	¢ }		OTIC I	EILE CI	JEX
SECURITY CLASSIFICATION OF THIS PAGE	DTIC				
	EPOR DOCUM	MENTATION PAGE			
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	ELECTE	15. RESTRICTIVE MARKIN	G8		
2a. SECURITY CLASSIFICATION AUT. SEITY	MAY 2 4 1988	3. DISTRIBUTION/AVAILAE	ULTY OF REPO	RT	
		Approved for public r	elease; distrib	ution is unlimit	ted.
$\Delta D_{-} \Delta 102$ cos			ATION REPORT		
AD-A 193 683		5. MONTORING ORGANIZ			
6a. NAME OF MERFUMINING OF CALL	6b. OFFICE SYMB	OL 78. NAME OF MONITORIN		ON	<u> </u>
Naval Ocean Systems Center	(ir approxim) NOSC	Naval Ocean Systems	s Center		
6c. ADDRESS (City, State and ZIP Code)		7b. ADDRESS (City, State and Z	iP Code)		
San Diego, California 92152-5000		San Diego, California	a 92152-5000		
8a. NAME C - FUNDING/SPONSORING ORGA	NIZATION 8b. OFFICE SYMB	OL 9. PROCUREMENT INSTR	UMENT IDENTIF	ICATION NUMBE	R
Naval Ocean Systems Center	NOSC		-		
80. ADDRESS (City, State and ZIP Code)	- · · · · · · · · · · · · · · · · · · ·	10. SOURCE OF FUNDING	NUMBERS	TASK NO.	AGENCY
	· · · · ·				ACCESSION NO
San Diego, California 92152-5000		6275¥N	SXB3	RW59551	DN888 715
11. TITLE (Include Security Classification)			<u> </u>		<u> </u>
IR SKY RADIANCE DISTRIBUTIO	NS IN THE MARINE BO	UNDARY LAYER			
12. PERSONAL AUTHOR(S)			<u></u>		
D.B. Law, et al.			•		•
13a. TYPE OF REPORT	COVERED	14. DATE OF REPORT (lear, Month, Day)	15. PAGE COU	NT
Professional paper FROM A 16. SUPPLEMENTARY NOTATION	Apr 1986 TO Apr 1986	April 1988			
19 23743 00220	I als di las latant deresa				
FIELD GROUP SUB-GF	CUP electromagneti	ic atmospheric physics			
	electro-optics	103	•	· . · · ·	
······					· -
Infrared optical properties of the m looking infrared (FLHR) sensors, over th sky radiance in the 3-54m mid-wavelen, ured simultaneously at low elevation enj imaging infrared radiometered infrared s	arine boundary layer are b to ocean. To ald in evalua gth infrared (MWIR) and les above the eca surface. ky radiance and meteorolo Appl 1026 at 100 Parif.	asic in the performance of ting the performance of the 8-12 Jimbong wavelength in Calibrated AGA, Model 2 Calibrated AGA, work area	thermal imaging the densors, significated (L WIR 180, dual scan	ing systems, su patial distribution of spectral band ming systems f	ich as forward ons of infrated ds were meas- unctioned as of four data
solo-suring one diurnal cycle fiarling 15 Skadiosondes were released from the day coastal sensor site at Naval Ocean Syste were also recorded on board the ship. S variability of atmospheric conditions the Measured IR sky radiance distributi code. Cloud radiance and scattered sola attenuation would be greatest.	April 1960 at 1860 Facting k of the USS Boins Long/ sens Center San Diego, C equential images of radian oughout the time for radio ions were compared with o ir radiation restricted the c	c, Standard Time (PST) an gbout 7.6 m above the oc Al-Wind speed, direction, ice distributions provided co sonde ascent to about 6 kn corresponding clear-sky rad comparison to clevations ch	d ending 16 A caning 1 a ran sea (emperatu ontrol data for a allitude. iance using th ose to the opti	e LOWTRAN cal horizon wh	6 computer cre acrosol
site-suring one diurnal cycle fiarting 15 Skadiosondes were released from the data coastal sensor site at Naval Ocean Syste were also recorded on board the ship. S variability of atmospheric conditions the Measured IR sky radiance distribut code. Cloud radiance and scattered sola attenuation would be greatest. Infrared acrosol transmittance was line of Sight (LOS). Equivalent tempera- temperature near the set surface, excep could be used to infer acrosol transmitta- (Centinued.)	April 1966 at 1866 Faction to the USS Boins Long- tems Center San Diego, C equential images of radian oughout the time for radio ions were compared with o tradiation restricted the c inferred from the ratio of slures for blackbody radian in when the MWIR band in ance reliably.	c, Standard Time (PST) an about 7.6 m above the oc Al-Wind speed, direction, ice distributions provided co sonde ascent to about 6 km corresponding clear-sky rad omparison to clevations cle measured radiance to calcu- tice at the horizon were eith coluded scattered solar radi	d ending 16 A ean, at a ran, sea (emperatu- ontrol data for a altitude. iance using th ose to the opti- tlated clear-sk ter less than o ation; consequ-	pril 1986 at 13 ge of 5 km due ire, and cloud monitoring the e LOWTRAN cal horizon wh y radiance alou r equal to the s jently, only the	130 PST. west of the conditions e stability or 6 computer ere acrosol ng the horizon ambient air b LWIR band
solo-suring one durnal cycle diarding 15 Radiosondes were released from the dea coastal sensor site at Naval Ocean Syste were also recorded on board the ship. System variability of atmospheric conditions the Measured IR sky radiance distribut code. Cloud radiance and scattered sola attenuation would be greatest. Infrared acrosol transmittance was line of sight (LOS). Equivalent tempera- temperature near the sea surface, excep could be used to infer acrosol transmittance (Centinued.) Published in Proceedings of S.P.1.ET Media.	April 1966 at 1966 Factorial to the USS Poins Longo tens Center San Diego, C equential images of radian oughout the time for radio ions were compared with o tr radiation restricted the c inferred from the ratio of itures for blackbody radian it when the MWIR band is ance reliably.	c, Standard Time (PST) an about 7.6 m above the oc Al-Wind speed, direction, ice distributions provided co sonde ascent to about 6 km corresponding clear-sky rad omparizon to clevations clu measured radiance to calcu- tice at the horizon were eith coluded scattered solar radi	de ending 16 A cean, at a ran, sea temperatu- ontrol data for a altitude. innce using th ose to the opti- thated clear-sk ter less than o ation; consequ- we Propagatior	pril 1986 at 15 ge of 5 km due tre, and cloud monitoring the cal horizon wh y radiance alou r equal to the a bently, only the h and Scatterin	 30 PST. west of the conditions e stability or 6 computer ere acrosol ng the horizon ambient air b LWIR band g in Varied
solo-suring one difficult of the state of the second secon	April 1960 Relies Long- tens Center San Diego, C equential images of radian oughout the time for radio ions were compared with c tr radiation restricted the c inferred from the ratio of intures for blackbody radian if when the MWIR band in ance reliably.	c Standard Time (PST) an about 7.6 m above the oc AdWind speed, direction, ice distributions provided co sonde ascent to about 6 km corresponding clear/sky rad omparison to clevations cle measured radiance to calcu- ice at the horizon were eith actuded scattered solar radi	d ending 16 A ean, at a ran, sea temperatu ontrol data for a altitude. lance using th ose to the opti- tlated clear-sk ter less than o ation; consequ- ve Propagation / classification	pril 1986 at 15 pril 1986 at 16 ire, and cloud monitoring the e LOWTRAN cal horizon wh y radiance ator r equal to the 4 leptity, only the h and Scatterin,	y to PST. west of the conditions e stability or 6 computer ere acrosol ng the horizon ambient air b LWIR band g in Varied
sato-suring one diurnal cycle diarding 15 SRadiosondes were released from the dea coastal sensor site at Naval Ocean Syst- wore also recorded on board the ship. S variability of atmospheric conditions the Measured IR sky radiance distribut code. Cloud radiance and scattered sola attenuation would be greatest. Infrared acrosol transmittance was line of sight (LOS). Equivalent tempera- temperature near the sea surface, excep could be used to infer acrosol transmitte (Continued.) Published in Proceedings of S.P.I.ET Media. 20. DISTRIBUTION/AVALADATED X BAME 22a. NAME OF RESPONSELE NOVADIAL	April 1966 at 1966 faith tof the USS Poins Long- tems Center San Diego, C equential images of radian oughout the time for radio ions were compared with o tradiation restricted the c inferred from the ratio of alures for blackbody radian it when the MWIR band in ance reliably.	c, Standard Time (PST) an about 7.6 m above the oc A Wind speed, direction, the distributions provided to sonde ascent to about 6 km corresponding clear-sky rad omparison to clevations clu measured radiance to calcu- te at the horizon were eith coluded scattered solar radi	d ending 16 A can, at a ran, sea (emperatu- ontrol data for a allitude. iance using th ose to the opti- alated clear-sk ter less than o ation; consequ- ve Propagation (CLASSIFICATH w(cov)	pril 1986 at 13 ge of 5 km due ire, and cloud monitoring the e LOWTRAN cal horizon wh y radiance alou r equal to the a jentity, only the h and Scatterin, ON	730 PST. west of the conditions e stability or 6 computer ere acrosol mg the horizon ambient air b LWIR band g in Varied

DD	FORM	1473,	84	JAN
----	------	-------	----	-----

ł

. .

. ..

A Color & man & May Line Manage

2

Survey.

- ; ·

.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

c': 2 - c - f . - Q - 2 - - C - 1

.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. ABSTRACT (Continued)

Radiance along the optical horizon originated mainly in the lowest 100 m of the atmosphere; therefore, reasonably accurate horizon radiance or transmittance predictions could be made from meteorological data within this low altitude. These results indicate that a LWIR aerosol transmissometer could be developed by computing the ratio of measured horizon sky radiance to calculated clear-sky radiance using local ambient meteorological data.

			(1107	COVED
Acces	sion for			
NTIS DTIC Unann Justi	GRA&I TAB ounced floation_			
By Distr Avai	ibution/ lability	Codes		
D102	Avail an Special	1/or		

DD FORM 1473, 84 JAN

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (IMMONI CANN)

IR sky radiance distributions in the marine boundary layer

William J. Schade

Alcoa Defense Systems, Inc. 16761 Via Del Campo Court San Diego, CA 92128

David B. Law

Naval Ocean Systems Center San Diego, CA 92152-5000

ABSTRACT

Infrared optical properties of the marine boundary layer are basic in the performance of thermal imaging systems, such as forward looking infrared (FLIR) sensors, over the ocean. To aid in evaluating the performance of these sensors, spatial distributions of infrared sky radiance in the 3- 5 µm mid-wavelength infrared (MWIR) and 8 - 12 µm long wavelength infrared (LWIR) spectral bands were measured simultaneously at low elevation angles above the sea surface. Calibrated AGA, Model 780, dual scanning systems functioned as imaging infrared radiometers. Infrared sky radiance and meteorological parameters were recorded concurrently in a series of four data sets during one diurnal cycle starting 15 April 1986 at 1500 Pacific Standard Time (PST) and ending 16 April 1986 at 1730 PST. Radiosondes were released from the deck of the USS POINT LOMA, about 7.6 m above the ocean, at a range of 5 km due west of the coastal sensor site at Naval Ocean Systems Center, San Diego, CA. Wind speed, direction, sea temperature, and cloud conditions were also recorded on board the ship. Sequential images of radiance distributions provided control data for monitoring the stability or variability of atmospheric conditions throughout the time for radiosonde ascent to about 6 km altitude.

Measured IR sky radiance distributions were compared with corresponding clear-sky radiance using the LOWTRAN 6 computer code. Cloud radiance and scattered solar radiation restricted the comparison to elevations close to the optical horizon where aerosol autonuation would be greatest.

4

Infrared acrosol transmittance was inferred from the ratio of measured radiance to calculated clear-sky radiance along the horizon line of sight (LOS). Equivalent temperatures for blackbody radiance at the horizon were either less than or equal to the ambient air temperature near the sea surface, except when the MWIR band included scattered solar radiation; consequently, only the LWIR band could be used to infer acrosol transmittance reliably.

Radiance along the optical horizon originated mainly in the lowest 100 m of the atmosphere; therefore, reasonably accurate horizon radiance or transmittance predictions could be made from meteorological data within this low altitude. These results indicate that a LWIR acrosol transmissometer could be developed by computing the ratio of measured horizon sky radiance to calculated clear-sky radiance using local ambient meteorological data.

1. INTRODUCTION

The effects of aerosols on the propagation of infrared radiation through the marine boundary layer are basic in the use of both active and passive remote sensing systems over the ocean. The extent to which these effects can be evaluated and modeled depends largely on the methods for characterizing the atmospheric constituents along the optical path.

Current methods for measuring particle sizes and concentrations are limited to local sampling volumes at the sensor site which are not characteristic of extended path lengths. Lidar measurements have been used to compute total volume extinction coefficients as a function of range; however, lidar data are generally acquired at sequential intervals along different directions between which the meteorological conditions could change without notice. Additional uncertainties arise when lidar data at one wavelength are applied to other spectral regions.

An alternative method for inferring the effects of aerosols on atmospheric transmittance is describe in this paper. Spatial distributions of infrared sky radiance in the 3- to 5-µm mid-wavelength infrared (MWIR) and 8- to 12-µm long

056

wavelength infrared (LWIR) spectral bands were measured at low elevation angles above the sea surface. These distributions represent the integrated radiance propagated along contiguous optical paths through the entire atmosphere within the field of view (FOV) of the calibrated thermal imaging sensor. Since the FOV of the AGA Thermovision 780 is scanned in 40 ms, the data for each distribution are almost simultaneous.

The extent to which the measured radiance differs from the corresponding clear-sky radiance can be used to imply the effective transmittance. The clear-sky radiance was computed with the LOWTRAN 6 computer code using radiosonde measurements of meteorological parameters concurrent with the measured radiance over the ocean.¹ This technique offers a viable method for evaluating the total aerosol effect through the entire marine boundary layer by remote sensing.

The data were obtained during one diurnal cycle starting 15 April 1986 at 1500 Pacific Standard Time (PST) and ending 16 April 1986 at 1730 PST. The sensor LOS was directed along an azimuth of 270 degrees true radial from NOSC, building T323, located at 32.699 degrees N latitude, 117.253 degrees W longitude, at a height of 33 m above sea level.

Radiosondes were released from the deck of the USS POINT LOMA (AGDS 2) about 7.6 m above the sea surface at a range of 5 km from the sensor site. Wind speed, direction, and sea temperatures were also recorded on board the ship, as well as cloud conditions. A complete description of the shipboard data is available.²

Throughout this report, clear-sky radiance refers to the atmosphere without aerosols. This corresponds to IHAZE = 0 in the LOWTRAN 6 computer code when $\underline{15} = 1$ in the LOWTRAN calculations for sky radiance (where $\underline{15}$ is transmittance due to scattering). This is regarded as the reference condition for comparing the respective measurements in the LWIR and MWIR spectral bands.

2. ATMOSPHERIC MEASUREMENTS

Infrared sky radiance and meteorological measurements were recorded simultaneously in a series of four data sets. Table 1 lists the dates and times for the measurements along with the solar positions. Surface meteorological measurements were made at the NOSC sensor site as well as shipboard, while the vertical profiles were measured by radiosondes released from the USS POINT LOMA. The air and sea temperatures, wind speed, and direction are also listed in table 1.

Data Set	1	2	3	4
Date	15 Apr 86	16 Apr 86	16 Apr 86	16 Apr 86
Radiosondo Time (PST)	1945	0845	1245	1645
Solar Position (degrees) Azimuth Zenith	295 140	106 49	212 26	270 71
Air Temp. (°C) Wind Speed (knots) Direction (degrees)	15.0 10 300	15,4 9 330	15.5 20 280	15.7 20 310
Sea Temp. (°C)	17.8	16.7	17.2	17.2

Table 1. Aumospheric measurements series for meteorological parameters.

Figures 1, 2, 3, and 4 show the radiosonde measurements for temperature and relative humidity plotted with respect to altitude. These data were used in the LOWTRAN 6 computer code to calculate clear-sky radiance as a function of elevation angle above the horizon. The data in figure 1 were used to evaluate the meteorological sensitivities of the radiance calculations. This set presents the nighttime data for a well-defined cloud-top boundary and an adiabatic lapse rate of 9.8°C in the first kilometer above sea level.

The uncertainty in relative humidity is estimated to be 5 percent, which provides a better approximation to the water vapor density than any of the standard model atmospheres. The sensitivity of the radiance calculations to this uncertainty in humidity was examined by incrementing the relative humidity profile ±5 percent while keeping the temperature profile unchanged from the measured values. Similarly, the sensitivity to the temperature uncertainty of ±0.5 °C was evaluated for the observed relative humidity profile of figure 1.

Figure 1. Radiosonde measurements for data set 1.

Figure 4. Radiosonde measurements for data set 4.

Figure 5 shows the comparative effects of deviations in temperature and relative humidity. The calculated clear-sky radiance, for IHAZE = 0, is plotted as a function of elevation angle. Radiance discrepancies resulting from relative humidity errors are less than those resulting from temperature errors throughout the range of elevation from 0 to 2 degrees. For elevation less than 0.5 degree, the effects of errors in relative humidity are negligible compared with those in temperature. A temperature error of $\pm 0.5^{\circ}$ C changes the radiance by about ± 0.033 mw/(cm² - str) in the LWIR band and about ± 0.0033 mw/(cm² - str) in the MWIR band.

Figure 5. Calculated citizes with rebutions of LWIR radiance above the horizon for comparative errors in temperature (T \pm 0.5°C) and relative humidity (RH \pm .05) profiles.

Sky radiance data were acquired in the 3.5- to 5.5-µm and 8- to 12-µm spectral bands simultaneously with the AGA 780 dual scanning systems functioning as imaging radiometers. The operational characteristics of the sensor systems are listed in table 2. The analog video signals in the 3- by 3-degree FOV are interfaced through a Datalink analog-to-digital converter to a digital image processor. The format of the digital display is 128 by 128 pixels with 8-bit resolution. The minimum detectable temperature difference (MDTD) between adjacent instantaneous fields of view (IFOVs) is 0.1°C.

The total system response for each spectral band is calibrated in isotherms which represent the video signal amplitudes for radiation from a blackbody at a measured temperature and close range. Sets of conversion curves relating isotherms to object temperatures (with emissivity = 1) are obtained with the expression

 $I = C1/(C3 \cdot cxp(C2/T) - 1),$

where T is the blackbody temperature in degrees Kelvin. The constants C1, C2, and C3 are derived for the calibration source at several different temperatures.

(1)

Scanner	SWIR	LWIR	Both
Spectral Band: µm	3.5 ω 5.5	8 to 12	
Temperature: °K	10.5.0	ngcuite	77 .
FOV (az by cl): degrees IFOV (ax by cl): mrad			3 by 3 1.2 by 0.9
Telescope Objective Diameter: cm Focal Ratio			10.6 . 1.8
FOV Scan Mode Horiz, Line Time: ms Vert. Field Time: ms			0.4 40
Field Rate: Hz			25
Frame Rate: Hz			6.25
IFOV dwell: µs			5.3
Signal Processing: AC + DC Restored MDTD: °C/IFOV Temp. Range: °C			0.1 -20 to 1000

Table 2. AGA Thermovision 780 dual scanning systems operational characteristics.

The original image is analyzed with the microcomputer by assigning the equivalent blackbody temperature to the corresponding isotherm value for selected pixels in the FOV, through the transposition of equation 1,

T = C2/In u,

where

u = ((C1/1) + 1)/C3.

Radiance values are computed for each blackbody temperature through the integration of Planck's equation for the appropriate spectral band. The final form of the equation for radiance as a function of isotherms is

 $L(SB,T) = a \cdot I(T) \cdot b,$

where SB is the spectral band, a is the slope, b is the intercept, and I(T) is a nonlinear function of T in equation 1. The constants for convening isotherms to radiance in equation 3 are listed in table 3 for each spectral band, as well as the calibration source characteristics.

Scanner	SWIR	LWIR	Both
C1: Isotherms	383140.4	1514.4	
C2: *K	2945.0	1294.2	
C3: dimensionless	1.0	0.503	
a: mw/(cm ² - str - isotherm)	9.695 • 10 ⁻⁶	1.002 • 10 ⁻⁴	-
b: mw/cm ² - sur)	1.556 - 10 ⁻⁵	1.002 - 10-4	
Calibration Source			
Distance: m			3.0
Emissivity: ±0.01			0.98
Temperature: ±0,1°C			15-100

Table 3. Calibration constants for converting isotherms to radiance.

The main source of uncertainty in the conversion to radiance is in the isotherm values for the video signal amplitudes. Isotherms are calculated with the microcomputer to within ±0.1, so that the temperature of the calibration source is

(2)

(3)

reproduced within $\pm 0.2^{\circ}$ C. This uncertainty in the temperature causes a radiance error of $\pm 0.01 \text{ mw/(cm}^2 - \text{str})$ in the LWIR band, and $\pm 0.001 \text{ mw/(cm}^2 - \text{str})$ in the SWIR band.

In each of the four data sets, both infrared sensor systems were referenced to a calibration source at ambient air temperature within 1 hour prior to the radiosonde ascent. Thermal images of sky radiance were recorded continuously on analog video tape and sequentially on digital diskette during 1 hour preceding and following the radiosonde measurements. These data provide an unambiguous verification of either the stability or variability of the sky radiance distributions during meteorological measurements. No measurable changes were observed during each of the data sets reported here, except for temporal variations in cloudiness.

3. RADIANCE DISTRIBUTIONS

Figure 6 shows the four LWIR radiance distributions as a function of elevation angle above the optical horizon. Zero degrees elevation corresponds to the IFOV tangent to the sea surface where the radiance is maximum. The elevation IFOV angular subtense of 0.05 degree is shown in the figure as well as the radiance uncertainty corresponding to a temperature deviation of $TD = \pm 0.2^{\circ}C$.

Figure 6. LWIR sky radiance distributions above the horizon; plot 1: 15 April 86, 1945 PST; plot 2: 16 April 86, 0845 PST; plot 3: 16 April 86, 1245 PST; plot 4: 16 April 86, 1645 PST.

Cloud radiance contributions are apparent at elevations greater than 0.4 degree. Scattered solar radiation from clouds is especially notable in data set 4, when the sun is about 20 degrees above the sensor LOS.

The radiances for data sets 3 and 4 are equal within the measurement uncertainty, for low elevations between 0 and 0.3 degree; however, the solar zenith angle changed from 26 degrees in data set 3 to 71 degrees in data set 4. These conditions imply that acrosol scattering of solar radiation is negligible in the LWIR band since the meteorological parameters are nearly the same for these two data sets as shown in figures 3 and 4.

Figure 7 shows the MWIR sky radiance distributions. These four plots are concurrent with those of the LWIR data. On the radiance scale used in figure 7, plots 1, 2, and 3 are approximately equal, within the temperature deviation $TD = \pm 0.2^{\circ}C$. Plot number 4 shows a very large increase in radiance resulting from scattered solar radiation in the clouds and lower atmospheric levels. The equivalent blackbody temperature scales are shown along the ordinates on the right of figures 6 and 7.

Figure 7. MWIR sky radiance distributions above the horizon and coincident with the LWIR distributions.

Figures 8 and 9 compare the observed radiance distributions and the corresponding calculated clear-sky radiances. Figures 8a, b, c, and d show the distributions for the LWIR band, and figures 9a, b, c and d show those for the MWIR band.

The clear-sky radiances were calculated using atmospheric models with 30 layers in the LOWTRAN 6 computer code. The meteorological entries were provided by the radiosonde data. The concentrations of uniformly mixed gases and ozone were those in the 1962 U.S. Standard model atmosphere.

The importance of the humidity and temperature lapse rates in calculating sky radiance distributions in the boundary layer was noted previously.³ Accordingly, the first kilometer above sea level was divided into 10 levels with about 1°C increments for each 100 m between levels. The remaining atmosphere was divided into 20 levels between 1 and 5.5 km. The radiosonde data terminated at about 6 km.

The LOWTRAN expression for calculating atmospheric radiance (Kneizys et al., 1980) is

$$L(SB) = \sum_{i=1}^{N-1} (in(i) - in(i+1))^{-} B\left(SB, \frac{T(i) + T(i+1)}{2}\right) \left(\frac{is(i) + is(i+1)}{2}\right)$$

+ B (SB, T (b)) (b.

where the summation along a specified LOS is over (N - 1) isothermal layers at temperatures T (i), and

- SB = spectral band: 3 to 5 µm or 8 to 12 µm
- 🔝 👘 band average transmittance due to absorption,
- 15 = band average transmittance due to single scattering.
- 11 = band average transmittance from sensor to cloud boundary.
- B (SB,T) = Planck blackbody function for a spectral band and average temperature T of an atmospheric layer.

To avoid the effects of cloud radiance, the comparison of observed-to-calculated radiance is restricted to the horizon LOS where the atmospheric optical depth and acrosol attenuation are greatest. Along zero elevation, the LWIR molecular (absorption) transmittance, ta, is less than 1×10^{-4} through the 137- km herizontal optical path to the cloud base. With a cloud-base temperature of 6.8°C, the maximum LWIR cloud radiance is 2.7 mw/(cm² - str), which becomes negligible at the sensor apenture.

(4)

For calculation of clear-sky radiance, $\underline{IS} = 1$ for all atmospheric layers. Along the horizon LOS, the sky radiance originates predominantly in the lowest layer which approximates a horizontally homogeneous atmosphere about 100 m high. This condition is clearly evident in table 4 which lists the LWIR radiance and band average absorption transmittance, \underline{Ia} , for ranges along the horizon LOS to five levels in the first nine atmospheric layers. Over 99 percent of the clear-sky radiance along the horizon LOS is attributable to the lowest 100 m of the atmosphere. Within this lowest layer, equation 4 reduces to

 $L(SB,I) = (1 - \underline{i}_{1}(1)) B(SB,T(1)).$

From table 4, in (1) \equiv .004, so the emissivity of the lowest layer, c (1) = 1 - in (1), is very close to unity through application of Kirchoff's law. Thus, the clear-sky radiance in the lowest layer should equal the blackbody radiance at ambient air temperature as reported previously.^{4,5} The effects of aerosols on infrared sky radiance can be inferred from equations 4 and 5 by including the transmittance due to scattering. The transmitted radiance along the horizon LOS then becomes

 $L(SB) = L(SB) \cdot \underline{ls}$

日日日日 日日日 一時日日日日日日日日日

ちょう あまっている たたち ちょうちょう してき ちょうしん たんしょう ひょう

where L (SB) is the clear-sky radiance given by equation 5 extended to all 30 layers.

(6)

(5)

Figure 9. Comparison of measured MWIR sky radiance distributions with calculated clear-sky radiance from LOWTRAN 6: IHAZE = 0.

Layers	Altitude to top (m)	Range W top (km)	Radiance mw/cm ² - str)	% Max Radiance	Average Transmittance
1	143	67	3.163	99.7	0.0036
2	263	84	3.171	99.9	0.6011
3	383	97	3.172	99.9	0.0004
5	575	114	3.173	100	0.0001
9	1016	145	3.173	100	0.000

Table 4. LWIR radiance and transmittance along the horizon LOS for data set 1, LOWTRAN 6: IHAZE = 0

Absorption by aerosols would tend to bring the emissivity of the atmosphere closer to unity through <u>ia</u>, which would change by less than 1 percent from the transmittance due to molecular absorption for clear-sky conditions. Molecular scattering, however, is negligible in the spectral range of 3 to 12 μ m, so <u>is</u> can be assigned primarily to aerosols. Thus, the scattering transmittance, <u>is</u>, was calculated with equation 6 using the measured sky radiance for L (SB)', which represents the transmitted radiance along the optical LOS from the sensor receiving aperture to space.

A summary of the horizon sky temperatures and aerosol transmittance is presented in table 5 for each set of radiosonde data. The temperatures corresponding to the measured horizon sky radiance and calculated clear-sky radiance are listed for the LWIR and SWIR bands. The radiosonde base temperatures and sensor (local) air temperatures are also given. Within each data set, the temperature differences are less than the uncertainties in the measurements except for the equivalent temperatures of the measured sky radiance. Reduced equivalent temperatures in the LWIR band correspond to aerosol scattering loss in radiance, while the increased temperature in the MWIR indicates additional radiance from scattered solar radiation in data set 4.

The calculated aerosol transmittances for both infrared bands are listed in table 5. The LWIR values show a slight aerosol effect in data sets 3 and 4, but the MWIR values are inconsistent. Although the values for both infrared bands agree in the nightime and morning runs when the aerosols were negligible, the MWIR band cannot be used reliably to indicate aerosol attenuation when scattered solar radiation must be included. As noted above, the horizon LWIR values were unaffected by solar scattering for zenith angles from 26 to 71 degrees.

Data Set	1	2	3	4
Dato	15 Apr 86	16 Apr 86	16 Apr 86	16 Apr 86
Time (PST)	1945	0845	1245	1645
RAOB Base (±0.5°C)	15.0	15.4	15.5	15.7
Local Air (±0.3°C)	14.6	15.2	15.1	15.8
LOWTRAN 6: Clear-Sky MWIR LWIR	14.6 15.4	15.1 15.9	15.1 15.9	15.2 16.1
Measured Sky (±0.2°C) MWIR LWIR	14.5	14.2 14.2	14.5 13.1	23.7 13.4
Acrosol Transmittance MWIR LWIR	.99 .99	.97 .97	.98 .95	1.38 .95

Table 5. Horizon sky temperature and aerosol transmittance.

4. CONCLUSIONS

The AGA Thermovision 780 dual scanning system was used to measure infrared sky radiance distributions in the MWIR and LWIR spectral bands simultaneously. Sequential images of radiance distributions provided control data for monitoring the stability or variability of atmospheric conditions throughout the concurrent time for radiosonde ascent.

Measured infrared sky radiance distributions were compared with the corresponding clear-sky radiance using the LOWTRAN 6 computer code. The presence of cloud radiance and scattered solar radiation restricted the comparison to clevations close to the horizon where acrossl attenuation would be greatest.

The infrared acrosol transmittance was inferred from the ratio of measured radiance to calculated clear-sky radiance along the horizon LOS. The equivalent temperatures for blackbody radiance at the horizon were either less than or equal to the ambient air temperature near the sea surface, except when the MWIR band included scattered solar radiation. Because of this, only the LWIR band can be used to infer acrosol transmittance reliably.

The radiance along the horizon LOS originates predominantly in the lowest 100 m of the atmosphere; therefore, reasonably accurate horizon radiance or transmittance predictions could be made from meteorological data within this low altitude. These conclusions suggest that a LWIR acrossol transmissometer could be developed by computing the ratio of the

measured horizon sky radiance to the calculated clear-sky radiance using the local ambient meteorological data. Such a point-measuring system would only require a calibrated nonimaging radiometer to record the radiance along the horizon LOS.

5. ACKNOWLEDGMENTS

The authors gratefully acknowledge the radiosonde data provided by H.G. Hughes and R.A. Paulus.

6. REFERENCES

1. Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr., L.W. Abreu, J.E.A. Selby, R.W. Fenn, and R.A. McClatchey (1983). "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6," Air Force Geophysics Laboratory AFGL-TR-83-0187.

2. Jensen, D.R. (1986). "Temperature Measurements of the USS Point Lorna for FLIR Evaluation Studies," Naval Ocean Systems Center TD 971.

3. Ben-Shalom, A., A.D. Devir, and S.G. Lipson (1983). Opt. Eng. 22:460.

4. Bennett, H.E., J.M. Bennett, and M. R. Nagel (1960). "Distribution of Infrared Radiance over a Clear-Sky," J. Opt. Soc. Am. 50(2):100-106.

5. Bell, E.E., L. Eisner, J. Young, and R.A. Oetjen (1960). "Spectral Radiance of Sky and Terrain at Wavelengths between 1 and 20 Microns. II. Sky Measurements," <u>J. Opt. Soc. Am</u>. 50 (12):1313-1320.

6. Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr., L.W. Abreu, J.E.A. Selby, R.W. Fenn, and R.A. McClatchey (1980). "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 5," Air Force Geophysics Laboratory AFGL-TR-80-0067.