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SUMMARY

N

estimating properties of unknown distributions such as the sampling error of parameter

The bootstrap and smoothed bootstrap are considered as alternative methods of

estimates. Criteria are developed for determining whether it is advantageous to use the
smoothed bootstrap rather than the standard bootstrap. Key steps in the argument
leading to these criteria include the study of the estimation of linear functionals of
distributions and the approximation of gemeral functionals by linear functionals.

Consideration of an example, the estimation of the standard error in the variance-

stabilized sample correlation coefficient, elucidates previously-published simulation

?‘“‘*"‘f’” results and also illustrates the use of computer algebraic manipnlaﬁon. as a useful

5 technique in asymptotic statistics.f Finally, the various approximations used are
i vindicated by a simulation study. { e s A<

: 1

: B Some key words and phrases: bootstrap, computer algebra; density estimation; kemel;
: < msampling),smoothcd bootstrap.
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1. INTRODUCTION

1.1 The standard bootstrap

) The bootstrap is an appealing non-parametric approach to the assessment of errors and related
quantities in statistical estimation. The method is described and explored in detail by Efron (1979,
1982). A typical context in which the bootstrap is used is in assessing the sampling mean square error
a(F) of an estimate §(Xy,....X,) of a parameter O(F) based on a sample X;,....X, drawn from an
unknown distribution F. If F were known, a might be most easily estimated by repeatedly simulating
samples from F. The standard bootstrap technique is to estimate a(F) by the sampling method, but
with the sampies being drawn not from F itself but from the empirical distribution function F, of the
observed data X;,....X,. A sample from F, is generated by successively selecting uniformly with
replacement from (X,,...,X,} to construct a bootstrap sample {X*),....X*,}. For each bootstrap
sample, the estimate 8(X*y,...,.X*,) of the quantity 6(F,) is caiculated. Since arbitrarily large numbers
of bootstrap samples can be constructed, a(F,) can easily be estimated to any reasonable required
accuracy from the simulations. The quantity a(F,) is then used as an estimate ofa.‘(l").

The bootstrap methodology thus consists of two main elements, which are often confused. There
is firstly the idea of estimating a functional a(F) by its empirical version o(F,) and secondly the
observation that a(F,) can in very many contexts be constructed by repeated resampling from the
observed data. The resampling ides is an extemely important one, but it has, perhaps, been
overstressed at the expense of the underlying estimation step. Once the two steps are conceptually
separated it becomes easier t0 gain a fuller understanding of how the bootstrap actually works. In
particular it becomes clear that there is nothing special about estimating functionals a(F) that are
themselves sampling properties of parameter estimates; the bootstrap idea can be applied to any
functional a(F) of interest.

12 The smoothed bootstrap

Because the empirical distribution F, is a discrete distribution, samples constructed from F, in
the bootstrap simulations will have some rather peculiar properties. All the values taken by the
members of the bootstrap samples will be drawn from the original sample values, and nearly every
sample will contain repeated values. The smoothed bootstrap, suggested by Efron (1979), is a
modification to the bootstrap procedure to avoid samples with these properties. The essendal idea of
the smoothed bootstrap is to perform the repeated sampling not from F, itself, but from a smoothed
version £ of F,. Two possible versions of the smoothed bootstrap will be described in more detail
below; whatever method of smoothing is used, the net effect of using the smoothed bootstrap is to
estimate the functional a(F) by a(F).

The main aim of this paper is to investigate some properties of the smoothed bootstrap, in order
to give some insight into circumstances when the smoothed bootstrap will give better resuits than the
standard bootstrap. As an important by product, the value of computer algebraic manipulation as a tool
in asymptotic statistics will be demonstrated.

Efron (1982) considered the application of the bootstrap, and various other techniques, to the
estimation of the standard error of the variance-stabilized transformed comelation coefficient. He
illustrated by direct simulation that in a particular case a suitable smoothed bootstrap gave better
estimates of standard error than the standard bootstrap. We shail discuss Efron’s example later in the
paper and demonstrate how his results can be elucidated and extended by using a suitable
approximation argument.

Before going on to discuss the estimation of general functionals a(F ), we shall first consider the
estimation of functionals o that are linear in F. For such functionals we shall obtain simple sufficient
conditions under which using the smoothed bootstrap can decrease the mean square error in the
estimation of a(F).

We close this section by giving details of the two kinds of smoothed bootstrap considered in later
discussion. Suppose X;,...,X, is a set of r-dimensional observations drawn from some r-variate density
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f and that V is the variance matrix of f, or a consistent estimator of this variance matrix, such as the
" sample variance matrix of the data. Choose a kemel function X such that K is a symmetric probability

density function of an r-variate distribution with unit variance matrix, for example the standard unit 7-
_ variate normal density.

Define the kemel estimate f,.(x) of f(x) by
fulx) = |vr"‘n-'h-'i', K{h'Vv"%(x-X)) } 1.1
=l

and the shrunk kemel estimate f;.,.(x) by
Frsx) = Q+EHM f{(+-%) "2} . 12

Density estimates in general are discussed, for example, by Silverman (1986). The smoothing
parameter h determines the amount by which the data are smoothed to provide estimates. Estimates of
the form (1.2) have the property that the density £\, has the same variance structure as the original
data, if V is taken to be the sample variance matrix.

Given any functional a(F) of an r-variate distribution F, the unshrunk smoothed bootstrap

—
NN X3 C

o estimate of o(F') is defined to be o(F,) and the shrunk smoothed bootstrap estimate is o(F,.,,). where
t" g F\ and F,, are the distribution functions comresponding to /» and f,, respectively. It is easy to
T simulate either from £, or from f, , by sampling with replacement from the original data and perturbing
oo e each sampled point appropriately; for details see Efron (1982) or Silverman (1986, Section 6.4). Hence

valuaofa.(l-‘,.)andm(F,,)canbeobumedmpncncebyslmnhnonnfmary

7

2. LINEAR FUNCTIONALS welf

In this section we consider the estimation of a linear functional A(F). Because A is linear, ' r
standard calculus demonstrates the existence of a function a(7) such that

P NTIS GRA&I
e ACF) = [a(s) dF (D) . DTIC TAB
b _ . .( )‘ I () dF () Unannounced a
L . .,%. The standard bootstrap estimate Ag(F) will satisfy Justification !
i b vt -
_ . Ay(F) = A(F,) = fa(t) dF (1) = n™' Ta(X)) . By
. il
oo iy . Distribution/

mmhnmkmmewcmaﬁmA.(F)wﬂlsaﬁsfy

Avalilability Codes

: A(F) = fa(0fao) dt [Avail and/or
and the shrunk smoothed bootstrap estimate A, ,(F) will satisfy Dist % Special
b Aru(F) = [a(O)fr (1) dt ) ‘ I
Lo with 7, and £, , as defined in (1.1) and (1.2) above. A"
Bt e In the discussion that follows we shall assume that the function a has continuous derivatives of all
k-uab'm«v‘ orders required. All unspecified integrals are taken over the whole of r-dimensional space. Assume
that V is fixed and define the differential operator Dy by
r L4
DvdSZZVyazdlaI;kl .
iml jul
Our first theorem gives a criterion for smoothing, without shrinkage, to be of potential value in
: the bootstrap estimation process.
- THEOREM 1

Suppose a(X) and Dya(X) are negatively correlated. Then the mean square error of AN(F) can be
mduadbelowthatoon(F)bychoosmgasmnblch>0
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Proof

Assume without loss of generality that A(F) = 0, by replacing a(¢) by a(t)-—]'a(x)f (x)dx if necessary.

- By this assumption,

MSE{AM(F)} = E{AN(F)*) = var{Ay(F)} + [E{AWF)I? .

Now, by some easy manipulations, A4,(F) = n~! T w(X;), say, where

in]
w(x) = fa(AIVITK (A VS (e-x)} o = [K®)ax + AVHE) gt
on making the substitution t=x+hV®E .

A Taylor expansion gives
a(x+hV4E) = a(x) + A(VHE)TVa(x) + BAX(VHENTH,(x)(VHE) + O(h%)
where H,(x);=0%a(x)/ax;ax;.

By our assumptions on the kernel X it follows that

w(x) = a(x) + Yh’Dya(x) + O(h*) . 23
Then
E{AM(F)) = E{w(D)} = h*[f(x)Dya(x) ds + O(h*), 2.4)
since [a(x)f(x) dx = 0. Also, since Xi ....X, are independent,
n var{Ay(F)} = var{w(X)} = [a(x)f(x) dx+h2[a(x)Dya(x)f (x) dx+O(K*), el
using (2.3). Combining (2.4) and (2.5) gives the mean square emor
MSE{A\(F)} = ™ [a(xf(x) dx + n™' W2 [a(x)Dya(x)f(x) dx + O(h*). @8

Fotﬁxedn.tbaeqnm(zs)dmsmmamdsthemumpnonmaa(X)mdea(X)m
negmvelyemelmd,themsqnmmofA.(F)wnll,alastforsmaﬂh.besmaﬂenhmthatof
Aq(F), completing the proof of the theorem.

The next theorem gives the corresponding criterion for smoothing with shrinkage to lead to more
accurate bootstrap estimation. Define a*(X) by

a*(X) = Dya(X) - X.Va(X).
THEOREM 2.

Suppose a(X) and a*(X) are negatively correlated. Then the mean square error of A,.,,(F) can be
reduced below that of Ag,(F )=As(F) by choosing a suitable & > 0.

Proof

As before, assume without loss of generality that A(F) =0. We have by similar manipulations to
those used above,

Ans(F) = n VS (X)),
i=l

where

w*(x) = (1+A1)* [a(OA~ VMK A V4 (2 - (LeR3)Ai) &t
= fa{(1+A?) M (x+AVHEIK @) dE
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on making the substitution ¢ = (x + AV*E)/(1 + k%)%, Now, for h small, (1 + A%)™* = 1 - kA2, so

w(x) = [a(x + WV*E - wh*x)K(E) dE.
A Taylor expansion of a about x, and our assumptions on the kemel X give

w*(x) = a(x) + Whla*(x) + O(h*) @n
Now we have

E{Avo(F)} = E{w*(X)} = wh*[f(x)a*(x) dx + O(h*),
and, on using (2.7),
n var{Ay J(F)} = [a(xf(x) dx + h*[a(x)a*(2)f(x) dx + O(h*).
The proof of Theorem 2 is completed in the same way as that of Theorem 1.

As a simple illustration, consider the estimation of the sixth moment [x°f(x)dx of a univariate
density. It is not immediately clear whether or not smoothing is worthwhile in this case. In the
notation used above, a(x) = x° , Dya(x) = 30Vx* and a*(x) = 30Vx* - 6x5. It follows that, setting
W = EX",

cov{a(X), a*(X)} = =6ty + 30 Vi + 643 ~ 30 Vireus.

If, for example, X has a normal distribution with mean zero and variance V, we have
Ka; = V/27/(2j)1/ j! and hence

cov{a(X), a*(X)} = - 34020 V% < 0,

Thus a shrunk-smoothed estimate [x5 £, ,(x)dx will always, for a suitably chosen value of h, give
a more accurate estimate of EX® than will the raw sixth moment if X is drawn from a normal
distribution. Similar caiculations for other distributions show that the same conclusion holds under a
wide variety of distributional assumptions for X.

The resuits obtained by applying the criteria can sometimes be a little surprising. Suppose X is
drawn from a standard normal distribution. Application of the criterion for estimation by unshrunk
smoothing demonstrates that, for small 4, this will have a deleterious effect in the estimation of either
EX* or EX? alone. However, for the linear combination of moments E(X* - cX?), unshrunk
smoothing will be worth performing provided ¢ > 6. Details of this somewhat counter-intuitive result
are left to the reader t reconstruct.

We do nat, in this paper, devote much attention to the question of how much smoothing should
be applied in cases where smoothing is wonth performing; that problem is left for future work
However, the last exampie of this section demonstrates that the question of how much to smooth can be
a rather delicate one. In this example, let ¢, denote the density of the normal distribution with mean
zero and variance ¢>. Let

A(F) = [ oe(t)dF (1),

and suppose that the quantity ¢ converges 0 zero as the sample size increases. Assume that F has a
smooth density f with derivatives of all orders required. Consider the estimation of A.(F) by the
unshrunk smoothed estimator A,(F), constructed using the normal density a3 the kerel We shall
investigate the optimal large-sample behaviour of the smoothing parameter h. Assume throughout that 4
is small for large a and that £(0) > 0.

Setting & =h?+¢* and performing some simple manipulations gives

ANF) = [ au(0fu) dt = n™! Tog(X)).

Hence, substituting u = (8 and performing a Taylor series expar-ion,

T S
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EA\F) = [@5(t)f(1)dt = [@(u)f(ub)du = f(0) + 1 &f"(0) + O(*).
Since, by a similar argument,
Al = Jou(0)f(1)dt = £(0) + KeXf” (0) + O(e*),

it follows that

EAL(F)=Ac(F) = h(0) + 0(3").
By standard arguments

var(Ay(F)} = n”" var{9s(X)} = n™! £(0)/(287%){1 + O(B)}.
Thus the mean square emor of Ay(F) will be, asymptotically, given by
MSE{Ay(F)} = n~' £(0)/(26%%) + vah*f”(0)
= a7 £(0)/(28r%) + v (B*-Yf (01 ,

where the terms neglected are of order a~! + 8%, This approximate mean square error is a convex
function of 8, and ity minimizer will satisfy

55 - ) = C(Nn~', where C(f) = f(0)/{2r"f~(0Y}.
or, in terms of & and e,

*

A + A3/ 2h3/e? = C(NHn~'e3, (28)
Denote by y(R) the root in [0, o ) of the equation
(1 + ¥y = R;
then by simple calculus W(R) ~ R* as R—0 and W(R) ~ RY® as R—> =, The asymprotically optimal
h for the estimation of A4, will satisfy, from (2.8),
hope = € W{C(NHn"'e5).
If n"'¢”5 — oo then

hope = EC(NBn~ Vet = C(NHW~1A,

Standard density estimation theory (Parzen, 1962) shows that this is the asymptotically optimal
smoothing parameter for the estimation of the density at zero. Thus, in this case, the best estimate of
A, will be based on the best estimate of the density.

Unfortunately this will by no means always be the case. If n™'¢™3 -0, we will have
hop ~ 2 C(NMA™ €92 = C(N*n~He V2
and if n~'e"% —>a, where 0 <a <,
hope ~ £¥{aC(N)}.

In neither of these cases will it be optimal to construct an optimal estimate of f in order to
estimate A.(f), since the optimal choice of & will be smaller, in order of magnitude in the first case,
than that required for the estimation of f itself. Thus the optimal estimate of A(F) will be based on
an undersmoothed estimate of the underlying density. This example is, of course, rather artificial, but it
does illustrate the likely difficulty of obtaining general rules for deciding how much to smooth when
estimating functionals of a density. Even in cases where smoothing is advantageous, the amount of
smoothing required may be quite different from that needed for the estimation of the density itself.

3. MORE GENERAL FUNCTIONALS

3.1 Linear approximation




In this section, the work of Section 2 is extended, by considering local linear approximations, to
more general functionals of an unknown distribution. When an explicit bootstrap method is being used
the functional being estimated is unlikely o be linear, and so a more general theory is necessary. Local

- linear approximations to functionals of distribudons have also been used by Hinkley and Wei (1984)

and Withers (1983).

Consider the estimation of a functional a(Fy) of an unknown distribution Fy underlying a set of
sample data. Suppose that & admits a linear von Mises expansion about £y given by

a(F) = a(Fo) + A(F ~Fy) (G.1)
where the linear functional A is representable as an integral
A(F - Fo) = [ a(t)d(F - FoX1). (32)

A detailed discussion of differentiation of functionals and general von Mises approximation is given by
Fembholz (1983). The precise accuracy of the expansion (3.1) depends on the detailed properties of o,
but the error will in general be of order sup|F — Fol2.

The expansion (3.1) gives an obvious approximation to _the bootstrap estimate of a(Fp). If F is
an estimate of F, then we will in general have, provided sup |F - Fo| is O,(n™%), +

F) = &(Fo) + A(F) = A(Fy) + Op(n™")
and so the sampling properties of a(F) will be approximately the same as those of A(F). The criteria
of Section 2 can then be applied to the linear functional A. If using an appropriate smoothed bootstrap

will improve the estimation of A(Fp) then, neglecting any errors inherent in the finear approximation
(3.1), the smoothed hootstrap will be worth using in the estimatioa of a(Fj).

3.2 The transformed sample comrelation coefficient

In this section we consider application of the linear approximation procedure to estimation of the
sampling standard deviation of the variance-stabilized sample correlation coefficient. Suppose F, is a
bivariate distribution with mean zero and correlation coefficient p, and let {=tanh™'p. Let r be the
computed sample correlation coefficient based on a sample of » independent cbservations from F,, and
let z=tanh™'r be the sample estimate of . Then the functional of interest is o, (Fg)=(var z)*. Efron
(1982) devoted considerable attention to the estimation of @,(Fg, by a variety of methods, including the
smoothed bootstrap, for the specific case of F bivariate normal, with marginals of unit variance and
p = %, and for sample size n = 14.

A key step in our investigation of the estimation of o, (Fp) will be an approximate formula, given
by Kendall and Stuart (1977, p.236). Let

a(Fo)=[p* (1P {2/ 11y * + Vo (tlao/Hao® +1ow /a0 *+ Az /Maoiica)
~ (31 /R11 oo + /B o) ® 33)
where |, is the (i,j) moment given by

Wy = [xiyldFy(x).
Here and subsequendy in this section unsubscripted letters x will denote vectors (x, ,x;). Kendall and
Stuart give
@, (Fo) = a~%a(F,) + O(n™?),
so that estimation of a,(F,) is approximately equivalent to that of a(Fy).

Consider now the calculation of the function a(r) defined in (3.2). For fixed ¢ let §, be the
distribution function of a point mass at ¢ and, for any ¢ >0 let F, be the improper distribution Fo+¢3,.
Then simple caiculus combining (3.1) and (3.2) gives

a(t) = (d/de)a(Fe)lemo Q49
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Our functional a(F) is defined for improper distributions, as well as for probability distribution I
functions, and hence there is no need when caiculating a(¢) to consider the more complicated ,’;
perturbation &(5,~F,) o Fy used by Hinkley and Wei (1984). The actual algebraic manipulations ki
- required in the calculation of a(¢) from (34) and (3.3) are extremely laborious. However, it is g
relatively easy to write a program in a computer algebraic symbolic manipulation language, such as .
MACSYMA, to perform the necessary differentiations and substitutions. The function a(t) itself is a {
fourth order polynomial in ¢; and t, whose coefficients depend on the moments of Fy. It is only used \;

g &

Ny

as an intermediate step, in the special cases considered below, in the caiculation of the criteria derived
from Theorems 1 and 2, and the caiculation of these criteria was also performed by computer algebra.
Further details of the manipulations are available from the authors.

To complete this section we consider the results of the application of the computer algebraic
manipulation procedure to the functional (3.3) for two special cases. Further detils of the results
discussed will be given in Section 3.3 below. Let Ags(Fy) be the criterion obtained from Theorem 2
for the shrunk smoothed bootstrap to be advantageous in the estimation of the functional A(Fy). Recall
that Ags(Fo)<0 means that some smoothing at least is worthwhile.

Suppose, first, that the distribution of the data can be reduced by an affine wransformation © a
radially symmetric distribution F'. Without loss of generality it can be assumed that F' has unit
marginal variances. Let R be the radial component of F', and denote by s5; the jth central moment of
R?. Computer algebra shows that the criterion Agy(Fy) reduces, in this case, to

Agg(Fo) = ~ {354 + (4-35)5; + s} + 2} + 2s; + 16}/32. (eK)]
where By is the positive quantity Y% &(F,)™'. Using the standard inequality s§<s,s,, we have
=32A0(Fg) 2 35, = 45 M5x % ~ 35, 5% + 5} + 25 + U5, + 16
=3(5® ~ %hsi? ~25%/3P% + v 5 + 685/3 + 16 2 16.

This gives the general conclusion that Agy(Fo) < —¥% for any distribution Fy which can be affinely
transformed to radial symmetry.

Another class of distributions for which Agg(F,) is guaranteed not to be pasitive in the class for
which a particular affine transformation of F to unit variance/covariance matrix yields a distribution
with independent marginals. Let X be 2 random vector with distribution Fp, and let
0’%=Vﬂtxl.<é=Vﬂ'X1andp=m(xl,X1). Define 2 matrix S by

o o) f1 pln
s=00¢ 1 i (6

bere the power !4 denotes the symmetic positive-definite square root. Define a bivariate distribution
F* by F*(u)=Fo(Su) for « in R}, A random vector Y=S~'X with diswibution F* and unit
variance/covariance matrix can be obtained first by rescaling the marginais of X to have anit variance
and then by rescaling the principal components of the resulting vector to have unit variances. If this
natural affine transform of F, has independent marginals, then an argument given in Section 3.3 below
demonstrates that Agy(Fp) S 0, with equality only if X has a uniform discrete distribution giving
probability % to each of four points.

In summary, we have derived the following conclusion. Provided al the approximations we have
made are reasonable, using a shrunk smoothed bootstrap, with an appropriate smoothing parameter, will
giveimpmvedutimztionofa.(l’o)overthaobuinedbydlemndardbootsnp.ifdthet"oisan
affine transformation of a radially symmetric distribution or F, is an affine transformation, of a
panicnlarkind.ofadisnibutionwithhldcpandentmn;imkmFoisnotauniformfm-poimdimn
distribution. In practice the underlying distribution Fy will not be known. An obvioss wopic for future
investigation is the construction of empirical versions of the criteria of Theorems 1 and 2, on the basis
of which a decision whether or not to smooth can be made for each data set encountered. Some
preliminary simulations along these lines have been encouraging.
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[ . _ 3.3 Some technical details

Throughout this section, define the matrix § as in (3.6), and suppose that X is a random vector
with distribution Fp. Let Y = S™'X as in Section 3.2, and let F*(y) = Fo(Sy) be the distribution of Y.
It is easily seen that the existence of an affine transformation reducing Fy to radial symmetry is
equivalent to the radial symmetry of the particular affine transformation £*,

Define ag(u) = a(Su) and let k; = EY,'Y/, where Y = §™'X. In both of the two special cases
considered in Section 3.2, k3 = ky; = 0, and computer algebraic manipulation showed that ag(u)
reduces to the simple form

REE TR, Ty,

A

ag(u) = {u?w? ~ kn(u 2+, ")}, .
The criterion given in Theorem 2 also reduces to a simple form when expressed in terms of as.
We have, by standard calculus,
a*(X) = Dya(X) - X.Va(X) = Viag(Y) - Y.Vag(Y) = ag*(Y), say
where ag* (u) = {2(1+kp ) *+1%) - dkz ~ 4ur 1% }fo.
o Since, by definition, a(X) = ag(Y), it follows that ¢
- Aua(Fo) = cov{a(X),a*(X)} = cov{as(¥),as*(¥)} = E{as(Y) + Bokna}as*(Y) (X))
since it is immediate that Eas(Y) = =Boks.
Suppose, now, that the distribution of Y is radially symmetric, so that YT = (R cos 8, Rsin ©)
with € uniformly distributed on (0,2r). The form (3.7) for Ags(Fp) can be expressed in terms of even

moments of Y up to order 8, and each of these moments can be expressed in terms of the moments of
R?. For example

T RS

ka = ER*sin%@ cos2© = ER*/8 = (s, + 4V/8

where, as in Section 3.2, s5; = E(R? - 2) is the jth central moment of R% the assumption that
EY,® = EY,* = 1 implies that R2 has mean 2. Performing all these substitutions, by computer algebra,
yields the form (3.5) for Ag(F,) and hence the conclusion given in Section 3.2 for distributions that
can be transformed to radial symmetry.

Now suppose that Y, and Y, are independent, but that Y is not necessarily radially symmetic. It
will then be the case that ky, = EY,2EY;? = 1 and hence

ag*(u) = —4Bo(uy 21 ~uy >~y 2+ 1) = —4{as(u)+Po}.

It follows that Agy(Fp) = —4 var as(Y). Since Y; and Y, are independent, the only way varas(Y) can
be zero is for ¥ to have the four point distribution giving probability Y to each of the points (£1,£1);
otherwise as(Y) has positive variance, and Ag(Fy) < 0.

vy i-r-luﬁ‘r?

4. SIMULATION STUDY

SR The discussion in Section 3 above involved heavy dependence on two approximations, one of
| them specific to the example under consideration and the other a key feature of our proposed general
f ) methodology. In this section, we investigate both of these approximations by a simulation study which
, extends the one carried out by Efron (1982, Table 52). All our simulations are carried out under the
‘ assumptions of Efron’s model, that F, is the bivariate normal distribution with unit marginal variances
and correlation 4. Efron considered only samples of size 14, though we consider here larger sample
sizes as well. We follow Efron in using the values 0 and %4 for the smoothing parameter A,

For each sample size n, the accuracy of the bootstrap and smoothed bootstrap estimates of the
sampling standard deviation a,(Fo) of the variance-stabilized correlation coefficient was assessed in
three different ways. Firstly, a direct simulation of the bootstrap procedure itself was carried out: two
hundred datasets were generated from F, and for each one a,(Fp) was estimated by the usual
resampling procedure, using two hundred resampled datasets of size n in each case. The true value of
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a,(F,) is known and so it is possible to estimate the root mean square error of the direct bootstrap '-f'
" procedures from our simulations. The results thus obtained are labelled "direct” in Table 1. o
>
0,
2
n A Variance-stabilized Untransformed :
direct linear delta direct linear delta )
" 0 0075 0071 0077 0070 0.076 0060 !
% 0045 0.046 0.057 0057 0055 0052 :
20 0 0049 0050 0.053 0.046 0053 0044
% 0033 0032 0.037 0.045 0.039 0041
0 0.029 0.033 0033 0033 0.036 0.030
7 0019 0021 0022 0027 0026 0027
0 0 0024 0025 0025 0024 0027 0027
% 0015 0016 0017 0021 0019 0.020
b - .
. 50 0 0020 0020 0021 0020 0021 0019
7 0013 0013 0014 0019 0015 0018
TR e e
) ! 100 0 0011 0.010 0.010 0010 0011 0010
7 0008 0006 0.007 0.009 0.008 0.008

Table 1: Estimates of root mean square errors of bootstrap estimates of sampling standard deviations of
variance-stabilized and untransfoarmed correlation coefficients. Sampie sizes n and smoothing
paramneters h.

e Secondly, in order o investigate the accuracy of our linear approximation A‘,.',(Fo). some analytic
. calculations were carried out, making use of computer algebra. By this means, the behaviour of the
f. v =gere- - approximation can be stdied without recourse to any simuiation. For the bivariate normal population

under consideration, the standard deviation of A, ,(F,) was found to be n~!(1+42)"2. This quantity is

g referred t0 as the "linear” estimate of the root mean square error of the bootstrap procedure. Closeness

- of the "linear” and "direct” estimates of root mean square error would vindicate our proposed procedure

of studying the sampling properties of the bootstrap by means of linear approximations.

Our development of the linear approximation involved the intermediate step of approximating

S ay(Fp) by n~"a(F,), as given in (3.3). This intermediate approximation raises the possibility of

T studying the sampling properties of the smoothed bootstrap by considering those of the approximation

Lo (3.3), with F,, replaced by F, ,. This corresponds to substituting the moments of F, ,, which are easily

b ommite calculated from the sample, into (3.3). By analogy with Section 6.5 of Efron (1982), we refer to this
|
:

~

procedure as the non-parametric delta approximation to the smoothed bootstrap. For each of two

hundred simulated samples from F, this approximation was calculated. From the values thus obtained,

a third estimate ofmemotmunsqummofthesmoomedbootsnppmdmwasfmmd. This is
| ) labelled "delta” in Table 1

‘The analogous investigation was carried out for the untransformed correfation coefficient r, in the
context of the same bivariate normal model. The factor (1-p?)~2 is omitted from (3.3) in this case;
otherwise the same algebraic manipulations and simulations were performed as for the variance-
stabilized coefficient z. The T“linear” estimate of the root mean square error is now
%n~ (1+h2)2(2+212+h*)", The results are presented in the last three columns of Table 1.

The broad conclusions to be drawn from Table 1 are the same for both comelation coefficients.
Even for the small sample size considered by Efron (1982), our finear approximation procedure gives
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good estimates of the accuracy of the full booustrap procedure, and the relative improvement due to

© * smoothing is well predicted. Efron’s conclusions could have been obtained without recourse to any
simufation. On the whole the deita procedure, which itself involves some simulation, gives slightly
inferior estimates of the bootstrap’s accuracy.

It is known (Davison, Hinkley and Schechtman, 1986) that the variance-stabilized correlation
coefficient is highly comelated with its linear approximation, but the untransformed correlation
coefficient is in general not. The suspicion expressed by a referee that this may have a deleterious
effect on our approximations in the untransformed case does not appear to have been borne out by the
simulation study, except that the beneficial effects of smoothing the bootstrap were systematically
slightly exaggerated by the linear method in this case.
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