AD-A193 726 THE FILE COPY

Í

A PEGRAT NUMBER TRE 12 1. RECENT NUMBER TYPE (PARAMINE) SOLAR ENERGY ABSORPTION PERFORMING SOLAR ENERGY ABSORPTION PERFORMING OR AN ELLIPSOIDAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS A. Steinfeld and E.A. Fletcher A. Steinfeld A ADDESS A. Steinfeld A ADDESS A. Steinf	REPORT DOCL	IMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TR-12 * TYPE OF AREPORT A PERIOD COVER EFFCIENCY OF AN ELLIPSOIDAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS * TYPE OF AREPORT A PERIOD COVER Technical Report, Int. 10/31/86 - 03/31/89 * AUTHOR(0) • CONTACT OF GRANT MUMERATION WARE A. Steinfeld and E.A. Fletcher • CONTACT OF GRANT MUMERATION NOO14-82-K-0523 * PERFORMING ORGANIZATION WARE AND ADDRESS Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 • CONTACT OF GRANT MUMERATION NR-625-830 NR-359-830X * Controluing OFFICIENT WARE AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arington, VA 22217 • Number of Paces 16 * HONTORING CARCENT MARE AND ADDRESS Office of Naval Research Detechment, Chicago, 536 South Clark Street Chicago, IL 60605 • Number of Paces 16 • DISTRIBUTION STATEMENT (of the abstrait mineral for Dublic release and sale; its distribution is unlimited. • DETIC APR 1 9 1938 • DUSTRIBUTION STATEMENT (of the abstrait mineral for Block 20, H different her Report) Solar, Solarelectrothermal, Receivers, Reactors • AST MACT (Confine an exerce and the H sectors and tamily by block number) Solar, Solarelectrothermal, Receivers, Reactors • AST MACT (Confine an exerce and the H sectors and tamily by block number) Solar, Solarelectrothermal, Receivers, Reactors • AST MACT (Confine an exerce and tamily by block number) • AST NACT (Confine an exerce and tamily by block number)	1. REPORT NUMBER	2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
 TITLE (and Shorth) SOLAR ENERCY ABSORPTION EFFICIENCY OF AN ELLIPSOIDAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS AUTHOR(O A. Steinfeld and E.A. Fletcher CAUTHOR(O A. Steinfeld and E.A. Fletcher CENTRACT OR GANIZATION MAKE AND ADDRESS Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 CONTRACT OR CANNER AND ADDRESS CENTROLUM OFFICE MARK AND ADDRESS CENTROLUM OFFICE MARK AND ADDRESS Department, Ghicago, S36 South Clark Street Chicago, IL 60055 Distribution STATEMENT (of the abstract entered in Block 30, If different free Report) Distribution STATEMENT (of the abstract entered in Block 30, If different free Report) Submitted for publication in ENERGY. AUTHORD (Continue on reverse and M freecemery and Martiffy by Stock number) Solar, Solarelectrothermal, Receivers, Reactors ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) Solar, Solarelectrothermal, Receivers, Reactors ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) Solar, Solarelectrothermal, Receivers, Reactors ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) Solar, Solarelectrothermal, Receivers, Reactors ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) ATSTACT (Continue on reverse and M freecemery and Martiffy by Stock number) A	TR-12		
EFFICIENCY OF AN ELLIPSOIDAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS Technical Report. Int. 10/31/89 ** AUTHOR(*) ** Steinfeld and E.A. Fletcher 10/31/86 - 03/31/89 ** AUTHOR(*) ** CONTRACT OR GRANT HUMBER(**) ** AUTHOR(*) ** CONTRACT OR GRANT HUMBER(**) ** Steinfeld and E.A. Fletcher ** CONTRACT OR GRANT HUMBER(**) ** DEPARTMENT OF MALE AND ADDRESS ** CONTRACT OR GRANT HUMBER(**) Dinversity of Minnesota NN=0525-830X ** Controlling Office of Naval Research, 712A: BAR NN=359-830X Dept. of the Navy, 800 North Quincy Street 4pril 5, 1988 *** Author ACEDEV NAME A ADDRESS ************************************	4. TITLE (and Subtitio) SOLAR	ENERGY ABSORPTION	S. TYPE OF REPORT & PERIOD COVEREN
WITH SPECULARLY REFLECTING WALLS 10/31/86 - 03/31/89 III CHARLY REFLECTING WALLS 10/31/86 - 03/31/89 A UTHOR(W A. Steinfeld and E.A. Fletcher A. Steinfeld and E.A. Fletcher NO0014-82-K-0523 PERFORMING ORGANIZATION HAME AND ADDRESS CONTRACT ON GRAW FLUENCY, TANK MACA SWORD Chill MUMBER(*) Department of Mechanical Engineering University of Minnesota NN 55455 111 Church Street S.E., Mpls., MN 55455 NR-359-830X 12. ORTHOLING OFFICE HAME AND ADDRESS NR-359-830X Office of Naval Research, 712A: BAR April 5, 1988 Dept. of the Navy, 800 North Quincy Street April 5, 1988 ArLington, VA 22217 Unclassified MONITORING AGENCY WARE A ADDRESS Unclassified Diffector, Office of Naval Research Diffector Pacts Distribution Stattent (of the Repert) Unclassified This document has been approved for public release and sale; its distribution is unlimited. Diffector Norder Addition (DownGRADING Scheduler) Submitted for publication in ENERGY. Solar, Solarelectrothermal, Receivers, Reactors Solar, Solarelectrothermal, Receivers, Reactors Solar of the oner, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor diffectior fon the cavity walls. Because the source (ap	EFFICIENCY OF AN ELLI	PSOIDAL RECEIVER-REACTOR	Technical Report, Int.
AUTHOR(0) A. Steinfeld and <u>E.A. Fletcher</u> PEAFORMING ORGANIZATION HAME AND ADDRESS Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 ControlLing Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 M WONTORING CERCY NAME AND ADDRESS Department, Chicago, 536 South Clark Street Chicago, IL 60605 Distribution statement (of GAL Report) This document has been approved for public release and sale; its distribution is unlimited. Distribution statement (of GAL Report) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number) Solar, Solarelectrothermal, Receivers, Reactors Arsy RACT (Continue on reverse side if necessary and identify by black number)	WITH SPECULARLY REFLE	CTING WALLS	10/31/86 - 03/31/89
 AUTHOR(0) A. Steinfeld and <u>E.A. Fletcher</u> CONTRACT OR GAANT NUMBER(0) N00014-82-K-0523 CONTRACT OR GAANT NUMBER(0) N00014-82-K-0523 CONTRACT OR GAANT NUMBER(0) N00014-82-K-0523 CONTRACT OR GAANT NUMBER(0) Nne 625-830 Nne-625-830 Nne-625-830 Nne-359-830X CONTROLING OFFICE NAME AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Artington, VA 22217 MONTONIKA CACHEY NAME A ADDRESS(II different free Centrolling Office) Distrate Cacher And A ADDRESS(II different free Centrolling Office) Distrate Cacher And A ADDRESS(II different free Centrolling Office) Distrate Cacher And A ADDRESS(II different free Centrolling Office) Distrate Cacher And A ADDRESS(II different free Centrolling Office) Distrate Cacher And A ADDRESS(II different free Centrolling Office) Distrate Cacher And Cacher Andre A ADDRESS(II different free Centrolling Office) Distrate Cacher Andre A ADDRESS(II different free Centrolling Office) Distrate Cacher Andre A ADDRESS(II different free Centrolling Office) Distrate Cacher Andre A ADDRESS (II different free Recent) This document has been approved for public release and sale; its distribution is unlimited. Distrate UT(of file estates) of the states) Submitted for publication in ENERGY. Clistrate UT(on states) of the states) AEST AACt (Centime en reverse side if necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors AEST AACt (Centime en reverse side if necessary and identify by block number) AEST AACt (Centinue en reverse side if necessar			5. PERFORMING ORG. REPORT NUMBER
A. Steinfeld and <u>E.A. Fletcher</u> NO0014-82-K-0523 PERFORMING ORGANITATION NAME AND ADDRESS Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 Converse Mark AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Alington, VA 22217 Converse Mark And DORESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street 14. MCMERG OF PAGES Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 Converse Mark And DORESS Converse Mark And DORESS Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 Converse Mark And Doress Chicago, State Mark And Doress Director, Office of Naval Research Detachment has been approved for public release and sale; its distribution is unlimited. Distribution StateMent (of the abulaci entered in Black 20, 11 different from Report) Submitted for publication in <u>ENERCY</u> . MREY WORDS (Conflue on Nervers wide lifetimes and Marking by Black Americ) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in Which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation in the reactor; some radiation	7. AUTHOR(+)		B. CONTRACT OR GRANT NUMBER(*)
A. Stelliferd and <u>E.A. FreeCuer</u> PERFORMING ORGANIZATION NAME AND ADDRESS Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 1. CONTROLING OFFICE NAME AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 1. MONITONIA GAENCY NAME AND ADDRESS 1. Controlling Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicassified 1. SECURITY CLASS (of this reper) This document has been approved for public release and sale; its distribution is unlimited. 2. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Reper) Solar, Solarelectrothermal, Receivers, Reactors 5. Assi RACT (Continue on reverse side Hancessery and Identify by block number) .'An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aperture at the other, may be useful in solar applications. Most of the incide relation from a solar concentrator should react the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation in the reactor; some radiation	A Steinfold and E A	Flatabor	N00014-82-K-0523
 PERFORMING ORGANIZATION NAME AND ADDRESS Department of Mechanical Engineering University of Minnesota III Church Street S.E., Mpls., MN 55455 CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 Distribution statement of the abstract entered in Block 20, 11 different from Report This document has been approved for public release and sale; its distribution is unlimited. Distribution Statement (of the abstract entered in Block 20, 11 different from Report) Solar, Solarelectrothermal, Receivers, Reactors Atsi BACT (Continue on revease side if necessary and identify by block number) Solar, Solarelectrothermal, Receivers widd in solar applications. Most of the incide rediation from a solar concentrator should react the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation 	A. Stermerd and E.A.	riechei	
Department of Mechanical Engineering University of Minnesota 111 Church Street S.E., Mpls., MN 55455 AREA * 000% UNIT Numbers NR-625-830X 1.1 Church Street S.E., Mpls., MN 55455 NR-359-830X 1. CONTROLLING OFFICE HAME AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 Image: Controlling Office April 5, 1988 1. MUMBER OF PAGES Arlington, VA 22217 Image: Controlling Office Directory, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, 1L 60605 Image: Controlling Office Distribution statement (of this Resent) This document has been approved for public release and sale; its distribution is unlimited. Image: Controlling Office Distribution statement (of the abstract missed in Block 20, 11 different from Report) 2. Distribution Statement (of the abstract missed in Block 20, 11 different from Report) Image: Control of the abstract missed in Block 20, 11 different from Report) 3. Supplementation in ENERGY. Image: Control of the abstract missed in Block 20, 11 different from Report) Solar, Solarelectrothermal, Receivers, Reactors 3. Acti Mach (Continue on reverse side if mechanicy and identify by block number) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor discurption and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of	PERFORMING ORGANIZATION NA	E AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
University of Minnesota 111 Church Street S.E., Mpls., MN 55455 11. Convocuting Office And EAA DADRESS Office of Naval Research, 712A: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 14. MONTONING AGENCY MAKE & ADDRESS(// different free Centrolling Office) Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 4. Distribution Statement (of the Repert) This document has been approved for public release and sale; its distribution statement (of the Repert) This document has been approved for public release and sale; its distribution statement (of the abstract entered in Block 20, 1/ different free Repert) ELECTE Submitted for publication in ENERGY. 4. SUPPLEMENTARY NOTES Submitted for publication in ENERGY. 5. Atti Mact (Continue on reverse side if increasery and identify by block number) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation a such a source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	Department of Mechani	cal Engineering	AREA & WORK UNIT NUMBERS
111 Church Street S.E., Mpls., MN 55455 NK-339-830A 111 Church Street S.E., Mpls., MN 55455 NK-339-830A 12. REPORT DATE April 5, 1988 13. Controlling office of Naval Research, 712A: BAR April 5, 1988 14. MONTONING ACENCY NAME 4 ADDRESS(I different Irea Controlling Office) 15. BECURITY CLASS. (of this report) Director, Office of Naval Research Escurit Irea Controlling Office) 15. BECURITY CLASS. (of this report) Director, Office of Saval Research Dettachment, Chicago, 536 South Clark Street Unclassified 6. Distribution Stateway and approved for public release and sale; its distribution is unlimited. 16. DECLASSIFICATION/DOWNGRADING 7. Distribution Stateman (of the abstress minered in Block 20, 11 different free Report) DECLASSIFICATION/DOWNGRADING 8. SUPPLEMENTARY NOTES Submitted for publication in ENERGY. DECLASSIFICATION/DOWNGRADING 9. ARY VORDS (Continue on reverse side if mecessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors 9. ARY VORDS (Continue on reverse side if mecessary and identify by block number) APR 1 9 1988 9. ARY VORDS (Continue on reverse side if mecessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors 9. ARY VORDS (Continue on reverse side if mecessary and identify by block number) APR 1 9 1988	University of Minneso	ta	NK-625-830
 CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research, 712A: BAR Dept. of the Naval Research, 712A: BAR April 5, 1988 Lex April 5, 1988 Lex April 5, 1988 Is EECLASSIFICE OF NAME & ADDRESS(I dilformi from Controlling Office) Is EECLASSIFICE OF NAME & ADDRESS(I dilformi from Controlling Office) Is EECLASSIFICATION'DOWNGRADING Chicago, IL 60605 DISTRIBUTION STATEMENT (of the Report) This document has been approved for public release and sale; its distribution is unlimited. DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) C DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about sci missed in Block 20, 11 different from Report) Solar, Solarelectrothermal, Receivers, Reactors DASTRIBUTION Contents and the aperture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture	111 Church Street S.E	., Mpls., MN 55455	NK-359-830X
Office of Naval Research, 7124: BAR Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 14. WONTORING AGENCY NAME & ADDRESS(II different hem Contailing Office) Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 5. DISTRIBUTION STATEMENT (of the Report) This document has been approved for public release and sale; its distribution is unlimited. 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) This document has been approved for public release and sale; its distribution is unlimited. 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different hem Report) 5. APR 1 9 1988 5. Supplement for publication in ENERGY. 5. ASSTRACT (Continue on reverse side If necessary and identify by block number) 7. An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into th	1. CONTROLLING OFFICE NAME AN	D ADDRESS	12. REPORT DATE
Dept. of the Navy, 800 North Quincy Street Arlington, VA 22217 16. MUNITORNO AGENEY MAKE & ADDRESS(II dillerent Irem Controlling Oilles) Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 6. DISTRIBUTION STATEMENT (of the Report) This document has been approved for public release and sale; its distribution is unlimited. 7. DISTRIBUTION STATEMENT (of the abstract microd in Block 20, II dillerent from Report) Submitted for publication in <u>ENERGY</u> . 9. KEY WORDS (Continue on reverse side If necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors 9. Actimact (Continue on reverse side If necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors 9. Actimact (Continue on reverse side If necessary and identify by block number) Solar, Solar component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation Form on the cavity walls.	Office of Naval Resea	rch, 712A: BAR	April 5, 1988
ALTINECUL, VA. 22217 Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 Is SECURITY CLASS. (of this report) This document has been approved for public release and sale; its distribution statement (of the above of the provide of public release and sale; its distribution statement (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release of the public release and sale; its DISTRIBUTION STATEMENT (of the above of the public release of the publ	Dept. of the Navy, 80 Arlington VA 22217	U North Quincy Street	13. NUMBER OF PAGES
Director, Office of Naval Research Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 bistraibution statement (of the Report) This document has been approved for public release and sale; its distribution is unlimited. bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report) bistraibution statement (of the abstract entered in Block 20, 11 different from Report)	ALLINGLOIN, VA 2221/	DDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
Detachment, Chicago, 536 South Clark Street Chicago, IL 60605 6. DISTRIBUTION STATEMENT (of the Report) This document has been approved for public release and sale; its distribution is unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) Subplement has been approved for public release and sale; its distribution statement (of the abstract entered in Block 20, 11 different from Report) Subplement has been approved for public release and sale; its distribution statement (of the abstract entered in Block 20, 11 different from Report) Subplement for publication in ENERGY. Distribution statement works alde 11 necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors Detaction from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	Director, Office of N	aval Research	Unclassified
Chicago, IL 60605 bistraibution stattement (of the Report) This document has been approved for public release and sale; its distribution is unlimited. Distraibution stattement (of the about of in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the about of in Block 20, 11 different from Report) ELECTE APR 1 9 1988 Submitted for publication in ENERGY. KEY WORDS (Continue on reverse olds 11 necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary and identify by block number) ASSIGNACT (Continue on reverse olds 11 necessary an	Detachment. Chicago.	536 South Clark Street	
 6. DISTRIBUTION STATEMENT (of the Report) This document has been approved for public release and sale; its distribution is unlimited. 7. DISTRIBUTION STATEMENT (of the about act and the source in Block 20, 11 different from Report) ELECTE APR 1 9 1988 8. SUPPLEMENTARY NOTES Submitted for publication in ENERGY. KEY WORDS (Continue on reverse side if necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors 6. ATSI RACT (Continue on reverse side if necessary and identify by block number) 7. An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aperture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	Chicago, IL 60605		154. DECLASSIFICATION DOWN GRADING SCHEDULE
This document has been approved for public release and sale; its distribution is unlimited. DISTRIBUTION STATEMENT (of the abaliant microd in Block 20, 11 different from Report) Submitted for publication in ENERGY. NEEV WORDS (Continue on reverse aids if necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors AREST NACT (Continue on reverse aids if necessary and identify by block number) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	6. DISTRIBUTION STATEMENT (of th	le Report)	
APR 1 9 1988 Submitted for publication in ENERGY. KEY WORDS (Continue on reverse elde if necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors AMST MACT (Continue on reverse elde if necessary and identify by block number) A APST MACT (Continue on reverse elde if necessary and identify by block number) A APST MACT (Continue on reverse elde if necessary and identify by block number) A APST MACT (Continue on reverse elde if necessary and identify by block number) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation			
Supplementary notes Submitted for publication in ENERGY. KEY WORDS (Continue on reverse olds If necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors Arst RACT (Continue on reverse olds If necessary and identify by block number) i) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	7. DISTRIBUTION STATEMENT (of th	e ebstrect entered in Block 20, 11 different fr	
Submitted for publication in ENERGY.	7. DISTRIBUTION STATEMENT (of th	e ebstrect entered in Block 20, 11 dillerent fr	APR 1 9 1988
 KEY WORDS (Continue on reverse olde if necessary and identify by block number) Solar, Solarelectrothermal, Receivers, Reactors ATSI RACT (Continue on reverse olde if necessary and identify by block number) An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aperture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation 	7. DISTRIBUTION STATEMENT (of th 8. SUPPLEMENTARY NOTES	e øbetrect entered in Block 20, 11 different fr	DTIC ELECTE APR 1 9 1988
Solar, Solarelectrothermal, Receivers, Reactors	7. DISTRIBUTION STATEMENT (of th B. SUPPLEMENTARY NOTES Submitted for publica	• ebetrect entered in Block 20, If dillerent fr tion in <u>ENERGY</u> .	DTIC ELECTE APR 1 9 1988
AttimACT (Continue on reverce elde II necessary and identify by block number) i>An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aper- ture at the other, may be useful in solar applications. Most of the incide radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation	7. DISTRIBUTION STATEMENT (of th 8. SUPPLEMENTARY NOTES Submitted for publica 9. KEY WORDS (Continue on reverse of	e ebetrect entered in Block 20, 11 different fr tion in <u>ENERGY</u> . Ide If necessery and identify by block number	DTIC ELECTE APR 1 9 1988 H
	 DISTRIBUTION STATEMENT (of th SUPPLEMENTARY NOTES Submitted for publica KEY WORDS (Continue on reverse of Solar, Solarelectrothe 	• ebelrect entered in Block 20, 11 different fr tion in <u>ENERGY</u> . Ide If necessary and identify by block number rmal, Receivers, Reactors	DTIC ELECTE APR 1 9 1988 H
	 DISTRIBUTION STATEMENT (of the SUPPLEMENTARY NOTES Submitted for publica KEY WORDS (Continue on reverse of Solar, Solarelectrothe APSI RACT (Continue on reverse of i) An ellipsoidal cavity which the reactor com ture at the other, ma radiation from a sola after one reflection and sink (reactor) ha conveys all of the en 	• eboltect entered in Block 20, 11 different fr tion in ENERGY. Ide If necessary and identify by block number rmal, Receivers, Reactors de If necessary and identify by block number -receiver with specularly ponent is positioned at on y be useful in solar appli r concentrator should reac from the cavity walls. Be ve finite areas, the ellip tering radiation into the	reflecting inner walls, in e focal point and the aper- cations. Most of the incide h the reactor directly or cause the source (aperture) soidal reflector no longer reactor; some radiation
	 DISTRIBUTION STATEMENT (of the SUPPLEMENTARY NOTES Submitted for publica KEY WORDS (Continue on reverse of Solar, Solarelectrothe Solar, Solarelectrothe Vich the reactor com ture at the other, ma radiation from a sola after one reflection and sink (reactor) ha conveys all of the en D FORM, 1473 EDITION OF 1 	• ebolicect entered in Block 20, 11 different fr tion in ENERGY. 14. If necessary and identify by block number rmal, Receivers, Reactors 4. If necessary and identify by block number -receiver with specularly ponent is positioned at on y be useful in solar appli r concentrator should reac from the cavity walls. Be ve finite areas, the ellip tering radiation into the NOV 65 IS OBSOLETE UNCLAS	reflecting inner walls, in e focal point and the aper- cations. Most of the incide h the reactor directly or cause the source (aperture) soidal reflector no longer reactor; some radiation

4)

SECURITY GEASSIFICATION OF THIS PAGE (When Date Entered)

Second a second and the

TR-12, ABSTRACT, Continued

entering the cavity does not reach the target after one reflection and is eventually absorbed by the cavity walls after multiple reflections or escapes through the aperture. We have examined the conditions for which this radiation loss becomes significant and have estimated the effects on the energycollection efficiency of the system. Kerne at the system of the system of the system.

. .

S/N 0102- LF- 014- 6601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered) OFFICE OF NAVAL RESEARCH

Contract N00014-82-K-0523

R&T Code 413a003-3

Technical Report No. 12

SOLAR ENERGY ABSORPTION EFFICIENCY OF AN ELLIPSOIDAL

RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS

by

A. Steinfeld and E.A. Fletcher

Submitted to

ENERGY

Department of Mechanical Engineering University of Minnesota 111 Church Street S.E. Minneapolis, MN 55455

April 5, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited.

88 4 10 036

SOLAR ENERGY ABSORPTION EFFICIENCY OF AN ELLIPSOIDAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING WALLS A. Steinfeld and <u>E.A. Fletcher</u>[†] Mechanical Engineering Department, University of Minnesota 111 Church St. S.E., Minneapolis, MN 55455, USA (Received March 2, 1988)

Abstract- An ellipsoidal cavity-receiver with specularly reflecting inner walls, in which the reactor component is positioned at one focal point and the aperture at the other, may be useful in solar applications. Most of the incident radiation from a solar concentrator should reach the reactor directly or after one reflection from the cavity walls. Because the source (aperture) and sink (reactor) have finite areas, the ellipsoidal reflector no longer conveys all of the entering radiation into the reactor; some radiation entering the cavity does not reach the target after one reflection and is eventually absorbed by the cavity walls after multiple reflections or escapes through the aperture. We have examined the conditions for which this radiation loss becomes significant and have estimated the effects on the energy-collection efficiency of the system.

T To whom correspondence on this paper should be addressed.

1

Introduction

In a previous paper, ¹ we examined a new kind of receiver-reactor for high-temperature solar furnaces. The main body of the receiver component is an ellipsoid of revolution with specularly reflecting inner walls. The reactor component, a crucible, is centered at one focal point and the aperture at the other. With this arrangement, one might intuitively expect that incoming radiation from the concentrator should reach the reactor directly or after one reflection from the cavity walls because rays which pass through one focal point of an ellipse must, after specular reflection, pass through the other. We then presented an analysis in which we assumed that <u>all</u> of the incident radiation that is reflected from the cavity walls arrives at the crucible. However, as we pointed out, in some situations, depending on the eccentricity of the ellipsoid, dimensions of the crucible and aperture, and geometry and rim angle of the concentrator, some radiation will miss the crucible. In the previous analysis, ¹ we neglected this loss in order to simplify the solution. In this paper, we examine the magnitude of the effect of the omission. We estimate that portion of the radiation that misses the crucible after one reflection from the cavity walls. Assuming that such radiation is ultimately lost, we calculate the energy-absorption efficiency of the system and the maximum crucible temperature it is capable of achieving. The result is compared with a previous result DIIC TAB Unannounced to show the magnitude of the effect. Justification_

8v Distribution/ Availability Codes Avail and/or Special Dist

З

The System

Fig. 1

Fmk1 FMLL r sub 1 + sit 2

The receiver is an ellipsoid-of-revolution with specularly reflecting inner walls. Its major axis length is 2a, its minor axis length is 2b, and the distance between its focal points F_1 and F_2 is 2c. Its eccentricity is c/a. The crucible is a sphere of radius r_1 , with its center on F_1 . The aperture is a circle of radius r_{e_1} , with its center on F_{e} . It lies in a plane perpendicular to the major axis. The receiver-reactor system is coaxial with the solar concentrator-mirror Fhi sub rim array whose rim angle is p_{rim} . The focus F_{m} is at the focal point of the concentrator. The size of the aperture is chosen to be equal to that of the image of the solar concentrator on the focal plane so that virtually all of the incoming energy from the concentrator enters the cavity. In practice the radius of the aperture would therefore be determined by the characteristics of the concentrator.

A schematic diagram of the system components is shown in Fig. 1.

We assume that the power per unit area coming from the concentrator through the aperture is of uniform intensity over the entire aperture. By this we mean that the power flux is the same from every point in the aperture. The radiation is confined to a cone whose apex angle is the rim angle $\phi_{n,n}$ of the concentrator, and within this cone the power flux entering the receiver is the same in every direction.

Dur objective is to find the portion of radiation entering the V sub direct cavity that: 1. strikes directly on the crucible, i.e. the view factor from the aperture to the crucible, Varmet; 2. strikes the

З

l cub miss

crucible after one reflection on the cavity walls, i.e. the view factor from the aperture to the crucible after reflection from the ellipsoid, $V_{indicant}$; 3. misses the crucible after one reflection on the cavity walls, V_{miss} . Obviously,

 $V_{\text{statement}} + V_{\text{statement}} + V_{\text{maxw}} = 1.$

Analysis

To solve this problem we used a Monte-Carlo ray-trace simulation. We followed the paths of a large number of rays which, within the constraints of the circumscribing cone, have a random angular distribution, counting the numbers of those that hit the crucible directly, hit it after one reflection, or miss it.

With Cartesian coordinates centered at the center of the ellipsold, the equation of the ellipsoid is

$$F(x,y,z) = x^{2}/a^{2} + y^{2}/b^{2} + c^{2}/b^{2} - 1 = 0.$$
(1)

Our incident ray passes through the aperture at a point $A(c_1y_1,z_n)$ and has a direction parallel to the unit vector $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$. Since this ray comes from the concentrator,

$$|u_j| \leq \cos(\phi_{j,m}), \tag{2}$$

ut css w vector

The equation that gives the coordinates of a generic point P, on the incident ray is, in vectorial notation,

$$(P,-A) \times u = 0$$
(3) with

$$|\mathbf{u}| = 1. \tag{4}$$

PNER

Let $E(x_w, y_w, z_w)$ be the point of intersection of the incident ray with the ellipsoid of revolution that gives $x_w < c$. The equation of the normal to the surface at point E is given by

$$(\mathbf{P}_{n}-\mathbf{E}) \mathbf{X} \mathbf{n} = \mathbf{0}, \tag{5}$$

where

$$\mathbf{n} = \nabla \mathbf{F}.$$

nobla

P Nel r

The equation for the reflected ray with a direction parallel to unit vector \mathbf{r} is

$$(\mathbf{P}, -\mathbf{E}) \mathbf{X} \mathbf{r} = \mathbf{O} \tag{7}$$

with

$$|\mathbf{r}| = 1. \tag{(E)}$$

Inasmuch as the angle of incidence equals the angle of reflection and the rays are coplanar with the normal to the surface.

 $delt^{G}$ Equations (B) and (9) can be solved for r. The distance δ , between the reflected ray and the point F_1 is given by

$$\boldsymbol{\delta}_{1} = \left| (\mathbf{F}_{1} - \mathbf{E}) \times \mathbf{F} \right|. \tag{10}$$

If $\delta_1 < r_1$, the ray hits the crucible; if $\delta_2 > r_1$, it misses it.

There is also the possibility of a direct strike on the crucible by the incident ray. The distance δ_{e} between the incident ray and the point F_1 is

$$\boldsymbol{\delta}_{\mathrm{EP}} = \left[\left(\mathbf{F}_{1} - \mathbf{A} \right) \mathbf{X} \mathbf{u} \right], \tag{11}$$

When δ_{P} < r_{1} , the ray hits the crucible directly.

Results

Using a Monte-Carlo simulation with a sample of 50,000 rays, we have counted the number of direct hits, hits after a single reflection, and misses. The results are presented in Figs. 2 and 3. Figure 2 shows the variation of the view factors V_{direct} , $V_{inderet}$, and V_{mine} as a function of the crucible radius. Figure 3 shows V_{direct} as a function of the parameters r_i , r_m and the eccentricity.

With a particular receiver, there is a crucible radius above which $V_{m,m,m}=0$; all of the radiation will be captured directly or after a single reflection by a crucible whose radius is larger than this radius. If the crucible is smaller, some of the radiation entering the cavity will never reach the crucible. It will eventually be absorbed by the cavity walls or escape through the aperture. Thus, although we may be able to obtain higher temperatures on small crucibles, their energy absorption efficiency, the fraction of the incident radiation which is usable as process heat in the crucible, will be somewhat lower. If the crucible is larger, all the energy that enters the receiver reaches the crucible directly or after one reflection. But the maximum temperature the crucible is capable of achieving will be lower because the surface from which the crucible is reradiating is larger. It is also apparent that the smaller the aperture the smaller is the radius for which V_{mises} becomes 0. Because we have made the aperture size equal to that of the image of the concentrator at the focal plane, a smaller aperture implies a higher quality concentrator.

Energy-absorption efficiencies were calculated using a previously described method.³ Their variations with the crucible temperature are shown in Fig. 4 for various crucible radii. The energy input to the cavity is 6590 W, the concentrator rim angle 45°, the aperture radius 5 cm, the ellipsoid semi-major axis length 25 cm, the eccentricity 0.6, the emissivity of the crucible 0.9, and the reflectivity of the cavity walls 0.9. The dashed lines refer to the optimistic estimation of our previous analysis. The full lines were obtained using the view factors from Fig. 2 assuming that: 1. The image of the solar concentrator at the focal plane is the size of the aperture. 2. Once an incident ray misses the crucible after one reflection, it never reaches it. We observe that for r₁<3cm the portion of

F.g. 4

7

radiation that misses the crucible is no longer negligible and should be taken into account to give a realistic estimation of the thermal efficiency. For r_3 >3cm dotted lines and full lines coincide and no correction is necessary.

For a given crucible temperature, there is an optimum crucible size for which its energy absorption efficiency is maximum. This optimum size can be found with the help of Fig. 5. The efficiency is plotted as a function of the crucible radius for various crucible temperatures. As we go to higher temperatures, the optimum crucible size becomes smaller and the energy-absorption efficiency is lower. For example, at 1000K, the optimum crucible radius is approximately 3.2cm, which gives a maximum efficiency of about 0.71. At 1750K, the optimum crucible radius is 1.65cm and the maximum efficiency goes down to 0.33.

In the previous analysis,¹ we found that the thermal performance of the reactor is not very sensitive to aperture size. This statement still holds as long as the aperture is big enough to intercept all the rays coming from the concentrator.

<u>Acknowledgements</u>- We are grateful to the Office of Naval Research and The Northern States Power Company for the financial support which made this work possible.

F.g. 5

References

1. A. Steinfeld and E. A. Fletcher, Energy (in press 1988).

2. R. Siegel and J. R. Howell, <u>Thermal Radiation Heat Transfer</u>, pp. 751-766, Hemisphere Publishing Corp., Washington, D.C.(1981).

FIGURE CAPTIONS

Fig. 1. Schematic diagram of the system components. The receiver is an ellipsoid-of-revolution with specularly reflecting inner walls. The crucible is a sphere centered on one focal point. The aperture is a circle centered on the other focal point. The receiver-reactor system is coaxial with the solar concentrator.

Fig. 2. Variation of the view factors with crucible radius. The view factors are defined as the portion of radiation entering the cavity that is subjected to all of the following effects: 1. strikes directly on the crucible, V_{direct} ; 2. strikes the crucible after one reflection from the cavity walls, $V_{indirect}$; 3. misses the crucible after one after one reflection from the cavity walls, V_{minet} ; 3. misses the crucible after one after one reflection from the cavity walls, V_{minet} ; 3. misses the crucible after one reflection from the cavity walls, V_{minet} ; 3. The semi-major axis length of the ellipsoid is 25 cm. The eccentricity is 0.6. The concentrator rim angle is 45°. The aperture radius is 5 cm.

Fig. 3. V_{minn} , the portion of radiation that misses the crucible after one reflection from the cavity walls, is shown as a function of the crucible radius for various aperture radii and ellipsoid eccentricities. The semi-major axis length of the ellipsoid is 25 cm and the concentrator rim angle is 45°.

Fig. 4. The energy-absorption efficiency is shown as a function of the crucible temperature for various crucible radii. The energy input to the cavity is 6590 W. The concentrator rim angle is 45°. The aperture radius is 5 cm. The semi-major axis length of the ellipsoid is 25 cm. The eccentricity is 0.6. The emissivity of the crucible is

10

0.9. The reflectivity of the cavity walls is 0.9. The dashed lines refer to our previous analysis, ¹ and the full lines were obtained by using the view factors from Fig.2.

Fig. 5. The energy-absorption efficiency is shown as a function of the crucible radius for various crucible temperatures. The same parameters apply as in Fig.4.

STEINFELD & FLETCHER FIGURE 1

;

STEINFELD & FLETCHEF

FIGURE 2

radius of crucible [cm]

STEINFELD & FLETCHER FIGURE 3

Crucible Temperature [K]

STEINFELD & FLETCHER FIGURE 4

crucible radius [cm]

•

STEINFELD & FLETCHER FIGURE 5

DL/1113/87/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies	<u>(</u>	No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Divísion China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: - Dr. R. W. Drisko, Code 152 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 277D9	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	I	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, Californía 91232	1