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'".... The bootstrap and smoothed bootstrap are considered as alternative methods of

estimating properties of unknown distributions such as the sampling error of parameter

estimates. Criteria are developed for determining whether it is advantageous to use the

smoothed bootstrap rather than the standard bootstrap. Key steps in the argument

leading to these criteria include the study of the estimation of linear functionals of

distributions and the approximation of general functionals by linear functionals.

Consideration of an example, the estimation of the standard error in the variance-

stabilized sample correlation coefficient, elucidates previously-published simulation

results and also illustrates the use of computer algebraic manipulation as a useful

technique in asymptotic statistics. Finally, the various approximations used are

4 vindicated by a simulation study. ( }. : '

Some key words and pbrasesbbstrap, computer algebra: density estimation; kernel,,

resampling).smoothed bootstrap.
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1. INTRODUCTION

1.1 The standard bootstrap

The bootstrap is an appealing non-parametric approach to the assessmet of arms and related
quantties in stwastical estimation. The method is described and explored in detail by Efron (1979,
1982). A typical context in which the bootstrap is used is in assessing the sampling mean square error
a(F) of an estimate 6(X1,...,X,) of a paraneta O(F) based on a sample X,....,X. drawn from an
unknown distribution F. If F were known, cr might be most easily estimated by repeatedly simulating
samples from F. The standard bootstrap technique is to estimate a(F) by the sampling method, but
with the samples being drawn not from F itself but from the empirical distribution function F. of the
observed data Xl,...,X.. A sample from F, is generated by successively selecting uniformly with
replacement from {X1 .... to construct a bootstrap sample {X*1 .... X*,. For each bootstrap
sample, the estimate O(X* ,...,X*,) of the quantity O(F,) is calculated. Since arbitrarily large numbers
of bootstrap samples can be constructed, 0(F.) can easily be estimated to my reasonable required
accuracy from the simulations. The quantt(F,) is then used as an estimate of .z(F).

. The bootstrap methodology thus consists of two main elements, which are often confused. There
. is firstly the idea of estimating a functional 0(F) by its empirical version 0(F) and secondly the

...- ,. observation that 0(F.) can in very many contexts be constructed by repeated resapling from the
observed data. The resampling idea is an ex emely important one, but it has, perhaps, been
overstressed at the expense of the underlying estimation seep. Once the two steps ae conceptually
separated it becomes easier to gain a fuller understanding of how the bootstrap actually woks. In
particular it becomes clear that there is nothing special about estimating funcdonals ct(F) that are
themselves sampling properties of parametr estimates; the bootstrap idea can be applied to any
functional 0(F) of interest.

12 The smoothed boot

Because the empirical distribution F, is a discret distribution, samples constructed from F, in
the bootstrap simulations will have some ra peculiar propetm. All the values taken by the
members of the bootsuap samples will be drawn from the original sample values, and nearly every
sample will contain repeated values. The smooded bootstrap, suggested by Efton (1979), is a
modification to the bootstrap procedure to avoid samples with these propries. The essential idea of
the smoothed bootstrap is to perform the repeated sampling not from F itsel& but fom a smoothed
version t of F,. Two possible versions of the smoothed bootstrap will be described in min detail
below;, whatever method of smoothing is used, the nt effect of using the smoothed bootstrap is to
estimate the functional a(F) by a(P).

The main aim of this paper is to invesdga some properties of the smoothed bootstrap, in order
to give some insight into cirmstances when the smoothed bootstrap will give beter results than the
standard bootstrap. As an important by product, the value of compute algebraic manipulation as a tool
in asymptotic statistics will be demonstrated.

Efron (1982) considered the application of the bootstrap, and various other techniques, to the
estimation of the standard error of the variance-stabilized transformed correlation coefficient. He
illusraed by direct simulation that in a particular case a suitable smoothed bootstrap gave betr
estimates of standard erro than the standard bootstrap. We shall discuss Efron's example later in the
paper and demonstrate how his results can be elucidated and extended by using a suitable
approximation MIpUMt

•Before going on t dismiss the estmaion of general funcionals a(F), we shaflti conider the::estimation of functionals (x that wre linear in F. For such functicmls we shall obtain simple suftiiem
:.conditions under which using the smoothed bootstrap can decrease the mean square am to the

estimation of O(F).
We close this section by giving details of the two kinds of smoothed bootstrap coisidered inla

discussion. Suppose Xl,....,X, is a set of r-dimertional observations drawn from some r-variate density
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f and that V is the variance matrix of f, or a consistent estimator of this variance matrix, such as the
sample variance matrix of the data. Choose a kernel function K such that K is a symmetric probability
density function of an r-variate distribution with unit variance matrix, for example the standard unit r-
variate normal density.

Define the kernel estimate 1a(x) of f(x) by

f1(x) - lVj'n-'h-'j Kih-'V"-(x-X,) I (1.1)

and the shrunk kernel estmate fh.,(z) by

Ih.,(X) = (l +h2 )V / {(1 +h) x1 . (1.)

Density estimates in general are discussed, for example, by Silverman (1986). The smoothing
parameer h determines the amount by which the data are smoothed to provide estimates. Estimates of
the form (1.2) have the property that the density I, has the same variance structure as the original
data, if v is taken to be the sample variance matrix.

Given any functional a(F) of an r-variate distribution F, the unshmnk smoothed bootstrap
* ~ ~ smate of a(F) is defined to be o.(F5 ) and the shrunk smoothed bootstra estimate is cz(Fk.a), where

" F, and F,, are the distribution functions corresponding to f5 and f., respectively. It is easy to
simulate either from a or from fat by sampling with replacemet from the original data and pemurbing "'7N.
each sampled point appropriately; for details see Eftn (1982) or Silverman (1986, Section 6.4). Hence
values of rx(F,) and co(F,) can be obtained in practice by simulati if necessary.

2. LINEAR FUNC1IONALS

In this section we consider the estimation of a linear functional A(F). Because A is linear, ,r
standard calculus d o rates the existence of a function a(t) such that NTIS GRA&I

A(F) rfa() dF(t) DTIC TAB
J "_" 

'
- Unannounced [

The standard bootstrap estimate Ao(F) will satisfy ustf catn

4(F) A(F.) = fa(t) dF5(t)- a-'I a(X._
The unshrnnk smoothed bootstrap estimate A5 (F) will satisfy Distribution/

Availability Codes

Ah(F) - j'a(ot)* dtAvail and/or

and the shunk smoodied bootstrap esma e A,4(F) win f D Specsaatsf

Sa(F)- a(t)d,(t)

with A and /,, as defined in (1.1) and (12) above.

In the discussion that follows we shall assume that the function a has cotinuous di es of all
oresrequired. All unspecified intgrals arm ten over the whole of v-dimensional spa=e Assume

that V is fixed and define the differential operator Dv by

Our firs theorem gives a criterion for smoothing, without shrinkage, to be of potential value in
the bootstrap estimation process.

THEOREM 1

Suppose a(X) and Dva(X) are negatively correlated. Then the mean square error of ,(F) can be

reduced below that of o(F) by choosing a suitable I > 0.

1N
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Proof

Assume without loss of generality that A(F) = 0, by replacing a(l) by a(t)-Ja(x)f(x)dx if necessary.
By this assumption,

MSE A .(F)) = E(A.(F) 2 1 = var{Aj(F)j + ([E(A(F))J2

Now, by some easy manipulations, Ah(F) = n- I jw(X), say, where

w(x) = ja(t)h-'IV-"K(h-' V"(t-x)j di = IK(4)a(x + hV ) d4

on making the substitution t=x+hVk.

A Taylor expansion gives

a(x+hV4) = a(z) + h(VI)TVa(x) + Ah 2(VI)VH.(x)(V4) + 0(h4')
where H.(x)u=cIa(x)larax.

By our assumptions on the kernel K it follows that
w(x) = a(z) + %ahDva(x) + O~a'). (2.3)

* Th

E{, (F)) = E{w(X)} - h2f(l)Dva(x) dx + 0(h4). (2.4)

since Ja(x)f(x),d -0. Also. since X1 ,....X. ame independent,

- n var{A,(F)l - var{w(X)l - Ja(xzf (x) d+h 2 Ja(x)Dva(x)f (x) dX+0(h4), (2-5)

using (23). Combining (2.4) and (2.5) gives the mean square enor

MSELAA(F)1 - n-IJa(x)2f(x)dx + a-Ih~ja(z)Dva(x)f(x)dz + 0(h4). (2-6)
-For fixed a, dte aiation (2.6) demonW es tha, unde the assumption that a(X) and Dva(X) are

negSavely condaud the mean square ero of Ah(F) will, at least for small h, be sm211 than that of
. A(F), completing e pmoof of etheorem.

The next thesxem gives the corrsponding critro for smoothing with shrinkage to lead to more
acua booftrap esmtioni. Defin a*(X) by

a*(X) -, Dva(Z) - X.Va(X).

* TIEOREM 2.

Suppose a(X) and a*(X) an negatively correlated. Then the mean squareM error of ,,(F) can be
S .. reduced below that of Ao,(F)=Ao(F) by choosing a suitable k > 0.

Proof

As before, assume without loss of generality that A(F) =0. We have by similar manipulations to
those used above,

Ah,(F) = , -1 ,W(X).

where

w*(x) = (l+h2)"'Ja(t)h"l'V-K[h-' V (x - (+h)}] dt

ja((t+hXI(x+hv"')K()d4,
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on making the substitution t = (x + hVVk)/(l + h2)4. Now, for h small, (1 + h2) = - hz, so

w*(x) = fa(x + hV" - h2 x)K(4) d.

A Taylor expansion of a about x, and our assumptions on the kernel K give

w*(x) = a(Z) + l/hZa*(X) + O(h 4 ) (2.7)

Now we have

1A,.(F))} - Ew*(X)} = ,lhff(x)a*(x)dx + 0(h 4 ),

and, on using (2.7),

nt var(Ah,(F)l = faXf r)d + h2 fa(x)a*(x)f(x) dx + 0(h4).

The proof of Theorem 2 is completed in the same way as that of Theorem 1.

As a simple illustration, consider the estimation of the sixth moment fx'f(x)dx of a univariate
density. It is not immediately clear whether or not smoothing is worthwhile in this case. In the
notation used above, a(x) = 6

, Dya(X) = 30Vx4 and a*(x) = 30VX4 - 6x6 . It follows that, setting

covfa(X), a*(X)j - -6;t1 2 + 3OV;±1o + 6gi - 30Vp4p.
If, for example, X has a normal distribution with mean zero and variance V, we have

=J VIZ-(2j)!/j! and hence

cov{a(X a(X)) = - 34020 V6 < 0.

Thus a shrnk-smoothed estimate Jx'la.,(z)dz will always, for a suitably chosen value of h, give
. ..., .. a more accurate estimate of EX6 than will the raw sixth moment if X is drawn from a normal

distribution. Similar calculations for other distributions show that the same conclson holds under a
wide variety of distributional assumptions for X.

The results obtained by applying the criteda can sometimes be a little sutpxising. Suppose X is
drawn from a standard normal distribution. Applicaon of the criterion for esimmion by unshrunk
smoothing demonstrates that, for small k this will have a deleterious effect in the estimation of either
. 4 or EX2 alone. However, for the liea combination of momenta E(X' - cX), unshrntk
smoothing will be worth perfarmng provided c > 6 Details of this somewhat counter-intuitive result
an left to the reader to reconsract.

We do not. in this paper, devot nmch atntion to the question of how mach smoothing should
be applied in cases where smoothing is worth perorming; that problem is left for fure wor
However, the last example of this section demonstrates that the question of how mnh to smooth Can be

S. * .-a rather delicate one, In this example, let % denote the density of the nomal disu tdon with mean
zero and variance o2. Let

4c(F) Jtd~)
and suppose that the quantity a converges to zeo a the sample size incmam. Ame dat F has a

smooth density f with derivatives of all orers required. Coade the estimatim of A(F) by the
unshnink smoothed estimator A,(F), constrocted using the normal density as the kael. We shall
investigate the optimal large-sample behaviur of the smoothing parmner . Anmm throughout that h
is small for large n and that f(O) > 0.

Setting 8=h2 + a d performing som sipl manipulatin Sivs
A,(F) - J %(t)j,(t), - a- y(x,).

%-Hence, substituting u -t8 and performing a Taylor series upu ,



EAA.(F) = f4ps(t)f(t),* . jp(u)f(4s)lu __ f(O) + % 82f (0) + O(84).

Since, by a similar argument,

Ae(f) = J ()f(Odt = f(O) + 10f"(O) + 0(c'),

it follows that

EA,,(F)-A.(F) = ,h2f"(O) + 0(84 ).

By standard arguments
var[A,(F)l = n= 1 var(OP&(M) = n- /'(0)/(26x)(I +O(8)1.

Thus the mean square error of A(F) will be, asymptotcally, given by

MSE,[(A(F)1 - n-If(O)/(2n'I) + 'fh'(o9

= n-f(O)/( A') + I(82_e32-f- ")2

where the terms neglected are of order n-1 - 86. This approximate mean square error is a convex
function of &, and its minimizer will satisfy

- -(82 - £) = C(f)n-1 . where C(f) - f(O)I{20f'(0)2).

or, in terms of h and e,

(1 + h/e9"h1 /C2 . Ctfn-187. (2-8)

Denote by iV(R) the rmt in (0, -)of the equaton

(1 + y 2)' = R;
then by simple calculus I(R) - R 4 as R--O and #(R) - R us as R-+c. The asymptodcally optimal

h for the estmaton of A, will satisfy, finm (2.8),
- c y {C(f)n-t'}.

If nf CI-..- then

.... - eC(f)Wn-bc- = C(f) n-I .

Standard density estimation theoy (P-eun, 1962) Shows that this is d asymptoially optimal

smoothing parametr for die estimation of the density at zero. Thus, in this case, the best estimate of
A, will be based on the best estimate of dhe density.

Unforanately this will by no means always be the case. If n' - - 4 0, we will have

h,,- e C(f)%..1 C-" - C(f)*nx-'r-

and if n=I-s-.*a, where 0 <a <.,

A,, - v{i(aCf)).

In neither of these caes will it be optimal to constrct an optimal estimate off in order to
estimate A,(f), since the optimal choice of h will be smaller, in order of magninde in the first case, S

than that required for the estimation of f iself. Thus the optimal estimate of A(F) will be based on
an undersmoothed estimate of the underlying density. This example is, of coursp, rather articial, but it
does illustrate de likely difIculty of obtaining general rules for deciding how much to smoot when
estimating functionals of a density. Even in cases where smoothing is advantageus, the amount of
smoothing required may be quite different from that needed for the estimation of the density itself.

..

3. MORE GENERAL FUNCTIONALS

3.1 Linear approximation

a;.
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In this section, the work of Section 2 is extended, by considering local linear approximations, to
more general functionals of an unknown distribution. When an explicit bootstrap method is being used
the functional being estimated is unlikely to be linear, and so a more general theory is necessasy. Local
linear approximations to functionals of distributions have also been used by Hinkley and Wet (1984)
and Withers (1983).

Consider the estimation of a functional cgFo) of an unknown distribution Fo underlying a set of
sample data. Suppose that a admits a linear von Mises expansion about FO given by

a(F) = g(Fo) + A(F-Fo) (3.1)
where the linear functional A is representable as an integral

A(F - Fo) = j a(t)d(F - Fo)(t). (3.2)

A detailed discussion of differentiation of functionals and general von Mises approximation is given by
Femholz (1983). The precise accuracy of the expansion (3.1) depends on the detailed properties of o,
but the error will in general be of order suplF- F0 1.

The expansion (3.1) gives an obvious approximation to the bootstrap estimate of ct(Fo). If F is
, * . an estimate of FO, then we will in general have, provided supIF- FoI is O,(n'6),

o1(F) = 41(F0) + A(t) - A(FQ) +0,n)

and so the sampling properties of o(F) will be approximately the same as those of A(#). The criteria
of Section 2 can then be applied to the linear functional A. If using am appropriate smoothed bootstrap
will improve the estimation of A(Fo) then, neglecting any eors hment in the lnea apptoximation
(3.1), the smoothed bootstrap will be worth using in the estimation of ct(Fo).

3.2 The transfoned sample cosreation coefficient

In this section we consider application of the linear approximation procedure to estimation of the
sampling standard deviamon of the variance-stabilized sample co elation coefficient. Suppose Fe is a
bivariate distribution with mean zero and corrlanon coefficient p, and let =tanlrtp. Let r be the
computed sample correlation coefficient based on a sample of n independent observations from FO, and
let z=taw-r be the sample estimate of r,. Then the unctional of interest is ct.(Fo)=(va z)' 6. E15=
(1982) devoted considerable attention to the estimation of ot,(Fo) by a variety of methods. including the
smoothed bootstrap, for the specific case of Fo bivariate normal, with marginals of unit vaice and
p = V2, and for sample size a= 14.

A key step in our investigation of the estimation of c6(Fo) will be an appmximm foOM1a givren
by KendaU and Sumt (1977, p.6). Let

a(FO) _. (1-p2) "1 ig/lp, 2+ 1(/ p=+o/ + / )
- (JL3/;L11 p=+ I13/;1PM r))] % (3.3).

where pq is the (i,j) moment given by

p# fJ' ,'Fo(z).

Here and subsequendy in dtis section unsubscripted letters z will denote vecton (x ,%j). Kendail and
Stuart give

ct.(Fo) =- m-'a(F) + O(R-3),

so that estimation of a,(Fo) is approximately equivalent to that of z(FO).

Consider now the calculation of the function a(t) defined in (3.2). For fixed r let 8, be the
disuibution function of a point mass at m and, for any e>O let F be the improper disibution F+e,.
Then simple calculus combining (3.1) and (3.2) gives

a(t) - (d/de)o:(Fe)I,,o (3.4)

U .*.~~~*,'..*..., -. ~ ~ ~ % ka b.%hI,~. J
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Our functonal a(F) is defined for improper distributions, as well as for probability distribution
functions, and hence there is no need when calculating a(t) to consider the moe complicated
perturbation e(6,-Fo) to Fo used by Hinkley and Wei (1984). The actual algebraic manipulations
required in the calculation of a(t) from (3.4) and (3.3) are extremely laborious. However, it is
relatively easy to write a program in a computer algebraic symbolic manipulation language, such as
MACSYMA, to perform the necessary differentiations and substitutions. The function a(t) itself is a Q
fourth order polynomial in tj and t2 whose coefficients depend an the moments of FO. It is only used
as an intermediate step, in the special cases considered below, in the calculation of the criteria derived
from Theorems I and 2, and the calculation of these criteria was also performed by computer algebra.
Further details of the manipulations are available from the authomrs.

To complete this section we consider the results of the application of the computer algebraic
manipulation procedure to the functional (3.3) for two special cases. Further details of the results

for the shrunk smoothed bootstrap to be advantageous in the estimation of the functional A(Fo). Recall

that Aw(Fo)<O means that some smoothing at least is worthwhile.

Suppose, first, that the distribution of the data can be reduced by an affine transfacmanon to a
radially symmetric distribution Ft. Without loss of generality it can be assumed that Ft has unit'. ": i .... :: .marginal vawacs Let R be the radial component of F' , and denote by s the ith central moment oft]

R2. Computer algebra shows that the criterion Asa(Fo) reduces, in this case, to

A = - .3s, + (4-3'2)s3 + + 24 + 24sz + 161/32. (3.5)

where 0o is the positive quantity a(FoY-t . Using die standard inequality J3< 34, we have

-32A=(Fo) k 3s 4 - 4 4 h -3s4si+h!+ 2 s! + 24 + 16

= 3(s41 - %sr - 2s21/3)1 + ,/ s + 68s2/3 + 16 a 16.

This gives the general conclusion that Asu(Fo) < -% for my distribution F0 which can be afaiely
transformed to radial symmetry.

Another class of distributions for which As,(Fo) is guaranteed not to be positive in the class for
which a particular afou transformation of Fo to unit variance/ovaiace matrix yields a distribution
with independent marials. Let X be a random vecomr with distribuion Fo, and let

-A' 7 431, ~vuX 1 . aj -var X2 ard p -com(X1 ,XO. Definea marix Sby

0 C I (3.6)
0 G

* ~here the power 'A denotes the symmetric positive-dihie squ-we root. Defin, a bivrifte distribution

FO by F*(u)=Fo(Su) for u in R2, A random vec Y-S-" X with distrbu F* d nit Dt

variancelcovariance matrix can be obtained fIt by rescaling the margals of X to have unit variance

and then by rescaling de principal componts ofthe resulting Yom tohaveunit wae s .,O
natural affime nform of Fo has independent marginals, then an gumnm given in Section 3.3 below
demontrates that A.S(Fo) : 0, with equality only if X has a uniform discreft distribuon giving

- .probability V to each of four points.
In summary, we have derived the following conclusion. Provided all the a ozmatiom we have

made are reasonable, using a shrank smoothed bootstrap, with an appropriate smooddn p-anmet, will
give improved estimation of ct,(Fo) over that obtained by the standard bootstrap. if either Fo is an %

affine transformation of a radially symmetric distribution or Fe is an affine truasformatiom of a
particular kind, of a distribution with independent margals and Fo is not a uniform four-point discrete
distribution. In practice the underlying distribution Fa will not be known. An obvious topic for future

. investigation is the constuction of empirical versions of the criteria of Theorems I ad 2, on the basis

of which a decision whether or not to smooth can be made for each dam set COunt ed. Some
preliminary simulations along these lines have been encouraging.

'

Si'

~.q ~' VV V%~~*.,*~S*C -%i
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with distribution Fa. Let Y = S-X as in Section 3.2, and let F*(y) = Fo(Sy) be the distribution of Y.
It is easily seen that the existence of an affi- transformation reducing FO to radial symmetry is
equivalent to the radial symmetry of the particular affine transformation F*.

Define as(u) = a(Su) and let k-, = EYI 4Yj, where Y = S-'X. In both of the two special casesconsidered in Section 3.Z, k13 = kn = 0, and compute~r algebraic manipulation showed that as(u)

reduces to the simple form
as( u) = u 2.: U2 k ( U' + U 2+)10 0

The criterion given in Theorem 2 also reduces to a simple form when expressed in terms of as.
We have, by standard calculus,

a*(X) = Dva(X) - X.Va(X) = V2as(Y) - Y.Vas(Y) - as*(Y), say

where as*(u) = [2(1+k22)(u 2 +u2
2) - 4k22 - 4uu 2  o,

Since, by definition. a(X) = as(Y), it follows that

A=(Fo) = cov{a(X),a*(X)l - cov{as(Y),as*(Y)} = E{as(Y) + Pokulas*(Y) (3.7)

since it is immediate that Eas(Y) - -% .

Suppose, now, that the distribution of Y is radially symmetric, so that YT = (R cos 0, R sin e)
with 8 uniformly distributed on (0,2ir). The form (3.7) for Asy(Fo) can be expressed in terms of even
moments of Y up to order 8, and each of these moments can be expressed in terms of the moments of
R2. For example

k22 = ER'sin2 e cos29 = ER4I8 = (S2 + 4)/8
wher as in Section 32, sj = E(R2 - 2) is the jth central moment of R, the assumption that

ey 1
2 - EY2 2 1 implies that R2 has mean 2. Performing all these substitutions, by computer algebra,

yields the form (3.5) for Asa(Fo) and hence the conclusion given in Section 3.2 for distributions that
can be transformed to radial symmetry.

Now suppose that Yj and '2 are independent, but that Y is not necessarily radially symmetric. It
will then be the case that k= = EY 2EYj = I and hence

as* (u) = -4N(u,3 U2-r I- U22+1) = -4[as(u)+PO}.

It follows that Am (Fo) = -4 var as(Y). Since Yj and Y2 are independent, the only way vwas(Y) can
be zero is for Y to have the four point distribution giving probability V4 to each of the poins (:l,±l);
otherwise as(Y) has positive variance, and AsB(Fo) < 0.

4. SIMULATION STUDY 'a

The discussion in Section 3 above involved heavy dependence on two approximations, one of

them specific to the example under consideration and the other a key feature of our proposed general
methodology. In this section, we investigate both of these approximations by a simulation study which
extends the one carried out by Efrou (1982, Table 5.2). All our simulations are carried out under the
assumptions of Efron's model, that Fo is the bivariate normal distribution with unit marginal variances
and correlation I/. Efron considered only samples of size 14, though we consider here larger sample
sizes as well. We follow Efron in using die values 0 and 'A for the smoothing parameter k.

For each sample size n, the accuracy of the bootstrap and smoothed bootstrap estimates of the
sampling standard deviation cr(Fo) of the variance-stabilized correlation coefficient wa assesed in
three different ways. Firstly, a direct simulation of the bootstrap procedure itself was carried out two
hundred datasets were generated from Fo and for each one a(Fo) was estimated by the usual
resampling procedure, using two hundred resampled datasets of size n in each case. The tre value of

Ja,
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o..(Fo) is known and so it is possible to estimate the root mean square error of the direct bootstrap
procedures from our simulations. The results thus obtained are labelled "direct" in Table 1.

h Variance-stabilized Untransformed
direct linear delta direct linear delta

0 0.075 0.071 0.077 0.070 0.076 0.060
14 14 A 0.045 0.046 0.057 0.057 0.055 0.052

0 0.049 0.050 0.053 0.046 0.053 0.044
1/ 0.033 0.032 0.037 0.045 0.039 0.041

0 0.029 0.033 0.033 0.033 0.036 0.030
0.019 0.021 0.022 0.027 0.026 0.027

0 0.024 0.025 0.025 0.024 0.027 0.027
1/ 0.015 0.016 0.017 0.021 0.019 0.020

50" ... 0 0.020 0.020 0.021 0.020 0.021 0.019

0 0.013 0.013 0.014 0.019 0.015 0.018
10 0 0.011 0.010 0.010 0.010 0.011 0.010

100 0.008 0.006 0.007 0.009 0.008 0.008

Table 1: Estimates of root mean square errors of bootstrap estimates of sampling standard deviations of

variance-stabilized and untransformed correlation coefficients. Sample sizes n and smoothing
-h.

Secondly, in order to investigate the accuracy of our linear approximadon ,A,,(Fo), some anajytic

calculations were carried out, making use of computer algebra. By this means, the behaviour of the
- .--- approximation can be studied without recourse to any simulation. For the bivariate normal population

under consideration, the standard deviation of AhA,,(Fo) was found to be n-t(l+h2)-2 . This quantity is
referred to as the "linear" estimate of the root mean square a of the bootstrap procedume Closeness
of the "linear" and "direct" estimates of mot mean square eaor would vindicate our proposed procedure
of studying the sampling properties of the bootstrap by mean of linear approximaions.

Our development of the linear approximation involved the intermediate step of approximating
- ..... a,(Fo) by n-N%(Fo), as given in (3.3). This intermediate approximation raises die possibility of

studying the sampling properties of the smoothed bootstrap by considering those of the approximation
(3.3), with Fo replaced by Ph,.. This corresponds to substituting the moments of J6 , which are easily
calculated from the sample, into (3.3). By analogy with Section 6.5 of Efron (1982), we refer to this
procedure as the non-parametric delta approximation to the smoothed bootstrap. For each of two
hundred simulated samples from Fo this approximation was calculated. From the values thus obtained.
a third estimate of the root mean square error of the smoothed bootstrap procedure was found. This is %
labelled "delta" in Table 1.

The analogous investigation was carried out for the untransformed correlation coefficient r, in the
context of the same bivariate normal model. The factor (1-p )-2 is omitted from (3.3) in this case;
otherwise the same algebraic manipulations and simulations were performed as for the variance- ."
stabilized coefficient z. The "linear" estimate of the root mean square error is now

,n-'(l+hz)
2(2+2h+h 4 )%. The results are presented in the last three colunms of Table 1.

The broad conclusions to be drawn from Table 1 are the same for both correlation coefficients.
Even for the small sample size considered by Efron (1982), our linear approximation procedure gives
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good estimates of the accuracy of the full booutrap procedure, and the relative improvement due to
smoothing is well predicted. Efron's conclusions could have been obtained without recourse to any
simulation. On the whole the delta procedure, which itself involves some simulation, gives slightly
inferior estimates of the bootstrap's accuracy.

It is known (Davison, Hinkley and Schechtman, 1986) that the variance-stabilized correlation
coefficient is highly correlated with its linear approximation, but the untransformed correlation
coefficient is in general not. The suspicion expressed by a referee that this may have a deleterious
effect on our approximations in the untransformed case does not appear to have been borne out by the
simulation study, except that the beneficial effects of smoothing the bootstrap were systematically
slightly exaggerated by the linear method in this case.
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