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Summary-- r

We considerlthe problem; of reconstructing an image from a noisy record. We.
describesexisting methods due tG Geman and Geman (1984) and Besag (1986) which use
a Markov random field model f r the true scene but assume that each pixel consists of a
single colour. In order to imfrove the quality of the restoration at the boundary of
regions of different colours tw extend these methods to allow pixels to contain two
regions of colour separated by a single straight line. An algorithm for performing the
reconstructioq is presented and illustrated by an example. (.

1. Introduction.

We consider a rectangular region partitioned into pixels labelled 1,2,...,n. Each
pixel is coloured black or white and the colour of pixel i is denoted by xi which takes
the value 0 for white and I for black. The x i are unobserved. We work instead from the
observed record y, which consists of xi plus added noise. We denote the whole scene by
x = [xi ; i=l,...,n} and the set of records by y = (yi; i=1,...,n). The noise
distribution will be assumed to be known but if this were not the case, "it could be
established by studying training data.

Recent developments in statistical restoration methods use a Bayesian approach.
The maximum a posteriori (MAP) estimate of the true scene is the value of x which
maximises P(xly), the conditional probability of x given the record y. By Bayes'
theorem

P(X1y) - 1(y1X) p(x), (.) <

where I(yfx) is the conditional likelihood of the observed record, y, given the true

colouring, x, and p(x) is the prior probability of x.
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We assume the conditional density function f(yi xi) to be known and for the
remainder of this paper we shall assume that the records, yi, are independently
distributed as Gaussian with mean xi and variance d2. Thus,

nh

(ylx) = f(Yi Ixi) = (2n(;2) 2(Yi -xi )2}.
i=j 12( i=1

To obtain a valid formula for p(x), we assume that the true scene corresponds to a
locally dependent Markov random field (MRF) with respect to a specified neighbourhood
system, that is, the conditional distribution of pixel i given the colourings of all other
pixels depends only on the neighbours of pixel i. We shall use a second order
neighbourhood system in which pixels are considered to be neighbours if they are
horizontally, vertically or diagonally adjacent to each other. A detailed definition and
further examples of Markov random fields may be found in Besag (1974).

The form of p(x) is determined by the nature of the Markov random field. In our
case, we have

p(x) e - z),

where Z(x) is the number of discrepant pairs in the scene, x, i.e. the number of pairs of
neighbours which are of opposite colour, and 3 is a fixed positive constant (normally
chosen to be between 0.5 and 1.5 ).

The maximisation of P(xly) now corresponds to the rninimisation of

(y-x + Z(x) (1.2) -
2(72ju

over values ofx = {x;i=l,...,n}.

This expression may be regarded as a penalty, the first term penaising any r

difference between the record and the fitted value, the second term penalising excessive
roughness in the reconstruction. Clearly, with 2 possible values for x this is a
computationally large problem and necessitates the use of a sophisticated algorithm.

Geman and Geman (1984) use the method of simulated annealing which attempts to
find the MAP estimate of x given the record y. Their method is computationally
extravagant and more recent developments by Greig, Porteous and Seheult (1986) show
that the MAP estimate of any two colour scene may be found exactly using the Ford- ,-.
Fulkerson labelling algorithm for maximising flow through a network.

Besag (1986) proposed the computationally simpler method of iterated conditional
modes (ICM) which updates each pixel in turn, choosing for it the most likely colour
based on its record and the current colouring of its neighbours. In updating pixel i the
new xi is chosen to minimise the sum of terms involving xi in the penalty (1.2), i.e.
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where Z(xi) is the number of neighbours of pixel i in the current restoration which are
of the opposite colour to xi . The method proceeds by scanning the scene, successively
updating each pixel until convergence is reached. This will normally occur at a local O

rather than global maximum of P(xly), but, given the possibility of undesirable long
range dependencies in the MRF model, this is not a serious drawback and might even be
an advantage.

2. Split Pixels

So far we have considered scenes in which each pixel is coloured wholly one
colour. We now allow pixels in the true scene to be coloured partly black and partly
white. Each record yi is distributed as Gaussian with variance Y2 and mean pi, the
proportion of pixel i which is coloured black. The restoration methods that we have
previously discussed can be used for this problem by proceeding as if the pixels were
only of one colour but the quality of the restoration at the edges of objects or regions
will obviously be poor. Instead, we can allow pixels in the restored image to be
coloured partly black and partly white. The simplest form of this is to quarter each pixel
and allow it to be filled with the most likely of the 2 configurations. This method,
proposed by Jennison (1986) uses a modified version of ICM, firstly iterating at full
pixel size and subsequently restoring the quarters; in the second stage the same form of
MRF model is used for the subpixels as is originally used for full pixels This method
appears to work well and has prompted work into the further breakdown of pixels.

For further refinement we can either (i) consider an mxm breakdown of each pixel
or (ii) use continuous lines within the pixel to represent the edge. The implementation
of (i) requires the minimisation of

i Y -- 1 2:q, ~ k+ Pi £Z(x*a),
- i=1 (=1 k= i = j=1 k=1

where the subscript ijk refers to subpixel j,k within pixel i; xyk takes value 0 or 1 and
Z(X1,k) is the number of subpixel neighbours of subpixel ijk in the current restoration
which are of the opposite colour to xqt. Note that subpixels at the edge of a pixel will
have some subpixel neighbours contained in an adjacent pixel. We can see that as m
increases this minimisation becomes computationally cumbersome. Also, it offers only an
approximation to (ii) and it turns out to be easier to pass to the limit and work directly
with continuous solutions.

The most basic form of (ii) allows a single straight line edge within each pixel and
it is the implementation of this that we shall describe. It is no longer meaningful to talk
of discrepant pixel or subpixel pairs and we replace the second term of (1.2) by a
multiple of the total length of edge in the reconstruction x. Thus, the restored image is
chosen to minimise



(yi -Pi(X)) 2 + P'L(x), (2.1)

over images x made up of pixels xi, i=1,... ,n either of a single colour or divided into
two regions of different colours by a single straight line; pi(x) denotes the proportion of
black in pixel i; L(x) is the total edge length in scene x and D' is a fixed constant related i.l
to the P3 used earlier.

An advantage of edge length as a measure is that the penalty is rotationally
invariant, i.e. remains constant throughout all rotations of the scene within the region.
This could not be obtained using discrepant pairs as a measure although it has been
shown by our colleague Robin Sibson that this variability can be minimised using a
down weighting of I/i'2 for the diagonal adjacencies.

3. The Restoration Algorithm

The restoration is done in three stages, the first two of which have already been
described :

Stage 1: ICM to convergence on full size pixel grid.

Stage 2 :ICM to convergence on 2x2 pixel grid.

Stage 3 : Updating process on the line -gments representing the edges.

Stage 3 requires that we now regard the reconstruction as a series of line segments
separating the two colours. An initial representation is obtained in a straightforward way
from the end product of Stage 2. The updating process treats pixels in pairs, selecting
the best place for two edges to meet, given the current restoration of neighbouring
pixels.

As an example, consider the configuration at pixels i and j shown in Figure 1. The
distances a and b are determined by the current colouring of neighbouring pixels and",*_,
treated as constant for the moment. The distance W is chosen to minimise the
contribution from pixels i and j to the total penalty (2.1), i.e.

- Pen-(WJ- (yk - PkW) 2 + P'(e'W + eJw), (3.1)

where ekw is the length of edge in pixel k when the join is at W and pkw is the
proportion of black in pixel k when the join is at W.

For the case shown in Figure 1, this penalty is

1 22-'p
g(W) 2 - {(yi-a--(W-a))2+(yj-b-{(W-b)) ,

+ 13{ 4 l+(W-a)2+l+(W-b)2 }. 5
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Fig. 1. Updating the position of edges in pixels i and j.

This can not be minimnised directly but the form of

dg(W) 1(2W+a-2yi+b-2yj) + [ (W-a) + (W-b) 1
,W 7j4 1+(Wa)2 r/ +(W~b)

suggests an iterative approach. Given an approximate solution W.'_1 we solve

- (2W,+a-2y +b-2y) + (W,-a) + (W--b) 0
4,(;2 Yi -T+(Wj-ja)2 1+-(Ws--)

to obtain

4 "+ + (2y-a+2y-b)

w, = 4/+(w-5..- a)Y ;1+(W,-'...-b7

2+4a91'[ 1 + 1 1ql4+(Ws._.-a) 2  41+(W,_..-b9J

Starting from any sensible initial value, W0, accuracy to 3 decimal places was
achieved after at most four iterations. In practice we take W0 to be the value of W prior
to this update. S

Different forms of (3. 1) are possible depending on which neighbours of pixels i and
j contain both colours. There are only four distinct cases that may arise and these are
shown in Figure 2. ,
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Fig. 2. Possible configurations of edges in two neighbouring pixels.

We have shown the method of solution for case (i) and cases (ii) - (iv) are solved
in a similar way. All other cases can be reduced to one of the above by means of
exchanging and/or inverting the pixels and their colours.

The most natural order of updating the edge pixels would seem to be to folow an
edge around, updating each join in turn, completing circuits of the edge until
convergence. An alternative method is to update every Ph join around the circuit,
therefore completing k laps before each pixel has been updated once. Initial results
suggest that this provides additional stability in the updating process; we have found the
value k = 3 to give particularly good results.

4. An example

We illustrateX' the methods we have described with an artificial example. Figure 3a
shows a true image and the superimposed pixel grid. The record from which a restored
image was was constructed obtained by generating a Gaussian random variable for each
pixel with mean equal to the proportion of the pixel coloured black in the true image and
variance 0. 12. Figure 3b is the reconstruction after stage 1, in which the 1CM method
with 5= I has been used, treating each pixel as either completely black or completely
white. Note that this is a rather poor approximation to the true image but it is the best
that can be done without dividing pixels. Subdividing each pixel into four in stage 2
produces the reconstruction in Figure 3c: the amounts of black in each full pixel are now
much closer to the corresponding records and the divisions of split pixels match up well
with the true image. Proceeding to stage 3, using P'=2, gives the final reconstruction
shown in Figure 3d, despite the coarseness of the original pixel grid and the addition of
noise to the record, this reconstruction is barely distinguishable from the true image.



Fig 3a True image Fig 3b Reconastruction after stage 1

Fig 3c Reconstruction after stage 2 Fig 3d Final reosucioui

S. Further extensions

(a) Consider a pixel which has true colouring as shown in Figure 4. Clearly the
4 straight line approximation to this edge will be poor and could have an adverse effect on

the reconstruction of neighbouring pixels and pixels further along the edge. Thi may be
overcome using a more intricate restoration method, e.g. allowing two straight lines
meeting at some point within a pixel.



Fig. 4. A pixel containing a boundary that can not be approximiated well
by a single straight line.

(b) The method presented in this paper can be extended to scenes containing more
than two different colours. Where any two regions meet we can adjust the algorithm to
provide a continuous line join. More computation is required to find the best colouring
for a pixel in which three or more regions meet.
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