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ABSTRACT 

A partial multiple scales analysis of  the forced Raylelgh- 

Flesset equation of  cavitation bubble dynamics  is performed. 

Previous studies  of  cavitation Inception on hemispherical 

headforms have revealed  the existence of  "bubble-rlnR" cavitation 

on hemispherical headforms having a ^aminar separation region. 

Nuclei passing through the low pressure region that exists prior 

to the separation bubble experience vaporous growth which Is 

characterized by two  time scales.    The forcing function pulse 

which acts on the nuclei  is characterized by the  "laboratory time' 

t which varies slowly compared to the characteristic  "bubble time' 

T which characterizes  the response time of  a typical  microscopic 

cavitation nucleus. 

Expanding the forced Raylelgh-Plesset equation and its 

Initial conditions  to the second order in e,  one finds   that the 

zero-order equation is an autonomous nonlinear equation with 

non-homogeneous  initial conditions.    The first-order equation 

is a nonautonomous  linear system with homogeneous  initial 

conditions.    The  second-order equation is  a linear autonomous 

differential equation with homogeneous initial conditions.    The 

second-order equation  is  needed  to establish integrabillty 

conditions  for  the  first-order equation. 

The  zeroth  order equation was analyzed  In  the phase plane 

which established   Integration limits.     Approximation  of   the 

logarithmic air  content  parameter allowed  an approximate 

solution,   T a  T(U),   to be  found  In terms  of  elliptic   integrals 
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and functions.    The Inverse of  this solution could not be  found so 

the Inverse u ■ U(T) was found numerically.    These data are to be 

used to find an analytic approximation of  future first-order 

calculations. 
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CHAPTER 1 

INTRODUCTION 

1.1    Previous  Investigation 

In this Investigation,  an analysis of  the dynamics  of bubble- 

ring cavitatlon is performed.    The analysis employs perturbation 

methods for analytically solving the governing nonlinear ordinary 

differential equation for the flow.    In an effort  to describe the 

physical aspects of bubble-ring cavitatlon,   the main phases of 

bubble growth in a region of laminar separation are discussed. 

For a flow about a hemispherical headform containing a laminar 

separation region,  we assume  the fluid contains a distribution of 

nuclei,  invisible to the unaided eye,  containing air and/or water 

vapor.    These nuclei translate downstream at some velocity close to 

the free stream velocity,  V0.     Some of  these will come in contact 

with the body.    When a nucleus moves into the boundary layer on the 

headform,   it will encounter a low pressure region which is favorable 

to vaporous growth.    This low pressure region has a local static 

pressure less  than the vapor pressure within the bubble.     The bubble 

which had an initial radius,  RQ,  in the free stream will  grow to a 

maximum radius,   RQ,  after reaching a point  on the body where  the 

local static pressure  first equals  the vapor pressure.     The fluid 

conveys  the bubble  through  the favorable pressure  zone  so  that  the 

collapse phase commences  and  it  is here  that  the maximum radius 

occurs.     If  there  is  no  separation on  the body,   the bubble will 

continue  to collapse rapidly  and violently.     For  some  bodies, 

however,   there can be laminar separation for sufficiently low 

ivmftv^&^Kffl^^ 
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Reynolds numbers.  Then it seems possible that collapse may not 

occur and the bubble will come to rest within the laminar separation 

region where It undergoes further growth by diffusion of air from 

the liquid Into the bubble.  This growth continues until the bubble 

has grown large enough to Interact with the free shear layer at the 

edge of the separation zone.  This Interaction causes the bubble to 

translate downstream to the turbulent reattachment region where the 

Intense shear of this region breaks the bubble Into froth. As a 

result, this froth creates a narrow ring of visible cavltatlon at 

the downstream end of the separation bubble. This ring Is known as 

bubble-ring cavltatlon which is a form of attached cavltatlon and Is 

controlled primarily by laminar boundary layer separation. Figure 1 

shows the configuration of a hemispherical headform with a 

cylindrical afterbody and the laminar separation region located on 

the headform. 

Previous experiments have shown the occurrence of bubble-ring 

cavltatlon to be related to several factors. Holl and Carroll [1] 

observed the variation of the Influence of laminar boundary 

separation for different test models as a principal cause for 

bubble-ring cavltatlon.  For a model whose configuration creates a 

large separated region of nearly constant pressure with strong 

pressure fluctuations in the turbulent reattachment region, 

bubble-ring cavltatlon was observed at higher cavltatlon numbers. 

Lowering the cavltatlon number brought on the formation of a more 

developed state of cavltatlon called band cavltatlon.  Band 

cavltatlon is actually a cavity flow which occurs when the laminar 

separation region becomes filled with small attached cavities. 

^mmä^msiimM 
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Because bubble-ring cavltatlon serves as a nuclei source for band 

cavitatlon It Is Important to look at the models on which band 

cavltatlon Is also formed.  Parkin and Holl [3] observed band 

cavltatlon on the hemispherical nose and the 1.5 caliber ogive nose. 

Band cavltatlon was also observed on a 2.0-inch, 1.0 caliber ogive 

nose by Carroll [2], a 1.755-inch diameter ITTC nose by Arakeri [4], 

a 2.0-lnch, 1/8 caliber ogive nose1 by Keller [5] and a 2.0-lnch 

pointed headform used by Brockett [6]. The only models on which 

bubble-ring cavltatlon was observed were the hemispherical nose and 

the 1/8 caliber ogive nosel at various flow conditions. For a model 

whose configuration has a thin separation region with only a slight 

adverse pressure gradient and small pressure fluctuations at 

reattachment, bubble-ring cavitatlon did not exist at all. 

Other factors influencing the occurrence of bubble-ring 

cavltatlon are the air content and temperature of the water. 

Carroll [2] observed no bubble-ring cavitatlon for air contents 

of less than 4,0 ppra. When the air content was held constant 

at 8.0 ppm, bubble-ring cavltatlon was observed to disappear 

and the limited cavitatlon number, K^, decreased when the 

temperature was Increased at low velocities.  Since raising the 

water temperature decreases the solubility of air in water, the 

number and size of the nuclei should also decrease suggesting 

that Kj^ decreases for bubble-ring cavitatlon.  Carroll [2] 

observed this trend for K^ which suggests that air content is 

one of the important factors controlling this phenomenon. 

1.  First observed by Robertson, McGinley and Holl [20]. 

BBHTOW^Vy^ 
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It should be noted  that raising the  temperature Increases  the 

Reynolds number so that  in marginal cases laminar separation 

is lost. 

Previous Investigations by Arakerl [7], Arakerl and Acosta 

[8] and van der Meulen [9] of the laminar separation region have 

pinpointed the Initial separation point to be downstream of the 

minimum pressure point C   . The location of the separation 
pmin 

zone did not vary with Reynolds number. Arakerl and Acosta [8] 

were the first to verify this with Schlieren photographs of the 

thermal boundary layer for velocities up to 60 fps.  Arakerl [7] 

and Gates [8] experimentally verified a dimensional variation of 

the separated region for various Reynolds numbers.  The tests 

were performed on a 2.0-inch headform and showed a decrease in 

size of the separation region with increasing Reynolds number. 

This dependence, however, varies with the shape of the headform. 

This investigation requires a pressure distribution in the 

region of the separation bubble and the minimum pressure point. 

A mean pressure distribution for an average free stream velocity 

of 40 fps is used. The experimental values for the pressure 

coefficient represent averages of the measurements made by 

Carroll [2] and were plotted against the dlmensionless axial 

length X/D.  Since it was desired to have the pressure coefficient 

data plotted against the dlmensionless arc length parameter s, 

a conversion was made between X/D and s and is shown in Appendix B, 

Figure 2 shows a plot of the pressure coefficient versus the 

dlmensionless arc length parameter.  Figure 3 shows the selected 

BÖMÄOMMMMi&ö .^v^v/^ra^^ 
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region of the pressure distribution used to analyze the forces that 

act on the bubbles and encourage the occurrence of vaporous bubble 

growth. Each figure shows the separation point located downstream 

of the minimum pressure point at a dimensionless arc length 

distance of s - 0.7A7. The location of this separation point 

agreed with theoretical calculations made by Arakeri and Acosta [8] 

and van der Meulen [9]. 

1.2 Scope of this Analysis 

The governing equation which describes isothermal cavitation 

vapor bubble growth or collapse, where the static pressure is taken 

to be a function of time, is the Rayleigh-Plesset equation. Written 

in dimensionless form, excluding a viscous term, the isothermal 

Rayleigh-Plesset equation for a spherical bubble is 

dt r 
(1.1) 

This is the form of the equation used by Parkin [11] and is 

the same form used in this investigation.  It is a second order 

equation requiring two initial conditions and it is non- 

autonomous and nonlinear.  The forcing function term, F(eT), is 

a time dependent pressure force which is responsible for driving 

the bubble growth. The parameter e is a dimensionless small 

parameter of the equation which allows us to relate laboratory 

time or "real" time, t, to a dimensionless "bubble" time T. 

One can write the small parameter as 

(1.2) 

&M 
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where 

D/V (1.3) 

The parameter T Is a long time duration which describes the 

laboratory time scale of the forcing function. The definition of 

T in Eq. (1.3) allows the small parameter e to scale automatically 

with the value of the free stream velocity V0 and the body diameter 

D. The surface tension coefficient, a, has units of N/m; the 

density, p, has units of Kg/m3; and the initial nucleus radius, RQ, 

has units of meters. 

When considering the effect of the forcing function, one must 

be aware of the characteristic time scales present in this problem. 

The laboratory time, t, is characterized by a slow time scale which 

defines a diraensionless time duration across which the forcing 

function produces an environment favorable for vaporous bubble 

growth.  Thus, the dimensionless slow time scale is of order T and 

is written 

T  * 
(1.4) 

The second time scale present in this problem characterizes the 

individual bubble oscillations that occur as a bubble passes 

through a varying pressure fle.d. This fast time scale corresponds 

to the dimensionless bubble time T and is written 

'f T  . (1.5) 

Using the definition of the small parameter e as the ratio of the 

laboratory time to bubble time, one can write 

a^KXWM^^ 
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e ■ t /t-    or    t     «ex 
s    f s 

(1.6) 

Using Eq. (1.4), one can write 

t 
(1.7) 

which defines the scaling parameter for the forcing function in the 

vaporous growth region. Relative comparison of the slow and fast 

time scales shows tf and ts to differ in magnitude by a factor of 

ICT-* so that tf is a very short time duration compared to the time 

scale ts which defines the time duration that the forcing function 

acts in the region of vaporous growth. 

Parkin [11] derived an approximate parabolic form of the 

forcing function making F(eT) and the governing equation non- 

autonomous. In an effort to simplify the problem, a suitable 

combination of two step functions was used in place of the 

parabolic form making F(eT) piecewlse autonomous and making the 

differential equation solvable by a suitable numerical method. 

The choice of the Initial conditions was based on the assumption 

that vaporous growth began with initial radius P and A « 0. 
o     o 

The autonomous form of the isothermal Rayleigh-Plesset equation 

was then solved through the region of vaporous growth and to the 

maximum radius. 

In this analysis, the problem was solved using a continuous 

parabolic representation of the forcing function which was derived 

from the experimental data of Carroll f2].  Since the parabolic 

forcing function caused the governing differential equation to 

be nonautonomous, the solution techniques used by Parkin [11] to 

fc^^x^K^x^K^^w^ ogwow^^^ 
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solve  Che plecewlse autonomous Raylelgh-Plesset equation were not 

fully applicable.    We know that Initially the bubble acts as a 

flaccid bubble responding instantaneously to the varying pressure 

field  encountered on the headform.    The flaccid bubble region which 

Is primarily used  to determine the  Initial conditions  for the 

dynamical problem has a valid solution only up to the initial point 

where vaporous growth begins.    Beyond the flaccid region the bubble 

is  Influenced by the inertia of  the fluid  surrounding the bubble 

as well as   the varying pressure field.    The existence of fast and 

slow time scales  in the region beyond the flaccid region requires 

an expansion of the governing differential equation as a function 

of  the fast and slow time scales as well  as the small parameter  e. 

This  variation of  the method of multiple  scales  is called  the two- 

variable expansion procedure and uses a perturbation expansion 

based on  e to separate out the different  solutions defining the 

bubble growth.    Application of  the  two variable expansion procedure 

produced a series of nonlinear differential equations  and initial 

conditions  for only the e^ approximation.    As a result,  certain 

additional  judicious approximations  were  required  to put  the  e*-* 

solution in a form which  enables  one  to  tackle  the  e^ and  e^ 

systems  of  equations. 

1.3    Motivation for  the  Investigation 

Previous  experimental  investigations  which analyzed bubble- 

ring cavitatlon on hemispherical  headforms  have revealed  many 

important  details  about  the particular  flow phenomena  taking place. 

As  a result  of   these  investigations,   the  basic  fluid dynamics  of 

moRMMMoa^^ 
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this type of flow are fairly well understood.  On the analytical 

side, most attempts at solution of the governing equations are made 

using canned computer subroutines that produce large amounts of 

data showing a detailed history of bubble growth or collapse. The 

difficulty with these mass compilations is revealed when one desires 

the effect of constraining a particular flow parameter at a 

particular instant. Analysis can provide the option of looking at 

different classes of solutions and determining limiting cases of the 

flow without suffering the expense, frustration and eventual 

Inefficiency of large computer routines. The mathematical 

techniques being employed are proven and work well with these 

complex flow equations. Estimates of the form of certain solutions 

can often be predicted and the existence of much literature on 

perturbation methods is readily available. 

Since the initial attempt to solve the bubble-ring cavltation 

problem produced quite good agreement between Inception data and 

theory, despite drastic simplifications. It seemed reasonable to 

assume that if perturbation methods are used one will produce equal 

to better agreement between theory and experiment. It should be 

noted that even though this method of solution is more advanced than 

most other forms of analysis, certain judicious approximations are 

required to obtain a solution. An effort was made to keep these 

approximations to a minimum so the true nature of the flow can be 

seen through the solution of the governing equations.  Successful 

use of this form of analysis may extend the theory's range of 

applicability and encourage the use of this form of analysis for 

other types of cavitating flows. 

K***W^^ 
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1,4 Objective of this Investigation 

The main objective of this Investigation Is to find a solution 

of the nonautonomous form of the isothermal Raylelgh-Plesset 

equation by use of appropriate perturbation techniques. To do this, 

a thorough parametric formulation of the forcing function, flaccid 

bubble radius of growth, flaccid bubble rate of growth of the radius 

and initial conditions across a suitable range of cavltation numbers 

is performed.  It was determined, for cavltation numbers ranging 

from K - 0.600 to K - 0.700, that the initial point of vaporous 

growth corresponds to dimenslonless arc length positions of 

s ■ 0.549 and s • 0.600 respectively. The initial conditions, as 

derived from the flaccid bubble relations, are applied at the 

initial point of vaporous growth. The forcing function, which acts 

across the region of vaporous growth, is derived from the experi- 

mental data taken by Carroll [2] and is applied at the initial point 

of vaporous growth.  The effect of the forcing function terminates 

at the separation point which corresponds to dimenslonless arc 

length positions of s - 0.813 and s - 0.731 for cavltation numbers 

of K - 0.600 and K ■ 0.700 respectively. After completion of these 

tasks, the governing differential equation was expanded using the 

method of multiple scales.  Of the resulting set of differential 

equations, the nonlinear e^ system is solved and compared against 

a Runge-Kutta solution of the Raylelgh-Plesset equation. 

Suggestions are made for further study. 

^n^vyw^w^^ 
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CHAPTER 2 

FORMULATION OF THE  PROBLEM 

2.1    The Flaccid Bubble Problem 

The Initial description of the problem stated  that the bubble 

grows as a flaccid balloon, experiencing a state of  equilibrium from 

the stagnation point up to the Initial point of vaporous growth.     In 

order to formulate the expressions representing the growth of  the 

bubble,   it is necessary to discuss a few of  the fundamental 

assumptions and relations used In the flaccid bubble problem. 

To begin,  we must define a dimensionless meridional arc-length 

parameter along the hemispherical nose of  the body as 

2S 
D 

(2.1) 

where S is the dimensional arc length on the body and D Is the 

diameter of the body.  On the cylindrical afterbody, the arc length 

Is the axial distance, X/D. If we assume the boundary layer to be 

a vortex sheet, we can assume Its overall translatlonal velocity 

to be one half of the local flow speed at the edge of the boundary 

layer. Thus, It is approximated as 

v(s) - ^2. /i - c (s) . 
^      P 

(2.2) 

Assuming a flaccid bubble nucleus which always stays in the 

boundary layer, its convective speed is size independent because 

of the assumptions in Eq. (2.2) but it does change size 

instantaneously according to the pressure variations. Thus, we 

can say 

^M^i^m^ 
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,   N      dS ds v(8) "dTdT   • (2.3) 

where 

dS      D J„      dx 
57" 2 or ds" r ' (2.4) 

from Eq. (2.1).  By substitution of Eq. (2.2) and Eq. (2.4) into 

Eq. (2.3) and solving for ds/dt, one gets 

äiA/r^öT) . (2.5) 

If we call  the parameter t,  the laboratory time,   then we relate 

this actual  time to a dimensionless bubble  time by the following 

relation 

T   " 
2o_ 
PR 

(2.6) 

where RQ IS  the nucleus radius measured  in the free stream.    Then 

dt 
V    pRJ 

dt (2.7) 

Substituting Eq. (2.5) into Eq. (2.7) and integrating over the 

range of experimental points, one gets the following equation 

for the dimensionless bubble time along the arc of the body 

^^__ s 
D   /2a e 

o » oR s. 

ds 

pR s, •! - C (s) 
o  l     p 

1 = l,2,...,n (2.8) 

smw^Kwmimtmmü^^ 
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The Integral of Eq.   (2.8) depends on the experimental data of 

Holl and Carroll   [1].    Development of a computer code  that could 

produce an accurate value of  the Integral would allow us  to 

correlate the arc length parameter with the bubble time parameter. 

Care must be  taken when evaluating the Integral numerically at the 

stagnation point because It has an Integrable square root 

singularity.    Evaluation of  this singularity Is discussed In 

Appendix A.    The necessary requirements of a computer code to 

Integrate across  the range  of experimental data are the following: 

(1) Produce an accurate curve fit of  the Integrand 

using parabolic  Interpolation between data 

points, 

2 
f(8)  - As    + Bs  + C     . 

where  the coefficients A,  B and C are computed 

for groups  of  three successive data points. 

(2) Be  able  to handle  an odd or even number  of 

data points. 

(3) Integrate the parabolic curve fit using the 

coefficients A, B and C for each successive 

triad of data points. 

2.1.1    Calculation of   the  Flaccid Buddie  Radius,   r(s) 

If we consider  the  isothermal  transition of   the bubble from 

the free stream radius  RQ,   to the radius  on  the  body  Rj,   then 

we can write 

JwWMM&ftMM^^ 
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3     3 P R - P R,  , 
a o   g 1 

(2.9) 

where Pa Is the partial pressure in the free-stream nucleus and Pg 

is the air partial pressure in the bubble when it has radius Rj. 

Figure 4 shows a typical nucleus and the internal and external 

pressures that act on the nucleus. The balance of pressures that 

act on the bubble in the free stream (R • RQ) is written as 

P + P - |£ + P 
a   v  R    o 

o 
(2.10) 

where a is a coefficient of surface tension, Pa is the partial 

pressure of the dissolved air in the free stream nucleus, P0 is 

the free stream static pressure which establishes the external 

environment for the bubble and Pv is the vapor pressure inside 

the cavitatlon bubble. On the body (R ■ Rj) one can write the 

balance of pressures as 

P + P - ~ + P(s)  , 
g   v  Ri 

(2.11) 

where Pg is  the partial pressure of  the same mass  of  gas as was 

in the nucleus at R *» RQ,   but measured at R = R]^ with  the size 

of R^(s) being dependent upon its location on  the headform.    The 

external pressure  term,   P(s),  varies with the arc length of  the 

body.    Introducing a dimensionless radius as 

R 
r  = 1 

(2.12) 

Eq.   (2.11) can be written as 

P(s)  - P    + P     - l2- g        v       Ro r (2.13) 

;raflt&aMflStt^ 
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EXTERNAL PRESSURES =$+ P 
K 0 

Figure 4.    Schematic Diagram of a Typical Nucleus with Internal 
and External Pressures  that Act on the ^3ucleus. 

fcaOM^M»^^ 
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Substituting Eqs. (2.10), (2.12) and (2.13) Into Eq. (2.9) one can 

write 

r|£+ p   . p )R3 . (|£i+ p(8) - P )r3R3    . VR    o   v; o  ^-R r v;  o o o 
(2.14) 

Using the following definitions for the cavitation number and the 

pressure coefficient, one has 

K - 
P - P o   v 

l/2pV? 
(2.15) 

P(s) - P 
c 

l/2pV^ 
(2.16) 

Equation (2.14) can be written as 

2a ■2a 1 21  3 f+K(l/2pVo^  -  [££J.+  (c    +K)l/2pVo']r (2.17) 

Multiplying both sides of Eq. (2.17) by 1^/20 and using the 

definition of the Weber number, 

pV2R 
We(R ,V ) = -2-1 

^ o* oJ a (2.18) 

we write the cubic flaccid-bubble equation as 

(CP 
+ K)We  3   2   ,  KWe  n "  , r  + r  - 1 r— " 0 . (2.19) 

Equation (2.19) could be solved exactly, but because r is close to 

unity, an approximation of the form. 

^^>>>>>:^^ 
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r  -  1 - x    , (2.20) 

Is used where 0 < x «  1.     If  one substitutes Eq.   (2.20)  Into 

(2.19), he gets 

C We 
A(- x3 + 3x2 - 3x)  + x2  - 2x + -|— - 0    , (2.21) 

where 

(C    + K)We 
A »—2-4     • (2.22) 

KWe 3 
Because A < —r— and x «  1,   the term Ax    can be neglected and the 

remaining quadratic equation, 

C We 
(3A + l)x2 -  (3A + 2)x + -2 0    , (2.23) 

has  a solution of  the form 

3A + 2      r  , /,       (3A + 1)    „ „    i ,n n.. 
*-2öäT-TT[ '-y1'0k + 2)2V

e J • (2-24) 

In the limit  as  A ■>• 0,   the negative square root  must  be  chosen 

to satisfy the Inequality 0  < x «   I,   therefore 

-^^:W ■ lim    x - 1 - -\/ 1 + -i—    . (2.25) 
A > 0 

Using a binomial expansion on the square root  term in Eq.   (2.25), 

one  can write 

iMM^y^MO^ 
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-V77^ '-('^-Inlr—o . »•"> 
which simplifies the expression for x to 

x - ]5|1 (- 1 + J5p.)    . (2.27) 

In the limit as Cp - - K + 0,  Eq.   (2.25) gives x - 0 which 

corresponds  to a nucleus  traveling in the free stream.    The same 

result can be obtained directly from the cubic flaccid equation 

for  (1) Cp - - K - 0 and  (2)  Cp -  - K * 0. 

For Cp - - K - 0,  Eq.   (2.19)  simplifies  to 

r2 - 1 - 0    , (2.28) 

which has a root of r « I as we would expect.    For Cp ■ - K * 0, 

the cubic term is neglected as before and the equation for r is 

written as 

r2 - 1  -W^-- 0 (2.29) 
4 

or 

r  - -v/l +^p- 1 - x     . (2.30) 

Therefore, 

/ VTJfl 
(2.31) 

/.   L KWe 

which exactly agrees with Eq.   (2.25).    A check of  the validity of 

Eq.   (2.31) was made by solving Eq.   (2.19)  for C    and  substituting 

computed values of r from Eq.   (2.29) at different cavitation 

numbers.    The computed values  of   Cp were  then compared with  the 
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experimental Cp data. It Is clear from Fig. 5 that there is 

good agreement between the values of Cp calculated from the cubic 

flaccid equation and the experimental data. Thus, Eq. (2.31) is 

accurate enough to be a useful expression for x. 

Calculation of r(s) can now be made from the stagnation point 

up to the initial point of the vaporous growth region from 

Eqs. (2.20) and (2.24).  Substitution of (2.22) and (2.24) into 

(2.20) gives an expression for r in terms of Cp, K and We. The 

equation 

3(C + K)We j 12(C + K)We + 16 

(2.32) 

is plotted for various values of  K in Fig.  6.    Calculation of r 

for various cavitation numbers  is necessary in the derivation 

of  the initial conditions which is performed in a later section. 

2.1.2    Calculation of the Flaccid Bubble Growth Rate,  r(8) 

Another Important facet of  the flaccid bubble problem is  the 

bubble growth rate r(8) where 

;(S)  .Mil    . (2.33) 
d T 

Because the bubble is conveyed toward a region where the changing 

external pressure directly affects the radius and therefore the 

rate of growth of the radius, we say the growth rate is given by 

(2.34) 
dC dr P ds 

dC ds dr 
P 
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Derivation of  each component  derivative  In Eq.   (2.34) results  In an 

expression for  r(s).    Writing the cubic flaccid bubble equation as 

(C    + K)We 
p                   3^2      ,       KWe       - ■*—! r    + r    - 1 T— - 0 (2.35) 

and using Implicit differentiation of  Eq.   (2.35),   one gets 

(C    + K)We p         '       , 2 dr     ,     3 We J   .    dr -«■  3r    -r^— + r    -7— + 2r dC dC 0    . (2.36) 

Solving for dr/dCp,  one has 

dr_ 
dC 

r3We 

3r   (C    + K]We + 8r v P ; 

(2.37) 

which is dependent on the experimental data and the bubble radius 

r(8). 

The  term dCp/ds  depends  on the approximated  parabolic  form of 

the experimental data which is 

C  (s)  « As    + Bs  + C     . 
P 

(2.38) 

If one differentiates Cp(s), he finds that 

dC 
\ 

ds 
2As + B  . (2.33) 

Finally, we know the differential form of the expression for the 

dimensionless time parameter is written as 

amaMüffifflMWD^^ 
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(2.39) 
plT   'o /I - C  (s) o p 

where the term D/V0 - T is the characteristic measure of laboratory 

time t, as defined by Eq. (1.3). Referring to Eqs. (1.2) and (1.3) 

and rearranging for ds/di, one gets 

ds_ 
di 

•1 - C (s) 
P 

(2.40) 

e •! - C (s) 
P 

where c is defined by Eq. (1.2).  By substitution of Eqs. (2.37), 

(2.38) and (2.40) into (2.34), one gets 

r(s) 
(2As  + B)r2We3/2 ■£-  V l/2(l  - C  (s)) 

8 + 3rfC + KlWe v P   J 
(2.41) 

The sign of r(s) depends on what the sign and magnitude of 

the parabolic coefficients are.  Calculations for r(s) using the 

values of r(s) and the parabolic coefficients up to the beginning 

of the vaporous growth region give the curves shown in Fig. 7 

at K - 0.60 + K - 0.70. 

*2&££ä&: t*» aSÜflLx 
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2.2 The Forcing Function 

2.2.1 Definition of the Forcing Function 

As we discuss the translation of the bubbles over a headform, 

we tust be aware of the driving force which creates the environment 

for subsequent vaporous bubble growth and collapse. We have 

discussed the fact that for vaporous growth to occur there must be 

a region on the headform where the static pressure of the flow Is 

less than the vapor pressure of the water. This region starts on 

the headform at various arc length positions depending on the 

choice of the cavitatlon number. Downstream of the Initial point 

of this growth region the pressure Is characterized by the 

Inequality, 

P > P > P ^ 
v      mln 

(2.42) 

or 

K>-C(s) > - C (2.43) 
mln 

Equation (2.43) suggests that the negative of the pressure 

coefficient can be used to measure the force on the bubble that 

causes vaporous growth. 

If the bubble collapses, then we write the inequality as 

K < - C (s)  . 
P 

(2.44) 

Thus, we can set the zero of the forcing function at 

C = - K 
P 

(2.45) 

and define the forcing function which acts on the bubbles as 

F(eT) where 

mseaK*MmwM^^ 
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F(CT) - - C (S) - K - - (C (S) + K)  . 
P P 

(2.46) 

L»&yu>t^ 

It should be noted In this particular case that the region of 

vaporous growth and collapse extends along the arc of the body only 

as far as the separation point of the laminar separation region. 

Once the bubbles enter the separation region we assume that the 

process of vaporous growth terminates and the growth that ensues 

Is due to diffusion of air from the liquid Into the bubble. The 

forcing function which Is derived from the pressure distribution 

can be defined along the entire arc of the body, but will be used 

in this study only up to the separation point.  Figure 8 is a 

schematic diagram of the forcing function with Its vaporous growth 

and collapse regions.  The beginning of the positive growth region 

is located at the intersection of the line of C« ■ - K and the 

forcing function.  This initial point, where F » 0, is designated 

as the origin of the forcing function.  The horizontal axis which 

coincides with the line Cp « - K defines the shifted ex axis along 

which the duration of the vaporous growth process is measured.  As 

shown in Appendix B, this dlmensionless time parameter, which is 

used to scale the forcing function, is derived from the 

dlmensionless arc length parameter and has a zero value at the 

origin of the er - F coordinates.  Growth or collapse is designated 

by ex > 0 up to the point of separation beyond which no more 

vaporous growth takes place. 

When we consider different flow conditions causing the 

cavitatlon number to change, the line where Cp = - K shifts up 

or down depending on the magnitude of K.  For increasing values 

of K, the line of Cp = - K shifts upwards, decreasing the positive 

BfiBfiflaaaM^fflMMa^ 
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vaporous growth region and Increasing the negative collapse region. 

The opposite trend occurs when the value of K Is decreased resulting 

In a downward shift of the line Cp ■ - K. In view of the location 

of the separation point and the value of the pressure coefficient 

at separation, choosing K - - Cp at separation results In a 

favorable region for vaporous growth which is entirely positive. 

As stated earlier, separation occurs at a dlmensionless arc length 

which corresponds to Cp ■ - 0.6597. Thus, positive growth exists 

for all values of Cp < - 0.6597 and growth and collapse occurs for 

- 0.6597 > C > C   , Figure 9 shows the selected region of the 
P   pmln 

forcing function calculated from the experimental data of Carroll 

[2] across the region of vaporous growth for various values of the 

cavitatlon number. 

2.2.2 Axis Shift for the Forcing Function 

It was seen that by choosing different values of the 

cavitatlon number, significant changes in the forcing function 

take place with respect to the regions of growth and collapse. 

Accompanying this change in the growth and collapse regions is 

a shift in the origin of the forcing function which is defined 

as F ■ 0 at CT ■ 0.  As the line of Cp ■ - K moves up or down, 

the origin of the forcing function translates along both the F 

axis and the er axis.  Figure 8 shows the line along which the 

axis shift takes place.  It is important to know how much the 

origin translates for various cavitatlon numbers so that the 

analysis can be generalized for varying conditions.  For the 

range of cavitatlon numbers being Investigated, K * 0.60 to 

afflsaBaBäaBaaa^^ 
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K - 0.70, the curve along which the axis shift occurs is a straight 

line.  To define accurately the axis shift it is necessary to 

determine the variation of F and ET with respect to the cavitation 

number. 

From Figure 10, the linear portion of the forcing function 

between the origin and the line Cp - - K - - 0.70 is the line 

along which the axis shifts. The equation defining this line 

is 

F - 2.5954(eT) (2.47) 

which can be expressed in terms of the cavitation number by the 

relation 

ET - 0.39276(K) - 0.23566  . (2.48) 

Equation (2.48) defines the ex parameter along the line of axis 

shift for cavitation numbers between K ■ 0.60 and K - 0.70. 

Therefore, one can write 

1.01937(K) - 0.61162 (2.49) 

for K » 0.60 to K = 0.70. The reader may refer to Appendix B for 

the procedure used to calculate Eqs. (2.47) and (2.48). 

Equations (2.48) and (2.49) define the shift of the origin for 

different values of the cavitation number.  Use of the axis shift 

is incorporated into the final formulation of the forcing function 

which is approximated by two different parabolic curve fits.  It 

should be noted that the parameter et is being used because of 

the forcing function dependence on the single power of the small 

parameter e. Figure 11 shows a plot of the forcing function for 

Mmmmmmmßmmmmmms®&M^ 
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various values  of   the cavltatlon number after  the axis shift has 

been applied.     It  Is clear from the curves  shown In Fig.   9 that 

the axis shift places the initial point of each curve at a common 

origin.    Thus,  we are able to see clearly the effect of  the forcing 

function for different cavltatlon numbers.    Larger values of the 

cavltatlon number will cause the forcing function to have a negative 

effect near  the separation point while smaller values of  the 

cavltatlon number will make the forcing function entirely positive 

across  the vaporous region.    Choosing a cavltatlon number greater 

than or equal  to the negative of C would result In zero 
Pmin 

vaporous growth for a nucleus as It  translates  along the body. 

2.2.3    Parabolic Curve Fit of the Forcing Function 

Previous analysis of this problem was performed by Parkin   [11] 

In which the forcing function term Included within the Raylelgh- 

Plesset equation was approximated by a combination of step 

functions.     Using the definition of  the forcing function given In 

Eq.   (2.46),   three parabolic approximations were made to simplify 

the solution  of   the Raylelgh-Plesset  equation. 

2.2.3.1     Plecewlse Parabolic Curve  Fit 

In the same manner that the experimental data were 

approximated  by a plecewlse parabolic  curve  fit,   the forcing 

function was  approximated by  the same  method.     Using Eq.   (2.46), 

values  of  F were  computed  for various  cavltatlon numbers. 

Parkin   [11]   scaled  the  "bubble"  time  parameter  T against  the 

laboratory  time  parameter  t  by a small  parameter which we call 

e, where 

^OMMMMMWSQfl^^ 
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(2.50) 

where 

Ks)  - / ds 

s.   •!  - C (s) 1 P 

one can rewrite Eq.   (2.50) as 

r WPR° I(s) TVir' 

(2.51) 

(2.52) 

or 

I(s)  - ET    . (2.53) 

Recall  that  the laboratory time scale T across which the forcing 

function  acts   is 

o 
(2.54) 

Since the small parameter e is the ratio of bubble time to 

laboratory time, its value gives the scaling factor between 

the two times.  This scaling allows one the freedom of 

choosing a different diameter headform and at the same time 
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maintain a proper scaling through the small parameter, e. Thus 

the calculated value of the Integral equals the parameter CT and 

Is tabulated In Appendix B with the corresponding values of the 

forcing function.  The tabulation of F and er was then used to 

interpolate using a plecewlse parabolic fit of the forcing function 

for consecutive triads of points. The curve fit was performed for 

various cavltatlon numbers between K ■ 0.60 and K ■ 0.70. This 

form of the curve fit was used to Inspect carefully the region of 

vaporous growth and collapse for different values of K. 

2.2.3.2 Two-Parabola Curve Fit 

In an effort to simplify the formulation of the problem, the 

forcing function was refit with two parabolas Instead of a piece- 

wise parabolic fit.  The two-parabola fit incorporated Eqs. (2.48) 

and (2.49) which defined the axis shift for different cavltatlon 

numbers. Figure 12 shows the key parameters and conditions used 

to fit the two parabolas to the forcing function.  The derivation 

of the first parabola was based on the following conditions: 

(1) The parabola has the form 

F1 - A^ex) + B^ex) + (^ 

(2) F^ET - 0) = C1 = 0 

(3)    Fjex  1 = F    = A.fei  )    + B.fei   ) + C,     , l^m-' m l^m-' l^nr 1' 

dF 
(4)     ..   \   (ET   1 =  2A.(£T   )  + B    = 0 d( ET)   K    mJ 1v    m-' 1 

üMxmföß&m'C mmmmmmmm 
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2)F=Fm®£Tm 

PARABOLA #2 

SEPARATI ON 
POINT 

4) F=Ff(p)eTf 

Figure  12, 

D1MENSI0NLESS TIME, ex 

Schematic Plot of the Forcing Function Showing the 
Key Parameters used for a Two-Parabola Curve Fit. 

Immmwmfl^^ 



m ivwTOjTKnJWiWvKnKn ̂ W^^^^K^^^^^^^^V^^V^W^^WW^HMAJWV.WWWtWurMr^-'.       I-»»-»WT»-< \niirmvyf\i*\mri\nivyi\fv\ vnn^i > 

40 

Conditions (2) and (3) simply define the value of the forcing 

function at the origin and maximum point while Condition (A) states 

that the forcing function has zero slope at the maximum point. A 

simultaneous solution of these equations using Conditions (2), (3) 

and (4) gives the following expressions for the parabolic 

coefficients of the first parabola: 

Al-- 
m 

(ex ) 
2    ' 

2F 
m 

1  ex 
(2.54) 

m 

C - 0.0 

The conditions used to approximate the second parabola are: 

(1) The parabola has the form 

F2 - A2(ex) + B2(ex) + C2 

(2)   M"J - *   - S(£0 + B9(£TJ + S • 2^  m' 

dF, 
(3) A,     \   (" 1 - 2A,(ex ) + B. - 0 

d(ex) v m'    lv m;   2 

(4)  F_(eTf) = F = A.(eTf)
2 + B,(exf) + C,  . 2^'f 2^ f 

m,: -: / . &£&&ttwy*^^Ss£^ 
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Satisfaction  of Conditions   (2),   (3) and   (4) for  the second  parabola 

gives the parabolic  coefficients 

A2- 

F,   - F 
f        m 

(ex-  - EX   V K    f mJ 

2(Fm-Ff)(ET  ) m 

fex, - ET  V 
*■     f m' 

(2.55) 

F     - 
m 

(Fm - Ff)(£T y 

(e T-    -   ET y 

Figure   13 shows   the two-parabola  fit  plotted  against  the 

actual forcing function.    To check the validity of  the curve fit, 

a comparison  of  the  total impulsive effect  of  the forcing function 

and  the two-parabola  fit was made.    The impulse  is written as 

J    - / FCETMUT) 
P 

(2-5b) 

and was calculated using the integration routine discussed earlier. 

Figure 14 shows the comparison of the Impulses across the range of 

the vaporous growth region. The over-estimation of the curve fit 

resulted in a relative error of 3.0391%. 
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2.2.3.3    Trigonometric Curve  Fit 

An alternative  to the plecewlse parabolic fit and  the two- 

parabola fit of  the forcing  function Is a curve  fit using 

trigonometric functions to produce a smooth continuous curve fit 

across the entire range of  vaporous growth.    This  type of curve 

fit eliminates the need to derive new Initial conditions  at the 

junction between the two parabolas discussed  In the previous 

section.    One can assume that In the Interval 

I 

0 < tg   < tf     . 

that 

FUT)  - F(t   )  - FfSln(ßt  ) (2.57) 

where JJt8  - ir/2 when ts  » tf.    Therefore 

2tf 

and 

t 
•ir    8' F(eT)  -F(t8)  - FfSln(i^) (2.58) 

If we consider the forcing function to be the cause of all primary 

resonances in the system as discussed by Nayfeh and Mook [16], one 

writes  the  forcing function as 

F^Slnßt    = eKSlnfüi T    + oT, 1 f s *• o o l-* (2.59) 

Mw^^mmmm^m ama^msms^^ 
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Thus,  the primary effect will be In the  e^ equation and we 

maintain an autonomous system In the e^ equation.    That Is  to say 

the system Is soft,  not stiff.     This result  Is consistent with 

the outcome of  the parabolic forcing functions as can be seen by 

the Inspection of those results. 

2.3    Formulation of   the  Initial  Conditions 

2.3.1    Derivation of  the  Initial  Radius,  r(0) 

In an effort to solve the governing ordinary differential 

equation In the vaporous growth region,  the Initial conditions at 

the beginning of this region must be derived.    The Initial point 

was defined earlier as  that point on the body where  C« ■ - K. 

Also,  the Initial point  is designated by the dlmensionless   time 

T ■ 0.    The conditions  for the radius and rate of growth of   the 

radius are derived as functions  of T at T ■ 0 and as  functions 

of K across the range K « 0.60 -»■ K ■ 0.70.    Thus,  an arbitrary 

choice of  the  cavitatlon number would produce a corresponding 

set  of  initial  conditions  for  r(0) and r(0). 

Since the initial  conditions are functions  of  the parameter 

T,  a correlation is  made  between T and s because  the  initial 

formulation of  r and r was made  against s.     It was  shown earlier 

that by choosing different  values of  the cavitatlon  number  the 

axis of  the forcing  function shifted because  of   the  translation 

of  the initial  point  of   the vaporous growth region.     To find 

the arc length positions  corresponding to  the  initial  point  of 

the vaporous  growth region,   one must use  the parabolic  form of 

the pressure  coefficient. 

imiaKtöMjm^ 
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C (s) - As    + Bs  + C 
P 

along with the condition  that  the initial conditions  are derived at 

the point Cp - - K from  the flaccid bubble equations.    The resulting 

equation is 

As    + Bs  + C + K (2.60) 

which can be solved with the quadratic formula to give 

.(«■ fj [-1 * V^V^i (2.61) 

where 

4A(C + K) 

B2 
<  1 (2.62) 

Equation  (2.61) is  used  to compute the arc length positions at 

the beginning of  the vaporous  growth region which define  the range 

across which the equations for r and r are valid.    Using the 

computed values of   r and  r at  the beginning of   the vaporous  growth 

region gives  the initial  conditions for the problem at various 

values of K. 

The initial condition for r is equivalent  to Eq.   (2.30) which 

was derived at  the  point   Cp = - K.    Use of  a binomial  expansion 

transforms  (2.30)  into  the form 

r(0)  = 1  +^p- + 0   [(KWe)2]     . (2.63) 

mmi^sm^mmmiammmmmmmmmmmssmmM^ 
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Figure  6 shows the region of  Interest where the Initial conditions 

are sought.    Figure  15 Is  a blow-up of that region with the line 

representing the Initial conditions drawn through the various  r 

curves  at different values  of K.     Equation (2.63) Is linear which Is 

exactly the line of the Initial condition represented  In Figure  15. 

Thus,   Figure 16 represents the Initial condition r(0) for various 

values  of  the cavltatlon number.     In the formulation of  the problem, 

a general Initial condition of 

r(0)  - 1 + q (2.64) 

Is used where q, from Eq. (2.63), Is written as 

KWe 
q --8- 

Equation (2.64) Is a more precise form to use while exposing the 

difference In the Initial condition used by Parkin [11] which 

stated 

r(0) - 1 . 

2.3.2  Derivation of the Initial Growth Rate, r(0) 

In the case of the Initial condition for r, the following 

conditions were substituted Into (2.41) to get an expression for 

the Initial rate of growth: 

C  - - K 

r(0) - -\/l + 
KWe 

(2.65) 

s(K) 2A V        n 

sfflmaafflafflaaaMi^^ 
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The resulting equation Is written as 

r(0)   - | (1  + ^We372 ^2. YB2  - 4A(C + K) (2.66) 

and Is a function of  the cavltatlon number and the physical 

parameters  of  the flow and headform.    Figure  17 shows the line of 

Initial condition for r(0) across  the range of cavltatlon numbers 

being Investigated.     In bubble time  the Initial condition has a 

constant value with a magnitude of  the order   1 x  10    .    In 

laboratory time  this translates  to a velocity with a magnitude of 

-9 the order   1  x  10      fps.    Since the magltude Is relatively small, 

the Initial condition for r(0) Is approximated as zero,  although 

the fact  that It  Is not actually zero Is found to be conceptually 

Important later.    The zero value for r(0) corresponds to the 

Initial condition used by Parkin   [11]. 

In summary,  using the properties  of a flaccid bubble under- 

going Isothermal expansion,   expressions were derived for the 

radius of  growth and the rate of growth of  the radius.    These 

expressions are functions of the cavltatlon number,   the particular 

parabolic coefficients used to approximate the experimental data 

and  the physical  parameters  of  the  flow and  the headform.    These 

expressions  are  valid  in the flaccid  bubble region only,  beginning 

at  the stagnation point and ending where the pressure coefficient 

equals   the negative  of  the cavltatlon number,   i.e.,  Cp = - K. 

These values  of  r and r at  the point  Cp  ■ - K represent  the 

i 
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Initial conditions used  to solve  the governing differential 

equation.     The resulting initial conditions  are 

r(0)  -  1 + Q    ,    Q <  1 [from Eq.   (2.6A)] 

and 
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(2.67) 

r(0) [evaluation of Eq.   (2.66)] 

for the range  of cavitation numbers under  investigation. 

2.A    The Differential Equation for an Isothermal Bubble 

Written in dimensionless form,  the governing equation for 

vaporous growth and collapse of a spherical  isothermal cavitation 

bubble is 

2                     2 
d r       3   /-dr i        Y        1 J. c/    \ r —r + — [■:—1    ■ -hr + F(CT) 
dt 2   MT-' 

(2.68) 

Equation  (2.68) is a second order nonlinear ordinary differential 

equation requiring two initial conditions  for its complete 

solution.     The  initial conditions for r(0)  and r(0) were derived 

in the previous  section,   Eqs.   (2.63)  and   (2.66).    The forcing 

function,   F(eT),  which causes  the bubble  to grow from the initial 

condition at  r(0),   to some  maximum radius  rm,  was  approximated by 

two parabolas  making Eq.   (2.68) nonautonomous.     Past studies  of 

the nonautonomous  form of  Eq.   (2.68)  have  been performed using 

appropriate  numerical methods.     In several unpublished numerical 

studies  by  Parkin,   it was  found possible   to distinguish four 

classes  of  solution  for  Eq.   (2.68).    A Class   1  solution is 

characterized  by small-scale oscillations   that make up the major 

iaraM^^^ 
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part of the bubble's motion. In a Class 2 solution, the bubble 

motion Involves a periodic motion similar to a Class 1 solution 

but with a larger amplitude. A Class 3 solution has periodic 

solutions for the bubble's oscillations but with larger amplitudes. 

The size of the amplitudes was found to be dependent on the key 

parameters of the flow. Finally, a Class 4 solution represented a 

bubble growing Infinitely large. Of Interest here are the Class 1, 

Class 2 and Class 3 solutions.  It Is desired that a solution of 

Eq. (2.68) be obtained that would allow a parametric study of 

these different classes of solution to be performed. With the 

Initial conditions and forcing function previously derived, one 

can now apply the method of multiple scales In an attempt to get 

an approximate analytic solution of the Isothermal Raylelgh- 

Plesset equation. 
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CHAPTER 3 

PARTIAL SOLUTION OF THE DYNAMICAL PROBLEM 

3.1 The Method of Multiple Scales 

Having established the governing differential equation and 

Initial conditions for Isothermal cavltatlon bubble growth and 

collapse, the method of multiple scales Is used to find an 

approximate analytical solution to the problem. The method of 

multiple scales Is used because of the two dissimilar time scales 

that exist In this problem.  Since there are two different time 

scales, a variation of the method of multiple scales called the 

two-variable expansion method Is used. Application of the two- 

variable expansion method begins with the expansion of the two 

time scales. 

3.1.1 The Time Scales 

As discussed earlier, there are two time scales that 

characterize this problem. The time measured In the laboratory Is 

the slow time scale ts and Is the characteristic time scale of the 

forcing function.  The fast time scale tf Is a very short time 

compared to the slow time scale and Is the characteristic time 

scale of the Individual bubble oscillations.  Expansion of the 

time scales based on the small parameter e, defined by Eq. (1.2), 

is derived by Cole and Kevorkian [14].  The slow time scale is 

simply 

t ■ ex 
s 

(3.1) 

while the fast time scale Is written as 

VttJfViXW wmtmw^w^^ 
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2     'i 
(l + eü)7 + C(jü- + ...)T (3.2) 

Because the individual bubble oscillations are very fast, the 

expansion for tf includes additional terms which allow for different 

frequencies of oscillation that nay occur as the bubble passes 

through a varying pressure field. Based on these two time scales, 

the dynamical equation can be expanded to the order e^. 

3.1.2 Formulation of the Dynamical Equations to Order e^ 

Formulation of the dynamical equations to order e-^ is 

accomplished by using the expansions for the slow and fast time 

scales, Eqs. (3.1) and (3.2), to derive the first and second 

derivative expansions as functions of the dimensionless bubble 

time T. One can write 

T -f(t ,tf) s,wf 
(3.3) 

where  the derivative with respect to Eq.   (3.3)  is 

d       n       2     .    3   i   3    .       3 

f s 

It  follows  from Eq.   (3.A)  that  the second derivative  is 

2 2    2 
A 0               ^             U                                ^                L               A 
—2 "  (l  +  e  Uo + e  "O    —2 + 2^e + e  "o + e  ""J      ^ 
di "                    3tf                          ' 

(3.4) 

S'  3tc3t f    s 

+ e 2 i_ 
3t: 

(3.5) 

or written in ascending power of  e the second derivative expansion 

is 

BMlMVW^WVfflMWW^^ wmmmmmm 
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d 

di 7T--2+ 2eior + e t2ü,2 .2 3t:    at* 

+ e3[2a)~ ■—■ + 2(ür 
3t^ i 3t,3t f    s 

■]     • (3.6) 

Using the first and second derivative expansions,   one can write 

Eq.   (2.68) In a completely expanded  form up  to  e^ using a general 

perturbation expansion for r having the form 

2 3 r  ■ r    + er    + E r. + e r. + ... (3.7) 

Use of Eq.   (3.7)  in  (3.6) and  (3.4)  leads  to 

dr       3r0 4     r
3ri   ,   ^O, 4     2r

3r2 + 
3rl   , ^0, 

t t s is r 

3r3      3r2 3r1 3r 
+ e [Tr+ IT + "2 IT + ^ n;] (3.8) 

and 

2 2 2 2 2 2 2 
3 r„ 3 r, 3 r„ „  irn 3 r, 3 rn      3 rn 

di 3tf 3tf " f s 3tJ: f    s 3t^ 3t H-^-^-ioM-W-it^-^ 

32r 32r ^2 ^2 3 r,       3 r, 32r, 32r, . c3 r    3 - 9       2   v ,    l' 11    0 L i , .        o ^ 0    __o 1 + e f-r+ 2 "sFTsr+ 2ui2 -r+ rr+ 2ü,3 -r+ 2u2 TOT] 3tc r    s 3t- 3t 3tc f    s 

(3.9) 
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If one assumes  the bubbles under consideration are spherical, 

then the term S(r,n) from Eq.   (2.68) Is set equal to unity.    The 

term FCex) from Eq.   (2.68)  has the form of a parabola as discussed 

In Section  (2.2).    Unfortunately, use of a parabola of  the form 

2 2 F - Ac t    + Bet    + C s s (3.10) 

requires the solution of nonautonomous first and second order 

expansion equations to get a complete solution.  By using a 

trigonometric form of the forcing function represented by 

Eq. (2.59), one needs to solve only the nonautonomous first order 

expg .«rlon equations since the trigonometric form Is expressed 

only to the first order of the small parameter, e. 

Calculation of each term In Eq. (2.68) based on the general 

perturbation expansion for r and the first and second time 

derivative expansions, permits one to write the isothermal 

Raylelgh-Plesset equation in ascending powers of the small 

parameter e as a function of the fast and slow time variables. 

The same procedure can be performed on the initial conditions. 

Introduction of a normalized radius u where 

1 + Q 
(3.11) 

allows one to write the normalized Isothermal Raylelgh-Plesset 

equation with initial conditions consistent with  those used by 

Parkin   [11].    The resulting set of differential equations  and 

Initial correlations up to   e^ can be solved and substituted back 

into Eq.   (3.7) using   (3.11)   to get the final solution for the 

dimenslonless  bubble  radius  as a function of  time. 

^m^QMiMma^^ 



BBBBMWM—B——aWCTWOTi rwvmJvrmjvwNyvirj WM vvwvyraTriwvirviniiniTct.-**** .^ »■>. »n >r ^n»-. ^ ».■>.■ ^, ~. ~. r», 

58 

The normalized equations  and Initial conditions written In 

ascending powers of   t are: 

Order  e0 

d2u du UlrZi]  .1 i 
0,2     '2   Mt dt 

1 +    ^ 
u^  (1  + Q)5      un(l + Q)3   '   1  + Q 

(3.11a) 

u0(0) - 1.0 

dt. 

Initial  Conditions (3.11b) 

(0)  - 0.0 

Order  E
1 

2 2 
du, „    du«    du, ,    d u du. 

.2        Lu. dt^J dt,       Lun  .2        2    2  Mt   J        ,.   ,  n.3 3J ul dtf Off 0 dtf u0 (1 + 0) u0 

B 

(1 + Q) uf 

u   (0) - 0.0 

dt. 

Initial  Conditions 

(0)  - 0.0 

(3.12b) 

hpaüc^rawüftXtto^^ 



^^^^^^C^l^C^r^^^^WI^W^^^^^^^^^^HI^Vv ■"»• W^m *M *\ JlHMiruwvirviryir« wn WMWTJ WV W-U W^J WA.I I 

59 

Order  E^ 

d2u. 

dtf dtf 

d2u0   _   ^ du0  3u2      9 u2    dV 

+ 3 
dt dt,       2 urt  Mt   J 

2u, 

3FC        U2 

f "wf      ' "0 

Vf       ,       3FB        ul      ^ 
2      ,,   .   ..2    2 "    3 

UQCI + Q)3 

1 

(1 + Q)2U0       (1  + Q)2      (1+Q)2u2      u3  (1  + Q)3 

E 

2 2 
d u0 d u1 

" 2u2uo 7X " 4ui 7T 
6        Ul   32u0 

dt: u. 
dtj (1 + Q) "0 dt^ 

2 2      -4 2 u,     du. .3(11   Ä     3 r^li     9
uiduodui    9U1 r

duo. 

(3.13a) 

u2(0) 

du2(0) 

"dtl 

0.0 

-    Ü), 

duo(0) 

2    dtl 

Initial Conditions (3.13b) 

Order  E^ 

d2u. d2u. •3 l   "0 duO du^       Q dun   ' 

dt, at, r       f f 

C 3  „ J_ _       -C        ^ .       3FA        nj_ t2 
(1   +  Q)3 u2       (1   +  Q)2 U0       (1   + Q)2 U0     f 

3F 
B __t    .     6Fc       ^,^^^1 

(1  + 0)2     f       (1   + O)2 u2       (1  + Q)2 u3 

fcswsoyowffjyuinit 
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du,  du» u,  du„ du 

■JT- 9 

f acf "0 ^"f   wf 

2 

du    du u    du    du u      du 

-^dTT-^diT^-S^)^) 

9 ui ,dui u2du0du1      Mu-du0du1 

2u/dtfJ u0dtfdtf u2dtfdtf 

'o ldtf 

u.     du u      du u    du. du. 

0 dtf dtf 

u^dugd^ V2r%2     i^Ä2 

u0
2dtf dtf u*    VdtfJ    "^  SJ 

2 2 7 

2Vo -r - 2Vo rr -4u. Jt dt, dt. dtf 

d2„, 
1 ..2 " "Vi -f 

ut - 

d2u, ■1 "?  32ul       „UlU2d2u0 "N^O 
dt 0 dt f 0 dt: uodtf 

(3.14a) 

03(0) 0.0 

du3(0) 

dt. 

dUjCO) 
J2-dr— -   U) 

dun(0) 

3    dt. 

Initial  Conditions 

(3.14b) 

mmmmmmmmmmmmmmmmmmmm 
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3.2 Solution of the Multiple Scale Equations 

3.2.1 The c0 Solution 

The first step In obtaining the complete solution of the 

Isothermal Raylelgh-Plesset equation Is to solve the normalized 

zeroth order differential equation that results from the 

application of the method of multiple scales. The zeroth order 

equation, Eq. (3.11a), Is still nonlinear but Is now autonomous 

because the time dependent forcing function has been reduced to 

a constant. Equation (3.11a) Is analogous to the autonomous 

form of the Raylelgh-Plesset equation studied by Parkin [11] 

where the term ?Q  corresponds to his plecewlse autonomous step 

function representation of the forcing function. From Eq. (3.11a) 

one can examine the Intricacies of this problem by Investigating 

the energy curves and phase plane trajectories. This form of 

analysis is restricted to the autonomous zeroth order differential 

equation and is very useful in determining the limits of the 

periodic and non-periodic solutions which are based on the 

location and character of the singularities that exist in the 

autonomous system. 

3.2.1.1 The Potential Energy Function 

The zeroth order equation and initial conditions may be written 

as 

A2 A 2 
d u„  _ dun , uo £ + 1 r__o i = 1 1 1     1 

dtj  ' 2 'dV   u^ (1 + Q)5  U0(1+Q)3  (1+Q)2 

u0(0) = 1.0 

^w:*^vvl^v^^>>^a^ra^^ 
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du( 

dt. 
(0) - 0.0 . 

It is of great Interest to consider the different solutions of 

the zeroth order equation for the two cases when (1) FQ  ■ 0 and 

(2) YQ  * 0. One can replace the second order differential 

equation by a pair of coupled first order equations using the 

relation 

du 

dT 
0 

To simplify the expressions by dropping the subscript zero, 

the zercth order equation and initial conditions can be rewritten 

as 

dv     .   3    2      Y           1 1         I           ,           C 
U  (1  + Q)3      (1 + Q)2 

u(0)  - 0 

v(0)  -  I     . 

Using the transformation 

(3.15) 

dv       3    2 1    d     ,  3  2^ 
W ^ + ^ V    ^ TT d^U V  ^ 2u dt       2 (3.r6) 

one may express Eq.   (3.15)  In integral  form as 

3   2 ,   rL 
u v    ■  I   I- li L 2u 

2 
2u F, 

(1  + Q)5       (1   + 0)3       (1  + Q)2 
]du (3.17) 

■asaikKmaa^^ 
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The left-hand side of Eq,   (3.17)  is  proportional to the kinetic 

energy of  the bubble motion while  the right-hand side corresponds   to 

the negative  potential energy,  - V,  of   the bubble.    Evaluating the 

integral  in Eq.   (3.17) as an indefinite  integral,  one can write 

- V 
2Y&nu      _        u 

(1  + Q)5      (1  + Q) 

2    3 
3 + 3U 

(I + Q)' 
+ k (3.18) 

where k is a constant of integration that permits one to adjust the 

level of V for different initial conditions.  Setting Fc - 0 and 

evaluating Eq. (3.18) at the initial conditions defined for the 

zeroth order equation, one writes the potential energy function V 

2Y 

(1 + Q)- 

ln\i  + 
1 

(1 + Q)- 
(u " 1) (3.19) 

and the plot of Eq. (3.19) versus the normalized radius u is shown 

in Fig. 18 for values of Q - 0.30 to Q - 0.0.  It is easy to see 

from Fig. 18 that as the value of Q decreases toward zero, the point 

of minimum potential energy shifts to the right. The relationship 

defining the location of this minimum energy is derived by setting 

the first derivative equal to zero.  Thus, 

*1 
du 

2Y 1 + 2u 

(1 + Q)2 U  (1 + Q)3 
0 

or 

1 + Q 
(3.20) 

mmmmmmmmmmmsimmmmmsmi 
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which defines analytically the location of minimum energy•  In this 

study we restrict our attention to positive values of u and thus 

neglect the negative root. The Importance of Eq. (3.20) will become 

evident later when we study the location and character of the 

singular points of Eq. (3.15). Moreover, the translation 

experienced by the minimum energy point Is the critical condition 

that allows one to distinguish between two kinds of motion 

characteristic to the autonomous system. 

If one evaluates Eq. (3.18) using the initial conditions from 

Eq. (3.15) and sets ?Q *  0, the resulting potential energy function 

Is written as 

V 2]L^£nu+_J_^(u2.l).2_ic_^(u3_l) m 

(i + QV (i + Q)^       J (i + qr 

(3.21) 

Equation (3.21) represents the potential energy function for the 

autonomous system having a non-zero forcing function and is plotted 

in Fig. 19. Clearly, the contribution to the potential energy 

function of the last term in Eq. (3.21) becomes overwhelming as u 

increases, causing the energy curve to turn downwards. As before, 

the location of the minimum and maximum points is determined by 

setting the first derivative equal to zero.  Performing the same 

operation on Eq. (3.21), we find the result to be a cubic equation 

of the form 

u3 -F a\ 0)  u
2 +  * 3 = 0  . (3.22) 

FC(1 + Q)     Fc(l + Q)
3 
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NORMAUZED BUBBL£ RADIUS, u = 
1 + Q 

Figure 19.  Potential Energy Plot for F ^ 0. 
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The roots of Eq. (3.22) are found using Tartaglla's Method. 

For the case of three real and i nequal roots, the roots of 

Eq. (3.22) are of the form 

P 
Xi "3 

(3.23a) 

where 

m cos(01 -H 2,r(1
3'  

1)) 1  - 1,2,3 

and 

1        -1   flhs 9i ■ 3C08   for) 

m-2 v^ 
a-^(3q  -p2) 

b --IJ (2p3 - 9pq + 27r) 

(3.23b) 

The parameters p, q and r are the coefficients of a cubic equation 

having the form 

3 2 u    +pu    +qu+r«0 (3.2Aa) 

Therefore, 

P - - Fc(l  + Q)    ' 

q  - 0 

I w -l M n JL « JL-1 «_« MJl *J\ It 
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and 

r -'-      ■      . (3.24b) 
Fc(l      Q)J 

Thus,   in terms  of  the original paramor.21 P of.   the cubic coefficients, 

the roots of Eq.   (3.22) are 

Ui " 3FC(1  +Q) + 3FC(1 ^ 01 COSi Bl + 3 J 1 '  1'2'3 

(3.25a) 

where 

1       -1          27FcY 

e. ■ -j cos     [1 =—]   . 

Evaluating the  roots  for Q - 0.3,  y "  1»4,  Fc ■ 0.2,  one gets 

i - I    ,    u1 - 3.600356643 

i - 2    ,    u2 - - 0.825817193 (3.25b) 

i - 3    ,     u3 »  1.071614395 

Since we  are interested in positive roots only,  the second is 

neglected leaving the first and third root  to define the location 

of  the maximum and minimum points  In Fig.   19. 

3.2.1.2    Singular Points and the Phase Plane 

Having derived  an expression for  the potential energy of  the 

autonomous  system,  we  can now look at  the phase plane in conjunction 

with the potential energy to study the singularities  that exist  In 

the system.    To begin the analysis we need  to apply Eq.  (3,16)  to 
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(3.15) and use a generalized Initial condition for the initial 

radius that states u(0) - u0. The initial condition of the bubble 

wall velocity will remain zero because its actual initial value is 

so small that all analyses whether global or specific will be 

accurately represented by u(0) » 0. Use of the generalized 

initial condition on the bubble wall radius will enable us to 

perform a global phase plane analysis to explore the properties 

of the autonomous system and to develop some knowledge about the 

physical parameters that lead to different classes of solutions. 

Afterwards, the initial conditions defined by Eq. (3.11b) will be 

used to look at a specific set of trajectories in the phase plane 

and how they relate to the global analysis. 

Applying Eq. (3.16) to (3.15), one can write 

d r 3 2^  2y        1        2u   . „ 2   FC ,, .., 
dir(uvJ-u  5 3+2u  2 '    (3,26) du      u (1 + Q)5 (l + Q)J    (1 + or 

Using Eq. (3.26), one can derive an expression for the phase plane 

trajectory by computing the derivative on the left-hand side and 

solving the equation for dv/du.  The result is 

Y        u2      u3FC    3 2 3 
- T V U 

dv B (i + q)
5  (i + Q)3 Ü t Q)2  2     p^•')  ,, 97x 

du 4 " q(u,v)  u,z/; 
U V xv » ' 

which defines the bubble wall velocity as a function of the bubble 

wall radius and the other physical parameters of the flow. The 

singular points of the autonomous system are located at those 

points which satisfy the conditions Q = P = 0.  Because u > 0, 

Q * 0 when the initial condition for the bubble wall velocity is 
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satisfied.    Thus,  all  singular points are located along the u-axls 

at positions satisfying P(u,0) - 0.    Evaluating P(u,0) - 0, one 

gets the cubic equation 

3 I 2 A Y n 

which is exactly the same as Eq. (3.22). As we saw earlier, the 

roots of Eq. (3.22) 'ieplne the locations on the u-axls of the 

maximum and minimum points of the potential energy function. Thus, 

we can say that the location of the maximum and minimum points on 

the potential energy curve correspond exactly to the location of 

the singular points of the system. 

In order to determine the character of these singularities 

one can apply Liapunov's Method (see Ref. [15]) which requires 

finding the characteristic roots of the Jacobian matrix 

fCu.O)    f(u,0) 

The value of u in the argument of each derivative function 

corresponds to the values of the real roots denoted by Eq. (3.20) 

for Fc ■ 0 and Eq. (3.25) for Fc *  0. 

When FQ ■ 0, the characteristic equation is 

X2 - - 2u5 (3.28a) 

or 

X, , - ± 1  ~—r u5 . (3.28b) 
1,z     (1 + Q)5 
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When Eq.   (3.28b) is evaluated at the positive root of  Eq.   (3.20), 

the result Is  two purely  imaginary characteristic roots meaning 

the positive root  is characterized as a vortex point.     In a small 

neighborhood in the phase plane,  all motion will circle around this 

vortex point thus defining a periodic solution for u. 

When Fc * 0,   the characteristic equation becomes 

3F 
X2 =■ u5 + S—r- u6    . (3.29) 

(1  + Q)3 (1 + Q)b 

By evaluating Eq.   (3.29)  at the positive roots  of Eq,   (3.22), one 

can determine the nature of  those roots.    For  the smallest positive 

root in Eq.   (3.25b),   the characteristic roots  are purely Imaginary 

meaning the root is a vortex point.    For the largest root in 

Eq.   (3.25b),  the characteristic roots are both real meaning the 

root is a saddle point.     The location of  the saddle point 

corresponds  to the outermost limit on the u-axis  that a trajectory 

representing a periodic solution will pass.    Ma and Wang  [17] 

obtained similar results  for this specific case.    These results 

are also completely consistent with those of  Parkin   [11] who found 

for FQ ■ 0 that  only one  vortex point  exists.     And for  ?Q * 0, 

a vortex and saddle point  exist on the u-axis with the vortex 

point located closer to  the initial radius u0  than the saddle 

point.    Moreover,   the roots that lie on the negative u-axls are 

not pertinent  to our problem and should not  affect  the  solution. 



m IHHWWWWIllHlllIWIBWIIWWWWWJTnwwrgn^^ 

72 

Rearranging Eq.  (3.17) for the bubble wall velocity, one can 

write 

u - ± 

2Y         fl                 1          f  2          N       2          C        ,  3 N  I—5 Änu j [u    - u  }  + -^ =■   u    - u  J 
(1  ■»• Q)5 (1 +Q)3 0 3 (1  -H Q)2 0 

(3.30) 

which defines  the family of  trajectories In the positive phase plane. 

The family of curves resulting from Eq.   (3.30)  Is a series of closed 

loops and open curves representing periodic and non-periodic solutions, 

respectively.    The plus and minus designation of Eq.   (3.30) defines  the 

trajectories above and below the u-axis.    The extent  of  the closed loop 

periodic solutions  is determined by the location of  the singularities 

which were found  to coincide with the position on the u-axis of  the 

minimum and maximum potential energies.    Plots  of  the potential energy 

and phase plane  trajectories are shown in Figs.   20 and  21.    Figure 20 

corresponds  to the potential energy and phase plane  trajectories when 

FC " 0»  Y " l«^»    Notice  the location of the minimum potential energy 

corresponds  to the vortex point in the phase plane about which the 

periodic trajectories are focused.    It is important  to point out that 

the location of  the minimum potential energy translates from left  to 

right as  the value of  Q decreases from Q » 0.30 to Q ■ 0.00.    The 

dotted curve in the upper potential energy plot  corresponds to the 

case where  the  trajectory and the vortex are  isolated  at  the origin 

in the phase  plane  for  a critical value of  Q    J     = 0.183216.    This 
crit 

critical  motion  is  then defined by U(T)  ■  1 and U(T)  = 0 for all  time. 

The importance  of   this  critical condition  is   that  it  separates  two 

physically distinct  types  of motion  that  the  bubble  experiences 

depending on its   initial  size.    The  trajectories  to  the left of 

/;/M*W,KV^^ 
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U(T) ■   1 represent small  scale oscillations of a flaccid air bubble 

while  those to the right of U(T)  ■  1 have larger amplitudes of 

oscillation involving vaporous growth.    Since we are considering 

primarily the vaporous growth region,  we will limit our discussion 

and investigation to those trajectories that lie to the right of 

U(T) -  I.    The location of  the vortex points, which coincides with 

the minimum potential energies,   is defined by 

/y (3.31) v       (1+Q)     * 

Thus,   one can write at uv -   1 

Qcrlt - ^ - 1 (3.32) 

for any value of y If 0 " 0, then y  ■ 1 which is the lowest 

possible value of the dissolved air content for positive Q values. 

Since Q was previously defined in Eq. (2.63) as 

_  KWe 
Q "— ' 

the minimum limit on Q corresponds to V0 » 0 or K ■ 0. 

If one now considers the potential energy and phase plane 

trajectories for Fc * 0 at y » 1.4, it can be seen from 

Fig. 21 that the nature of the curve is quite different from 

the case when Fc * 0. To simplify the analysis we will look 

at only one energy curve with its corresponding phase plane 

trajectories. From Fig. 21 one can see that the minimum point 

on the energy curve coincides with the vortex point in the 

phase plane while the maximum energy point concides with the 

saddle point. The location of the saddle point defines the 

maximum normalized bubble radius through which a trajectory 
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representing a periodic solution passes.    Therefore,  all 

trajectories representing periodic solutions lie to the left of 

the saddle point and circle  about  the vortex point located just 

to the right of some generalized  initial condition u(0)  -1+0» 

The outermost trajectory representing a periodic solution and 

passing through the saddle point  is called the separatrlx.    The 

parameters   that define the separatrlx as  the outermost limit of  all 

periodic  trajectories  is characterized  by the critical parameters 

Y    and F .    These critical  parameters are determined  by 
crit 

simultaneous solution of 

V(u)  - 0 (3.33) 

and 

~(u)  - 0    . (3.34) 

Equations   (3.33) and  (3.34)  are  to be evaluated at the location of 

the saddle point as determined from Eq.   (3.25).    All trajectories 

that lie outside of  the separatrlx represent bubbles which will 

grow  to an  Infinite radius  across  an Infinite time  interval.     In 

this  study we are mainly interested in the trajectories  that 

represent  periodic solutions. 

To solve  for  the critical  parameters  that determine  the 

separatrlx,   one can write  Eqs.   (3.33)  and   (3.34)  as 

F 
V(u) ^_^ inn i =■ (u2 -  l)  + | ^— (u3 -  l)   - 0 

(i + pr        (i + pr J (i + qr 

(3.35) 

and 

M^ MA tvjt .-tjut« ' .^ .< .M ; tfu hAj u^j wv-tru WVWJ vu n 
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dV.-^l_^l-_J^ + _!c        u2.0    . (3.36) 

du     (i+o)5u     (l+0)3     (l+0)2 

Solving Eqs.   (3.35) and  (3.36) for y and then solving simultaneously 

for F. one gets 
crlt 

F - 3fu    - ll - 6u  £nu (3.37) 
Ccrit       (1 + Q)[2(u3 - l) - 6u3£nu] 

which defines  the critical forcing parameter as a function of  0. 

Rearranging Eq.  (3.36) for y and substituting Eq.  (3.37) for 

F_ one can write the expression for Y    ..    as 
Ccrit crit 

Ycrit "(1 + Q) u t1 - »(-TTI :—p] * (3-38) 
u   (j - £nu) - ^ 

Thus,  Eqs.   (3.37) and  (3.38)  are  the critical parameters which 

when used in conjunction with Eq.   (3.30) define the critical 

trajectory called the separatrix.    Parkin  [11] asserted that  the 

separatrlx corresponded to a barrier between Class  1 and Class  A 

solutions for a non-zero forcing function parameter,  TQ.    Recall 

that a Class  4 solution corresponds   to a bubble which grows  to an 

infinite radius in an infinite amount of  time.     If one chooses  a 

value of  the forcing parameter larger  than that of F or an 
crit 

air content larger than y        , then the trajectories corresponding 

to a Class 4 solution would be found outside of the separatrix. 

Choosing values of Y ..^ and F_    near zero results in small 'crit C    _ 
crit 

scale oscillations about the vortex point and is classified  as  a 

Class   1  solution.    Critical  values  of  the air content parameter 

and  forcing function parameter  evaluated at  the location of   the 
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saddle point for Q - 0.30 are F     - 0.183A101 and 
crlt 

Ycrit " 3.1022749. Figure 22 Is a plot of the critical parameters 

versus the normalized bubble radius.  In this study we are 

Interested In values of u > 1. Therefore, It Is not necessary to 

begin the origin of u at zero. It Is Important to note that the 

magnitudes calculated for the critical parameters In Fig. 22 and the 

amplitude and frequency of oscillation Indicates In Fig. 21 are 

comparable to those calculated by Parkin [11]* This apparent 

consistency In the generalized phase plane allows us to consider the 

more specific case of the phase plane when we use the Initial 

conditions formulated earlier. Also, if we let u + <■> then we 

see the phase plane trajectories asymptotically approach a value 

equal to 

-v^ Q)' (3.39) 

The asymptotes are represented by the horizontal dotted lines on 

the phase plane plot in Fig. 21 and apply to non-periodic 

trajectories as T ■>• »>. 

If one analyzes the phase plane when the initial conditions of 

Eq. (3.11b) are used, the resulting equation is similar to 

Eq. (3.30) except that u(0) « 1.  The phase plane equation is 

written as        ^  

2Y  .      1    r 2  n .2   FC   ,3  .^ -J— £nu (u  -1)+-  (u  -1) 
(i + or (i + or  (1 + Q)  

u 

(3.40) 

W: 
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which satisfies  the initial conditions  exactly.    By varying the 

forcing function parameter Fc about  the value of   the critical 

parameter Fc     .   ,  one obtains the phase plane plot shown in Fig.   23. 

Notice that all  trajectories begin from u -  1, u - 0 and follow a 

trend similar to the trajectories shown In the general phase plane. 

As noted earlier in the derivation of u(0),   the value of u(0) has 

—8 
a magnitude approximately equal to  I *  10      fps.    The fact that this 

initial velocity is not equal to zero is very Important because it 

allows us  to explain the existence of  the trajectories when there 

is no forcing.     If one looks at the parabolic coefficients of the 

forcing function represented by Eq.   (2.54),   it is easy to see that 

the zeroth order term C^ ■ 0.0.    Therefore if the bubble has zero 

wall velocity at the initial point,   then the bubble will grow only 

if a force favorable to growth is applied.     Because the zeroth 

order forcing constant is zero there must be an initial wall 

velocity enabling the bubble to traverse along any one trajectory 

as shown in Fig.   23.    Otherwise the phase plane would be 

represented by a single point in the phase plane at u ■ 0, u ■ 1. 

Thus,  approximation of the initial velocity as zero allows one to 

simplify the equations without sacrificing  the accuracy of  the 

calculation. 

In summary, we have looked at  the pha,?e plane plots,  potential 

energy and  singularities  for the autonomous  zeroth order differen- 

tial equation F^ >  0 and 7Q * 0.    The  singularities which exist  in  the 

system for  F,j > 0 explicitly define  the limits between periodic  and 

non-periodic  solutions.    The character  of   these  singularities was 

MMBMMfflafiMffl^^ 
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verified by Llapunov's Method and revealed a vortex point near the 

general Initial condition u - u(0) and a saddle point located farther 

away from the initial radius. As a result, the phase plane plot 

showed trajectories representing periodic solutions circling about 

the vortex point while the saddle point acted as a bridge between 

the periodic and non-periodic trajectories.  Also, the location 

along the u-axis of the vortex and saddle points was exactly the 

same as the location of the minimum and maximum points exhibited 

by the potential energy function. Using the location of the 

saddle point, we were able to derive from the potential energy 

function and Its derivative expressions for the critical parameters 

Y and F.    which are used In Eq. (3.40) to define the 
c     Ccrit 
separatrix. The separatrix which is now a function of Q and u is 

used to show the separaclon between Class 1 and Class 4 solutions. 

Thus, the trajectory representing the separatrix is the outermost 

limit where a periodic solution exists. All solutions within the 

separatrix are periodic motions and are the main focus of this 

study. And all trajectories representing periodic or non-periodic 

solutions approach an asymptotic value indicating a constant rate 

of growth or collapse of a bubble as its radius grows infinitely. 

Having established limits between the periodic and non- 

periodic solutions, one is now ready to put the zeroth order 

differential equation into Integral form in order to determine 

an approximate solution of the Individual bubble oscillations. 
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3.2.1.3    Polynomial approximation of  the logarithmic air content 

parameter 

In an effort  to solve  the zeroth order differential equation, 

one must rewrite Eq.   (3.40) using the positive root only as 

-i /     2Y         .                1          (2      n       2        FC        ,3      n -I / 1—=• £nu r (u    -l)  + 3 2  tu    "  0 
du     V (i -t- or (i •>• or  (1 + 0)  
dx ^372 

(3.41) 

By Inverting the variables  in Eq.   (3.41),   an expression for  the 

period of  oscillation can be written in the form of a definite 

Integral as 

u 3/2. x      dx 

V (1  + 0)3 (1 + 0)J J (1 + Q)Z 

(3.42) 

The lower limit of the integral is the initial normalized radius while 

the upper limit is the value of the normalized radius u, between 

u ■ 1 and u ■ ug where ug corresponds to the maximum value of u when 

u - 0 in the phase plane plot in Fig. 23.  As it stands, Eq. (3.42) is 

not soluable by any standard analytic technique.  It closely resembles 

the form of an elliptic integral except that the numerator does not 

have a whole numbered exponent and the denominator contains a natural 

log term. 

In order to shape Eq. (3.41) into a form which may be solved by 

some known analytic technique, one must first multiply the numerator 

and denominator by the square root of the normalized radius.  The 

Integral is then 
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u-U, 
2. u du 

/      2Y          .                 1           ,  2        7~~2        FC        ,  4 . -i/ «-—r-uinu r (u    -u)+3 j (u    - u) 
Q) (1 + Q)' 

(3.43) 

which still contains a natural logarithm In the denominator. 

Generally, one would numerically Integrate Eq. (3.43) and probably 

obtain very accurate results. Because the emphasis of this study Is 

to obtain an analytic solution to the Raylelgh-Plesset equation, 

certain modifications of Eq. (3.43) must be made enabling one to get 

an analytic solution to the zero order equation.  If one considers 

the function u£nu, which Is contained within the square root of the 

denominator. It Is easily seen that the function Is a rather smooth 

function of constantly Increasing magnitude.  By fitting the u£nu 

function with a cubic polynomial the entire denominator can be 

written as the square root of a polynomial.  For the zero order 

equation, the term F^ ■ 0. Then the polynomial in the denominator 

would be a cubic . 

In order to fit the u£nu function with a cubic polynomial four 

points must be used to model the function in the region of interest. 

Thus, for the four points, uj, 112, U3, u^, one writes 

f[u2] 

3     2 
u.Änu. = au. + bu. + cu. + d 

3    2 
u Ami. « au2 + bu + cu + d 

3    2 
u-£nu. = au. + bu. + cu_ + d 

3    2 
u . Änu . = au, + bu, + cu, + d 
4  4    4    4    4 

(3.44) 

■ffl^^^kflax^^ mmmmm 
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In matrix form, Eq. (3.44) Is written as 

3  2     . 
Ul Ul Ul  1 

3  2 
U2 u2 U2 

3  2     . 
U.  U-  U-   1 

3 2 
u.  u,  u,  1 
4 4  4 

which when solved with the IMSL subroutine called LINV3F produces 

the coefficients 

m    M — 

a u.Änu. 

b u2lnu2 

c u3Anu3 

d u4lnu4 

a ■ - 0. 050304 

b - 0, 578693 

c - - 0. 001871 

d . - 0. 526519 

The numerical values of uj, U2, U3, U4 corresponded to the values of 

the normalized radius starting at the Initial condition uj - 1 and 

ending close to the location of the saddle point U4 ■ 3.60. Points 

U2 and U3 were arbitrarily chosen to be U2 ■ 1.80 and 03 - 2.60. 

Table 1 shows the % error between the function u£nu and the cubic 

polynomial f ■ au^ + bu^ + cu + d.  It is evident that the error 

falls in the range of -1.0% < error < 1.0%. 

To see the effect of the approximation on the zeroth order 

equation, one can rewrite Eq. (3.40) using the cubic polynomial to 

get 

m i£££ 
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TABLE   1 

Polynomial Curve  Fit of u£nu 
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uinu f - au3 + bu2 + cu + d % error 

1.0 0.00000 0.00000 0.00000 

1.2 0.21879 0.21763 - 0.53019 

1.4 0.47106 0.46707 - 0.84794 

1.6 0.75201 0.74590 - 0.81249 

1.8 1.05802 1.05171 - 0.59681 

2.0 1.38629 1.38208 - 0.30376 

2.A 2.10112 2.10686 + 0.27318 

2.6 2.48433 2.49644 + 0.48737 

2.8 2.88293 2.90092 + 0.62408 

3.2 3.72208 3.74495 + 0.61441 

3.6 4.61136 4.61963 + 0.17927 

KÄQSÖtoGhiWM^ 
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Now,  Eq.   (3.46)  is In a form which allows one to calculate 

analytically the value of  the integral.    Solution of  the integral 

will be completed in the next section. 

3.2.1.4    An Approximate Zero Order Solution using Elliptic 

Functions 

Having established an approximate form of  the integral 

representing the period of oscillation of a bubble,  an analytic 

solution in the form of elliptic functions must be formulated. 

Because the numerator  is a squared term and the denominator  is 

the square root of a polynomial,   an integral from Byrd and 

Friedman  (131  can be applied.    The solution is dependent  on 

the roots of the denominator and can be expressed  in terms  of 

Incomplete elliptic integrals,   the first,  second and third kinds 

and a product of Jacobian elliptic functions. 

The first thing to do is  to calculate the three roots of  the 

cubic polynomial in the denominator of  the Integrand.     Because the 

roots can vary due to the choice of y and Q,  we will choose 

Y ■  1.4 and Q ■ 0.0 to get  the largest possible  roots  available 

for the zero order solution. 

Using Eq.   (3.46),   the radicand should  be written as 

3 2 
A[u    + pu    + qu + r ] 

where p ■ B/A,  q  ■ C/A and  r  » D/A.    If we  set 

H 
v       1 + Q     ' 

which denotes the phase-plane location of the vortex point. 

MBaMKfflMiffltfQtfM^^ 
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Then the coefficients p, q, r and A become 

2 
2bu 

v 
P             2 2au^ - 1 

i 

2cu* + 1 
q   "        2 2au^ - I 

• 

2duJ 

2auJ - 1 
» 

(1 + Q)J 
[2au2 - 1          V 

l]     . 

Letting the three real roots of this modified cubic be u., u. and 

u-, we can order the roots as 

u1 > u > u. > u. 

with u. being the largest root and u. being the smallest. From 

Fig. 20 It Is clear to see that all the trajectories In the phase 

plane originate from u ■ I. We can therefore assume that the 

modified cubic always has a root at unity. Normally the cubic can 

be factored using Tartaglla's Method, but because we know one of 

the roots Is u ^ 1 the other roots can be found by dividing the 

modified cubic by u - 1 and solving the resulting quadratic 

equation. 
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LonR division of the modified cubic by u - 1 gives 

x + x(p + 1) + (q + p + 1) 

with a remainder of 

2u  (a + b + c + d) 

2au    - 1 
v 

Then with the numerical values of  the coefficients a,  b,   c and d 

from the curve fit of uinu   (p.  85),  one can calculate the remainder 

to be equal  to zero.    Therefore,   the remaining two roots are found 

from the quadratic equation.     Upon factorizing the quadratic 

equation and applying the appropriate coefficients,   the remaining 

two roots are 

1.0568u    - 1 v 

2(1 + o.iooeofiu ) 
itVi* 

4.212144u2fl + O.lOOfiORu2! 

(l.0568u^ -  1) 

The numerical equivalents of these two roots when y " \,k  and 

Q - 0.0 are 

u - 1.3662 

and 

u - - 0.9459 

Comparison of all three roots with the range of Integration as 

prescribed by the phase plane of Fig. 20 justifies the ordering 

of the roots as 

u1 = 1.3662 , u2 = 1.00 , "3 = " 0.9459 . 

afiaaaMaaaBMaama^^ 
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Consequently Eq. (3.46) can be rewritten using u., u. and u. as 

V(2au^ - 1) uml  
Ul 

2. 
x du 

x)(x - x2)(x - x3) 
(3.48) 

Since all trajectories shown In Fig. 20 originate at u - 1, the 

analysis conducted above for the trajectories that lie to the 

right of u ■ 1 should also work for the trajectories that lie to 

the left of u - I. 

It has been previously stated (p. 75) that the trajectories 

to the left of u - 1 represent small scale oscillations of a 

flaccid air bubble.  Indeed, the main focus of this work is to 

study the bubble growth as it occurs in the vaporous growth 

region. However, In an effort to maintain completeness In the 

solution of the zero-order equation one should be able to use a 

similar factorization as shown above to define the ordering of 

the roots for the trajectories to the left of u ■ 1. These 

roots could then be used in the solution of Eq. (3.48) to 

describe the time history of these small scale flaccid air 

bubble oscillations. 

Considering the same factorization as before, the roots are 

written as 

u1 - 1.0 
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'2.3 

2au2 + 2bu2 -  1 v v 

2(1 - 2au2) 

1 ±  \/ 1 + 
8u  (a + b + c)  - 16u (a    + ab + ac) 

V v 

r2au2 + 2bu2 - l)2 

V        v V ^ 

3 3 
Using a polynomial curve fit for the  function u£nu ■ au    + bu    + cu + d 

where 

a - - 0.205A84 

b -      1.111631 

c  - - 0.606996 

d  - - 0.299157 

over the range u » 0.8 to u ■  1.0,  one can write 

1.8123ut -  1 v 
2,3        2(1 + 0.41095u2) 

1 ±  W 1  + 
2.39326u2(l + O.41095u2] 

v^ v* 

(..8123uJ - I)2 

Choosing  y " 1«^ an<l Q ■ 0.30 then one finds  the parameter u    equal to 

u     * 0.910166 and the roots are v 

u.   »      1.00 

u2  =      0.82318A 

u.  - - 0.449188 



BBBTOPWWWWWWfW fffrwmffvwfimnwtwwwrwwwrwvwvwvwvrawvt 

04 

Therefore, the ordering of the roots as 

u. > u > u- > u, 

is equivalent to the ordering of the roots for the traiectories 

that lie to the right of u ■ 1. Comparison of the roots u., u. 

and u. against the roots as calculated by numerical methods 

resulted in errors of approximately 0.60%.  Thus, the factorization 

method is a reliable means by which the roots of the cubic 

polynomial in the denominator of Eq. (3.46) can be calculated. 

It is interesting to note that when values of y  and Q are 

chosen such that the parameter u increases in magnitude from less 

than one to greater than one, the roots u., u„ and u» migrate from 

left to right along the u-axis. When the parameter u equals unity 

there is a double root at u ■ 1 which sets the upper and lower 

limit of Eq. (3.48) equal to unity.  Previous analysis reminds us 

that for a double root at unity a bubble radius will neither 

increase nor decrease in size as time increases. Thus, it will he 

at this point that the analysis will continue, considering only 

values of the parameter u greater than or equal to unity, even 

though an equivalent analysis could be performed for values of u 

less than one.  Refering to Byrd and Friedman, Eq. (3.48) can be 

written as 

T=gbm-Lr[4u + 2a2(a-a2)vi + (a
2 - a*) V,,] 

a 
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where 

V.   - -~ [E(^k)  - k2SnuCdu] 

L       3k ^ 

- k2SnuCdu(k'2nd2u + 4 - 2k2)]     . 

The parameters  In Eq.   (3.49)  are functions of  the roots,  uj, 

U2 and U3 and are defined as follows: 

Modulus 

(3.49) 

ul -u2 
u1   -U3 

Complimentary Modulus 

■-V^ 
2 

g 
/u,- U3 

Modular Angle 

41 -  Sin -1 (u1  - u3)(u - u2) 

[u1  - u2J(u - u3J 

Note:     u is  the upper  limit  of  integration. 

>^m^QW^^^ 
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Incomplete Elliptic Integral of the First Kind 

♦ 
F(*,k) - / 

d9 

o^r: k sin 6 

Incomplete Elliptic Integral of  the Second  Kind 

EU.k) - /-y/l - k2sin2e d0 

96 

Jacobian Elliptic Functions 

Snu ■ sin  41 
/(ü1 -u3)(u^u. 

V ["i " U2J(U " u: 

Cnu ■ cos   <t) 

dnu -yi - kW 

ndu 
dnu 

Rewriting Eq.   (3.49) In terms of u^,  112 and 113, one gets 

«MMuvawM^^ 
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T - FU.k)[gu2. -gu?(l -^)   AT] 
U2'     3k'2- 

+ E(*.k)[2gu u  (1 - ^K-ij) * gu^1  " ^  (2(2 V  ^l 
z -^ u2    k 2 3k q 

U3wk2 

- SnuCdu[2gu2U3(l  - ^K—-) + gu2(l   - ^)  (^(^ " 2k2)] 

SnuCdund 2u [gii2 (1  - ^)   (-^j) ] 
3k 

(3.50) 

Now,  if one considers   the terms  inside  the square parentheses 

In Eq.   (3.50) for a particular value of Q and  y, the quantities 

Inside the square parentheses are considered constant.    All 

combinations  of  the elliptic functions  in front of  the square 

parentheses are functions of  $ which are functions of  the variable 

u.    Therefore,   T ■ f(u) which is  the inverse of what we want;  namely, 

u  - fd).     Also,   since all  the elliptic functions  In Eq.   (3.50) do 

not have well defined inverses,  an alternate strategy must be used 

to invert  Eq.   (3.50)  in order  to write an expression describing the 

growth of  the normalized bubble radius versus  the bubble  time. 

Since all  terms  in the square parentheses  in Eq.   (3.50) 

represent  constants,  one can rewrite  Eq.   (3.50) as 

T  - F(<(),k)V1  + E((J.,k)V2 - SnuCduV. -  SnuCdund uV (3.51) 

L_ W 
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where V , V-, V. and V, are constants for a particular value of 0 

and Y, Now since the sum of the elliptic functions in Eq. (3.51) 

does not have a known Inverse, an approximation of each function 

must be derived that allows one to Invert the equation to get 

u «fd). Because the functions F(^,k) and E((^,k) are defined as 

definite integrals, a numerical routine must be used to evaluate 

the functions across the range of the roots uj and u2. The 

functions F(^,k) and E(^,k) are considered Incomplete elliptic 

integrals when $ < Tr/2. If ^ ■ ii/2 then the functions are 

considered complete and are tabulated in Byrd and Friedman's 

Table of Elliptic Integrals [13]. Unfortunately, the tables are 

not comprehensive enough to Include every possible value of 

F(^,k) and E(^,k) for different values of $ so that the numerical 

routine utilizing Simpson's 1/3 Rule was used. 

In Fig. 25, the function Ff^jk) was plotted as a function of 

the modular angle $. Because the values of Q and y vary in 

accordance with the different phase plane trajectories located to 

the right of the initial condition as shown in Fig. 20, extreme 

values of k were computed to represent those trajectories. Using 

these extreme values of k, curves representing the maximum and 

minimum range that the function F((t),k) would fall are plotted as 

solid lines in Fig. 25. All other values that F((j),k) might attain 

would lie in between those two solid lines.  Recall the modulus k 

is defined by 

Vui -u (3.52) 

fcroMawroMO^^ 
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where u. , u- and u. are  Che roots of  Che cubic polynomial In Che 

denomiracor of  Eq.   (3.46).    When Q - 0.183216 and  Y - l«^i  the 

minimum poCenClal energy falls dlrecCly on Che Initial condlclon. 

The cubic polynomial  in Che denominaCor  of Eq.   (3.46) has double 

rooC aC u^ ■ U2 ■  1.0.    ConsequenCly, k ■ 0 is  Che minimum value of 

k used  Co ploC  the extreme upper value of  Che elliptic funccion. 

Likewise,  when Q - 0.0 and y m 1.4,  Che cubic polynomial has rooCs 

such ChaC uj > U2 > U3.    The result is a maximum value of 

k - 0.446046 which is used Co compuCe Che extreme  lower value of  Che 

ellipcic functions.    This same procedure can be used for Che other 

elliptic funcCions  Chat come ouC of Eq.   (3.51).    Notice that for 

F((j»,k) and E(^,k),  the maximum curve corresponds  to k ■ 0.    The 

opposite is  Crue when looking at Che curves  for SnuCdu and 

SnuCdund^ in Figs.   27 and 28. 

Having deCermined a maximum and minimum range  for Che elliptic 

functions,   it was of great benefit  to derive a separate functional 

representation for each elliptic function shown in  Figs.  25 through 

28.    To do this,   a median curve lying in Che middle  of the two solid 

lines  of each figure was plotted.    The median curve  is shown as a 

dotted line and was calculated using k = 0.315759 as  the modulus. 

Each median line  Is used to represent the entire range of each 

elliptic function since  there could be an Infinite  number of 

representative  curves   for all combinations of  Q and  y chosen. 

Finally,  since each median line is  roughly parabolic  in shape,   a 

parabolic approximation of each dotted line  in Figs.   25 through 28 

^ W:s-v^-*w.vvy^^ , fr jfl^m^ammm 
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was derived.    The coefficients were derived by fitting each dotted 

line at three representative  points starting with the  zero point. 

Using the following parabolic equations 

FU.k) - A^2 + B^ + C1 

E(*,k) - A2*    + B24) + C2 

SnuCdu - k.Q    + B3()» + C3 

2 2 
SnuCdund u - A.^    + B,(j) + C. 

the coefficients were computed as 

A.  -      0.021844 

B    -      0.992116 

A    - - 0.02073 

B„ -      1.007155 

A    - - 0.83226 

B, -      1.307305 

(3.53) 

A    = - 0.88065 

B,   =      1.38332 

C,   - C    = C    = C    = 0.0    . 
12 3 4 

üaSat vv^ AiuwwLvtwuyuvinÄ -"J 
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Figures 29 through 32 are plots of the resultant curve fits 

(dotted line) of the median representative of the various elliptic 

functions (solid lines).  Now, one can rewrite Eq. (3.51) as 

T - V^A^2 + B^ + C^ + V2(A2*
2 + ly + C2) 

+ V3(A3*
2 + B3* + C3) + V4(A4*

2 + B^ + C4) (3.54) 

which has no term larger  than second order in ^. 

Grouping like powers  of   ^, we write Eq.  (3.54) in the general 

form of a parabola as 

- 2      - 
T ■ a^    + b^ + c (3.55) 

where 

a - V1A1 + V2A2 - V3A3 - V^ 

b  - V1B1 + V2B2 - V3B3 - V4B4 

c - v1c1 + v2c2 - v3c3 - v4c4   . 

It  should be noted  that Eq.   (3.55)  Is  now written as a function of 

^.    But,  because the definition of  the modular angle  $ is written 

as a function of u,  we still  have   T ■ f(u).    It  is desired   to get 

the  Inverse f  » g(T).    Therefore,   Eq.   (3.55) can be  inverted  by 

using the quadratic formula.     Subtracting T and applying  the 

quadratic formula,  one gets 

- b ± V b2 - 4a(" - T ) (3.56) 
2a 

mmtmzmmmM 
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Since C. - C- ■ C- ■ C, - 0 and $  must equal zero at T ■ 0, one 

must choose the positive branch of the square root in Eq. (3.56) to 

represent the inverse. Having established ^ • fix),  one can now use 

the fact that 

sin 4» 

/(u1-u3Ku-"T; 

' V I"! -u2itu " u; 
(3.57) 

to derive an expression in the form u ■ fd).  Solving for u from 

Eq. (3.57), one gets 

Ju^uJ 
U '  [~2 2 J + U3    * k^sin * - 1 J 

Substituting expressions for k(ui,u2,u3} and <j>, one can write 

u ■ fd) as 

(3.58) 

u3 -u2 

£l^l) sin2  (-b Wb2 + 4äT 
u.   - \i~J v 

+ u. (3.59) 

1 2a 
) 

where uj, U2 and U3 are functions of Q, FQ  and y  as defined by 

Eq. (3.25a). The resultant plot of the normalized bubble radius as 

a function of the bubble time Is shown in Fig. 33. Each curve 

beginning at T * 0 corresponds to a particular trajectory in the 

phase plane.  Each trajectory Is characterized by the author's 

choice of Q and y  in such a manner that the trajectory is always 

located at or to the right of the initial condition.  Since each 

trajectory is centered about a vortex point whose location along 

the u-axis is defined by 

/7 u  = 
v 

(1 + Q) 
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each curve in Fig. 33 has a particular value of uv labeled at the 

half period.  If the calculation had been carried across the upper 

and lower half of the phase plane trajectory, then all the curves In 

Fig. 33 would return to the T-axls completing a whole period of 

oscillation. 

It Is Interesting to note that these oscillations are of a very 

high frequency and as a bubble passes through a region favorable to 

vaporous growth or collapse, these free oscillations occur a number 

of times before the bubble reaches the separation point. From 

Fig. 11, one can determine that at K ■ 0.60 the dlmenslonless time 

from the Initial point up to the separation point equals 

approximately 760 units of bubble time. I.e., T 
m 760.  If the 

complete period of oscillation Is Tperi0(j x 6.2 units of bubble 

time, one could calculate the number of Individual free oscillations 

to be NCYCies • 122.  In laboratory time, this means that a 

particular bubble will oscillate ■ 122 times over a time period of 

0.14A seconds. 

Having established some knowledge about the zeroth order 

solution In terras of elliptic functions, one now desires a more 

usable form of the solution, preferably in terms of trigonometric 

functions, that will closely approximate Fig. 33.  Looking at the 

curves in Fig. 33, one could say they are roughly of the shape 

u - 1 - cos T.  Using a more general form of the curve 1 - Cos T, 

one can write 

u  - A + B COS(TT  T/T-) + C cos(2Tr T/T,) (3.60) 

JCTOMMSaW^ 
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where Tf is the dlmenslonless time corresponding to the time it 

takes to reach the end of a half period and A, B and C are 

coefficients to be determined. Using the following three conditions 

@ T - 0  , u - 1  , 

(? T - T   ,  U ■ U   , m  '      m 

and 

(8 T - Tf  , u - uf  , 

one can solve simultaneously for A, B and C to get 

A   i (1+u ).!« 
- T ^ + Uf) " T (1 " uf )co8(* T/Tf) 2 ^ ' "f^   2 ^   "f;—° v ■■ V 'f 

coellit  Tm/Tf J - 1 

B-i(l-uf) (3.61) 

c  
u
m -j ^ 

+uf) -jl1 -"f)cos(Tr Tm/Tf) 

cosfZir T /if] -  1 v   m t ^ 

The parameters um and Uf correspond to the values of u along a line 

representing midpoint values of the zeroth order solution and the 

values of u along a line representing values at the end of a half 

period. Figure 34 shows the lines along which the values of um and 

Uf were taken.  Upon plotting these values of um and Uf against the 

parameter uv, the following curve fits were derived: 

u = - 4.0477 u' + 9.2935 u - 4.2458 m v v (3.62) 

n = 1.99873 u - 0.99873  . 
f v 

(3.63) 

mmmLm£mmmmfom!mmm.<^ mmmmmmmm 
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The times that correspond to the values um and uf are defined as 

Tra and if and are read off the same lines that um and Uf were in 

Fig. 3A. Plotting Tm and Tf against the parameter uv resulted in a 

parabolic curve fit for Tm as 

T - 1.25 + 4 sin 9 
m 

(3.64) 

where 

i - -  4.3239(uv - l)2 + 1.2804(uv - l) 

and a linear fit for Tf as 

Te   • 2.1587 + 5.6764 u sin 6  . 
f v 

(3.65) 

The parameter 6 defined the angle that the line along which uf and 

Tf deviated from the vertical. Measurement of 6 gives 6 » 1.208 

radians. Figures 35 and 36 show the approximate curve fits of the 

parameters um versus uv and I  versus (uv - l). The curve fits show 

relatively good accuracy and thus can be used with confidence in 

determining an approximation to the zeroth order solution. 

Therefore, plotting Eq. (3.60) in combination with Eqs. (3.61), 

(3.62), (3.63), (3.64) and (3.65) against the dimensionless bubble 

time T gives a maximum error of - 4.5% of the zero order solution 

as shown in Fig. 37.  In order to reduce the error even more, 

Eq. (3.60) was rewritten as 

u - (l - e)[A + B cos(Tr T/T, ) + C cos(2ir T/Tf )] (3.66) 

where e is some functional approximation of the relative error used 

to reduce the error between the solid and dotted lines shown in 

Fig. 37. Writing e as 

JWDtfQOMMQtftt^^ 
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(3.67) 

and solving for the coefficients a new approximation of the zeroth 

order solution can be written.  Using the conditions on e that 

e - 0 @ T - 0 

e ■ e 0 T ■ T 
m      m 

e - 0 (? T - T, 

the coefficients A, B and C are written as 

m 

1 - COS^TT 77x71 

B - 0 (3.68) 

C - - 
m 

1 - cos(2it T /TfJ 

where e,,, Is the maximum error Indicated for each value of uv used. 

Plotting the values of em versus uv, one can find an approximate 

curve fit for em which is written as 

e - 0.09774 u + 0.1585 u  - 0.1136 
m v v 

(3.69) 

The parameters tm  and if were defined previously by Eqs. (3.64) and 

(3.65).  A plot of Eq. (3.66) with (3.67), (3.68) and (3.69) gives 

an approximation of the zeroth order solution with a maximum error 

of - 1.5% for all possible values of uv.  Figure 38 shows the 

mmmmmmmmmmcmmmmmmmMmmtöMMMMM 
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approximate and correct  curves  of  the zeroth order solution plotted 

as  functions of  the bubble time  T.    Thus,   a fairly accurate closed 

form solution exists which can now be used  to analyze  the  first 

order equation. 

JMttwmmx^^ 
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CHAPTER 4 

SUMMARY  AND CONCLUSIONS 

Having found a partial multiple scales solution of  the pulse 

forced Raylelgh-Plesset equation of  cavltatlon bubble dynamics,   we 

must discuss and summarize the features of this work.    First,   before 

any analysis was performed,  certain assumptions were made.     It    was 

assumed  that one can model the dynamics of bubble-ring cavltatlon as 

though each bubble were a small Isolated spherical bubble 

distributed throughout the flow.    For the mlcrobubhles of radius, 

R  , distributed In the flow,  all Interactions with adjacent bubbles 

and walls were neglected.    This    assumption was made strictly In 

the Interest of simplifying the problem.    Also,   It Is assumed 

cavltatlon Is Initiated from these mlcrobubhles  of radius,  R  ,  In 
o 

the minimum pressure region which Is on the boundary of  the 

submerged body.    This fact was reflected In the formulation of   the 

dynamical equation by using the pressure distribution.     Recent 

measurements made by Roll and Carroll   [1] revealed a very low 

pressure area along the surface of  the body which, under special 

conditions, created an environment  favorable for bubble 

growth.     Using    the  specific  pressure coefficient data collected by 

Holl and Carroll   [I], a forcing function was derived as  a function 

of  the  dimensionless  bubble  time,   T.    The forcing function,  F(T), 

produced a pulse-like force which,   when incorporated   into  the 

problem,   caused  the dynamical  equation to be non-autonomous.     Past 

■B^MMmOM^^ 
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studies  by Parkin   [11] were made using a plecewlse autonomous step 

function to approximate the forcing function.    This alleviated some 

of  the problems that would have arisen if the forcing function were 

modeled  as a parabola, which more closely represents  the true nature 

of  the pulsed force.     In an effort to capture the parabolic nature 

of  the forcing function,  a parabolic  fit was derived which satisfied 

the physical requirements  that  the forcing function exhibited in the 

region where vaporous growth occurred. 

To this point,   the development  of the problem is  straight- 

forward.     A differential equation and  initial  conditions  exist 

that describes the dynamics  of  growth along with a forcing 

function representing the pulsed-force that acts on the 

mlcrobubbles.    The problem seems  like an ideal candidate for a 

computer solution where detailed histories of  the bubble growth 

could be plotted using an appropriate numerical routine.    The 

problem with a numerical solution is   the loss of  the parametric 

analysis  of the critical parameters   that govern cavitatlon 

inception in this  type of  flow.     Also,   the differential  operator 

of   the  Raylelgh-Plesset equation does  not directly lend  itself 

to a nice solution in terms  of  common well-behaved functions. 

Therefore,  parametric analysis  of  the various solutions coming 

from the  governing dynamical  equation  is nearly impossible. 

Figure   39 is a prime example  of  how  the solution varies  with 

respect  to the various  flow parameters.    The curves  in  Ftg.   39 

represent  isothermal  cavitatlon  bubble growth In response  to 

gm»i^ffl»c^Q^^ 
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single parabolic-pulse forcing functions.  The transient response 

is directly affected by the relative pulse height and relative 

pulse duration.  By understanding the parametric relationships 

that define the growth, one can better analyze the specific flow 

characteristics without relying on the computer to produce 

detailed histories of growth. 

On the other hand, certain information can be derived from 

the numerical solutions as shown in Fig. 39. The curves show 

essentially no growth for certain values of the parameter 0 while 

higher values of ß cause explosive growth.  One can predict the 

existence of two different classes of bubble growth where the 

Interface between the two classes of growth Is a particular cutoff 

value of 6. Analysis of the governing equations should then 

reveal a parametric relationship that allows one to predict that 

cutoff value of 8. It should be noted that the curves in Fig. 39 

are unpublished results obtained by Parkin under the direction of 

M. S. Plesset. Also, the parameters shown in Fig. 39 pertain to 

Parkin's work. 

Using a multiple scales analysis, a series of differential 

equations and initial conditions representing the zeroth, first 

and second orders of e are derived.  From the zeroth order 

equation, the global representation of the phase-plane trajectories 

and corresponding vortex and saddle points are found.  If the 

autonomous form of the trajectory equation is plotted, then the 

saddle point disappears and the trajectories become closed-loop 

^m^^^^^ 



WT>* fv rw f\* n# rw rw n^.'^wvi rmn* -WWJV JWWJVL'WVU tflwnil'WnPJVV^wTrvv.'V'/vvvLTruTrw'v«jvv-rf-, ■   >   . »v WJWM w-u irvwv w i— mm mmm m 

127 

paths centered around a vortex point.  The location of this vortex 

point can be located rather precisely using Llapunov's method or 

the corresponding potential energy curve. 

An important result of the phase-plane analysis for the 

autonomous zeroth order equation is that a critical condition 

was found which represents the point of separation between two 

physically distinct types of motion. The trajectories that lie 

to the left of this critical point are representative of small 

scale flaccid air bubble oscillations while those to the right 

have a somewhat larger amplitude of oscillation due to vaporous 

growth. The critical parameter that defines the various 

trajectories is 

ir 
1 + Q 

(3.31) 

In particular, the parameter, u , defines the location of the 

vortex point for each trajectory. For u greater than one, the 

vortex point and corresponding trajectory lie to the right of the 

initial condition.  For u less than one, the vortex point and 

trajectory lie to the left of the initial condition. Because this 

work concerns itself primarily with vaporous growth, we have 

considered only values of u greater than one. v 

Having defined   the phase-plane trajectories  for the zeroth 

order autonomous  form of  the Raylelgh-Plesset  equation,  an 

approximate solution  to the zeroth order equation was found.     From 

the  trajaectory equations one can write  the  bubble time equation 

for  T in quadrature  form as 

»SCMK^M^^ 
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(4.1) 
Y      .  1 -—=■ x Inx  
0) (1 + 0) 

^x3 - x) 

Equation  (4.1) Is  generally solved numerically,   but since a 

parametric solution is desired,  an approximate  solution is obtained 

by fitting the u£nu function with a cubic  polynomial.    The resulting 

Integral  is solved using a Table of Elliptic Integrals.    The 

solution,  which is  expressed in terms  of  Incomplete elliptic 

integrals of  the first,   second and third kinds  and a product of 

Jacobian elliptic  functions,  is dependent  on the roots of  the 

denominator of Eq.   (4.1),    The roots  of the denominator are found 

rather easily using the  fact that one  of   the roots  is equal  to 

unity.    This  stems   from the phase-plane trajectories which all 

originate from the point u ■ 1,    Thus,   the modified cubic in the 

denominator can be reduced to a quadratic  form which is 

subsequently factored us^ng the quadratic-equation.    The roots 

are  then ordered  from the largest  to the  smallest  which allows 

one to calculate  the appropriate solution  to the  integral. 

Since the solution  is not readily invertible,   an approximate 

inverse  solution of  the  form 

(1  - e)[A + B cos  uit + C cos   2a)t ] (4.2) 

where A,  B,  C and  w are  functions  of u  .     The error  parameter,  e, 

simply reduces  the  error  of  the approximate  trigonometric  inverse. 

Use of  Eq.   (4.2)  allows  one to look at  one-half   of  a period  for 

a particular  value  of u   .    Thus,   a parametric  study of  the 
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approximate solution u as a function of  the parameter u .    Therefore 

an approximate solution  to the zeroth-order autonomous Raylelgh- 

Plesset equation exists   that describes  the growth of  the bubble 

radius as a function of  bubble tine,   T. 

It Is Important  to note that this work concerns Itself solely 

with cavltatlon Inception.    At no time does  this  formulation allow 

for reclrculatlon of  the nuclei within the laminar separation 

bubble«     If the theory were concerned with desinence,   then the 

dynamical equation and solution would be very different. 

Finally,   after considering the approximations   that have been 

made to derive a solution to the zeroth order Raylelgh-Plesset 

equation,  a comparison of  the results  Is made.     One can see there 

Is good agreement between the amplitudes of oscillation shown In 

Fig.   39 with  the amplitudes shown In Fig.   33.     This  apparent 

consistency between the older results of  Fig.   39 and  the results 

achieved by use of   the multiple scales analysis  Is  encouraging. 

Though the results  of  Fig.   33 do not show the explosive bubble 

growth that the older results exhibit,   this matter will be dealt 

with in the first-order  solution. 
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APPENDIX A.  FORTRAN CODE DISCUSSION 

Al. The Ba8lc Algorithm 

In the basic formulation of the problem, It was required that 

we could perform a parabolic curve fit as well as numerically 

Integrate the experimental C data obtained by Holl and Carroll 

[1]. The form of the Integral arose when an expression for the 

dlmenslonless bubble time was derived using the kinematics of the 

flow. During the development of the Fortran code, care was taken 

to satisfy all the criteria laid down In Chapter 2. The code was 

designed to handle an odd or even number of data points and to 

output values of the computed Integral, the coefficients of the 

parabolic curve fit, the Integrand and the experimental data. 

The first step of the code read in the data in a form 

x. , f(x.). These data were then used to compute the coefficients 

A, B and C of the curve fit.  The coefficients were then used to 

calculate the integral contained within the bubble time equation, 

Eq. (2.8). 

Calculation of the coefficients A, B and C was performed by 

expanding a third order Lagrange Polynomial, P.(s), where 

n 
ir (s - s ) 

1-0 

VS)   n (A.l.l) 

TT  (S  - S  ) 

1-0  :, 

1*0 

tmmmmmmmmmmmmmMikmmMMMM 
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The polynomial was  then multiplied by the functional value f(s.) 

for each data point and summed n times,  where n corresponds   to the 

degree of the polynomial approximation desired•    Thus,   the 

polynomial has the form 

p   (s)  -    Z    f(s.   P,(8) 
n n       J    J 

j-o 

(A.1.2) 

where p  (s) is  the desired polynomial of degree n which exactly 
n 

fits n data points.    Equation  (A. 1.2) represents  the form of  the 

polynomial used to fit the experimetal data taken by Holl and 

Carroll   [1). The formulae for these calculations  are derived by 

expanding Eq.   (A. 1.2) and using n « 3 to perform a parabolic 

approximation across n - 3 data points.    A parabolic  fit was derived 

for each set of the three consecutive data points beginning with the 

first data point.    The coefficients A,  B and C were calculated for 

consecutive triads of data points until all points were used.    The 

result is a set of coefficients A, B and C that represent the 

coefficients  of  a piecewise  parabolic approximation of  consecutive 

triads of data.    This type of curve fit proved advantageous  for 

fitting a curve over the Irregular portions of  the pressure 

distribution while use of a single parabola resulted  in a poor fit 

due  to its  inability to capture  the irregularities near   the 

separation point and  the pressure recovery region. 

Since a smooth  representation of  the pressure distribution 

along  the arc of  the body was  desired,   several points were 

interpolated  between the experimental  points using the appropriate 
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set of parabolic coefficients derived from the curve fit.    The 

resulting curve fit pressure distribution along with the experi- 

mental data taken by Holl and Carroll   [1]  are shown In Fig.   2.    By 

using the Interpolated pressure distribution,  a better represent- 

ation of  the Initial conditions was made. 

Having calculated a plecewlse parabolic curve fit of  the 

experimental data, an Integration routine using the coefficients 

A,  B and C of  the curve fit was derived.    The Integration 

procedure was designed to Integrate any Integrand that could be 

approximated by the curve fit.     In the case of the experimental 

data,   the Integrand was written as 

C  (s) - As    +B8+C    . 
P 

(A.1.3) 

The Integral  I(s) was evaluated as  the following definite Integral, 

I(s)  - /     [As    + Bs + C)d£ rA    3      B    2 ^ -  , (A.I.A) 

Therefore, 

I(s)  -  (82 - s^l (s2  + s2s1  + Sj)  +| (s2 + sj  + C] 

(A.1.5) 

which represents the value of  the Integral I(s) across  the 

specified  time  interval. 

When computing the bubble-time  parameter from Eq.   (2.8)   the 

integrand,   one writes  f(s)  as 

gmBBBSiags^^^ 
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f(8) 
/I - C (s) 

P 

(A.1.6) 

Substitution of  the curve  fit for C (s) into Eq.   (A.1.6)  produced 

tabulated values of  the integrand  f(s) for different arc length 

positions along the body.     Application of  the parabolic curve fit 

routine  to Eq.   (A.1.6) produces a piecewise parabolic approximation 

of the integrand f(s) which  is then integrated exactly as  C (s) 
P 

was Integrated using Eq. (A.1.5). 

Because the code is required to produce an output point for 

every input point and to handle an even or odd number of data 

points, two separate integration formulae are used. The first 

integration formula, I., integrates across the first two points 

in a triad of data points while the second formula, I», integrates 

across the entire triad of data points. By integrating across 

consecutive triads of data, i.e., 

[x(l),x(2),x(3)] , (x(3),x(4),x(5)]  

one can get a total sum for the integral found in Eq. (2.8) which 

allows one to find the bubble time for different arc length 

positions. Figure Al shows how the Integral is computed for an 

even or odd number of data points. When n = 5, there is an even 

number of Intervals and I. and I- are computed across two triads 

of data points. When n » 6, there is an odd number of intervals 

and I. amd 1. are computed across two triads of data points and 

across one group of two data points.  Since I requires three data 

LaBKtt&ftDKKWXm^l^^ 



WWWW^JW^^wwjwwwwvwjun^^^ 

136 

x 
(V4 

X 

JC 
X »T x"" X 

0 1 i 
■H 1 i 

> c 
9 
V) 
M 
0 

§ 
u 
CO 

n 
X 

CM 
M 

CM 
M 

c 
0 

■H 
u 
CO 

en 
X 

CM 
M 

in 
X 

CM 
M 

o • 
c 

u    • 3 
CJ 

II 11 1-^ 

3 II II II 
n (u *-4 ,—^ ^-^ o 

■x^ 
(U   CO 
60r-( 

5 X £ 
ft 

<3 cn 
X X 

r*. ___     - ~z,~ X 

i0 C   3 
co  u M 

CM 
H ^ CM CM CM CM 

£?L. •     \t\ 
«   r-t 

fO 

W H^ M M 

V"      ——— — —— f >< 
\ JS ^v«. Y  __ ■.. ■  ^ 4J    9J *     ^ ^—s 

■^in 
X s >r cn m 

\                   ""V X 60 (D X X 
\ ^T1 C 

•H      CM 7" CM CM 

\                   "^ 
■>r cn c 

c o 
+ 

c 
+ + 

\ « «1-t ^^ 0 ^""^ /*^ /     \ 
->. ■    CM 

e 4J 
CO 

X x"1 
4J x- cn 

X 
m 

X 

> 
X V-   M 

00 
(0   (0 
•H  ^ 

f4 
3 
U 

^4 

1 

CN x 

1 

x"* 

CO 

3 
U 

1 

CN 

1 1 

  
■— " x"- Q eg 

c3 
M H 

X X X 

\ •H    (U MM, h^ HH M 

CO   C 
M II II M II II II 

S  M z—> /"^ 
0) CM " * ^^> ^^-% 
ja (u X x* CM «T vO 
ü J: 

W5   iJ «4 

X X x 
M M »-< M M 

^H 
< CO 

4J /_> (0 

0) 
M 
a 

C 

0 
X ft X 

II 

c 

4J 
c 

X 
in 

X 
00 
•H 
6u 

II 

C CO 

(0 

SM 
X ft 

CO 

4J 

CM 
X ft 

* 
X^ 

en 

X 

m 
■B 

^ 
e c 

01 > 
s X X X 

v I 

c -" en c — en m 
- II II Vw •H II II ii 

b •H •H 
o 

tH •H ft 



■BWWWPWW^WWWWWWWfWlCWWWfWWWWWT^^ 1.11-1 

137 

points across which It Is calculated we must set 1» at x(7) equal 

to zero. This procedure Is used across the entire set of data to 

produce the required I. for 1 » l,2,...,n.  Figure A2 Is the flow 

chart for the Integration procedure.  It satisfies all requirements 

put forth In Chapter II but It does not describe the procedures 

for computing the coefficients A, B and C. The specifics of these 

calculations are described In Section 3 of Appendix A. 

A2. Evaluation of the Stagnation Point Singularity 

Flow about a symmetrical hemispherical headform produces a 

stagnation point at the nose of the headform characterized by a 

zero fluid velocity and a maximum pressure. The history of a very 

small flaccid air bubble traveling close to the stagnation 

streamline would show a constantly decreasing radius up to the 

stagnation point where a minimum radius occurs. Past tb. 

stagnation point along a meridian on the body the flaccid uubble 

would experience an increasing radius.  It should be noted that 

we speak of the bubble as traveling close to the stagnation 

streamline and not exactly on the stagnation streamline because 

It would take an Infinite amount of time to reach the stagnation 

point as it travels from Infinity. Also, along the body arc the 

flow velocity is zero, but the bubble is traveling in the 

boundary layer and not on the body. 

i 
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Figure A2.     Flow Chart Representing  the Algorithm by Which the 
Integral is Calculated for an Even or Uneven Number 
of Data Points. 
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If we define a pressure coefficient,  C  , as 
P 

P - P 

p    vwl 
(A.2.1) 

we could expect to see a minimum bubble radius at a maximum pressure 

coefficient of unity and a maximum bubble radius at a minimum 

pressure coefficient, C   , provided that no cavitation takes 
Pmin 

place.  The definition of the pressure coefficient leads to a 

singularity when computing the dimensionless translation time for 

a bubble on the stagnation streamline.  As determined earlier, the 

dimensionless time was written as 

,—3i 
D  /2a    . 

0  V PR« 8, 

ds 

a    /I - C (s) 
o Di     Pv ' 

1.2, (A.2.2) 

where the singularity in the integrand is an inte^rable square root 

singularity.  Since the computer code was not designed to integrate 

across a singularity, an analytic technique was used on the 

interval containing the singularity while the remainder of the data 

was Integrated by use of the computer code. 

The interval containing the singularity was composed of the 

following points: 

£L s 

1.0000 0.00000 

0.9895 0.00279 

0.9791 0.00557 
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Since Che computer code produced a plecewlse parabolic approximation 

of  the experimental data, we will write  the equation for C    across 

the Interval containing the singularity as 

C  (s) - As    + Bs + 1    . 
P 

(A.2.3) 

Evaluation of  the coefficients across  the interval containing the 

singularity gives 

A - - 0.87307 

B - - 3.74416    . 

Substituting C  (s) into the integral one gets 

8i 
Ks) - / 

s 

ds 

■ f As     - Bs 

which when solved using math tables   [12]  one finds  I(s) - 0.000983. 

This value of   I is then added onto the values of the Integral  for 

successive intervals as computed by the computer code.    Figure A3 

and Fig.  A4 show the integrand,  f(s)f 

f(s) 1 

• l  - C (s) 
P 

and the integral,  I(s), 

Ks) ds 

i,     /I - C (s) 1 P 

each plotted  against  the body arc length s.     It  is  clearly seen 

that  the singularity at  the nose  of   the body causes  the Integrand 

to Increase  to  infinity but  that  the  Integral  at  the singularity 

is null. 
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A3. Derivation of the Computer Code Formulae 

Having tabulated Information on the pressure distribution 

around a hemispherical headform, one must be able to integrate the 

data based on the bubble time Integral discussed In Chapter 2. 

It was stated before that these data are unevenly spaced and may 

be odd or even In number.  Also, since we desire one output point 

for each Input point, we need two Integration formulae to do this. 

For tabulated data of the form (x ,f(x.)) where 1 - l,2,...,n is 

being the total number of data points, the Integration equation will 

be developed for a triad of data points and then used across each 

successive triad until all data have been used. 

The procedure for defining the Integration formulae begins by 

calculating a parabolic curve fit for each triad of data. The 

coefficients A, B and C are calculated using Eqs. (A.1.1) and 

(A.1.2) as discussed in Appendix A. By expanding these equations 

for 1 « 1,2,3 one gets 

Pn(s) 
3 
I 

1-1 

IT       (S   -   S    ) 
j-l 2 

Z    f(sj^- ^ 1 ^    n 
IT       (S.    -  8    ) 

j-l   3 

(S   -   32)(9   -  33) 

^8l)    (S1   -82][3l   -83) 

+   *(*2)  J 
[S    -   8^(8   -  83) 

8„   -   S,J[S„   -  8 
.        (S   "   S1)(S   * S2) 

J+f(s3J  (83-8^(83-82)    * 

Factoring like powers of  s one gets an equation resembling a 

parabola which looks like 

feMBflaofflaoffi^^ 
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The parabolic form of curve fit can now be Integrated across the 

appropriate limits to obtain the two integration formula required 

for obtaining an output point for each Input point when the number 

of data points can be odd or even and the data are unevenly 

spaced« Therefore, we define the two Integration formulae as 

I. and I. where 

I - / p (s)d8 
i      n 

and 

I- - / p (s)ds  . 
L n 

Upon evaluation of the definite integrals, one can write 

(82-8l) 
I (s2 +si82 + 9?) +lhs2 +sl)  +C 

and 

(83-^) A   c   2 2^       B   , ^       „ 
I (83 + 8^3 + Sj)  +-j (s3 + Sj)  + C 

These integration formulae can be used for any data which are 

tabulated in the form of  s   ,  f(s  ) and can be modeled by 

successive parabolic curve  fits  according to the parameters 

A,  B,  C and & defined earlier in this section.     One must keep 

in mind  that  the  integration routine is only as  good  as  the 

m^tsnaisiaMuautA^/rftA^^ I 
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curve fit since the coefficients of   the curve fit play a major role 

in the result of  the inteRration.    The remainder of Appendix A 

will deal primarily with the accuracy of the curve fit and 

integration formulae. 

A4.    Accuracy of the Parabolic Curve Fit 

When using any type of  numerical approximation,   it  is  important 

that the user be aware of  the limitations and accuracy of   the 

particular approximation technique being used.    Failure  to use an 

approximation technique with suitable accuracy could result in 

erroneous calculations and analysis. 

In this work,  it was  imperative that the approximation 

technique used to calculate the piecewise parabolic curve  fit 

and numerical integration were extremely accurate.    The curve 

fit approximation was compared against a sample function and the 

accuracy was checked for different  interval lengths. 

The sample function used was f(x)  » sin x.    The first 

interval length used was  Dx - 0.157 for x ■ 0 to x ■ n.    The 

second  interval length to be used was Dx ■ 0.314 for x - 0 to 

x  ■ n while a third  interval  length of  Dx ■ 0,628 was  used 

across  x » 0 to x * ir. 

Execution of  the code  produced  the coefficients  of   the 

parabolic curve  fit which was  compared  to the sample  function. 

When using the shortest  interval,   Dx « 0.157,   the code 

produced a curve  fit  accurate to five decimal places.     Doubling 

the  interval length produced a curve  fit accurate  to  four 

K^-^v>^^^>^^^vy! 
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decimal places.    And when the Interval length was made four times 

the first interval or Dx - 0.628,   the accuracy dropped to three 

decimal places. 

Due  to the irregularities of   the C    data,  several points were 

Interpolated between the original data points.    This effectively 

reduced  the interval lengths so that  the curve fit was accurate 

to five decimal places.    Therefore,   the method described in the 

previous  sections of  the Appendix produced a curve fit which 

allowed an accurate fit of  the C    data.     Section 1 of Appendix A 

addressed  the problem im more detail but the accuracy of the 

results will be given.    Again,  using a sample function to test  the 

integration procedure against the parabolic coefficients of  the 

curve fit needed to be calculated.     For the same function 

f(x)  - sin x from x ■ 0 to x ■ IT the value of  the definite integral 

is exactly equal to 2.    Using the parabolic coefficients in the 

integration procedure gave  the value of  the Integral equal to 

1.999977.    This calculation was performed with an interval length 

of Dx ■ 0.157.    Further calculations were performed on even and 

odd numbers  of data points with  longer and shorter Interval  and 

it was  found  that  the accuracy of   the integration procedure 

paralleled  the accuracy of  the curve  fit.     Thus,  when using 

the curve  fit  routine and  integration procedure  in this work, 

the  Interval  lengths were short  enough  to produce  five decimal 

place accuracy. 
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APPENDIX B.  DATA TABULATION 

Bl.  Conversion of the Axial Length Data to Arc Length Data 

Based on the geometry of the headform set forth In Fig. 1, 

the following equations are used to convert the axial length, 

x/D, which is the parameter that Holl and Carroll [1] measured the 

C data against, to a dimenslonless arc length s. The parameter 

s was used throughout this work to describe the dimenslonless arc 

length along the surface arc of the body. 

For 0° < e < 90° 

s - ycos"1 (1 - 2(x/D)) 

For 9 > 90° 

s - 0.785 + | 

It should be noted that for 9 > 90° the dimenslonless arc length 

s Increases the same as the parameter x/D due to the presence 

of the cylindrical afterbody. Therefore, the value of, x/D is 

simply added on to the value of s beyond 0 » 90°.  Section 2 

of Appendix B contains a tabulation of s versus x/D with the 

corresponding averaged values of C . 
P 
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B2.    Cp versus s  (averaged) 

x/D s EL 

0.000 0.000 1.0000 
0.280 0.557 - 0.6168 
0.335 0.617 - 0.7343 
0.390 0.674 - 0.7812 
0.430 0.715 - 0.7432 
0.465 0.748 - 0.6578 
0.480 0.765 - 0.6370 
0.500 0.785 - 0.6163 
0.515 0.800 - 0.6128 
0.530 0.815 - 0.5518 
0.545 0.830 - 0.4183 
0.560 0.845 - 0.3303 
0.575 0.860 - 0.2988 
0.625 0.910 - 0.2307 
0.675 0.960 - 0.2073 
0.725 1.010 - 0.1805 
0.775 1.060 - 0.1620 
0.825 1.110 - 0.1443 

149 




