
6) ^

BBN Laboratories incorporated
A Subsidiarv ot Bolt Bcr.uu-k and Newman Inc.

y

AD-A193 761
Report No. 6813

rfffs nr r rnn

INTEGRATION OF SPEECH AND NATURAL LANGUAGE

INTERIM REPORT

D. Ayuso, Y. Chow, A. Haas, R. Ingrla, S. Roucos, R. Scha, D. Stallard

rtö

v\

April 1988

Submitted to:

Advanced Research Projects Agency
MOO Wilson Blvd.
Arlington, VA 22209

Office of Naval Research
Department of the Navy
Arlington, VA 22217-5000

DTIC
ELECTEI

APR 2 81988^ ?*

Ap pruned tat public relectt«;
DljrtribuäoD Unlimited

■V.V.V.V.V.V.V.V'^V.V-A.V.V.V.V.W.V.'-^V v^. '>\^v>/^>jrv%j-"-y-^^i^vJ>vy^'ir

ft r1

y

UNCLASSIFIED

:-;

V

Kt

W

«

^

StCURlTV CLAItlFICATlON 0' TMIt »AGE fWhwn DM« tnlmtad)

1 REPORT DOCUMENTATION PAGE READ INSTHUCTIONS 1
BEFORE COMPLETING FORM i

j BBN Report No. 6813
2. OOVT ACCEUION NO. 1. RECIRIENT'S CATALOG NUMBER |

|« TITLE (mttuMIU)

Integration of Speech and Natural Language
Interim Report

t, TYRE Or RERORT « PERIOD COVERED j

Interim Report |
Dec 30, 1986 - March 31,)988|
• RIRFORMINC ORC. RERORT NUMBER j

BBN Report No. 6813 1
17. AUTHORMJ

1 D. Ayuso, Y. Chow, A. Haas, R. Ingria,
1 S. Roucos, R. Scha, D. Stallard

1 CONTRACT OR GRANT MUMBERnj 1

N00014-87-C-0085

It »ERFOMMINC OMANIZATION NAME AND ADDRESS
| BBN Laboratories
j 10 Moulton Street
| Cambridge, MA 0223?

10. RROORAM ELEMENT PROJECT, TASK 1
AREA * WORK UNIT NUMBER« 1

jit. CONTROLLING OFFICE NAME AND ADDRESS

j Office of Naval Research
1 Department of th; Navy

Arlington, Virginia 22217-5000

It. REPORT DATE

April 1988 jj
11. NUMBER OF PACES j

84 J
1 14 MONITORING AGENCY NAME A AODREtVlf dllltrwni Inm CanmlKn« Ollict) It SECURITY CLASS, for (h/. (.pcrrj

Unclassified
II«. OECLASSIFICATION DOWNGRADING j

tCMEOuLE

lit . DIJTHItUTlpN STATEMENT (al Ihlt Rtporlj 1
Distribution of the document is unlimiLed. It may be released 1
to the Clearinghouse, Dept. of Commerce, for sale to the general public. |

1 17 OlSTRiiuTiON STATEMENT (al th* mbtirtci mifrtd Im Clack 20, II dllltrmni Inm Rtpart)

Mt SURRLEMENTARYNOTES 1

11|. KEY WORDS rContliu« en rtm»t •'*• II Mfttmy and itfMltr ^r Meet nimtbtr) 1

1 Unification grammars, parsing, natural language processing. Compositional |
j semantics, Intensional logic. Higher order logic speech recognition, j

speech understanding, hidden Markov models,^

20 ABSTRACT (CenOm» on f»»w.. .««. «>■»<:•••«•> m*/#»n((fr »)' »'«t» "•«"»•') j

j -«e-^e&aivt in ^his tnttHfia report^our work on integrating speech and
j natural language processing for speech understanding. We describe^the f
\ components of the system: the unification grammar and corresponding parser,

{ the higher order intensional logic and the type system used for semantic J
j interpretation, and the search stracegy used for speech understanding. k£o | ydc.

DD | JAN"« 1473 tOITlONOF I NOVtt ItOMOLITI
UNCLASSIFIED

tECuRlTY CLAItlFICATION OF THIS RAGE fWl«« On» Eiifdl

HMMWJiiwuawiv^rtjtoiawjaviTjijijü*^^

Report No. 6813

SJ

Kr

ö

.->,

'.

§
^3

ARPA Order Number 5947
Contract Number N00014-87.C-0085
Contract Duration: 30 Dec 1986 - 29 Dec 1988
Principal Investigators: Dr. Salim Roucos (617)873-3452

Dr. Remko Scha (617)873-2670

INTEGRATION OF SPEECH AND NATURAL LANGUAGE

INTERIM REPORT

D. Ayuso, Y. Chow, A. Haas, R. Ingria, S. Roucos, R. Scha, D. Stallard

April 1988

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

f

Report No. 6813 PBN Laboratories Incorporated

I Table of Contents

i Executive Summary

1. The Syntactic Component

I

1.1 The Grammar Formalism
1.1.1 The Relation between The Grammar and the Lexicon
1.1.2 Optional Elements
1.1.3 "Meta-mles" and Feature Value Default Mechanisms
1.1.4 Trace Flags

1.2 The Parsing Algorithm
1.3 Qualitative Measures of Coverage

1.3.1 The Top Level Constructions
1.3.2 Oausal Constructions
1.3.3 Verb Phrase Constructions
1.3.4 Auxiliary Constructions
1.3.5 Noun Phrases
1.3.6 Adjective Phrase Constmctions-
1.3.7 Adverbial Constructions
1.3.8 Other Constructions

1.4 Quantitative Measures of Coverage
1.4.1 Grammai Size
1.4.2 Syntactic Coverage
1.4.3 Perplexity
1.4.4 Ambiguity
1.4.5 Overgeneration

1.5 Future Plans
1.5.1 Extending Coverage
1.5.2 Reducing Spurious Ambiguity
1.5.3 Changes to the Grammar Formahsm

5
6
8
8
8
9
11
12
12
14
15
16
19
20
20
21
21
21
21
23
25
26
26
28
28

v,

V. v.

li

2. The Semantic Component

2.1 Introduction
2.2 The Nature of Semantic Knowledge
2.3 System Design Overview
2.4 The Logic

Example of Processing
The Semantic Framework System
2.6.1 Introduction
2.6.2 Logical Expression.; as Data Abstractions
2.6.3 Functions for Defining Constants
2.6.4 Functions for Extending the Language
2.6.5 Translaboas and Transformations
2.6.6 Functions for Cornpanng Types
2.6.7 Syntax Checkers for Logic Expressions

2.5
2.6

Accession For

NTIS GRA&I
DTIC TAB □
Unannounced Q

I Just 1 r i a at 1 on.

it

Bv
1 01?trlbutlon/_

i Availability Codes

' jAvall a^/or
IDlat I Spsaiai

(^
/\

29

29
29
33
35
38
40
40
41
42
42
43
44
46

k^kMaim5>iKmvwÄ,w&«m^

BBN Laboratories Incorporated Report No. 6813

2,7 Accomplishments over the Last Year
2.7.1 Implementation Status
i -j i

2.7,3
Theoretical Issues and Publications
Future Work

46
46
47
47

3. Speech and Natural Language Integration 49

3.1 Speech
3.2 Integration o'i Speech and Syntax

3,2 I The Time-Synchronous Speech Parser
3.2,2 The Word-Synchronous Speech Parser

3.3 Integrating Semantic;
3.4 System Implementation

3.4.1 Silence Handling
3.4.2 Search Strategies

3.5 Current Status and Future Work

50
52
52
54
56
57
57
57
59

References 61

APPENDIX A. A Parsing Algorithm for Unification Grammar
Andrew Haas

65

A. 1 Basic Concepts
A.2 Operations on Sets of Rules and Terms
A.3 The Parser without Empty Symbols
A.4 The Parser with Empty Symbols
A.5 The Parser with Top-Down Filtering
A.6 Discussion and Implementation Notes

67
68
70
73
75
XI

Q

S

5

g

r'.

^1AV.^W^^^^^^^V.V-VVAV.^/>Ü^V-^ ^r^r« v MvrwyiTvuv/

p

■i

I

I

/,
V

Report No. 6813 BBN Laboratories Incorporated

Ä Figure 1: -
-■. Figure 1-1:

Figure 1-2:
9 Figure 2-1:
S Figure 3-1:

Figure 3-2:
_« Figure 3-3:
> Figure 3-4:

tf
y
V

«
.V
f-'

, p'

:J

List of Figures

Architecture of The Natural Language Processing System 2
BBN ACFG Parsing Algorithm 11
BBN ACFG Resource Management Training and Test Corpus Coverage 21
Screen Display of Parse Tree 39
Dynamic Time Warping (DTW) algoruiim 1 51
Dynamic Time Warping (DTW) algorithm 2 51
Time-synchronous Lattice Parsing Algorithm 53
Word-synchronous Parsing Algorithm 55

in

k5.N!>'-^v.NV^<vr;v ^^^^

r1 Report No. 6813 BBN Laboratories Incorporated

K

,>

,-

•.

y

I
*•■■,

Executive Summarv

DQ This iepon describes the progress during the first year of the project from January 1, 1987 to December 31,

1987. Dunng this hrst year, we have focused on two major activities:

• Development of the syntax and semantics components for natural language processing.

• Integration of the developed syntax and semantics with speech for speech understanding.

To measure the coverage of the syntactic and semantic components and the performance of the integrated

system, we use the DARFA IGOO-word Resource Management Domain Corpus. This corpus has been used for

developmg a standard speech database for evaluating the performance of speech recognition algonthms developed

K» under the Strategic Computing Program.

grs Our work on natural language processing included the developement of a grammar (syntax) that uses the

Uiuficanon gnmmaj formaMsm (an augmented context free formalism). The Unification grammar formalism, the

rules, and the parsing algonthm are des^ibed in more detail in Chapter 1. The syntactic phenomemna that the

K' grammar handles are also described Currently, the grammar cover H5C7(of a trajning coipus and 64% of a test

corpus. The tnumng corpus is examined by the syntax developers arid is useo to determine the phenomena that

should be handled. The test set is never examined by the syntax developers and its purpose is to allow us to estimate

fg peiformance on an independent set that would be representative of the ultimate system s perfomiance in the field.

The parsing algonthm extends the algorithm of Graham, Harrison, and Ruzzo [9] from the context-free case to

porate unification. The new algonthm is reviewed briefly ir

11 describing the algorithm in detail is included as Appendix A.

Cj incorporate unification. The new algonthm is reviewed briefly in Section 1.2 of this report and the paper by Haas

The semantic component uses a principled mathematical logic approach for developing a representation of

meaning and the associated interpretation algorithms. Higher-order intensional logic is used as the logical language.

Ä The semantic mtenreter uses 4 translation steps to derive the meaning of a parse tree of a sentence: the relationship

among these levels is shown in Figure 1. First, the parse tree is converted to an expression of EFL (English-oriented

i. Formal Language): at this level, each word (including words with multiple senses) has one EFL constant. Second, a

'[' possibly ambiguous EFL expression is translated to several expressions of WML (World Model Language). Note

that each EFL constant that corresponds to an ambiguous word may have multiple WML constants, which can result

r.* in a combinatorial explosion of WML expressions derived from an EFL expresssion. Not all combinations are

meaningful, however. Meaningless combinauons are filtered out: they are recogmzed by a module that uses the type

i % system of the logical language. The third translation converts the remaining set of WML expressions to expressions

H. of DBL Data Base Language), which are finally converted to value expressions by evaluating the DEL expression

against the data base. At the value stage, presuppositon failure can be detected.

>\;
We have completed the basic framework of the semantic component, implemented the type system, and have

u.cluded semantic knowledge to demonstrate interpretation on a small set of sentences. In the coming year, we plan

uOi to increase the semantic coverage significantly to yield a useful system,

f 1

i

£

BBN Laboratories Incorporated

WORD SEQUENCE

_i
Syntax

Parse
Trees

General
Semantics

General
Semantic

Expressions
EFLs

Domain
Semantics

Domain
Semantic

Expressions
WML(s)

Conversion to
Database
Language

Database
Query i

DBL

Query
Evaluator

Response

[
CVL

Response
Presentation

Report No. 681J

Speech Text Graphics

NATURAL LANGUAGE
UNDERSTANDING

RESPONSE
FORMULATION

itf

ft

s

Figure 1: Architecture of The Natural Language Processing System

§

ft

-JTW MX'^KFAjrkxw^w-)LT<ü^r*jr*.'r>iA

Report No. 6813 BBN Laboratories Incorporated

The work on integiation has led 10 the development and implementation of a se;irch strategy that integrates the

unification syntax, compositional semantics, and hidden Markov word models inro an algorithm that finds the best

mterpretation of the input speech. The search therefore integrates natural language knowledge sources and uses

their constraints to find the word transcription and meaning of input speech. The search is based on the parsing

algorithm that has been developed for the syntax, and applies semantics as a post process. The parser is used to find

a set of grammatical sentences that have a high acoustic likelihood score given the speech. This set of sentences is

ordered by decreasing likelihood. The semantic component is then applied as a post process on this set of sentences

to determine the highest scoring meaningful utterance. That sentence is the recognized sentence. The search is

currently implemented and has run on a few sentences. We expect in the coming year to improve the efficiency of

the search, and to evaluate the speech undersianding performance on a set of speakers.

In addition to the above accomplishments during this first year, we have also demonstrated the serial

connection of speech recognition with a natural language component. In this case, the speech uses a language model

that is different from the syntax and semantics components of natural language processing. This approach is not

optimal and we think it is only applicable tor applications of very low perplexity (less than 50). The integrated

approach described above is required for larger perplexity tasks. Nevertheless, the serial demo is useful to

demonstrate speech understanding in an actual task, due 'J its speed in recognition. The speech component had a

vocabulary of 600 words and a finite state grammar with a perplexity of 40. The recogmzed word string was pxssed

to the natural language component which interpreted the request, accessed the database system, and presented the

output using the a simulation of the OSGP graphics system. This demonstration was capable of handling the demo

scenario and was n.. considered as a robust system. The serial connection was demonstrated on two occasions:

once to the program nanager and once to all participants of the Suategic Computing Speech Program meeting on

October 13-15, 1987.

The remaining chapters of the report describe our work on syntax in Chapter 1. on semantics in Chapter 2, and

on the integration strategy in Chapter 3.

OfoX^Vfo^N.-X-X^-VV.^

BBN Laboratories Incorporated Report No. 6813

g

s
?

I

4

S

■7

iff,

^'^^^^'^■'V'-'^.V^^,^C'*^"'C<^,!,-C1V iC^öüOkrWW&tfttrtW'D :\W.%\N\Vl.'v,LV_v\Nr JN"^.\VW-S.'.VL V^'.V WAV, W L% „VUN -JWWVW

■s
Report No. 6813 BBN Laboratories Incorporated

^ I. The Svnfactic Component I
■yi This chapter describes the syntactic component of the BBN Spoken Language System This component uses a

<V broad-coverage grammar written in an augmented phrase structure grammar formalism and parsed using an

algorithm based on the CKY algorithm for context-free grammars. Section 1.1 discusses the formal of the syntactic

fl| grammar at a relatively high level. Section 1.2 introduces the algorithm that is used to parse the grammar. Sections

1.3 and 1 4 describe the coverage of the grammar, both in descriptive linguistic terms and in more quantitative

measures. Section 1,5 outlines the work on the syntactic component that is currently planned, on the basis of what

has already been done.

r' 1.1 The Grammar Formalism

The BBN Spoken Language System uses a grammar formalism based on annotated phrase structure a»les: this

formalism is called the BBN ACFG (for Annotated Context Free Grammar). It is, therefore, in the tradition of

y augmented phrase structure grammars such as those of Harman [12] and Heidom [13], [14], althougn its immediate

inspiration is Genenilizcd Phrase Structure Grammar (GPSG) [8]. In such grammars, rules are made up of elements

|r that are not atomic categones but, rather, are complex symbols consisting of a category label and feature

specifications. Rules in the BBN ACFG consist of grammatical symbols—e.g. representing a part of speech, such

v as N, for noun—that take a specified set of arguments (also referred to as features). These, in turn, may take

V arguments of their own. For example, in the current grammar, nouns and verbs contain AGREEMENT as an

argument. AGREXMENT, in turn, takes the arguments PERSON and NUMBER. Arguments such as PERSON and

E NUMBER that do not take arguments but only assume simple feature values can have either constants or variables as

values. Vanables begin with a colon; constants are unary lists. For example, PERSON can take on one of the values

(1ST), (2ND), (3RD), and :P: NUMBER, the values (SINGULAR), (PLURAL) and :N. Arguments that take

[-■ arguments of their own, such as AGREEMENT, can also take either constants or vanables as their values. Again,

vanables begin with a colon: constants, however, are multiple element lists whose first element is fixed across all

values For AGREEMENT, for example, this is AGR. Moreover, since the arguments to a feature such as
%' AGREEMENT may themselves be either constants or vanables, it is possible to have partially speciiied vilues for

such features. Here are some examples of fully and partially specified arguments for AGREEMENT:

'•] (AGR (1ST) (PLURAL))
•' (AGR (3RD) (SINGULAR))

(AGR (2ND) :N) ;; (number unspecified)
JA (AGR :P (PLURAL)) ; ; (person unspecified)
,"'' :AGR ;; (agreement completely unspecified)

/■ Vanables can be used m different elements of a rule as a means of imposing feature agreement. The

following rule from the current grammar illustrates this agreement iiiechamsm:'

This is ^ simplified version of the rule; tcaturcs that are irrelevant for the purposes of the present discussion have been omitted.

^:v:'X-vCv?^:v:v?y?r v;. >>^,f/^:v.^^

BBN Laboratories Incoroorated Report No. 6813

; basic <.opl*v«l declarative clause rule, ensuring subject-verb agreement
((S ... :M0OD (WH-) ...)
(KP :AGR iKPTYPI ...)
(V? :AGR :NPTYPI :M0OD ...)
(OPTSADJUNCT . . .)) 2

This rule states that a declarative ((WH-) (3 S (sentence) consists of an >fP (noun phrase) followed by a VP

(verb phrase) and an optional adjunct. The use of the : AGR variable in the NP and VP elements of the rule enforces

agreement of the NP and VP in person and number. Similarly, the :KPTYPE variable requires that the subject NP

be of the type selected by the VP (ulumately. by the head vert) of the VP). Finally, the :M0OD vanable in the S and

VP elements requires that they have the same mood.

The BBN ACFG grammar is strongly typed. Each grammatical symbol has a fixed number of arguments in a

fixed order Each argument, in turn, has a fixed set of permissible values. |S

I.I ! 1 he Relation between The (Jramniar and t^e Lexicon j£

In phrase-structure based formalisms, thert is no formally separate lexicon; lexical items are introduced by gW

phrase structure rules just as syntactic categories ('non-terminals") are. For example, in order for a grammar ß?

written in the ACFG formalism to contain the word "given", there would need to be a rule of the following sort.

((V (DITRANSITIVE :PASSIVE) :P :N (EDPARTICIPLE)) *j
(given)) «r

This rule states that "given" is a past participle ((EDPARTICIPLE)), unspecified for person and number XI

agreement (: P : N). that it takes a ditransitive complement structure ((DITRANSITIVE)), and that it may appear

either in active or passve corvstmctions (: PASSIVE). Note that this rule irtroduces "given" in only one of its ■•

uses, the uiirrjisitive (as in "We have given John the book": "John was gi»en a book"). There need to be ^s

analogous rules for its other uses, as well. While it might be possible to store all these rules, the storage

requirements for doing so arc prohibitive. The number of rules for each lexical item is equal to the number of B

inflected forms of the item—singular and plural forms for nouns; positve, comparative, and superlative forms for "^

adjectives; and all the past, present, and participial forms for verbs—multiplied by the number of subcategorization
[01

frames4 that the lexical item may appear in. Even for a small lexicon, this will result in a large number of rules; for ^<
. £

example, for the KWO-word Resource Management corpus, there v ould be over 1200 srch rales for nouns, over 5'J'

for adjectives, and slightlv less than 1000 for veibs a total of approximately 2700 Piles. For the multi-nousand [Di

word lexicons needed for robust natural language processing, there would be an explosion in the numbe» of rales Ei1

needed.

 g
ACTG rules arc rcprcMnied is LISP hsLv The lirsi clrmcm »t the list correspond« to ihe left hand <idc of the rule. The rest of the elei.,enLs Mi

correspond to constituents on the right hand side of the rule.

JB Read as "WH minus"; this tollows the analysis now standard in generative grammar that declarative clauses bear the feature -WH ("minus Btt
WH") and that interrogative clauses, whether they are content questions or ye^-no questions, are +WH ("plus WH"). See Section 1.3.2.1 lor
more discussion of these two types of question.

''See Section I.I.I'. 1 for discussion of subcategorization. VV

. i

LV..M,V/ä%\V/-,>/V^%\.\^

V

Report No. 6813 BBN Laboratories Incorporated

Because of this, the current vereion of the BBN ACFG does not store rules introducing lexical items, but

r;nher generates them as needed by the parser on the basis of information stored in the lexicon and in conjunction

with a morphology program that handles the regularly inflected forms5: such rules that are created on demand but

not permanently stored are often referred to as "virtual rules"'. Thus, while the lexicon has no formal place in our

system, it is ■■sod as a reponto.y of lexical information (subcategonzauon, semantics, morphology, etc.) that is used

to construct the virtual rules that the grammai actually uses.

1.1.1,1 Subcategori/ation

',V Virr al rules are also used to ensure that a member of a lexical category (currently V (Verb). N (Noun), and

ADJ (AD'ectivei) appears with the correct complements. Complements are so called, in traditional grammar.

because they 'complete the meaning" of a lexical item in some way. For example, a transitive verb requires a noun

phrase to follow it: ' John fooled the boys'" is grammatical but "'John fooled6" is not. Complements are lexically

specified in that a given lexical item may or may not require (or permit) a particular category. Thus, intransitive

verbs forbid a following noun phrase but may opüonally permit other complements; e.g. ""The sun rose the boys"

is ungrammatical. but "The sun rose over the mountains'" grammatical, although the phrase "over the

mountains'" is optional: "The sun rose" is grammatical as well.

The set of coi.iplements that a lexical item requires is often referred to as a suhcaiegnrizatton frame. While

some formalisms, such as PATR-I1 [25], place most of the information about subcttegorization in the lexicon and

contain only a single rule for a category in which a lexical item takes complements—currently these are VP for V.

N-BAR for N, and ADJ-BAR for .ADJ—the BBN ACFG contains a rule for every subcategorization frame in which

a lexical category can appear. Each such rule is "indexed", as it were, i mnemonically named feature that must

appear as the value of the subcategonzatio.i feature of any verb tha' can . ur in that frame. (In this, it follows

GPSG. which uses a similar indexing scheme.) The following two rules illustrate this aspect of the BBN ACFG

formulism:

((VP (AGR :P :N) :NPTYPE :MOOD (AtJXV (W (W (W (W (W (OAOX))))))
(NOT-HEG)) (WH-) :TRX :TRX (-CONJ))

(V (INTRANSITIVE :NPTYPE) :P :N :MOOD))

((VP (AGR :P :N) :WPTyPE :MOOD (AÜXV (W (W (W (W (W (OA'JX))))))
(NOT-NEG)) (WH-) :TRX :TRY (-CONJ))

(V (TRANSITIVE :HPTYPE (TAKES-ACTIVE)) :P :N :MOOD)
(NP :AGR (REALNP) (-POSS :POSSCLASS) (WH-) (OBJ (AGR :P :N)) :TRX

-.TRY :CONJC))

The first rule states that a VP may consist of a V (verb! followed by no other complements if the V bears the

feature (INTRANSITIVE). The second rule says i . t a VP may consist of a V followed by an NP just in case the

• erb is specified as being (TRANSITIVE) and capJe of appearing in the active voice ((TAKES-ACTIVE)). As

Irregularly inflcctcc1 forms are listed In the lexical eniry of iheir base lorm.

* indicates ungrammatiLahty.

kw^'^tt^w.^*^^^^^

BBN Laboratories Incorporated Report No. 6813

is usual, the variables :P, :N, :NPTYPE, and :MOOD are used to enforce agreement of the V and VP in these

features.

»

y\

M.2 Optional Elements S

Curref'v there are no general mechanisms in the BBN ACFG that permit optional elements i at implement nr

the Kleene star operator, which permits zero or more occurences of a specified element. To implement optionality

and Kleene star, special categories are introduced that simulate these operations. .,

s
1.1.3 "Mela-rules"" and Feature Value Default Mechanisms _

Some annotated context-free formalisms, such as GPSG. include a mechanism that allows for rules that are, in

some sense, predictable variants of other rules to be derived rather than being incluaed in the object grammar. For KA

example, GPSG provides a "meta-rule'- facility, which, among other things, provides a means for deriving the

passive version of transitive VP rules. The BBN ACFG does not have any such ni^chamsm.7

i
A similar mechanism for compacting the size ot grammars is some sort of feature defaulting mechanism,

which would allow predictable featuits of one or more elements of a rule to be left unspecified. Currently, the BBN r

ACFG provides no such mechanism. It is very unlikely that the grammar formalism will itself provide such a

facility, although it might be possible to provide ?7\ interface between the rules wntten and seen by users and

developers and the lorm of the rules used b, the pa'ser. <\

1.1.4 Trace Flays (J
m ,•.

WH constituents, such as "who", "what", "how many ships", and "how long" are linked to an empty _»
M

elen^ it lor trace) that appears in the position where the WH constituent is interpreted. For example, in »he i"^

sentence, "who did John see" "who" is linked to an NP trace in the object position for the verb "see". In English,

only one trace may appear in a single clause; compare: K

who wonders what John gave Bill l . "^
* ivho does Mary wonder what John eave twho twhat

In the first case, "who" is interpreted as the subject of the matrix clause and "what" is inteipreted as the

object of the complement clause, so there is no more than one trace per clause and the restriction is satisfied. In the ,

second case, "who" is IcnkcJ to the indirect object position of "gave" (indicated by l^,) and "what" is linked to •<•

its direct object position (indicated by t . t), resulting in ungrammaticality There are vanous linguistic and

Some researcher, who have tried lo implemenl a Montague style compositional semantics using a GPSG syntax have reported that the
mcLa-rule mechanism creates problems for the semantics. Thus, while not having meta-rules m?y increase the size of the object grammar, this
mav prevent problems in the area of semantics. M

m

.V

J1,.
^

y

m'j

Report No. 6813 BBN Laboratories Incorporated

computational proposals to enforce this restriction. The one used in the BBN ACFG is that of difference lists, first

suggested by Pereira [19].

1.2 The Parsing Algorithm

The algorithm used to parse the BBN ACFG is essentially that of Graham, Harrison, and Ruzzo [9],

henceforth, GHR. This algorithm, in turn, is based on the familiar Cocke-Kasami-Younger (CKY) algorithm for

context-free grammars. The onginal CKY algorithm could not be used to parse the BBN ACFG since that algonthm

requires that a grammar be in Chomsky Normal Form (CNF), i.e. that each rule introducing non-terminal

symbols—essentially the pans of speech, as opposed to the terminal symbols (lexical items and grammatical

formalivesi—be of the form

v; A -^ B c
with exactly two non-terminal symbols on the right hand side. A grammar for a natural language will contain rules

.. that deviate from CNF in the following ways:
v;
y, rules with 0 symbols on the right hand side

the rules that introduce traces, discussed above in Section 1.1.4, are of this type. Such rules are
often ca'led empty rules.

W rules with only 1 symbol on the right hand side
such as the rules introducing intransitive verb phrases, as in.

((VP ...)
(V (INTRANSITIVE :NPTYPE) ...))

e ■"-:

Such rules are often called chain rules.

«rules with more than 2 symbols on the right hand side
such as the rule introducing ditransitive verb phrases, as in:

((VP . ..)
(V (DITRANSITIVE (TAKES-ACTIVE)) ...)

fr (NP ,..)
(MP ...))

Nevertheless, the CKY algonthm is quite simple and powerful: it starts with the terminal elements in a

Y'j, sentence and builds successively larger constituents that contain those already found and constructs all possible

parses of the input. The GHR algonthm maintains this aspect of the control srracture of the CKY algorithm without

forcing the grammar to be m CNF. It does this by adding several mechanisms to CKY. All the chain rules of the

grammar are collected into a special table that is consulted by the parser to determme if a chain rule is possible at

any given point in the parse. All the empty rules of the grammar arc collected into a similar table. Finally, for rules

",■ with more than iwo symbols on the right hand side, the mechanism of dotted rules is used. A dotted rule is like an

ordinary rule, except that the nght hand side is divided into two pans by a dot. This dot. in eftect. makes the rule

", look as if it were in CNF. Dunng the course of a parse, the parser will move the dot from the beginning of the nght

hand side of a rule to its end as the elements of the nght hand side are found. Consider the following rule and its

dotted rule equivalents:

'A

»Hi

9
W

•

BBN Laboratories Incorporated Report No. 6813

A-H.BCD

[Constituent A consists of the sub-constituents BCD]

A-..BCD

IA rule that constructs an A; the parser has not yet found any of its sub-constituents 1

A^B. CD

[A rule that constructs an A; the parser has found a B and is now looking for a C and a D]

A -* B C D

[A rule that constructs an A; the parser has found a B and a C is now looking for a D]

A -. B C D. ^

[A constituent of type A has been found)

10

■ •.

.v

2
The GHR algorithm will find all the dotted rules that derive an input sentence: this is another way of saying

that it will find all the parses for a sentence. Looking at the parsing algorithm as a way of specifying all the

grammatical word sequences of English, we may give the algorithm as in Figure 1-1. jps

The procedure used to build constituents out of previously found constituents does not involve simple ß«

matching but rather the process of unification, which matches the feature values in the different elements of a rule,

as specified in the rule. As Section 1.1 showed, features may themselves be complex expressions, so that unification

is a recursive process. Since the GHR algorithm, like the CKY algoritiim, deals with context-free grammars, rather m

than context-free grammars annotated with features, the use of unification is an extension to the GHR algorithm; see "*

[10] and [11] (included here as Appendix A) for full details. An important result reported in this work is that there

is a class of ACFGs, called depth-hounded ACFGs. for which the parsing algorithm is guaranteed to find all parses rk

and halt. Depth-bounded ACFGs are characterized by the property that the "depth" of a denvation, i.e. the number

of non-terminal symbols that derive a terminal string, cannot grow unboundedly large unless the length of the string ßl

also increases. The fact that the parsing algonthm for this class of ACFGs halts is an important result, since l*

unification grammars have the power of a Turing Machine and so. in the general case, cannot be guarenteed to halt.

Moreover, the derivations ruled out by depth-bounded ACFGs are not needed for the analysis of natural languages, KK

so this class of grammars is linguistically motivated, as well as computationally tractable.

r-/

p - 0 I

Report No. 6fl3 BBN Laboratories Incorporated

*

. ■

for k = 1 to N 1

for i = k-l to 0 by -1

dr[i,)c] =

(if i+1 = k

{ (A -> H. a) | W € input [i,k])

eise |

{ (A -> a B. ß |

(A ^ a. B ß) 6 dr[ir j]

6 (B ^ y.) e dr[j,k]}

i < j < k j

i

u

{(A H. B . ß) | (B -» a.) € drti,k])

V (A -> 3 ß) € P

where

N
W

i dt[i,k]
input[i
P

is the length of the input in words
is a vanable ranging over terminal symbo.s (words)
is the set of dotted rules that span the input sentence from the ith through *th positions

, k] is the portion of the input sentence from the ith through fah positions
is the set of grammar rules (productions)

Figure l-l: BBN ACFG Paismg Algorithm

1.3 Qualitative Measures of Coverage

This section describes the coverage of the current ACFG grammar in descriptive linguistc terms. Quantitative

measures of coverage are presented in Section 1.4.

f"' II

fcw«^jQswyQWÄSKyg«cwüw^^

12

•."

BBN Laboratories Incorporated Report No. 6813

1.3.1 The Top Level Constructions

The BBN ACFG grammar currently handles the following types ot utterances:

• Declarative sentences ("The Eisenhower is in the Indian Ocean") Sc
fit

• Interrogative sentences ("Is the Eisenhower in the Indian Ocean") in vanous types; the full spectrum is
discussed in Section 1.3.2.1.

mm
• Imperatives ("Display the Indian Ocean") y<J

• NP utterances ('The ships in the Indian Ocean"»

• Utterances made up of single interjections—single words or fixed phrases that constitute complete N^
utterances ("Over and out". "Roger") w«

• Utterances made up of an interjection followed by a declarative clause ("Yes. the Eisenhower is in the
Indian Ocean") QT

• Utterances made up of an interjection followed by an interrogative clause ("No, is the Eisenhower in
the Indian Ocean") m

• Utterances made up of an interjection followed by an imperative ("Yes. display the Indian Ocean") yg

[v
1.3.2 Clausal Constructions m

The current grammar handles clauses that comprise full utterances (so-called "matrix clauses") as well as iK

subordinate clauses of different types. "-*

• s

1.3.2.1 Matrix Clauses M

The following types of matrix clauses are currently handled: _

• Declarative clauses ("The Eisenhower is in the Indian Ocean") BQ

• Yes-no questions ("Is the Eisenhower in the Indian Ocean") and
Content ("WH") questions ("Who is m the Indian Ocean") Kl

KM
Content questions may involve various types of constituents: ■■

• Noun Phrases such as "who", "what", "how many ships", etc.
• Adjective Phrases such as "how long", etc. .v*
♦ Locative and temporal expressions surh as "where", "when", etc. " •
♦ Adverbial expressions such as "how", "why", etc.

Both yes-no and content questions involve a process ot "subject-aux inversion" in which an "auxiliary ,%
element" and the subject are transposed: the ACFG grammar handles all such cases; £*

&j
' modals ("Must Eisenhower go to the Indian Ocean")
• perfective "have" ("Has Eisenhower gone to the Indian Ocean") BS
• progressive "be" ("Is Eisenhower going to the Indian Ocean") "*
•passive "be" ("Is Eisenhower deployed to the Indian Ocean")
• "main verb" "be" ('Is Eisenhower m the Indian Ocean") |ü
• auxiliary "do ' ("Does Eisenhower have harpoon")

The negated counterpart of each type is also handled:

<'j

^ötöeOÖÖÖÖÖMÖSSSGÄSQM^^

Report No. 6813 BBN Laboratories Incorporated

• "Mustn't Eisenhower go to the Indian Ocean"
• "Hasn't Eisenhower gone to the Indian Ocean"
• "Isn't Eisenhower going to the Indian Ocean"
• "Isn't Eisenhower deployed to the Indian Ocean'"
• "Isn't Eisenhower in the Indian Ocean"
• "Doesn't Eisenhower have harpoon"

Each of these question rules also allows ADVPs (ADVerb Phrases) of a specified type to appear after
the subject NP:

• "Has Frederick ever gone to C3 on personnel readiness"
• "When was Eisenhower last in the Indian Ocean"
• "How soon will Wasp next chop to Atlantic Fleet from PACFLT"

1.3.2.2 Subordinate Clause Constructions

Subordinate clauses (that is. clauses that make up a subpan of a complete utterance) can be divided into two

types:

Complement clauses
These are clauses that are introduced as complements to lexical categories, such as verb, noun,
or adjective, and which are permitted or forbidden by individual lexical items. For example,
verbs like "believe" and "say" take complement clauses introduced by "that" while "go"
and "come" do not.

Adjunct clauses These are clauses that are introduced in specified structural positions of phrases and clauses,
independent of the exact lexical item that heads the phrase or clause. For example, noun phrases
allow relative clauses introduced by WH words or "that " but do not permit clausal adjuncts
introduced with "because"; compare "A/The man who was old came in" with "*A/The man
because he was old came in".

Complement Clauses
The following types of complement clauses are currently handled:

• Finite clauses introduced by "that":

1. Complement clauses that permit an optional "that" ("We believe that Eisenhower is in the
Indian "»cean" and "We believe Eisenhower is in the Indian Ocean ").

2. Complement clauses that require "that" ("I order that Eisenhower sail to the Indian Ocean "
but not "*I order Eisenhower sail to the Indian Ocean").

These two types of complement clauses are often called indirect statements.

• Complement clauses that require "if" ("We wonder if Eisenhower is in the Indian Ocean").

• Complement clauses that require "whether" ("We wonder whether Eisenhower is in the Indian
Ocean").

• Complement clauses that require a WH phrase ("We wonder who/which ship is in the Indian Ocean").

These three types of complement clauses are often called indirect questions.

Adjunct Clauses
The following types of adjunct clauses are currently handled:

• Relaüve clauses introduced by a WH word ("Get the maximum speeds for carriers which are in
Astona ")or "that" ("List carriers that are C5 on equipment").

The current grammar also handles "extraposed" relative clauses with a WH word or "that" ("Five
ships anived that were C3 ").

13

KV

BBN Laboratories Incorporated Report No. 6813

The grammar also handles "stacked" relative clauses (i.e. multiple relative clause on the same head
noun) ("Are there any ships which are located in China Sea that are C2") and conjoined relative
clauses, even if one has "that" and th: other has a WH word ("Give me a list of the carriers that are
M3 on ASW and which ?re in New York"). In both these cases, where both "that" and a WH word
appear, they may appear in either order.

• Clausal adjuncts that appear at the end of finite clauses ("Eisenhower is in the Indian Ocean because
there is an emergency there") or infinitival complements ("We believe Eisenhower to be in the Indian
Ocean because it is needed there").

1.3.2.3 Clausal Conjunction

In addition to conjunction and stacking of relative clauses, there is general clausal conjunction with "and"

and "or".

1.3.2.4 The Immediate Constituents of Clauses

Clauses have as their immediate constituents (i.e. the elements that make up a clause) the subject noun phrase,

u verb phrase (i.e. the verb and its complements) and various adjuncts. Currently, the following elements can appear

as adjuncts:

• A participial clause ("Redraw the area updating the chsplay")

• A participial clause introduced by a preposition ("Redraw the area without updating the display")

• Adverbial expressions of vanous types ("now", "yesterday", "on the twenty second of May")

• Locative and temporal expressions ("at seventy degrees north twenty three degrees east", "in the
Indian Ocean")

» Prepositional phrases introduced by "with" that contain a noun phrase and a predicate phrase ("with
areas off. "with system switches set to default values", "with the Shasta's in bnght green")

• Extraposed relative clauses with "that" or a WH consitulent (see Subsection 1.3.2.2).

• Sentential adjuncts introduced by vanous (.omplementizers ("after", "because", "unless", "until",
etc).

1.3.3 Verb Phrase Constructions

As was explained in Section 1.1.1.1, lexical items are linked to the subcategorization framets) in which they

can appear by means of a subcategorization feature whose values are associated with separate complement rules.

For VPs. this is done by means of the argument SUBCATFRAME on Vs. There are currendy 45 verbal

subcategorization frames, which are denved from an extensive survey [15] of the literature concerning verb

subcategorization in English (e.g. fl], [31, [20]. [27], [28]. [29], [30]). Since each of these features may be

associated with more than one VP rule leg. the leature tor transitive verbs is associated with both an active and a

passive VP) there are more than 45 separate VP subcategorization rules; in fact, there are 69 such rules. Discusssion

of these rules is beyond the range of this section but see [16] for a detailed discussion of each.

14

Wto«iftjoyfluöyoucww.>os»sx?.>c^^

Report No. 6813 BBN Laboratories Incorporated

1.3.4 Auxiliary Constructions

The BBN ACFG provides the full range of standard VP auxiliary phenomena in English. Since there are no

meta-niles in the formalism (see Section 1.1.3) there is a separate rale for each type of auxiliary element:

• medals ("Eisenhower must go to the Indian Ocean")
• perfective "have" ("Eisenhower has gone to the Indian Ocean")
• progressive "be" ("Eisenhower is going to the Indian Ocean")
• passive "be" ("Eisenhower is deployed to the Indian Ocean")
• "main verb" "be" ("Eisenhower is in the Indian Ocean")
• auxiliary "do" ("Eisenhowerdoes have harpoon")

There is a fixed order to auxiliary elements in English:

• modal elements—which include ran, could, ma}\ might, must, shall, should, will, would, as well as '//
as a contraction for will—precede

• perfective have, which precedes
• progressive he, which precedes
• passive be. which precedes
• main verbs

In addition, "main verb" be follows progressive be and is in complementary distribution with passive he and

lexical main verbs.

The following sentence shows this order:

You must have been being bad or they wouldn't have gotten angry at you.

While this order is fixed, not all auxiliary elements need to appear all the time; as long as they appear in the

correct order, any subset of them can appear:

Eisenhower must leave.
Eisenhower must have left.
Eisei\hower must have been leaving.
Eisenhower has left.
Eisenhower is leaving.
Eisenhower must be leaving.

In addition, "dummy" do can only appear if no other auxiliary element appears. It appears in questions, in

negated sentences, and in emphatic statements:

Did Eisenhower reach the Indian Ocean?
Eisenhower didn't reach the Indian Ocean.
Eisenhower did reach the Indian Ocean!

English also contains restrictions on the placement of the sentence level negafve elements not and its

contracted form n't. These negative formatives appear following the first auxiliary element in a clause. If there is

no other auxiliary element in the sentence, do appears, since negation annot appear with a simple main verb in

English:

15

teaa^mKfciCüc^ja^^

BBN Laboratories Incorporated Report No. 6813

"John went notywentn'i.
*John not/Johnn't went
vs.
John didn't go.

The ACFG grammar handles both the order and opüonality behavior of the English auxiliaiy system. It also

handles the placement of negation.

1.3.5 Noun Phrases

Noun phrases consist of the following elements (where parentheses indicate optionality):

• Superlative and comparative adjectives preferentially select particular noun phrase
adjuncts. Comparative adjectives can co-occur with phrases introduced by than:

no such restrictions.

Positive adjectives are the base (non-compared) forms of adjectives ('"green", "fast").

An unlimited number of adjectives (positive, comparative, or superlative) are introduced via the
optionality mechanism mentioned in Section 1.1.2.

N-BAR introduces the head noun of the noun phrase together with its complements, if any. N-BAR
rules are discussed in some more detad in Section 1.3.5.2.

Adjuncts Currently, there is no recursive structure to Noun Phrase adjuncts, i.e. only one adjunct can be
introduced at a time, but this will probably change. Currently, the following constituents can
appear as adjuncts:

• Adjective Phrases: These are Adjective Phrases either headed by adjectives thai
lexically specify a postnominal position (such as left in "the fuel left" or adjective

16

r.

»

^

Si

(Determiner) (Comparative/Superlative-Adjectives) (Positive-Adjectives) N-Bar (Adjuncts)/(Relative- „
clauses) o

Determiners include those elements typically called determiners: the definite and indefinite articles {the. a.
an), demonstratives {this. that), quantifiers {all. some. each. ...), etc. Determmer structure is „
discussed in more detail in Section 1.3.5.1. &g

Comparative and Superiative Adjectives
are introduced into noun phrases separately from positive adjectives for both syntactic and
semantic reasons. The semantic areument is simple: it is difficult or impossible to wntc a M
semantic rule that will woric for an arbitraiy number of adjectives that will work for both fv
positive and superlative adjectives. There are several syntactic facts that also point to non-
positive adjectives be;ng introduced separately from positi'e adjectives: ,.,

• Superlative and comparative adjectives must precede non-positive adjectives and
cannot be intermixed with one another:

the fastest green ships fa
*the green fastest ships (wH

a faster ship than the Fredenck

Superlative adjectives can co-occur with phrases introduced by of: «»

the fastest ship of the unit i^

Positive adjectives impose no such restrictions.

• Superlative adjectives require definite determiners, while positive adjectives impose SJ- s-

3

J

5?

f Report No. 6813 BBN Laboratories Incorporated

y, phrases containing a complement, since adjective phrases containing complements
■ cannot appeal prenominaUy in English: compare "sufficient hiel", "fuel sufficient
W to get there". "*sufficient to get there fuel". For more discussion of adjective

placement, see Section 1.3.6.
mi
y*, • Participial VPs "the ship approaching port"
,■'"■

• Passive VPs:' the ship deployed to the Indian Ocean"

H • Prepositional Phrases introduced by with, for, or of: "all ships with harpoon",
>\ "their arrival for the meeting", "equipment of the highest quality",

• Locative and temporal expressioas: "the meeting on the seventeenth of July",

'»j« Relative clauses Relative clauses with relative f/wf ("all ships that are Cr')and WH words ("oil ships which are
Cl"l. including "whose" ("commanders whose ships are Cl") are handled.

Conjoined relative clauses may also appear here. That relatives may be conjoined with WH
^ relatives, "Stacked" relative clauses, such as "ships that are in the Indian Ocean that are Cl",
/„ may also appear,

ÖC 1.3.5.1 Noun Phrase Determiners

• %
The detenniner structure of English noun phrases is one of the most complicated areas of English syntax.

iJS There are a great number of dependencies between the determiner and the classes of nouns that appear as the head of

NP. The determiner itself may have a complex structure with similar dependencies among its elements.

yv

E

y

V

The ACFG grammar ensures that "count nouns" (i.e, nouns that can appear with articles, that can be

pluralized. etc.) appear only with count determiners, such as "every" ("every man" vs, "*much man"), etc.: and

that non-count nouns (both "mass" and abstract" nouns) (i,e, nouns that typically do not appe-" with articles, do

not easily pluralize, etc), appear only with non-count determmers such as "much" ("much sand" vs, "*every

sand), etc. It also allows other determiner-noun combinations, such as proper nouns that permit "the" to appear

before them, including ship names (e.g, "The Eisenhower"), place names (e.g. "the Bering Straits"), etc.

The ACFG grammar allows the full range of determiners, including quantificational determiners, such as

"every" and "how many", numerical determiner;, including ordinals, cardinals, and fractions, such as "three",

"twenty one", 'three quarters", as well as the "pre-determmer" elements that appear with them, such as "more

^ than" ("more than six ships' . "more than three quarters of the ships") or "all" ("all six ships"), the traditional

articles "the", "a", and "an", the demonstratives "this", "that", "these", and "those", the possessive

detenniners, which include both "pejsessive pronouns" ("my", "your", "their", etc.) and full scale possessive

v NPs, as well as other deleiminer elements, such as "both", "either", "neither", etc. Other, specialized determiner

constructions are also handled, such as "the/my last three vacations",

'JA Some delemiiners can appear without ;iny following noun, such as ""those" (as in "All the ships in Diego

Garcia are C4 but those in Honolulu are d " i and such constructions are also handled.

The ACFG grammar also handles "question' determiners, such as "'which ' and "how many and partitive

determmers, such as "some" and "each" (e,g, "some of the ships", "each of the ships").

17

IK

K

BBN Laboratories Incorporated Report No. 6813

1.3.5.2 Complements to Nouns Q.

N-BAR is the constituent that contains the head noun of a noun phrase and its complements. There are

currently only 12 subcategorization frames for nouns in the grammar: this reilects the nature of linguistic knowledge ^

about complements to noun. While complements to nouns are less numerous than those to verbs, correspondingly Qft

less is known about them. In addition to ordinary complements to nouns, N-BAR also contains a limited form of

noun-noun compounding, as in "readiness rating", "combat readiness", and "combat readiness rating". »^

1.3.5.3 Noun Phrase Conjunction

Currently, there are grammar rules tor conjunction of two or more noun phrases with "and' or "or as well •<

xs rules for conjunctions of the form "both NP and NP" and "either NPorNP",

I?
1.3.5.4 Specialized Noun Phrase Constructions

In addition to the general noun phrase constructions already discussed, there are also specialized noun phrase ^j

constructions. Currently, these include;

time expressions in any of" the following forms: ^Q*

fifteen hundred
fifteen hundred hours
fifteen hundred hours zulu gi
fifteen hundred zulu

Time expressions may also be introduced by prepositions, such as "at". V^

date expressions in any of the following forms: &J

m

■■: t

twenty December
December twenty
December twentieth
twentieth December
twentieth of December
the twentieth December
die twentieth of December

as well as date expressions coasisting only of the day of the week, e.g. "Wednesday". Date ir
expressions may also be introduced by prepositions, such as "on". ^

year expressions in either of the fonns:

nineteen eighty seven ^J
eighty seven *■

latitude and longitude expressions
in any of the following forms: Uj

i

Z\'\^'^W\^A<:v's-j':JK'-'*yy/*^

Report No. 6813 BBN Laboratories Incorporated

one hundred degrees north fifty degrees east
one hundred degrees north and fifty degrees east
one hundred c.jrees fifty minures north and fifty degrees forty five minutes east
one hundred degrees fifty minutes north fifty degrees forty five minutes east
a latitude of one hundred degrees north and a longitude of fifty degrees eajt
latitude one hundred degrees north longitude fifty degrees east
latitude one hundred degrees north and longitude fifty degrees east

title expressions these include both tme title expressions, as well as analogous expressions:

Admiral George Metaxas
Admiral Metaxas
USS Enierpnse
U.S.S. Enterprise

1.3.6 Adjective Phrase Constructions

Adjectives may appear alone and may a'so be modified by a special class of adverb: such as "very" or

how" Other, more specialized Adjective Phrase constructioas are also handled:

<ordinal numher> <superlatheadjectire>
eg. "second best"

<numericalNP> <comparative adjective>
e.g. "three miles closer"

Comparative adjective> than NP
e.g. "faster than the Wasp"

comparative adjective> than S
e.g. "faster than the Wasp is"

comparative adjective» PP tlwn NP is PP
e.g. "farther from Guam than the Wasp is from Diego"

comparative adjective» than NP PP
e.g. "closer than the Wasp to port"

less <posi!ive adjective» than NP
e.g. "less truthful than John"

less <positive adjective» than S
e.g. "lessl.uthful than John is"

as <positive adjective» a: NP
e.g. "as fast as the Wasp"

as <positive adjective» us S
e.g. "a-s fast as the Wasp is"

1.3.6.1 (omplements to Adjectives

m

SV

v?

Like vert's and nouas. adjectives also take complements. The complexity of the complement system to

adjectives is between that of nouns and verbs. Currently, there are only 11 ::ubcategonzation frames, but others will

be added. As was the case with the complement system to nouns, there are fewer complement types to adjectives,

but less work has been done in this area.

£?

19

i V

V,

l&hiy'Stö^rtütö^^

I s
BBN Laboratories Incorporated Report No. 6813 ■*

>.

1.3.6.2 ,\djecti\e Phrase Position

Adjective phrases can appear in three dilferent positions (excluding constiuctions where they appear as ^

complements): pa'-nominally, is m "the C3 shi7"'; post-nominally, as in "the fuel remaining"; and ir. predicate

position, as in "the ship is C.V. Most adjectives can appear in pre-nommai and predicate position (as "C3" M

lUustrales) but there are some adjectives that can only appear predicanveiy ("the man is afraid" vs. "*the afraid

man") or post-nominally ("presents galore" vs. '"galore presents" or "*the presents are galore"). In addition. _

even adjectives that can noimally appear pre-nonima)iy appear post-nominally when they occur with a complement: Vj

compare "a faithful servart", "a servant faithful to his master". "*a faithful to his mxster servant". The ACFG

grammar and lexicon handle adjecuve phrase position correcüy. l"-\

'-.

1.3.6.3 Adjective Phrase Conjunction

.. .. s Currentiy. there are grammar rules tor cunjunction o(two or morc djective phrases with "and or "or . "-*

I 1.3.7 \d\erbial Constructions .

The following typ;^ of adverbial constructions appear in the current grammar: JJS

temporal expressions
such as "now" and "when" as well as temporal NPs. nr,

date expressions including date NPs. , J

manner expressions
currently only "how". gj

"reason or purpose expressions
currently only "why".

Adverbial expressions can appear in three positions in a clause: initially, as in "Currently, tlie Eisenhower is

in Diego' : medially, as in "Eisenhower never went to C5"; and finally, as in "Eisenhower is in the Indian Ocean

now". Not all adverbs can appear in all three of these positions and the ACFG grammar and lexicon contain

features to easure that adverbs appear only in the appropnate positions.

e

Currently, adverbial expressions only appear in clause med'al and final position, the clause initial position will ^(

be added later. »f.-

1.3.8 Other Constructions '^

The ACFG grammar also handles prepositional phrase constructions and locative and temporal expressions. Kj

• vv^rv'v::-:^^^

>
j - kc;v)rt No. 6813 BBN Laboratories Incorporated

•r.

v

s

Q

v.
V

I

s

K

1.4 Quantitative Measures of Coverage

1.4.1 Grammar Si/e

The current ACFG grammar contains 672 rules; of these. 369 introduce grammatical formatives (such as the

articles "a", "the", prepostions, etc.) The remaining 303 rules handle the grammatical construCions of the

language.

1.4.2 Syntactic Coverage

NJ Syntactic coverage is measured using sentences from the Resource Management domain. These sentences are

divided into two subsets: a training corpus of 791 sentences—this corpus is used as a basis for grammar

jVj development; and a test corpus of 200 sentenc s—these sentences are run through the pareer "blind" (i.e. without

^ any person actually seeing them) to see how well coverage on the training corpus generalizes to previously unseen

but related material. The grammar currently covers 85 percent of the training cotpus and 64 percent uf the test

<".". corpus. Figure 1-2 shows the figures for training and test corpus coverage for July, 1987 and October, 1987, as well

as the current coverage.

1.4.3 Perplexity

For spoken language systems, perplexity is an unponant measurement. Perplexity is defined as follows:

ß = 2w

where Q is perplexity and where H is

//=lilog/'(w| Mn)

where «i,... ,»vn represents a set of possible input sentences stacked as an n-long text (typically from a corpus).

Intuitively, given some prefix (initial substring, possibly null) of a sentence, peiplexity represents the number of

possible word choices that are allowed to follow within a given grammar. Here arc some sentences from the

Resource Management corpus with their associated perplexity measurements in the ACFG grammar:

21

■Wj^V/iA«W^ßfiü(Uj^jL?^

BBN Laboratories Incorporated Report No. 6813

'/o

80. /rajTiinj y 8S'/.

60 . yS

test

1

Ao .

10 . •

•

3ui B7 Oct 87 Mar86

July, 1987 October, 1987 March, 1988

Training 50% 71% 85%

Test 22% 50% 64%

Figure 1-2: BBN ACFG Resource Management Training and Test Corpus Coverage
■->-

22

V

S

ÜSl£ÜSf&$fi!#^^

r* Report No. 6813 BBN Laboratories Incorporated

[I] Show me the Indian Ocean.
& 639 583 612 583 1
H 121 Display thirty degrees south seventv degrees east.

630 ' 588 613 31 28 ' 10 4
v [3] Where are the frigates and carriers?
;•/ 630 10 583 583 655 593
W [4] What is the readiness of Eisenhower?

630 655 641 583 655 610
m [5] When will Eisenhower be Cl?
" 630 10 583 607 647

[6] What is Fredenck's readiness?
630 655 641 649 583

".'" [7] Which ships are taster than Fredenck?
\ 630 654 691 641 641 583

[8] Display Fredenck's track.
630 588 616 583 I

The overall perplexity of these sentences is 314. Some comments about the individual perplexity figures is in

jrs order. First, it should bt noted that the possessive morpheme .s is treated as a separate element of the input sentence

J1' by the parser. This explains why there are more perplexity measures in examples |6i and [8] than there are surface

phonological words. Second, while perplexity is normally high for this grammar, perplexity becomes reduced in

V- several casts. One of these is the case of collocations—lexical items that consist of more than one orthographic

word, such as "Indian Ocean" in example 11] For the 1000-word Resource Management task, the word "Indian"

B- only appears as the first element of "Indian Ocean": hence, perplexity drops to 1 after "Indian". Another case is

2| 'hat of subgrammars. such as that for latitude/longitude expressions, as seen in example [2]. At the end of the

latitude/longitude expression, word choice is down to 4. since only the cardinal compass directions are possible at

■'■v that point. Finally, there are certain positions where a general grammar for English allows only a limited number of

possibilities. For example, after the idverbial question words "where" in example 13| and "when" in example [5],

perplexity drops to 10. This is because such question adverbials unambiguously trigger subject-aux inversion

fj| (discussed above in Section 1.3.2.1). Hence, the only elements that can follow these question words are the

auxiliary elements: the modals and the intltxted forms of he, do. and luive.

1.4.4 Ambiguity

As the coverage of the grammar increases, two types of ambiguity also increase. First, at any given point in a

sentence, there will probably be more possible choices that must be tried. Second, the number of parses that a

>£ scmence has may increase. Information on the number of parses per sentence has been collected for the 128 test

corpus sentences that the current grammar handles The number of parses per sentence shows the following

V distribution:

*w

V

rj

23

■<w«ftWWÄ«vwy\zysß^ftDÄi>«^^

BBN Laboratories Incorporated Report No. 6813

Parses per sentence:

3
4
5
6
x
10
12
16
IX
29
4X

Number of sentences so parsed:

35
36
15
14
3
6
3
1
6
1
I
1
I

Here

Parses

4
3
6
12
5
x
10
16
18
29
4X

is the sorted version of the same list:

per sentence: Number of sentences so parsed:

^6
35
19
15
6
6
3
3

V

This distnbution shows a mean of 4 (rounded from 3.875). a median of 2.5. and a mode of 2.

There are various reason^ why a sentence may be treated as ambiguous by the parser. First, it may be the case

that a reasonable grammar for English will produce multiple syntactic interpretations for a given sentence, though

semantic or pragmatic information may decide ; nong thern. This type of ambiguity might be considered

irreducible. Another type of ambiguity may simply be the result of errors in the grammar, either because a syntactic

phenomenon has not been handled correctly or because of a typographic error. Such mistakes are corrected when

detected. The third source of ambiguity is more pioblematic. These are cases where the formalism in which the

grammar is written introduces certain types of ambiguity that cannot be eliminated by rewriting existing rules or

adding new mles. For examples, noun compounds such as "supplies readiness " or "data screen" are nxm ways

ambiguous, where '.' is the number of possible grammatical number readings of the first member of the nominal

compound (for example, data" is treated as both singular and plural in the current grammar) and m is the number

of subcategonzation frames xssociated with the first member. In some cases, it may be possible to eliminate the

ambiguity by changes to the formalism. For example, in the present case, the addition of a disjunction mechanism,

which wjuld collapse all the separate readings into one, would probably do the job.

24

05

s?

äCKMiiW!tüüiXW*y)üfow

r-
£

!?

9

i

A,

Report No. 6813 BBN Laboratories Incorporated

1.4.5 Over^eneration

Another area in which the performance of the current grammar can be measured is that of overgeneration.

Overgeneration results from a looseness of the grammar that results in it producing utterances that are not English.8

Overgeneration may be divided into two types, analogous to the linguistic notions of weak generative capacity and

strong generative capacity [5]. Weak generative capacity refers to the set of sentences that a grammar generates (or

?> accepts). Strong generative capacity refers to the structures that a grammar assigns to the sentences that it generates

(or accepts). For example, cor 'der two (rather trivial) grammars that both generate the single sentence "The Wasp

is deployed." These two grammar» are identical in weak generative capacity. However, if the first grammar assigns

this sentence the stmcture:

[The Wasp is] deployed

while the second assigns it the stnjcture

The Wasp [is deployed]

they differ in strong generative capacity.

We can now define analogous subtypes of overgeneration: a grammar weakly overgenerates if it accepts

non-English utterances as English;9 while a gramrr^r strongly overgenerates if it accepts English sentences but

assigns them the incorrect structures.

Consider the sentence: 'Show all ships." The grammar currently assigns it two structures:

Show [all ships]

where there is a single noun phrase object, and also:

Show [all] [ships]

where all is taken to be the indirect object (like me in "Show me the ships") and ships is treated as the direct object.

Note that allowing all to be a complete noun phrase does not generate non-English structures since all can be a

complete noun phrase tas in "All were ready"): however, it does admit parses which are not intended, as in the

* present example.

In addition to such cases, there is currently one area known in which the grammar strongly overgenerates by

assigning an impossible structure to an English sentence; this is the case of ellipsis of possessive noun phrases, as in:

Frederick's speed is greater than Eisenhower's

The current grammar assigns such sentences a parse in which the possessive marker 5 is interpreted as the

reduced form of the verb is. However, as is well known (see, e.g. [2]), it is impossible for verbs in English to reduce

in such comparative constructions. Compare:

"in the conlext of a parser, we might refer to this as overactcplance the parser accepts input strings that are not English sentences.

"This type of overgeneration is directly related lo, and inversely correlated with, perplexity.

25

BBN Laboratories Incorporated Report No. 6813 I

He is smarter t'.an vou are.
■•■He is smarter than you're. -j

*."

Note that the current grammar would accept the second example, so that the treatment of verb reduction

weakly overgenerates in addition to strongly overgenerating. V
V

3
>,
.■,-

V

(In passing, it should be added that the current grammar also assigns the example the parse:

Fredericks speed is greater than Eisenhower's (speed)

(where () enclose the elided element) which is the intended parse.)

Aside from the treatment ot verb contraction, which introduces both strong and weak overgeneration. there are

no known hard and fast cases of weak overgeneration in the current arammar. Consider the utterance:
S)

More was Frederick's position. £.

which is accepted by the current grammar. While this is not a likely sentence of English, the quite acceptable:

That was Frederick's position. N

uses the same set of rules. Thus, while the acceptance of the previous utterance might appear to be a case of

svntactic overgeneration. it is clear that the utterance is not syntactically ill-formed: rather, it is semanticallv

anomalous. Currently, all the known cases of accepted utterances that might initially seem to be instances ot V,»

overgeneration. except for the spunous verb contraction examples, fall into the class of utterances that are not

syntactically ill-formed. jg

1.5 Future Plans $

This section describes the work that is currently planned to increase the coverage and performance of the "^s

svntactic portion of the system.

•A

V
N'

1.5.1 Evtendinj» Coverage

As was stated in Section 1 4.2. the current grammar covers 85% of the Resource Management training corpus

und 64% of the test corpus. The training sentences that do not parse have been divided into classes based on the

syntactic issues that they raise and ordered on the basis of the ease of adding the phenomenon and the expected

increase in coverage: i.e. easier changes that increase coverage greatly are ordered before more difficult changes that

do not result in laree increases in coverage and also before more minor chances that result in small increases in On
'>"

coverage. The lollowing is an illustrative sample ot the lull set o(classes.

• Add modifiers to Adverb Phrases: pn
Redefine time window for the chart of Eastern Taiwan to start/our da\s sooner
How fast could Yorktown get to seventy eight north forty east

i
26

Report No. 6813 BBN Laboratories Incorporated

• Increase the range of prepositions introducing time and date phrases:
Find all data for the Meteor updated since fo'enty three hundred hours
Get me deployments of submarines during eighty four
Find subs that were in the Mozambique Channel as of tenth of January
Couldn't Camden arrive in port by tomorrow

• Add "last" and "next" as pre-modifiers to date phrases:
Get me last month's casreps for Hepburn
List lazt week's casreps from Davidson
Get posit data for cmisens employed before last eighteen January
Is the Peoria due in port before twenty four hundred zulu next Wednesday

• Increase the range of comparative and superlative expressions:
Are there three LAMPS cmisers with maximum speeds not greater than fifteen knots
Arc there six vessels that are in Kodiak with readiness more than C4
Do any earners that are in Midpac have more fuel than it
Is Flint at three quarters of fuel capacity or less
Has Citrus been at sea the longest of submarines which are in Bering Strait
Is the Vandergrift's displacement less than average for all Ml ASUW subs
Is Jarrett's gross displacement smaller than average for the south Persian Sea ships
Is the Fanning's fleet ID the same as Dowries's

• Add distance expressions:
Is the Confidence more than a kilometer from Conifer
How soon can Tripoli get to within nine kilometers of the Sherman
Is Willamette within seven miles of seventy four west forty north

• Add use of color adjectives as nouns:
Show Shermans track in dim yellow with the Shasta's in bright green
Set color of the Independence's track to bright red
Use bright green for tracks of nuclear surface ships

• Add multiple adjuncts to NPs and allow both relative clauses and adjuncts to appear:
Draw the seven subs which are in Gulf of California with the lowest fuel capacity
Display the four ships in the Formosa Strait with the largest fuel capacities
What's the number of submarines that are in east Atlantic Ocean without Tacan

• Add adverbs not currently in the system:
Are more than five cruisers currently in home pon
Make chart again in low resolution

• Add extraposed adjectival complements in NPs:
Does Ajax have sufficient fuel to get to Port Victoria
Does the Bainbridge have enough fuel to arrive at his destination

• Add general "the" deletion:
Never mind next chart display
Show the chart of Mozambique Channel with the Davidson displayed in center
Don't draw the chart on redraw

• Miscellaneous changes that only add one or tw» sentences each:
Add agent by phrase to passive sentences:

What training problem was reported by Camden last month
Add use of "a" for "one" in numbers:

Is there a frigate in the Gulf of Thailand longer than a thousand meters
Add use of-ing participles as NPs:

How much does including Friday's data change ihat figure
What would it be counting only C2 carriers

Add limited cross-categorial conjunction:
Find me all the submarines in south Bering Sea and that are M3 on ASW

27

ÜMH&üKJ&tätiiMi^^

BBN Laboratories Incorporated Report No. 6813

1.5.2 Reducing Spurious Ambiguity

2. Find all the parses of a given input that involve only grammar rules with a probability above a fixed
threshold: parses involving rules with probabilities below this threshold will not be constructed.

3. Use probabilities to arrange the rules of the grammar into tiers: all parses for a given input involving
rules from all tien will be found, but parses involving rules from lower probability tiers will be
ignored.

4. Use probabilities to arrange the rules of the grammar into tiers: in parsing a given input, if at least one
parse is found using rules from the tier with the highest probability, parses involving rules from tiers
with lower probabilities will not be constructed. However, if no parse is f. und at the highest tier, rules
from successively lower tiers will be used, until at least one parse is found.

2«

JO

Since the program for collecting coverage information for the training corpus also provides information about

the number of parses per sentence, it is possible to note sentences with a large number of parses, examine the parse

trees assigned to them, and modify the grammar to reduce the number of parses, where the grammar is

overgenerating. At times, this has resulted in dramatic savings: "Why was Citrus's MOB mission area changed

thirty one September" had its total number of parses reduced from 54 to 2 with changes in two grammar rules.

While this process will undoubtedly continue in the future, it is labor intensive, since all the parses for an ambiguous

sentence must be examined by hand, so we have sought more general procedures that can reduce ambiguity but

which are also linguistically motivated. The most promising scheme is to assign probabilities to grammar rules. fjs

Once probabilities are assigned, we can explore the following strategies, among others:

Yi

^
1. Find all parses for a given input, but ignore all parses that use grammar rules with a probability below yv

a fixed threshold. "'

v

Of
Finally, in addition to the general strategies for reducing ambiguity sketched here, we have amved at a Kd

mechanism which eliminates the ungrammatical acceptance of s as the reduced form of the verb be Uv comppjative

construction, discussed above in Section 1.4.5.

is
1.5.3 Changes to the (Jrammar Formalism

As one more technique for eliminating spurious ambiguity, we will explore the possibility of using a simple

disjunction mechanism to collapse the readings assigned to noun-noun compounds, discussed above in Section '**,

1.4.4.

•-\
- k

TO

:<->^v:;vC^^^^^^

«

v-.

Report No. 6813 BBN Laboratories Incorporated

2. The Semantic Component

2.1 Introduction

This chapter describes the semantic component of the BBN Spoken Language System. This semantic

component operates upon the output of the syntactic component (the parser) in such a way as to give the correct

response to a user's request. The body of the chapter is as follows.

Section 2.2 gives theoretical background to the work described here. In particular, it presents our view of the

nature of semantic knowledge, which comes from the perspective of logical model theory.

Section 2.3 presents the architecture of the semantic component, which is based on the notion of "multi-level

semantics" [4] [22] in which a user utterance is assigned meaning through successive translation from one level of

representation to another.

Section 2 4 presents the logical language used to represent meaning in the BBN Spoken Language System.

Section 2.5 illustrates the semantic processing of the system by tracing the translations of an example question

in some detail.

Section 2.6 discusses the underlying system and various utilities that support the abstractions of the logical

language.

Section 2.7 discusses our implementation accomplishments over the past year and gives direction for future

work.

2.2 The Nature of Semantic Knowledge

Semantics is traditionally seen as the pan of linguistics which attempts to account for the relation between

expressions of language and their mearungs. The next Question—what is a meaning—is a philosophical one and

need not concern us unduly. We will consider that to know the 'meaning-' of a declarative sentence like "The door

is closed" means to know what sort of stale the world would have to be in for that sentence to be true. These

requirements on the stale of the world are called the "truth-conditions" of the sentence, and this notion of meaning

is called the ""truth-conditional " theory [26].

The truth-conditional theory does not leave out other sentence types in any necessary way. A question like

"Is the door closed?" is seen as being about the tmth or falsity of the corresponding statement ("'The door is

29

^V^£iN!Ji^^l^m

BBN Laboratories Incorporated Report No. 6813

closed"). A command like "Close the doorl" is seen as being a command to make the statement "The door is
at

closed" true. Finally, a question like "What is on the table?" is seen as asking for values of "x" for which the "j

statement "x is on the table" is true. *"

A corollary of the truth-conditional view is that tl we know the truth-conditions of a sentence, and if we have Yji

complete knowledge of the state ot the world, then we can say correctly whether that sentence is true or false.

Obviously it does not make sense for this knowledge to be represented as a table which, given any state of the M

world, pairs sentences with the value TRUE" or FALSE". As Chomsky [5] has shown, the set of expressions in

any natural language land for that matter, manv artificial ones as well) is infinite. Modem grammatical theory sees "iX

this infinite set as being generated by a recursive system consisting of a finite number of basic expressions and a '->*

fituie number of recursive formation rules which build expressions out of other expressions.

For instance, the following is a toy example of such a recursive system, generating a trivial but still infinite

language: ^

Basic Expressions: FREDERICK', i^fDIAN-OCEAN','IN' M

Formation Rule: if a,ß, and y are expressions then

a(ß,Y) -V1

is an expression as well jy

This system produces an infinite set of expressions, among whose members are the following expressions: r<r,

IN(FREDERICK.INDIAN-OCEANl)

1N(INDIAN-0CEAN,FREDERICK) .<,•

FREDERICK(IN.INDIAN-OCEAN)

IN(IN(FREDERICK,INDIAN-OCEAN),INDlAN-OCEAN) I
.V

Ai; interpretation of a language is a systematic assignment of values to the expressions of the language. We m

think of an interpretation as a function—call it 'F'—which takes an expression of the language as its argument and

returns the value assigned. The notions of truth and falsehood simply correspond to the values 'TRUE and Ug

FALSE". Given the way that expressions are built up out of other expressions as above it seems reasonable to

wonder whether the assignment of values to entire expressions does not depend in some way on the assignment of >«■
values to their parts. ÜO

The Principle of Compositwnaliix is a theory of this dependence. It slates that the value of an expression is a 0W

function of the values ot its parts and of the mode ot combination of its pans. A composiuonal interpretation is bN

constituted as follows:

1) a value is assigned to each Basic Expression of the language
2) an interpretation rule is assigned to each formation rule of the language

The interpretation rules compute the values of expressions from the values of their "parts"—the expressions the

formation rule combined. N

30

tKrt^/ül^y-^/*^/:^/^-/^

Report No. 6813 BBN Laboratories Incorporated

The following is an example of a compositional interpretation for the language we defined above. Let the

assignments of values to terminals be:

FREDERICK'S,
INDIAN-OCEAN ■> o,
IN=> |«s|.o|>.TRLJE>,

«.s1,.S|>.FALSE>,
«0|.0|>.FALSE>,
«o,.S|>.FALSE>l

It is important to note that the Sj/o,'.TRUE.'FALSE' above are not to be thought of symbols of any language

but rather as "things themselves"—be they ship, ocean, truth or falsehood. If I could. I would place the actual

objects on the page but typography has its limits. The angle brackets '<' and '>- serve to delimit ordered pairs.

Now the interpretation rule for expressions of the form alß.y) is as follows, where a',ß', and y' are the

translations of a, ß and y respectively:

if a is a set containing an element en such that en is an ordered pair whose first element is the ordered
pair <ß',Y'> then the semantic value ofoufi.y) is the second element ofe0

It might help to think of this rule as do.ng "table look-up" on the semantic value a'.

We have now specified an interpretation of the language. This interpretation assigns the semantic value

TRUE' to the expression

IN(FREDER1CK.INÜIAN-0CEAN)

and the semantic value FALSE' to the expressions

IN(IND1AN-0CEAN,FREDERICK)

IN(FREDERICK.FREDERICK)

1N(INDIAN-OCEAN.INDIAN-OCEAN)

The interpretation assigns no semantic value at all to any other expression of the language, including:

1NDIAN-0CEAN(IN .FREDERICK)

FREDERICK(INDIAN-OCEAN,IN)

IN(IN(FREDER1CK.INDIAN-0CEAN),INDIAN-0CEAN)

The value assigned to an expression is usually called its "denotation": expressioas for which no value is assigned

are termed "denotationless".

We can perhaps now see how to deal with the problem posed above—namely, how to determine the truth or

falsity of a statement in English given a complete slate of the world. To each word of the language, such as the

proper noun "Frederick" or the preposition "in", we as,sgn an appropnate semantic value, where the domain of

this assignment is the whole set of things in the world: ships, oceans, numbers, people etc. An appropriate

assignment of values to words is one consonant with our knowledge about the state the world is in at the time the

31

iV^V.V^A^V^W*^^^

32

/:■

,--:

BBN Laboratories Incorporated Report No. 6813 .-."

assignment is made. For example, the assignment to "in" would relate certain pairs ot physical objects and

locations to the value TRUE and other such pairs to the value FALSE according to whether or not the physical lA

object was in that location or out of it. «■

For each rule of English grammar, we assign an appropriate rule of semantic interpretation. \n appropriate £,"

pairing of semantic and syntactic rules means one consonant with our intuitions about the meaning ot expressions in

our language.

Of course there are difficulties in the way of this proposal First, very many English utterances arc

syntactically ambiguous: there is more than one way to built them up using the rules of a grammar. Secondly,

many English words, such as "bank" have more than one meaning, and thus cannot be assigned a single semantic

value.

Because expressions of English are so ambiguous we find it advantageous to first translate them to an *>

unambiguous language—a language of logic. For example, the statement "Frederick is in the Indian Ocean" could

be translated;
mi

1N(FREDERICKJNDIAN-OCEAN)

We have already seen how to give an interpretation for this expression. A question like "Is Fredenck in the Indian ,^

Ocean" coula be translated: PS

OUERY[IN(FREDER1CK.INDIAN-OCEAN)]
&

Any ambiguity ot an English expression corresponds to multiple translations into this logic.

So far we have left out of coasideration the fact that the state of our world—and therefore the truth-value of «

the statements we make—varies with time. The ship Fredenck might be located in the Indian Ocean at time t and .0|

then sail out of it at a later time t'. It would be possible to accommodate such time-dependency quite

straightforwardly by adding an extra argument to IN', making it a three-place instead of a two-place predicate.

Thrs would ignore the fact, however, that time in natural-language expressions is frequently supplied by

context—for example, the tune at which a statement is made or a question asked, a time which is not mentioned in

the expression itself. Such contextual dependency on time argues strongly for making the interpretation of &£

expressions contextual! y dependent on time as well.

8

To do this the interpretation function F is given an extra argument for tune. This argument for time is referred -V.

to as the index of interpretation. Other contextual factors might also be incorporated as oiher indices—among them.

'he notion of a "possible world". We speak of the "intension" of an expression as a function from such indices to irk
KM

the value—the "extension"—that the expression has at those indices 118]. *'

i
79

It'&^WK&ZWJiM^

Report No. 6813 BBN Laboratories Incorporated

2.3 System Design Overview

£

I
■,■.

A >

The semantic component of the BBN Spoken Language System is divided into several processing stages.

Each produces as its output an expression of a logical language; all but the tirsl also take an expression of a logical

language as their input. The idea of semantics by translation, mentioned in the previous section, is expanded here to

encompass not one but several translations in a senes.

The first stage accepts as input the output of the parser, this takes the form of a parse tree, whether of a

complete sentence or some grammatical constituent thereof. It uses as a knowledge base a set of semantic

translation rules paired one-for-one with the rules of the syntactic grammar, together wnh a set of semantic entnes.

one for each word of the lexicon, which pair words with expressions of a logical language called EFL. for

English-Onented Formal Language. Using the semantic rules and lexical entries it recursively builds up an EFL

translation of the parsed utterance.

The lexicon pairs each word with just one expression of EFL, no matter how many senses that word may

have. For this reason, the EFL level of representation is still ambiguous. A sentence like "Bill reached the bank"

would have only the single EFL translation:

PAST[Reach' (Bill' ,The(Bank'))

even though it has (at least) two different senses—one in which Bill reaches the bank of some river and another in

which he arrives at a bank building.

The EFL expression above is not the direct result of translation of the parse tree to EFL, but a simplified form

of it. After the translation to EFL, a simplification step is performed. The simplification uses a fixed set of logical

simplification rules, and is performed after every translation between levels.

After this simplification, the EFL expression is translated to to one or more expressions of a second logical

language, WML for World Model Language. A set of translation rules are used in tN step. These translation rules

map each constant expression of EFL to one or more expressions of WML. All possible combinations are

constructed, those which are "anomalous" (in the sense to be defined in the next section) arc filtered out. If no

translations survive, the system classifies the utterance as grammatical but not meaningful in its subject domain and

the user is so informed.

The constant symbols of WML correspond to the primitive concepts of the subject domain. The choice of

WML constants is governed by two requirements: !) for any index, specifying the exteasion of each constant gives

the complete state of affairs" In the subiect domain at that index: and 2) no constant has its extension completely

detemnined by the extensions of any other constant or set of constants. The set of WML constants thus serves as a

complete but minimal "domain model".

in the third stage of processing an expression of WML is translated to an expression of DBL. for Data Base

Language. Just as above this translation process is driven by a knowledge base of translation rules relating WML

33

Ky^yutf^M&wvöwwffiKM^^

BBN Laboratories Incorporated Report No. 6813

;■;

>:.

constants to DBL expressions, the difference being that each WML constant is related to only a single DBL

expression. The constant symbols of DBL correspond to the data files of the information system that natural

language queries are addressed to. These data tiles can be seen as actually specifying the denotations of the DBL

constants, thus grounding the model theoretic semantics of the utterance in the underlying comptuer system itself. If an

a particular WML constant happens not to have a DBL translation, the query containing it is meaningful in the jjq

subject domain but not answerable by the system, and the user is so informed.

W
The reason for having separate WML and DBL levels is not just the possibility of incomplete information just '7i

now alluded to. but also the fact that tbe requirement of efficiency for the storage of data tends to produce compact

tabular structures that do not correspond one for one to the natural concepts of the subject domain. Translation is m
W

therefore needed.

Finally we have the evaluation stage, when the value' ol the DBL expression is computed against the fyl

current state of the data tiles. The answer is represented in yet a fourth language. CVL for Canonical Value

Language. This is the stage of processing at which failures of existential presupposition are detected and reported to Rj

the user. An example would be the query "Which earners in the 10 are C3" when it happens that there currently '■
lire no earners in the 10. If there are no such presupposition toJures the CVL answer representation can tben serve

as input to whatever process generates the display of the result according to particular pragmatic goals. £s

In the next section I present the higher-order intensional logical language which serves as the representational

tramework for the foregoing.

M

K The languages EFL. WML and DBL are simply different instantiations of the same logical language, differing

Irom each other only in the set of constant symbols each of them includes. The same set of formation rules

generates the expressions of each. The exception is CVL. whose formation rules are simply a small subset of the

formation rules of the others. m

This is a useful fact, since it allows the same set of logical simplification rules to be used on expressions of all

lour languages. After each processing stage but the last (which is m some sense the ultimate simplification) the

simplilier is invoked to produce a smaller, simpler expression. The simplification transformations express necessary

truths of logic, such as P A TRUE = P' and are applied by an iterated, recursive descent algonthm. w\
ins s

s
r-

4

IM

~>~j

■*^üi^^<wyyJ^^>^J^Y</<>^

Report No. 6813 BBN Laboratories Incorporated

2.4 The Logic

Expressions of the logic are divided into three groups: constants, variables, and complex exf cessions.

Complex expressioas are built up by the formation rules from constants, variables, and other complex expressions.

Expressions of the logic are labeled trees in which both nodes and branches are labeled. Constants and

var ' les are the terminal nodes. The node labels are called "branching categories", the branch labels, "selectors".

Enc. aching category 'b' is associated with a set of selectors 'F-SELECTORS(b)'. If 'b' is a branching category,

e, ..ressions and IS, SJ = F-SELECTORS(b) then the following is an expression;

<b, «S^«.^ <Sn,en>}>

or drawing n in tree form.

/

An example would be the brandling category APPLY whose selectors are | FUNCTION,ARGUMENTS |. Let

"FREDERICK" and READINESS-OF" be constant symbols. Then the following is an expression:

<APPLY, {<rUNCTION,READINESS-Of>,<ARGÜMENT,FREDERICK>}>

Certain branching categones have a specal selector, 'VAR', as one of their selectors. Let 'FORALL' be a

branching category whose selectors are | VAR.RESTRICTION.FORMULAl and let 'X' be a variable, 'P' and

SHIPS' constants Then the following represents an expression which is said to bind the variable 'X'

<rORALL,{<VAR,X>,<RESTRICTION,SHIPS>,
<FORMULAf<APPLY,(<rONCTION,P>,

<ARGOMENT, X>}» } >

Obviously this structural notation is cumbersome to write. Therefore, an external form of the language is

provided. The above would be written:

(FORALL X SHIPS (P X))

Each expression of the logic has a npe, which constrains both the types of other expressions with which the

expression can meaningfully combine and the values the expression ca- assume. There is an infinite set of types,

'lu^crated by a set of recursive rules. The base of the recursion is a finite set of atomic types, varying from

lastantiation to instantiation but including at least the set INTEGERS, REAI S. WORLDS, TIMES. STRINGS,

SPEECH-ACTS, TRUTH-VALUES and NULL-SET. For reasons that we shall see shortly, these are called the

mrnidl types

The following are some of the fonranon rules for types. We assume that

L*very atomic type is a type

if u, a, an and ß are types then the following are also types:

35
ii

BBN Laboratories Incorporated Report No. 6813

SETS (a)
rüN(a,ß) JS
TUPLES (o^, ... ,an) M
UNION (ttj^, . . .ran)

i are assigned "domains", which are sets of semantic values representing the possible denotations which OJ

expressions having that type may take on. Formal types are special in that their domains are fixed for all allowed iut

interpretations of the language. The domains of atomic types are mutually disjoint. The relation SUB-TYPE? and

the binary operation TYPE-INTERSECTION are defined for types. Note that for distinct atomic types a and ß, ^J

TYPE-INTERSECnON(a,ß) = NULL-SET.

As an example. T and 2' are constants of type INTEGERS, while '2.0' is a constant of type REALS and /y

'TRUE' and 'FALSE' are coastants of type TRUTH-VALUES. The symbol'+' is a constant of type

FUN (TUPLES(UNION(REALS,INTEGERS) ,UNION(REALS,INTEGERS)) ^
UNION(REALS,INTEGERS)) $

The types of complex expressions are computed by a rule associated with their branching category, a rule 10

which takes as input the types of the sub-expressions at their branches. Let the symbol 'FREDERICK' be a constant

of type SHIPS' and let READINESS-OF' be a constant of type FUN(SHIPS,R-VALUES), where R-V ALUES' is

idso an atomic type. Then the construction; Ä

<APPLy, {<rüNCTION/ READINESS-OF>, <ÄRGt)MENT, FREDERICK>}>

is a meaningful expression of type 'R-VALUES'. Now, suppose RONALD-REAGAN' is a constant of type »

PERSONS'. The construction "'

<APPLY,{<FUNCTION,READINESS-OF>,<ARGUMENT,RONALD-REAGAN>)> an

is not a meamngtul expression, and has the type NULL-SET. It can never have a denotation under any indices, and Nfii

accordingly has the empty set as the set of values it can take on.

W
We have now put into place the machinery needed to distinguish between meaningful and meaningless

expressions. Meaningless expressions have NULL-SET as their type, and can never have a denotation at any index. „-

Meaningful expressions may fail to have a denotation at certain indi-::, —consider "The King of France" but w

nonetheless have a denotauon at some index.

The infinite hierarchy of types allows more complex functions than we have seen so far—functions on sets ift;

for instance. This power turns out to be necessary for many English utterances. Consider a sentence like "The boys

gather". Unlike the similar sentence "The boys walk", it is not true that each boy, individually, gathers—this

simply wouldn't make sense. Rather, it is a predication that one makes of the set of boys as a whole. To represent

it. one needs a predicate which is applied to sets of people, or a function constant of tvpe:

FUN(SETS(PEOPLE),TRUTH-VALUES) ^

If GATHER' is a function constant of this type, ihen the utterance "The boys gather" can be represented as:

GATHER(BOYS)

This is a small illustration of the power and flexibility of the infinite type system of the language. Examples still

36

P'A^^^^'^^^V.'X'^^

Report No. 6813 BBN Laboratories Incorporated

more complex than the verb "gather"' do not give us trouble. If we like, we can have constants whose types are sets

of sets of sets, or functions from functions to functions.

So far we have been content to simply introduce a new constant whenever we have need. This procedure

quickly becomes inconvienent when we want to construct the representation of a notion which is built up from

others. Consider a function constant 'LOVES' whose type is:

(FUN (TUPLES PEOPLE PEOPLE) TRUTH-VALOES)

and an indwidual constant 'MARY' whose type is 'PEOPLE' and which translates the name "Mary" in our

lexicon. Now suppose we want to consider a special property', the property of loving Mary. We wouldn't want to

have to come up with a new constant symbol, say "LOVES-MARY", for every possible object of affection in the

domain of discourse. What we really would like to do is have some way of constructing an expression representing

thus property out of materials—constant symbols—already to hand.

Tf: branching category "LAMBDA' gives us a way of doing this. Its selectors are

| VAR,RESTPICnON,BODY|. The property of loving Mary is then expressed by:

(LAMBDA X PEOPLE (LOVES X MARY))

The type of this expression is a function type from the type of its VAR, or bound variable, (PEOPLE) to the type of

its BODY (TRUTH-VALUES). This is simply a predicate.

Now suppose we wanted to say that a particular person, say Bill, loves Mary. Let "BiH*' be translated by an

individual constant 'BILL' of type PEOPLE. We can then apply the above LAMBDA expression as we would any

other predicate, to obtain the expression:

((LAMBDA X PEOPLE (LOVES X MARY)) BILL)

This expression can be simplified to an equivalent expression by a process called Lambda-reduction. If the

argument (here. BILL') is of a type "appropriate" to that of the bound variable of the lambda-expression, it can be

substituted for that bound variable in the body of the lambda-expression. (The rule is actually more complicated,

renaming free variables in the argument that would otherwise become bound in the substitution, and not substituting

for vanant occarences of the bound variable that are bound again in the body.) The above can be reduced to:

(LOVES BILL MARY)

The LAMBDA branching category plays a very important role in our system. The translation rules that map

between the EFL, WML. and DBL levels use lambda-expressions to construct representations in the target language

that are equivalent to notions in the source language. In this way a mapping can be constiuctued between

expressions of the two languages even though they have different sets of constant symbols.

The next section of this chapter shows how the logic is used by the system to construct a meaning

represenataüoii of a sentence.

37

BBN Laboratories Incorporated Report No. 6813

2.5 Example of Processing

In this section we go through an actual example of processing, showing how the representation o* the meaning

of an utterance is progressively transformed through the various levels of the system. s
We'll take for our example the question "Is Fredenck in the Indian Ocean?". The parse tree for this question

is shown in Figure 2-1. which is a hard-copy of an actual screen-display. """.; Jiat it goes from left to right as

opposed to from lop to bottom.) The left-hand button of the mouse shows the syntactic rule associated with a given

node, the middle the semantic rule, and the right-hand button the EFL interpretation of the node. A right-hand

button click on the left-most node "START" gives the EFL interpretation of the entire sentence.

Lets get some idea of the recursion. Clicking right on the node labeled "N" just to the left of the nodes

labeled "INDIAN" and "OCEAN" gives the following EFL expression:

INDIAN-OCEAN

The phrase "Indian Ocean" is a collocation, which the system considers as being a single word, clicking middle on

the node labeled "LOC-TEMP-PHRASE" gives us the semantic rule:

(nieta-Iambda (Sprep Snp)
(lambda x anytype ((Q $np) {lambda y anytype (Sprep x y)))))

The meta-lambda' is an operation which takes a list of 'meta-variables (those prefixed with the "S" sign) and an

expression containing meta-vanables. The meta-vanables are the inputs to this rule; when regular logic-expressions

are plugged in for them in the body, the EFL semantic interpretation of the node is produced.

Clicking nght on this node gives the EFT- interpretation which is the result of this rule plus the EFL

mterpretatioas of the chddren of the node:

(lambda > ^ytype {(Q (setof indian-ocean))
(lambda y anytype tin x y)»)

Note that the preposition "in" is represented by the desenptive EFL constant "IN", underlined above.

What the system does with the entire sentence can be seen by clicking right on the node labeled "START".

This produces the expression:

(QUERY
((INTENSION

((LAMBDA*T*
((LAMBDA P ANYTYPE (P DONTCARE))
(LAMBDA TRVAR ANYTYPE ((LAMBDA X ANYTYPE (EXTENSION X))

(INTENSION ((QtSETOF FREDERICK))
(LAMBDA X ANYTYPE ((Q (SETOF INDIAN-OCEAN))

(LAMBDA Y ANYTYPEdN X Y»
))))))))

T})
NOW ACTUAL-WORLD))

This expression can be simplified in vanous ways. Simplification is accomplished by the function SIMPLIFY,

which is called between levels of translation. The simplified version of an EFL translation can be obtained from this

display by clicking nght while holding down the "control" key. The result of simplification is:

J8

^'<<<v'%Vv^%'<<toWW^£"^^ ü AVXO^K^C.^Os^Xtt^'O

Report No. 6813 BBN Laboratories Incorporated

e
1 c
_0

i a \s

|§
|UJ

Ik

n u
L n

«
D. S _
—11 o

a

li n
u

iJ 1_ U *J
C U L C

\
^ /

n a —i

-i m > u u ""'■ < S ?
N =■ h m H r T H b. B. O. CL n,

0 L ^ U oj [; ä 1; 'J q

Figure 2-1: Screen Display of Parse Tree

39

?Ji "> ("J- ' .-v:v:v^vvv>^\-'v'v:'>^:'^^^

BBN Laboratories Incorporated Report No. 6M13

(QUERY ((INTENSION (IN FREDERICK INDIAN-OCEAN)) NOW ACTUAL-WORLD))

The next step is to translate the EFL expression to WML. Recall thai this translation step is an ambiguous one

which can result in more than one WML expression. In this particular case there is just one ambiguous element in

the sentence; the preposition "in". The word "in" can mean many things in different contexts; consider

■ Fredenck is in the Indian Ocean" vs. "Frederick is in the Pacific Fleet"'. Accordingly, the descriptive constant IN

is an ambiguous symbol, and has the following set of WML translations.

1. (lambda (X Y) ((groups ships) (groups fleets)) (forall xl (set x2 ships (INC x2 x)) (exists yl (set y2
fleets (INC y2 y)) (equal (tleet-of xl) yl))))

2. (lambda (x y) ((groups things) (groups places» (forall xl (set x2 things (INC x2 x)) (exists yl (set y2
places (INC y2 y)) (sub-location (location-ofxl)yl))))

The first of these corresponds to the "in-fleet" reading, the second to the "in-place" reading. They are typed in

terms of "groups" of ships, fleets, places etc. to handle cases of plural arguments to "in" such as we find in the

NPs "ship^ in the fleet", "ships in the fleets etc. (These matters are discussed in the paper [23]

The set of WML translations for the entire sentence is assembled from all possible combinations of the

translations of ambiguous EFL constants. A filtering step is applied to the translation which excludes WML

translations with incompatible combinations. This filtering can be applied to intermediate results of the recursive

translation. Translation (1) above can filtered away because fredenck" is a ship and ships and fleets have no

common members.

The simplified WML translation of the entire sentence is a follows;

(QLfERY ((INTENSION (SUB-LOCATION (LOCATION-OF FREDERICK) INDIAN-OCEAN))
NOW ACTUAL-WORLD))

This is the unambiguous meaning representation of the sentence "Is Frederick in the Indian Ocean?".

2.6 The Semantic Framework System

2.6.1 Inlroduction

The semantic framework system implements the abstractions of our logic in software. It is an interconnected

system of modules and definitions which allow other programs—specifically the vanous translation modules

sketched in Section 2.3—to be wntten in terms ol these mathematical abstractions without concern tor ■•,

implementatior details. In consequence the translation modules themselves are quite simple, and comprise only a

lew pages ol code. Translation modules and indeed the entire processing architecture can be quite easily modified vN

as the need anses. *"

The semantic framework system includes;

• Data structure support for logical language expressions

40

i

K

8

«•.

B&9fr^:-"->:o>:^^>:v'-::t>:i^

Report No. 6813 BBN Laboratories Incorporated

• A means for easily extending the logic to include new operations

• Declaration ftinctions for specifying desenptive constants

• A type system to compute expression types

• A sub-system for performing translations and transformations on expressions

• Syntax and consistency checken; to prevent errors in KB data entry

We now proceed to discuss each of these in detail.

2/".2 Logical Expressions as Data Abstractions

We have implemented the logical language with LISP functions in which branching categones and selectors

arc represented xs LISP atoms and constructions as implementation-dependent data-structures.

\V: have the function CONSTRUCTION:

CONSTRUCTION {branch-category branches)

where the argument branches is an assoc list pairing selectors and expressions or. in the case that the selector is a

multi-branching, LISP lists of expressions. It creates and returns a tree data stnicture. The following constructs a

universal quantification expression which claims for all CRUISERS that the prclicate P holds:

(CONSTRUCTION 'UNIVERSAL-QUANTIFICATION
'((FORMULA APPLY P (VARIABLE X SHIPS))

(VAR VARIABLE X SHIPS)
(RESTRICTION . CRUISERS)))

We have the ftmction BRANCH-CATEGORY:

BRANCH-CATEGORY {expression)

which takes a tree and returns its branching category. If it were applied to the example just presented it would return

the atom UNIVERSAL-QUANTIFICATION.

There is the function SELECTION:

SELiCIXOH{expression selector)

which takes a tree data structure and appropnate selector, and returns the sub-tree structure pointed to. Suppose the

construction returned above to be bound to the atom FOO. Then the following:

(SELECTION FOO 'VAR)

would evaluate to '(VAR X SHIPS)'.

Also available are functions iactually macros» which evaluate only some of their arguments. These are very

handy when selectors and branch category of the expression is already known when code is written. There is the

function MAKE, whose form is:

41

ir^^w^f^ütoft^ow.^^

BBN Laboratories Incorporated Report No. 6813

(MAKE <bc>
<s«ll> <expl> '*Q

.... ^ ^
<seln> <expn>)

where only the <expi> are evaluated. There is also the function SELECT, whose form is: 'v

(SELECT <selector> <exp>)

where only <exp> is evaluated.

2.6.3 Functiuns lor Defininj; Constants

dc (name language type)
df c (name type)

1.6.4 Functions for Extending the Language

Branching category declarations are separated into two classes: those declaring regular branching categories

and those declaring branching categones of the type sub-language. The following are their argument patterns:

DEF-BC (branch-category selector-list &opüonal typerule e\al-rule)

DEF-TYPE-BC (branch-categon selector-list &optional eval-rule)

None of these ar^umtnts are evaluated. The branch-category argument must be a LISP atom, and the selector-list

argument a list of atoms. This argument specifics the value of the function F-SELECTORS for the given branching

category.

The typerule argument specifies a rule for computing the type of the expression of the branching category

from the types of its sub-trees. At the current tune this "rule" is just a Lisp-code lambda expression. In the near

future a more sophisticated notation will be used.

42

fcs>>>:-\-Vv:vVv>;/s->>'v^

The followine functions are used to define constants and types:
7.

dt (name language &optional Jef) >,
dft (name)

V

The above stand for, respectively, "declare type", "declare formal type", "declare constant", "declare formal

constant". The name and language arguments can only be filled by Lisp symbols. Rj»

The language argument must be supplied for non-formal types and constants, and must be a declared language y,

name. The list of language names is bound to the atom language-names: to add a language name, one adds to

this list.

The semantic framework system has a unique and powerful feature: it directly supports the extension of the

logical language used for semanDc representation, gj

'S

8

^
p- Report No. 6813 BBN Laboratories Incorporated

I
The e\al-rnle argument is also optional, and analogously specifies a rule for computing the value of the

expression from the values of its suh-trees. Eval-rules are Lisp code around which has been wrapped either a form

(EVAL-T ♦)' or a form (EVAL-O *)'. "EVAL-T" stands for "evaluate transparently". A rule of this kind is

ff\ supplied with the values of the sub-trees of the expression. "EVAL-O" stands for "evaluate opaquely". A rule of

^» this kind is supplied with the sub-trees themselves, and must itself take on the respoasibility for how they are

evaluated. Such rules are inherently non-compositional, and are (currently) used only for branching categories

■ which bind a variable.

'■•'. 2.6.5 Translations and Transformalions

rr A number of functions are provided that facilitate the transformation of one logic expression into another.

ST
We distinguish rwo different kinds of transformation: local and global. In a local transformation, only

^g constant symbols are transformed. Branch-categories are left unchanged and thus the structure of the input

r expression carries over to the output expression. An example of this kind of transformation would be the WML to

DEL translauon.
v
s The function TRANSLATE:

TRANSLATE(exp ct)

m takes an expression and a function. The function argument takes a constant and returns an expression {whether

another constant or a complex lambda-expression) which is that constant's translation. The algorithm is quite

'• simple and is given below:
'.

TRANSLATE(exp Ct) =d-£
BC <- BC(exp)
Selectors <- F-selectors(BC)
(if: BC = CONSTANT
then: CT (eacp)
elseif: BC = VARIABLE
then: exp
else: (construction BC

(pairlis selectors
(for s in selectors

collect TRANSLATE(exp.s CT)))))

Global transformations arc unconstrained. They take the form '<input patteni> => <output pattern;»'.

Patterns are implemented by the notion of meta-expressions, distinguished from regular expressions by the

ffti appearance of meta-variables. which are atoms prefixed by "S". An example global translormation would be:

(ELEMENT-OF $x (SETOF $a)) => (EQUAL $x $a)

'/, which states an equivalence between two expressions, where the nght-hand side is simpler than the left.

Ä

K
The function MJi.TCHipaitern.exp,em) tells whether or not the expression 'exp' matches 'pattern'. 'Env' is an

assoc list pairing meta-variables and expressions: it is ordinarily NIL when match is called at top-level.

43

i«^W«!W«(MW/^^

BBN Laboratories Incorporated Report No. 6813

The output of MATCH is either an association list pairing meta-vanables and expressions or the atom FAIL.

Thus:

For any two types 11, t2. and for all indices of evaluation.the following statement is true of SUB-TYPE?

SUB-TYPE?(tl,t2) -> DEN(tl) CDEN(t2)

This simply says that if tl is a sub-type of t2, it is always the case that the denotation (i.e. the domain) of tl is i.

subset of die denotation of t2. Note that the convene is not tme; that is. if the denotations of one type expression is

a subset ol another, even at all indices of evaluation, it is not necessarily the case that the first expression is a subset

of the second.

The algorithm which computes SUB-TYPE' is now presented. In order to deal with union types we will first

need the function COMPONENTS, which takes a type expression and returns the set of basic type expressions that

mak; it up;

44

V.
(MATCH (ELEMSNT-OF FREDERICK (SETOF VINSON))

(ELEMENT-OF $x (SETOF $a))
nil) ^

evaluates to the assoc-list '((Sa. VINSON)($x . FREDERICK))

This output is then given to the function which handle; the nght-hand side of a global transformation. This ^J

function is META-EVALUATEIe.vp.fnv). Its effect is t?jce an expression containing meta-vanables, and an

environment which assigns those meta-vanables. and return the resulting instantiation. As an example: fö

(META-EVALÜATE '(EQUAL $a $x) ^
'(($» ■ VINSON)($x . FREDERICK)))

returns the expression "(EQUAL Sa Sx)'. V)

META-EVALUATE is used in the initial semantic interpretation to EFL, where the semantic rales are like the _.

nght-hand-sides of global transfotmations. ßj

A function DEFTRANSFORMATIONSET is provided for defimning arbitary sets of global transformations. v-.

The function APPLY-TRANSFORMATION-SET applies such a set of transformations, working in a recursive ^,

descent fashion. The function APPLY-TRANSFORMATIONS-REPEATEDLY applies a given set of

iransformations over and over again, until no more can be applied. It is the basis for the function SIMPLIFY. •**

2.6.6 Functions for Comparing Types tC

There are two major fiincaons for comparing types. These are SUB-TYPE?, which computes the ^

subsumption relation between types, and TYPE-INTERSECTION, which takes two type expressions and returns a J§

third which is the "largest" sub-type of both.

a

3

73

p
V.

i

y.

S

Report No. 6813 BBN Labcratories Incorporated

COMPONENTS(type) =dMf

if type = NULL-SET
then {}

.>: else if BC(type) = UNION
V) then compute-union<for: t

in: type.sets
take: COMPONENTS(t))

P else {type)

where 'compule-union' takes a set of sets and returns the set that is the union of these sets. Note that the

distinguished type NULL SET has an empty set of components as is appropriate for it.

The following are example results of COMPONENTS when applied to various type expressions:

S COMPONENTS(DESTROYERS) -> DESTROYERS
Bf COMPONENTS(UNION(A,B,C)) -> (A,B,C}

COMPONENTS (UMOK (A, UNION (B, B) , A) -> (A,B)
V COMPONENTS(FUN(A,B)) -> {A,B)

We can now present the algonthm for SUB-TYPE'.':

V SUB-TYPE?(T1,T2) =d#f

if Tl = NULL-SET
N. then TRUE
ft else if T2 « NULL-SET
U then FALSE

else for: x.
J" ini COMPONENTS(Tl)
>' holds: for: y

in: COMPONENTS(T2)
m exists: COMPONENT-SUB-TYPE?(x,y)

" where COMPONENT-SUB-TYPE? is defined by:

COMPONENT-SUB-TYPE? (T1,T2) =d<>f

K
'•v1 BC1 <- BC(T1)

BC2 <- BC(T2)
if BC1 = CONSTANT and BC2 = CONSTANT

"V then Tl = T2
else if BC1 = BC2 and BC1 e {L,B,SETS,r)

then SUB-TYPE?(Tl.ELEMENT-TYPE,T2.ELEMENT-TYPE)
JV else if BC1 = BC2 and BC = TUPLES
(V] then for: x

in: Tl.ORDERED-ELEMENT-TYPES
, as : y

K irv T2.0RDERED-ELEMENT-TYPES
holds: SUB-TYPE?(X,Y)

45
Of

BBN Laboratories Incorporated Report No. 6813

Another function is provided to check whether the type of expressioas is meaningful. Called CHECK-EXP-

Finally. it is often necessary to tum internal form back into external form for user readibility. TTie fijncticn

PPL does the conversion and the function SHOW-EXP does conversion and pretty-pnnting.

46

s

2.6.7 Syntax Checkers for Loyic Expressions

Obviously it is not convenient for humans to use the constructor functions to write down logic expressions.

For this reason, an external form of the logic is provided for their use. This external form is a LISP s-expression, .v

which the function PARSE-EXF turns into an internal form expression, checking for errors or omissions as it does *J.

so. If errors are found appropriate messages are panted on the user's terminal and the function returns NIL to its

callers. "^

Errors includo improper syntax for branch-categories, use of undeclared symbols, and use of forbidden

symbols (such as branch-category names) as terms. Both regular and meta-vanable expressions are parsed. >!

Since the conversion from external to internal form is always required. PARSE-EXP is invoked at every -ry

knowledge-base entry point. Any transformation, translation or rule that does not pass PARSE-EXP is simply §J

refused, and the user so noöfied. In this way the system is protected from a great many errors that would otherwise

only appear at run-lime. "v]

u>
TYPE, it pnnts out anv anomalous constituent. fy

.•"i

2.7 Accomplishments over the Last Year

2.7.1 Implementation Status

We have implemented the semantic processing architecture this report descnbes and used it in demonstrations

in July and October of 1987.

We have used the tools described in the last section in constructing the knowledge bases of the multi-level

semantics system In particular, we have implemented:

• A set of 46X simclural semantic rules for'he syntactic rules of the grammar (70^ coverage)

• A set of 629 Semantic entries for the words in the lexicon (87% coverage)

• A domain model nl ^7 type and ">XV descriptive coastant declarations <•,

• A collection of 114 logical simplification transfomiaüon rules

• A set of 51 EFL to WML translation niles a£

Semantic coverage cunently stands at 30% of sentences pareed.

£

E*^«y .L^'.L<O^H/VK»
rt^'V^

V

I
V

^

* -

Report No. 6813 BBN Laboratories Incorporated

2.7.2 Theoretical Issues and Publications

In the process ol building these knowledge bases we have had to contend with a number of semantic problems

for which no widely accepted solution exists. One of these is the problem of "relational" nouns, such as "speed",

brother", etc. which, m contrast to regular "categonal" nouns such as "man", "ship" and "elephaut", seem to

require an argument for their reference to be made clear. These "arguments" do not correspond, however, to

syntactic relations on the noun.

We have developed and implemented an approach to relational noun semantics in which the arguments are

supplied by semantic and not syntactic means. This involves treating relational noun denotations not as sets of

individuals, hut as sets of ordered pairs corresponding to the extension of a relation.

A paper desenbing this approach has been accepted for publication and presentation at the forthcoming 1988

meeting of the Association for Computational Linguistics 17).

Another semantic problem hxs to do with the combination of parts of speech taking argiiments—verbs,

adjectives, prepositioas, as well as relational nouns—with plural arguments. In this case the issue is how the

argumen'-taking item is to be "distnbuted" over the individual members of the denotation of the plural noun

phrase. As has been earlier shown by Scha [21], the way in which this is done depends on the particular lexical item

in question. We have developed and implemented an approach to this problem which uses the distinction between

the levels of EFL and WML to translate an initial "collective" application on '.le EFL level to its final

■distnbuted' WML counterpart.

A paper desenbing this work has been accepted for publication and presentation at the forthcoming 1988

meeting of the Association for Computational Linguistics 123).

2.7.3 Future Work

Having put into place the general framework thus chapter desenbes we plan to spend the coming year

increasing the coverage on the Resource Management Corpus. This will involve focussing on a number of semantic

issues raised in the corpus, including:

• The interaction of tense and time adverbials

'/_ • The treatment of g',nenc and mass nouns

• Intrasenlenlial Anaphora

A • '■Tinie-senes'" perspectives on concepts, e.g. "Vmson s last five locations"

47

.:v:-.:v.^-:<>./^^

BBN Laboratories Incorporated Report No. 6813

S

7'

IS

S

:•■

^

S
^i

48

fü^ZfZWltäSIX^tä}^'**^

Report No. 6813 BBN Laboratories Incorporated

3. Speech and Natural Lan^ua^e Integration

In the preceding chapters, we have described the natural language components of the BBN Spoken Language

system: the parsing algorithm that uses the BBN ACFG (Chapter 1) and the semantic interpreter that derives a

nieaningf-il interpretadoi! ct' text input (Chapter 2). In this chapter, we will describe oiir approach to integrating

syntax and semantics with acoustic scoring toi speech understanding.

The goal ot spe-^h arjderstanf'ing is to determine wha< was spoken and the corresponding meaiung of the

input utterance. To a iveve optimal performance, i.e., the maximum correct understanding rate, we need to find the

most 1 keh word sequence consistent with syntax and semantics. This poses the problem of a large search space

which must be explored judiciously so that an utterance can be processed in a reasonable amount ot time with

reasonable computational resources.

There are several possible approaches to solving the speech unQcrstanding problem.

One possible approach, which we have demonstrated previously, is the senal connection. In this approach,

speech recognition and natural language processing are performed serially and independently, with the speech

recognition component computing the best sconng answer using acoustic models and its own language model, and

then passing the an:, vcr to the natural languai/.; componem for processing and interpretation. The critical problem

with this approach is the possibility of a mismatch between the speech language model and the natural language

grammar: the sequence of words recognized by the speech component could possibly fall outside the coverage of the

natural language grammar, causing the system to break down altogether. Also, if the speech recognition component

makes an error, there is little chance for recovery. Therefore, to have any chance of success, one needs to fully

integrate speech and natural language, where integration means using same the language model to jointly perform

speech recogmtion and natural language understanding in a single search space.

One approach to integration is to compile the natural language syntax and semantics into a single network

such as a Finite State Automaton (PSA) or a Recursive Transitior Network (RTN) appropriate for performing a

top-down time-synchronous search to find die best hypuüiesis [6]. h vwever, this assumes that such a network can

in fac. ' built from the declarative unification grammar formalism o' our natural language syntactic component and

our semantics component A close examination of our grammar reveals that the number of equivalent context-free

rules needed to make an PSA network from our unification gmmar (semantics not included) would run into the

hundreds of thousar. Is. and the number of arcs in this PSA network w ild IK -nany limes that size. No computer on

the market or on paper today would have a virtual address capacity anywhere near this size, not to mentic the

paging penalties that would be incurred even if such a computer were available.

The approach that we have taken, then, is to perform parsing (in the natural language processing sense) on the

speech input. This appioach consists of a two step process. First, the speecn component computes a very dense

word lattice; ail words that arc plausible acoustically • 'where m the input utterance would be computed, with a

separate score for every starting and ending time. Given thrj word lattice, the natural language component can

search f'oi the most likely meaningful sentence as a path through the lattice.

49
r

BBN Laboratories Incorporated Report No. 6813

As such, the problem can now be posed as a parsing problem solvable by parsing algorithms similar to the text

parsing algonthm described in Chapter 1. Whereas the text parser takes one sentence aj input, the "speech parser"

takes the lattice of alternate word hypotheses, and finds in the lattice all grammatical (syntax only) sentences and

assigns each sentence an acoustic likelihood score. Henceforth, we shall call this speech parser the Word Lattice

Parser. To handle the notion of scoring in parsing, we have extended the text parser to deal with acoustic likelihood

scores. Every grammancal constituent (starting from the terminals) now has an acoustic score attached to it,

indicating the likelihood of this constituent occurring across a particular time interval of the input utterance. Parsing

now means matching the rules in the grammar as well as perfoimmg dynamic programming (DP) of input speech

using acoustic models of the word. The final answer is a complete grammatical constituent (the (START) symbol

in the grammar) spanning the entire utterance that has the highest acoustic score.

This chapter is organized as follows: in Section 3.1, we discuss the speech component of our speech

unuerstanding system that is used to compute the acoustic scores for the words in the vocabulary; in Section 3.2. we

give details of our integration of speech and syntax; in Section 3.3, we describe how we currently incorporate

semantics to find the best interpretation of the input; and finally in Section 3.4, we discuss some of the system

implementation issues 'n building the integrated BBN Spoken Language System (SLS) for speech underetanding.

3.1 Speech

For the purpose of integration, the speech component needs to compute the acoustic likelihood scores tor all ,",*

words in the vocabulary between any nme intervals / and;. We define the acoustic score of a word W to be the «'

logonihm of the conditional probability:

S(i,jiW) = LOG(Prob(i,j|W)) 1

where ProhU^WV) is the score or likelihood of the hypothesis that terminal or word W produces the observed input

acoustic data between times / and /. The acoustic data is typically a sequence of analyzed and vector-quantized vj

(VQ) input spectra sampled every 10 millisecond [6]. We model the input speech at the phonetic level using robust Vj

context-dependent Hidden Markov Models (HMM) of the phoneme [24]. The acoustic model for each word in the

vocaoulary is then denved from the concatenation of these context-dependent phonetic HMMs. ^

Using these acoustic models of the word, one can compute the acoustic scores for each word on the input

utterance using a nonlinear time alignment procedure. A computaüonally efficient method is to use the trellis

algorithm [17]. We use backward (in time) trellis computation to compute all scores \Proh{iJ\W):0<i<j<T] in a

single pass for a fixed time /, as shown in Figure 3-1.

50

A

In Las version of the algorithm the index i only needs to range from ; minus 1 down to ; minus the maximum

duration for the word, which in our system is based on the number of phonemes in the word. We further improved ''/

on the computational efficiency by switching the order of the W loop and the i loop. This allows us to do

time-svnehronous pruning similar to that described in [24] among all words that ended at time j. "Hiis pruning

S

^v-I'v^-V'^^^

Report No. 6813 BBN Laboratories Incorporated

;; For all
for j = 1,

ending times j
T do

;; For
for W

all worda in the vocabulary
in {W) do

;; For all beginning times i
for i = j-1, Max(0, j-MaxDur [H]) by

Prob(i,j|W)
-1 do

Perform within-word DTW and compute Prob(i,j|W)

where DTW is performed using the trellis algorithm

Figure 3-1: Dynamic Time Warping (DTW) olgonthm 1

lügonthm compares words that end at the same time; and eliminates those that score poorly acoustically relative to

the best sconng word lor all time i.i<j. It has given us a factor of two or more reduction in the acoustic computation.

The improved algonthm is shown in Figure 3-2.

;; For all ending times j
for j = 1, T do

;; For all beginning times i compute Prob(i,j|W)
for i ss j-1, l by -1 do

;; For all words in the vocabulary
for W in {W} do
if (i < j-MaxDur[W])

quit

else

Perform within-word DTW and compute Prob(i,j|W)
Also keep track of maximum score across words and
perform time-synchronous pruning.

Figure 3-2: Dynamic Time Warping (DTW i algonthm 2

The computational complexity of this backward DTW algonthm is proportional to 2xJ2xT. where J is the

maximum duration of a word and T is the length of input utterance in frames. The result of performing this acoustic

computation is a word lattice which is then used for the integration of speech and the natural language components.

51

fö^^v'&MvM^^^^^

BBN Laboratones Incorporated Report No. 6813 ^

3.2 Integration of Speech and Syntax

.3.2.1 The Time-Synchronous Speech Parser

Figure 3-3 presents the algorithm for the time-synchronous lattice parser.

As can be seen, this lattice parser is similar in many respects to the text parser. (Compare it to the algonlhm

m Figure 1-1.) The parser builds the table dr [i, j] starting from time /=1 and marches left to right, filling the

table with valid grammatical constituents. What is distinctly different is that i and / range over time/frame positions

within the utterance rather than o-er word positions, and that each grammatical constituent has been augumented

with an acoustic likelihood score S[i, j]. The process of parsing involves matching terms to derive larger

constituents as well as combining the acoustic scores from substituents to amve at a new acoustic score. The major

drawback of this algonthm is its computation and storage complexity. Since the parsing algorithm runs in time

proportional to the length of the input, and the length in this case is 7, the number of frames in the speech utterance.

52

.>

l

Previously, we argued for the need to integrate speech and natural language, as integration is essential for

optimizing the performance of a speech understanding system. In this section, we describe our efforts in integrating v>

speech and syntax, and use this as the basis for incorporating other natural language components. Before describing

the algorithms for integration, we will first review the syntactic component of our natural language system (for a

detailed discussion, see Chapter I), As described previously, our system uses a unification grammar for

representing the syntax. A unification grammar is essentially a context-free grammar (CFG) augmented with

variables. The algonthm used tor performing syntactic analysis operates word-synchronously, left-to-right and r«.
\>

bottom-up and computes all possible parses of the input. It is similar to the CKY parsing algonthm that appears in

the literature on context-free grammars. It starts at the terminals and iteratively derives larger grammatical

constituents spanning the smaller ones that have already been found. Building a larger constituent from

subconstituents involves unification (see Chapter I)—the process ot mai;hing terms (made of complex expressions)

in the grammar, requinng recursive computaoon, which is a compute-intensive and memory-intensive process. This W

algonthm is shown to have a computational complexity proportional to Ar, where N is the length ot the input text.

v»
We desenbe two parsing algonthms that have been implemented for integrating speech and syntax. Both are V

JA
natural extensions of the text parser. The firet is a time-synchronous parsing algorithm that operates at the resolution

of the frame (10 millisecond). However, this algorithm is extremely complex computationally, rendering it ot

impractical. Our second implementation is a word-synchronous parser more similar to the text parser. It takes

advantage of the redundancy across time frames by combining similar constituents that occur across different Urne

intervals into a single constituent and paising with only this single contituent. A computational saving of two orders «C >

of magnitude has been realized using this algonthm.

mm

We describe the two speech parsers below. In subsequent sections, all discussions pertain only to the ^

word-synchronous parser, which is our cunent implementation.

Üüöütitä&j^^

Report No. 6813 BBN Laboratories Incorporated

;;; First compute the word lattice
for all terminals W

Compute acoustic likelihood score S(i,k|W), i < k < T
using DTW

; ; For all ending time
for k = 1 to T

;; For all starting times
for i = k-1 to 0 by -1

;;; Compute chart entries for time interval <i,k>
dr[irk] =

{ (A -> W. e, S[i,k|W]) | We input [i,k]) u

{(A ^ a B. ß, S[i,jjA] + S[j,k|B] |

(A -4 a. B ß , S[i,j|A]) € dr[i,j]

fi (B -> y., S[j,k|B]) € dr[j,k]}

MaxScore[i,k|A] = Max S[i,k|A] for all (A -> 5.) S dr[i,k]

Traceback[i,k|A] = (A ^ 5.) = Arg(MaxScore[i, k| A])

i < j < k

where

dr [i, j] = dotted rule table cot. ■' ling of grammatical constituents spanning time interval iji<j

A, B = lefthand sides of rules in the grammar

a, ß, Y- 5, £ = symbols denving arbitral)' number of terminals

MaxScore [i,k.; 3 = the best sconng grammatical constituent spanning input [i, k] with A as the lefthand
side

Traceback[i, k|A] = the lefthandside of A —» 5. with the best score for input [i, k]

Figure 3-3: Time-synchronous Lattice Parsing Algorithm

ihis algorithm would run in time proportional to .^OO1 (assuming an utterance is 3 seconds long)! Also, as stated, the

algorithm only keeps the single best scoring parse tor a tune interval <ij> and throws away all others. Alternate

syntactical interpretation of the same input are explicitly discarded—making subsequent application of semantics

impossible. We propose a supenor parsing algonlhm—the word-synchronous parser—described below.

53

KV>^>V^).:V^>^^>^>>^^JO>CV^:V^

BUN Laboratories Incorporated Report No. 6813

3.2.2 The Word-Synchronous Speech Parser

In the time-synchronous parser, the entries in dr [i, j] contain theories of the form:

(A -> B. C D, S[i,j])

where B spans input [i, j] with acoustic score S [i, j]. In all likelihood, dr [i, j+1] would include

(A ^ B. C D, S[i,j+1])

where the same dotted rule A -> B. C D is being computed twice.

As unification is expensive computationally, much could be gained by removing the redundant representations

in the parse table, and thereby minimizing the number of unifications computed. One way to achieve this is by

grouping these two theories into a single theory.

where ti e <T2inin, T2in*x> n <T3mi.n, t3max>

54

(A -> B. CD, {S[i, j], s[i, j+i])) m

In fact, one could collect all neighboring theories into a single theory, ^*

(A -> B. CD, {S[i, j]))

where {S [i, j]) is the set of scores, and associated with each is a starting time i.ie<lminJmax>, and an ending jjjj

time jje<jminjmax>. In effect, this groups a contiguous region of the input utterance into word units, and then

applies the parser at the word level to lind the best syntactic parse. This is the word-synchronous lattice parser. %j

Figure >4 presents the algonthm for the word-synchronous parser. --"

The operator ## is defined as the concatenation of two sets of acoustic scores {S[tl,t2]) and O5-

{S[t3,t4]) to derive a new set of scores spanning the intervals of the two sets, using the following DP

alsjonthm: .,-

For ta e <Tlmin, Tlmax> «J)
For tb e <T4iuin,T4inax>

S[ta,tb] = Max(S[t*,ti] + S[ti+l,tb]) ^
ti

A-

While the computational complexity of the time-synchronous algorithm was 7" , that of the word-synchronous Mft

algonthm is A'\ where N is now the estimated number of words in the speech signal; part of the task of the parser is

to determine the true word sequence from the signal, and therefore the value of N. The implementation of the A
>>'v

word-synchronous lattice parser is described in detail in Section 3.4.

■:■■

V-

r'^.V/»%V,/^,r^.'^."-".V.V.'." V//.V "^•"•' '••".' V.V "iT V "-■ "V" V '•" '*••'-•*'s 'V V V V1 'J1 VV" "^ V"«»- V "rn-'J"'^ V "." V ''J'ttCJC^ IVUUl.'VOfWOWWI ■

Report No. 6813 BBN Laboratories Incorporated

First for all terminals W
compute (W, {S[tl,t2]))

; ; ; For ending positions)c (in words)
for 1c = 1 to N

;;; For starting positions i (in words)
for i = k-l to 0 by -1

;;; Compute chart entries for word positions <i,k>
dr[i,)c] =

(if i+1 = 1c

{(A - W. o , {S[tl,t2]}) | W e input [i,k])

else

((A -> a B. ß , (S[t5ft6])) |

(A -> a. B ß , (S[tl,t2]}) G dr[i,j]

* (B -* Y. , {S[t3,t4])) € dr[j,ic])

i < j < k
)

u

{(A ^ B. a , {S[t5,t6])) | (B -^ Y. , {S[t5,t6])) e drti,k])

V (A -> 8 a) e P

where
tl € <Tlmin,Tlinax>, t2 e <T2min, T2inax>
t3 € <T3min,T3inax>, t4 G <T4min, T4inax>
t5 e <T5min,T5max>, t6 G <T6min, T6inax>

and
{S[t5,t6]) = {S[tl,t2]} ## (S[t3,t4]} * {}

Figure 3-4: Word-synchronous Parsing Algonthm

55

«wßföwyfflKT^y^^

Finally, semantic interpretation is performed by first finding the set of complete constituents (i.e., all entries of

the form ((START) {SCORES}) in the parse table (i.e., dr [0, i] i>0) that span the entire utterance <l.r>. and

then by finding the best sconng one of those which is also semantically meaningful. This gives us the single best

answer that is optimal with respect to speech, syntax, and semantics.

56

in

BBN Laboratories Incorporated Report No. 6813

3.3 Integrating Semantics

Our initial strategy tor applying semantic interpretation to the speech parser is similar to that in the text parser, <■*
i.e., alter syntactic analysis has been completed. To allow tor this without incurring the cost ot repeating the same * *

parsing computation over and over again for parsed constituents that are the same bu with different parse trees, a

scheme for representing the entries in the parse table dr was devised. It is as follows. The entries in the parse table Tk

dr [i, j] for a particular i and ;' is partitioned into equivalence classes. Within each equivalence class are theones

having been parsed to the same grammatical expression (Gexpr), but with possibly different parse trees M

corresponding to different ways of parsing a particular word sequence in the lattice as well as to those that S"

correspond to parses of different word sequences which happened to have resulted in the same parsed constituent.

Each equivalence class is headed by a representative Gexpr template on which unification matching is performed *

(therefore, only a single unification match is performed per class); however, tree building and speech concatenation

computation (unique to each member within the class) are done separately for each member wthin the class. ^

To illustrate.

If (A -4 B. C D , {S[tl,t2]}) 6 dr[i,j] '-,•

& {<C>: (C -» E F. {S[t3,t4]))
(C -> E' T' . {S[t3' ,t4']))
(C -> E" F" ' . (S[t3" ,t4"])) tu

) G dr [j,k]

•. Then {<A -> B J. D>: (A -> B C. D {S[t5,t6]})
(A -> B C. D {S[t5' ,t6'])) v;
(A -> B C. D {Stt5' ' ,t6' '] })

) e dr[i,k] H
where ^

<C> = representative Gexpr template for the equivalence class C
<A —> B C. D> = resulting representative dotted rule. .V

By representating the parse table in this way, the parser is able to find all parses of the input without S9

replicating the same work, which in the worst case could have exponentiating effects on computation.

S

^
^

.V

^«KiöOöööWKXföö^^

J

Report No. 6813 BBN Laboratories Incorporated

3.4 System Implementation

Many practical issues were encountered in the implementation of our SLS system on the Symbolics Lisp

Machine (L1SPM). In this section, z representative subset of these issues will be highlighted and methods for

handling them discussed. The issues and discussioas are relevant only to the current implementation—the word-

synchronous lattice parser.

3.4.1 Silence Handling

The word lattice computed by the speech component contains words that are in the speech lexicon, including

the word SILENCE, representing intervals in the utterance where the model for SILENCE matched well against the

input speech (as silence is located at utterance beginnings, utterance endings, at the beginning of plosives, actual

pauses in speech, etc). Since silence, or pause, is not explicitly handled in the natural language grammar (in the

future, we may include pause detections to help identify phrase boundaries), something must be done to eliminate

these silences in the word lattice while maintaining its integrity. We handle this by merging silences into the

vj neighboring word.c: all words that have silences as neighbors would also have another instance created that has its

boundary extended to include silence, with the proper acoustic scores included. By incorporating this silence

Ö merging stage as a preprocess to the parser, we have eliminated the need to modify the grammar/parser so it could

■■ handle silence explicitly, while ensuring that all of the input signal is accounted for.

3.4.2 Search Strategies

" Search strategy design is by far the most important task in designing and implementing a system dealing with

a large search space such as the one we are building now, as efficient search strategies can mean orders of

h> magmtude reduction in both computation and memory requirements. In this section we describe some of the
Iv
•' methods employed in our system that are used to prune down the search space.

Ä j.4.2.1 Conditions for Search Termination
y.

, As mentioned previously, the computational complexity of the word-synchronous parser is proportional to /v\

V-, where N is the estimated/computed length of an utterance in words. To minimize unnecessary computation, one

needs to detect iV as early as possible and terminate search (the bottom up parser could go on for a long time beyond

•^» the actual number of words in the input). The algorithm that we have devised is as follows: before each parse, we

compute the best scoring word sequence from the word lattice without using any grammar constraints (i.e., all words

can follow any word). The resulting acoustic score of this answer is used as an upper bound on the score of the best

*• scoring word sequence allowed by the grammar. The condition for terminating search is satisfied when we are at

some position k in the parsing algonthm where a complete grammatical constituent (with the symbol (START))

A," spanning the entire utterance is found in dr [0, k-l] with a score within a threshold of the upper bound score. The

f'
57

^s^ws^mM^äia^

BBN Laboratories Incorporated Report No. 6813

3.4.2.2 Reduction In Time Resolution

-*

S:
reason for choosing to look at dr[0,k-l] rather than dr[0,lc] is a subtle but well-motivated one: a valid

complete constituen! may have short function words (such as "a" or "the') deleted from it and still score well

enough to satisfy the search termination criterion. In other words, we always want to compute one more word given

that we think that we have found the "correct'" word sequence. By hedging against single word deletions, we are 'V

also relying on the assumption that more word deletions wül deteriorate the overall score to the level where the

threshold test (against the upper bound score) can no longer be satisfied. Finally, the best answer is computed by

searching over all theories ((START) {SCORES}) in dr[0, i]. i>0 that span the utterance from time 1 to T and

finding the theory with the best score.

C^

£

A simple scheme to reduce the computation is to down-sample the backward DTW in computing the word SK

lattice to compute at every T frame (for example, skip every other frame). This would reduce the speech lattice KK

computation by the same factor, and would reduce the score concatenation operation (##) in the parsing by the same

factor squared. This is a simple and straightforward (and well understood) method for cutting down on ^V

computational load with minimal loss in performance, and we, in fact, make this the default mode of operation for

our system. Currently, we use a time resoludon of two (skip every other frame) in running our system. . .;

3.4.2.3 Word Lattice Pruninju;

As described earlier, the speech component computes a very dense word lattice which potentially would

include all words in the lexicon with scores between every time interval </,/>. The motivation behind using a such a

dense word lattice in the parser is to be sure with probability close to one that the correct words would be included at

the nght place in the lattice. However, to conside»- such a lattice in its entirety would not only be a waste of effort

since most of words are in fact just noise (as our models of the word are probabilistic), but would be

computationally impractical for our bottom-up parser. An integral part of designing the lattice parsing algorithm is

to come up with ways of reducing the size of the lattice and yet ensuring that the correct word sequence is present.

A straightforward approach is to prune down the word lattice, keeping only those words that score reasonably

well (all those that have an average score per frame > 5. where 6 is a predetermined threshold) and ignoring all those

that scored poorly acoustically. The key. then, is to detenmne 8 so that it would result in a high hit rate for the

correct words while minimizing the detection of irrelevant words. In practice, we found it very difficult if not

impossible to find such a 5 that would ftillfill these two conflicting requirements, as words have widely varying

acoustic scores not only among themselves, but across contexts and environments. In fact, one can imagine that in

the worst case, a distinct threshold would be needed for every word in every context. Fortunately, from empincal

evidence as well as from our knowledge of acoustics, we infer that the average acoustic scores of words in general

tend to fall into two broad classes: short words (most function words, such as "a", "the", "of", that have two

syllables or less), and long words (such as proper nouns like "Frederick" and "Westpac"). The short words, since

they are short in duration and are often reduced in spoken utterances, tend to score poorly acoustically; whereas the

long words are often spoken more carefully, and would have coasistently higher acoustic scores. This suggested the

use of dual thresholds—one for short words and the other for long words. In fact, we have generalized this to an SB

I UP

in

'.■,

Report No. 6813 BBN Laboratories Incorporated

arbitrary number ot classes, with short words on one end of the spectrum and long words on the other, with other

word classes in between, with the guiding principle that words with fewer syllables would tend to be more variable

acoustically, and therefore would need smaller thresholds, and vice versa. Currently, our system employs four

levels of word level pruning. And in practice, we have found that this multi-level pruning reduces tlie sire of the

lattice (as measured by the number of words, each with a set of boundaries with associated acoustic scores) by at

least a factor of two. This reduces the parsing computation dramatically as the lattice size has an exponentiating

effect on the size of the paree table.

3.4.2.4 Pruning Durinj; Speech Parsing;

One strategy for pruning the search space during parsing is the time-synchronous beam search used in the

BYBLOS speech recognition sys'em. However, the beam search used in the BYBLOS system always compares

theories spanning the same time interval from time 1 (beginning of utterance) to current time t. whereas the

bottom-up parser used here generates theories that can span arbitrary time intervals <il.i2>. We have modified the

beam search to work for our parsing strategy as follows. During parsing, the maximum score spanning a particular

time interval </l.f2> (for all time intervals) is computed, and theones that span <tlj2> are only kept if their score is

within a threshold (the beam) of the maximum; all others are eliminated. This method is less effective when

theories are short (spanning short time intervals), and much more effective as theories become long in duration.

Empirically, we've found this pruning strategy reduces computation significantly over no pruning.

3.5 Current Status and Future Work

Currently, we h.ve an integrated system that runs on actual speech utterances: the speech component produces

a word-lattice, on vhich the natural language component performs parsing to find the most likely interpretation of

the input utterance. However, a cntical problem remains to be solved. On input utterances that are long, or are

particularly ambiguous acoustically, producing a large word lattice (and this happens quite often), the system runs

into severe search problems, requiring prohibitively large amounts of computation and memory. On such occasions,

the machine simply runs out of virtual memory and crashes. The solution to this problem is to come up with

methods and algorithms to significantly cut down on the search space. Some ideas to tiy include more efficient

pruning of the word-lattice, top-down prediction, and semantic filtering. For word lattice pnining, one can imagine

a pruning strategy that is data driven, rather than using thresholds that are fixed apriori. In prediction, we want to

use top-down information (whereas our parser operates :;tnctly bottom-up) to reduce the size of the parse table, and

therefore minimize computation and storage. Likewise, semantics can be used incrementally (at the constituent

level) to filter out senuinticully anomalous syntactic parses in the parse table. We will incorporate one or more of

these methods and test their effectiveness within the context of the overall search strategy design.

59

^^ö^^^:'^X^v%>^:^v.:M ^::< s&&y&&tttt/^

BBN Laboratories Incorporated Report No. 6813

E

Jv

s

--.

-■,,

K

V IT

60

^^.ä-:N\^^>C^V^^VIX^%<N^äV^^

Report No. 6813 BBN Laboratories Incorporated

References

111 Alexander. D. and W.J. Kunz.
Some Classes of Verbs in English.
distributed by Indiana University Linguistics Club. Bloomington. Indiana. 1964.
Linguistics Research Project, Indiana University. F. W. Householder. Jr.. Principal Investigator.

[21 Bresnan. Joan.
Contraction and the Transformational Cycle in English.
distnbuted by the Indiana University Linguistics Club. Bloomington. Indiana. 1978.
Originally written in 1971.

p| Bndgeman. Loraine I., Dale Dillingcr. Constance Htggins. P. David Seaman, Floyd A. Shank.
More Classes of Verbs.
distnbuted by Indiana University Linguistics Club. Bloomington, Indiana, 1965.
Linguistics Research Project, Indiana University, F. W. Householder, Jr.. Principal Investigator.

14] W.J.H.J. Bronnenberg, H.C. Bunt, S.P.J. Landsbergen, R.J.H. Scha. W.J. Schoenmakers and E.P.C. van
Utteren.
The Question Answering System PHLiQA 1.
In L. Bole (editor). Natural Language Question Answering Systems. MacmUlan. 1980.

[51 Chomsky, Noam.
Aspects of the Theory of Syntax.
MIT Press. Cambridge, Massachusetts. 1965.

\b] Y.L. Chow. M.O. Dimham. O.A. Kimball, M.A. Krasner, OF. Kubala. J. Makhoul, P.J. Price. S. Roucos.
and R.M. Schwart?
BYBLOS; The BBN Continuous Speech Recognition Sys^ 'in.
In International Conference on Acoustics, Speech, and Signal Processing, pages 89-93. IEEE. Dallas,

Texas, Apnl, 1987.

[7] DeBnnn. Jos and Scha. Remko J H.
The Interpretation of Relational Nouns.
In Proceedings of the ACL. Association for Computational Linguistics. June. 1988.
To Appear.

[8] Gazdar, Gerald, Ewan Klein, Geoffrey Pullum. Ivan Sag.
Generalized Phrase Structure Grammar.
Harvard University Press. Cambridge, Massachusetts. 1985.

[9] Graham. Susan L.. Michael A. Harrison, and Vvalter L. Ruzzo.
An Improved Context-free Recognizer.
ACM Transactions on Programming Languages and Systems HiVAib-^i, 1980.

[10] Haas, Andrew.
Parallel Parsing for Unification Grammar.
In Proceedings of the Tenth Internatmnal Joint Conference on Artificial Intelligence, pages 615-618. 1JCAI.

Milan, Italy, August. 1987.

11 I i Haas, Andrew.
A Parsing Algorithm for Unification Grammar,
forthcoming.

1121 Harman. Gilbeit.
Generative Grammars without Transformation Rules: A Defense of Phrase Structure.
Language 39:597-616, 1963.

61

>
V

r.V
r.v

BBN Laboratories Incorporated Report No. 6813

1131 Heidom. George E.
English as a Very High Level Language for Simulr.lion.
SIGPLAN Notices 9(4):9I-I00. April, 1974.

114) Heidom. George E.
Automatic programming through natural dialogue: a survey.
IBM Journal of Research and De\elopmeni 2()(4):302-313. July. 1976.

[15] Ingna. Robert J.
A Summary of Verb Complement Types in English,
forthcoming.

1161 Ingna. Roben J
Features in the BBN ACFG for Selected Verbs from the COBU1LD Corpus.

62

'",
mhcommg. tfj

y
[171 Frede nek Je linek.

Continuous Speech Recognition by Statistical Methods.
Prnveedrngs of the IEEE 64(4):532-556, ApnJ, 1976.

[181 Montague. R.
The Proper Treatment of Quintiffcation in Ordinary English.
In J Hintakka. J.Moravcsik and P.Suppes (editors), Approaches to Natural Language. Proceedings of the ^J

1970 Stanford Workship on Grammar and Semantics, pages 221-242. Dordrecht: D.Reidel, 1973.
S

I9| Pereira. Fernando. vi
Extraposition Grammars. '^
American Journal of Computational Linguistics 7(4):243-256, 1981. Z

.• [201 Procter. Paul et al, eds.
Longman Dictionary of Contemporary English. m
Longman Group Limited, Harlow and London. 1978. ~

[21] Scha. Remko J.H. y.
Distributive. Collective and Cumulative Quantification. S?
In Jen>en Groenendijk, Theo MV Janssen, Martin Slokhof (editors). Formal Methods in the Study of k

Lansuage. Part 2. pages 483-512. Mathematisch Centmm. Amsterdam, 1981.

[221 Scha. Remko J.H. *
Logical Foundations for Question-Answering.
Philips Research Laboralones, Eindhoven, The Netherlands, 1983.
MS. 12.331. ^

|231 Scha. Remko J.H. and Stallard. David G.
Multi-level Plurals and Distnbutivity.
\n Proceedings of the ACL. Association for Computational Linguistics. June. 1988. r?
To Appear K?

|241 R Schwartz, Y. Chow. O. Kimbali. S. Roucos. M. Krasner. J. Makhoul.
Context-Dependent Mtxlelmg for Acoustic-Phonetic Recognition of Continuous Speech. .■'
\n International Conference on Acoustics. Speech, and Signal Processing, pages 1205-1208. IEEE. Tampa, ^

Florida. March. 1985.

!25i Shieber. Stuan M, ^4
.\ii hiiiiiiJiirtuin to Unifuation-BaseJApproaches to Grammar '^
CSLI (Center for the Study of Language and Information), Stanford University. Stanford. CA, 1986.

I

«
151

t'WJiKtWA ^<<<^/^/W

Report No. 6813 BBN Laboratories Incorporated

(26] Tarski, Alfred.
Der Wahrtieitsbegriff in den Formalisierten Sprachen.
Studia Plülosophica 1 :261-405. 1935.
translated as 'The concept ot truth in formalized languages," Logic. Semantics, and Mathematics, pp.

152-278, ed. by A. Tarski. Oxford: Clarendon Press.

[27] Visser. r.Th.
An Historical Smtax of the English Language: Pan One: Syntactical Units with One Verb.
E J. Bnll. Leiden, 1963.

[281 Visser, F. Th.
/>« Historical Syntax of the English Language: Part Two: Syntactical Ui Us with One Verb (Continued).
E. J. Bnll. Leiden. 1966.

129] Visser, F.Th.
An Historical Svntax of the English Language: Part Three. Fit.' Half: Syntactical Units with Two Verbs
E. J. BnU. Leiden, 1969.

[30] Visser. F. Th.
An Historical Syntax of the English Language: Part Three. Second Half: Syntactical Units with Two \erbs

and with More Verbs.
E J. BnU, Leiden, 1973.

63

BPN Laooratories Incorporated Report No. 6813

H

s

^

S

:■

64

t%

4

■^^V^^s^s^ttS^,^^^

f

ft

g
«

".■.

i

v'

Ä

Report No. 6813 BBN Laboratories Incorporated

Appendix A
A Parsing Algorithm for Unification Grammar

Andrew Haas

Abstract

We describe a table-dnven parser for unification grammar that combines bottom-up construction of
ptirases with top-down filtering. This algonthm works on a class of grammars called depth-bounded
grammars, and it is guaranteed to halt for any input string. Unlike many unification parsers our algorithm
works directly on a unification grammar—it does not require that we divide the grammar into a context-
tree " backbone"" and a set of feature agreement constraints. We give a detailed proof of correctness. For
the case of a pure bottom-up parser, our proof does not rely on the details of unification—it works for any
pattern matching technique that satisaes certain simple conditions.

Unification grammars have the formal power of a Turing machme. Thus there is no algonthm that finds all

}*> parses of a given sentence in any unification grammar and always halts. Some unification grammar systems just live

with this problem. The usual parser for definite clause grammar may enter an infinite loop if the grammar contains

.•"" left recursion, and it is the la.sk of the grammar wnter to avoid this. Generalized phrase structure grammar avoids

this problem because it has only the formal power of context-free grammar, but according to Shieber (1985) this is

not adequate for describing human language. i
Lexical functional grammar employs a better solution. A lexical functional grammar must include a finitely

\w ambiguous context-free grammar, which we will call the context-free backbone (Barton . 87, p. 105). A parser for
,N"' '«/ lexical functional grammar first builds the firate set of context-free parses of the input and then eliminates those that

don t meet the other requirements of the grammar. This method guarantees that the parser will halt.

This solution may be adequate for lexical functional grammars, but for other unification grammars finding a

finitely ambiguous context-free backbone is a problem. Suppose we use the notation of definite clause grammar. An

,/* obvious way to build a context-free backbone is to keep only the topmost function letters in each rule. Thus the rule

(s) -4 (np :p :n)(vp :p :n)

becomes

s-T> np vp

V Suppose we use a simple X-bar theory. Let (major-category type :bar-level) denote a phrase in a major category. A

' J noun phrase may consist of a single noun, tor instance "John". This suggests a rule like this:

(major-category (nt 2) -> (major-category (n)

In the context-free backbone this becomes

65

ivfjtfLVAW^j«)iro^jc:vöJO^^^

BBN Laboratories Incorporated Report No. 6813

(s) -» (x :1) (x :1)
(x (cons :a :1)) —» (pre-terminal :a) (x :1)
(x (nil)) -> #
(pre-terminal (A')) —> A

Sections A.l and A.2 of this paper defines the basic concepts of our fonnalism. Section A.3 proves the

66

-.'

major-category —> major-category

so the context-free backbone is infinitely ambiguous. One could devise more ela^arate examples, but this one

suffices to make the point: not every natural unification grammar has an obvious context-free backbone. Therefore

we need a parser that does not require us to find a context-free backbone, but works directly on a unification

grammar.

We propose to guarantee that the parsing problem is solvable by restncting ourselves to depth-bounded

grammars. A unification grammar is depth-bounded if for every L > 0 there is a D > 0 such that every parse tree for ^

a string of L symbols has depth less than D. In other words, the depth of a tree is bounded by the length of the string

it derive;. A context-free grammar is depth-bounded if and only if every stnng of symbols is finitely ambiguous, CJ

hut for unification grammars this is false: depth-boun.aedness is a stronger property than finite ambiguity. ft

ry

Depth-bounded unification grammars have more formal power than context-free grammars. As an example J*»

we give a depth-bounded grammar for the language xx, which is not context-free. Suppose the terminal symbols are

A through Z. We introduce function letters A" through Z' to represent the terminals. The rules of the grammar are

as follows, with # denoting the empty string.

£

w:

(pre-terminal (Z')) —> Z Q/

The reasoning behind the grammar should be clear—(x (cons (A') (cons (B') (nil)))) derives AB, and the first mle

guarantees that every sentence has the foim xx. The grammar is depth-bounded because the depth of a tree is a linear ->

function of the length of the stnng it derives. A similar grammar can derive the crossed serial dependencies of Swiss y,

German, which according to Shieber (1985) no context-free grammar can derive. It is clear where the extra foimal

powei comes from: a context-free grammar has a finite set of non-terminals, but a unification grammar can build

arbitrarilv larae non-terminal svmbols.
s v

i&

It remains to show thai there is a parsing algorithm for depth-bounded unification grammars. We have Ho

developed such an algorithm, based on the context-free parser of Graham, Harrison and Ruzzo (1980), which is a

lable-dnven parser. If we generalize the table-building algonthm to a unification grammar in an obvious way, we get

an algonthm that is guaranteed to hall for all depth-bounded grammars (not for all unification grammars). Given that

the tables can be buill. it is easy to show that the parser halts on even input, if the grammar is not depth-bounded

the table-building algonthm will enter an infinite loop, and it is up to the grammar writer to fix this. In practice we

have not found this troublesome. In any case it is better than having a parser (such as the usual definite clause

grammar parser) that may parse a hundred sentences and then enter an infinite loop on the hundred and first. n

S

p.

Report No. 6813 BBN Laboratoriec Incorporated

soundness and completeness of our simplest parser, which is purely bottom-up and excludes rules with empty right

hand sides. Section A.4 admits rules with empty right sides, and Section A.5 adds top-down filtering.

A.l Basic Concepts

A typed languagi is five-tuple L = (T.F,V,S|.s-,). where T is a finite set of types, F is a finite set of function

letters, V is a countably infinite set of variables, s, is a function from F u V onto T, and ST is a function from F into

T*. The function s, assigns a type to each function letter and variable. The function s-, assigns types to the argument

positions of each function letter. We assume that T, F and V are pairwise disjoint.

A term is either a variable or an expression (f X|....Kn), where f is an n-adic function letter and X|...xn are terms.

The type of a variable v is (s, v), and the type of a term (f x|...xn) is (s, f). A term is well-typed if it is a variable, or

if it has the form (f x^.-XJ where x... xn are well-formed terms, t,...! arc the types of x,... xn respectively, andls,

f) = tj^.t . From now one we shall consider only well-typed terms. A ground instance of a term t is a substitution

instance of t that contains no vanables and has the same type as t. In other words, it is a term fomred by replacing

each vanable v of t with a term of the same type as v that contains no variables.

A unification grammar is a four-tuple G = (L, Q, P. S) where L is a typed language and Q is a set of terminal

symbols. Q is disjoint from the sets of variables and function letters in L. P is a finite set of rules; each rule has the

form (A ^ a), where A is a term of L and a is a sequence of terms of L and symbols from Q. S is a ground term of

L (that is, a term without vanables). S is called the stan symbol of G.

■p The ground grammar for G is the 4-tuple (N, Q, P'. S). where N is the set of ground terms of L, Q is the set of

tV terminals of G, P' is the set of all ground iastances of rules in P, and S is the start symbol of G. If N and P' are finite

the ground grammar is a context-free grammar. If N or P is infinite the ground grammar is not a context-free

.j," grammar, and it may generate a language that is not context-free. Nonetheless we can define derivation trees just as

in a cfg. A derivation tree is an A-tree if the nonterminal A labels its root. The yield of a derivation tree is the string

formed by reading the symbols at its leaves from left to right. As in a cfg, A =*> a iff there is an A-tree with yield a.

v" The language generated by a ground grammar is the set of terminal strings derived from the start symbol. The

language generated by a unification grammar is the language generated by its ground grammar.

>
"" Suppose t| and t-, are types, and there is a function letter of type t, that has an argument of type t-,. Then we

say that t, > t,. If the relation > is a partial order and D is the number of types, every term of the ground grammar

V' has depth < D. Since there are onlv a finite number of function letters in the lansuace L. each takine a fixed number

ot arguments, the number of possible terms of depth D is finite. Then the ground grammar is finite.

.\
A ground grammar G' is depth-bounded if for every integer n there exists an integer d such that every

denvation tree in G' with a yield of length n has a depth less than d. In other words, a depth-bounded grammar

^> cannnot build an unbounded amount of tree structure from a bounded number of symbols. A unification grammar G

JS is depth-bounded if its ground grammar is depth-bounded.

67

BBN Laboratories Incorporated Report No. 6813

We have defined the semantics of our grammar formalism without mentioning unification. This is deliberate:

for us unification is a computational tool, not a part of the fu.ualism. It might be better to call the formalism

"substitution grammar", but the other name is already established.

If a is the yield of a tree t, then to every occurrence of a symbol A in a there corresponds a leaf of t labeled

with A. To every node in t there corresponds an occurrence of a substring in a—the substring dominated by that

node. Here is a lemma about trees and their yields that will be useful when we consider top-down filtering.

The parser must find the set of ground terms that derive the input string and check whether the start symbol is

one of them. We have taken the rules of a unification grammar as an abbreviation for the set of all their ground

lastances. in the same way, the parser will use sets of terms and mles containing variables as a representation for

sets of ground terms and ground rules. In this section we show how vanous functions needed for parsing can be

computed using this representation.

t-:

v.

Notation: The letters A, B, C denote symbols of a ground grammar, including terminals and non-terminals. üf

Lower-case Greek letters denote strings of symbols. a[i k) is the substnng of a from space i to space k, where the

space before the first symbol is space zero. # is the empty string. We write x u y or (u x y) for the union of sets x p-

and y, and also (u i < j < k (f j)) for the union of the sets (f j) for all j such that i <j < k.

LKJ

Si

c.

Lemma 2.6. Suppose t is a tree with yield aßa' and n is the node of t corresponding to the occurence of ß

after a in aßa'. Let A be the label of n. If t' is the tree formed by deleting all descendants of n from t. the yield of t" ^

isaAa'

Proof: This is intuitively clear, but the careful reader may prove it by induction on the depth eft.

A.2 Operations on Sets of Rules and Terms
w

g

.'-

A grammatical expression, or g-expression. is either a term of L, the special symbol Nil, or a pair of

g-expressions. The letters u. v, w, x. y, and z denote g-expressions. and X. Y and Z denote sets of g-expressions. ^7,

We use the usual LISP functions and predicates to desenbe g-expressions. |x y] is another notation for (cons x y).

For any substitution s, (s (cons x yi) = (coas (sx)(sy)) and (s Nil) = Nil. A selector is a function from g-expressions

to g-expressions formed by composition from the functions Car, Cdr. and Identity. Thus a selector picks out a .V

sub-expression from a g-expression. A constructor is a function that maps two g-expressions to a n-expression,

formed by composition from the functioas Cons, Car, Cdr. Nil, U x y. xi, and {k x y. y). A constructor builds a new V.J

g-expression from parts of two given g-expressions. A g-pnnlicaie is a function from g-expressions to Booleans ',0

formed bv composition from the basic functions Car, Cdr, {k x. x), ConsP, and Null.

SO
Let (ground X) be the set of ground instances o' g-exprcssions in X. If f is a selector function, let (f X) be the

set of all (f x) such that x € X. If p is a g-predicate, let (separate p X) be the set of all x € X such that (p x). The

following lemmas are easily established from the definition of (r x) for a g-expression x. 2*

68

} J

r.

\

V.
- ■

Report No. 6813 BBN Laboratories Incorporated

"t' Lemma 2,1. If f is a selector function, (f (ground X)) = (ground (f X)).

\ Lemma 2.2. If p is a g-predicate , (separate p (ground X)) = (ground (separate p X)),
ryg

_ Lemma 2.3. (ground X u Y) = (ground X) u (ground Y).

Lemma 2.4. If x is a ground term, x 6 (ground X) iff x is an instance of some y £ X.

\ Lemma 2.5. (ground X) is empty iff X is empty.

?? These lemmas tell us that if we use sets X and Y of terms to represent the sets (ground X) and (ground Y) of

A. ground terms, we can easily construct representations for (I (ground X)), (separate p (ground X)), and (ground X) u

(ground Y). Also we can decide whether a given ground term is contained ir ground X) and whether (ground X) is

fi empty. All these operations will be needed in the parser.
r

The parser requires one more type of operation, as follows.

Definition Let fj and f, be selectors and g a constructor, and suppose (g x y) is well-defined whenever (f| x)

and (L y) are well-defined. The symbolic product defined by fj, f-,. and g is the function

ÜX Y. | (g xy) I x e X Ay e Y Aif, x) = (f:y) 1)

where X and Y range over sets of ground g-expressions. Note that (f| x) = (f-, y) is considered false if either side of

the equation is undefined.

i

If X is a set of g-expressions and n an integer, (rename X n) is an alphabetic variant of X. For all X. Y, m, and

«.' n, if m ^ n then (rename X n) and (rename Y m) have no variables in common. The following theorem tells us that

s" if we use sets of terms X and Y to represent the sets (ground X) and (ground Y) of ground terms, we can use

unification to compute any symbolic product of (ground X) and (ground Y). We assume the basic facts about

unification as in Robmson (1965).

Theorem 2.1. If h is the symbolic product defined by f,, f,, and g, and X and Y are sets of g-expressions. then

(h (ground X) (ground Y)) =
(ground ((s (guv)) | u € (rename XI) A v 6 (rename Y 2)

A s is the m.g.u. of (f1 u) and (f2 v))

Proof: The first step is to show that if Z and W share no variables

(1)
((g z w) | z G (ground Z) A w e (ground W) A (f1 z) = (f2 w) }

(ground {(s (guv)) | ue ZAVGW
A s is the m.g.u. of (t^ u) and (f2 v)

69

BBN Laboratories Incorporated Report No. 6813

})

Consider any element of the right side of equation (1). It must be a ground instance of (s (g u v)), where i' e Z, v e

W. and s is the m.g.u. of (f, u) and (f-, v). Any ground instance of (s (guv)) can be wntten as (s' (s (g u v»), where

s' is chosen so that (s" (s ul) and is' (s v)) are ground terms. Then (s' (s (g u v)t) = (g (s' (s u)) (s' (s v))) and(f| (s'

(s u))) = is' (s (f, uD) = (s' (s (f, v))) = (f, ts' (s v))). Therefore is" (s (g u v))) belongs t the set on the left side of

equation (1).

70

r

Next coasider any element of the left side of (1). It must have the form (g z w), where z E (ground Z), w €

(ground W). and (f, z) = (f-, w). Then for some u € Z and v e W. z is a ground instance of u and w is a ground -JS

lastance of v. Since u and v share no variables, there is a substitution s such that (s' u) = z and is' v) = w. Then (s' Q

(f, u)) = (f, (s" un = (f-, (s' VH = (s' (f, vu. so there exists a most general unifiers for(f| u) and(f-, v), and s' is the

composition of s and some substitution s". Then (g z w) = (g (s" (s u)) (s" (s v))) = (s" (s (g u v))). (g z w) is a |0

ground term because z and w are ground terms, so (g z w) is a ground instance of (s (g u v)) and therefore belongs to

the set on the right side of equation (1). „

.■

"*:■

We have proved that if Z and W share no variables.

(2) (h (ground Z) (ground W)) =
(ground {(s(guv)) |ue2AveW

A 3 is the m.g.u. of (^ u) and (f2 v))

a
For any X and Y. (rename X 1) and (rename Y 2) share no variables. Then we can let Z = (rename X 1) and

W = (rename Y 2) m formula (2). Since (h (ground X) (ground Y)) = (h (ground (rename X I)) (ground (rename Y

2))). the theorem follows by transitivity of equality. This completes the proof. £?

Definition. Let f be a function from sets of g-expressions to sets of g-expressions, and suppose that when X c

X' and Y c Y". (f X Y) c (f X' Y'). Then f is mnnotomc. fc,

All symbolic products are monotonic functions, as the reader can easily show from the defimtion of symbolic

products. Indeed every function in the parser that returns a set of g-expressions is monotonic. Kf

A.3 The Parser without Empty Symbols w'

:•:■

Our first parser does not allow rules with empty right sides, since these create complications that obscure the

main ideas. Therefore throughout this section let G = <L, T, P. S> be a ground grammar in which no rule has an 'fZ

empty side. When we say that ex denves ß we mean that u derives ß in G. Thus a ^ # iff a = #. k<

A dotted rule in G is a rule of G with the right side divided into two parts by a dot. DR is the set of all dotted Oi

rules in G. A dotted rule (A —» a.ß) denves a string if a denves that string. In order to compute symbolic products

on sets of rules or dotted rules, we must represent them as g-expressions. We represent the rule (A -> B C) as the

list (A B C). and the dotted rule (A -> B.C) as the pair ((A B C) (C)]. '*l

m

v^^ätö^I^.^^^

Report No. 6813 BBN Laboratories Incorporated

We wnle A ^> B if A derives B by a tree with more than one nod'-. The parser relies on a chain table—a

table of all pairs [A B] such that A =^ B. Let Cd be (lie set of all [A B] such that A ^> B by a derivation tree of

depth d. Clearly C, is the set of all [A B] such that (A -> B) is a rule of G. If S, and S^ arc sets of pairs of terms,

define

(link S1 S2) = {[A C] | (3 B. [A B] e S1 A [B CJ e S2) }

The function "link" is equal to the symbolic product defined by fj = Cdr, f, = Car. and g = (X xy . (cons (car x)

(cdr y))). Therefore we can compute (link S, ST) by applying Theorem 2.1. Clearly Cd+I = (link Cd C,). Since the

grammar is depth-bounded there exists a number D such that every denvation tree whose yield contains exactly one

symbol has depth less than D. Then CD is empty. The algorithm for building the chain table is this: compute Cn for

increasing values of n until Cn is empty. Then the union of all the Cn s is the chain table.

Deftrunons. ChamTable is the set of all [A B] such that A =£> B. If S is a set of dotted pairs of symbols and S'

a set of symbols, (ChainUp S S') is the set of symbols A such that [A B] € S for some B € S'. "ChainUp" is

clearly a symbolic product. If S is a set of symbols, (close S) is the union of S and (ChainUp ChainTable S)). By the

definition of ChainTable, (close S) is the set of symbols that derive a symbol of S.

Let a be an input string of length L > 0 For each a[i k] the parser will construct the set of dotted rules that

derive a[i k]. The start symbol appears on the left side of one of these rules iff a[i k] is a sentence of G. By lemma

2 4 this can be tested, so we have a recognizer for the language generated by G. With a small modification the

algorithm can find the set of derivation trees of a. We omit details and speak of the algorithm as a "parser" when

strictly speaking it is a recognizer only.

The dotted rules that derive a[i k] can be partitioned into two sets: rules with many symbols before the dot

and rules with exactly one. The algorithm will construct the first set recursively and then constmct the second set

from the first. Their union is the desired set of dotted rules, Note that a dotted rule derives a(i k] with more than one

symbol before the dot iff it can be written in the form (A -> ßB.ß') where ß =*> a[i j], B =**• ajj k], and 0 < j < k

(this follows because ß =*> # iff ß = #).

Definition. If S is a set of dotted rules and S' a set of symbols, (AdvanceDot S S') is the set of rules (A ->

aB.ß) such that (A —>a.Bß) e S/, B e S', Clearly "AdvanceDot" is a symbolic product.

Lemma 3.1 For i < j < k, let (S i j) be the set of dotted rules that derive a[i j] and (S' j k) the set of symbols

that derive afj k]. The set of dotted rules that derive a|i k) with many symbols before the dot is

_ (AdvancaDot (S i j) (S' j k))
i<j<k

Proof: We have

u (AdvanceDot { (B -> ß.ßj G DR | ß *> a[i j] }

i<j<k {A | A i> a[j k]))

• 71

Theorem 3.1. ForO < i <k <L. (dri k) is the set of dotted rules that derive a(i k].

v.

BBN Laboratories Incoqwrated Report No. 6813

u { (B -> ßA.ß2) P DR | ß =*> a[i j] A A ^> a[j It]} by defn. of Adv»nceDot
i<j<Jc

((B -> ßA.ß2) e DR | (3 j. i<j<)c A ß =*> a[i j] A A =*> a[j kj)) (£

As noted above, this is the set of dotted rules that derive a[i k] with more than one symbol before the dot.

I
Definition. If S is a set of rules, (finished S) is the set of left sides of rules in S. V

Lemma 3.2. Suppose (length a) > 1 and S is the set of dotted rules that derive a with more than one symbol %

before the dot. The set of symbols that derive a IF (close (finished S)).

19
Proof: Suppose first that A e (close (finished S)). Then for some B A =*> B, (B -> ß.) is a dotted rule, and ß Jö

^> a. Then A =^> a. Suppose next that A denves a. We show by induction that if t is a derivation tree in G and A

> a by t. then A e (close (finished S)). t contains more than one node because (fcngth a) > 1, so there is a rule (A ,-

-»A, . An) that admits the root oft. If n > 1, (A -> A1...An.) e S and A is in (close (finished S». If n= 1 then A! ^

=*>a and by induction hypothesis A, € (close (finished S)). Since A =*> A,, A € (close (finished S)).

Definitions. RuleTable is the set of dotted rules (A —> a) such that (A -> a) is in P, the set of rules of G. If S

is a set of symbols, (NewRules S) is (AdvanceDot RuleTable S).

Lemma 3.3. If S is the set of symbols that denve a, the set of dotted rales that derive a with one symbol

before the dot is (NewRules S).

Proof: Expanding the definitions gives (AdvanceDot | (A -* .ß)!(A -> ß) € P) |C I C =*> a)) = | (A -» C.ß')

I (A -* Cß') e PAC=*>a|. This is the set of dotted rules that den /e a with one symbol before the dot.

Let a be a string of length L. For 0 < i< k < L, define

(dr i k) - fij
(let rulesj^ = (u i<]<k (AdvanceDot (dr i j) ift

(u (finished (dr j k)>
(if j+l=k {a[j k]) 0)))) f'

(let rules2 = (NewRules (close (if i+l=k (ali k]) (finished ruleSj)))) vO
(u ruleSj^ rules2)

))

^

3

Proof: By induction on the length of input|i k|. Suppose i < j < k. By induction hypothesis (dr i j) is the set of r''

dotted rules that derive otji j] and (finished (dr j k)) is the set of non-terminals that derive a[j k]. Clearly (if j+l=k

{a[j k) | 0) is the 3et of terminals that derive a[j k], so the second argument of AdvanceDot is the set of all symbols K?

that denve a[j k]. Then by Lemma 3.1, ruleS| is the set of dotted rules that denve a[i k] with many symbols before

the dot. If i+l=k then (close |a[i k])) is the set of symbols that denve a[i k], and if i+1 < k then (close (finished

_ 72 *"

•"

Report No. 6813 3BN Laboratories Incorporated

£
rules,)) is the sei of symbols that derive a(i k] by lemma 3.2. In either case rules-, is the set of rules that derive afi k)

p with one symbol before the dot, by lemma 3.3. This completes the proof.

Si
v

'-

JS

"v
"v

ID

A.4 The Parser with Empty Symbols

Throughout this section G = <L.T.P.S> is an arbitrary unification grammar, which may contain rules whose

right side is empty. If there are empty rules in the grammar the parser will require a table of symbols that derive the

-"• empty string, which we also call the table of empty symbols. Let Ej be the set of symbols that derive the empty

string by a derivation of depth d. and let E'd be the set of symbols that derive the empty string by a derivation of

/" depth d or less. Since the grammar is depth-bounded, it suffices to construct Ed for successive values of d until a D >

0 is found such that EQ IS the empty set.

r,"1 L is the empty set. A € Ed+| iff there is a rule (A —> B1...Bn) such that tor each i, Bj =*> # at depth d,, and d is

the maximum of the dj's. In other words: A € Ed+1 iff there is a rule {A -> ocßß) such that B e Ed and every symbol

^ of a and ß is in E'd.

\ ^-Hi

Let DR be a set of dotted rules and S a set of symbols. Define

(AdvanceDot* DR S) = (if DR = 0 0 (u DR (AdvanceDot* (AdvanceDot DR S) S)

If DR is the set of ground instances of a finite set of rules with variables, there is a finite bound on the length of the

right sides of rules in DR (because the right side of a ground instance of a rule r has the same length as the right side

of r). If L is the length of the right side of the longest rule in DR, then (AdvanceDot* DR S) is well-defined because

the recursion stops at depth L or before. Clearly (AdvanceDot* DR S) is the set of rules (A —> aß.y) such that (A -»

a-ßy) e DR and every symbol of ß is in S.

Let

Sj^ = (AdvanceDot* RuleTable E'd)

52 = (AdvanceDot S1 Ed)

53 = (AdvanceDot* S2 E'd)

54 = (finished S3)

S. is the set of dotted rules (A -* a.ß0i such that every symbol of a is in E'j. S-, is then the set of dotted rules (A —>

aB.ß,) such that B e Ed and every symbol of a is in E"d. Therefore S-, is the set of dotted rules (A —> aßß.ß-,) such

«Jy that B e Ed and every symbol of a and ß is in E'd. Finally S4 is the set of symbols A such that for some rule (A -*

oBß). B e Ed and every symbol of a and ß is in E'd. Then Sj is Ed+1. In this way we can construct Ed for increasing

-\ values of d until the table of empty symbols is complete.

Definitions. Let EmptyTable be the set of terms that derive the empty string. If S is a set of dotted rules, let

73

mimtitä&fcmvtä&w

BBN Laboratories Incorporated Report No. 6813

Lemma 4.1 For i < j < k let (S i j) be the set of dotted rules that derive a[i j] and (S' j k) the set of symbols

that derive a|j k]. The set of dotted rales that derive a[i k] using many symbols is

{(B -4 ßAß'.ß3) e DR | (3 j. i<j<lc A ß ^> a[i j] A A ±> a[j k]) Aß' ^> #)

This is the set of rales that derive a|i k] using many symbols, as noted above.

Lemma 4.2. Suppose (length o) > I and S is the set of dotted rules that denve a using many symbols. The set

of symbols that derive a is (close (finished S)).

£
(SkipEmpty S) be (AdvanceDot* S Empty Table). Note that (SkipEmpty S) is the set of dotted rales (A -» aß^ß-,)

such that (A H>a^^,)€ Sand ß, ^►#. 1

Let C. be the set of pairs [A B] such that A =*=> B by a derivation tree in which the unique leaf labelled B is at ,-.-

depth d ;note this docs not imply that the tree is of depth d). C, is the set of pairs |A B; such that (A -> aBß) is a .v

rule and every symbol of a and ß denves the empty string. C, is easily computed using SkipEmpty. Also Cd+| =

(link Cd C,), so we can construct the chain table as before. r?

The parser of Section A.3 relied on the distinction between dotted rules with one and many symbols before the

dot, If empty symbols are present, we need a slightly more complex distinction. We say that the string a derives ß ',«.

using one symbol if there is a denvation of ß from a in which exactly one symbol of a derives a non-empty string.

We say that a denves ß using many symbols if there is a derivation of ß from a in which more than one symbol of i-%

a derives a non-empty stnng. If a string a denves a stnng p, then a derives ß using one symbol, or a derives ß £",

using many symbols, or both. We say that a dotted rule derives ß using one (or many) symbols if the string before

the dot denves ß using one (or many) symbols. Note that a dotted rule derives a\i k] using many symbols iff it can JS

be wntten as(A -> ßBß'.ß,) where ß =*>a[ij], B =*>a[j k], ß' =*>#, and i <j < k. This is true because whenever a

dotted rule denves a stnng using many symbols, there must be a last symbol before the dot that derives a non-empty ..

stnng. Let B be that symbol; it is followed by a ß' that derives the empty stnng, and preceded by a ß that must jS

contain at least one more symbol denving a non-empty stnng.

We prove lemmas analogous to 3.1, 3.2, and 3.3.
a

;■:■

(SkipEmpty U (AdvanceDot (S i j) (S' j k))) g.
i<j<k S

Proof: Expanding definitions and using the argument of Lemma 3.3 we have

(SkipEmpty U (AdvanceDot { (B -* ß.ß^ € DR | ß =*> a[i j] }
i<j<k (A | A ^> a[j k]})

) =

(SkipEmpty f (B -> ßA.ß2) G DR | (3 j, i<j<k A ß ^J» a[i j] A A ^> a[j k]) }

This in turn is equal to ,.*•

I

s
74

K^%^:&>:yftä&v^^^

Ä'

;.•

,v

.V

-".-

Report No. 6813 BBN Laboratories Incorporated

Proof: By induction as in Lemma 3.2.

Definitions, Let RuleTable" be (SkipEmpty |(A -> .a) I (A ^ a) € P|)= |(A ->a.a")€ DR I a =*>#}. If S

is a set of symbols let (NewRules' S) be (SkjpEmp'y i AdvanceDot RuleTable' S)).

Lemma 4.3. If S is the set of symbols that derive a. the set of dotted rules that derive a using one symbol is

(NewRules' S).

Proof: Expanding definitions gives

(SkipEmpty (AdvanceDot { (A -^ ß.ß1) € DR | ß =*> #)

{C I C ±> a})
) =

(SkipEmpty {(A -> ßC.ß2) e DR | ß i> # A C =*> a}
) =

{ (A -» ßCß' .ß3> € DR I ß ^> # A C ^> a A ß' ^> #>

This is the set of uotted rules that derive a using one symbol, by definition.

Let a be a string of length L. For 0 < i < k < L, define

(dr i k) =
(let rules1 = (SkipEmpty (u i<j<k (AdvanceDot (rtr i j)

(U (finished (dr j k))
(if j+l=k {a[j k]} 0)))))

(let rules2 ■ (NewRules' (close (if i+l«k (a[i k]) (finished rules^^))))

(u ruleSj^ rules2)

))

Theorem 4.1 (dr i k) is the set of dotted rules that derive a| i k].

^. Proof: By induction on the length of aii k] as in the proof of theorem 3.1. but with Lemmas 4.1, 4.2 and 4.3

replacing 3,1, 3.2 and 3.3 respectively.

A.5 The Parser with Top-Down Filtering

We have cL'scnbed two parsers ihm sei (dr i k) to the set of dotted rules that derive a[i k|. We now consider a

'" parser ihut uses top-down filtering to eliminate some useless rules from uir i k). Let us say that A follows ß if the

start symbol denves a slnng beginning with ßA, A dotted rule (A —» x) follows ß if A follows ß. The new

algonthm will set (dr i k) to the set of dotted rules that derive a[i k| and follow a[0 i].

If A denves a stnng beginning with B we say that A can begin with B. The new algorithm requires a

J prediction table, which contains all pairs |A B| such that A can begin with B. Let P, be the set of pairs [A B) such

that (A -» ßBß) is a rule and ß =*> #, Let Pn+1 be P,, u (LmkProd Pn P,).

MtiKim^TMtofvMfWto^

BBN Laboratories Incorporated Report No. 6813

■•

Lemma 5.1. The set of pairs [A B] suchthat A can begin with B is the union of Pn for all n> I.

Proof; By induction on the tree by which A derives a string beginning with B. Details are left to the reader.

Our problem is to constnict a finite representation for the prediction table. To see why this is difficult,

consider a grammar containing the rule

((f(S ;x))-Mf :x) A)

g
■:;:

Compunng LinkProd is in Theorem I gives us the following pairs of terms:

[(f (a :x)) (f :x)]
[(f (s (s :y))) (f :y)]
[(f (s (s (s :z)))) (f :z)]

Thus if we try to build the prediction table in the obvious way, we get an infinite set of pairs of terms.

The key to this problem is to recognize that it is not neccesary or even useful to predict every possible feature

of the next input. It makes sense to predict the presence of traces, but predicting the subcategorization frame of a

verb will cost more than n saves. To avoid predicting certain features, we use a weak prediction table—that is, a set

of pairs of symbols that properly contains the set of all [A B] such that A £> B. This weak prediction table is

guaranteed to eliminate no more than what the ideal prediction table eliminates. It may leave some doited rules in

(dr i k) that the ideal prediction table would remove, but it may also cost less to use.

W; cannot build the ideal prediction table for every grammar, but we can build a weak prediction table for

every grammar. Let Q, be a set of terms such that P, c (ground Q,). Define

(LP Q Q') = { (s [x Z]) I (3 -vy' . [x y] e Q A [y z] 6 Q'
AS=ni.g.u. ofy and y'))

By Theorem 2.1, (ground (LP Q Q')) = (LinkProd (ground 0) (ground Q')). Let Qi+1 equal Ql KJ (LP 0, Q|) Then

by Lemma 2.3,

{u i > 1 Pi) c (ground u i > 1 QJ

That is, the union of the Q^s represents a weak prediction table. Thus we have shown that if a weak prediction table

is adequate, we are free to choose any Q, that subsumes P,.

Suppose that 0D subsumes (LP QD Q,). Then (ground (LP 0D Q,)) c (ground QIJ) Mid (ground QD+I) =

(ground QD). Since (ground Ql+|) is a funcuon of (ground Q,) fcr all i, it follows that (ground Q^ = (ground QD) for

all i >e D, so (ground 0D) = '.J i > 1 (ground Q^. That is. QD is a finite representation of a weak prediction table.

Our problem is to choose a 0| that subsumes P, so that Ou subsumes QD+| for some D.

Let t| and t-, be types. !n Section A.l we defined t| > t-, if there is a function letter of type t, that has an

argument of type t->. Let > * be the transitive closure of >; a type t is cyclic if t > * t. and a teim is cyclic if its type is

cyclic. P| is equal to

76

*% s
&

ft

■- <

i:

m

M^tj&tättKfäi&ttä^^

Report No. 6813 BBN Laboratories Incorporated

lAB]l(A->.Bß>e RuleTable]

so we can build a representation for P,. Let us forni Q, from this representation by replacing all cyclic terms that

are not contained in cyclic terms with distinct new variables For example, if "cons'" and "ml" belong to the cyclic

type List, we will tum

I f (cons A nil) (cons B (cons C ;

into

(f:x:y)

Theii P, c (ground 0| ■ "'d Q, contains no function letten» of cyclic types. The following lemma shows that this Q,

allows MS to build a liniie repiesenlation of a p.ediction table.

Lemma 5.2. Let Q, be a set of pairs of terms that con'ains no function letters of cyclic types, and let Q| be as

defined above for all i> 1. Then for some D QD subsumes (J,PQDQ|).

Procf: Note first that since unification i ever introduces a functio.i letter th.jt did not occur in the nput, Q]

contains no function letters of cyclic type for any i > 1.

Let C be the number of non-cyclic types in tfie language. Then the maximum depth of a term tint contains no

function letters of cyclic types is C+l. For consider a term as a labeled tree, and consider any path from the root of

such a tree to one of its leaves. The path can contain at most one vanable or function letter of each non-cyclic type,

plus one variable of a cyclic type. Then its length is at most C+l.

Consider the set S of all pairs of terms in L that contain no function letters of cyclic types. Let us partition this

set into equivalence classes, counting two terms equivalent if they are alphabetic variants. We claim that the number

of equivalence classes is finite. Since there is a finite bound on the depths of terms in S. and a finite bound on the

number of argiments of a function letter in 3. there is a finite bound V on the number of variables in any term of

S. Let V|...vK be a list of variables containing V variables from each type. Then t sre is a finite number of pairs in S

that use only variables from V|...vK: let S' be the set of all such pairs. Now each pair p in S is an alphabetic 'anant

of a pair in S', for we can replace the vanable* of p one-for-one with variables from v,...vK. Therefore the number

of equivalence classes is no nrue than the n1. Tiber of elements in S'. We call this number t. We claim that 0D

subsumes (LP QD Qj) for some D i E.

To see this, suppose that (^ does not subsume (LH 0, 0|) for all i < E. If 0, does not subsume (LF (^ Q,).

then Qj+, intersects more equivalence clashes than Ql Joes. Since Q, intersect.', at least one equivalence class, QE

intersect all the equivalence d;. ses. Therefore Qp subsumes (LP QE Q|), which was to be proved.

77

^VJ^VJVV^/W S:AV>.V/A>.V:>^^^^ ■„'

BBN Laboratories Incorporated Report No. 6813 •

This lemma tells us that we can build a weak prediction table for any grammar by irowing away all subterms

ot cyclic type. In the worst case such a table might be too weak to be useful, but our experience suggests that for 1

natural erammars a prediction table of this kind is very effective in reducing the size of the (dr i k) "s. In the

following discussion we will assume that we have a complete prediction table; at the end of this section we will once ?J

again consider weak prediction tables

Defimtioas. If S is a set of symbols, let (first S) = S u | B I (3 A e S. [A B] e PredTable |. If PredTable is

indeed a complete prediction table, (first S) is the set of symbols B such that some symbol in S can begin with B. If

R is a set of dotted rules let (next R) = |B I (3 A.ß.ß'. (A -> ß.Bß') £ R 1.

The following lemma shows that we can find the set of symbols that follow a[0 j] if we have a prediction

Q-

S

^

table and the sets of dotted rules that derive a[i j 1 for all i < j. ro

Lemma 5.3. Suppose that for 0 < i < j. (S i) is the set of dotted rules that follow a[0 i) and derive a(i j]. Then

the set of symbols that follow a[0 j] is K?
of

(first (if j = 0
{ (3t»rt) }
(U 0<i<j (next (S i,)))) W

r^-
Proof. We show first that every member of the gi'-en set follows a[0 j]. If j = 0, certainly every member ot (first

| (start)t) follows a[0 0] = #. If j > 0, suppose that C foUows a[0 i], (C -> ßBß') is a rule, and ß =*> a[i j]; then

clearly B follows a[0 j], t

Next we show that if A follows a[0 j], A is in the given set. We prove by induction on d that if (start) =*> afO ra

j]Aa' by a tf t, and the leaf corresponding to the occurence of A after a[0 j] is at depth d in t, then A belongs to M

the given set. If d = 0then A = (start) and j =0. We must prove that (start) e (first | (start) |), which is obvious.

If d > 1 there are two cases. Suppose first that the leaf n corresponding to the occurence of A after afO j] has ^

vounger brothers dominating f ^on-empty string. Then the father of n is admitted by a rule of the form (C -* ßAß').

C is the label of the father of n, .aid ß consists of the labels of the younger brothers of n in order. Then ß ^> a[i j], ICi

where 0 < i < j. Removing the descendants of n's father from t gives a tree t' whose yield is a[0 i]Ca'. Therefore C

follows a|0 i|. We have shown that (C -> ßAß') is a rule, C foUows a[0 ij, and ß =*> a[i j]. It follows that A »■*■
belongs to the set given in the theorem. .'i>

Final"' suppose that the younger brothers of n dommate the empty string in t. Then if C is the label of n's C">

father, C can begin with A. Removing (he descendants of n's father from t gives a tree t' whose yield begins with ^

afO j]C. Then C belongs to the given set by induction hypothesis. If C G (first X) and C can begin with A, then A e

i first X). Therefore A belongs to the given set. This completes the proof.
:v

We are finally ready to present the analogues of lemmas 3.1, 3.2 and 3.3 for the parser with prediction. m

Lemma 5.4. Let a be a non-empty string. Suppose that for 0 < i < k < (length a), (S i j) is the set of dotted

rules that follow a|0 i] and derive a[i j], while (S' j k) is the set of symbols that follow aft) jl and derive a[j k). The ^

set of dotted rules that fo'i.^w a[0 i) and derive a(i k) using many symbols is 95

78

Report No. 6813 BBN Laboratories Incorporated

(SkipSmpty U (AdvanceDot (S i j) (S' j 1c)))
i<j<k

Proof: Expanding definitions and using the same argument as in Lemma 3.1 we have

(SkipEmpty U (AdvanceDot { (B -4 fi.^) e DR | B follows a[0 i] A ß =*> a[i jj }

i<j<k {A | A follows a[0 j] A A =*> a[j k]})) =

(SkipEmpty { (B -> |iA.ß2) € DR | B follows u[0 i]

A (3 j. i<j<k A ß =**■ a[i j] A A follows a[0 j] A A ^> a[j k]))

)

If B follows a[() i], (B -> ßAß-,) is a nde. and ß =*> a[i j], then A follows a[0 j]. Therefore the statement that

A follows a|0 j] is redundant and can be deleted, giving

(SkipEmpty {(B -> ßA.ß2) e DR | B follows a[0 i]

A (3 j. i<j<k A ß ^> a[i j] A A ^> a[j k])}

)

This in tum is equal to

{ (B -> ßAß' ^3) e DR 1 B follows a[0 i]

A (3 j. i<j<k A ß =*> a[i j] A A ^> a[j k]) Aß' ^> #}

This is the set of dotted rules that follow a[0 i] and derive a[i k] using many symbols.

Lemma 5.5. If (length oO > 1 and S is the set of dotted rules that follow a[0 i] and denve a[i j] using many

symbols, then (close (finished S)) contains all symbols that follow a[0 i] and derive a[i j], and every symbol in this

set derives a[i j].

Proo*": It is easy to show that every symbol in the given set derives a[i j]. Suppose A follows a[0 i] and

derives a[i j]. Then by Lemma 4.2 there is a dotted rule (B -> ß.) such that ß =*> a[i j] using many symbols and A

^> B. Then B follows afO i]. so A is in the given the set.

Definition. If S is a set of symbols and R a set of dotted rules, (filter S R) is the set of rules in R whose left

sidesareinS. In other words, (filters R)= ((A->ß.ß')e R.I Ae S].

Lemma 5.6. Suppose S contams every symbol that follows a[0 i] and derives a[i j], and every symbol of S

derives a[i j]. Then the set of rules that follow a[0 i] and derive a[i j] using one symbol is (filter j A I A follows a[0

i] | (NewRules' S)).

Proof: By Lemma 4.3 we know that every dotted rule in the given set denves a[i j] using one symbol, ana

ceaamly they all follow a[() ij. Consider any dotted rule that follows a(() i] and derives a|i j) using one symbol; it

can be written in the form (A —> ßLß'.ßj), where ß and ß' denve # and B derives a[i j]. Since A fouows a[ü i) and

ß =*> #. B follows a[01]. Therefore B € S and the rule i included in the given set.

Let a be a string of length L. For 0 < i< k < L, define

79

®^tftfwmiM^^&v^

BBN Laboratories Incorporated Report No. 6813

(pred j) =
(first (if j = 0 E*

{ (start)}
(u 0<i<j (next (dr i j)))

))

(dr i Jc) = >.
(let rules1 = (SkipEmpty (u i<j<k (AdvanceDot (dr i j)

(u (finished (dr j k))
(if j+l=lc (a[j k]) 0))))) Vj

(let rule32 = (filter (pred i)
(NewRules' (close (if i+l=k {a[i k] }

(finished rules,))))) J>
(u rules1 rules2) 0%

))

g
Theorem 5.6 For 0 < k < L. (pred k) is the set ot symbols that tollow a[0 k] and tor 0 < i < k (dr i k) is the set «9

ot dotted rules that follow a[0 i] and derive a|i kl.

Proof: We argue by induction on k. The base case is obvious. If k > 0. we first show by induction on the

length of a[i k] that (dr i k) is as claimed for all i < k. Consider any j such that i < j < k. By the hypothesis of the
KM

induction on k. (dr i j) has the desired value. By the hypothesis of the induction on the length of a[i k], (dr j k) has 5n

the desired value. Then rules, is the set of dotted rules that follow a[ü i] and derive a[i k] using many symbols, by

Lemma 5,3 Next we show that the argument of NewRules' is a set S such that every member of S derives a[i k] and Ss

every symbol that follows a[0 i] and derives a[i k] is in S. If i+l=k we have (close |a[i k)|) is the set of symbols «c

that derive a(i k), which has both properties. If i+l < k then Lemma 5.4 shows that (close (finished x)) has both

properties, (pred i) io the set of symbols that follow a[0 i] by the hypothesis of the induction on k so by Lemma 5.5,

rules^ is the set of dotted rules that follow a(0 i] and derive a[i k] using one symbol. Then the union of rules, and

rules-, is the desired value of (dr i k). This completes the induction on the length of a[i k]. Since (dr i k) has the m

desired value for i < k, <pred k) is the set of symbols that follow a[0 k] by Lemma 5.2. This completes the induction W

on k and ends the proof.

Corollary: (start) € (finished (dr 0 L» iff a is a sentence of the language generated by G. J,■

We have proved the correctness of the parser when it uses an ideal induction table. We must still consider

what happens when the parser uses a weak prediction table.

Theorem 5.7. If PredTable contaias the set of all [A B] such that A can begin with B, then (start) e (finished S J

(dr 0 L» iff a is a sentence of the language generated by G.

Pmof: Note that the parser with filtering always builds a smaller (dr i k) than the parser without filtering. JJQ

Since all the operations of the parser are monotonic, this is an easy induction. So if the parser with filtering puts

(start) in (dr 0 L) the narser without filtering vill do this also, implying that't is a sentence. Note also that the parser fi.

with filtering produces a larger (dr i k) given a larger PredTable (again ,thi; Icllows easily because all operations in

the parser are monotonic). So if a is a sentence the parser v h the toeal prediction table includes (start) in (dr 0 L),

and so does the parser with the weak prediction table. pQ

Ki i

IOUÖÜLXX;^JO\K3WM7SXiyCnX/\M^

Report No. 6813 BBN Laboratories Incorporated

A.6 Discussion and Implementation Notes

/' We have described a parser for a formalism simpler than many formalisms called "unification grammars".

*N There are no meta-mles. no default values of features, no general agreement principles (Gazdar et. al. 1986). We

have found this formalism adequate to describe a substantial part of English syntax—at least, substantial by

W present-day standards. Our grammar currently contains about 400 syntactic rules, not counting simple rules that

introduce single terminals. It includes a thorough treatment of verb subcategorization and less thorough treatments

•n, of noun and adjective subcategorization. It covers major construction types: raising, control, passive, subject-aux
V,
V. inversion, imperatives, wh-movement (both questions and relative clauses), determiners, and comparatives.

^. It is clear that some generalizations are being missed. For example, to handle passive we enumerate by hand

the rules that other formalisms would denve by meta-rule. We are certainly missing a generalization here, but we

have found this crude approach quite practical—our coverage is wide and our grammar is not hard to maintain.

'.. Nevertheless we would like to add meta-rules and probably some general feature-passing principles. We hope to

treat them as abbreviation mechanisms—we would define the semantics of a general feature-passing principal by

showing how a grammar using that principal can be translated into a grammar written in our original formahsm. We y.
>"• haven't done this yet, and from the theoretical standpoint that is a weakness of our work.

'7\ There is another way to generalize the formalisni—by replacing Robinson's unification with a more general

W- matching device. Our approach is well suited to this kind of generalization because we maintain a sharp separation

between the details of unification and the parsing mechanism. Wc proved in part A.2 that unification allows us to

h. compute certain tunctions and predicates on sets of grammatical expressions—symbolic products, unions, and so

forth. In parts A.3 and A.4 we assumed that these functions were available as primitives and used them to build

bottom-up parsers. Nothing in parts A.3 and A.4 depends on the details of unification. If we replace standard

unification with another mechanism we have only to re-prove the results of part A.2 and the correctness theorems of

parts A.3 and A.4 follow at once. To see that this is not a trivial result, notice that we failed to maintain this

"C" separation in part A.5. In order to show that one can build a complete prediction table, we had to consider the

details of unification: we mentioned terms like "alphabetic variant" and "subsumption . We have presented a

i theory of bottom-up parsing that is general in the sense that it does not rely on a particular pattern-matching

': mechanism—it applies to any mechanism for which the results of part A.2 hold. We claim that these results should

hold for any reasonable pattern-matching mechanism: the reader must judge this claim by his or her own intuition.

:". Let us consider some proposed generalizations of Robinson's uruficaüon. A current favonte is the so-called

disjunction mechanism. This allows one to represent the three terms (f (a)), (f (b)). (f (c)) as a single term: (f (or (a)

V ibi lcl)t, It can he formalized as follows. A reduction of a term is defined recursivelv: a reduction of (or x v) is ;inv

reduction ot x or y. and If f is not equal to or , a reduction ot (f x y) is any expression of the form (t x y) where

N x' and y' are reductions of x and y respecuvely. A ground instance of a term t is a reduction of a substitution

instance of t that contaias no vanables. Given these definitions one can devise a more general unification algorithm

and re-prove the results of part A.2 (the idea is to treat the choice of a value for a disjunction just as Robinson treats

HI

Gv^^>^>:'^^:k>:.>:^^u,; :ffi>

i

BBN Laboratories Incorporated Report No. 6813

the choice of a substitution for a variable). The correctness theorems for bottom-up parsing follow at once. More

general versions of disjunction are possible and probably desirable.

In the authors view, disjunction is the only extension to Robinson's unification that is clearly required in

natural language grammars. It may seem plausible to argue that negation is needed, because the base form of an

English verb, when read as an indicative, is not third person singular. On the other hand, why not use disjunction to

say that the base form is either first person, second person, or third plural? There is no reason to think that any

linguistically significant generalization is being missed here.

Our implementation is a Common Lisp program on a Symbolics Lisp Machine. The algorithm as stated is

recursive, but the implementation is a chart parser. It buUds a matrix called "rules" and sets rules|i k] equal to (dr i

k), coasidenng pain; [i k] in the same order used for the induction argument in the proof. It also builds a matrix

symbols'" and sets symbols[i k] to the set of symbols that derive a|i k], and a matrix "pred" with pred[i] equal to

the set of symbols that follow a[0 i|. Currently the standard parser does not incorporate prediction. We have found

that prediction reduces the number of symbols in the matrix "symbols" by a factor of more than 4, but the cost of

prediction is so great that a purely bottom-up parser runs faster.

Our program uses a vanation of Boyer and Moore's structure-sharing technique. This means that instead of

applying a substitution s to a term t. we use the pair |s t| as a representation for the result of applying s to t. The

■S original version allowed one to unify two expressions in this structure-shanng representation. We have found it

more efficient to insist that in each unificaoon. at most one term is in the structure-sharing representation. This t

allows us to represent a substitution as a simple association list, using the function "assoc" to retrieve the

substitutions diat have been made for variables. To avoid unifying two expressions in the structure-shanng 'IJ

representation, we must occasionally translate an expression from stiucture-sharing to the standard representation. It ■
suffices to make sure that all the terms appearing in the matrix of symbols and the matnx of predictions are in the

standard representation. It is naturally cheaper to do this translation for single terms rather than whole rules. m

The other optimizations are fairly obvious. As usual we skip the occur check in our unifications {x long as ,•,

there are no cyclic types this is guaranteed to be sale). In each symbolic product one set is indexed by the topmost >*

function letter of the term to be matched, which saves a good number of failed unificatioas. These simple techniques

give us tolerable performance—a short sentence is parsed in ten or fifteen seconds. i>

d

' m ".

87

■:■;

.«'

&

!Ä

i

i

Report No. 6813 BBN Laboratories Incorporated

References.

Baiton, G.E.. Berwick, R. C. and Ristad. E. S. (1987) Computational Complexity and Natural Language.
CaniDridae; the MIT Press.

h> Gazdar. G. E., Klein, G., Pullum, G., and Sag., I. (1985) Generalized Phrase Structure Grammar. Oxford:
C1' Basil Blackwell.

Graham, S.. Harrison, M., and Ruzzo. W. (1980) "An Improved Context-free Recognizer." ACM Transactions
an Programming Languages and Systems 2. 415-462.

Robinson. J. A. (1965) "A Machine-Oriented Logic Based on the Resolution Principle." Journal of the ACM
12(1), 23.

Shieber. S. (1985) "Evidence against the Context-freeness of Natural Language." Linguistics and Philosophy
8(3). 333.

X3

^y->>>raö?0^öyöüftj<^^ .^^-I^^i^^^rii^^^

BBN Laboratories Incorporated Report No. 6813
2

-

^

ffi

^

s

S:

-■?

84

3?

EßVMM&QWJWPMMJWil^^

