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Abstract

We compare the writing and execution of programs writ-
ten in Cosmic Cube C with programs written in the graphical
parallel programming environment and language Poker. Our
example programs, an implementation of a Cholesky algorithm
for a banded matrix, were written in both languages and com-
piled into object codes that ran on the Cosmic Cube. However
the program written in Poker is shorter, faster and easier to
write, easier to debug, and portable without changes to other
parallel architectures. The Poker program was slower than
the program written directly in Cosmic Cube C, however the
experiments provided insights into changes that make Poker
programs nearly as fast.
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Abstract

We compare the writing and execution of programs written in Cosmic Cube C with
programs written in the graphical parallel programming environment and language
Poker. Our example programs, an implementation of a Cholesky algorithm for a banded
matrix, were written in both languages and compiled into object codes that ran on the
Cosmic Cube. However the program written in Poker is shorter, faster 'and easier to
write, easier to debug, and portable without changes to other paralleliarchitectures.
The Poker program was slower than the program written directly in Cosmic Cube C,
however the experiments provided insights into changes that make Poker programs
nearly as fast. , * . . - ..

1 Introduction --
Now that there are a number of parallel architectures, including n-cubes, there is an increased need for better
parallel programming techniques. In particular, programmers need assistance handling the parallel aspects
of their programs. One direction for improvement is in the design of better parallel programming languages
and environments. At one extreme are very high level languages such as Crystal [1] in which the programmer
relies on the compiler to extract parallelism and optimize inter-process communication. At the other extreme
are low level languages/language-support-systems such as crystalline [2] which provide bare-bones message
facilities and no algorithmic programming assistance but are tuned to maximizing execution speed. Poker
(3] takes a more conservative intermediate position providing a high-level parallel programming abstraction
supported by a graphical programming environment and language while still relying upon the programmer to
extract the parallelism from algorithms. The key question is whether such a high-level language can provide
this programming support while not compromising the speed of the programs.

This paper addresses this question by discussing the programming and execution of the modified Cholesky
decomposition written in both Poker and the extended C [4] for the Cosmic Cube [5]. We provide timing
results for the execution of both programs on the Cosmic Cube.

2 The Algorithmic Test Case
Our basis of comparison between the two programming languages is an algorithm to solve the matrix equa-
tion:

Supported in part by National Science Foundation Grant DCR-8416878 and by Office of Naval Research Contract No.
N0001 4-5-K-0328.



A*z=b

where A is a symmetric, positive definite, diagonally dominant matrix of size nXn, with semi-bandwidth
0. The solution method that we use is an implementation of the modified Cholesky algorithm:

A = L * D * LT

where L is a lower triangular matrix with semi-bandwidth 8, and D is a diagonal matrix. The complete
solution of the matrix problem is then found through the solution of the following three related equations:

L*z=b (1)
D y= z (2)

LT *z= Y (3)

We solve equation 1 with forward substitution, equation 2 by a vector division, and equation 3 with back
substitution.

The modified Cholesky algorithm has seven steps:

1. Load matrix A.

2. Load vector b.

3. Do Cholesky decomposition A - L * D * LT.

4. Do forward substitution L * z b.

5. Calculate D * y = z.

6. Do backward substitution LT * r = y.

7. Dump result vector x.

The algorithm uses (/ + 1)2 processes conceptually arranged in a square grid. Steps 3, 4, and 6 requires
that each process be able to broadcast to every other process in its column, and that each process on
the diagonal be able to broadcast across its row. Instead of fully connecting the columns and rows we
acknowledged the high cost of message passing in current implementations of n-cubes and did our own
message routing, using hypercube connections for the columns and trees for the rows. These communication
needs neatly fit into a hypercube interconnection scheme.

3 The Languages

Both Cosmic Cube C and Poker use a non-shared memory model of cooperating sequential processes com-
municating by message passing and a modified C to express the sequential details of the process's code. They
differ chiefly in how they handle the parallel aspects of a program. The Cosmic Cube C provides no parallel
structure while Poker uses a graphical environment for describing the parallel aspects of the program.

3.1 The Poker Language and Environment

Poker is both a parallel programming language for non-shared memory algorithms, and a parallel pro-
gramming environment used to program and execute Poker programs. The Poker environment runs on a
conventional computer. It allows the user to write Poker programs and serves as the front end when running
Poker programs on the simulator, emulator, or target parallel architecture. Both the Poker language and
the Poker environment are non-standard and intimately connected, so this section will interleave discussion
of their features from the point of view of a programmer.

The description of a Poker program is based on the graph model so often used to describe a parallel
program. This description has five logical components:
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for i - ton- 1 do (i = update row)
for j - i to min(n, i + 0) do (j = update column)

for k -- max(O, i - 0) to i do (k = pivot row)
if k = i then

a-j-a / dki
else

ai- ai- (aik * aki)
endif

endfor
endfor

end for.

Figure 1: The Cholesky Decomposition Algorithm.

1. a graph whose vertices are processes and whose edges are communication channels between the pro-

cesses,

2. a labeling of the vertices with the codes to run in the processes,

3. a labeling of the edges at each vertex,

4. the codes for the processes, and

5. a description of the inputs and outputs (the Cholesky decomposition has none).

Poker encodes parallel algorithms at this same level of abstraction, using separate "views" of a graphical
programming environment to define four of the five parts; the process codes are programmed using a standard
text editor.' For example, a Poker programmer for the Cholesky Decomposition step (step 3), Figure 1,
codes the five components as shown in Figure 2:

1. Communication Graph: The programmer uses a mouse or number pad to explicitly draw the connections
between the processes (boxes). This drawing is the only definition of the interconnection; there is no
textual specification of the interconnection.

2. Process Assignment: The programmer assigns the code to run in each process, by entering the code
name at the top of the process box. Note that the Communication Graph is still visible here, aiding
the programming of the Process Assignment.

3. Port Name Assignment: The programmer labels the edges from the perspective of each vertex: each
edge has two names, one for each end or "port." Again, the communication graph is visible to aid the
programmer.

4. Process Definition: The (usually small number of) process codes are written in a slightly modified
version of C [6]. Section 3.2 on Poker C describes the modifications. Figure 2 shows only the code for
pivot.

5. Stream Name Assignment: The dangling edges of the graph connect the algorithm to its inputs and
outputs. The programmer labels dangling edges with the name of the input and output streams. 2

I The term "View" refers to the manner in which Poker programs are stored and recalled. The five parts form & database
defining the program. Each "View" is a perspective on this database, perhaps incorporating information from more than one of
the parts of the program, as in the graph programmed in the Communication Graph View is visible in the Process Assignment
View.

2 A stream is a series of data values of arbitrary, and possibly mixed, types. Poker requires that the stream data in files are
basic data types, e.g. bool, char, sbart, and so on.

3
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Figure 2: The five parts of a Poker program for the Cholesky decomposition step.
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These pictures are exact replicas of the lower part of the corresponding Poker views, showing the parallel
parts of the Poker program as entered by the user. The upper part of a Poker View contains additional status
information including the number of processes in the program (between 4 and 4096 processes) and the state
of the programming environment during programming. Note that several views display the communication
graph as context while programming the remaining parts of the parallel algorithm.

Three additional Views aid the user in initializing the size of the program and compiling and executing
it:

" CHiP Parameters View: Used to select the logical CHiP architecture3 , including the number of pro-
ceases.

" Command Request Vietsz Used to compile, load, link, and so on, Poker programs so that they are ready
to execute.

" Thace View: Used to watch the execution of the algorithm. The Trace View uses the same picture as
in the Process Assignment, except that the last four lines of each box show the current values of up to
four variables being traced in that process.

The Trace View is especially important when debugging Poker programs. The Poker generic simulator
runs on a conventional von-Neuman computer and provides a much more interactive environment in which to
debug Poker programs before tying up the Cosmic Cube or other parallel computer. If additional problems
arise during Cosmic Cube execution, we can turn the tracing mechanism on to try to pinpoint the error,
though such tracing changes the timing of the program making it exceedingly difficult to pinpoint timing
problems.

What we have seen so far is one "phase" of a Poker program; that is, one unit of parallel execution. Most
parallel programs are more complex, requiring a number of different parallel units, which we call phases.
Each of these phases is defined using the five parts described above and a grid of processes of the same size.
Processes occupying the same location on the grid in different phases may pass information between phases,
using the import/export convention described in Section 3.2. Each phase may connect the processes in any
graph independent of the connections used in other phases.

Each phase executes as a unit and the processes synchronize after completing each phase. Phases can
be invoked manually, from the Poker environment, or via a program written in a sequential phase-control
language.

3.2 Poker C

Poker C code is standard C [6] with a few changes.' Using the Process Definition in Figure 2 as an example, 10
we see that each code has a header specifying the name of the code (pivot), and the ports (one, two, four,
eight) followed by a set of C routines. Variables exist only within routines; there are no external variables.

Processes occupying the same location on the grid communicate through an inter-phase data space that
they, and only they, share. Variables in this inter-phase data space do not exist before being assigned values.
However, once assigned, the variable exists forever. Hence, the most recently assigned value is available until
the program terminates. The expression

export (local. inter-phase)

stores the value of the locally defined variable local into the inter-phase variable :nter-phase. At any point

in the future, from any phase, the expression

import (local, inter-phase)
3 Poker was designed to program the CHiP architecture. Both CHiP Parameters View and the switches in the Cominunication

Graph are vestiges of thi decision.
4 A more comuplete description of Poker C is found in [7].
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loads the local variable local with the last value stored into inter-phase.
The statements

port <- expressioni

variable C- port

send and receive messages. Port is either a port name from the header's port@ list, or a variable of type
port. The run-timne system checks receive messages to make sure that the message received is of the same
type as the variable; incompatible types cause a fatal run-time error. Messages between processes may be
any of the basic data types, arrays with statically defined size, or structures, as long as there are rno pointers
in the data. -

4 Implementations
Since both languages use the same non-shared memory paradigm of communicating sequential processes and
the same base language, C, the process codes are very similar in the two languages. However, we had to do
some subtle programming in the Cosmic Cube C program to determine which messages to keep and which
to pass. In our message passing scheme communications are difficult in the Cosmic Cube C version, but
painless in Poker since Poker automatically encodes the "direction" of a message by the port from which it
enters.

Both program have three types of processes: (1) a host "controller" process that allocates a cube, spawns
processes onto the Cosmic Cube, and controls their execution, (2) a host "file server" process that passes
values between files and processes, and (3) 16 cube processes, one per node of a 4-cube, implementing the
Cholesky algorithm. The Cosmic Cube C version combined the controller and file server into one process.

5 Mapping the Guest Graph to the Host Graph
Both programs used the communication links of an n-cube. We mapped the n-cube graph of the algorithm
(guest graph) directly onto the n-cube of the host architecture (host graph) maintaining the node adjacen-
cies. In general the mapping of the algorithm's interconnection, the guest graph, to the host graph of the
architecture can be more complex.

Cosmic Cube C provides no explicit concept of either graph; instead the cube is logically completely
connected and the definition and use of the guest graph is embedded into the program. This increases the
difficulty of changing the mapping of the guest graph to the host graph. This difficulty could be eliminating
by writing a more general spawning/message-passing scheme.

Poker simplifies the mapping problem by separating it from the program specification. The guest graph,
defined by the Communication Graph, is automatically mapped onto the host graph and the resulting
mapping stored in a file. The spawner reads this file at run-time to determine the process placement on the %
processors. Changing the mapping file changes the resultant mapping with no need to recompile.

This is an obvious place for an automatic mapping system. Currently, Poker does one mapping, a row-
major assignment of process/node numbers to processes. It is easy to imagine a more sophisticated system
that would try to improve the mapping, perhaps first using simulation to weight the use of the communication
paths, and also automatically mapping from a family of guest graphs to a family of host graphs. Berman [8]
describes one such system. This is a rich area for further research.

6 Results
The cube processes ran on an otherwise unloaded 4-cube, to avoid message contention with other cube
programs, and the host processes ran on a Sun 2/120 directly connected to the cube, to avoid ethernet

6
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Figure 3: Timings for Poker program with Figure 4: Timings for Cosmic Cube C program
synchronization between phases. with no synchronization between steps.

delays. We tried to keep the Sun otherwise unloaded during the runs. Each cube process cached its timing
values until the end of the program to minimize measurement perturbations.

To estimate the variance we ran each program 8 or more times.' Each cube process recorded the start
and end time of steps 3, 4-5, and 6 (step 5 was folded into step 4). This provided two measurements for
each process: the "total" time from start of step 3 to end of step 6, and the "combined" time, a sum of the
times between the beginning and end of steps 3-6.

The process/node number is on the x-axis (recall that there is one process/node) while the y-axis shows
the execution time in miiseconds. The vertical bars are the 95% confidence regions for the averages.

Figure 3 emphasizes two trends. First, the cost of synchronization, estimated by the difference between
the "combined" times (lower points) and "total" times, is quite large, ranging from 40% to 80% of the total
execution time.

Second, processes with higher numbers have faster execution times, especially for the combined times.
This reduction has at least two causes: (1) the controller starts the cube processes in ascending order of
process number so that lower numbered processes block on input from higher numbered processes, (2) the
lower numbered processes need to forward messages between the host, connected to node 0, and the other
processes. The Cholesky algorithm, with its low computation/communication ratio, accentuates this high
communication cost. Also note that higher numbered processes have much less variance for the "combined"
times indicating that message forwarding or idling for messages from processes that have yet to execute takes

sWe attempted to execute 15 runs of each of the four program discumsed below, randomly shufing the executions into a
sequence of 60 runs. However the Cosmic Cube has been having problems recently, so we were unable to get one set of 60 runs.
The number of runs per figure an: 12 for Fig. 6, 13 for Fig. 6. and S for Fig. 5. The 15 runs for Fig. 4 came from an earlier
batch. Note how the variance dereases with increasing number of runs.

7
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time time
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Figure 5: Timings for Cosmic Cube C program Figure 6: Timings for Poker program without
with synchronization between steps. synchronization between phases.

a heavy toll on lower numbered processes.
For comparison, Figure 4 shows the execution times for the Cosmic Cube C program. There is no

synchronization between steps of this program so the total time equals the combined time. This program
runs about 3 times faster than the Poker program. However the difference between "combined" Poker
times and the Cosmic Cube C times decreased as the node number increases, suggesting that inter-step
synchronization is killing Poker programs. Figures 5 and 6 demonstrate that the Poker program is not
inherently slower than the Cosmic Cube C program. Figure 5 shows that the times for the same Cosmic
Cube C program, but with synchronization between steps, approach those of synchronized Poker. One reason
the synchronized Cosmic Cube C program does not slow down as much as the synchronized Poker program
is that the controller and file server for the Cosmic Cube C program are one process, so the Cosmic Cube C
program has about one third fewer synchronization messages than the Poker program. Going in the other
direction, Figure 6 shows that the same Poker program without the inter-phase synchronization is as fast as
the Cosmic Cube C program.

In conclusion, The Poker Cholesky program exhibits the same run-times as the Cosmic Cube C program.
indicating that Poker's higher level programming abstraction does not sacrifice an efficient implementation
for at least one communication intensive algorithm.

Programming in raw Cosmic Cube C could still be advantageous since it allows the following: message
passing to simulate a completely connected graph of processes, dynamic process creation and deletion,
dynamic reallocation of the cube, and the use of the programmer's knowledge of a program to optimize its
run time with non-blocking sends and receives and no synchronization.

On the other hand, Poker provides the following: a higher level program abstraction that eases the
definition of a parallel program, a visually oriented environment, automatic provision of routines to handle file
input/output, process spawning, cube allocation, and process control so that the programmer can concentrate
on the algorithm, and a parallel simulator/debugger for developing programs off-line. In addition, programs
written in Poker are portable to different parallel architectures [9J.
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7 Improving the efficiency of Cosmic Poker

These experiments pointed to places where more effort on the part of compilers, host operating systems.
or host hardware might improve the efficiency of parallel programs. The amount of improvement depends

on the algorithm, its implementation, and the n-cube hardware available. In particular, Poker programs

potentially could benefit from:

* Running phases without intervening synchronization. As a result of this work, we have decided that
Cosmic Poker will provide a way to run phases asynchronously.

* Broadcasting, fanning-out, or fanning-in messages between the controller and cube processes. Support
in the host operating system or hardware could substantially reduce synchronization costs. Fan-in
synchronization could be made extremely cheap with the use of a hardware "AND" line raised when

all processes have completed some task, such as a phase.

" Placing the controller on the cube, say on the opposite side from the host, to balance the message load
and avoid the host/cube bottleneck.

* Using non-blocking sends and receives where possible. This requires extensive flow analysis.

" Statically initializing the message descriptors.

In most cases there are tradeoffs so that the modifications would speed some types of algorithms on some
machines, and slow others.

8 Conclusion

This and other experiments indicate that high-level parallel programming languages and environments can

substantially elevate the programmability of n-cubes while still producing efficient code. This is not to say

that parallel programs will always be easier to write and execute more efficiently if written in Poker. An

algorithm that reqires complete connectivity or dynamic creation or destruction of processes does not fit into

the current Poker framework. However, Poker does provide a cleaner approach to writing efficient programs

* for a large class of parallel algorithms.
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