grammar assigns
this sentence the structure:
[The Wasp is] deployed

while the second assigns it the structure
The Wasp (is deployed)

they differ in strong generative capacity.

We can now define analogous subtypes of overgeneration: a grammar weakly overgenerates if it accepts
non-English utterances as English,” while a grammr strongly overgenerates if it accepts English sentences but

assigns them the incorrect structures.

Consider the sentence: **Show all ships.”” The grammar currently assigns it two structures:

Show {all ships}
where there is a single noun phrase object. and also:

Show (all] [ships]
where all is taken to be the indirect object (like me in **Show me the ships’’) and ships is treated as the direct object.
Note that allowing all to be a complete noun phrase does not generate non-English structures since all can be a
complete noun phrase (as in “*All were ready’’): however, it does admit parses which are not intended, as in the

present example.

In addition to such cases, there is currently one area known in which the grammar strongly overgenerates by

assigning an impossible structure to an English sentence: this is the case of cllipsis of possessive noun phrases. as in:

Fredenck's speed is greater than Eisenhower’s

The current grammar assigns such sentences a parse in which the possessive marker ‘s is interpreted as the
reduced form of the verb is. However. as is well known (see, e.g. [2]), it is impossible for verbs in English to reduce

in snch comparative constructions. Compare:

*In the context of a parser, we might refer to this as over-acceptance: the parser accepts input strings that are not English sentences.

“This type of overgeneration is directly related to. and inversely correlated with, perplexity.

25

N o - " 7, 47 ane - .
u‘v ..: Lhe Wb \{ﬂ- & .3- \'it ‘n: 3 .'-) ’\- s s\ \.ﬂ ¥ -.\F."'- e f '\' " “ﬂ‘\."} 3 \ L'*-“’R ! “ F-i "-\1“:‘x‘ ‘I iy K{NMM') Mﬂv:‘vl‘"(:":)‘*

- m wm m. ommm

NN M MK % A ey W NG Fe™ e e w W S R SEEF . . ®

.

A
e

: v
N . - i
3 BBN Laboratories Incorporated Report No. 6813 ‘
v,
- >
2 :
X v
G He is smarter tan you are. .
*He is smarter than you're. |
N\'. w
> .
- Note that the current grammar would accept the second example. so that the treatment of verb reduction
. . . . N
E\‘ weakly overgenerates in addition to strongly overgenerating. ;\.j
LS RS
5
{In passing, it should be added that the current grammar also assigns the example the parse: \
.y . . . -~
Frederick's speed is greater than Eisenhower’s (speed) 3
{where () enclose the elided element) which 1s the intended parse.)
=~
Aside from the treatment of verb contraction, which introduces both strong and weak overgeneration, there are .
no known hard and fast cases of weak overgeneration in the current grammar. Consider the utterance:
e
More was Frederick’s position. {"‘:
which 15 accepted by the current grammar. While this is not a likely sentence of English. the quite acceptable:
That was Frederick’s position. E-:
. . . . o
uses the same set of rules. Thus, while the acceptance of the previous utterance might appear to be a case of
syntactic overgeneration, it is clear that the utterance is not syntactically ill-formed: rather, it is semantically &
. . . I . . oy
anomalous. Currently, all the known cases of accepted utterances that might initially seem to be instances of -
overgeneration, except for the spurious verb contraction examples, fall into the class of utterances that are not
syntactically ill-formed. Y
!
. 4
1.5 Future Plans : e
This section describes the work that is currently planned to increase the coverage and performance of the A
syntactic portion of the system.
{0
'y
i.5.1 Extending Coverage
3
\ L)
LS
As was stated in Section 1.4.2, the current grammar covers 85% of the Resource Management training corpus
and 64% of the test corpus. The training sentences that do not parse have been divided into classes based on the)
Fa
syntactic issues that they rwse and ordered on the basis of the ease of adding the phenomenon and the expected &
increase in coverage: i.e. easier changes that increuse coverage greatly are ordered before more difficult changes that
.) . .) Lol
do not result in large increases in coverage :nd :also before more minor changes that result 1n small increases in 3,
L}
coverage. The following is an illustrative sample of the full set of classes. ’
¢ Add modifiers to Adverb Phrases: ot

Redefine time window for the chart of Eastern Taiwan to start four davs sooner
How fast could Yorktown get to seventy eight north forty east

=

26

W

R I I R e e T N M Ra T e Tr B Mk TR S TR TR T T TN T R T e

L

N W W Y o N Y T T W Mo WO T W T N TR AT AT AT AT KN

Fir S

»

e

r
I

PP S

We b S A VORI B (PN PEFLV VRS PSS Il C ol SIS PP F b i b i Xy S Shy T

Report No. 6813 BBN Laboratories Incorporated

« [ncrease the range of prepositions introducing time and date phrases:
Find all data for the Meteor updated since twenty three hundred hours
Get me deployments of submarines during eightv four
Find subs that were in the Mozambique Channel as of tenth of January
Couldn’t Camden arrive in port by tomorrow

e Add “‘last’’ and *‘next’’ as pre-modifiers to date phrases:
Get me last month’s casreps for Hepbum
List lasr week's casreps from Davidson
Get posit data for cruisers employed before last eighteen January
Is the Peoria due in port before twenty four hundred zulu next Wednesday

 Increase the range of comparative ard superlative expressions:
Are there three LAMPS cruisers with maximum speeds rnot greater than fifteen knots
Are there six vessels that are in Kodiak with readiness more than C4
Do any carriers that are in Midpac have more fiel than it
Is Flint at three quarters of fuel ~apacity or less
Has Citrus been at sea the longest of submarines which are in Bering Strait
Is the Vandergrift’s displacement less than average for all M1 ASUW subs
Is Jarrett's gross displacement smaller than average for the south Persian Sea ships
Is the Fanning’s fleet ID the same as Downes's

* Add distance expressions:
Is the Confidence inore than a kilometer from Conifer
How soon can Tripoli get to within mne kilometers of the Sherman
Is Willamette within seven miles of sevenry four west forrv north

¢ Add use of color adjectives as nouns:
Show Sherman's track in dim vellow with the Shasta's in bright green
Set color of the Independence’s track to bright red
Use dright green for tracks of nuclear surface ships

¢ Add multiple adjuncts to NPs and allow both relative clauses and adjuncts (o appear:
Draw the seven subs which are in Gulf of California with the lowest fuel capaciry
Display the four ships in the Formosa Strait with the largest fuel capacities
What's the number of submarines rhat are in east Atlantic Ocean without Tacan

¢ Add adverbs not currently in the system:
Are more than five cruisers currently in home port
Make chant again in low resolution

* Add extraposed adjectival complements in NPs:
Does Ajax have sufficient fuel to get to Port Victoria
Does the Bainbridge have enough fuel to arrive at his destination

e Add general ‘‘the’’ deletion:
Never mind next chart display
Show the chart of Mozambique Channel with the Davidson displayed in center
Don’t draw the chart on redraw

» Miscellanesus changes that only add one or twn sentences each:
Add agent by phrase to passive sentences:
What training preblem was reported by Camden last month
Add use of *‘a’" for **one’’ in numbers:
Is there a frigate in the Gulf of Thailand lorger than a thousand meters
Add use of -ing participles as NPs:
How much does including Fridav's data change ihat tigure
What would it be counting only C2 carriers
Add limited cross-categorial conjunction:
Find me ail the submarines in south Bering Sea and that are M3 on ASW

27

F T S P At A SR R

P R L M

RN LA aara B P N T e [P LP S A M 1 [

™

[l 0_TO0 L0 oL]

el BB TR WOTWCH B X W R o e

BBN Laboratories Incorporated ‘ Report No. 6813
.'."
)

'
o
9 . . q S

1.5.2 Reducing Spurious Ambiguity .
Lo7 8]

Since the program for collecting coverage information for the training corpus also provides information about
the number of parses per sentence, it is possible to note sentences with a large number of parses, examine the parse ;{3'
. . . . o
trees assigned to them, and modify the grammar to reduce the number of parses, where the grammar is 2

overgenerating. At times, this has resulted in dramatic savings: ‘‘Why was Citrus's MOB mission area changed
thirty one September’’ had its total number of parses reduced from 54 to 2 with changes in two grammar rules. ;-..:
While this process will undoubtedly continue in the future. it is labor intensive. since all the parses for an ambiguous ~

sentence must he examined by hand, so we have sought more general procedures that can reduce ambiguity but oy
which are alsi» lingumistically motivated. The most promising scheme is to assign probabilities to grammar rules. ":
Once probabilities are assigned. we can explore the following strategies, among others:

by
1. Find all parses for a given input, but ignore all parses that use grammar rules with a probability below t8
a fixed threshold. (2]
2. Find all the parses of a given input that involve only grammar rules with a probability above a fixed 2
threshold: parses involving rules with probabilities below thus threshold will not be constructed. _;'

3. Use probabilities to arrange the rules of the grammar into tiers: all parses tor a given input involving
rules from all tiers will be found, but parses involving rules from lower probability tiers will be "
ignored. -;:;

4. Use probabilities to arrange the rules of the grammar into tiers: in parsing a given input, if at least one
parse 1s found using rules from the tier with the highest probability. parses involving rules from-tiers -
with lower probabilities will not be constructed. However, if no parse is ¢ und at the highest tier, rules sl
trom successively lower tiers will be used. until at least one parse s found.

o q ong Q] Q o o o o
Finally, in addition to the general strategies for reducing ambiguity sketched here, we have arrived at a “_.;-
w

mechanism which eliminates the ungrammatical acceptance of ‘s as the reduced form of the verb be u. comparative >
construction, discussed above in Section 1.4.5. .
LS
1.5.3 Changes to the Grammar Formalism "
y
»

As one more technique for eliminating spurious ambiguity. we will explore the possibility of using a simple
disjunction mechanism to collapse the readings assigned to noun-noun compounds, discussed above in Section >
144
u_;
3
]
he
vy
i
|
E i

28

E A
S M) % CY R LN
S Ny 9,

E'.{-.‘*‘-: PR S N A SO R R AT RER GERIAC AT AT 55 LTS LS RS L ERT ISR AT L N

Ty

-
Yl

)

LA

2

S % Y6 o a gty

Report No. 6813 BBN Laboratories Incorporated

2. The Semantic Component

2.1 Introduction

This chapter describes the semantic component of the BBN Spoken Language System. This semantic
component operates upon the output of the symtactic component (the parser) in such a way as to give the correct

response to a user's request. The body of the chapter is as follows.

Section 2.2 gives theoretical background to the work described here. In particular. it presents our view of the

nature of semantic knowledge, which comes from the perspective of logical model theory.

Section 2.3 presents the architecture of the semantic componem. which is based on the notion of **multi-level
semantics’” [4] [22] in which a user utierance is assigned meaning through successive translation from one level of

representation to another.
Section 2.4 presents the logical language used to represent meaning in the BBN Spoken Language System.

Section 2.5 illustrates the semantic processing of the system by tracing the translations of an example question

in some detail.

Section 2.6 discusses the underlying system and various utilities that support the abstractions of the logical

language.

Section 2.7 discusses our implementation accomplishments over the past year and gives direction for future

work.

2.2 The Nature of Semantic Knowledge

Semantics is traditionally seen as the part of hinguistics which attempts to account for the relation between
expressions of language and their meanings. The next Question—what is a meaning—is a philosophical one and
need not concern us unduly. We will consider that to know the “*meaming”’ of a declarative sentence lik: **The door
15 closed’” means to know what sort ot state the world would hiave to be in for that sentence to be true. These
requirements on the state of the world are called the *truth-condinons™ of the sentence, and thus notion of meaming

is called the *‘truth-conditional’’ theory [26].

The trutn-conditional theory does not leave out other sentence types in any necessary way. A question like
“'Is the door closed?"’ is seen as being about the truth or falsity of the corresponding statement (‘“The door is

29

R A R A A S OB A L R G AR TR CR A LR GO 0L S PR AR CL LS G4 S LA T o0 (A oM (g

"

P

Yy

L L'&.-

PR]

N
h.
L
L4
L
L]
g
-I
»
f
0
LY
-
.
«
»
E
w
\-
H
"D
A
h
-
|
by

VI " s . s WL N . Vil S G SR S IO i

PEPEE I I S

LR oy S
L R o |

A o5
‘;'Z BBN Laboratories Incorporated Report No. 6813 "'”: ‘
¥ 3
,; closed’’). A command like ‘*Close the door!’" is seen as being a command to make the statement **The door is

E closed™” true. Finally. a question like **What is on the table?"’ is seen as asking for values of "*x"" for which the M!-i

X statement "‘x is on the table " is true. £
v R N | | o
o7 A corollary of the truth-conditional view is that if we know the truth-conditions of a sentence, and if we have “n‘
L::: complete knowledge of the state of the world, then we can say correctly whether that sentence is true or false. 1
i -
N Obviously it dnes not make sense for this knewledge 0 be represented as a table which, given any state of the ""_::

} world, pairs sentences with the value "TRUE" or 'FALSE’. As Chomsky {5] has shown, the set of expressions in '
f“:: : any natural language (and for that matter, many artificial ones as well) is infinite. Modern grammatical theory sees 9;,
P this infinite set as being generated by a recursive system consisting of a finite number of basic expressions and a &

finite number of recursive formation rules which build expressions out of other expressions.

For instance. the following is a toy example of such a recursive system, generating a trivial but still infinite
language: -
Basic Expressions: 'FREDERICK’, ‘INDIAN-OCEAN’, "IN’

Formation Rule: if o, and y are expressions then

SN NSO N
S

N
by
a(B.y) X
is an expression as well i
This system produces an infinite set of expressions, among whose members are the following expressions: -
IN(FREDERICK,INDIAN-OCEAN) '
IN(INDIAN-OCEAN FREDERICK))
FREDERICK(IN.INDIAN-OCEAN) ~
IN(IN(FREDERICK.INDIAN-OCEAN).INDIAN-OCEAN) ﬁ
;’S\.
Az interpretation of a language is a systematic assignment of values to the expressions of the language. We Ly
."' think of an interpretation as a function—call it ‘F’'—which takes an expression of the language as its argument and
e returns the value assigned. The notions of truth and falsehood simply correspond to the values ‘TRUE’ and ;S
': ‘FALSE". Given the way that expressions are built up out of oher expressions as above it seems reasonable to ~
N wonder whether the assignment of values to entire expressions does not depend in some way on the assignment of v
, . i
E::_ values to their parts. vl
»
o The Principle of Compositionalirv is a theory of this dependence. It states that the vilue of an expression is a .:j
:: function of the values of its parts and of the mode of combinanon of its parts. A comipositional interpretation 1s }:.;
: constituted as follows: .
' 1) a value 1s assigned to each Basic Expression of the language 4
o 2) an interpretation rule 1s assigned to each formauon rule of the language
: The interpretation rules compute the values ot expressions from the values of their *'parts’'—the expressions the -
! formation rule combined. ts
LN
30 ™

wm
!

'\ }\\’." ' 4 ')-i'_,.' !\ >~)-\ -",f ';:‘ 1 g :"l;‘,l".-f .u .] -Y“’ J(« a "J l('- f- !.",‘.r)' ’l_' L .-..!'.'PP: J :."('i’,‘!

& Report No. 6813 BBN Laboratories Incorporated

The following is an exampie of a compositional interpretation for the language we defined above. Let the
assignments of values to terminals be:

FREDERICK => 5,
INDIAN-OCEAN => 0,

i IN=> {<<5,.0,>TRUE>,
<<s,.5,>FALSE>,
<<0,.0,>FALSE>,

| <08 > FALSE>}

It is important to note that the 's;".'0,"."TRUE''FALSE" above are not to be thought of symbols of any language

e U

but rather as ‘‘things themselves’ —be they ship, ocean. truth or falsehood. If I could, I would place the actual

‘_:; objects on the page but typography has its imits. The angle brackets “<' and *>" serve to delimit ordered pairs.
- Now the wnterpretation rule for expressions of the form o(f.y) is as follows, where o’,p", and ¥’ are the
f-‘_ translations of o. B and vy respectively:
if o is a set containing an element e, such that e, is an ordered pair whose first element is the ordered

» pair <P’ Y > then the semantic value of a(B.y) is the second element of e,

Jumight help to think of this rule as do.ng *‘table look-up’* on the semantic value o’
ne
’.1-
N We have now specified an interpretation of the language. This interpretation assigns the semantic value

“TRUE" to the expression
E IN(FREDERICK,INDIAN-OCEAN)

and the semantic value ‘FALSE’ to the expressions
- IN(INDIAN-OCEAN,FREDERICK)
K '
! IN(FREDERICK ,FREDERICK)
‘ IN(INDIAN-OCEAN,INDIAN-OCEAN)

R The interpretation assigns no semantic value at all to any other expression of the language, including:
- INDIAN-OCEAN(IN.FREDERICK)
LY
FREDERICK(INDIAN-OCEAN.IN)

':-‘_': IN(IN(FREDERICK.INDIAN-OCEAN),INDIAN-OCEAN)
52 The value assigned to an expression is usually called its **denotation’; expressions for which no value is assigned
N are termed **denotationless "
g We can perhaps now sce how to deal with the problem posed above—namcly. how to determine the truth or
I falsity of a statement in English given a complete state of the world. To each word of the language, such as the
o proper noun “"Frederick’" or the preposition *‘in’’, we assign an appropriate semantic value, where the domain of
1 this assignment is the whole set of things i the world: ships, oceans, numbers, people etc. An appropriate
\

assignment of values to words is one consonant with our knowledge about the state the world is in at the time the
LN
v
¥
1 31
i
*x

L U L L e R e I B L L O R e W M M PR S P p M0 M T L b7 L TN e S LS P A YT

]

BBN Laboratories Incorporated Report No. 6813

assignment is made. For example, the assignment to ‘‘in’* would relate certain pairs of physical objects and
locations to the value TRUE and other such pars to the value FALSE according to whether or not the physical A
object was 1n that location or out of it. -
. . . . I . . >
For each rule of English grammar. we assign an appropriate rule of semantic interpretation. An appropriate oy
paining of semantic and syntactic rules means one consonant with our intuitions about the meaning of expressions in 5
our language.
<
Of course there are difficulties in the way of this proposal First, very many English utterances are '
syntactically ambiguous: these is more than one way to built them up using the rules of a grammar. Secondly, B
‘ --
many English words, such as *‘bank’" have more than one meaning. and thus cannot be assigned a single semantic
vadue.
;:,
. . . . o . o N
Because expressions of English are so ambiguous we find it advantageous to first translate them to an 0
unambiguous language—a language of logic. For example, the statement **Frederick is in the Indian Ocean™’ could .
58
be translated: i
IN(FREDERICK.INDIAN-OCEAN)
We have already seen how to give an interpretation tor this expression. A question like *‘ls Fredenck in the Indian :;-
3
Ocean’” coulu be translated:)
QUERY[IN(FREDERICK.INDIAN-OCEAN)] .
Any ambiguity of an English expression corresponds to multiple translations into this logic. =
So far we have left out of consideration the fact that the state of our world—and therefore the truth-value of e
the statements we make—varies with time. The ship Fredenick might be located in the Indian Ocean at time ¢ and '.R‘
then sail out of it at a later time . It would be possible to accommodate such time-dependency quite
straightforwardly by adding an extra argument to ‘IN’, making it a three-place instead of a two-place predicate. L2
E This would ignore the fact, however, that time in natural-language expressions is frequently supplied by =R
E context—for example, the time at which a statement is made or a quastion asked, a time which is not mentioned in .l
| the expression itself. Such contextual dependency on time argues strongly for making the interpretation of | :
is
E expressions contextually dependent on time as well.
E . , L , : , L.
| To do this the interpretation function F is given an extra argument for time. This argument for time 1s referred 4
to as the index of interpretation. Other contextual factors might also be incorporated as oiher indices—among them,
the notion of 4 *"possible world"’. We speak of the “'intension”" of an expression as a function from such indices to :
9 I . ."-_‘-)
i the value—the *"cxtension’’—that the expression has at those indices [18]. u
&
w
it
W
W
wl
.8
32 ra
:‘?
A N R O A g I A A A A s I D L g N N e A Rt R g A L T T g A LT L A LS Rt gt i

Report No. 6813 BBN Laboratories Incorporated

2.3 System Design Overview

Py The semantic component of the BBN Spoken Language System 1s uvided into several processing stages.
.l.‘: Eacli produces as its output an expression of a logical language: all but the first also take an expression of a logical
language as their input. The idea of semantics by translation. mentioned in the previous section, is expanded here to
. encompass not one but several translations in a senes.
o The first siage accepts as input the output of the parser: this takes the form of a parse tree, whether of a
.:'f. complete sentence or some grammaucal constituent thereof. It uses as a knowledge base a set of semantic
) translation rules paired one-for-one with the rules of the svntactic grammar, together wnh a set of semantic entries.
S one for cach word of the lexicon, which pair words with expressions of a logical language called EFL. for
w English-Onented Formal Language. Using the semantic rules and lexical entnies it recursively builds up an EFL
. translation of the parsed utterance.
g
: The lexicon pawrs each word with just one expression of EFL, no matter how many senses that word may
- have. For this reason. the EFL level of representation is still ambiguous. A sentence like **Bill reached the bank '’
-::; would have only the single EFL translation:
PAST[Reach’ (Bill’,6 The (Bank')}
i even though it has (at least) two different senses—one in which Bill reaches the bank of some nver and another in
which he arrives at a bank building.
..I
.'; The EFL expression above is not the direct result of translauon of the parse tree to EFL, but a simplified form
] of it. After the ranslauon to EFL, a simplification step is performed. The simplification uses a fixed set of logical
‘ simplification niles, and is performed after every translation between levels.
After this simplification, the EFL expression is translated to to one or more expressions of a second logical
.:, language, WML, for World Model Language. A set of translation rules are used in t . step. These translation rules
i map ecach constant expression of EFL to one or more expressions of WML. All possible combinations are i
: constructed: those which are ““anomalous ' (in the sense to be defined in the next section) are filtered out. If no)
.?,: translations survive, the system classifies the utterance as grammatical but not meaningful in its subject domain and '
the user 1s so informed. :
- :
o The constant symbols of WML correspond to the primitive concepts of the subject domain. The choice of i
WML constants is governed by two requirements: t) for any index. specifying the extension of each constant gives d
";: the compfete "state of affairs’ in the subject domain at that index: and 2) no constant has its extension completely :
" determined by the extensions of any other constant or set of constants. The set of WML constants thus serves as a i
. complete but minimal **domain model”’. ‘
‘-‘. f
In the third stage of processing an expression of WML is translated to an expression of DBL., for Data Base A
" Language. Just as above this translation process is driven by a knowledge base of translation rules relabing WML :
R :
.
j 94 :
33
e 3
r
T T T T T T T Tt T T T b T T 0, T T L P T2 T ™ i P P Sl ;

LA

BBN Laboratories Incorporated Report No. 6813

-
\ 1
L
constants to DBL expressions. the difference being that each WML constant is related to only a single DBL
expression. The constant symbols of DBL correspond to the data files of the information system that natral .
language queries are addressed to. These data files can be seen as actually specifying the denotations of the DBL -
constants. thus grounding the model theoretic semantics of the utterance in the underlying comptuer system itself. 1f =
a particular WML constant happens not to have a DBL translation. the query containing it is meaningful in the O
subject domain but not answerable by the system, and the user is 5o informed.
=
The reason for having separate WML and DBL levels is not just the possibility of incomplete information just .
now alluded to. but also the fact that the requirement of efficiency for the storage of data tends to produce compact .
tubular structures that do not correspond one for one to the natural concepts of the subject domain. Translation is :‘
Py
0 X
therefore needed.
]
Finally we have the evaluation stage. when the “'vatue'' of the DBL expression is computed against the Q

current state of the data files. The answer is represented in yet a fourth language, CVL for Canonical Value
Language. This is the stage of processing at which failures of existential presupposition are detected and reported to

| SV

die user. Aa example would be tlic query ““Windh caaicts w tic 1o are €37 which it happens that thiere curnrently
are no carriers in the 10, If there are no such presupposition tailures the CVL answer representation can then serve

. . : ~

as input to whatever process generates the display of the result according to particular pragmatic goals. _{x
£

The languages EFL. WML and DBL are simply different instantiations of the same logical language, differing -

W

from each other only in the set of constant symbols each of them includes. The same set of formaton rules

generates the expressions of cach. The excepum 8 CWL, whose Soron yetes are sanply 2 omdll Subset of the

formation rules ~f the others. %‘
This is a usetul fact. since it allows the same set of logical stmplification rules to be used on expressions of all

=

four languages. After each processing stage but the last (which is in some sense the ultimate simplification) the W

simplifier 15 invoked to produce a smaller, simpler expression. The simplification transformations express necessary B

truths of logic, such as ‘P A TRUE = P’ and are applied by an iterated, recursive descent algorithm. ey

In the next section 1 present the higher-order intensional logical language which serves as the representational

tramework for the foregoing. =

34

Bt A BV BTN S T e 0TS0 VA O % 0 T 05 R0 DY 1%, 0% 0% W A5 0 S 1% (R A AN NS S AL PN AN S SR TGN S Y SV IS T B B S et S s ol L T

b A

I

T

e

e,

L L e L e T T X e e S T e e o S P o

Report No. 6813 BBN Laboratories Incorporated

2.4 The Logic

Expressinns of the logic are divided into three groups: cunstants, variadles, and complex exf ressions.

Complex expressions are built up by the formation rules from constants, vanables. and other complex expressions.

Expressions of the logic are labeled trees in which both nodes and branches are labeled. Constants and
ar' " les are the terminal nodes. The node labels are called *‘branching categories . the branch labels, *‘selectors’".
Ec. nchirg category ‘b’ is associated with a set of selectors ‘F-SELECTORS(b)". 11 *b’ is a branching category,
¢pes tessions and {S,....S, } = F-SELECTORS(b) then the following is an expression:
<k, {«8;,e>, ...,<5 e >}>

or drawing it in tree torm:

b
31/ . .\\sn
/
e, ce e
An example would be the branching category APPLY whose selectors are {FUNCTION.ARGUMENTS]}. Let
"“REDERICK' and READINESS-OF" be constant symbols. Then the follov/ing is an expression:
<APPLY, {<FUNCTION, READINESS-OF>, <ARGUMENT, FREDERICK>}>

Certain branching categories have a special selector, ‘VAR', as one of their selectors. Let 'FORALL’ be a

branching category whose selectors are { VAR,RESTRICTION,FORMULA} and let ‘X’ be a vanable, ‘P’ and
*SHIPS® constants Then the tollowing represents an expression which is said to bind the variable ‘X’

<FORALL, {<VAR, X>, <RESTRICTION, SHIPS>,
<FORMULA, <APPLY, {<FUNCTION, P>,
<ARGUMENT, X>}>>}>

Obviously this structural notation is cumbersome to write. Therefore, an extemal form of the language is

provided. The above would be written:

(FORALL X SHIPS (P X))

Each expression cf the lngic has a npe. which constrains both the types of other expressions with which the
expression can meaningfully combine and the values the expression ca~ assume. There is an infinite set of types,

numcrated by a set of recursive rules. The base of the recursion i3 a finite set of atomic types, varying from

instantiation to instantiation but including at least the set INTEGERS. REAI S, WORLDS, TIMES, STRINGS,

SPEECH-ACTS, TRUTH-VALUES and NULL-SET. For reasons that we shall see shortly. these are called the

rormal types

The following are some of the formauon rules for types. We assume that

every atomic type is a type

if . aty.....cr, and B are types ther the following are also types:

35

L I
a » 1

["3

[P PR B et i o ST S IO TR B T e

Ly IR L UL N s 1 §

[a7 o il

Ll gl g W

B e Ve e i i g T O o e i L WL g

Y oy om

P R

- W e

BBN Laboratories Incorporated ‘ Report No. 6813 =2
|,.\
Ir'
,
SETS (o)
FUN (¢, B) L]
TUPLES (0, . .., Q) e
UNION (O, ..., Q) *
! are assigned ‘‘domains’’, which are sets of semantic values represeuting the possible denotatons which 0
expresstons having that type may take on. Formal types are special in that their domains are fixed for all allowed :”

interpretations of the language. The domains of atomic types are mutually disjoint. The relation SUB-TYPE? and
the binary operation TYPE-INTERSECTION are defined for types. Note that for distinct atomic types o and f.
TYPE-INTERSECTION(c.) = NULL-SET.

As an example. "1’ and 2’ are constants of type INTEGERS. while ‘2.0" is a constant of type REALS and
“TRUE' and ‘FALSE" are constants of type TRUTH-VALUES. The symbol '+ is a constant of type

FUN (TUPLES (UNION(REALS, INTEGERS) , UNION (REALS, INTEGERS))
UNION {REALS, INTEGERS))

The types of complex expressions are computed by a rule associated with their branching category, a rule
which takes as input the types of the sub-expressions at their branches. Let the symbol ‘FREDERICK' be a constant
of type ‘SHIPS" and let ‘READINESS-OF" be a constant of type FUN(SHIPS R-VALUES), where 'R-VALUES' is
also an atomic type. Then the construction:

<APPLY, {<FUNCTION, READINEES-OF>, <ARGUMENT, FREDERICK>}>

ts a meaningful expression of type ‘R-VALUES’. Now, suppose ‘RONALD-REAGAN’ is a constant of type
PERSONS’. The construction
<APPLY, {<FUNCTION, READINESS-OF>, <ARGUMENT, RONALD-REAGAN>}>

1s not a meaningful expression, and has the type NULL-SET. It can never have a denotation under any indices, and
accordingly has the empty set as the set of values it can take on.

We have now put into place the machinery needed to distinguish between meaningful and meaningl ss
expressions. Meaningless expressions have NULL-SET as their type, and can never have a denotation at any index.
Meaningful expressions may fail to have a denotation at certain indi~~2 —consider ‘‘The King of France’’ but

nonetheless have a denotanon at sone index.

The infinite hierarchy of types allows more complex functions than we have seen so far—functions on sets
for instance. This power turns out to be necessary for many English utterances. Consider a sentence like **The boys
gather’”. Unlike the similar sentence "*The boys walk’’. 1t is not true that each boy, individually, gathers—this
simply wouldn’t make sense. Rather. it is a predication that one makes of the set of boys as a whole. To represent
it. one needs a predicate which 1s applied to sets of people, or a function constant of type:

FUN {(SETS (PEOPLE) , TRUTH-VALUES)
If ‘'GATHER’ is a function constant of this type. inen the utterance ‘' The boys gather’” can be represented as:

GATHER (BOYS)

This is a small illustration of the power and flexibility of the infinite type system of the language. Examples still

36

v Tp s v

g i
LI.r‘ o

Report No. 6813 BBN Lzboratories Incrrporated

N
E &
&
i more complex than the verb **gather’ do not give us trouble. 1f we like. we can have constants whose types are sets 'ﬁ
I of sets of sets, or functions from functions to functions.

)
E So far we have been content to simply introduce a new constant whenever we have need. This procedure \j
quickly becomes inconvienent when we want to construct the representation of a notion which is built up from ::
t others. Consider a function constant ‘LOVES™ whose type is: ;_‘;
! (FUN (TUPLES PEOPLE PEOPLE) TRUTH-VALULS) b
| and an ind.vidual constant ‘MARY" whose type is ‘PEOPLE’ and which translates the name ‘‘Mary’" in our R’j
t lexicon. Now suppose we want to consider a special property, the propenty of loving Mary, We wouldn't want to g
have 10 come up with a new constant symbol. say "LOVES-MARY", for every possible object of affection in the i\;

L domain of discourse. What we really would like to do is have some way of constructing an expression representing
; this property out of materials—constant symbols—aiready te hand. ?)‘:
v Tt: branching category 'LAMBDA’ gives us a way of doing this. Its selectors are 32
(VARRESTRICTION,BODY . The property of loving Mary is then expressed by: o
i (LAMBDA X PEOPLE (LOVES X MARY)) 5
The type of this expression is a function type from the type of its VAR, or bound variable, (?’EOPLE) to the type of :%
’ its BODY (TRUTH-VALUES). This is simply a predicate. ")
. A

Now suppose we wanted to say that a particular person, say Bill, loves Mary. Let **Bill’* be translated by an =

individual constant ‘BILL" of type PEOPLE. We can then apply the above LAMBDA expression as we would any &
other predicate, to obtain the expression: ‘ _\:
((LAMBDA X PEOPLE (LOVES X MARY)) BILL) Eé:
This expression can be siniplified to an equivalent expression by a process called Lambda-reduction. If the ;_:
argument (here, "BILL") is of a type ‘‘appropriate”’ to that of the bound variable of the lambda-expression. it can be x
substituted for that bound variable in the body of the lambda-expression. (The rule is actually more complicated, \;"
renaming free variables in the argument that would otherwise becnme bound in the substitution, and not substituting \\’;
for vanant occurences of the bound variable that are bound again in the body.) The above can be reduced to: :t:‘
(LOVES BILL MARY) '.
The LAMBDA branching category plays a very impontant role in our system. The translation rules that map :'f.
between the EFL. WML. and DBL levels use lambda-expressions to construct representations in the target language E:,
that are equivalent to notions in the source language. In this way a mapping can be constructued between v
expressions of the two languages even though they have different sets of constant symbols. o
X

The next secuon of this chapter shows how the logic is used by the system to construct a meaning

e

~.

represenatation of a sentence.

FRLL] s

g

37

Pl

AL TS T TS 1 T Lo T e Tt S e L L G
'f'e{'m'n_\‘n.ﬁ:"c"uu.‘k"'u'-c" n_".’)"'yd’ PR TS I

%y N

N
AT PRI L BT L P DS L T IV L L S L P R A B R Tyl S e s N AL oL,
S 2 ey O L e o P g L T T A N T

. 8
.h
BBN Laboratories Incorporated Report No. 6813 Y
S
NI
1 - a e . -
. 2.5 Example of Processing A
i
£ |
]
i::: In thiis section we go through an actual example of processing, showing how the representation o* the meaning ;':(
'_ of an utterance 15 progressively transformed through the various levels cf the system. I'v.:f
We'll take for our example the question ‘‘Is Fredenck in the Indian Ocean?’’. The parse tree for this question -:!
1s shown in Figure 2-1. which is a hard-copy of an actual screen-display. (M- wiat 1t goes from left to nght as e
opposed to from top to bottom.) The left-hand button of the mouse shows the syntactic rule associated with a given .
node. the middle the semantic ruie, ard the right-hand button the EFL interpretation of the node. A right-hand -":f
button click on the left-most node *'START'" gives the EFL interpretation of the entire sentence. '
¥
Let’s get some idea of the recursion. Clicking night on the node labeled **N’’ just to the left of the nodes I
labeled “"INDLAN’" and *"OCEAN"" gives the following EFL expression:
INDIAN-OCEAN g
The phrase “"Indian Ocean’” is a collocation, which the system considers as being a single word. < licking middle on '
the node labeled *' LOC-TEMP-PHRASE'' gives us the semantic rule: .
{meta-lambda (Sprep $Snp) -:'_',
(lambda x anytype ((Q $np) (lambda y anytype (Sprep x y))))) -
The ‘'meta-iambda’ 1s an operation which takes a list of ‘meta-variables (those prefixed with the **$’" sign) and an a
expression containing meta-vanables. The meta-vanables are the inputs to this rule; when regular logic-expressions i
are plugged n for them in the budy, the EFL semantic interpretation of the node is produced.
Y
: *
Clicking right on this node gives the EFL interpretation which is the rcsult of this rule plus the EFL -
interpretations of the children of the node:
(lambda » ~nytype ((Q (setof indian-ocean)) o
(lambda y anytype (in x y)))) ”
Note that the preposition “*in’" is represented by the descriptive EFL constant “'IN’", underlined above. o
¢
g
What the system does with the entire sentence can be seen by clicking right on the node labeled ‘*START'".
Thus produces the expression: .
A
(QUERY w
((INTENSION
{(LAMBDA*T* v
H{LAMBDA P ANYTYPE (P DONTCARE)) }":
(LAMBDA TRVAR ANYTYPE (LAMBDA X ANYTYPE (EXTENSION X)) gt
(INTENSION ((Q (SETOF FREDERICK))
(LAMBDA X ANYTYPE ((Q (SETOF INDIAN-OCEAN)) t”:}
{(LAMBDA Y ANYTYPE(IN X Y)) i.,w.'
Y J
T ’) -
NOW ACTUAL-WORLD)) Y
This expression can be simplified in various ways. Simplification is accomplished by the function SIMPLIFY,
which is called between levels of translaton. The simplified version of an EI'L translation can be obiained from this v
. o
display by clicking right while holding down the *‘control’ key. The result of simplification is: s
.]
38 [_B%
e M P TP % e T S e e e Tl e O i IR A TR o o a0 R

Incorporated

Laboratories

BBN

Report No. 6813

.H-hq-hrx PWFJM\ l.hﬂlé —.- L R B T\N\l\l\!&wﬁﬁﬁ&

TS s

A T T A e e e Y &

AT e N R RO R N Ry

aviaHliiaa

d-dW31-D071

[werpuL. |

JANIWNELIA

M
——{dN}—— 3sVEid-dWaL- 20T}

dATEd1dO

LONRIAYSIdO

HMI1dO

I3

Ued00 UBIpUI oy} Ul ¥iiiopaij S, 10) o913 95184

39Ua3Uas SIyF 10 §85184

URIV0 URLPU} YR U} HO|JIPIJY S}

19saed 03 30UIJUIG

ISE I SJeH
resaed [S} I43y)
i9sJed 03 30UIJUIG

s R St MR AL N, il e

10 @dA3 "uocjIEn|en] JG() 03 uanjad o] :dooT] e@sdeyg) ewelj HjH

Screen Display of Parse Tree

Figure 2-1

EOESENNS BFET X,

v %
o
o3

050,00 000 1500

O

I,

Ao

Y ¥

P GV

Y

-x"t'h'.“

-
=
-

e?

oWy

-

-
w *

»
-

e

il

39
BN WP

3

IF S

H'?.J".‘:'x.

AV RV

-
-

.

A

T

'-_x")-.'-) 3

»

m
R

1

L

~-
A
w

L]
L;.ﬁ
5

weL BBN Laboratories Incorporated Report No. 6813 r

{QUERY (INTENSION (IN FREDERICK INDIAN-OCEAN)) NOW ACTUAL-WORLD))
The next step is to translate the EFL expression to WML. Recall that this translation step is an ambiguous one "-;
which can result in more than one WML expression. In this particular case there is just one ambiguous element in
the sentence: the preposition “'in"’. The word ‘‘in"’ can mean many things in different contexts: consider 1S

*"Frederick is in the Indian Ocean’” vs. **Frederick is in the Pacific Fleet”. Accordingly, the descriptive constant IN ':-:
1s an ambiguous symbol, and has the following set of WML translations. "
‘ 1. (lambda (X Y) ((groups ships) (groups fleets)) (forall x1 (set x2 ships (INC x2 x)) (exists yl (set y2 r'.;
r::: fleets (INC y2 y)) (equal (fleet-of x1) y11))) ::‘-
é::‘: 2. ¢lambda (x y) ((groups things) (groups places)) (forall xI (set x2 thiags (INC x2 x)) (exists yl (set y2
:,;‘;: claces (INC y2 v)) (sub-location (location-of xI) y1)))) P’:.‘
2 The first of these corresponds to the ‘“in-fleet’" reading, the second to the ‘‘in-place’” reading. They are typed in v
terms of “"groups’’ of ships, tleets, places etc. to handle cases of plural arguments to *“in’’ such as we find in the o~
NPs “ships in the fleet ", **ships in the fleets etc. (These matters are discussed in the paper [23] ‘ k:
The set of WML translations for the entire sentence is assembled from all possible combinations of the :‘:‘
translations of ambiguous EFL constants. A filtering step is applied to the translation which excludes WML "'j_‘
translations with incompatible combinations. This filtering can be applied to intermediate results of the recursive
translation. Translation (1) above can filtered away because ‘frederick’ is a ship and ships and fleets have no :;;:
common members. &
The simplified WML translation of the entire sentence is a follows: s;.'i
(QUERY ((INTENSION (SUB-LOCATION (LOCATION-OF FREDERICK) INDIAN-OCEANY) a
NOW ACTUAL-WORLD)) an
Thus is the unambiguous meaning representation of the sentence “‘Is Frederick in the Indian Ocean?”". ::':

2.6 The Semantic Framework System

; s
oo AL
il

e
o iy
> 2.6.1 Introduction
-
&
The semantic framework system implements the abstractions of our logic in software. It is an interconnected T
svstem of modules and definitions which allow other programs—specifically the various translation modules .
‘ .'I
sketched in Section 2.3—to be wntten in terms of these mathematical abstractions without concem for w
L
4 implementatior: details. In consequence the translation modules themselves are quite simple. and comprise only a
- bf g
7 tew pages of code. Translation modules and indeed the entire processing architecture can be quite casily modified E:
hice
;_-,. as the need anses. Ve
c.”
g'-l . . 1
r.! The semantic framework system includes: L
® L
?: o Data structure support for logical language expressions
» R
)
R
40 ' B
3]

LS LR s T RV L A R RN TR AS A S Nl Sl Ry i u e gyt R Rty T Ty 100 B W 187 A = 09 B . 8

TRV WYy

_F

™

st |

il

; ’r;v

8 it

.

T o o oo TR R W e e A o Do e i M T O T T T 7 o o T ™ T TR ™ P R B P SO % a7 "‘}CP"-}C-&}_

Report No. 6813 BBN Laboratories Incorporated

¢ A means for easily extending the logic to include new operations

o Declaration functions for specifying descriptive constants

* A type system to compute expression types

¢ A sub-system for performing translations and transformations on expressions
¢ Syntax and consistency checkers to prevent errors in KB data entry

We now proceed to discuss each of these in detail.

2..2 Logical Expressions as Data Abstractions

We have implemented the logical latiguage with LISP functions in which branching categories and selectors

are represented as LISP atoms and constructions as implementation-dependent data-structures.

W : have the function CONSTRUCTION:
CONSTRUCTION (branch-categorv branches)

where the argument branches is an assoc list pairing selectors and expressions or. in the case that the selector is a
mult-branching, LISP lists of expressions. It creates and returns a tree data structure. The following constructs a
umversal quantification expression which claims for all CRUISERS that the predicate P holds:

(CONSTRUCTION ' UNIVERSAL-QUANTIFICATION
" ((FORMULA APPLY P (VARIABLE X SHIPS))
(VAR VARIABLE X SHIPS)
(RESTRICTION . CRUISERS)))

We have the funcion BRANCH-CATEGORY:
BRANCH-CATEGORY (expression)

which takes a tree and returns its branching category. 1f it were applied to the example just presented it would return
the atom UNIVERSAL-QUANTIFICATION.

There is the function SELECTION:
SELZCTION (expression selector)

which takes a tree data structure and appropriate selector, and returns the sub-tree structure pointed to. Suppose the

construction returned above to be bound to the atom FOO. Thea the following:
(SELECTION FOO ’‘VAR)
would evaluate to (VAR X SHIPS)'.

Also available are funcuons tactually macros) which evaluate only some of their arguments. These are very
handy when selectors and branch category of the expression 1s already known when code is written. There is the

function MAKE, whose fomm 1s:

41

r
-y
Py
!
y

-

]

DI
e

Pl A

4oty
b K
-

"
Y
PR

a_w
o
X

A

l;t Sy
i';".

s
A

B

ok o
£ ..F'..;-.I~ .

‘5.

ok

B2

o5

BBN Laboratories Incorporated Report No. 6813

(MAKE <bc>
<sell> <expl>

<seln> <expn>)
where only the <expi> are evaluated. There is also the function SELECT, whose fomm is:
(SELECT <selector> <exp>)

where only <exp> is evaluated.

2.6.3 Functions for Defining Constants

The following functions are used to define constants and types:

dt (nume language &optional def)
dft (name)

dc (nuame lunguage rvpe)
dfc (name type)
The above stand for. respectively. *‘declare type™". "*declare formal type’". “*declare constant’’. ‘'declare formal

constant’’. The name ard language arguments can only be filled by Lisp symbols.

The language argument must be supplied for non-formal types and constants. and must be a declared language
name. The list of language names 1s bound to the atom language-names: to add a language name, one adds to
this list.

2.6.4 Functions for Extending the Language

The semantic framework system has a unique and powerful feature: it directly supbons the extension of the

logical language used for semantic representation.

Branching category declarations are separated into two classes: those declanng regular branching categories

and those declaring branching categones of the type sub-language. The following are their argument patterns:

DEF-BC (branch-category selector-list &optional tvperule eval-rule)

DEF-TYPE-BC (branch-category selector-list &optional eval-rule)
None of these arguments are evaluated. The hranch-category argument must be a LISP atom, and the selecror-list
argument a list of atoms. This argument specities the vadue of the tfunction F-SELECTGRS for the given branching

category,

The ryperule argument specifies a rule for computing the type ot the expression of the branching category
from the types of its sub-trees. At the current time this ‘'rule”” is just a Lisp-code lambda expression. In the near

future a more sophisticated notation will be used.

42

O S A T e I il i i i T i P P ML PR AU L e 20 A0 50 A% U0 T T 0 e T W T The e e)0y e e 5 & 30, S SOt S T, S

E

vN S

<

g
E2S

vl

s

1]

S

-~

s l‘ ’-l‘.‘l

A

=

¥ 2
t.{ v

SECAEIENF 3,0 a5

Report No. 6813 BBN Laboratories Incorporated

The eval-rule argument is also optional. and analogously specifies a rule for computing the value of the
expression from the values of its sub-trees. Eval-rules are Lisp code around which has been wrapped either a form
(EVAL-T *)" or a form (EVAL-O *)'. "EVAL-T" stands for ‘‘evaluate transparently’’. A rule of this kind is
supplied with the values of the sub-trees of the expression. ‘*‘EVAL-O’’ stands for ‘‘evaluate opaquely’”. A rule of
this kind is supplied with the sub-trees themselves. and must itseif take on the responsibility for how they are
cvaluated. Such rules are inherently non-compositional, and are (currently) used only for branching categories
which bind a variable.

2.6.5 Translations and Transformations

A number of functions are provided that facilitate the transformation of one logic expression into another.

We distinguish two different kinds of transformation: local and gloval. In a local transformation, only
constant symbols are transformed. Branch-categories are left unchanged and thus the structure of the input
expression carnes over to the output expression. An example of this kind of transformation would be the WML to
DBL transiauon.

The function TRANSLATE:
TRANSLATE (exp ct)

takes an expression and a function. The function argument tikes a constant and returns an expression (whether
another constant or a complex lambda-expression) which is that constant’s translation. The algorithm is quite
simple and is given below:
TRANSLATE (exp ct) =,
BC <- BC(exp)
Selectors <- F-selectors (BC)
(i£: BC = CONSTANT
then: CT (exp)
elseif: BC = VARIABLE
then: exp
else: (construction BC
(pairlis selectors

(for s in selectors
collect TRANSLATE (exp.s CT))))}

Global transformations are unconstrained. They take the form ‘<input pattemn> => <output paitern>’,
Patterns are implemented by the notion of meta-expressions. distinguished from regular expressions by the
appearance of meta-variables. which are atoms prefixed by '$™". An example global transformation would be:

(ELEMENT-OF $x (SETOF $a)) => (EQUAL $x S$a)

which states an equivalence between two expressions, where the right-hand side is simpler than the left.

The function MATCH(pattern.exp,env) tells whether or not the expression ‘exp’ matches ‘pattern’. ‘Env’ is an

assoc list pairing meta-variables and expressions: it is ordinarily NIL when match is called at rop-level.

43

e |

et ——

L o o o N I o e o o 1 Ko A 0 O, a7 g -a-o-.mn:-wm;.ﬁx&wi

Y TN A I T T e e W W W T N e

)

. . .
BBN Laboratories Incorporated Report No. 6813 s
The output of MATCH is either an association list pairing meta-variables and expressions or the atom FAIL.
Thus: oS
(MATCH (ELEMENT-OF FREDERICK (SETOF VINSON)) o
(ELEMENT-OF $x (SETOF $a)) -
nil) x::
evaluates to the assoc-list (($a. VINSON)($x . FREDERICK)) -
This output is then given to the function which handle; the right-hand side of a global transformation. This f"
function is META-EVALUATE(exp.env). lts effect is take an expression containing meta-varables, and an B
environment which assigns those meta-variables. and return the resulting instantiation. As an example: :._
(META-EVALUATE ' (EQUAL $a $x) 7
" (($a . VINSON) ($x . FREDERICK)))
w
returns the expression (EQUAL Sa $x)". -~
META-EVALUATE is used in the initial semantic interpretation to EFL, where the semantic rules are like the -
right-hand-sides of global transformations. a_
A function DEFTRANSFORMATIONSET is provided for definining arbitary sets of global transformations. e
The funcuon APPLY-TRANSFORMATION-SET applies such a set of transformations, working in a recursive ')t'
descent tashion. The functon APPLY-TRANSFORMATIONS-REPEATEDLY applies a given set of
transtormations over and over again. until no more can be applied. It is the basis for the function SIMPLIFY. Ao
2.6.6 Functions for Comparing Types N
There are two major functions for comparing types. These are SUB-TYPE?, which computes the o
subsumption relation between types. and TYPE-INTERSECTION. which takes two type expressions and returns a]
third which is the *‘largest’’ sub-type of both.
2
q_ f
For any twe types 11, (2. and for all indices of evaluation.the following statement is true of SUB-TYPE? -~
SUB-TYPE? (t1,t2) -> DEN(tl) < DEN(t2) -
This simply says that if tl is a sub-type of 12, it is always the case that the denotation (i.e. the domain) of tl is & ::::
subset of the denotation of 12. Note that the converse 1s nor true: that is, 1f the denotations of one type expression is
a subset of another. even at all indices of evaluation. 1t is not necessanly the case that the first expression 1s a subset :::
of the second. -
re
The algonthm which computes SUB-TYPE? is now presented. In order to deal with umon types we will first o
need the function COMPONENTS. which takes a type expression and retumns the set of basic type expressions that .
mak 2 1t up: &
2
N
44 -
)
e ot R R T e L N e R s 8 R I Y e L W R L B AR 3O OO]

By

Report No. 6813 BBN Labcratories Incorporated

-..
a"n
R LN

COMPONENTS (type) =,.¢

I

if type = NULL-SET

then (}
" ‘else if BC (type) = UNION
" then compute-union(for: t
in: type.sets
; take: COMPONENTS (t))
i .' else (type)
’ where ‘compute-union’ takes a set of sets and returns the set that is the union of these sets. Note that the
disunguished type NULL SET has an empty set of components as is appropriate for it.
The following are example results of COMPONENTS when applied to various type expressions:
=
“‘: COMPOUNENTS (DESTROYERS) -> DESTROYERS
ﬁ COMPONENTS (UNION(A,B,C)) -> (A,B,C}
COMPC NENTS (TLIOK (A, UNION(B,B) ,A) -> (A,B}
2 COMPONENTS (FUN(A,B)) -> (A,B}
P
We can now present the algorithm for SUB-TYPE?:
:: SUB-TYPE? (T1,T2) =,,,
. if T1 = NULL-SET
W then TRUE
else if T2 = NULL-SEJ
then FALSE
N else for: x
o in: COMPONENTS (T1) :
P holds: for: y |
in: COMPONENTS (T2) |
- exists: COMPONENT-SUB-TYPE? (x,y) :
e where COMPONENT-SUB-TYPE? is defined by: !
. COMPONENT-SUB-TYPE? (T1, T2) =, .,]
r“: U
X
Y BC1 <- BC(T1) /
BC2 <~ BC (T2) 4
i, if BC1i = CONSTANT and BC2 = _ONSTANT L
N then T1 = T2 .
’ else if BCl = BC2 and BCl ¢ (L,B,SETS,r} h
_ then SUB-TYPE? (T1l.ELEMENT-TYPE, T2. ELEMENT-TYPE)
e else if BCl = BC2 and BC = TUPLES]
o then for: x L
in: T1.ORDERED-ELEMENT-TYPES]
5 as: y 1
5 in: T2.ORDERED-ELEMENT-TYPES]
Se holds: SUB-TYPE? (X,Y)
1
\.’ 4
o
s
St
45
N L o o e s T e A e e e e o T e e e W P T A OO (M I

BBN Laboratories Incorporated Report No, 6813

2.6.7 Syntax Checkers for Logic Expressions

Obviously it is not convenient for humans to use the constructor functions to write down fogic expressions.
For this reason, an externai form of the logic is provided for their use. This external form is a LISP s-expression.
which the function PARSE-EXF tums into an intemal form expression. checking for errors or omissions as it does

so. If errors are lound appropriate messages are printed on the user's terminal and the function returms NIL to its

callers.

Errors includ2 improper syntax for branch-categories. use of undeclared symbols. and use of forbidden

symbols (such as branch-category names) as terms. Both regular and meta-variable expressions are parsed.

Since the conversion from extemal to intemal form is always required. PARSE-EXP is invoked at every
knowledge-base entry point. Any transformation, translation or rule that does not pass PARSE-EXP is simpty
retused. and the user so noufied. in this way the system 1s protected from a great many errors that would otherwise

onjy appear at run-time.

Another functon is provided to check whether the type of expressions is nieaningtul. Called CHECK-EXP-

TY PE. it pnnts out any anomalous constituent.

Finally. 1t 1s often necessary to turn intemmal form back into external form lor user readibility. The function
PPL does the conversion and the function SHOW-EXP does conversion and pretty-printing.

2.7 Accomplishments over the Last Year

2.7.1 Implementation Status

We have implemented the semantic processing architecture this report descnbes and used it in demonstrations

in July and October of 1987.

We have used the tools described in the last section in constructing the knowledge bases of the multi-level
semintics system. In particular. we have implemented:
* A set of 468 structural semantic rules for the syntactic rules of the grammar (79% coverage)
e A set of 629 Semantic entnes for the words in the lexicon (87% coverage)
e A doman model " of 97 type and 389 descriptive constant declaratuons
* A collection of {14 logical simplification transformation rules
¢ A set of 51 EFL to WML translatior: rules

Semantic coverage currently stands at 30% of sentences parsed.

46

i

v
A

As

.‘.'.

n:-‘-‘l
‘e n

ks

Yl

Report No. 6813 7 BBN Laboratories Incorporated

1.7.2 Theoretical Issues and Publications

In the process of building these knowledge bases we have had to contend with a number of semantic problems
for which no widely accepted solution exists. One of these is the problem of *‘relational’” nouns, such as ‘*speed’’,
“brother'", etc. which, in contrast to regular *“categonal’” nouns such as ‘‘man’’, "‘ship’’ and ‘elephant’’, scem to
require an argument for their reference to be made clear. These ‘‘arguments’’ do not correspond, however, to

syntactic relations on the noun.

We have developed and implemented an approach to relational noun semantics in which the arguments are
supplied by semantic and not syntactic means. This mvolves treating relational noun denotations not as sets of

individuals. but as sets of ordered pars corresponding to the extension of a relation.

A paper descnbing this approach has been accepted for publication and presentation at the forthcoming 1988

meeting of the Association for Computational Linguistics [7].

Another semantic problem has to do with the combination of pants of speech taking arguments—verbs,
adjectives. prepositions, as well as relaticnal nouns—with plural arguments. In this case the issue is how the
argumenr-taking item 15 to be “distnbuted’ over the individual members of the denotation of the plura! noun
phrase. As has been earlier shown by Scha [21]. the way in which this is done depends on the particular lexical 1tem
in quesuon. We have developed and implemented an approach to this problem which uses the distinction between
the levels of EFL and WML to translate an initial ‘‘collecuve’ application on e EFL level to its final
“dhstributed’” WML counterpan.

A paper descnbing this work has been accepted for publicauon and presentation at the forthcoming 1988

meeting of the Association for Computational Linguistics [23].

2.7.3 Future Work

Having put into place the general framework this chapter descnbes we plan to spend the coming year

increasing the coverage on the Resource Management Corpus. This will involve focussing on a number of semantic

1% %A

LN ey)

R o a o ol

32 oL T K K "]

LV all ol i ol ol S

NS AP NI Iy i L~ S SN INL ek

N
1ssues rarsed in the corpus, including: N
e The interaction of tense and tme adverbials d
¢ The treutment of g.nenic and mass nouns y
e Intrasentential Anaphora d
o “Time-sentes ™ perspectives on coneepts. e, " Vinson s ast five locations™ |
)
i
L
h |
L
1
\
3
L
L
47 !
-
' .-\.-" A N A AR N L W D T A S LR P T LS LR S A 3 LAY
LN R e 1 TV Al R e e e e R A U L e S L Bl el L T S .."1‘.\%"-\":\'.."- N J‘.‘.‘\":\u g‘\-‘:\.‘h S-'."-{é:ﬁ.‘.& ")

o' BN T

e atnly XS A4 0.,

e By "' ™

A

A
S
s
h
}_
1
E
;
:E.‘

T M T W W T T L RN Wy

| 30" I g At O T RN S At I B

BBN Laboratories Incorporated

Report No. 6813

Ny

T
[

|

e

1

o

AT

e

Y

Report No. 6813 BBN Laboratories Incorporated

‘3 I:l
’ ex
rA S
L 3. Speech and Natural Language Integration ;::
| 3
I e
. In the preceding chapters. we have described the natural language components of the BBN Spoken Language o
L ‘e
-: system: the parsing algorithm that uses the BBN ACFG (Chapter 1) and the semantic interpreter that derives a ':;
| meaningful interpretauon cf text input (Chapte 2). In this chapter, we will describe our approach to integrating .'C:
‘ syntax and semantics with acoustic scorn:g to1 speech understanding, "‘
T
i
The goal of speerk understaniing is to determine what was spoken and the corresponding meawing of the g
X input utterance. To &.fireve optimal performance. i.e.. the maximum correct understanding rate, we need to find the f~:.
: most | kely word sequence consistent with syntax and semantics. This poses the problem of a large search space _.,
o0
e which must be explored judiciously so that an utterance can be processed in a reasonable amount ot time with g
R . r
N reasonable computational resources. ﬂ
A "
r’ There are several possible approaches to solving the speech unacrstanding problem, 2
4 .
4 &
One possible approach. which we have demenstrated previously. is the serial connection. In this approach,
~ speech recognition and natural language processing are performed serially and independently. with the speech o
a - . . g , -
3 recognition component computing the best sconng answer using acoustic models and its own language model, and)

.

then passing the ans ver to the natural languag : componem for processing and interpretation. The cntical problem

]
s

with this approach is the possibility of a mismatch between the speech language model and the natural language

grammar: the sequence of words recognized by the speech component could possibly fall outside the coverage of the =

- natural language gyrammar, causing the system to break down altogether. Also, it the speech recognition component \

5 makes an error, there is little chance for recovery. Therefore, to have any chance of success, one needs to fully ::

integrate speech and natural language, where integration means using same the language model to jointy perform ;::

; speech recogmition and natural language understanding 1n a single search space. %

-4

. One approach to integration is to compile the natural langaage syntax and semantics into a single network :—
::: such as a Finite State Automaton (FSA) or a Recursive Trausitior Network (RTN) appropriate for performing 2 q::

top-down ume-synchronous search to find the besi hypoiliesss [6]. However. this assumes that such a network can :;
in fac. - built froin the declarative unification grammar formalism o cur natural fanguage svntactic component and 3

j:- oir semantics component. A close examination of our grammar reveals that the number of equivalent context-free ::

-
Al

rules needed to make an FSA network from our unufication grmmmar (semantics not included) would run into the

YT
R Y

hundreds of thousar1s, and the number of arcs in this FSA network w ild oo many umes that size. No computer on

the market or on paper today would have a virtual address capacity anywhere near this size. not to mentic the

paging penalties that would be incurred even if such a computer were avalable,

Fo s
M

e :

The approach that we nave taken. then. is to perform parsing (in the natural fanguage processing sense) on the f:.

E': speech input. This approach consists of a two step process. First. the speecn component computes a very dense :

word lattice: ail words that are plassible acoustically - vwhere 1n the input utterance would be computed, with a "

separate score for every starung and ending time. Given this word lattice, the natural language component can -

'f- H

X search for the most likely meaningful scntznce as 3 path through the lattice. Y

. L

v

b

-~ [}

- 49 o
0

1 v ow

.
-
"l.

N

B e N e N e e e

F\

A

BBN Laboratories Incorporated Report No. 6813 !
F'ﬁ

y

"

As such. the problem can now be posed as a parsing problem solvable by parsing algorithms similar to the text &
parsing algorithm described in Chapter 1. Whereas the text parser takes one sentence as input, the *‘speech parser™’ ?

takes the lattice of alternate word hypotheses, and finds in the lattice a!/l grammatical (syntax only) sentences and
assigns each scntence an acoustic likelihood score. Henceforth, we shall call this speech parser the Word Lattice \
Parser. To handle the notion of scoring in parsing. we have extended the text parser to deal with acoustic likelihood

unuerstanding system that is used to compute the acoustic scores for the words in the vocabulary: in Section 3.2, we

I

scores. Every grammadcal constituent (starting from the terminals) now has an acoustic score attached to it, “1

N indicating the likelihood of this constituent occurring a<ross a particular time interval of the input utterance. Parsing :':-‘
¢ e

::‘.‘-r now means matching the rules in the grammar as well as performing dynamic programming (DP) of input speech
.‘J

E_‘.,j using acoustic models of the word, The final answer is a complete grammatical constituent (the (START) symbol f;s
] in the grammar) spanning the entire utterance that has ihe highest acoustic score. 7
W]] 5 N
>~ This chapter is organized as follows: in Section 3.1, we discuss the speech component of our speech o
l. ‘

S W

S:-: give details of our integration of speech and syntax: in Section 3.3, we describe how we currently incorporate o

o -] <

e seraantics to find the best interpretation of the input; and finally in Section 3.4, we discuss some of the system -

g_ implementanon issues 1 building the integrated BBN Spoken Language System (SLS) for speech understanding.

]

[e
L \

J

3.1 Speech o
1

For the purpose of integration, the speech component needs to compute the acoustic likelihood scores for all :—::
words in the vocabulary between any ume intervals i and j. We define the acoustic score of a werd W to be the o

logamuhm of the conditional probability:

S(i, jiW) = LOG(Prob(i, jIW)) ‘ E
where [iohii,jiW) is the score or likelihood of the hypothesis that terminal or word W produces the observed input
, acoustic data between times i and j. The acoustic data is typically a sequence of analyzed and vector-quantized zj,
o (VQinput spectra sampled every 10 millisecond [6]. We model the input speech at the phonetic level using robust <
® context-dependent Hidden Markov Models (HMM) of tne phoneme {24]. The acoustic model for each word in the
:‘\' vocaoulary is then denved from the concatenation of these context-dependent phonetic HMMs. :;
X '

Using these acoustic models of the word, one can compute the acoustic scores for each word on the input

™Y WO

.
l,lfl

AN

utterance using a nonlinear time alignment procedure. A computationally efficient method is to vse the trellis

3
.t algonthm [17]. We use backward (in tme) trellis computation to compute all scores {Prob(ijiW):.0<i</<T} in a
E‘::: single pass for a fixed time j, as shown in Figure 3-1. i
%::' In Lds version of the algorithm the index i only needs to range from j minus 1 down to j minus the maximum ‘
&:: duration for the word, which in our system is based on the number ot phonemes in the word. We further improved ,':r
;.r on the computational efficiency by switching the order of the W loop and the i loop. This allows us to do
E'é time-synchronous pruning similar to that described in [24] among all words that ended at time ;. This pruning "
W

r.

50
t\.‘ VT
. 1]
b
r‘- m
L e R T TR T T LI A LRI IS 75] LR T W T T 1 T T T U P SR
R AR R B A e A R A A AT ST AT RS G ERT Rt R LV i S AR PR TS AT IR S I S T TS ORGSR R TR PA SR L LR |

l =l '
[L

Report No. 6813 BBN Laboratories Incorporated

b
2

-, =
NSy

Yeea-

;; For all ending times j

for j =1, T do :
v .
l.- ;; For all words in the vocabulary L
1 for W in (W)} do g
|]
;; For all beginning times i compute Prob (i, j|W) b
' for i = j-1, Max (0, j-MaxDur{W]) by -1 do ~]
Perform within-word DTW and compute Prob(i, j|W) 2
- i
:‘, -‘
%_ where DTW is performed using the trellis algonthm. k
L’. Figure 3-1: Dynamic Time Warping (DTW) algonthm | F
-
i algorithm compares words that end at the same time j and eliminates those that score poorly acoustically relative to ?
" the best scoring word for all time i.i<j. It has given us a factor of two or more reduction in the acoustic computation. (':
! L
5’.’ The improved algonthm is shown in Figure 3-2. i
r
" y
o ;; For all ending times j ‘)
%“-‘3 for J = 1, T do :l
C
.i
- ;; For all beginning times i compute Prob (i, j|W) :'
E for i = -1, 1 by -1 do El
;; For all words in the wocabulary i
no for W in (W} do i
N if (i < j-MaxDur[W]) g
quit 4
' else ?
Ya b
Perform within-word DTW and compute Prob (i, j|W) ;
S Also keep track of maximum score across words and]
iL'"' perform time-synchronous pruning. i
i
"
r Figure 3-2: Dynamic Time Warping (DTW) algonthm 2
’ I
The computational complexity of this backward DTW algorithm is proportional to 2xJ>xT, where J is the 7
! maxynum duration of a word and T iy the length of input utterance in frames. The result of performing this acoustic '
computation is a word lattice which is then used for the integration of speech and the natural language components. /]
] 1
:i' I‘.
\ B 'y
4) '.
N, v
1 r
»
b
i :
! A
R]
b 51 d
s E

- o o = . 9o
O R T G O T R O N I I AT Sy vy

E
] : [
i BBN Laboratories Incorporated Report No. 6813 =
g X
: A
E 3.2 Integration of Speech and Syntax
a
ot
Previously. we argued for the need to integrate speech and natural language, as integration is essential for o
optimizing the performance of a speech understanding system. In this section. we describe our efforts in inte grating .\.’:\\
speech and syntax, and use this as the basis for incorporating other natural language components. Before describing
| the algorithms for integration. we will first review the syntactic component of our natural language system (for a -
; detailed discussion. see Chapter 1) As described previously, our system uses a unification grammar for "
| representing the symtax. A unification grammar is essentially a context-free grammar (CFG) augmented with -
variables. The algorithm used for performing symiactic analysis operates word-synchronously. left-to-right and ‘\E‘E

bottom-up and computes all possible parses of the input. 1t is similar to the CKY parsing algorithm that appears in
the Iterature on context-free grammars. It starts at the terminals and iteratively derives larger grammatical

constituents spanning the smaller ones that have already been found. Building a larger constituent from

subconstituents involves unification (see Chapter |)—the process ot maiching terms (made of complex expressions)

in the grammar, requinng recursive computation, which is a compute-intensive and memory-intensive process. This z
algorithm is shown to have a computational complexity proportional to N?, where N is the length of the input ext.

We describe two parsing algorithms that have been implemented for integrating speech and syntax. Both are }2’:
natural extensions of the text parser. The first is a time-synchronous parsing algorithm that operates at the resolution ~
of the frame (10 millisecond). However, this algorithm is extremely complex computationally, rendering it >
impractical. Our second implementation 1s a word-synchronous parscr more similar to the text parser. It takes _:‘
advantage of the redundancy across time frames by combining similar constituents that occur across different ime
intervals into a single constituent and parsing with only this single contituent. A computational saving of two orders :'.j.
of magnitude has been realized using this algorithm. i

-

We describe the two speech parsers below. In subsequent sections, all discussions pertain only to the &,
word-synchronous parser, which is our current implementation.

g
3.2.1 The Time-Synchronous Speech Parser
)

Figure 3-3 presents the algorithm for the time-synchronous lattice parser. '«""

As can be seen, this lattice parser is similar in many respects to the text parser. (Compare it to the algonthm :’»'
in Figure [-1.) The parser builds the table dx [1, j] starting from time j=1 and marches left to right. filling the L
table with vahd grammaucal constituents. What is distinctly ditferent is that i and j range over time/Irame positions 2
within the utterance rather than orer word positions, and that each rrammatical coastituent has been augumented s
with an acoustic liketthood score S[1, 3]. The process of parsing involves mutching terms to derive larger -
constituents as well as combining the acoustic scores from substituents to arrive at a new acoustic score. The major e
drawback of this algorithm is its computation and storage complexity. Since the parsing algorithm runs in time
proportional to the length of the input, and the length in this case is 7', the number of frames in the speech utterance. .

3
o
52 L3
Fa

RIS T S S S S R W R L Lt

Report No. 6813 BBN Laboratories Incorporated

;:; First compute the word lattice
for all terminals W
Compute acoustic likelihood score S(i,k|W), 1 <k < T
using DTW

;;: For all ending time
for k = 1¢to T

;::; For all starting times
for i = k-1 to 0 by -1

;;; Compute chart entries for time interval <i, k>
dr[i, k] =

{((A — W. &, S[i,k|W]) | W € input [i,k]} U

l
{(A > a B. B, S[i,jiA] + S[3,kIB] | :
(A > «. B B, S[i,3IAl) € drli,]] :

& (B = Y., S[3,k|B)) € dr[]j, k]}

MaxScore[i,k|A] = Max S[i,k|A] for all (A — 8.) € dr[i, k]

O I

Traceback[i, k|A] = (A — 3.) = Arg(MaxScore[i, k|A])

L
i<ji<k :
[
P
where I
dr([i, j] = dotted rule table cor. »~.ng of grammatical constituents spanning time interval i ji<j ,
AB = lefthand sides of rules in the grammar :
a B.y.d. € = symbols deriving arbitrary number of terminals]
MaxScore [i,k, .} =the best sconng grammatical constituent spanning input [i, k] with A as the lefthand
side c
g
I
Traceback [i, k|A]=the lefthand side of A — &. with the best score for input (i, k] ;
Figure 3-3: Time-synchronous Lattice Parsing Algorithm

i
this algonthm would run in time proportional to 300 (assuming an utterance is 3 seconds long)! Also. as stated, the ;
agonthm only keeps the single best scoring parse for a time interval <iy> and throws away all others. Alternate ;
syntactical interpretauon of the same input are explicitly discarded—making subsequent application of semantics "
L

impossible. We propose a supenor parsing alzonthm—the word-synchronous parser—described below.
'_C
4
b
.
»
»
/
33 :
!
/
p

S R R N T TV Tt Bt A i B e R N e T I e B " BV ¥ (0 D o T I T I G T R T T T T N S T I P AT RS NPT NS

v oW
']

te

BBN Laboratories Incorporated Report No. 6813

3.2.2 The Word-Synchronous Speech Parser

In the time-synchronous parser, the entries indr [i, j] contain theones of the form:
(AR > B. CD, S[i,Jj]) ‘ o
where B spans input [i, j] with acoustic score S[i, j]. Inall likelihood, dx [i, j+1] would include %)

A e N R T LY R Y
e

(A > B. C D, S[i,j+1])

N .

" where the same dotted rule A — B. C D is being computed twice. oy
N As unification 1s expensive computationally, much could be gained by removing the redundant representations ..
[~ . C . ey . .
> in the parse table. and thereby minimizing the number ot unifications computed. One way to achieve this is by j

grouping these two theores into a single theory,

le P

(A > B. CD, {(S[1,3]), S[i,6]j+1]}) :'Q
E;‘ In fact. one could collect all neighboring theories into a single theory, ":
E (A > B. CD, {S[i,3]}) l;*
5 where {S[i, j]) 1s the set of scores, and associated with each is a starting time i.i€ </mindmax>, and an ending vy
g ume j,je </minJmax>. In effect. this groups a contiguous region of the input utterance into word units, and then
:: applies the parser at the word level to f.nd the best syntactic parse. This is the word-synchronous lattice parser. e

Figure 3-4 presents the algonthm for the word-synchronous parser.

‘w" —; -
i

. A
-

N o

% The operator ## is defired as the concatenation of two sets of acoustic scores {S([tl,t2]} and &

= {S{t3,t4]} to derive a new set of scores spanning the intervals of the two sets, using the following DP

e algonthm: e

X (:l

E.: For ta € <Tlmin, Timax> W

i For tb € <T4min, Tdmax>

o S[ta,tb] = Max(S(ta,ti] + S[ti+l,tb]) -

L, At

E'-f where ti € <T2min, T2max> N <T3min, t3max>

4 ~

-

o fal
While the computational complexity of the time-synchronous algorithm was T3, that of the word-synchronous L3N]

-1 algonthm is N3, where N is now the estimated number of words in the speech signal; part of the task of the parser is

5 to determine the true word sequence from the signal, and therefore the value of N. The implementation of the T~

word-synchronous lattice parser 15 described in detail in Section 3.4,

ST
Xy

AR
P
o

»

54

q

e WRR S YR @ AT @
,;"‘l'j:'

el ?

O N AL o) 8] € T e) Tl B e T AU R g AL LB e S kS ST 2 1
A A N N T e N N A A s R e N O A A A A N N I N P S A I L M N A T N e L T

%

- .n
. , .
S Report No. 6813 BBN Laboratories Incorporated 9
rl
2 ::
- .
-
-
’, 9
l First for all terminals W S
[N compute (W, {S{tl,t2]}} :_
. w]
o ;;:; For ending positions k (in words} -
- for k =1 to N t
A
- ;;:; For starting positions i (in words} X
for i = k-1 to 0 by -1 -
;;: Compute chart entries for word positions <i, k> 3
S drii, k] = N
’ (if i+l = k !
‘:_ {(A > W. «, (S[tl,t2]}} | W € input [i,k]} ;
‘\\ v
/]
else E
" {(A > «B. B, {S[t5,t6]}} | h
. (R > a. BB, {S[tl,t2]}) € drli,]] 4
~ i
& (B - y. , (S[t3,td4]}) € dr(j, k]} o
4
o i<j<k 1
} 1
. V) b
‘f l.
i:" 1
g {(A = B, o, {S[t5,t6]}} | (B — v. , {S[t5,t6]}) € dr[i,lk]} .
‘ﬁ V (AR >Baqa) €P -
R where
B tl € <Tlmin, Tlmax>, t2 € <T2min, T2max>
- t3 € <T3min, T3max>, t4 € <T4min, Tdmax> ;
3 t5 € <TS5Smin, TSmax>, t6 € <Témin, Témax> !
and ;
. {S[t5,t6]) = {S[tl,t2]) ## (S[t3,td]} = (}
." A
o g
' Figure 3-4: Word-synchronous Parsing Algorithm y
e, :
"
= :
R ;
LS »
-7 1
o
[
55
-
|
B A T T T T S P b TS T P T T T AR T B A T et RV T W T RTAEATSE RS 5 R G AT I AR T T A AT A A |

gL e g

W T

ol JEn s e G0N

d e s

o e U

T T

T Y B

BBN Laboratories Incorporated Report No. 6813

3.3 Integrating Semantics

Our initial strategy for applying semantic interpretation to the speech parser is similar to that in the text parser,
i.e., after syntactic analysis has been completed. To allow for this without incurring the cost of repeating the same
parsing computation over and over again for parsed constituents that are the same bu* with different parse trees. a
scheme for representing the entries in the parse table dr was devised. It is as follows. The entries in the parse table
dr[i, j] for a particular i and j is partitioned into equivalence classes. Within each equivalence class are theores
having been parsed to the same grammatical expression (Gexpr), but with possibly different parse trees
corresponding to different ways of parsing a particular word sequence in the lattice as well as to those that
correspond to parses of different word sequences which happened to have resulted in the same parsed constituent.
Each cquivalence class is headed by a representative Gexpi template on which unitication matching 1s performed
(therefore, only a single unification match is performed per class). however, tree building and speech concatenation

computation (unique to e ach member within the class) are done separately for each member w:thin the class.

To illustrate,
If (A > B. CD, {S[tl,t2]}) € dr(i,]j]
& {<C>: (C — E F. (S[t3,t4])})
(C = B F'. (S[t3',t4']})

(Co E F''. {(S[t3'",t4"']})
} € dr [j.k]

Then (<A —- B .. D>: (A =5 B C. D {S[t5,t6]})

(AR - B C. D (S[t5',t6"]})

(AR —- BC. D {S[t5'',t6'']})
} € drli k]

where

<c> = representative Gexpr template for the equivalence class C
<A — B C. D> =resulting representative dotted rule.

By representating the parse table in this way, the parser is able to find all parses of the input without

replicating the same work. which in the worst case could have exponentiating effects on computation.

Finally. semantic interpretation is performed by first finding the set of complete constituents (i.e., all entries of
the form ((START) {SCORES}) in the parse table (ie.. dr [0, 1] i>0) that span the entire utterance <1.T>, and
then by finding the best scoring one of those which is also semantically meaningful. This gives us the single best

answer that is optimal with respect to speech. syntax, and semantics.

56

B X e e Tr e e e L L TR S L Lo i o

e T o

s
~‘am

=9

P)

I3 '-:'.-v 3

g

A DL

m—

AR A YA A AT T Ty T o AT, 3 o I o T o o o T o A A A T S s

A)
« %N
.

.o
-
s

e T
EAF A

Wi w5y

>
-"-Ic

Report No. 6813 BBN Laboratories Incorporated

3.4 System Implementation

Many practical issues were encountered in the implementation of our SLS system on the Symbolics Lisp
Machine (LISPM). In this section, ¢ representative subset of these issues will be highlighted and methods for
handling them discussed. The issues and discussions are relevant only to the current implementation—the word-

synchronous lattice parser.

3.4.1 Silence Handling

The word lattice coniputed by the speech component contains words that are in the speech lexicon. including
the word SILENCE. representing intervals in the utterance where the model for SILENCE matched well against the
input speech (as silence is located at utterance beginnings, utterance endings. at the beginning of plosives, actual
pauses in speech. etc). Since silence, or pause, is not explicitly handled in the natural language grammar (in the
future, we may include pause detections to help identify phrase boundaries), something must be done to eliminate
these silences in the word lattice while maintaining its integrity. We hardle this by merging silences into the
neighboring words: all words that have silences as neighbors would also have another instance created that has its
boundary extended to include silence, with the proper acoustic scores included. By incorporating this silence
merging stage as a preprocess to the parser, we have eliminated the need to modify the grammar/parser so it could
handle silence explicitly, while ensuring that all of the input signal is accounted for.

3.4.2 Search Strategies

Search strategy design is by far the most important task in designing and implementing a system dealing with
a large search space such as the one we are building now, as efficient search strategies can mean orders of
magnitude reduction in both computation and memory requirements. In this section we describe some of the

methods employed in our system that are used to prune down the search space.

34.2.1 Conditions for Search Termination

As mentioned previously, the computational complexity of the word-synchronous parser is proportional to N3,
where N is the estimated/computed length of an utterance in words. To minimize unnecessary computation, one
needs to detect N as early as possible and terminate search (the bottom up parser could go on for a long time beyond
the actual number of words in the input). The algonthm that we have devised is as follows: before each parse. we
compute the best scoring word sequence ftom the word lattice without using any grammar constrants (i.e.. all words
can follow any word). The resulting acoustic score of this answer is used as an upper bound on the score of the best
sconng word sequence allowed by the grammar. The condition for terminating search is satisfied when we are at
some position k in the parsing algorithm where a complete grammatical constituent (with the symbol (START))
spanning the entire utterance is found indxz [0, k-1] witk 4 score within a threshold of the upper bound score. The

'LI)'J

1’5.

It S I b

o
S e AT R

>y E B, v

| g 4" 5 g ¥ WY

T30 B I L

®
R
o
.
v
).

»
[t

§
l BBN Laboratories Incorporated Report No. 6813
E ~.
| 7
P o
] reason for choosing to look at dr [0, k~1] rather than dr {0, k] is a subtle but well-motivated one: a valid =
i complete constituen! may have short function words (such as **a’’ or ‘‘the’’) deleted from it and still score well =
'_‘ enough to satisfy the search termination cnterion. In other words, we always want to compute one more word given
i that we think that we have found the “‘correct’” word sequence. By hedging against single word deletions, we are t:-
E also relying on the assumption that more word deletions will deteriorate the overall score to the level where the <
“ threshold test (against the upper bound score) can no longer be satisfied. Finally, the best answer is computed by
_ searching over all theories ((START) {SCORES}) indr{0, i],i>0 that span the utterance from time 1 to 7 and _:
?: finding the theory with the best score.)
3.4.2.2 Reduction In Time Resolution T
A simple scheme to reduce the computation is to down-sample the backward DTW in computing the word 5\\
lattice to compute at every T frame (for example. skip every other frame). This would reduce the speech lattice)
computation by the same factor, and would reduce the score concatenation operation (##) in the parsing by the same
factor squared. This is a simple and straightforward (and well understood) method for cutting down on 5
computational load with minimal loss in pertormance, and we, in fact, make this the default mode of operation for
: our system. Currently, we use a time resoluton of two (skip every other frame) in running our system. s
: N
3.4.2.3 Word Lattice Pruning
.M
As described earlier. the speech component computes a very dense word lattice which potentially would o
include all words in the lexicon with scores between every time interval <i,/>. The motivation behind using a such a
dense word lattice in the parser is to be sure with probability close to one that the correct words would be included at n
the nght place in the lattice. However, to consider such a lattice in its entirety would not only be a waste of effort -
since most of words are in fact just noise {as our models of the word are probabilistic), but would be o
3 computationally impractical for our bottom-up parser. An integral part of designing the lattice parsing algonthm is s
to come up with ways of reducing the size of the lattice and yet ensuring that the correct word sequence is present.
P
A straightforward approach is to prure down the word lattice, keeping only those words that score reasonably ‘
well tall those that have an average score per frame > 8. where § is a predetermined threshold) and ignoring all those
that scored poorly acoustically. The key. then. 1s to detennine & so that it would result in a high hit rate for the ;-'
correct words while minimizing the detection of irrelevant words. In practice, we found it very difficult if not =
impossible to find such 1 & that would fulifill these two conflicting requirements, as words have widely varying o
acoustic scores not only among themselves. but across contexts and environments. In fact, one can imagine that in ;‘;
the worst case. a distinct threshold would be needed for every word in every context. Fortunately, from empirical
evidence as well as from our knowledge of acoustics. we infer that the average acoustic scores of words in general ::
tend to fall into two broad classes: short words (most ‘unction words. such as “*a™. “*the’", **of"’, that have two o
syllables or less). and long words (such as proper nouns like *‘Frederick™* and **Westpac’’). The short words, since -
they are short in duration and are often reduced in spoken utterances, tend to score poorly acoustically; whereas the !
long words are often spoken more carefully, and would have consistently higher acoustic scores. This suggested the
use of dual thresholds—one for shon words and the other for long words. In fact. we have generalized this to an)
A
on
58) o
S R A Tl S TR B D P el Tt T B i eV NP RO el G R WL D e R Y ey Nt e e ol et T N A e A A A N AT AL i T

B o B e i L i A

-

PO R 2L A T LR AR By TP ISR B TS LI RS L0 P IRV T 1 - Ll i V™ " Xy V] g 2 - X
e T A e N i, el e O L o o A e AT AT AT AT AT R R T

Report No. 6813 BBN Luboratories Incorporated

arbitrary number ot classes, with short words on one end of the spectrum and long words on the other. with other
word classes in between, with the guiding principle that words with fewer syllables would tend to be more variable
acoustically. and therefore would need smaller thresholds, and vice versa. Currently. our system employs four
levels of word level pruning. And in practice. we have found that this multi-level pruning reduces the size of the
lattice (as measured by the number of words, each with a set of boundaries with associated acoustic scores) by at
least a factor of two. This reduces the parsing computauon dramatically as the latuce size has an exponentiating

effect on the size of the parse table.

3.4.2.4 Pruning During Speech Parsing

One strategy lor pruning the search space during parsing is the time-svnchronous beam search used in the
BYBLOS speech recognition sys'em. However, the beam search used in the BYBLOS system always compares
theories spanning the same tinie interval from time ! (beginning of utterance) to current tme r. whereas the
bottom-up parser used here zenerates theories that can span arbitrary ime intervals <1,/2>. We have modilied the
beam search to work for our parsing strategy as follows. During parsing, the maximum score spanning a particular
time interval <z1,/2> (lor all ume intervals) is computed, and theories that span <¢1./2> are only kept if their score is
within a threshold (the beam) of the maximum, all others are eliminated. This method is less effective when
theories are short (spanning short ume intervals), and much more effective as \heories become long in duraton.

Empirically, we ve found this pruning strategy reduces computation significantly over no pruning.

~

3.5 Current Status and Future Work

Currently, we h-ve an integrated system that runs on actual speech utterances. the speech component produces
a word-lattice. on which the natural language component performs parsing to find the most likely interpretation of
the input utterance. However. a cntical problem remains to be solved. On input utterances that are loug, or are
particularly arnbiguous acoustically, producing a large word lattice (and this happens quite often), the system runs
into severe search problems, requiring prohibitively large amounts of computation and memory. On such occasions,
the machine simply runs out of virtual memory and crashes. The solution to this problem is to come up with
methods and algonithms to significantly cut down on the search space. Some ideas to iy include more efficient
pruning of the word-lattice, 1op-down prediction. and semantic filtering. For word lattice prining, one can imagine
a pruning strategy that is data driven. rather than using thresholds that are fixed apnori. In prediction. we want to
use top-down information (whereas our parser operates strictly bottom-up) to reduce the size of the parse table, and
therefore minimize computation and storage. Likewise, semantics can be used incrementally (at the constituent
level) to filter out semanucally anomalous svntactic parses mn the parse table. We will incorporate one or more of

these methods and test their effectiveness within the context of the overall search strategy design.

59

‘

T A

LRI S T S
L S L]
".';') RPN

.l

2

s

% <% <

(S
e
)
b

BBN Laboratories Incorporated Report No. 6813 P

5

du

»*
5 . |

T

by | L
" Exty

i

LA

el il s e gy ol
' Al Je -‘" l"’l" -I'l
= -

fal x50

"1 ': ‘ ¥
Y]

7,
e

¥ S

*I
v, .
L 2
y'. h!".
h)

“l at

60

~ 3
I-‘

L]

N W N PN T W ¥ T W,
TR AR RN AL GG C RS S) N

e T M e VT o M W W WY o T
RCSARAR R LR CR TR AR T S AR R S L LR R L C RN

Report No. €813 BBN Laboratories Incorporated

Referenres

{1] Alexander, D. and W.J. Kunz.
Some Classes of Verbs in English.
distmbuted by Indiana University Linguistics Club. Bloomington, Indiana, 1964.
Linguistics Research Project, Indiana University. F. W. Householder, Jr.. Principal Investigator.

(2] Bresnan, Joan. o
Contracton and the Transformational Cycle in English. o
distnbuted by the Indiana Uruiversity Linguistics Club. Bloomington, Indiana, 1978. o
Onginally writtenn 1971. "
[3] Bridgeman. Loraine 1., Dale Dillinger. Constance Higgins, P. David Seaman, Floyd A. Shank. 5’--{
More Classes of Verbs. o

distributed by Indiana University Linguistics Club. Bloomington. Indiana, 1965. Ingt”

Lingutstics Research Project, Indiana University, F. W. Householder. Jr.. Principal Investigator. f-ﬁ:

Y

o (4] W.JLH.J. Bronnenberg, H.C. Bunt, S.P.J. Landsbergen, R.J.H. Scha. W.J. Schoenmakers and E.P.C. van .‘-‘:
u Utteren. BJ
The Question Answering System PHLIQAT. =2

} In L. Bolc (editor), Nutura! Lunguage Question Answering Svstems. Macmillan, 1980. 5
" e
:: 1S] Chomsky, Noam. x‘;-
' Aspects of the Theorv of Syntax. ::,_-%
MIT Press, Cambridge, Massachusetts, 1965, -',,5-

16] Y.L. Chow. M.Q. Drinham. O.A. Kimball, M.A. Krasner, G.F. Kubala, J. Makhoul, P.J. Price. S. Roucos. g

and R.M. Schwartz 5

BYBLOS: The BBN Continuous Speech Recognition Sys. 'm. -

In International Conference on Acoustics, Speech. and Signal Processing, pages 89-93. 1EEE, Dallas, - 3

Texas, April, 1987.]

(7] DeBruin. Jos and Scha, Remko J H. NN

o

The Interpretation of Relational Nouns.
In Proceedings of the ACL. Associaton for Computational Linguistics, June, 1988.
To Appear.

(8] Gazdar, Gerald. Ewan Klein, Geoffrey Pullum. Ivan Sag.
Generalized Phrase Structure Grammar.
Harvard University Press. Cambndge, Massachusetts. 198S.

P

{91 Graham. Susan L., Michael A. Harrison. and Walter L. Ruzzo.

An Improved Context-free Recognizer. “;)
ACM Transactions on Programming Languages and Svstems 2(3):415-461. 1980. o
[10] Haas. Andrew. o
Paratlel Parsing for Unificatien Grammar. “h
In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages 615-618. 1JCAL 24
%:_ Milan, Italv, August. 1987, "
s [y
™, [11] Huaus. Andrew :,'
A Parsing Algonithm for Unificaion Grammar. o
forthcoming. :-';‘
;J'

{121 Haman, Gilbent.
Generative Grammars without Transformation Rules: A Defense of Phrase Structure.
Language 39:597-616, 1963,

61

R A e A VS R N R S R R LR NPt L U Tt T S AT 8T AT R K O N N
R o N e P et A A LA, " I L,

BBN Laboratories Incorporated Report No. 6813 :

[13] Heidom. George E.
English as a Very High Level Language for Simul:.tion. a3
SIGPLAN Notices 9(3):91-100. April, 1974. '3

[14] Heidom. George E.

Automatic programming through ratural dialogue: a survey. . v

(BM Jowrnal of Research and Development 20(4):302-313. July, 1976. ..‘;'
[15} Ingna. Robert].

A Summary of Verb Complement Types in English. R)

forthcoming. =

[16] Ingna. Roben J.
Features in the BBN ACFG for Selected Verbs from the COBUILD Corpus.
forthcoming.

[
L 2
Then d

[17] Fredenck Jelinek.
Continuous Speech Recognition by Statistical Methods.
Proceedings of the IEEE 64(4):532-556, April. 1976.

18] Montague. R. |

The Proper Treatment of Quantfication in Ordinary English. oy

In J. Hintakka, J.Moravcsik and P.Suppes (editors), Approaches to Natural Language. Proceedings of the A

1970 Stanford Workship on Grammar and Semantics, pages 221-242. Dordrecht: D.Reidel, 1973. -

{19] Pereira. Femando. &5

Extraposidon Grammars. :_,-

American Journal of Computational Linguistics 7(4):243-256, 1981. *

[20] Procter, Paul et al, eds. .

Longman Dictionary of Contemporary English. Li

Longman Group Limited, Harlow and London. 1978. =

121] Scha. Remko J.H. ol
Distributive, Collective and Cumulative Quantification. : o

In Jeroen Groenendijk, Theo M.V. Janssen, Martin Stokhof (editors), Formal Methods in the Studv of
Languuage. Purt 2, pages 483-512. Mathematsch Centrum, Amsterdam, 1981.

[22] Scha. Remko J.H.]
Logical Foundations for Question-Answering.
Philips Desearch Laboratories, Eindhoven, The Netherlands, 1983.
M.S.12.331. R

[23] Scha. Remko J.H. and Stallard. David G.
Mulu-ievel Plurals and Distributivity.

In Proceedings of the ACL. Associaton lor Computational Linguistics. June, 1988, o=

To Appear.)-"_
[24] R. Schwanz, Y. Criow. O. Kimball. 5. Roucos. M. Krasner. J. Makhcul.

Contexnt-Dependent Modeling for Acoustic-Fhonetic Recognition ol Continuous Speech. -§

in Internatiimal Conference on Acoustics. Speech. and Signal Processing, pages 1205-1208. 1EEE. Tampa, 5

Flonda. March. 19%5.

1281 Shieber. Stuan M. S5
An hroduction to Unification-Based Approaches to Grammar . o
CSLI (Center for the Study of Language and Information), Stanford University, Stantord, CA, 1986.

62

: . TG TS T T L N I L I e e e R JEY LV Ry - - " - roa n g s W man -
S e g A A A A A T A A AN N e e

Report No. 6813 BBN Laboratories Incorporated
{26] Tarski, Alfred.
Der Wahrheitsbegniff in den Formalisierten Sprachen.
Studia Philosophica 1 :261-405, 1935.
translated as “The concept of truth in formalized ianguages.” Logic. Semantics, and Mathematics. pp.
152-278, ed. by A. Tarski. Oxford: Clarendon Press.
{271 Visser, . Th.
An Historical Svntax of the English Language; Part One: Syntactical Units with One Verb.
E. J. Bnll, Leiden, 1963.
[28] Visser, F. Th.
An Historical Syntax of the English Language; Part Two: Svntactical Uy its with One Verb (Continued).
E. J. Brill, Leiden, 1966.
[29] Visser, F. Th.
An Historical Svntax of the English Language; Part Three. Fir_* Half: Syntactical Units with Two Verbs.
E. J. Brill, Letden, 1969.
130} Visser. F. Th.
An Historical Svntax of the English Language. Part Three. Second Half: Svntactical Units with Two Verhs
and with More Verbs.
E. J. Brill, Leiden, 1973.
b
=
3
o
= 63
T P o e N N TN T A a8 T B 0 0 T TR PR NSO

P R FRNS T R AG S NG R S

.
>

R}
L L

AW

LESG T 5T

': H -x"‘),

ey RS e

r.ﬂy\"v"b

KLAE

N
P

e
PSSt P

N A d

PGP R oy

«
ol

Fhats

s LI

Iu

-
x

Dty of
PR B 2]

RN e e i B

o)

"
o

Gt

.

Yy MR Wy PRGN BRE &S v AT Wy B B e 2As N T 'R VTR Y

SCRCAL,

[

RO

-r,_-r_-f

-

w
w e

(S

WK

PER RN

Report No. 6813

L]
-

yooy

SO

Pt LS

64
N S A)

St

LT

o

“a”aa%a

A B U)

.
“

.
«

BRN Lauoratories Incorporated

LI LA PN B NER RE e, G N VA EEN YA

[RAA @ BN @l @ el

_» d.ih

x

M
LY
£y

o

T,

Report No. 6813 BBN Laboratories Incorporated

‘ Appendix A
> A Parsing Algorithm for Unification Grammar
Andrew Haas

&
!
”
S
- Abstract
' We describe a table-driven parser for unification grammar that combines bottom-up construction of
phrases with top-down filtering. This algonthm works on a class of grammars called depth-bounded
grammars. and it is guaranteed to halt for any input string. Unlike many unification parsers our algorithm
works directly on a unification grammar—it does not require that we divide the grammar into a context-
tree *"backbone™’ and a set of feature agreement constraints. We give a detailed proof of comrectness. For
the case of a pure bottom-up parser, our proof does not rely on the details of unification—it works for any
:F. pattern matching technique that satisies certain simple conditions.
A
. Unification grammars have the formal power of a Turing machine. Thus there is no algorithm that finds all
;":' parses of a given sentence in any unification grammar and always halts. Some unification grammar systems just live
with this problem. The usual parser for definite clause grammar may enter an infinite loop if the grammar contains

left recursion, and it is the task of the grammar water to avoid this. Generalized phrase structure grammar avoids
this problem because it has only the formal power of context-free grammar, but according to Shieber (1985) this is
- not adequate for describing human ianguage.

Lexical functional grammar employs a better solution. A lexical functional grammar must inciude 2 finitely

t.' ambiguous context-free grammar. which we will call the context-free backbone (Barton . .87.p. 105). A parser for
Y lexical functional grammar first builds the fimte set of context-free parses of the input and then eliminates those that
don’t meet the other requirements of the grammar. This method guarantees that the parser will hait.
o This solution may be adequaie for lexical functional grammars. but for other unification grammars finding a
., finitely ambiguous context-free backbone is a problem. Suppose we use the notation of definite clause grammar. An
J > . . - . .
- obvious way to build a context-tree backbone is to keep only the topmost function letters in each rule. Thus the rule
3 (s} = (np :p :n)(vp :p:n)
3
becomes
i~ g
o $ — np vp
'-.', Suppose we use a simple X-bar theory. Let tmajor-calegory :type :bur-level) denote a phrase 1n a major category. A
s noun phrase may consist of a smgle noun. for instance “John'". This suggests a rule like ths:
i .)
- {major-category (nj 2) — {major-category (n) 1)
oo In the context-free backbone this becomes
o
0
Py 4
65
-

R TA T T AT R P A e A S S AT e T A MO e 1 N 0 OO R T P i M s W I W W A WL o SR

I

v
L

,.,
A

g” BERN Laboratories Incorporated : Report No. 6813
X
& ‘e
: :
o
" 2L
major-category — major-category . "
\ e
X
-k, so the context-free backbone is infinitely ambiguous. One could devise more clabarate examples. but this one ;.:
‘..: suthces to make the point: not every natural unification grammar bas an obvious context-free backbone. Therefore by
2 we need a parser that does not require us to find a context-free backbone. but works directly on a unification
2 grammar. .'7'!
\:_ >
o . -
% We propose to guarantee that the parsing problem is solvable by restricting ourselves to depth-bounded .
M .
::'_-: grammars. A unification grammar is depth-bounded if for every L > 0 there is a D > 0 such that every parse tree for o
N, a
a string of L synibols has depth less than D. 1n other words. the depth of a tree 1s bounded by the length of the string
it derives. A context-free grammar is depth-bounded if and only if every stning of symbols 1s fimtely ambiguous, o)
but for unification grammars this 1s false: depth-bouniedness is a stronger property than finite ambiguity. o
Depth-bounded unification grammars have more formal power than context-free grammars. As an example fe
we give a depth-bounded grammar for the language xx, which is not context-free. Suppose the terminai symbols are *
A through Z. We introduce function letters A’ throtgh Z’ to represent the terminals. The rules of the grammar are ,
as follows, with # denoting the empty string. ::‘Q-
~

(s) = (x :1)(x= :1)

(x (cons :a :1l)) — (pre-terminal :a) (x :1) -
(x (nil)) — #

(pre-terminal (A’')) — A

(pre-terminal (Z')) — Z ’_'.:

The reasoning behind the grammar should be clear—(x (cons (A") (cons (B’) (nil)))) derives AB, and the first rule

i guarantees that every sentence has the form xx. The grammiar is depth-bounded because the depth of a tree is a linear |
tunction of the length of the string it derives. A similar grammar can derive the crossed serial dependencies of Swiss .
German. which according to Shieber (1985) no context-free grammar can derive. It is clear where the extra formal
power comes from: a context-free grammar has a finite set of non-terminals, but a unification grammar can build ;:;
" arbitrarily large non-terminal svmbols. -
. *
EC It remains to show thai there is a parsing algorithm for depth-bounded unification grammars. We have :.&‘
5; developed such an algorithm, based on the context-free parser of Graham. Harrison and Ruzzo (1980), which is a '
E:‘": table-driven parser. If we generalize the table-building algonthm to a unificaion grammar in an obvious way. we get .;)
» an algonthm that 1s guaranteed to halt for all depth-bounded grammars (not for all umfication grammars). Given that :‘):'
!-'-r the tables can he built. 1t 15 easy to show that the parser halts on every input. [f the grammar 1s not depth-bounded
':‘;'_ the table-bulding algonthm will enter an infimte loop. and it s up to the grammar writer to fix this. In practice we
:-’ have not found thus troublesome. 1n any case it is better than having a4 parser (such as the usual definite clause
: grammar parser) that may parse a hundred sentences and then enter an infinite loop on the hundred and first.
; ;
P Sections A.l1 and A.2 of this paper defines the basic concepts of our formalism. Section A.3 proves the
o
. : 9';
y S
1
." 66 =

=

E’;J‘?‘-‘A? St TR T T N T T T e e e L e N R L e e L e M T T A S R T L I O T 5 e B W N N N T R R T W !)WJ

,
P»_ Report No. 6813 ‘ BBN Laboratoriec Incorporated

soundness and completeness of our simplest parser, which is purely bottom-up and excludes rules with empty right
! hand sides. Section A.4 admits rules with empty right sides, and Secnon A.5 adds top-down filtering.

" el taTn T ATATEY A T 'y.{

A.1 Basic Concepts

2 lam tela v v

=
A tvped languag: is five-tuple L = (T.F.V.5|.5,). where T is a finite set of types, F is a finite set of furction ;:
o letters. V is a couniably infinite set of variables. s is a function from F U V onto T, and s, 1s a function from Finto .
T*. The tuncton s, assigns a type to each function letter and variable. The function s, assigns types to the argument '
positions of each functon letter. We assume that T, F and V are pairwise disjoint. i
i b
lh Il
s A term is either a variable or an expression (f Xy---Xp), where f 15 an n-adic funcbon letter and X|...X, Qre terms.)
The type of a vaniable v is (s, v), and the type of a term (f x,..x) 18 (5 1). A term is well-typed if it is a variable, or f

;(r if it has the form (f x,..x) where x.. x_are well-formed terms, t,...t are the types of x,... x_ respectively, and (s,

f) = t,..t. F'rom now one we shall consider only well-typed terms. A ground instance of a term t is a substitution

PR 'S

instance of t that contains no variables and has the same type as t. In other words, it is a term fomred by replacing

each vanable v of t with a term of the same type as v that contains no vanables.

A unification grammar is a four-tuple G = (L, Q, P, S) where L is a typed la'nguage and Q is a set of terminal
symbols. Q is disjoint fron: the sets of variables and function letters in L. P is a finite set of rules; each rule has the

i~

form (A — o), where A is a term of L and « is a sequence of terms of L and symbols from Q. S is a ground term of

*

o

L (that is, a term without variables). S is called the start symbol of G.

e Re

The ground grammar for G is the 4-tuple (N, Q, P'. 8). where N is the set of ground terms of L, Q is the set of
terminals of G, P’ is the set of all ground instances of rules in P, and S is the start symbol of G. If N and P’ are finite
the ground grammar is a context-free grammar. If N or P is infinite the ground grammar is not a context-free

N

e grammar. and it may generate a language that is not context-free. Nonetheless we can define derivation trees just as
in a cfy. A denvation tree is an A-tree if the non-terminal A labels its root. The yield of a derivation tree is the string
formed by reading the symbols at its leaves from left to nght. Asin a cfg, A 2> o iff there is an A-tree with yield a.

I-::: The language generated by a ground grammar is the set of terminal strings derived from the start symbol. The
language generated by a unification grammar 1s the language generated by its ground grammar.

7

v Suppose t, and t, are types, and there is a function letter of type t, that has an argument of type t,. Then we
say that t| > t,. If the relation > is a partial order and D is the number of types, every term of the ground grammar

:'::: has depth < D. Since 1here are only a finite number of function letiers in the language L. each taking a fixed number

g of arguments, the number of possible terms of depth D is finite. Then the ground grammar is finite.

B A ground grammar G’ is depth-bounded if for every integer n there exists an integer d such that every
derivation tree in G* with a yield of length n has a depth less than d. In other words, a depth-bounded grammar

;.‘:r cannnot build an unbounded amount of tree structure from a bounded number of symbols. A unificanon grammar G

A 1s depth-bounded it its ground grammar is depth-bounded.

67

(Sl

Li“-i.’ AL LER CRY S L L R S SIS A G O E LT AR U PR A O B W AR UL CA S CHRR LTt S\ LA L 7 "J&W&"'\"‘Q"'&‘{
! _—— -) - -~ - - £%s - = - - - N 'Y F oy - %,

BBN Laboratories Incorporated 4 Report No. 6813

We have defined the semantics of our grammar formalism without mentioning unification. This is deliberate:
for us unification is a computational tool, not a part of the fui.aalism. It might be better to call the formalism

*‘substitution grammar’’, but the other name is already established.

Notation: The letters A, B, C denote symbols of a ground grammar. including terminals and non-terminals.
Lower-case Greek letters denote strings of symbols. ofi k] is the substring of o from space i to space k. where the
space before the first symbol is space zero. # is the empty string. We write x U y or (U x y) for the union of sets x
and v, and also (U i < j <k (f) for the union of the sets (f j) for all j such that1 <j <k.

If o is the yield of a tree t, then to every occurrence of a symbol A in « there corresponds a leaf of t labeled
with A. To every node in t there corresponds an occurrence of a substring in oo—the substring dominated by that
node. Here is a lemma about trees and their yields that will be useful when we consider top-down filtering.

Lemma 2.6. Suppose t is a tree with yield oo’ and n is the node of t corresponding to the occurence of B
after cin afa’. Let A be the label of n. If t” is the tree formed by deleting all descendants of n from t, the yield of t'
15 0A o’

Proof: This is intuitively clear. but the careful reader may prove it by induction on the depth c{t.

A.2 Operations on Sets of Rules and Terms

The parser must find the set of ground terms that denive the input string and check whether the start symbol is
one of them. We have taken the rules of a unification grammar as an abbreviation for the set of all their ground
instances. In the same way, the parser will use sets of terms and rules containing variables as a representation for
sets of ground terms and ground rules. In this section we show how vanous functions needed for parsing can be

computed using this representation.

A grammatical expression, or g-expression. is either a term of L. the special svmbol Nil. or a pair of
g-expressions. The letters u. v. w, x. y, and z denote g-expressions. and X, Y and Z denote sets of g-expressions.
We use the usual LISP functions and predicates to descrnibe g-expressions. [x y] is another notation for (cons x y).
For any substitntion s. (s (cons x y)) = (cons (s x) (s y)) and (s Nil) = Nil. A selector is a function from g-expressions
to g-expressions formed by composition from the functions Car, Cdr. and ldentity. Thus a selector picks out a
sub-expression from a g-expression. A constructor is a function that maps two g-expressions to a g-expression,
formed by composition from the functions Cons. Car. Cdr. Nil. (A x y. x), and (A x v. y). A constructor builds a new
g-expression from parts of two given g-expressions. A g-predicate is a tunction trom g-expressions to Booleans

tormed by composition from the basic tunctions Car. Cdr, (A x. x}, ConsP. und Nuil.

Let (ground X) be the set of ground instances ot g-expressions tn X. If f is a selector function. let (f X) be the
set of all (f x) such that x € X. If p is a g-predicate, let (separate p X) be the set of all x € X such that (p x). The

following lemmas are easily established trom the defimtion of (¢ x) for a g-expression x.

o8

v .
SRS

1
»

el

r

T4

E
i
:
:
_f
t

B B T Y B Lol o N K v o M Mo T o e 8 MY o P W e W M W B P 3 M 7 T T T R TR

£
Report No. 6813 BBN Laboratories Incorporated

e

r-'

I

hd Lemma 2.1. If fis a selector function, (f (ground X)) = (ground (f X)).

E: Lemma 2.2. If p is a g-predicate , (separate p (ground X)) = (ground (separate p X)).

)

Lemma 2.3. (ground X U Y) = (ground X) U (ground Y).

Lemma 2.4. If xis a ground term, x € (ground X) iff x is an instance of some y € X.

T e e A, P I R L e et B P ™ """ B "y " "]

.4

TR AR N W5

P NN R SR .

e Lemma 2.5. (ground X) is empty iff X 1s empty.
b These lemmas tell us that if we use sets X and Y of terms to represent the sets (ground X) and (ground Y) of
e ground terms. we can easily construct representations for (f (ground X)), (separate p (ground X)). and (ground X) v
(ground Y). Also we can decide whether a given ground term is contained ir ground X) and whether (ground X) is
,:;: empty. All these operations will be needed in the parser.
. The parser requires one more type of operation. as follows.
) Definition Let f; and f, be selectors and g a constructor. and suppose (g x y) is well-defined whenever (f, x)
E and (f, y) are well-defined. The symbolic product defined by f|. t,. and g is the tunction
" AXY. [(gxy)lxe Xaye Yalf;x)=(f,y))
N
N
where X and Y range over sets of ground g-expressions. Note that (f, x) = (f, y) is considered false if either side of
ﬁ the equation is undefined.
{ .
If X is a set of g-expressions and n an integer, (rename X n) is an alphabetic variant of X. For all X, Y, m. and
0 n. if m # n then (rename X n) and (repame ¥ m) have no variables in common. The following theorem tells us that
:" if we use sets of terms X and Y to represent the sets (ground X) and (ground Y) of ground terms, we can use
unufication 1o compute any symbolic product of (ground X) and (ground Y). We assume the basic facts about
~ unification as 1n Robinson (1965).
=)
- Theorem 2.1. If h is the symbolic product defined by f,. f,, and g. and X and Y are sets of g-expressions, then
::j: (h (ground X) (ground Y)) =
(ground {((s (g uv)) | u € (rename X 1) A v € (renama Y 2)
N A 8 is the m.g.u. of (£, u) and (£, v))
'f_-\ Proot: The first step s to show that 1if Z and W share no vanables
. (1)
-: ((gzw) | 2z€ (ground Z) A w € (ground W) A (f:L z) = (f2 w)}
(ground ((s (uwv)) | ueE Z AVEW
‘u A 8 is the m.g.u. of (£, u) and (£, v)
&
i
sl
., 69
Y
R e L N L T By iy R AN AL TR TR U T P T T % B VRIS A8 A T'e

b e T e

BBN Laboratories Incorporated Report No. 6813

3]
Consider any element of the nght side of equation (1). It must be a ground instance of (s (gu v)), wherevr e Z, v e
W. and s is the m.g.u. of(fl u) and (f2 v). Any ground instance of (s (g u v)) can be written as (s" (s (g u v))), where
s 1s chosen so that (s” (s u)) and (s” (s v)) are ground terms. Then (s’ (s (gu v)H = (g (s’ (s u)) (s’ (s v))) and (fl (s’
(s =(s"(s(f, un) =(s" (s (f, v = (f, (s’ (s v))). Therefore (s (s (g u v))) belongs t the set on the left side of

equation (1).

Next consider any element of the left side of (1). It must have the form (g z w), where z € (ground Z), w €
(ground W). anc; (f, z) = (f, w). Then for some u € Z and v € W, z is a ground instance of u and w is a ground
instance of v. Since u and v share no variables. there 1s a substitution s* such that (s’ u) = z and (s’ v} = w. Then (s’
(fiun=tfs"un= tt'z (s’ v)) = (s" (f, v)). so there exists a most general unifier s for (f; u) and (f, v), and s is the
composition of s and some substitution s'". Then (g zw)i = (g (S (SUPD (7 (SV)) = (5" (S(Zu v))). (Z w)is a
ground term because z and w are ground terms. so (g z w) is a ground instance of (s (g u v)) and therefore belongs to

the set on the right side of equation (1).

We have proved that if Z and W share no vanables.

(2) (h (ground 2) (ground W)) =
(ground {(s (uwv)) | ue Z AveETW
A 8 is the m.g.u. of (£, u) and (£, v)}

For any X and Y, (rename X 1) and (rename Y 2) share no vanables. Then we can let Z = (rename X 1) and
W = (rename Y 2) in formula (2). Since (h {ground X) (ground Y)) = (h (ground (rename X 1)) (ground (rename Y
21)). the theorem follows by transitivity of equality. This completes the proof.

Definition. Let f be a function from sets of g-expressions to sets of g-expressions, and suppose that when X <
XadYc Y. U XY)c(f X Y’). Then fis monotonic.

All symbolic products are monotonic functions, as the reader can easily show from the definition of symbolic

products. Indeed every function in the parser that retumns a set of g-expressions is monotonic.

A.3 The Parser without Empty Symbols

Our first parser does not allow rules with empty right sides. since these create complicatons that ohscure the
main deas. Theretore throughout this section let G = <L, T. P. S> be a ground grammar in which no rule has an

cmpty side. When we say that « denves 3 we mean that o denves B in G. Thus o 2> #1ff = #.

A dotted rule in G is a rule of G with the right side divided into two parts by a dot. DR is the set of all dotted
rules in G. A dotted rule (A — «.f3) denves a stning it « derives that stnng. In order to compute symbolic products
on sets of rules or dotted rules, we must represent them as g-expressions. We represent the rule (A — B C) as the
list (A B C), and the dotted rule (A — B.C) as the pair [(A B C) (C)].

70

R g

{" '_’(_',.

I WA

i

k’*."-".'f:'.i"."f:‘-'?s-'l-"‘?I-‘.Zf.lf.'-.‘»Lv’&‘.'-f‘.i/‘.i-";-'-C."-':"C“' WO W O Y o T A T AT A AT N AT W N N UL S L U L L

Report No. 6813 BBN Laboratories Incorporated

We write A =£> B if A derives B by a tree with more than one node. The parser relies on a chain table—a
table of all pairs (A B] such that A £> B. Let C, be the sct of all [A B] such that A => B by a derivation tree of
depth d. Clearly C, is the set of all {A B] such that (A — B)is a rule of G. 1If S; and S, are sets of pairs cf terms,
detine

(link S, S,) = {[AC}] | (3 B. [AB] € S; A [BC] € S,)}

The function *‘link’" is equal to the symbolic product defined by f, = Cdr, f, = Car, and g = (A x y . (cons (car x)
(cdr y))). Therefore we can compute (link S| S,) by applying Theorera 2.1. Clearly Cy, | = (link C4 C,). Since the
grammar is depth-bounded there exists a number D such that every derivation tree whose yield contains exactly one

symbol has depth less than D. Then Cp, is empty. The algonthm for building the chain table is this: compute C_ for

increasing values of nuntil C_ is empty. Then the union of all the C_ s is the chain table.

E Definitions. ChainTable is the set of all [A B] such that A £> B. If S is a set of dotted pairs of symbols and S’
a set of symbols. (ChainUp S S°) is the set of symbols A such that [A B] € S for some B € §'. **ChainUp"" is
clearly a symbolic product. It S is a set of symbols, (close S) is the union of S and (ChainUp ChainTable S)). By the
definition of ChainTable, (close S) is the set of symbols that derive a symbol of S.
o
Let « be an input string of length L > 0. For each i k] the parser will construct the set of dotted rules that i
| derive afi k]. The start symbol appears on the left side of one of these rules iff i k] is a sertence of G. By lemma I :
2.4 this can be tested, so we have a recognizer for the language generated by G. With a small modification the N
algorithm can find the set of derivation trees of a. We omit details and speak of the algorithm as a “‘parser’” when ;_
strictly speaking it is a recognizer only. j::-:
o."'-

. The dotted rules that derive c[i k] can be partitioned into two sets: rules with many symbols before the dot
and rules with exactly one. The algorithm will construct the first set recursively aud then construct the second set
from the first. Their union is the desired set of dotted rules. Note that a dotted rule derives afi k] with more than one

‘«‘--
.v'*]s Er«k'.":'}

symbol before the dot iff it can be written in the form (A — BB.B’) where p 2> ofi j], B 2> aljkl.and0 <j<k "
*; (this follows because B 2> # iff f = #). :::
7 N
.\!

Definition. If S is a set of dotted rules and S° a set of symbols, (AdvanceDot S S°) is the set of rules (A — >
2 uB.f)suchthat (A -5 «.BBye S ». B e §'. Clearly **AdvanceDot’” is a symbolic product. f:.‘
. ")
Lemma 3.1 Fori < j <k, let (S ij) be the sct of dotted rules that derive ai j] and (S’ j k) the set of symbols o
I:- that derive «fj k. The set of dotted rules that derive ali k] with many symbols before the dot 15 ':::
b - il
~ {AdvancaDot (5 i j) (8’ 3 k))]

i<i<k -~

_\

Proof: We have :.

[N
~ (AdvanceDot {(B — B.B,) € DR | B #*> a[i j]) i':

i<j<k (R | A= o[j k]})

oy
= A

o

N
g
)

71 -

A N e N R e e N N ST e e T e RS S A e R L) PRIty

BBN Laboratories Incorporated Report No. 6813 .

w {(B - BA.B,) € DR | B 2> ofi 3] A A 2 ol k]) by defn. of AdvanceDot
i<i<k

S
»

{(8 > Br.B,) € DR | (3 3. i<j<k A B > ali 31 A R 2> a[j k]))

As noted above, this is the set of dotted rules that derive a[i k] with more than one symbsl before the dot.

2

[}
Definition. If S is a set of rules, (finished S) is the set of left sides of rules in S. f;
Lemma 3.2. Suppose (length o) > | and S is the set of dotted rules that derive « with more than one symbol o
before the dot. The set of symbols that derive o is (close (finished S)). !
Proof: Suppose first that A € (close (finished S)). Then for some B A 2> B, (B — [3.) is a dotted rule. and :S
2> o. Then A 2> o Suppose next that A derives o.. We show by induction that if t is a derivation tree in G and A =
2> ¢ by t, then A € (close (finished S)). t contains more than one node because (I2ngth a) > I, so there is a rule (A o
— A, ... A) that admits the root of t. If n>1,(A = A,...A_) € S and A is in (close (finished S)). If n=1then A, i:

=*> o und by induction hypothesis A| € (close (finished S)). Since A 2> A |, A € (close (finished S)).
-
Definitions. RuleTable is the set of dotied rules (A — .o) such that (A — o) is in P, the set of rules of G. If § i

15 a set of symbols. (NewRules S) is (AdvanceDot RuleTable S).

d".‘
Lemma 3.3. If S is the set of symbols that derive , the set of dotted rules that derive o with one symbol ‘
before the dot is (NewRules S). o
o
0

-

Proof: Expanding the definitions gives (AdvanceDot {(A - B)I(A - P)e P} (CICE2>a})={(A>CP)
(A — CB"Ye PAC=>q}. This is the set of dotted rules that derive o with one symbol before the dot.

AR

PN

Let o be astring of length L. For0 <1<k <L, define

=
2

-

A

(dr 1 k) =
(let rules, = (U i<j<k (AdvanceDot (ar i 3j)
(v (finished (dr j k))
(if j+1=k {a[j k]) ©))))
(let rules, = (NewRules (close (if i+l=k {ae[i k]} (finished rules,))))

(v rules1 rules,)
)) i

T
'l L
e

P

Theorem 3.1. For0 €1 <k < L. (drik) is the set of dotted rules that denive ofi k).

" [4

Proof: By induction on the length of input(1 k]. Suppose 1< j < k. By induction hypothesis (dr 1 j) is the set of r:_
dotted rules that derive i j] and (finished (dr j k)) is the set of non-terminals that derive «j k). Clearly (if j+i=k

{alj k]} @) is the set of terminals that derive afj k], so the second argument of AdvanceDot is the set of all symbols .}-:;

that denve afj k]. Thenby Lemma 3.1, rules, is the set of dotted rules that derive o[i k] with many symbols before
the dot. if i+1=k then (close {afi k]}) is the set of symbols that derive afi k], and if 1+1 < k then (close (finished

." 72 -
Eﬁ L4
E?¢3f:r:ﬂ:w:e:«:w:¢:é:ﬁ:::é:w:k:snﬁbrse?k?é?)?w?ﬁ?ﬁhﬁh&hr);?}?}?xxﬁrir)ﬁxyaﬁbﬁmxrxxhi%x*&»)\;ﬁ;\2»2&1&1\&5Agxygﬁxvafd

v e
2 S

0% |

e
r

=

]
I R]

i)
A

N

.;r;) "

E:\ h*\‘-\\ Ny

Report No. 6813 BBN Laboratories Incorporated

rules|)) is the set of symbols that denive offi k] by lemma 3.2. In either case rules, is the set of rules that derive afi k]
with one symbol before the dot. by lemma 3.3. This completes the proof.

A.4 The Parser with Empty Symbols

Throughout thus section G = <L.T.P.S> is an arbitrary unification grammar, which may contain rules whose
nght side is empty, 1f there are empty rules in the grammar the parser will require a table of symbols that derive the
empty string, which we also call the table of empty symbols. Let E; be the set of symbols that derive the empty
string by a derivation of depth d. and let E’; be the set of symbols that derive the empty string by a derivation of
depth d or less. Since the grammar is depth-bounded, it suffices to construct E ; for successive values of d untila D >
0 1s found such that E, is the empty set.

+ is the empty set. A € Ed+l iff there is a rule (A — Bl...Bn) such that foreach i, B, 2> # at depthd,and d is
the maximum of the dl.'s. In other words: A € E | iff there is a rule (A — oBp) suchthat B € Ed and every symbol

of wand Bisin E’).

Let DR be a set of dotted rules and S a set of symbols. Define
(AdvanceDot* DR S) = (if DR =) & (U DR (AdvanceDot* (AdvanceDot DR S) S)
If DR is the set of ground instances of a finite set of rules witi vanables, there is a finite bound on the length of the
right sides of rules in DR (because the right side of a ground instance of a rule r has the same length as the right side
of r). 1f L is the length of the right side of the longest rule in DR, then (AdvanceDot* DR $) is well-defined because
the recursion stops at depth L or before. Clearly (AdvanceDot* DR 5) is the set of rules (A — af.y) such that (A —
«.By) € DR and every symbol of Bis in S.

Let
S, = (AdvanceDot* RuleTable E’,)
s, = (AdvanceDot S, E;)
S; = (AdvanceDot* 52 E'd)
S; = (finished 8,)

S, is the set of dotted rules (A — . such that every symbol of atis in E* ;. S, is then the sct of dotted rules (A —
«B.B,) such that B € E; and every symbol of a is in E’ ;. Theretore S is the set of dotted rules (A — aBp.J,) such
that B € E und every symbol of ccand B is in E' ;. Finally S is the set of symbols A such that for some rule (A —
uBp). B € E and every symbol of a and Bis in E’ ;. Then S, is E,, ;. In this way we can construct E; for increasing
values of d until the table of empty symbols is complete.

Definitions. Let EmptyTable be the set of termns that derive the empty string. 1f S is a set of dotted rules. let

73

e

AR LTS ARG E Ty G AN CA TR S N RPN (G OIS 1 T A R gt (i EOL P g pL QTN P (B oA oW (LT AR |

1

\
b
¢
-
-
P
K
.

CEPY SOV Sk B Y

BBN Laboratories Incorporated Report No. 6813]

(SkipEmpty S) be (AdvanceDot* S EmptyTable). Note that (SkipEmpty S) 1s the set of dotted rules (A — of,.B,)
suchthat (A = o3, B,) € Sand }, 2> #. 1

I
PG

?:; Let C, be the set of pairs {A B] such that A => B by a denvation tree in which the unique leaf labelled B is at 5
by depth d :note this does not imply that the tree is of depth d). C, is the set of pairs [A B! such that (A — aBp)is a ,'-\.'

rule and every symbol of o and P derives the empty string. C, is easily computed using SkipEmpty. Also C,,, =

Q% o

(link C,4 C,). so we can construct the chain table as before. r!
"
"
3 N
. The parser of Section A.3 relied on the distinction between dotted rules with one and many symbols before the
‘_i’- dot. If empty symbols are present. we need a slightly more ccmplex distinction. We say that the string o derives 3 "‘-:
| ", '.\

using one symbol if there is a derivation of B from o in which exactly one symbol of « derives a non-empty string.
We say that o derives (3 using many symbols it there 1s a derivation of B from o in which more than one symbol of oy
« denves a non-empty string. 1f a string o derives a string B. then o derives B using one symbol, or o derives "~

using many symbols, or both. We say that a dotted rule derives [usirg one (or many) symbols if the string before

the dot derives [} using one (or many) symbols. Note that a dotted rule derives o[i k] using many symbols iff it can ;
be written as (A — PBB’.B,) where B 2> ali j], B 2> ofj k], B' => #, and i < j <k. This is true because whene -cr a :
dotted rule derives a string using many symbols, there must be a last symbol befcre the dot that derives a non-empty N
stnng. Let B be that symbol: 1t 1s followed by a 3’ that derives the empty string, and preceded by a P that must _‘;}
contain at least one more symbol deriving a non-empty string,
ot
We prove lemmas analogous to 3.1, 3.2, and 3.3. A
Lemma 4.1 Fori < j < k let (S i j) be the set of dotted rules that derive afi j] and (S’ j k) the set of symbols o
that derive «.fj k]. The set of dotted rules that derive ofi k] using many symbols is B
(SkipEmpty U (AdvanceDot (S i j) (8§’ j k))) "
= i<j<k _ =3
::: Proof: Expanding definitions and using the argument of Lemma 3.3 we have g
E"E-' (SkipEmpty U (AdvanceDot ((B — (3.(31) € DR | B = afi j]} _\r:
. 1<i<k (A | &= afj k]})
L) = N
e (SkipEmpty ((B — PA.B,) € DR | (3 j. i<j<k A B => afi j] A A => alj k])}
) .
S 7
w0 This in turn is equal to -
9
{(B — PaB’ .B;) € DR | (3 J. i<j<k A B 2> ali 3] A A 3> alj k]) A B => #)]
- :::
", This is the set of rules that derive ofi k] using many symbols. as noted above. ~

Lemma 4.2. Suppose (length o) > | and S is the set of dotted rules that derive o using many symbols. The set ~
of symbols that derive a is (close (finished S)).

A:'
A
¢
-5
. :"-.
v
»k

74

.
TR IR WL e R O N S e—— . . ~
i‘l 3 i . ,.. - .‘P« "‘A » - - - o f 3o W e 17 LSy]] LY » . o Sy el - e ' e T
A TR e Wi SRR I TR i e i IR T DT I IR T % R Y0 N I B IR N W TR RN 3 te s SAGTR W e T P T

v

¥

Report No. 6813 BBN Laboratories Incorporated

X_#4_"s
R

Proof: By induction as in Lemma 3.2.

] i
Definitions. Let RuleTable' be (SkipEmpty {(A — .o} (A = ave Pl={(A - aa’)e DRIo=2>#}] If S o
L
o~ 15 a set of symbols let (NewRules™ S) be (SkipEmpty (AdvanceDot RuleTable” S)). :'_-
o S
Lemma 4.3. If S is the set of symbols that derive . the set of dotted rules that denve o using one symbol is ﬁ
f o (NewRules' S). «
0 "~
P !
Proof: Expanding definitions gives ‘
N (SkipEmpty (AdvanceDot {(A — B.B,) € DR | B => §) 5
- (C 1 2 a)) .
) = #
= 7
iy (SkipEmpty ((A — PC.B,) € DR | B %> # A C %> «) E
) = &
s ((A = BCP’.By) € DR | B 2> # A C 2> an B 2 #) :
This is the set of dotted rules that derive ¢ using one symbol. by definition. ','
s ;
o Let o be a string of length L. For 0 <1 <k £ L. define s
_ (dr i k) = , X
i (let rules, = (SkipEmpty (U i<j<k (AdvanceDot (dr i j) +
| (U (finished (dr j k)) !
(1f j+i=k (ali k]} @))))) {
. (let rules, = (NewRules’ (close (if i+l=k {(a[i k]) (finished rules,)))) !
(U rules, rules,) .‘
)) -1
B - " 6
N Theorem 4.1 (dri k) is the set of dotted rules that derive aji1 k]. F
: Proof: By induction on the length of i k] as in the prool of theorem 3.1. but with Lemmas 4.1, 4.2 and 4.3 ::
~ seplacing 3.1, 3.2 and 3.3 respectively.]
i {
-" .
o s
A.5 The Parser with Top-Down Filtering [
. We have described two parsers that set (dr1 k) to the set of dotted rules that derive a1 k|. We now consider a :
:..' parser that uses top-down hiltening to eliminate some useless rules from «dr i k). Let us say that A follows B if the :
) start symbol denves a string beginning with BA. A dotted rule (A - y) follows B it A follows . The new ;
algorthm will set (dr 1k} to the set of dotied rules that derive ofi k} and follow a0 i}. :
0‘. ‘l
II' A denves a string beginning with B we say that A can begin with B. The new algorithm requires a b
w0 prediction table, which contains all pairs [A B] such that A can begin with B. Let P, be the set of pairs (A B} such ¥
. _ _ !
iy that (A — BBP’)is arule and B %> #. Let P, be P, U (LinkProd P, P)). E
75 ;
43

.
L
M
N U R Y R e T e PN N U Y S PO A T m T Mo R T e M R R A N R T T A T AN TR R T I m"ﬂf&)

BBN Laboratories Incorporated Report No. 6813 -,

Lemma 5.1. The set of pairs [A B] such that A can begin with B is the union of P_foralin2 I.

=
[
Proof: By induction on the tree by which A denives a string beginning with B. Details are left to the reader. =2
Our problem is to construct a finite representation for the prediction table. To see why this is dafficult, A
consider a grammar contaning the rule o
o
(((s:x) o (f:x)A) o
Computing LinkProd as in Theorem | gives us the following pairs of terms: o
[(£ (s :x)) (£ :x)]
[(£ (s (s :y))) (£ :y)]
[(£ (s (s (s :2)))) (£ :2)] E'}
..................... %‘L‘
Thus 1f we try to build the prediction table in the obvious way, we get an infinte set of pairs of terms.
The key to this problem is to recognize that it 1s not neccesary or even useful to predict every possible feature =
of the next input. It makes sense to predict the presence of traces, but predicting the subcategorization frame of a "
]
verb will cost more than 1t saves. To avoid predicting certain features, we use a weak prediction table—-that 1s, a set :ﬁ.
of purs of symbols that properly contains the set of all [A B} such that A 25> B. This weak prediction table is L
cuaranteed to eliminate no more than what the ideal prediction table eliminates. It may leave some dotted rules in Y
(dr 1 k) that the 1deal prediction table would remove, but it may also cost less to use. _
W cannot build the ideal prediction table for every grammar, but we can build a weak prediction table for &
\.
every grammar. Let Q, be a set of terms such that P, < (ground Q,). Define X
(LP Q Q) = {(s [xz]) | (3y . xyleQnaly z] €Q %
o Ans=m.g.u. of y and y')} =
::- By Theorem 2.1, (ground (LP Q Q")) = (LinkProd (ground Q) (ground Q")). Let Q;,, equal Q, w (LP Q, Q,). Then
E‘; by Lemma 2.3, ff?
5 S
:h (bUi21P) c (ground U i 21 Q,))
; That 1s, the union of the Qs represents a weak prediction table. Thus we have shown that if a weak prediction table =z
E::: 1s adequate, we are free to choose any Q, that subsumes P,.
2
E: Suppose that Qp, subsumes (LP Qp, Q,). Then (ground (LP Qpn Q,)) < (ground Q) and (ground Qp,) = "

(ground QD). Since (ground Q,, ;) is a funcuon of (ground Q) fcr all 4, it follows that (ground Q,) = (ground Qp,) for
all 1 >e D. so (ground Qp) =12 1 (ground Q). That is. Qp, is a finite representation of 4 weak prediction table. .,

Our problem 1s 1o choose a QI that subsumes P] so that Qp, subsumes (‘)DH for some D.

Let 1, and t, be types. !n Section A.l1 we defined t; > t, if there is A function letter of type t, that has an o

argument of type t.. Let > * be the transitive closure of >; a type tis cyclic if t > * t, and a temm 1s cyclic if its type is

A A ol ol i i) o
4‘!'_'&-.'4‘-'.“‘n'

| AT

= O

cyclic. P is equal to

76 o

-n"i"

o T T T T T T T e e T S N TR T P A T TR T R T T T R T T TN T o Tt TR TN TR T T e T S P SR R R T =)

Report No. 6813 BBN Laboratories Incorporated f

AT N ok 8 o0
Sy sy

{{AB]I(A — .Bp) € RuleTable’}

-,
L]
& tg‘l'

so we can build a representation for P,. Letus fom Q, from this representation by replacing all cyclic terms that

& u

are not contained in cyclic terms with distinct new vanables. For example. if *‘cons” and *"'mil’" belong to the cychc

e P

type List, we will turn

P s
PP
e 4

(f(cons A nil) (cons B (consC: 1

-.' - e m

into
(f:x:y)

Thei: P, < (ground Q). vid Q, contains ne function letters ot cyclic types. The following lemma shows that this Q,

allows ns to build a tiniie representation of a p.ediction table.

| TSR PIOT L

Lemma 5.2. Let Q, be a set of pairs of terms that conains no function letters of cyclic ty pes, and let Q, be as
defined above for all i > 1. Then for some D Qp, subsumes (I.P Qp, Q).

Prouf: Note first that since unification r ever introduces a functiou letter that did not occur in the ‘nput, Q,

contains no function letters of cyclic type forany i 2 1. p
-
Let C be the number of non-cyclic types in the language. Then the maximum depth of a term th+t contains no .::‘1

L}
function letters uf cyclic types is C+1. For corsider a term as a labeled tree. and consider any path from the root of ::3
such a tree to one of its leaves. The path can contain at most one variable or function letter of each non-cyclic type, :‘:,

L

plus one vaniable of a cyclic type. Then its length is at most C+1. %
ey
M
Censider the set S of all pairs of terms in L that contain no function letters of cyclic types. Let us partition this N
set into euivalence classes. counting two terms equivalent if they are alphabetic variants. We claim that the number t::
of equivalence classes is finite. Since there is a finite bound on the depths of terms in S. and a finite bound on the 53
number of arguments of a function letter in 3, there is a finite bound V on the number of vanables in any term of N
"I
S. Let v,...vy be alist of variables cortaining V variables from each type. Then t zre is a finite number of pairs in S :*'_‘
that use only variables from v ...vg: let " be the set of all such pairs. Mow each pair p in S 1s an alphabetic ranant o
of a pair in S'. for we can replace the vanables of p one-for-one with variables from v,...vy. Therefore the number ;-:’
%
of equivalence ciasses is no more than the n: mber of elements in S, We call this number £. We claim that Qy, ‘ ‘
subsumes (LP Qpy Q) forsome D < E. Y
ke
'.:.'
To sce this. suppose that Ql does not subsume (L2 Q, Q) forall i < E. 1t Qi does not subsume (LP Qi Q). ._-:
then Q,,, intersects more equivalence classes than Q, Joes. Since (| intersects at least one equivalence class, Qg (:j
intersects all the equivalence cli. ses. Theretore Qg subsumes (LP Qg Q,), which was to be proved. ' “‘
5
“t‘f
o)

A

-
. ”
77

T R T o N T T o TR T T T T o T L L T L N T I S R W T T T o [oo P o R WA

4
2

BBN Laboratories Incorporatrd Report No. 6813

This lemma tells us that we can build a weak prediction table for any grammar by wiirowing away all subterms
of cyclic type. In the worst case such a table might be too weak to be useful, but our experience suggests that for
natural grammars a prediction table of this kind is very effective in reducing the size of the (dr i k) 's. In the
following discussion we will assume that we have a complete prediction table; at the end of this section we will once

again consider weak prediction tables.

Definitions. If S is a set of symbols, let (first S)=S U { BI(3 A € S. (A B] € PredTable }. If PredTable is
indeed a complete prediction table. (first S) is the set of symbols B such that some symbol in S can begin with B. If
R is a set of dotted rules let (nextR)= {BI(3APBP. (A-> BB e R}

The following lemma shows that we can find the set of symbols that follow [0 j] if we have a prediction

table and the sets of dotted rules that denve afi j] forall 1 <j.

Lemma 5.3. Suppose that for 0 <i <. (S i} is the set of dotted rules that follow «[0i] and derive i j]. Then
the set of symbols that foliow a0 j] is
(first (if §5 =0

{ (start) }
(U 0<i<j (next (S i,))))

Proof. We show first that every member of the given set follows a[0 j]. 1f j = 0, certainly every member of (first
{(start)}) follows [0 0 = #. If j > 0, suppose that C follows af0 i], (C — BBP’) is a rule, and B 2> afi j] then
clearly B follows o [0 j].

Next we show that if A follows [0 j]. A is inthe given set. We prove by induction on d that if (start) 2> o0
jlJAc’ by a = t, and the lear corresponding to the occurence of A after of0 j] is at depth din t, then A belongs to
the given set. 1f d = 0 then A = (start) and j = 0. We must prove that (start) € (first [(start)}), which is obvious.

1f d > 1 there are two cases. Suppose first that the leaf n corresponding to the occurence of A after af0 j] has
vounger brothers dominating > “on-emnpty string. Then the father of n is admitted by a rule of the form (C — BAP’).
C is the label of the father of n, «ad B consists of the labels of the younger brothers of n in order. Then f} 2> afi j],
where 0 €1i < j. Removing the descendants of n's father from t gives a tree t’ whose yield is o0 i]JCa’. Therefore C
follows {0 i]. We have shown that (C — BAP’) is a rule, C follows o[0 i], and B 2> ofi j]. It follows that A
belongs to the set given in the theorem.

Final'v suppose that the younger brothers of n dominate the empty string in t. Then if C is the label of n's
father, C can begin with A. Removing the descendants of n's father from t gives a tree t' whose yield begins with
o[V j]C. Then C belongs to the given set by induction hypothesis. If C € (first X) and C can begin with A, then A €
{first X). Therefore A belongs to the given set. This completes the proof.

We are finally ready to present the analogues of lemmas 3.1, 3.2 and 3.3 for the parser with prediction.

Lemma 5.4. Let x be a non-empty stnng. Suppose that for 0 <i <k < (length &), (S i j) is the set of dotted
rules that follow [0 i} and derive afi j], while (S’ j k) is the set of symbols that follow &[0)] and derive aj k]. The
set of dotted rules that fo'i~»w of0 i] and derive «[i k} using many symbols is

78

e W

LY

Loche

.
e al

*

“RY)

Y
iy

-

F,

3P N % ¥ 1% 15 1% % DY 10 a0 VR MR e V. TR S B B B NP LIS T O AP A SN VA B I 0y SE T OLPT 'Ly g GUAMIIAC LT RUT AT 3104 R ET. g ¥y

O YT S T -

Loe ‘o i |

fae o |

o D T T T T o A o I o T o T o DT o T T A T Do, T T e o o

Report No. 6813 BBN Laboratories Incorporated

(SkipZmpty U (AdvanceDot (S i j) (S’ 3 k)))
i<i<k

Proof: Expanding definitions and using the same argument as in Lemma 3.1 we have

(SkipEmpty U (AdvanceDot {(B — B.B;) € DR | B follows a[0 1] A f} # a[i j))
i<j<k {AR | A follows 00 j] A A = a[j k]))) =

(SkipEmpty {(B — PA.B,) € DR | B follows «[0 i]
A (3 3. 1<j<k A B 2> a[i j] A A follows «[0 j] A A 2> a[j k]))
)

If B follows af0 i]. (B — BAP,) is a rule. and 3 2> (i j], then A follows &[0 j]. Therefore the statement that
A follows &[0 j] is redundant and can be deleted. giving
(SkipEmpty ((B — [PA.B,) € DR | B follows [0 i] '
A (3 J. i<i<k A B = oli J] A A = a7 k]))
)
This in tum is equal to
{(B > BAB’ .B;) € DR | B follows 00 i]
A (3 3. i<i<k A B 2> afi 3] A A 2 aflj k]) A B = #)

This is the set of dotted rules that follow [0 i] and derive a[i k] using many symbols.

Lemma 5.5. If (length o) > 1 and S is the set of dotted rules that folow o0 i] and derive i j] using many
symbols, then (close (finished S)) contains all symbols that follow o0 i} and derive i j], and every symbol in this

set derives aJi j].

Procf. It is easy to show that every symbol in the given set derives oi j]. Suppose A follows [0 i] and
derives ¢fi j]. Then by Lemma 4.2 there is a dotted rule (B — f.) sach that § £> o[i j] using many symbols and A
=3 B. Then B follows o0 1], so A is in the given the set.

Definition. If S is a set of svmbols and R a set of dotted rules, (filter S R) is the set of rules in R whose left
sides are in S. In other words. (filter SR)= {(A—> BB Ye R.IA€ S }.

Lerama 5.6. Suppose S contatns every symbol that follows «[0 1] and denives afi j], and every symbol of S
derives ¢fi j]. Ther the set of rules that follow «[0 i] and derive afi j] using one symbol is (filter { A | A follows a[0
il } (NewRules' S)).

Proof: By Lemma 4.3 we know that every dotted rule in the given set derives «fi j] using one symbol. and
cevtainly thev all follow ¢t[01]. Consider any dotted rule that follows «[0) 1] and denives ai j] using one symbol: it
can be written ip the form (A — BEB’.B,), where B and 3" derive # und B derives o1 j]. Since A touows a0 i} and
B =># B follows «[0 i]. Therefore B € S and the rule i" included in the given set.

Let ¢ be a string of length L. For 0 <1 <k <L, define

79

» ™. P . =% T W \-
s o I T SN A

0]

P

5
S 2

Ny
P

Shrd T e

..—;I 1_-’,_-{";;',.

S A
AL,

y;

E

L
[

C

<

oA A

Ly
»

T

.’,-{-I,

e
e

T T T LA S0 T T — T AT T L——"

BBN Laboratories Incorporated Report No. 6813

(pred j) =
(first (if 31 = O
((start))
(U 0<i<j (next (dr i j)))
))

(dr 1 k) =
(let rules1 = (SkipEmpty (U i<j<k (AdvanceDot (dr i j)
(U (finished (dr j k))
(if j+1=k {alj k]} D)))))
(let rules, = (filter (pred i)
(NewRules’ (close (if i+l=k (w[i k]}
(finished rulesl)))))

(v z:u.'l.es1 rulesz)

))

Theorem 5.6 For 0 <k <L, (pred k) is the set of symbols that follow «[0 k] and for 0 <1<k (dri k) is the set

of dotted rules that follow [0 1] and derive ofi k].

Proof: We argue by induction on k. The base case is obvious. If k > 0. we first show by induction on the
length of ofi k] that (dr i k) is as claimed for all i <k. Consider any j such that i < j < k. By the hypothes:s of the
induction on k, (dr i j) has the desired value. By the hypothesis of the induction on the length of «[i k], (dr j k) has
the desired vilue. Then rules) is the set of dotted rules that follow «[0 1] and derive @[i k] using many symbols, by
Lemma 5.3. Next we show that the argument of NewRules’ 1s a set S such that every member of S derives «[: k] and
every symbol that follows [0 i] and derives ofi k] i5 in S. If i+1=k we have (close {a[i k]}} is the set of symbols
that derive afi k], which has both properties. If i+l < k then Lemma 5.4 shows that (close (finished x)) has both
‘properties. (pred 1) i5 the set of syrabols that follow «[0 i) by the hypothesis of the induction on k so by Lemma 5.5,
rules, 1s the set of dotted rules that follow @[0 i) and derive &[i k] using one symbol. Then the union of rules, and
rules, is the desired value of (dr i k). This completes the induction on the length of o[i k]. Since (dr i k) has the
desired value for 1 <k, (pred k) is the set of symbols that foilow «[0 k] by Lemma 5.2. This completes the induction

on k and ends the proof.
Corollary: {start) € (finished (dr 0 L)) iff o is a sentence of the language generated by G.

We have proved the correctness of the parser when it uses an ideal induction table. We must stili consider

what happens when the parser uses a weak prediction tabie.

Theorem 5.7. If PredTable contains the set of all [A B] such that A can begin with B, then (stant) € (finished

(dr O L)) iff a1s a sentence of the language generated by G.

Proot: Note that the parser with filtenng always builds a smaller (dr i k) than the parser without filiering.
Since all the operations of the parser are monntonic, this is an easy induction. So if the parser with filiering puts
(start) 1n (dr O L) the parser without filtering will do this also, implying that ~tis a sentence. Note also that the parser
with filtering produces a luzger (dr i k) given a larger PredTable (again ,thi: follows easily because ali operations in
the parser are monotonic). So if & is a sentence the parser v+~ h the iueal prediction table includes (start) in (dr C L),

and so does the parser with the weak prediction table.

80

2

8

LGN

A" _:?

atal

1

g

]

Ei. Report No. 6813 BBN Laboratories Incorporated
b
R
f
' A.6 Discussion and Implementation Notes
; ',.: We have described a parser for a formalism simpler than many formalisms called *‘unification grammars’'.
E ™~ There are no meta-rules. no default values of features. no general agreement principles (Gazdar et. al. 1986). We
have found this formalism adequate to describe a substantial part of English syntax—at least, substantial by
?J, present-day standards. Our grammar currently contains about 400 syntactic rules, not counting simnle rules that
i introduce single terminals. It includes a thorough treatment of verb subcate gorization and less thorough treatments
" of noun and adjective subcategorization. It covers major construction types: raising, control, passive, subject-aux
'-:'. inversion. imperatives. wh-movement (both questions and relative clauses). determiners, and comparatives.
o It is clear that some generalizations are being missed. For example, to handle passive we enumerate by hand
\ the rules that other formalisms would denve by meta-rule., We are certainly missing a generalizaton here, but we

have found this crude approach quite practical—our coverage is wide and our grammar is not hard to maintain.
:: Nevertheless we would like 1o add meta-rules and probably some general feature-passing principles. We hope to
' treat them as abbreviation mechanisms—we would define the semantics of a general feature-passing principal by
showing how a grammar using that principal can be translated into a grammar written in our original formalism. We

- haven't done this yet, and from the theoretical standpoint that is a weakness of our work.

2 There is another way to generalize the formalisni—by replacing Robinson’s unification with a more general
i matching device. Our approach is well suited to this kind of generalization because we maintain a sharp separation
between the details of unification and the parsing mechanism. W< groved in part A.2 that unification allows us to
g compute certain functions and predicates on sets of grammatcal expressions—symbolic_products, unions, and so

forth. In parts A.3 and A 4 we assumed that these functions were available as primitives and used them to build
. ! bottom-up parsers. Nothing in parts A.3 and A.4 depends on the details of unification. If we replace standard

W unification with another mechanism we have only to re-prove the results of part A.2 and the correctness theorems of

parts A.3 and A4 follow at once. To see that this is not a trivial result, notice that we failed to maintain this

separation in part A.5. In order to show that one can build a complete prediction table, we had to consider the

4

EFy

details of unification: we mentioned terms like ‘‘alphabetic variant’* and ‘‘subsnmption’’. We have presented a
theory of bottom-up parsing that is general in the sense that it does not rely on a particular pattern-matching
. mechanism—it applies to any mechanism for which the results of part A.2 hold. We claim that these resuits should

o r .. S

bold for any reasonable pattern-matching mechanism: the reader must judge this claim by his or her own intuition.

e ¥,
wle

Let us consider some proposed generalizations of Robinson’s unification. A current favorite 1s the so-called N
disjunction mechanism. This allows one to represent the three terms (f (ay). (¥ {(bn. (£ (¢)) as a single term: (f (or (1) S

thy tcn, It can be formalized as follows. A reduction of a term is defined recursively: a reduction of (or x v) is any ’

x _x
LS

reduction of x or y. and if f is not equal to “or™", a reduction of (f x y) is any expression of the form (f x* y’) where .

N x" and y’ are reductions of x and y respectively. A ground instance of a term t is a reduction of a substitution

instance of t that contains no variables. Given these defintiions one can devise a more general unification algorithm

and re-prove the results of part A.2 (the idea is to treat the choice of a value for a disjunction just as Rovinson treats

81

.v-

SN E NS RTREARY TrEy I SRR E SAER AT ARSI Y SP N (U ML ROV S SN G LR s A AR S TS RS KPS LRI ‘ﬁ;@"-ﬁﬁ«&fr‘w@

S
: %
E” BBN Laboratories Incorporated Report No. 6813 e
X
P "
;:-'; 2
o -
g:-.' the choice of a substitution for a variable). The correctness theorems for bottom-up parsing follow at once. More .
general versions of disjunction are possible and probably desirable. '_i
o h
In the author’s view, disjunction is the only extension to Robinson’s unification that is clearly required in .
natural language grammars. It may seem plausible to argue that negation is needed. because the base form of an] X
English verb, when read as an indicative, is not third person singular. On the other hand, why not use disjunction to '
say that the base form is either first person, second person. or third plural? There is no reason to think that any ~
linguistically significant generalization is being missed here. =
Our implementation is a Common Lisp program on a Symbolics Lisp Machine. The algonthm as stated is S
recursive. but the implementation is a chart parser. 1t builds a matrix called “*rules’” and sets rules|i k] equal to (dr i <
k), considering pairs [1 k] in the same order used for the induction argument in the proof. It also builds a matrix -
“symbols " and sets symbols[i k] to the set of symbols that derive «fi k], and a matrix *“pred’’ with pred[i] equal to C;'
the set of symbols that follow «[0 i}. Currently the standard parser does not incorporate prediction. We have found
L that predictton reduces the number of symbols in the matrix ‘‘symbols’" by a factor of more than 4, but the cost of ‘S.E
.)

® prediction 1s so great that a purely bottom-up parser runs faster.

Our program uses a variation of Boyer and Moore’s structure-sharing technique. This means that instead of

R Ay A
3 ‘n’_.d'_ £
oy
P

b x
ik 8 A

E applying a substitution s to a term t. we use the pair [s t] as a representation for the result of applying s to t. The

original version allowed one to unify two expressions in this structure-sharing representation. We have found it

" WY
more efficient to insist that in each umfication, at most one term is in the structure-sharing representation. This f(
allows us to represent a substitution as a simple association list, using the function ‘‘assoc’’ to retrieve the
substitutions that have heen made for variables. To avoid unifying rwo expressions in the stmetre-shgring ::\
representation, we must occasionally translate an expression from structure-sharing to the standard representation. It w
suffices to make sure that all the terms appearning in the matrix of symbols and the matrix of predictions are in the
standard representation. [t is naturally cheaper to do this translation for single terms rather than whole rules. %

=
The other optimizations are fairly obvious. As usual we skip the occur check in our unifications (ar long as -
v ard Noeslid tepes nis e gaaericed b be sudz s Inesl wamboble produlct one st i indesed fiy VR Espiiob .f::

° function letter of the term to be matched. which saves a good number of failed unifications. These simple techniques
> give us tolerable performance—a short sentence is parsed in ten or fifteen seconds. S‘E
] o

Foay,
4
5

vy L4

-

&
4
»!
¥

8

o

IS P I > P o W L R w Rl o "~ o g ., & LD S S
'v":'\ s“‘:"“.\’..h.n.\'{.‘{.‘ Y L".!';."h'*."r ‘-‘l'-Lﬁl:‘.‘! ;‘!1'!1\{'0‘."-.{. m AV e T e M T TN T g T

ey 3 s
AT L el Sl Tl Sl T

o

T W L

Ly T LT BTN TN A T TR A - NS TTN TT A TLR L G

[

A SEES/C SR 5t

Report No. 6813 BBN Laboratories Incorporated

References.

Barton, G.E.. Berwick, R. C.. and Ristad. E. S. (1987) Computational Complexitv and Natural Language.
Camoridge: the MIT Press.

Gazdar. G. E.. Klein, G.. Pullum, G., and Sag.. l. (1985) Generalized Phrase Structure Grammar. Oxford:
Basil Blackwell.

Graham, S.. Harrison, M., and Ruzzo, W, (1980) ‘' An Improved Context-free Recogmizer.”” ACM Transactions
on Programming Languages and Systems 2, 415-462.

Robinson. J. A. (1965) **A Machine-Oriented Logic Based on the Resolution Principle.”’ Journal of the ACM
121). 23

Shieber. S. (1985) **Evidence against the Context-freeness of Natural Language.’” Linguistics and Philosophy
8(3). 333

T T T T R R TR T T T AT AT A T T Al T TR e Ve Mo T N S W T W W W e o o WU W KN W g
RS Pt B T S e Rt 3, b A N 1 R o e A T Ay o o N R S N A R L R T R C R T L S Aot

gl e g o |

-

KT L LSSl

-

P

.r

NN R Rty T T TR R T T Rt T IR EE AL LT R B T NN T G MR 6 L e ALY ke

oy

i e

o T

LT LI .;

k" -

g :) o

‘f” BBN Laboratories Incorporated Report No. 6813 P
™

i .

o -

“M- "\

o N
-

"

e)
e

s
k‘". !
> -
:.\ :--
A " g’h
X “-
-
0 .
S !

4

e

~

. '}
:‘ -
g
LY &
no <
L]
-

P
s

ol
. w

5 "

0
o

: =

:-. \J
4 '

- -
h-' ™
- ob,
= N

o
] - Eog

Pt ,'.'
- 5
¥] r-\
e
-

2 N

]
W

;.!‘:'-*'- xMa

84

ol

N

A TN T M T M T M AT R N MM T T e P M TLE T e S W R i W W W i N T T T Y e e M M P N U el T T U T AT LT T T TR

