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ABSTRACT

A partial multiple scales analysis of the forced Rayleigh-
Plesset equation of cavitation bubble dynamics is performed.
Previous studies of cavitation inception on hemispherical
headforms have revealed the existence of "bubble-ring"” cavitation
on hemispherical headforms having a .aminar separation region.
Nuclei passing through the low pressure region that exists prior
to the separation bubble experience vaporous growth which 1is
characterized by two time scales. The forcing function pulse
which acts on the nuclei is characterized by the "laboratory time”
t which varies slowly compared to the characteristic "bubble time”
1t which characterizes the response time of a typical microscopic
cavitation nucleus.

Expanding the forced Rayleigh-Plesset equation and its
initial conditions to the second order in €, one finds that the
zero-order equation is an autonomous nonlinear equation with
non-homogeneous initial conditions. The first-order equation
is a nonautonomous linear system with homogeneous initial
conditions. The second-order equation is a linear autonomous
differential equation with homogeneous initial conditions., The

second-order equation is needed to establish integrability

ﬁ conditions for the first-order equation.

§ The zeroth order equation was analyzed in the phase plane
;? which established integration limits. Approximation of the

W logarithmic air content parameter allowed an approximate

a5 solution, t = t(u), to be found in terms of elliptic integrals
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and functions. The inverse of this solution could not be found so
the inverse u = u(t) was found numerically. These data are to be
used to find an analytic approximation of future first-order

it calculations.
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CHAPTER 1

INTRODUCTION

l.1 Previous Investigation

In this investigation, an analysis of the dynamics of bubble-
ring cavitation is performed. The analysis employs perturbation
methods for analytically solving the governing nonlinear ordinary
differential equation for the flow. In an effort to describe the
physical aspects of bubble-ring cavitation, the main phases of
bubble growth in a region of laminar separation are discussed.

For a flow about a hemispherical headform containing a laminar
separation region, we assume the fluid contains a distribution of
nuclei, invisible to the unaided eye, containing air and/or water
vapor., These nuclei translate downstream at some velocity close to
the free stream velocity, V,. Some of these will come in contact
with the body. When a nucleus moves into the boundary layer on the
headform, it will encounter a low pressure region which 1is favorable
to vaporous growth. This low pressure region has a local static
pressure less than the vapor pressure within the bubble. The bubble
which had an initial radius, R,, in the free stream will grow to a
maximum radius, Ry, after reaching a point on the body where the
local static pressurz first equals the vapor pressure. The fluid

conveys the bubble through the favorable pressure zone so that the

collapse phase commences and it is here that the maximum radius

occurs, If there is no separation on the body, the bubble will

continue to collapse rapidly and violently. For some bodies,

however, there can be laminar separation for sufficiently low
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Reynolds numbers. Then it seems possible that coilapse may not
occur and the bubble will come to rest within the laminar separation
region where it undergoes further growth by diffusion of air from
the 1iquid into the bubble., This growth continues until the bubble
has grown large enough to interact with the free shear layer at the
edge of the separation zone. This interaction causes the bubble to
translate downstream to the turbulent reattachment region where the
intense shear of this region breaks the bubble into froth., As a
result, this froth creates a narrow ring of visible cavitation at
the downstream end of the separation bubble. This ring is known as
bubble-ring cavitation which is a form of attached cavitation and is
controlled primarily by laminar boundary layer separation. Figure 1
shows the configuration of a hemispherical headform with a
cylindrical afterbody and the laminar separation region located on

the headform.

Previous experiments have shown the occurrence of bubble-ring
cavitation to be related to several factors. Holl and Carroll [1]
observed the variation of the influence of laminar boundary

separation for different test models as a principal cause for

bubble-ring cavitation. For a model whose configuration creates a
large separated region of nearly constant pressure with strong
pressure fluctuations in the turbulent reattachment region,
bubble-ring cavitation was observed at higher cavitation numbers.

Lowering the cavitation number brought on the formation of a more

developed state of cavitation called band cavitation. Band )
cavitation is actually a cavity flow which occurs when the laminar
separation region becomes filled with small attached cavities.

]
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Schematic Diagram of Flow about a Hemispherical Headform

when Short Bubble Laminar Separation is Present.

Figure 1.
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Because bubble~-ring cavitation serves as a ruclel source for band
cavitation it is important to look at the models on which band
cavitation is also formed. Parkin and Holl [3] observed band
cavitation on the hemispherical nose and the 1.5 caliber ogive nose.
Band cavitatinn was also observed on a 2,0-inch, 1.0 caliber ogive
nose by Carroll [2]), a 1.755-inch diameter ITTC nose by Arakeri [4],
a 2.,0-inch, 1/8 caliber ogive nosel by Keller [5] and a 2.0-inch
pointed headform used by Brockett [6]. The only models on which
bubble-ring cavitation was observed were the hemispherical nose and
the 1/8 caliber ogive nosel at various flow conditions. For a model
whose configuration has a thin separation region with only a slight
adverse pressure gradient and small pressure fluctuations at
reattachment, bubble-ring cavitation did not exist at all.

Other factors influencing the occurrence of bubble-ring
cavitation are the air content and temperature of the water.
Carroll [2] observed no bubble-ring cavitation for air contents
of less than 4.0 ppm. When the air content was held constant
at 8.0 ppm, bubble-ring cavitation was observed to disappear
and the limited cavitation number, K;, decreased when the
temperature was increased at low velocities. Since raising the
water temperature decreases the solubility of air in water, the
number and size of the nuclei should also decrease suggesting
that K, decreases for bubble-riﬁg cavitation. Carroll [2]
observed this trend for K; which suggests that air content is

one of the important factors controlling this phenomenon.

l. First observed by Robertson, McGinley and Holl [20].

TN R O N o L NS S R X o, W e, D



NMNEBREINANRREAN RN IRA AN IN I NI A R B T T 1 T VT AT T § T TR 1 T e TR s

It should be noted that raising the temperature increases the
Reynolds number so that in marginal cases laminar separation
is lost,

Previous investigations by Arakeri (7], Arakeri and Acosta
[8] and van der Meulen [9] of the laminar separation region have
pinpointed the initial separation point to be downstream of the
minimum pressure point Cpmin. The location of the separation
zone did not vary with Reynolds number. Arakeri and Acosta [8]
were the first to verify this with Schlieren photographs of the
thermal boundary layer for velocities up to 60 fps. Arakeri (7]
and Gates [8] experimentally verified a dimensional variation of
the separated region for various Reynolds numbers. The tests
were performed on a 2.0-inch headform and showed a decrease in
size of the separation region with increasing Reynolds number.
This dependence, however, varies with the shape of the headform.

This investigation requires a pressure distribution in the
region of the separation bubble and the minimum pressure point.
A mean pressure distribution for an average free stream velocity
of 40 fps 1is used. The experimental values for the pressure
coefficient represent averages of the measurements made by
Carroll [2] and were plotted against the dimensionless axial
length X/D. Since it was desired to have the pressure coefficient
data plotted against the dimensionless arc length parameter s,
a conversion was made between X/D and s and is shown in Appendix B.

Figure 2 shows a plot of the pressure coefficient versus the

dimensionless arc length parameter. Figure 3 shows the selected
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region of the pressure distribution used to analyze the forces that
act on the bubbles and encoutage the occurrence of vaporous bubble
growth, Each figure shows the separation point located downstream
of the minimum pressure point at a dimensionless arc length
distance of s = 0,747, The location of this separation point
agreed with theoretical calculations made by Arakeri and Acosta [R]

and van der Meulen [9].

1.2 Scope of this Analysis

The governing equation which describes isothermal cavitation
vapor bubble growth or collapse, where the static pressure is taken
to be a function of time, is the Rayleigh~Plesset equation. Written
in dimensionless form, excluding a viscous term, the isothermal

Rayleigh-Plesset equation for a spherical bubble is

2

——2- -g—( ) -Y—-—+F(er) . (1.1)
T

A ja.

This is the form of the equation used by Parkin [11] and is

the same form used in this investigation. It is a second order
equation requiring two iaitial conditions and it is non-
autonomous and nonlinear. The forcing function term, F(et), is
a time dependent pressure force which is responsible for driving
the bubble growth. The parameter ¢ is a dimensionless small
parameter of the equation which allows us to relate laboratory
time or "real” time, t, to a dimensionless "bubble” time rt.

One can write the small parameter as

PR

e (1.2)

3
l o
T 20

E =

%
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where

T = D/Vo . (1.3)

The parameter T is a long time duration which describes the
laboratory time scale of the forcing function. The definition of
T in Eq. (1.3) allows the small parameter € to scale automatically
with the value of the free stream velocity V, and the body diameter
D. The surface tension coefficient, o, has units of N/m; the
density, p, has units of Kg/m3; and the initial nucleus radius, Ry
has units of meters.
! When considering the effect of the forcing function, one must
be aware of the characteristic time scales present in this problem.
The laboratory time, t, is characterized by a slow time scale which
defines a dimensionless time duration across which the forcing
function produces an environment favorable for vaporous bubble
growth., Thus, the dimensionless slow time scale is of order T and

is written
t
t ‘? . (1.4)

The second time scale present in this problem characterizes the
individual bubble oscillations that occur as a bubble passes
through a varying pressure fie.d. This fast time scale corresponds

to the dimensionless bubble time T and is written

tf = T . (105)

Using the definition of the small parameter e as the ratio of the

laboratory time to bubble time, one can write
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g = ts/tf or ts = g1 . (1.6)

Using Eq. (1.4), one can write
t

which defines the scaling parameter for the forcing function in the
vaporous growth region. Relative comparison of the slow and fast
time scales shows tf and tg to differ in magnitude by a factor of
103 so that t¢g is a very short time duration compared to the time
scale tg which defines the time duration that the forcing function
acts in the region of vaporous growth.

Parkin [11] derived an approximate parabolic form of the
forcing function making F(et) and the governing equation non-
autonomous. In an effort to simplify the problem, a suitable
combination of two step functions was used in place of the
parabolic form making F(et) plecewise autonomous and making the
differential equation solvable by a suitable numerical method.

The choice of the initial conditions was based on the assumption
that vaporous growth began with initial radius Ro and ﬁo = Q,
The autonomous form of the isothermal Rayleigh-Plesset equation
was then solved through the region of vaporous growth and to the
maximum radius.

In this analysis, the problem was solved using a continuous

parabolic representation of the forcing function which was derived

from the experimental data of Carroll [2]. Since the parabolic
forcing function caused the governing differential equation to

be nonautonomous, the solution techniques used by Parkin [l1] to

’ - } } S o X =iy i . : T A
e e T e T S T o P o e M T T W A DS e N o i T A TR N R R BN S M AT S U A
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solve the piecewise autonomous Rayleigh-Plesset equation were not
fully applicable. We know that initially the bubble acts as a
flaccid bubble responding instantaneously to the varying pressure
field encountered on the headform. The flaceid bubble region which
is primarily used to determine the initial conditions for the
dynamical problem has a valid solution only up to the initial point
where vaporous growth begins. Beyond the flaccid region the bubble
is influenced by the inertia of the fluid surrounding the bubble

as well as the varying pressure field. The existence of fast and

slow time scales in the region beyond the flaccid region requires

)

-

-

an expansion of the governing differential equation as a function
of the fast and slow time scales as well as the small parameter €.

This variation of the method of multiple scales is called the two-

variable expansion procedure and uses a perturbation expansion

.;.0’; f“ &ﬁ ""'! ~

based on € to separate out the different solutions defining the
bubble growth. Application of the two variable expansion procedure

produced a series of nonlinear differential equations and initial

A P Py

conditions for only the e0 approximation. As a result, certain
additional judicious approximations were required to put the 0
solution in a form which enables one to tackle the el and €2 !

systems of equations,

1.3 Motivation for the Investigation

ring cavitation on hemispherical headforms have revealed many

important details about the particular flow phenomena taking place.

As a result of these investigations, the basic fluid dynamics of

)
Previous experimental investigations which analyzed bubble- %
gé
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this type of flow are fairly well understood. On the analytical
side, most attempts at solution of the governing equations are made
using canned computer subroutines that produce large amounts of
data showing a detailed history of bubble growth or collapse. The
difficulty with these mass compilations is revealed when one desires
the effect of constraining a particular flow parameter at a
particular instant. Analysis can provide the option of looking at
different classes of solutions and determining limiting cases of the
flow without suffering the expense, frustration and eventual
inefficiency of large computer routines. The mathematical
techniques being employed are proven and work well with these
complex flow equations. Estimates of the form of certain solutions
can often be predicted and the existence of much literature on
perturbation methods is readily available.

Since the initial attempt to solve the bubble-ring cavitation
problem produced quite good agreement between inception data and
theory, despite drastic simplifications, it seemed reasonable to
assume that if perturbation methods are used one will produce equal
to better agreement between theory and experiment. It should be
noted that even though this method of solution is more advanced than
most other forms of analysis, certain judicious approximations are
required to obtain a solution. An effort was made to keep these
approximations to a minimum so the true nature of the flow can be
seen through the solution of the governing equations. Successful
use of this form of analysis may extend the theory's range of
applicability and encourage the use of this form of analysis for

other types of cavitating flows.
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1.4 Objective of this Investigation

The main objective of this investigation is to find a solution
of the nonautonomous form of the isothermal Rayleigh-Plesset
equation by use of appropriate perturbation techniques. To do this,
a thorough parametric formulation of the forcing function, flaccid
bubble radius of growth, flaccid bubble rate of growth of the radius
and initial conditions across a suitable range of cavitation numbers
is performed. It was determined, for cavitation numbers ranging
from K = 0,600 to K = 0,700, that the initial point of vaporous
growth corresponds to dimensionless arc length positions of
8 = 0,549 and 8 = 0.600 respectively, The initial conditions, as
derived from the flaccid bubble relations, are applied at the
initial point of vaporous growth. The forcing function, which acts
across the region of vaporous growth, is derived from the experi-
mental data taken by Carroll [2] and is applied at the initial point
of vaporous growth, The effect of the forcing function terminates
at the separation point which corresponds to dimensionless arc
length positions of s = 0.813 and s = 0.731 for cavitation numbers
of K = 0,600 and K = 0.700 respectively. After completion of these
tasks, the governing differential equation was expanded using the
method of multiple scales. Of the resulting set of differential
equations, the nonlinear e0 system is solved and compared against
a Runge-Kutta solution of the Rayleigh-Plesset equation.

Suggestions are made for further study.
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CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 The Flaccid Bubble Problem

The initial description of the problem stated that the bubble
grows as a flaccid balloon, experiencing a state of equilibrium from
the stagnation point up to the initial point of vaporous growth. In
order to formulate the expressions representing the growth of the
bubble, it is necessary to discuss a few of the fundamental
assumptions and relations used in the flaccid bubble problem.

To begin, we must define a dimensionless meridional arc-length

parameter along the hemispherical nose of the body as
e ’ (201)

where S is the dimensional arc length on the body and D is the
diameter of the body. On the cylindrical afterbody, the arc length
is the axial distance, X/D. If we assume the boundary layer to be
a vortex sheet, we can assume its overall translational velocity

to be one half of the local flow speed at the edge of the boundary
layer. Thus, it is approximated as

v
v(s) = 2—° /T-C(s) G - (2.2)

Assuming a flaccid bubble nucleus which always sta?s in the
boundary layer, its convective speed 1s size independent because
of the assumptions in Eq. (2.2) but it does change size
instantaneously according to the pressure variations. Thus, we

can say
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¢ . 45 ds

V(s) dB dt ] (203)
‘.
Qq where
w.|
i
o
i dS D dx

5 5 or ds D (2.4)
\t'
ig' from Eq. (2.1). By substitution of Eq. (2.2) and Eq. (2.4) into
(!
\§|
g' Eq. (2.3) and solving for ds/dt, one gets
o ax  'a e
5:. —— u —y] - C (S) . (205)
} dt D
.‘Q P
e
X
! If we call the parameter t, the laboratory time, then we relate
45 this actual time to a dimensionless bubble time by the following
R
B relation
e
‘ t 2o '
" T = 1, T (2.6) :
:.‘. [o] o |
a::’ '
ﬂs ‘ where R, 1s the nucleus radius measured in the free stream. Then |
!..
! |

|
I dt = -2°—3dt : (2.7)
by pR
5'.% (o]
i
'
f¢ Substituting Eq. (2.5) into Eq. (2.7) and integrating over the
.2‘:: range of experimental points, one gets the following equation
S.'
:& for the dimensionless bubble time along the arc of the body
i
.{ .
c i

:‘:. Ti -3— 203 f ds i = 1,2,00.,“ . (208)
¢ o YoR® s, /T=-C (3)
4
o o 1 P
)
i
323
A
W
'I
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The integral of Eq. (2.8) depends on the experimental data of
Holl and Carroll [1]. Development of a computer code that could
produce an accurate value of the integral would allow us to
correlate the arc length parameter with the bubble time parameter.
Care must be taken when evaluating the integral numerically at the
stagnation point because it has an integrable square root
singularity. Evaluation of this singularity is discussed in
Appendix A. The necessary requirements of a computer code to

integrate across the range of experimental data are the following:

(1) Produce an accurate curve fit of the integrand
using parabolic interpolation between data

points,

f(s) = A52 +Bs +C .

where the coefficients A, B and C are computed
for groups of three successive data points.
(2) Be able to handle an odd or even number of

data points.

(3) Integrate the parabolic curve fit using the
coefficients A, B and C for each successive

triad of data points.

2.1.1 Calculation of the Flaccid Buddle Radius, r(s)

If we consider the isothermal transition of the bubble from
the free stream radius R,, to the radius on the body R;, then

we can write
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3 3
PR, = PR

(2-9)

where P, is the partial pressure in the free-stream nucleus and Pg
1s the air partial pressure in the bubble when it has radius Rj.
Figure 4 shows a typical nucleus and the internal and external
pressures that act on the nucleus. The balance of pressures that

act on the bubble in the free stream (R = Ro) is written as

p+p =2sp (2.10)

where o is a coefficient of surface tension, P, is the partial
pressure of the dissolved air in the free stream nucleus, P, is
the free stream static pressure which establishes the external
environment for the bubble and Py, is the vapor pressure inside
the cavitation bubble. On the body (R = Rj) one can write the
balance of pressures as

20
Pg + Pv = Rl + P(s) , (2.11)

where Pg is the partial pressure of the same mass of gas as was
in the nucleus at R = R,, but measured at R = Ry with the size
of Ri(s) being dependent upon its location on the headform. The
external pressure term, P(s), varies with the arc length of the

body. Introducing a dimensionless radius as
R
roez— (2.12)
o

Eq. (2.11) can be written as

BARBAMNESO @0 Ee s
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EXTERNAL PRESSURES = %+ P0

INTERNAL
PRESSURES=P, + PU

Figure 4. Schematic Diagram of a Typical Nucleus with Internal
and External Pressures that Act on the Nucleus.
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" Substituting Eqs. (2.10), (2.12) and (2.13) into Eq. (2.9) one can

1y write

3,201 3.3
Tt P - PR = (E? + P(s) - P JrR . (2.14)

R Using the following definitions for the cavitation number and the

pressure coefficient, one has

Po - Pv
,.:.' K = 2 , (2.15)
o 1/vao

P P(s) - Po
.: Cp = — (2.16)
te l/ZpV°

i Equation (2.14) can be written as

20 2) . 201 2,3
::‘2 R + K(1/2pv) [Ro okt (cp + K)1/20v Jr” . (2.17)
]

Multiplying both sides of Eq. (2.17) by R,/20 and using the

Ly definition of the Weber number,

T
[a%4

:.:f PV R
Wwe(R ,V ) =

(¢]

’ (2.18)

Q

X we write the cubic flaccid-bubble equation as

D1 (C_ + K)We
—L———r3+r2-l-—K%E--0 . (2.19)

g? Equation (2.19) could be solved exactly, but because r is close to

unity, an approximation of the form,

(A e ) VIR LI T W P L7 URA
T A T T N e S A I N D N B AN (S CHE ] A 00 L R A L L e ot Ty ST TS A S
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r=1-x , (2.20)
is used where 0 < x < 1. If one substitutes Eq. (2.20) into
(2.19), he gets
3 2 2 C Ve
A(-x” + 3% - %) +x" - +4—=0 , (2.21)
where
(C_ + K)we
A._P;a__ g (2.22)
KWe 3
Because A < e and x < 1, the term Ax~ can be neglected and the
remaining quadratic equation,
9 C We
(3 + 1)x" - (3a+ 2)x +2— =0, (2.23)

has a solution of the form

3A + 2 (3A + 1)
x-m[li-\/l—meWe] . (2.24)

In the limit as A + 0, the negative square root must be chosen

to satisfy the inequality 0 < x << 1, therefore

1n xS ] e (2.25)

4
A+0

Using a binomial expansion on the square root term in Eq. (2.25),

one can write

VRN N W TV M T s TV PR V1 P e VA B S T e
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2
/ KWe KWe  (KWe)
1 - 1 +T- 1 - (1 + 8 -8(16) + ooc) > (2.26)

which simplifies the expression for x to

KWe KWe)

x-T(-l+-l—6— o (2.27)

In the limit as Cp = - K » 0, Eq. (2.25) gives x = 0 which
corresponds to a nucleus traveling in the free stream. The same
result can be obtained directly from the cubic flaccid equation
for (1) Cp = - K=0and (2) Cp = = K # 0.

For Cp = - K = 0, Eq. (2.19) simplifies to

r2 -1=0 , (2.28)

which has a root of r = 1 as we would expect. For Cp = - K #0,
the cubic term is neglected as before and the equation for r 1is

written as

-1 -8a (2.29)
or

r = 1+$=1-x. (2.30)
Therefore,

Xx =] - 1+ﬂ4e—, (2.31)

which exactly agrees with Eq. (2.25). A check of the validity of
Eq. (2.31) was made by solving Eq. (2.19) for Cp and substituting
computed values of r from Eq. (2.29) at different cavitation

numbers. The computed values of Cp were then compared with the

R R e L T R R e R e R R N R W R N 2% 2% 1V Y2 872 BV 10V L, RV AN Iy S W "LV LV YAV, IV, VeV V|
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experimental Cp data. It is clear from Fig. 5 that there is
good agreement between the values of Cp calculated from the cubic
flaccid equation and the experimental data. Thus, Eq. (2.31) is
accurate enough to be a useful expression for x.
Calculation of r(s) can now be made from the stagnation point

up to the initial point of the vaporous growth region from

B i I M R~ wm’-mﬂ

Eqs. (2.20) and (2.24). Substitution of (2.22) and (2.24) into
(2.20) gives an expression for r in terms of Cp, K and We. The
equation

3(C_ + K)We 12(C_ + K)We + 16
r £ [1£\/1-—2L cue] ,

R CREal (3¢c, + Kove + 8)>

- " X R A

(2.32)
is plotted for various values of K in Fig. 6. Calculation of r

for various cavitation numbers is necessary in the derivation

of the initial conditions which 1s performed in a later section. '

2.1.2 Calculation of the Flaccid Bubble Growth Rate, E(s)

Another important facet of the flaccid bubble problem is the

bubble growth rate r(s) where

£(s) -9;"5—3) ) (2.33)

Because the bubble is conveyed toward a region where the changing
external pressure directly affects the radius and therefore the

rate of growth of the radius, we say the growth rate is given by

. dr iER.dS
r = dT_dS a—'f- . (2.34)
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Derivation of each component derivative in Eq. (2.34) results in an

expression for r(s). Writing the cubic flaccid bubble equation as

(C_ + K)We
—-E——r3+r2-1--“%-o (2.35)

and using implicit differentiation of Eq. (2.35), one gets

(C_ + K)we
p 2d4r_, Ve, , dr
7 3r ic +r 7 + 2r ic o . (2.36)
P P
Solving for dr/dCp, one has
3
gt (2.37)
p 3r (Cp + K)We + 8r

which is dependent on the experimental data and the bubble radius
r(s).
The term de/ds depends on the approximated parabolic form of

the experimental data which is
2
Cp(s) = As” +Bs +C . (2.38)

If one differentiates Cp(s), he finds that

t
: dC
, o> = 245 +B . (2.38)
Finally, we know the differential form of the expression for the
]
dimensionless time parameter is written as @

:g
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?
" dr == [29.D_ ds
T v

pkg o/l - Cp(s)

’ (2.39)

tey! where the term D/V, = T is the characteristic measure of laboratory
time t, as defined by Eq. (1.3). Referring to Eqs. (1.2) and (1.3)

tg! and rearranging for ds/dt, one gets

e

|'. 3

e ds 1 PR, o7 (2.40
" TV T Ypts .40)

‘$ = g JT—:-E;?;T

mi where ¢ 18 defined by Eq. (l.2). By substitution of Eqs. (2.37),

,sl (2.38) and (2.40) into (2.34), one gets

R
", (2As + B)rZWe3/2 33 \/'1/2(1 - Cp(s))

e r(s) = 8+ 3r(C+ KJWe

(2.41)

The sign of r(s) depends on what the sign and magnitude of
! the parabolic coefficients are. Calculations for r(s) using the

X values of r(s) and the parabolic coefficients up to the beginning

A of the vaporous growth region give the curves shown in Fig. 7

oy at K = 0.60 + K = 0.70.

u S -
b 1 e P T, U I'l'13ﬁdﬂﬂbﬂﬂuﬂﬁt..
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2.2 The Forcing Function

, 2.2.1 Definition of the Forcing Function

As we discuss the translation of the bubbles over a headform,
we must be aware of the driving force which creates the environment

for subsequent vaporous bubble growth and collapse. We have

~ e -

discussed the fact that for vaporous growth to occur there must be
a region on the headform where the static pressure of the flow is
less than the vapor pressure of the water. This region starts on

the headform at various arc length positions depending on the

LT -

choice of the cavitation number. Downstream of the initial point

of this growth region the pressure is characterized by the

o e =

inequality,
Pv > P> Pmin (2.42)
or
: K>-¢C >-C . 2.43
p(S) . ( )

min

Equation (2.43) suggests that the negative of the pressure
coefficient can be used to measure the force on the bubble that
causes vaporous growth.

' If the bubble collapses, then we write the inequality as

K< - Cp(S) . (2.44)

Thus, we can set the zero of the forcing function at

C ==X (2.45)

and define the forcing function which acts on the bubbles as

F(et) where

DENADALRIAOADDADEDNAININNOEHNONNNY 0,500 00T gt Nyt N ‘E‘b,wmm;ﬁ
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F(et) = - Cp(s) -K=- (Cp(s) +K) . (2.46)

It should be noted in this particular case that the region of
vaporous growth and collapse extends along the arc of the body only
as far as the separation point of the laminar separation region.
Once the bubbles enter the separation region we assume that the
process of vaporous growth terminates and the growth that ensues

is due to diffusion of air from the liquid into the bubble. The
forcing function which is derived from the pressure distribution

can be defined along the entire arc of the body, but will be used

in this study only up to the separation point. Figure 8 is a
schematic diagram of the forcing function with its vaporous growth
and collapse regions. The beginning of the positive growth region
is located at the intersection of the line of Cp = - K and the
forcing function. This initial point, where F = 0, is designated
as the origin of the forcing function. The horizontal axis which
coincides with the line Cp = - K defines the shifted et axis along
which the duration of the vaporous growth process is measured. As
shown in Appendix B, this dimensionless time parameter, which is
used to scale the forcing function, is derived from the
dimensionless arc length parameter and has a zero value at the
origin of the et - F coordinates. Growth or collapse is designated
by et > 0 up to the point of separation beyond which no more
vaporous growth takes place.

When we consider different flow conditions causing the
cavitation number to change, the line where Cp = - K shifts up

or down depending on the magnitude of K. For increasing values

of K, the line of Cp = - K shifts upwards, decreasing the positive
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vaporous growth region and increasing the negative collapse region.
The opposite trend occurs when the value of K is decreased resulting
& in a downward shift of the line Cp = - K, In view of the location
ot of the separation point and the value of the pressure coefficient

at separation, choosing K = - Cp at separation results in a

iy favorable region for vaporous growth which is entirely positive.

o As stated earlier, separation occurs at a dimensionless arc length

which corresponds to Cp = - 0,6597., Thus, positive growth exists

%: for all values of Cp < = 0.6597 and growth and collapse occurs for
s

4

:::( - 0.6597 > C_>C . Figure 9 shows the selected region of the
Wy min

forcing function calculated from the experimental data of Carroll

! (2] across the region of vaporous growth for various values of the
Ky

ﬂ' cavitation number.

l'

0 2.2.2 Axis Shift for the Forcing Function

X

3t

bf It was seen that by choosing different values of the

N

;‘|.

W cavitation number, significant changes in the forcing function

take place with respect to the regions of growth and collapse.
N Accompanying this change in the growth and collapse regions is
a shift in the origin of the forcing function which is defined
N as F = 0at ¢t = 0. As the line of Cp = - K moves up or down,
o the origin of the forcing function translates along both the F
L axis and the et axis. Figure 8 shows the line along which the
ﬁ. axis shift takes place. It is important to know how much the
Y origin translates for various cavitation numbers so that the
analysis can be generalized for varying conditions. For the

ﬁ' range of cavitation numbers being investigated, K = 0.60 to
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K = 0.70, the curve along which the axis shift occurs is a straight
line. To define accurately the axis shift it is necessary to
determine the variation of F and et with respect to the cavitation
number.

From Figure 10, the linear portion of the forcing function
between the origin and the line CP = - K=-=0,70 is the line
along which the axis shifts. The equation defining this line

is

F = 2,5954(e1) (2.47)

which can be expressed in terms of the cavitation number by the

relation

et = 0.39276(K) - 0.23566 . (2.48)

Equation (2.48) defines the et parameter along the line of axis
shift for cavitation numbers between K = 0,60 and K = 0.70.

Therefore, one can write

F = 1.01937(K) - 0.61162 (2.49)

for K = 0,60 to K = 0,70, The reader may refer to Appendix B for
the procedure used to calculate Eqs. (2.47) and (2.48).
Equations (2.48) and (2.49) define the shift of the origin for

different values of the cavitation number., Use of the axis shift

3\:2‘.

@ Senso

1s incorporated into the final formulation of the forcing function
which is approximated by two different parabolic curve fits. It
should be noted that the parameter et is being used because of

the forcing function dependence on the single power of the small

parameter e. Figure 11 shows a plot of the forcing function for
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-K=-0.70
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K=-0.64
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“
?: various values of the cavitation number after the axis shift has
s
been applied. It is clear from the curves shown in Fig. 9 that
$ the axis shift places the initial point of each curve at a common
l“
M
o origin. Thus, we are able to see clearly the effect of the forcing

function for different cavitation numbers. Larger values of the
cavitation number will cause the forcing function to have a negative
effect near the separation point while smaller values of the

cavitation number will make the forcing function entirely positive

?: across the vaporous region. Choosing a cavitation number greater
'.l

$ than or equal to the negative of C would result in zero

&

min

4 vaporous growth for a nucleus as it translates along the body.

W

%)

W

_& 2.2.3 Parabolic Curve Fit of the Forcing Function

‘a2,

K

" Previous analysis of this problem was performed by Parkin [11]
ﬁ? in which the forcing function term included within the Rayleigh-
$‘ Plesset equation was approximated by a combination of step

e

i functions. Using the definition of the forcing function given in
s

; Eq. (2.46), three parabolic approximations were made to simplify
f& J

Y

%‘ the solution of the Rayleigh-Plesset equation.

2

R 2.2.3.1 Pilecewise Parabolic Curve Fit

|}

EN)

.:F In the same manner that the experimental data were
A\

i approximated by a piecewise parabolic curve fit, the forcing

% function was approximated by the same method. Using Eq. (2.46), 1
by

W
{f values of F were computed for various cavitation numbers.

W

! Parkin [11] scaled the "bubble" time parameter t against the

W laboratory time parameter t by a small parameter which we call

o €, where

i )
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T g °
Writing Eq. (2.8) as
t = -1 /%5 1s) (2.50)
o] pR
o
where
1 ds
I(8) = [ ———o (2.51)
5, /1l - Cp(ss
one can rewrite Eq. (2.50) as
1y [
I(s) = > T T (2.52)
or
I(s) = et . (2.53)
Recall that the laboratory time scale T across which the forcing
function acts is
T . (2.54)
d
o

Since the small parameter ¢ is the ratio of bubble time to
laboratory time, its value gives the scaling factor between
the two times. This scaling allows one the freedom of

choosing a different diameter headform and at the same time

EC I ST T T Pt i S e e D T TR
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maintain a proper scaling through the small parameter, e. Thus

the calculated value of the integral equals the parameter et and

is tabulated in Appendix B with the corresponding values of the
forcing function. The tabulation of F and et was then used to
interpolate using a piecewise parabolic fit of the forcing function
for consecutive triads of points. The curve fit was performed for
various cavitation numbers between K = 0,60 and K = 0.70. This
form of the curve fit was used to inspect carefully the region of

vaporous growth and collapse for different values of K.

2.2.3.2 Two-Parabola Curve Fit

In an effort to simplify the formulation of the problem, the
forcing function was refit with two parabolas instead of a piece-
wise parabolic fit. The two-parabola fit incorporated Eqs. (2.48)
and (2.49) which defined the axis shift for different cavitation
numbers., Figure 12 shows the key parameters and conditions used
to fit the two parabolas to the forcing function. The derivation
of the first parabola was based on the following conditions:

(1) The parabola has the form

F, = Al(er)2 + Bl(er) +C

1 1 ’

(2) F(er=0)=¢ =0 :

2
(3) Fl(erm) = Fo s Al(erm) + Bl(erm) +Cp
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2) F=Fm @eTp
dF -
3) en (ETm)-O
A #
PARABCLA #1 PARABOLA #2
SEPARATION

POINT

FORCING FUNCTION, F

IIF=0@ et

y/

-

E\ d F=Fr@ ey

'.-I e ——— e e

m ETf

DIMENSIONLESS TIME, et

Figure 12. Schematic Plot of the Forcing Function Showing the
Key Parameters used for a Two-Parabola Curve Fit.
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Conditions (2) and (3) simply define the value of the forcing

function at the origin and maximum point while Condition (4) states
that the forcing function has zero slope at the maximum point. A
simultaneous solution of these equations using Conditions (2), (3)
and (4) gives the following expressions for the parabolic

coefficients of the first parabola:

Fm
ST
ETm
ZFm
B1 = E‘I.'—r; 3 (2.54)
Cl = 0,0 .

The conditions used to approximate the second parabola are:

(1) The parabola has the form

FZ = Az(sr)2 + Bz(er) +C

2
2
(2) Fz(eTm) = » Az(erm) + Bz(erm) +Cy

dF
2
3 = (et,) = ZAI(eTm) +B, =0 :

2
(4) F,(etz) = Fp = A (er)” + By(ere) + C,
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Satisfaction of Conditions (2), (3) and (4) for the second parabola

glves the parabolic coefficients

Bz = L zm , (2-55)

(F - F,)(ex )

2
(etg = et,)

Figure 13 shows the two-parabola fit plotted against the
actual forcing function. To check the validity of the curve fit,
a comparison of the total impulsive effect of the forcing function

and the two-parabola fit was made. The impulse is written as

s [ F(etd(et) (2.50)

and was calculated using the integration routine discussed earlier.
Figure 14 shows the comparison of the impulses across the range of
the vaporous growth region. The over—estimation of the curve fit

resulted in a relative error of 3.0391%.
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2.2.3.3 Trigonometric Curve Fit
An alternative to the piecewise parabolic fit and the two-
parabola fit of the forcing function is a curve fit using
trigonometric functions to produce a smooth continuous curve fit
across the entire range of vaporous growth. This type of curve
fit eliminates the need to derive new initial conditions at the
junction between the two parabolas discussed in the previous
section. One can assume that in the interval
0<t <te ,
that
Fet) = F(t ) = FeSin(at_) (2.57)
where Qtg = n/2 when tg = tg. Therefore
LA
Q=c—
2 tf
and
” t:s
F(et) = F(ts) = FfSin(? =) . (2.58)

£

If we consider the forcing function to be the cause of all primary
resonances in the system as discussed by Nayfeh and Mook [16], one

writes the forcing function as

FSingt_ = eKSin(ono +oT)) . (2.59)
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Thus, the primary effect will be in the el equation and we
maintain an autonomous system in the el equation. That is to say
the system is soft, not stiff., This result 1s consistent with
the outcome of the parabolic forcing functions as can be seen by

the inspection of those results.

2.3 Formulation of the Initial Conditions

2.3.1 Derivation of the Initial Radius, r(0)

In an effort to solve the governing ordinary differential
equation in the vaporous growth region, the initial conditions at
the beginning of this region must be derived. The initial point
was defined earlier as that point on the body where Cp = - K.
Also, the initial point is designated by the dimensionless time
T = 0., The con&itions for the radius and rate of growth of the
radius are derived as functions of t at T = 0 and as functions
of K across the range K = 0.60 + K = 0.70. Thus, an arbitrary
choice of the cavitation number would produce a corresponding
set of initial conditions for r(0) and r(0).

Since the initial conditions are functions of the parameter
T, a correlation is made between t and s because the initial
formulation of r and r was made against s. It was shown earlier
that by choosing different values of the cavitation number the
axis of the forcing function shifted because of the translation
of the initial point of the vaporous growth region. To find
the arc length positions corresponding to the initial point of

the vaporous growth region, one must use the parabolic form of

the pressure coefficient.
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C,(s) =232 + Bs 4 C

along with the condition that the initial conditions are derived at

the point Cp = ~ K from the flaccid bubble equations. The resulting

equation is

A32+Bs+C+K-0 (2.60)

which can be solved with the quadratic formula to give

B 4A(C + K)
s(K) =5 [-1¢ -\/1 -—BT—] (2.61)
where
S (2.62)
B

Equation (2.61) is used to compute the arc length positions at
the beginning of the vaporous growth region which define the range
across which the equations for r and r are valid. Using the
computed values of r and r at the beginning of the vaporous growth
region gives the initial conditions for the problem at various
values of K.

The initial condition for r is equivalent to Eq. (2.30) which
was derived at the point Cp = - K. Use of a binomial expansion

transforms (2.30) into the form

((0) = 1+ 55+ 0 [(we)?] (2.63)
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Figure 6 shows the region of interest where the initial conditions
are sought, Figure 15 is a blow=-up of that region with the line
representing the initial conditions drawn through the various r
curves at different values of K. Equation (2.63) is linear which is
exactly the line of the initial condition represented in Figure 15.
Thus, Figure 16 represents the initial condition r(0) for various
values of the cavitation number. In the formulation of the problem,

a general initial condition of

r(0) =1 +q (2.64)
is used where q, from Eq. (2.63), 1is written as
q == .

Equation (2.64) is a more precise form to use while exposing the
difference in the initial condition used by Parkin [11] which

stated

r(0) =1 .

2.3.2 Derivation of the Initial Growth Rate, £(0)

In the case of the initial condition for f, the following
conditions were substituted into (2.41) to get an expression for

the initial rate of growth:

C =-KXK
P

£(0) = o [1 + K& (2.65)

;
gg
]

s (K) -%\-[-li \/1 _"L(Cz;l()_] .
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The resulting equation is written as

R
r(0) .% (1 +§Z-E)We3/2 = '\/B-Z - 4A(C + K) (2.66)

and is a function of the cavitation number and the physical
parameters of the flow and headform. Figure 17 shows the line of
initial condition for r(0) across the range of cavitation numbers
‘ being investigated. 1In bubble time the initial condition has a
constant value with a magnitude of the order 1 x 10-5. In
laboratory time this translates to a velocity with a magnitude of
| the order 1 x 10-9 fps. Since the magitude is relatively small,
the initial condition for r(0) is approximated as zero, although
the fact that it is not actually zero is found to be conceptually
K important later. The zero value for r(0) corresponds to the
initial condition used by Parkin [l1].
In summary, using the properties of a flaccid bubble under-
i going isothermal expansion, expressions were derived for the

radius of growth and the rate of growth of the radius. These

! expressions are functions of the cavitation number, the particular

parabolic coefficients used to approximate the experimental data
3 and the physical parameters of the flow and the headform. These
expressions are valid in the flaceid bubble region only, beginning
at the stagnation point and ending where the pressure coefficient
R equals the negative of the cavitation number, i.e., Cp = - K,

These values of r and r at the poiat Cp = - K represent the

o e e
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{nitial conditions used to solve the governing differential

equation. The resulting initial conditions are

r(0) =1 +Q , Q<1 [from Eq. (2.64)])
and (2.67)

r(0) = 0 [evaluation of Eq. (2.66)]

for the range of cavitation numbers under investigation.

- -
B

2.4 The Differential Equation for an Isothermal Bubble

-

Written in dimensionless form, the governing equation for

e

L .-‘

vaporous growth and collapse of a spherical isothermal cavitation
bubble is
2 dr 2

dr 3@y oy 1
r 12+2(dr) 3 =+ F(er) (2.68)

(=W

Equation (2.68) is a second order nonlinear ordinary differential
equation requiring two initial conditions for its complete
solution. The initial conditions for r(0) and r(0) were derived
in the previous section, Eqs. (2.63) and (2.66). The forcing
function, F(et), which causes the bubble to grow from the initial
condition at r(0), to some maximum radius rp,, was approximated by
two parabolas making Eq. (2.68) nonautonomous. Past studies of
the nonautonomous form of Eq. (2.68) have been performed using
appropriate numerical methods. In several unpublished numerical ¥
studies by Parkin, it was found possible to distinguish four
classes of solution for Eq. (2.68). A Class 1 solution is

characterized by small-scale oscillations that make up the major

1
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part of the bubble's motion. In a Class 2 solution, the bubble
motion involves a periodic motion similar to a Class 1 solution

but with a larger amplitude. A Class 3 solution has periodic

513

solutions for the bubble's oscillations but with larger amplitudes.

The size of the amplitudes was found to be dependent on the key
parameters of the flow. Finally, a Class 4 solution represented
bubble growing infinitely large. Of interest here are the Class
Class 2 and Class 3 solutions. It is desired that a solution of
Eq. (2.68) be obtained that would allow a parametric study of
these different classes of solution to be performed. With the
initial conditions and forcing function previously derived, one
can now apply the method of multiple scales in an attempt to get
an approximate analytic solution of the isothermal Rayleigh-

Plesset equation.
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CHAPTER 3

PARTIAL SOLUTION OF THE DYNAMICAL PROBLEM

3.1 The Method of Multiple Scales

Having established the governing differential equation and
initial conditions for isothermal cavitation bubble growth and
collapse, the method of multiple scales 1is used to find an
approximate analytical solution to the problem. The method of
multiple scales is used because of the two dissimilar time scales
that exist in this problem. Since there are two different time
scales, a variation of the method of multiple scales called the
two-variable expansion method is used. Application of the two-
variable expansion method begins with the expansion of the two

time scales.

3.1.1 The Time Scales

As discussed earlier, there are two time scales that
characterize this problem. The time measured in the laboratory is
the slow time scale tg and is the characteristic time scale of the
forcing functicn. The fast time scale tg is a very short time
compared to the slow time scale and is the characteristic time
scale of the individual bubble oscillations. Expansion of the
time scales based on the small parameter ¢, defined by Eq. (1.2),
is derived by Cole and Kevorkian [l4]. The slow time scale is

simply

t = g1 (3.1)

while the fast time scale is written as
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2 3
tf = (1 + € mz + € u)3 + uoc)T . (302)

Because the individual bubble oscillations are very fast, the
expansion for t¢ includes additional terms which allow for different
frequencies of oscillation that may occur as the bubb'e passes
through a varying pressure field. Based on these two time scales,

the dynamical equation can be expanded to the order e3.

3.1.2 Formulation of the Dynamical Equations to Order &3

. Formulation of the dynamical equations to order e3 1s
accomplished by using the expansions for the slow and fast time
scales, Eqs. (3.1) and (3.2), to derive the first and second
derivative expansions as functions of the dimensionless bubble

time t. One can write
T = f(ts,tf) (3.3)

where the derivative with respect to Eq. (3.3) is

d 2 3 ]
Akt (1 +c¢ w, + € w3) 3¢, + € T (3.4)

It follows from Eq. (3.4) that the second derivative is

2 2,2 2

d 2 3 ] 3 )
— (l+€w2+€w3) ——2+2(e+em2+ew3)ﬁ—-
dt atf f s
2
+52—32 (3-5)
at
S

or written in ascending power of ¢ the second derivative expansion

is




2 a2 2 2 2
——2-+ 2¢
Btf

L)

g9¢g ot

d 2 ] ]
7- +e[2w2——2-+—2]

ot
f ats

2
+ 53[2w3 2——-+ sz ) ] .

p]
3tf Btfats

Using the first and second derivative expansions, one can write
Eq. (2.68) in a completely expanded form up to e3 using a general

perturbation expansion for r having the form

2 3
r ® g + e +eE, *EL

0 1 2 + LR L]

3
Use of Eq. (3.7) in (3.6) and (3.4) leads to

or ar ar ar ar
1 0 2 2 1 0
] + €[ T ]

+ —_— + 0, —
Bts 8tf 3ts 2 atf

] ro

e
2 Btfats

—= 42

(3.9)
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If one assumes the bubbles under consideration are spherical,
then the term S(r,n) from Eq. (2.68) is set equal to unity. The
term F(et) from Eq. (2.68) has the form of a parabola as discussed

in Section (2.2). Unfortunately, use of a parabola of the form

F = Aezt: + Bets + C (3.10)

requires the solution of nonautonomous first and second order
expansion equations to get a complete solution. By using a
trigonometric form of the forcing function represented by

Eq. (2.59), one needs to solve only the nonautonomous first order
expa 9lon equations since the trigonometric form is expressed
only to the first order of the small parameter, .

Calculation of each term in Eq. (2.68) based on the general
perturbation expansion for r and the first and second time
derivative expansions, permits one to write the isothermal
Rayleigh-Plesset equation in ascending powers of the small
parameter ¢ as a function of the fast and slow time variables.
The same procedure can be performed on the initial conditions.

Introduction of a normalized radius u where

r
u = l"‘Q (3011)

allows one to write the normalized isothermal Rayleigh-Plesset

equation with initial conditions consistent with those used by
Parkin [11]. The resulting set of differential equations and

initial correlations up to €3 can be solved and substituted back

into Eq. (3.7) using (3.11) to get the final solution for the

dimensionless bubble radius as a function of time.

NSO RO e e D D



The normalized equations and initial conditions written in

ascending powers of ¢ are:

Order &0
2 2
d™u du F
%9 2O+%(dco 5 oy l 5 " l 3+1$Q (3.11a)
dt f usy (1 + Q) u (1l + Q)
f 0 0
uO(O) = 1.0
Initial Conditions (3.11b)
duo
F(O)'O-O
f
Order ¢l
2 2 2
du1+[3_du0du_l+[4_du0+_gl_(du0)+ 2 .
2 u, dt.J dt u 2 2 2 \dt 313 1
dt:f 0 °f f 0 dtf uq (1 + Q) uy
FB
S et
(1 +Q) u,
ul(O)'0.0
Initial Conditions (3.12b)
dul
E(O)-OQO
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Order €2
2 2 2
uod ;2+““2d ;0’“ 3::() ::2 +%u_2(::O) T3 e 3
dt dt £ ¢ Yo %t¢ u (1 + Q)
£ f 0
2 2 2
) 3FC u_2 _ F‘At:f . 3FB u_l ) u—1 1
a+0%% a+2 «(+0q? ug ug (1+Q°
dzu d2u u azu
= Zujuy =5 = by 21 - 20
u
dtf dtf (1+Q 0 dtf
du 2 du 2 u, du. du u2 du 2
- @) TG w1 )
f f 0 f uo f
(3.13a)
u2<0) = 000
duz(O) duO(O) Initial Conditions (3.13b)
————— IR - w —————
dt 2 dt,
Order ¢3
d2u3 d2u0 du, du, du 2 !
u + bu + 3 +35 (1 + Qu, (5)
0 dt2 3 dt2 dtf dt 2 3 dtf
f f
2 Y3 Fo Uy T
* 33 T a. 5o
(1 +Q) us (1 +Q" 70 (1+Q~ "0 Y
]
F 6F u F u3 ;Ij
B (¢ 1 C 1 R
+ G el i e e :
(1 +0) (1 +0) uy (1 + Q) u,
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2
} 2 u,u, - e duO dul % (du )
du, du u, du, du u. du 2
B o R ot D [
£ Yo % Ut ug e,
du. 2 u, du, du 2 4u d
B i D S o Wl W
£ i, W6 ug dt dt, “S dt, de,
u, du 2 u, du . u, du_ du
-, (DY) -ie @) R em
uz du,. du u.u. du 2 03 du 2
u2 dtf dtf u2 \dt 2 u3 dtf
0 0 0
dzu dzu dzu d2U
— 20)2“0 21 - 20)3\,10 2 - 4u1 3 = 8“’2“1 1
dtf dtf dtf dtf
d2u u2 azu u.u dzu \13 dzu
4 1 1”1 g € Wy 1%Y%
- u2 3 -6 5 ) - 12 = -4 _2_ 5
dtf 0 dtf 0 dtf ug dtf
(30143)
u3(0) = 0.0
du3(0) dul(o) duO(O) Initial Conditions
dt, 2 dtg 3 dt

(3.14b) E
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A
)
o 3.2 Solution of the Multiple Scale Equations
3.2.1 The €0 Solution
ﬁf The first step in obtaining the complete solution of the
l:a
15 isothermal Rayleigh-Plesset equation is to solve the normalized
Nl
zeroth order differential equation that results from the
o
&; application of the method of multiple scales. The zeroth order
ey
R equation, Eq. (3.1la), is still nonlinear but is now autonomous
|"‘
N
because the time dependent forcing function has been reduced to
53 a constant. Equation (3.1la) is analogous to the autonomous
e"',t
L; form of the Rayleigh-Plesset equation studied by Parkin [11]
l'.
rf where the term Fp corresponds to his piecewise autonomous step
i
$$ function representation of the forcing function. From Eq. (3.1la)
n‘}‘
tea
ﬁg one can examine the intricacies of this problem by investigating
KY.
i the energy curves and phase plane trajectories. This form of
L)
(0
E? analysis is restricted to the autonomous zeroth order differential
'
v.‘
ﬁ. equation and is very useful in determining the limits of the
o periodic and non-periodic solutions which are based on the
Y
ﬁn location and character of the singularities that exist in the
-s‘l
iR
gd autonomous system.
P
}& 3.2.1.1 The Potential Energy Function
)
l"
%} The zeroth order equation and initial conditions may be written
Wiyl
' as
R
e i Ik g
X Moo, 30y Ly L L1, ¢
v - 2
W at? 2 Mdtg ug A+ %A+ 1+

¥ : "
OO ORI OL OO
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It is of great interest to consider the different solutions of
the zeroth order equation for the two cases when (1) Fc = 0 and
(2) Fg # 0. Ome can replace the second order differential
equation by a pair of coupled first order equations using the

relation

=%
[
[=]

<
]

a
[ad
3

To simplify the expressions by dropping the subscript zero,

the zeroth order equation and initial conditions can be rewritten

F

s Gyl el e e (25 15
£ u” (1 +Q) (1 +0Q (1 +Q)
u(0) =0
V(O)-l .
Using the transformation :
dv . 3 2 1 4 32 .
ud—t-+iv :—Zd—u-(uv) (3016)
2u
one may express Eq. (3.15) in integral form as
2
2u°F
u3v2 = [ LY = = 2 7 C Jdu . (3.17)

U1+’ (1 +0)° (1 + )l
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The left-hand side of Eq. (3.17) is proportional to the kinetic
energy of the bubble motion while the right-hand side corresponds to
the negative potential energy, - V, of the bubble. Evaluating the

integral in Eq. (3.17) as an indefinite integral, one can write

2yinu u2 2 3 FC

+ " —————t k (3.18)
1+ +q° 3

—V.
(1+ Q2

where k is a constant of integration that permits one to adjust the
level of V for different initial conditions. Setting Fc = 0 and
evaluating Eq. (3.18) at the initial conditions defined for the
zeroth order equation, one writes the potential energy function V

v--—iY—-S-mu+—1—3(u2- 1) (3.19)
(1+0Q (1+0Q

and the plot of Eq. (3.19) versus the normalized radius u is shown
in Fig. 18 for values of Q = 0.30 to Q = 0.0. It is easy to see
from Fig. 18 that as the value of Q decreases toward zero, the point
of minimum potential energy shifts to the right. The relationship
defining the location of this minimum energy is derived by setting

the first derivative equal to zero. Thus,

dv 2y 1 2u

— - — =

du dk Q)Z u (1 + Q)3

or

w2l (3.20)

= s - - NN » : ' ' (T
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which defines analytically the location of minimum energy. 1In this
study we restrict our attention to positive values of u and thus
neglect the negative root. The importance of Eq. (3.20) will become
evident later when we study the location and character of the
singular points of Eq. (3.15). Moreover, the translation
experienced by the minimum energy point is the critical condition
that allows one to distinguish between two kinds of motion
characteristic to the autonomous system.

If one evaluates Eq. (3.18) using the initial conditions from
Eq. (3.15) and sets Fc # 0, the resulting potential energy function

is written as

V--—gl—S-Mu+-l—3(u2-l)--§-—c— w3 -
(1 +Q (1+0Q

(3.21)
Equation (3.21) represents the potential energy function for the
autonomous system having a non-zero forcing function and is plotted
in Fig. 19. Clearly, the contribution to the potential energy
function of the last term in Eq. (3.21) becomes overwhelming as u
increases, causing the energy curve to turn downwards. As before,
the location of the minimum and maximum points is determined by
setting the first derivative equal to zero. Performing the same
operation on Eq. (3.21), we find the result to be a cubic equation
of the form

3 1 2
Ty N BRI (IS (3.22)
Fo(l + Q) F(l + Q3
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The roots of Eq. (3.22) are found using Tartaglia's Method.
For the case of three real and tnequal roots, the roots of

Eq. (3.22) are of the form

P
ui = xi -3 (3.233)
where
27(4 -~ 1)
X, =m cos(e1 +-———3—-—) i=1],2,3
and
\
1 -1 ,3b
91 -§co (;n')
FEPYED
‘. (3.23b)

b = 2= (27 - 9q + 27r)

)

The parameters p, q and r are the coefficients of a cubic equation

having the form
u3 + pu2 +qu+r =0 . (3.24a)

Therefore,

1
P= —=i% <y »
FC(I + Q)

q =20 ’
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and

r=— - 3y (3.24b)
B (1'% @)

Thus, in terms of the original paramctars of the cubic coefficients,

the roots of Eq. (3.22) are

1 2 e 2n(1 - 1) .
TR O TR T o s Ty ) te LS
(30253)
where

2

27F .y

1 -1 c

el - -3- cos [1 = __2._] .

- Evaluating the roots for Q = 0.3, vy = 1.4, Fc = 0.2, one gets

i=1 , u = 3.600356643

1=2 , u,= = 0.825817193 (3.25b)

i=3 , = 1.071614395 .

Y3
Since we are interested in positive roots only, the second 1is

neglected leaving the first and third root to define the location

of the maximum and minimum points in Fig. 19.

3.2.1.2 Singular Points and the Phase Plane

Having derived an expression for the potential energy of the
autonomous system, we can now look at the phase plane in conjunction
with the potential energy to study the singularities that exist in

the system. To begin the analysis we need to apply Eq. (3.16) to
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(3.15) and use a generalized initial condition for the initial
radius that states u(0) = u,. The initial condition of the bubble
wall velocity will remain zero because its actual initial value is
so small that all analyses whether global or specific will be
accurately represented by u(0) = 0. Use of the generalized
initial condition on the bubble wall radius will enable us to
perform a global phase plane analysis to explore the properties
of the autonomous system and to develop some knowledge about the
physical parameters that lead to different classes of solutions.
Afterwards, the initial conditions defined by Eq. (3.11b) will be
used to look at a specific set of trajectories in the phase plane
and how they relate to the global analysis.

Applying Eq. (3.16) to (3.15), one can write

F
d 32 2 1 2u 2 C
& U1+ Q° (1+0Q)° (1 + Q2

Using Eq. (3.26), one can derive an expression for the phase plane
trajectory by computing the derivative on the left-hand side and

solving the equation for dv/du. The result is

2 u3F

Y u " C

3 2 3
-Fvu

v _ (1 +0Q° a+’ (+0? . B(u,v)
du 4 Q(U,V)

(3.27)
u'v

which defines the bubble wall velocity as a function of the bubble
wall radius and the other physical parameters of the flow. The
singular points of the autonomous system are located at those
points which satisfy the conditions Q = P = (0. Because u > 0,

Q = 0 when the initial condition for the bubble wall velocity is
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satisfied. Thus, all singular points are located along the u-axis
at positions satisfying P(u,0) = 0. Evaluating P(u,0) = 0, one

gets the cubic equation

ua-F—(-ll‘,_—Q)-u2+—Y—3-0
C Fc(l +Q)

which 1s exactly the same as Eq. (3.22). As we saw earlier, the
roots of Eq. (3.22) d¢fine the locations on the u-axis of the
maximum and minimum points of the potential energy function. Thus,
we can say that the location of the maximum and minimum points on
the potential energy curve correspond exactly to the location of
the singular points of the system.

In order to determine the character of these singularities
one can apply Liapunov's Method (see Ref. [15]) which requires

finding the characteristic roots of the Jacobian matrix
3Q 2®
3Q 3p
3y (4:0) 3y (4,0)

The value of u in the argument of each derivative function
corresponds to the values of the real roots denoted by Eq. (3.20)
for Fc = 0 and Eq. (3.25) for Fp # 0.

When Fc = 0, the characteristic equation is

e~ 20 (3.28a)

or

A = 1] ———u . (3.28b)
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When Eq. (3.28b) is evaluated at the positive root of Eq. (3.20),
the result is two purely imaginary characteristic roots meaning
the positive root is characterized as a vortex point. In a small
neighborhood in the phase plane, all motion will circle around this
vortex point thus defining a periodic solution for u,.

When Fo # 0, the characteristic equation becomes

IF
3w —2 : P R (3.29)
(1 +Q)

(1 + b

By evaluating Eq. (3.29) at the positive roots of Eq. (3.22), one
can determine the nature of those roots. For the smallest positive
root in Eq. (3.25b), the characteristic roots are purely imaginary
meaning the root is a vortex point. For the largest root in

Eq. (3.25b), the characteristic roots are both real meaning the

root is a saddle point. The location of the saddle point
corresponds to the outermost limit on the u-axis that a trajectory
representing a periodic solution will pass. Ma and Wang [17]
obtained similar results for this specific case. These results
are also completely consistent with those of Parkin [11] who found
for Fc = 0 that only one vortex point exists. And for F; # 0,

a vortex and saddle point exist on the u-axis with the vortex
point located closer to the initial radius u, than the saddle
point. Moreover, the roots that lie on the negative u-axis are

not pertinent to our problem and should not affect the solution.
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"
ﬁ Rearranging Eq. (3.17) for the bubble wall velocity, one can
write _
F
”:' -—ZY——glnu- : 3u2-u° +% £ 2u3-uo)
) . (1 +9q (1 +09) (1+9)
() u =t
o 3
] u
(3.30)
i
yﬁ which defines the family of trajectories in the positive phase plane.
t,
ﬁt The family of curves resulting from Eq. (3.30) 1is a series of closed
[}
i
loops and open curves representing periodic and non-periodic solutions,
f respectively. The plus and minus designation of Eq. (3.30) defines the
0
LK
:ﬂ trajectories above and below the u-axis. The extent of the closed loop
e
d perlodic solutions is determined by the location of the singularities
82,
N
:f which were found to coincide with the position on the u-axis of the
)
‘2 minimum and maximum potential energies. Plots of the potential energy
: and phase plane trajectories are shown in Figs. 20 and 21. Figure 20
D
o,
)
ﬁi corresponds to the potential energy and phase plane trajectories when
X,
‘L Fc = 0, vy = l.4. Notice the location of the minimum potential energy
: corresponds to the vortex point in the phase plane about which the
B!
;? periodic trajectories are focused. It is important to point out that
Q‘i
z& the location of the minimum potential energy translates from left to
o right as the value of Q decreases from Q = 0.30 to O = 0.00. The
RN
;ﬁ dotted curve in the upper potential energy plot corresponds to the
a
4
zﬁ case where the trajectory and the vortex are isolated at the origin
X in the phase plane for a critical value of Q = 0.183216. This
v( crit
A °
s: critical motion is then defined by u(t) = 1 and u(t) = 0 for all time.
tﬁ
k& The importance of this critical condition is that it separates two
,z physically distinct types of motion that the bubble experiences
1

o . depending on its initial size., The trajectories to the left of
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u(t) = | represent small scale oscillations of a flaccid air bubble
while those to the right of u(t) = 1 have larger amplitudes of
oscillation involving vaporous growth, Since we are considering
primarily the vaporous growth region, we will limit our discussion
and investigation to those trajectories that lie to the right of
u(t) = 1. The location of the vortex points, which coincides with

the minimum potential energies, is defined by

-

A L (S
u, " Te o (3.31)
Thus, one can write at u, = 1
QUpge ™ vy -1 (3.32)

for any value of yo If Q = 0, then y = | which is the lowest
possible value of the dissolved air content for positive Q values.

Since Q was previously defined in Eq. (2.63) as

KWe
Q= 5

the minimum limit on Q corresponds to Vo = 0 or K = O,

If one now considers the potential energy and phase plane
trajectories for Fo # 0 at y = 1.4, it can be seen from
Fig. 21 that the nature of the curve 1is quite different from
the case when Fo = 0. To simplify the analysis we will look
at only one energy curve with its corresponding phase plane
trajectories. From Fig. 21 one can see that the minimum point
on the energy curve coincides with the vortex point in the

phase plane while the maximum energy point concides with the

saddle point. The location of the saddle point defines the

maximum normalized bubble radius through which a trajectory
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representing a periodic solution passes. Therefore, all

trajectories representing periodic solutions lie to the left of

the saddle point and circle about the vortex point located just

to the right of some generalized initial condition u(0) = 1 + Q.
The outermost trajectory representing a periodic solution and

passing through the saddle point is called the separatrix. The

parameters that define the separatrix as the outermost limit of all

periodic trajectories is characterized by the critical parameters

Y, and Fc + These critical parameters are determined by

crit
simultaneous solution of

V(u) = 0 (3033)
and

dv

E;-(u) =0 , (3.34)

Equations (3.33) and (3.34) are to be evaluated at the location of
the saddle point as determined from Eq. (3.25). All trajectories
that lie outside of the separatrix represent bubbles which will
grow to an infinite radius across an infinite time interval. In
this study we are mainly interested in the trajectories that
represent periodic solutions.

To solve for the critical parameters that determine the

separatrix, one can write Eqs. (3.33) and (3.34) as

F
V(u)=—21-——2.nu-—l-—(u2-l)+%—c(u3—1) =0

(1 +Q)° (1 +Q° (1 + )2

and

e e e M e m A MreEmE A MASR TR W YL L SR R T Pt wU WU ML W WL WL W W
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F
;1- u + &2 =hl . (3.36)

(1+0)7° 1+ 02

dv 2y
(1 + 0)°

Solving Eqs. (3.35) and (3.36) for y and then solving simultaneously

for FC one gets
crit

F - 3(92 -1) - 6u2£nu
C 3 3
crit (1 +Q)[2(u” = 1) - 6u~gnu]

(3.37)

which defines the critical forcing parameter as a function of Q.

Rearranging Eq. (3.36) for y and substituting Eq. (3.37) for

FC one can write the expression for Yerit 28
crit
22 - m) -y
Yopge = (1 + Q771 - u 71 1)] . (3.38)
u (§-lml)_3

Thus, Eqs. (3.37) and (3.38) are the critical parameters which

when used in conjunction with Eq. (3.30) define the critical

trajectory called the separatrix. Parkin [11] asserted that the
separatrix corresponded to a barrier between Class 1 and Class &
solutions for a non-zero forcing function parameter, Fc. Recall
that a Class 4 solution corresponds to a bubble which grows to an
infinite radius in an infinite amount of time. If one chooses a

value of the forcing parameter larger than that of F or an
crit

air content larger than Topit? then the trajectories corresponding
to a Class 4 solution would be found outside of the separatrix.

Choosing values of Terit and FC near zero results in small
crit

scale oscillations about the vortex point and is classified as a
Class 1 solution. Critical values of the air content parameter

and forcing function parameter evaluated at the location of the
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saddle point for Q = 0.30 are FC = 0,1834101 and
crit
Yerit ™ 3.1022749. Figure 22 is a plot of the critical parameters

versus the normalized bubble radius. In this study we are
interested in values of u » 1. Therefore, it is not necessary to
begin the origin of u at zero. It 1is important to note that the
magnitudes calculated for the critical parameters in Fig. 22 and the
amplitude and frequency of oscillation indicates in Fig. 21 are
comparable to those calculated by Parkin [l1}. This apparent
consistency in the generalized phase plane allows us to consider the
more specific case of the phase plane when we uge the initial
conditions formulated earlier. Also, if we let u + = then we

see the phase plane trajectories asymptotically approach a value

equal to

. (3.39)

The asymptotes are represented by the horizontal dotted lines on
the phase plane plot in Fig. 21 and apply to non-periodic
trajectories as T + =,

If one analyzes the phase plane when the initial conditions of
Eq. (3.11b) are used, the resulting equation is similar to

Eq. (3.30) except that u(0) = 1. The phase plane equation is

written as

(3.40)

WUV WU VUMW UN FMUNV TV TV Y Py r\r§

(
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which satisfies the initial conditions exactly. By varying the

forcing function parameter F. about the value of the critical

parameter Fcc , one obtains the phase plane plot shown in Fig. 23.

rit
Notice that all trajectories begin from u -'1, u = 0 and follow a
trend similar to the trajectories shown in the general phase plane.
As noted earlier in the derivation of G(O), the value of u(0) has

8 fps. The fact that this

a magnitude approximately equal to 1 x 10~
initial velocity 1is not equal to zero is very important because it
allows us to explain the existence of the trajectories when there
i8 no forcing. If one looks at the parabolic coefficients of the
forcing function represented by Eq. (2.54), it is easy to see that
the zeroth order term C; = 0.0, Therefore if the bubble has zero |
Vv wall velocity at the initial point, then the bubble will grow only

if a force favorable to growth is applied. Because the zeroth

order forcing constant is zero there must be an initial wall

velocity enabling the bubble to traverse along any one trajectory
as shown in Fig. 23. Otherwise the phase plane would be
represented by a single point in the phase plane at u = 0O, u =1,
Thus, approximation of the initial velocity as zero allows one to
simplify the equations without sacrificing the accuracy of the

calculation.

In summary, we have looked at the phase plane plots, potential

tial equation F¢ > 0 and F¢ = 0. The singularities which exist in the

]
E energy and singularities for the autonomous zeroth order differen-
> system for F; > O explicitly define the limits between periodic and

non-periodic solutions, The character of these singularities was
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verified by Liapunov's Method and revealed a vortex point near the

general initial condition u = u(0) and a saddle point located farther

away from the initial radius., As a result, the phase plane plot
showed trajectories representing periodic solutions circling about
the vortex point while the saddle point acted as a bridge between
the periodic and non-periodic trajectories. Also, the location
along the u=-axis of the vortex and saddle points was exactly the
same as the location of the minimum and maximum points exhibited

by the potential energy function. Using the location of the

saddle point, we were able to derive from the potential energy
function and its derivative expressions for the critical parameters

Y, and F which are used in Eq. (3.40) to define the

Cctit

separatrix. The separatrix which is now a function of Q and u 1is
used to show the separacion between Class 1 and Class 4 solutions.
Thus, the trajectory representing the separatrix is the outermost
limit where a periodic solution exists. All solutions within the
separatrix are periodic motions and are the main focus of this
study. And all trajectories representing periodic or non-periodic
solutions approach an asymptotic value indicating a constant rate
of growth or collapse of a bubble as its radius grows infinitely.
Having established limits between the periodic and non-
periodic solutions, one 1s now ready to put the zeroth order
differential equation into integral form in order to determine

an approximate solution of the individual bubble oscillations.
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3.2.1.3 Polynomial approximation of the logarithmic air content

parame ter

In an effort to solve the zeroth order differential equation, |

one must rewrite Eq. (3.40) using the positive root only as

gL W2o1)e2—C -y
du ¥V (1 +0) (1 +0)

dt u3/2

(3.41)
By inverting the variables in Eq. (3.41), an expression for the
period of oscillation can be written in the form of a definite

integral as

. l} <2y :
umlq =2y - —L (P 2L (P -
(1 +0) (1 +0) (1+0Q)

(3.42)

The lower limit of the integral is the initial normalized radius while
the upper limit is the value of the normalized radius u, between
u =1 and u = ug where ug corresponds to the maximum value of u when
u = 0 in the phase plane plot in Fig. 23. As it stands, Eq. (3.42) is
not soluable by any standard analytic technique. 1t closely resembles
the form of an elliptic integral except that the numerator does not
have a whole numbered exponent and the denominator contains a natural
log term.

In order to shape Eq. (3.41) into a form which may be solved by
some known analytic technique, one must first multiply the numerator

and denominator by the square root of the normalized radius. The

integral is then
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u=y
- = ; uzdu
us=] F
—2 g - —L— u3-u)+l——c——(u4-u)
5 3 3 2
(1 +0Q) (1 +Q) (1 +0Q)
(3.43)

which still contains a natural logarithm in the denominator.
Generally, one would numerically integrate Eq. (3.43) and probably
obtain very accurate results. Because the emphasis of this study is
to obtain an analytic solution to the Rayleigh-Plesset equation,
certain modifications of Eq. (3.43) must be made enabling one to get
an analytic solution to the zero order equation. If one considers
the function ufnu, which is contained within the square root of the
denominator, it is easily seen that the function is a rather smooth
function of constantly increasing magnitude. By fitting the ugnu
function with a cubic polynomial the entire denominator can be
written as the square root of a polynomial. For the zero order
equation, the term Fg = 0. Then the polynomial in the denominator
would be a cubic .

In order to fit the ufnu function with a cubic polynomial four
points must be used to model the function in the region of interest.

Thus, for the four points, uy, 1y, uj, u,, one writes

f(u;) =u,20u, = aud + bu? + cu, +d

1 1 1 1 1
f(u ) =y, nu, = au3 + bu2 +cu, +d :
e (3.44)
flu,) =u tnu, = au3 +bul +cu, +d
3 3 3 3 k] 3

3 2
f(ua) =u,fou, = au, + buA +cu, + d .

1,5 IRV UGN T ST N, G B CH R G R G SRR pETT



TSNV NV VI T U T Y T YU T UV TV I YRR E T Y T vl B T WA M Ty R Fy Ty TSy TV T v TR T

85

In matrix form, Eq. (3.44) is written as

u3 u2 u 1l a u, 4nu T
1 1 1 1 1
3 2
u2 u2 u2 1 b uztnu2
3 2
u3 u3 u3 1 c u3lnu3
3 2
ua u4 ua 1 d ualnua
L. 401 L |

which when solved with the IMSL subroutine called LINV3F produces

the coefficients

a = - 0.,050304
b= 0.578693
c = - 0.001871
d = -0.526519 .

The numerical valueé of uj, uj, uj, u, corresponded to the values of
the normalized radius starting at the initial condition u; =1 and
ending close to the location of the saddle point ug = 3.60. Points
ug and uj were arbitrarily chosen to be uy = 1.80 and ujy = 2.60.
Table 1 shows the % error between the function ufnu and the cubic
4 polynomial f = au3 + bu2 + cu +d. It is evident that the error
falls in the range of -1.0% < error < 1.0%.

To see the effect of the approximation on the zeroth order
equation, one can rewrite Eq. (3.40) using the cubic polynomial to

i get




TABLE 1

Polynomial Curve Fit of ufnu

u uinu f =aud + bu? + cu +d
1.0 0.00000 0.00000
1.2 0.21879 0.21763
1.4 0.47106 0.46707
1.6 0.75201 0.74590
1.8 1.05802 1.05171
2.0 1.38629 1.38208
2.4 2.10112 2.10686
2.6 2.48433 2.49644
2.8 2.88293 2.90092
3.2 3.72208 3.74495
3.6 4.61136 4.61963

0.00000
0.53019
0.84794
0.81249
0.59681
0.30376
0.27318
0.48737
0.62408
0.61441

0.17927
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Now, Eq. (3.46) is in a form which allows one to calculate
analytically the value »f the integral. Solution of the integral

will be completed in the next section,

3.2.1.4 An Approximate Zero Order Solution using Elliptic

Functions

Having established an approximate form of the integral
representing the period of oscillation of a bubble, an analytic
solution in the form of elliptic functions must be formulated.
Because the numerator is a squared term and the denominator is
the square root of a polynomial, an integral from Byrd and
Friedman [13] can be applied. The solution is dependent on
the roots of the denominator and can be expressed in terms of
incomplete elliptic integrals, the first, second and third kinds
and a product of Jacobian elliptic functions.

The first thing to do is to calculate the three roots of the
cubic polynomial in the denominator of the integrand. Because the
roots can vary due to the choice of y and Q, we will choose
Y = 1.4 and Q = 0.0 to get the largest possible roots available
for the zero order solution.

Using Eq. (3.46), the radicand should be written as
A[u3 + pu2 + qu + r]

where p = B/A, q = C/A and r = D/A. If we set

which denotes the phase-plane location of the vortex point.

O O DA O O R TR A D O A A T A T T Lo e o O A T D
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Then the coefficients p, q, r and A become

2bu3
p = ’
2au2 -1
v

2cu + 1

0
[}

< NS N
-

2au’ - 1
2
2duv
2au’ - 1

1 2
A= — [Zauv - 1]

(1 +Q)3

Letting the three real roots of this modified cubic be ups Y, and
u,, we can order the roots as

u1>u>u2>u3

with u, being the largest root and u, being the smallest. From
Fig. 20 it is clear to see that all the trajectories in the phase
plane originate from u = 1. We can therefore assume that the
modified cubic always has a root at unity. Normally the cubic can
be factored using Tartaglia's Method, but because we know one of
the roots 1s u = 1 the other roots can be found by dividing the

modified cubic by u - 1 and solving the resulting quadratic

equation.
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Long division of the modified cubic by u - ! gives

x2 +x(p+1)+(@q+p + 1

with a remainder of

2u3(a +b+c +4d)

2
Zauv -1

Then with the numerical values of the coefficients a, b, ¢ and d
from the curve fit of ufnu (p. 85), one can calculate the remainder
to be equal to zero. Therefore, the remaining two roots are found
from the quadratic equation. Upon factorizing the quadratic
equation and applying the appropriate coefficients, the remaining

two roots are

1.0568u% - 1 l 4.212146u2(1 + 0.10060802)
v 1 + 1 + v v

2(1 + 0.100608u2)
v

2 L ]
(1.05680% - 1) ,

The numerical equivalents of these two roots when y = l.4 and

Q = 0.0 are
u = 1.,3662
and
u = - 0.9459 .

Comparison of all three roots with the range of integration as
prescribed by the phase plane of Fig. 20 justifies the ordering

of the roots as

u, = 1.3662 , u, = 1.00 , uy = = 0.9459 .

g
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Consequently Eq. (3.46) can be rewritten using u,, u, and u

1* Y2 g &%

(1 + Q)3 : xzdu
(Zau3 By e (xl - x)(x - xz)(x = x3)

(3.48)

Since all trajectories shown in Fig. 20 originate at u = 1, the
analysis conducted above for the trajectories that lie to the
right of u = ] should also work for the trajectories that lie to

the left of u = 1.

It has been previously stated (p. 75) that the trajectories

Y

RS

to the left of u = 1 represent small scale oscillations of a

flaccid air bubble. Indeed, the main focus of this work is to
study the bubble growth as it occurs in the vaporous growth
region. However, in an effort to maintain completeness in the
solution of the zero-order equation one should be able to use a
similar factorization as shown above to define the ordering of
the roots for the trajectories to the left of u = 1, These
roots could then be used in the solution of Eq. (3.48) to
describe the time history of these small scale flaccid air

bubble oscillations.

Considering the same factorization as before, the roots are

written as

ul = 1.0
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200 + 2bu’ - 1
v v

u =
2’3 - 2
2(1 - 2au)

8u2(a +b +¢) - 16u3(a2 + ab + ac)
1z 1 + ./

(2au® + 200’ - 1)?
v v

Using a polynomial curve fit for the function ufnu = au3 + bu3 +cu +d

where

- 0.205484

(Y]
]

o
]

1.111631

- 0.606996

o
L]

- 0.299157

a.
]

over the range u = 0.8 to u = 1,0, one can write

1.8123u? - 1
v

u =
2,3 2
’ 2(1 + 0.41095u)

2.39326u2(1 + 0.410950°)
1:\/1+ A 5 7 ALAS
(..8123u - 1) I

Choosing y = l.4 and Q = 0.30 then one finds the parameter u, equal to

u, = 0.910166 and the roots are

Ul = 1000

u, = 0.823184

uy == 0.449188
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Therefore, the ordering of the roots as

u, du P2u, >u

1 2 3

is equivalent to the ordering of the roots for the trafectories

that lie to the right of u = 1. Comparison of the roots u,, u

1’

and uy against the roots as calculated by numerical methods

2

resulted in errors of approximately 0.60%. Thus, the factorization
method is a reliable means by which the roots of the cubic

polynomial in the denominator of Eq. (3.46) can be calculated.

It is interesting to note that when values of y and Q are
chosen such that the parameter u, increases in magnitude from less
than one to greater than one, the roots U, U, and ug migrate from
left to right along the u-axis. When the parameter u, equals unity
there is a double root at u = 1 which sets the upper and lower
1limit of Eq. (3.48) equal to unity. Previous analysis reminds us
that for a double root at unity a bubble radius will neither
increase nor decrease in size as time increases. Thus, it will be
at this point that the analysis will continue, considering only
values of the parameter u, greater than or equal to unity, even
though an equivalent analysis could be performed for values of u,
less than one. Refering to Byrd and Friedman, Eq. (3.48) can be

written as

m

T =¢gb

1 4 2 2 2 2
';Z [alu + 2a1(a - al)V1 + (a® - al) V2]

TRTL T T 0 L R B L gt e, i
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where

Vv, = — [E($,k) - k’SnuCdu]
172

(3.49)
1 2 b
v, = ;;TZ [2(2 - k“)E(¢,k) = k “F(¢,k)

- kZSnquu(k'zndzu + 4 - 2k2)] .

The parameters in Eq. (3.49) are functions of the roots, uj,

us and uj and are defined as follows:

Modulus

Y10

Yy Y

Complimentary Modulus

/ul - ug

Modular Angle
s1 ’1\/(°1 ~ua)e - )

= Sin
X CAEER IR

Note: u is the upper limit of integration.

T SRR~ TN
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Incomplete Elliptic Integral of the First Kind

¢
F($,k) = [ 49

0 -\/1 - k2s1n20

Incomplete Elliptic Integral of the Second Kind

¢
E(é,k) = [q/1 - k2sin26 d6
0

Jacobian Elliptic Functions
sin ¢ .\/(ul - u3)(u _ u2)
(“1 = “2)(“ i u3)

Chu = cos ¢

Snu

dnu

L]
—
i
=
N
[/
[
3
[354
-

ndu = — ,

Rewriting Eq. (3.49) in terms of u;, uj and uj, one gets

':." >
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2 2 3 ’ 1
T = F(¢,k)[gu3 - guz(l - GZ) ;;Tf]

U3, 1 2, M3 2 2(2 - k)
+ E(¢,k) [2gu,u,(1 - q)(kfz) + guo(1 - g) (—3k.—,,—)]

U3, i 2 Ul 2 2
- SnuCdu [2gu,u,(1 - q)(k—,z-) + guy(l - B;) (3—‘(7)(4 - 2%k“)]

2

- SnuCdund’u [gu2(1 - ;-:-) (57)] , (3.50)

Now, if one considers the terms inside the square parentheses
in Eq. (3.50) for a particuilar value of Q and y, the quantities
inside the square parentheses are considered constant. All
combinations of the elliptic functions in front of the square
parentheses are functions of ¢ which are functions of the variable
u. Therefore, t = f(u) which is the inverse of what we want; namely,
u = f(t)., Also, since all the elliptic functions in Eq. (3.50) do
not have well defined inverses, an alternate strategy must be used
to invert Eq. (3.50) in order to write an expression describing the
growth of the normalized bubble radius versus the bubble time.

Since all terms in the square parentheses in Eq. (3.50)

represent constants, one can rewrite Eg. (3.50) as

T = F(¢,k)V1 + E(¢,k)V2 - SnquuV3 - Snquundzuva (3.51)

DO T A T N A D O A TR AR IR X A A o A ST O e O N o
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where Vl, V., V, and V, are constants for a particular value of 0

2253 4
and y. Now since the sum of the elliptic functions in Eq. (3.51)
does not have a known inverse, an approximation of each function

must be derived that allows one to invert the equation to get

u =f(1). Because the functions F(¢,k) and E(¢,k) are defined as
definite integrals, a numerical routine must be used to evaluate
the functions across the range of the roots uj and up. The
functions F(¢,k) and E(¢,k) are considered incomplete elliptic
integrals when ¢ < n/2. If ¢ = n/2 then the functions are
considered complete and are tabulated in Byrd and Friedman's
Table of Elliptic Integrals [13]. Unfortunately, the tables are
not comprehensive enough to include every possible value of
F(¢,k) and E(¢,k) for different values of ¢ so that the numerical
routine utilizing Simpson's 1/3 Rule was used.

In Fig. 25, the function F(¢,k) was plotted as a function of
the modular angle ¢. Because the values of Q and y vary in
accordance with the different phase plane trajectories located to
the right of the initial condition as shown in Fig. 20, extreme
values of k were computed to represent those trajectories. Using

|
these extreme values of k, curves representing the maximum and
minimum range that the function F(¢,k) would fall are plotted as

solid lines in Fig. 25. All other values that F(¢,k) might attain

is defined by

would lie in between those two solid lines. Recall the modulus k %
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where ul, u2 and u3 are the roots of the cubic polynomial in the
denomirator of Eq. (3.46). When Q = 0.183216 and y = l.4, the
minimum potential energy falls directly on the initial condition.
The cubic polynomial in the denominator of Eq. (3.46) has double
root at u); = ugp = 1,0. Consequently, k = 0 is the minimum value of
k used to plot the extreme upper value of the elliptic function.
Likewise, when Q = 0.0 and vy = 1.4, the cubic polynomial has roots

such that u; > ug > uj. The result is a maximum value of

k = 0.446046 which is used to compute the extreme lower value of the
elliptic functions. This same procedure can be used for the other
elliptic functions that come out of Eq. (3.51). Notice that for
F(¢,k) and E(¢,k), the maximum curve corresponds to k = 0. The
opposite is true when looking at the curves for SnuCdu and
SnuCdundZu in Figs. 27 and 28.

Having determined a maximum and minimum range for the elliptic
functions, it was of great benefit to derive a separate functional
representation for each elliptic function shown in Figs. 25 through
28, To do this, a median curve lying in the middle of the two solid
lines of each figure was plotted. The median curve is shown as a
dotted line and was calculated using k = 0.315759 as the modulus.

Fach median line 1is used to represent the entire range of each

elliptic function since there could be an infinite number of
representative curves for all combinations of Q and y chosen.
Finally, since each median line is roughly parabolic in shape, a

parabolic approximation of each dotted line in Figs. 25 through 28

.‘
e

. . ‘ 1,
: : e S : e = T AT e .
ORI ORIO OO MO IONTATOA ¥ SN T O D 20 Mt M NN UG DR T DA A AN R L i e D R A U N AR A LA T b



101

1.75

1.50

---k = 0.315759

"
l
1.25

k = .446046
k=0.
f’
1.00

Plots of the Incomplete Elliptic Integral of the
Second Kind as a Function of the Modular Angle ¢

-
~ =
s =
A= ~
@
= g
- u -
o 5
Q
=
Q
K=
)
_ﬂ‘ =
= [y}
o
[aV]
1 | | | Y
g
o N o N o by
o~ ot - o o P
¢
Ko 4




A7INTAMATNNAME MA LA NS LW AE R W e

102

0.315759
)
1.50 1.75

1.25

1.00

Plots of the Jacobian Elliptic Function Product
SnuCdu as a Function of the Modular Angle ¢ and

=
(=]
h o,
re T
o 0 E
£ =T
-
o
= R .
L = K]
= =
& g
3
™
Q i
= =
~
~N
o]
= 8 3
o =1=) -E’
=

npjnus

RS et e Ui e e Ve et O ¥ J ; L



I T T O T T N T I A S U T T U W WU W W WU U WU WU WUOWW VU TV B 0 V7B w3 U ST U % e wan v

k = .44604%

k=0.0

--- k = 0.315759

\
1.25

1.75

1.50

L
1.00

0.75

¢ (rad)
the Jacobian Elliptic Function Product

0.50

0.25

0.6 i

0.4 -

0.00

1
&d
[
=

0.0

nzpunpgnus

103

Snquundzu as a Function of the Modular Angle ¢
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was derived. The coefficients were derived by fitting each dotted
line at three representative points starting with the zero point.

Using the following parabolic equations

2
F(¢,k) = Aj¢” + B¢ +C,

2
E(¢,k) = A2¢ + 32¢ + C2
(3.53)

2
SnuCdu = A3¢ + B3¢ + C3

2 2
SnuCdund u = A4¢ + Bh¢ + C4

the coefficlents were computed as

Al = 0.021844
B1 = 0.992116
A2 = - 0.02073

B2 = 1.007155

A, = - 0.83226

B, = 1.307305

A = - 0.88065

B, = 1.38332
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Figures 29 through 32 are plots of the resultant curve fits
(dotted line) of the median representative of the various elliptic

functions (solid lines). Now, one can rewrite Eq. (3.51) as

2 2
T = vl(Al¢ + B¢+ cl) + V2(A2¢ + Byg + Cz)

2 2
+ Va(Age" + Byo + c3) +V, (A" + B +C,) (3.54)

which has no term larger than second order in ¢.
Grouping like powers of ¢, we write Eq. (3.54) in the general

form of a parabola as

! T = 5¢2 +bp +c (3.55)
b)
where
a=VA +V,A - VA - VA
b=VB +V3B, - VB, - VB,
:
b c =V C, +V,C, -V.C, -VC, .

171 272 373 474

A It should be noted that Eq. (3.55) is now written as a function of
¢. But, because the definition of the modular angle ¢ is written
as a function of u, we still have t = f(u)., 1t is desired to get

’ the inverse f = g(t1). Therefore, Eq. (3.55) can be inverted by

using the quadratic formula. Subtracting t and applying the

quadratic formula, one gets

5 VR - -
2a

¢ . (3.56)

0 N D T O T T R T T A K Y P P e Mo
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Since C1 = C2 - C3 = CA = 0 and ¢ must equal zero at t = 0, one
must choose the positive branch of the square root in Eq. (3.56) to
represent the inverse. Having established ¢ = f£(1), one can now use

the fact that
(ul -u3)(u - uz)
i = 3057
sin g -\/(ul -u,)J(u - u,) ( )

to derive an expression in the form u = f(t). Solving for u from

Eq. (3.57), one gets

(4 - u,)
N e e (3.58)
k2sin2g 10 3

Substituting expressions for k(uj,up,u3) and ¢, one can write

u=f(t) as

u = 3% +u, (3.59)
u, - u 1/ =2 -
1 2 2 ,~-b + b” + &
(z—===) stn” ( — 2%
1 2a

where u;, uj and uj are functions of Q, Fc and y as defined by

Eq. (3.25a). The resultant plot of the normalized bubble radius as

a function of the bubble time is shown in Fig. 33. Each curve

beginning at 1t = 0 corresponds to a particular trajectory in the

phase plane. Each trajectory is characterized by the author's :
choice of Q and y in such a manner that the trajectory is always

located at or to the right of the initial condition. Since each

trajectory 1is centered about a vortex point whose location along

(l
the u-axis is defined by g
)

P
(1 + Q)

u

v ]
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each curve in Fig. 33 has a particular value of uy labeled at the
half period. 1If the calculation had been carried across the upper
and lower half of the phase plane trajectory, then all the curves in
Fig. 33 would return to the t-axis completing a whole period of
oscillation.

It 1s interesting to note that these oscillations are of a very

high frequency and as a bubble passes through a region favorable to

vaporous growth or collapse, these free oscillations occur a number
of times before the bubble reaches the separation point. From

Fig. 11, one can determine that at K = 0,60 the dimensionless time
from the initial point up to the separation point equals
approximately 760 units of bubble time, i.e., T = 760. If the
complete period of oscillation is Tperjod * 6.2 units of bubble
time, one could calculate the number of individual free oscillations
to be Ncycles » 122, In laboratory time, this means that a
particular bubble will oscillate ~ 122 times over a time period of
0.144 seconds.

Having established some knowledge about the zeroth order
solution in terms of elliptic functions, one now desires a more
usable form of the solution, preferably in terms of trigonometric
functions, that will closely approximate Fig. 33. Looking at the
curves in Fig. 33, one could say they are roughly of the shape
u =] -cos 1. Using a more general form of the curve | - Cos T,

one can write

u =A+ Bcos(n T/Tf) + C cos(2nm r/rf) (3.60)

o e . e S —— F———— o : , o
S o o K o e A DA A e e X e i e W L s O Tt Tt T s T T T
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where T¢ is the dimensionless time corresponding to the time it
takes to reach the end of a half period and A, B and C are

coefficients to be determined. Using the following three conditions

@t=0 , u=1,

@r-rm y u=u_ o,

and
@r-rf y U mug

one can solve simultaneously for A, B and C to get

1 1
uy =5 (L+ug) -5 (1 -ug)eos(nm 7 /1)
cos(2m Tm/Tf) =]

1
A =3 (1+ uf) -

B --% (1 -u) (3.61)

u --% (1 +u.) - %v(l - ug)eos(n T /7.)

cos (2w 1 /1.) - 1
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