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KINETIC THEORY FOR ELECTROSTATIC WAVES DUE TO
TRANSVERSE VELOCITY SHEARS

INT&PDUCTION
\::>§hear in the flow velocity of a fluid leads to the low frequency and
long wavelength Kelvin-Helmholtz (K-H) instabilit;;?\~ The velocity shear
can be generated in a number of ways. In a plasma the existence of an
inhomogeneous electric field component transverse to the ambient uniform
magnetic field can provide a transverse velocity shear. The evolution of
the K-H instability in this configuration has been extensively studied”.
Recently some space observation;ji and 1laboratory experiment;s?seem to
indicate that ion-cyclotron-like waves are observed for subcritical field
aligned currents and therefore the origin of these waves are somewhat
mysterious. A crucial feature of these observations and experiments was
the presence of a transverse component of a zero order electric field. 1In
order to study the role of the transverse electric fields in the generation
of the ion-cyclotron-like wavegj’ wve suggested a mechanism based on the
coupling of the negative energy ion Bernstein modes (or the ion cyclotron
modes) in the region where the d.c. electric field is localized, with the
positive energy ion Bernstein modes (or the cyclotron modes) in the region
where the d.c. electric field is absent This is similar to the negative
energy wave growth in an inhomogeneous iirror geometry6. In our initial
theory we idealized a typical electric/ field profile by a piecewvise
continuous function for simplicity. T‘e gradients of the electric field
were ignored so as to avoid the K-H fiodes for which the second derivative
!
of the electric field is necessary. (ESHere ve use kinetic theory to obtain
the general dispersion relation rigorously, for the electrostatic
oscillations in a plasma, in the form of an 1integral equation for an
arbitrary electric profile. In various limits we vreduce the integral

equation to second order differential eqguations to obtain the eigenvalues.

The integral equation will be solved in a subsequent paper.

Manuscript approved October 2, 1987.
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THEORY

The equation of motion of a charged particle in a uniform magnetic

field in the z direction and a nonuniform electric field in the x direction

is given by

2 - -
3:5 r = % E(x)x + Qv x 2z, (1)

wvhere Q = eBo/mc is the gyrofrequency, e, m and Bo are the charge, mass and
the ambient uniform magnetic field. The constants of the motion are (i) H
= (vi + v§+ vzz)/z + e¥Y(x)/m, the total energy, where E(x) = - 3¥(x)/3x;
and (ii), Xg = X + vy/Q, vhich is obtained by integrating the y component

of (1). Using vy = Q(Xg - %) 1in the expression for H we obtain the

Hamiltonian for an equivalent one dimensional problem,

2 2
B = vz + K - )22+ ¥ (x) . (2)

Minimizing the potential of (2) we obtain the guiding center position

v, - Vg(E)
Eax+ LB, (3)

another constant of the motion which is an implicit function of Xg and
therefore is not an independent constant of motion. Here VE(E)=—cE(E)/Bo.
In order to recover the fluid K-H modes as the fluid limit of the
kinetic formalism, we will need to construct an equilibrium distribution
function using the constants of motion, such that the equilibrium density
is uniform or nearly so. However, we would also like to be able to study
the more general case of an equilibrium with an arbitrary density profile.

Therefore, we will choose the distribution function to be of the form
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0
£q(&,H) = ny(8)F,(&,H), such that IFod3v = constant. Then we obtain an K

appropriate fo for the study of the classical K-H mode by setting no(E) = cﬂg
constant, and an appropriate fo for the general case by relaxing this
condition. Such a distribution function which 1leads to an equilibrium

density uniform to O(€) for a constant NGy, vhere ¢ (=pi/L) is the smallness ¢%ﬂ

¥
)
. parameter, p; (=vti/Qi) is the ion gyroradius and L is the characteristic ‘

length associated with the external electric field can be found by a Q&“

o
bt
systematic procedure and is given by, ﬁ#ﬂ

£,(5 ) = Nexp [-80 Ja(®), 4) i

where N = no(B/Zn)3/2, B = llvi, v, is the thermal velocity and,

t

g(&) = exp [B[eV(&)/m + vé(a)/z}]n(g)‘l/z X

’
wvhere n(f) =1 + VE(E)/Q. The quantity n parameterizes the magnitude of
the velocity shear. Note that there are two crucial parameters in this (tf
problem; (i) n and (ii) €. Ve will allow nh to be arbitrary but positive >

while assuming £ << 1. The equilibrium distribution can be expressed as,

2 g .2 00
N exp(- B w )exp(- vY)

£,(5,H ) = 2 L 2z : (5) g"

/n(E) X 3

vhere we have expanded the x dependence of (4) around & and neglected terms !

of 0(83) and higher. Here wl2 is,

X
5

-
i
L)

(uy<u§> - —YS—) . (6) "
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wvhere u_ = Vy - <vy> and "< >" indicates time average.

Integrating (5) over all velocities we can show that the equilibrium
density distribution n = no{ 1+ 0(82) }, is wuniform to order €. It is
possible to devise a distribution function with density uniform to any
desired higher order in ¢, but this is not necessary here. For generality,
in the following we shall consider a nonuniform equilibrium density

profile, i.e. ny = no(E).

Now using the definitions,

$(r’, t")

exp {-i(wt’ - kyy')}¢(x’) (7a)

(x’)

1}

Jakg, expciigxyone) (7b)

wvhere ¢ is the electrostatic potential for the perturbed electric field and

linearizing the Vlasov equation, we obtain the perturbed distribution

function

t
£1(x, ¥) = -Bﬁfo[Jdk; exp (i (k) #(ky) + ijdk;¢(k;)(w . kyvg)j&t'A ] . (8)
where, T = t’ - t,

A(t,’x’1y,’z’)

[

exp {i(k; %' kv(y' - y) + k(2'-2) - 1) } ) €))

1 3[0 VE(E)p €an

Vg(i) = Eﬁ(zjfga P Ve (&) - 2n2 + : . (10)
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-1 .
Here ¢ =o/L , and L = ((dno(E)/dE)/no(E)) is the scale length
associated with the equilibrium density profile. In order to evaluate the
time integral in (8) we need the orbits. The x component of (1) gives the
net force in this direction. Since Vy is oscillatory in equilibrium, <0x>

= 0. This leads to the expression for an average equilibrium drift <vy> =

<VE(x)> in the y direction. Now expanding VE around § we obtain,

> = V (E) g (O < v - V(ENZ > 4 0(ed) (11)
v = + v - + £ .
y. B 2fney Y E

Transforming the equation of motion (1) into a frame moving with <vy> iny
direction (i.e., vy 2 uy = vy - <vy>) and to the spatial coordinate & (i.e.
x 2 E) we obtain the transformed equations of motion,

g(&

)
. R A
U= OB 4 e (> - ul)sobg = -, (12)

N <

where we have neglected terms of 0(83) and higher. These equations lead to

(see Appendix I),

N w N
Ve =Y Sind —6;5/2 Sin2¢ , (13a)
. )
u, = - Cos# - L Cos2® (13b)
J’n" 12n
and
WJ. W —
x'-x = - == {Cos [n QT + d>] - cOs¢} . {COS (2(4>+/nszr))-cOsz<b}, (14a)
7o 12n%Q
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v
' 1)es = . . = .
y -y = 53{51n(§+/n91) - S1n¢} —Zzi§/29{51n(2(¢+/n91))- S1n2¢} + <vy>t,(14b)

z-z=Vv,T, (1l4c)

vhere w12=vx2+n(5)u§+VE"(E){<uy2>uy—uy3/3}/92, and Q:VE"(E)WLZ/QZ. Also
$=/nQt+® where & is the velocity space angle at t=0. The oscillatory terms
of the order ¥ in the orbits are not important except in the derivation of
the Jacobian of transformation from the integration variables (x,vx,vy) to
(E,wl,Q) wvhich will be necessary in the following. For simplicity
therefore, we shall ignore the oscillatory terms of 0(W) everywhere except

in the derivation of the Jacobian. This restriction can easily be relaxed.

Using (13) and (14) in (8) we obtain

£1(x,0) = -8 S£ (&) | [dkzexp ik’ x) 6(ky)

J ,(ao’) (w -k V )exp(i-n'(é - a') + k'E - l:XZ£-Sin¢l’])
-Joxg “‘S'JZ = E ' x__nd f ] (15)
nl

[ w -I;ﬂn'Q - ky < vy> - kzvz)

2 2

, ’ ' 12 2 ’ _1 ’ —_
where o’ = kiwl/Q’ kl = kx /n o+ ky/n , o = tan (k x/n/ky)’ ¥ = x+uy/Q

and Jn’ are Bessel functions. The projection of (13) in kx is

ls'.- fo
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’ flkx(x) - -8: .[dk)'( #(k!) Idx £q [exp(—i(kx - k7)x]

J ,(a") J (a)(w - k V ) -
- 2{: n n b4 gexp{i[(k)’( - kx)E + (n" - n)Q+nu—n’a']}]
n’'n @»—I;ﬂn’Q—ky<vy>-kzvz )

P

(16)

The perturbed density is then obtained by integrating the perturbed

- -

distribution function over all velocities

.-
‘e’

Bg ' [ 3 [ 3 ’ T
. n - - e Javdeyay, Jax [arz o0 £ [exp[l(kx—kx)x]—exp L0k E) F] , (17)
; wvhere,
I
_ 3y () ()
) F = (0-k V) — exp[i(n’—n)¢+na—n'm’) . (18)
Y &8 Lo yn'/he-k <v >k v
n’,n yy z 2

Equation (17) is the most general form for the perturbed density for either
ions or the electrons. In the quasineutral 1limit the most general

dispersion relation for the electrostatic waves, in the form of an integral

) equation, is given by Ea Iexp(ikxx)nalkdkX = 0, where « represents the
)
species.
"i
)
]
K Now we transform the integration variables in (17) from (x,vx,vy) to
b (E,wl,Q) using the appropriate Jacobian, which 1in this case is (see
2 : Appendix II) J=~/ﬁwi; and expand the exponentials in x and & around £ and

. 2 .
retain terms up to 0(g”) to obtain.
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§§§+w > _ > exp(—ﬁ(wi+v§)/21
nyp = 2B fag fav, [aw, [Jaeviv) [akpeccy) — " p (L0 -k ) E)s,
X @ 0 O o n
(19)
where,

' V;(E)WE . wlCosé 2waoszﬁ

6= (I-F)(l-l(kx_kx)W)_l(kx B R U
(20)

We shall first obtain the differential equation for the fluid K-H modes as

the fluid limit of (19).

(a) Low Temperature But Arbitrary Shear.

Consider k”=0 and en=0. For a quasineutral plasma the condition that
the net perturbed density (19) vanishes provides the electrostatic
dispersion relation. Further, since k”=0 the electron contribution to the
net perturbed density is ignorable so that the ion perturbed density set
equal to zero leads to the desired general dispersion relation. We shall
now proceed to specialize the general dispersion relation for low
temperature (kypi+ 0). Upon ¢ integration the term proportional to Cos¢ in
G, vanishes and n’ becomes n in (18). Since low temperatures are of
interest we keep n=0,:1 terms in F. Higher harmonics are associated with
higher orders in temperature. The argument of the Bessel functions can be
written as a=(wl/vt)(le)s and, assuming that the factors (le) and (wl/vt)

are less than or of order wunity, we can expand the Bessel functions to

0(82) so that,
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k(v v ) Kk W s
1—F=1—1+y Y £ —y22 1—2——2- - :

LY

Wy 2n°Q W - ne t v

2 20 . , L

v 2 9 2w1 kxkx 21kyw19(kx—kx) '@h

Tk k- Tt 77 : (21) it

4nQ w, - e w "= ng .:

2%,
It is important to note that under these <conditions the terms of order Ez
unity in (1-F) drop out. Therefore, the term proportional to <vy>—Vg = 3?
VE"(w12/292+pi2)/2n2 oce?), vhich is responsible for the K-H hion
instability, along with the other terms of the same order, are the leading E:
terms of (19). This will 1lead to the dispersion differential equation iﬁ;
(22), describing the K-H modes. However, when o0~0(1l), the Bessel functions ")
can no longer be expanded and consequently the role of the 0(82) terms, and o

&

A in particular the VE" term, will diminish in importance. This situation,

.~.
i

which corresponds to cases in which kypiZO(l) (€ may still be small), may

o
’

'i;-‘

[4

lead to a significant change in the character of the mode, and possibly to

by

i

finite gyroradius stabilization of the K-H instability.

In order to obtain the dispersion differential equation for the K-H

modes we need to obtain n,(x)=[n exp(ik_x)dk_, for the ions and set it 5??
1 1kx X X .:
! )
equal to zero. After carrying out the v, integration, pi2 can be factored ﬁt

L]

out and the resulting equation becomes temperature independent in the pi-)O )
g
. . . . . . AN
limit. The kx integration provides a delta function, 2né(x-%&), which makes ﬁy
Fra]
the £ integration trivial and converts the & dependence into x dependence. Y
Thus, performing the § integration after using Idk'x¢(kv’)exp(ik’xa) = ::V
! ' $(&), we obtain the second ovder difterential equation for the K-H modes in :::
§ - N
the zero temperature limit, o]
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2 k. V_(x)
{3—7 - A g5 - BOOKS - LE— c(x) } #x) =0, (22)
X 1
where,
’ ’ 2
2k Vo(x)w, + n(x)Q
A —LE L (23)
wy - n(x)Q
2
B(x)= 1 + Mﬁﬁ% , (24)
wl-n(x)Q
2
C(x) = 5o, (25)
wl—n(x)Q

and w1=w—kyVE(x). Equation (22) 1is the dispersion differential equation
for the fluid K-H modes valid for arbitrary shear strength i.e., for
arbitrary values of VE'/Qi as long as mwO. Starting from the fluid
equations one can also derive (22). It should be noted however, that when
n becomes small, the arguments of the Bessel functions become large. Thus
for n20 the expansion of the Bessel functions for large argument may not be
a good approximation unless the ion temperatures and hence P also becomes
vanishingly small. Thus if n is considered arbitrary then the fluid theory
is valid only when n>0 and the arguments of the Bessel functions are
sufficiently small.

Pritchett and Coroniti7 used the fluid theory to obtain the dispersion
equation for the K-H modes for warm plasmas. They incorporated the
temperature effects through the pressure tensor and arrived at equation

(16) of reference (7) as the dispersion differential equation. If the

temperature related terms (which are included in the factor R in their

paper) are set equal to zero in equation (10) of their paper7, then it
reduces to our equation (22). At this stage, by defining a transformation
10
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U=(w1¢'—ky9¢)/D vhere D=n—(w1/9)2, it can be shown that all the n related
terms can be transformed away and (22) can be expressed in the form of
(34), which represents the classical K-H mode except that ¢(x) is replaced
by U. Thus, although the eigenfunctions are affected, the eigenvalues of
the classical K-H modes remain unaffected by the magnitude of the velocity
shear in the zero temperature limit. This is physically satisfying, since
if the gyroradius is zero and in the absence of an equilibrium x drift,
particles cannot sample the x direction and hence can not experience the
velocity shear irrespective of its magnitude. However, for finite
temperatures, the magnitude of the velocity shear will play a role as
evidenced in the simulation results7 and the experimental results of
Jassby8. Unfortunately in the simple model for the temperature assumed in
the reference (7) this cannot be explained since all the temperature
related terms can also be transformed away7. For arbitrary shears the
temperature correction to the lowest order involves a great many terms and
will be discussed in a subsequent paper. Here we make the weak shear
approximation but treat temperature to be arbitrary and find that the
finite gyroradius stabilization of the k-H modes can be understood and

predicted by the kinetic theory.

(b) Weak Shear But Arbitrary Temperature.

Now we consider the limit where the shear is not strong but temperature
and k” are arbitrary. In this limit, since the the x dependence of the
equilibrium quantities are weak, we can assume kx:kx, in (20) so that G=1-
F. Also for weak shears, n~1 will be considered. For generality we will
also include an ‘equilibrium density profile N(&). The perturbed density

after carrying out the ¢ integration becomes,
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2ne B
ni§)= m: & J&kxexp[ikxx) J&E delwlIszJdkx'Q(kxl)N&{)exp(i(kx,_kx)a].
- —® 0 —®» _©
* 2
(Wy+ Wy= @ ) J7 (o)
.exp[- g(wiwi)){l—z 1 20 o’ 'n “}, (26) .
n W= W5 ne kv,
. *
Here o denotes the species and w - knga L P vhere Wy =
[1]
kyVE pa2/2 and w*a = kyenapaga' In the denominator we have approximated w
. 2 . 2
- ky<vy> =W - 0y, thereby replacing v, by its average value 2vta . Now

the v, and the v, integrations can easily be performed to yield,

+¢n +¢n +w
(x)= *ofa rdk exp(ik_x) [d&n. (&) [dk_’ &(k_’)ex [i(k "k )z,]
RS AL ™ J xEXPLIK, 0 pre X P X X :
- - - 3
2%
Bva
. £
PN
* r‘\.
w1+w2a—wa wl—wza—nga :
A1+ Z - yA — T (by ) s (27) ‘
n /2|k“|Vta lekﬂlvta

where rn(b)=In(b)exp(—b), and In are the modified Bessel functions and Z(Q)

are the plasma dispersion functions. Here b1=pa2(kx2+ky2). Ve can expand

. 2 2 ' 2 2 '
rn in kx Py SO that Tn(bl) ~ I'n(b)+l'n (b)kx Py * , Where Fn =drn/db .
and b=ky2b 2. Since we have consistently retained terms up to 82, ve

o
neglect the terms O(RXApaa) and higher which are of higher order in €.

Using this expansion for I (b;) in (27) ve perform the remaining intergals

to obtain,
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) Po rn(ba) dx2 ":

*

Wy + Wy~ -W,~nR A0
P1a ) (R g (Al ) ] #x) (28) i
Al v * e !
n “ ta vk

where A 2=m v 2/lmn e 2, is the Debye 1length for the species a. The =
o« ata Do~ a

quasineutrality condition |e|(n11 - nle)=0’ leads to the general dispersion sy

differential equation for the electrostic modes in the low shear limit.

Retaining only the n=0 term for the electrons and considering pe2<<pi2 ve o

obtain, ,a“

2 a2
o200 L5+ a0 e 0, (29)

dx

wvhere, A

* .
W+ Wy— ® W - W,-nQ.) o
A(><)=‘Z[1—2 ]Z[ 2 1]1'(b), (30) R
2|k |v. 7|k, |v n
n ntvy N

i
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:": W, + wz-w* «ol—ooz—nszi
“ (x) =1+ Z = z| = T (b) +
V2 |k, |v v2|k, |v
b [ [ ;
::' v
B ) * . v
hE 2 W 2 ]
."'45 W, + * T W - = 18
g _ x{1+[1_“‘ T]z[_l“““]}. (31) ;
Ik, v, Ik, v, :
(3 2 * :
:, Here 1:=Ti/Te, u:mi/me and b=(kypi) . The subscripts on Wy and w , which ]
Ly are for the ions, are suppressed. 3
ah In order to recover the dispersion differential equation for the K-H N
l“
;:‘:.: modes in the weak shear limit we set =0, k,=0 and retain n-0,s1 in (30) "
{
D
" and (31) so that, ‘?
: 3
|. . 2 2 "
,& W)+ Wy , Wy -0, ' :
:.. A(x) = P I‘O(b) + ) 2F1(b) , (32) "
) - -
:‘: 1 2 (oo1 wz) Q "
J\ b
F
oy and, ]
_ o w) (el
A Q(x) =1 - TN I‘O(b) + —5 3 2r1(b) . (33) )
* 1 2 (0, -0, ) - & *
,‘.: 1 2 1 \
‘ i
;" Further, if we take the 1low temperature 1limit (kypi <<1, thus 1'0~(1—b), 'A
-" 14 ’
" ry-b/2, T'=-1, T’ ~1/2) and lov frequency limit (w,>/9,%¢<1) in (32) and A,
]
)
!: (33) and substitute these in (29), we recover the starting differential wy
¢ L
", equation for the K-H modes widely used in the literaturez, 3
» R
2 )
K w
;:. 2 k V. (x) ]
: - x . 0
2 o2 4o et . LB 2 Ly <0 (34) -
dx y “y ! by
) -
Ay A
'. -u:
Vﬂ ::-
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v iy
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:
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For higher temperatures (kypi>1) the Bessel functions can no longer be

expanded and as explained earlier the terms of the order ez,such as w,,

become less important. Neglecting Wy wvith respect to Wy and ignoring the

\ density gradient in (30) and (31) we recover the starting equations for the

higher frequency ion-cyclotron-like modess.

NUMERICAL RESULTS

(i) Kinetic Kelvin-Helmholtz Modes

L v -

We now numerically find the eigenvalues of the general dispersion
¢ differential equation (29), which is still in the weak shear limit, first

in the fluid limit to recover the fluid results for the electric field

- - ey oy

profile E(x)=E0tanh(x/L). We then use the parameters of the simulation

to reproduce those elements of the table (1) of Pritchett and Coroniti

\ which are accessible to the weak shear 1limit of the theory. The
differential equation (29) is solved numerically by a shooting code for the
4 complex eigenvalues, w. We assume WKB nature of the solutions for x3= and
as the boundary condition demand that the energy is outgoing. With ¢VKB
p and ¢’VKB specified at the boundaries for an initial eigenvalue wy» We use
a variable stepsize integrator to obtain ¢ and ¢’ at the origin where the
matching condition is examined. If the matching condition is not satisfied

a nev w is assumed and the process iterates till the eigenvalue is

B - o

obtained with the desired accuracy.

To recover the fluid limic e consider ¢=0.1, sn=0, u=1837,

? VE=(VEO/vi)=1, u=k”/ky=0.0001 and T=3.5. For kypi=0'02’ 0.05 and 0.08 we
) obtain yL/V . -0.1369, 0.1868 and 0.1067.  These results coincide with the
5 fluid calculations and are consistent with the normalised growth rate
E against the dimensionless wavenumber plor for the fluid K-H instability

provided in figure (2) of reference (7). Thus the fluid results are

: o | e e e r
) halien s R R e P e S e 1o



recovered from the kinetic dispersion relation for the parameter range that
are fluidlike.
Ve now use T=1, to match the simulation parameters7. Also since t=1.

= 2 s 5y O .
cs=/2vi vhere Cg =2(Te+Ti)/mi. For VE=/2VE /cs=0.764 we find that the

o—
E =
0.188 and 0.191 while the corresponding eigenvalues for Vﬁ=1.513 are 0.184

eigenvalues of (29) for kyL=O.393 and ¢€=0.19 and 0.38 are given by yL/V

and 0.189. Comparing these with the corresponding elements of the table
(1) in Pritchett and Coroniti7 ve find that our theory is in agreement with
the simulation results7. Figures (la) and (1b) are the eigenfunction and
the profile for the external electric field, for €=0.19 and Vﬁ=0.764. For
moderate shears (£<€0.5) better agreement with the simulation can be
expected if the assumption of weak shear, i.e. kx’=kx, is relaxed. This
will be the subject of a future article. Higher shear values however, are
inaccessible to the theory at the present simplified differential equation
level. For very high shears a dispersion relation in the form of an
integral equation as provided in (17), will become necessary. Also,
uncertainty in the simulation results is expected for higher shears where n
differs significantly from unity (but still positive), unless the initial
loading is in accordance with the equilibrium distribution given in (4).
When shear is weak and a1=VE€ (the peak value of VE'(x)/Q) is small, n is
close to unity. For 1low temperatures (£20), the equilibrium distribution
function (4) can be reduced to a Maxwellian shifted in the y velocity by
the magnitude of ti. E X B drift which is approximately VE(x). Such a
distribution function was used by Pritchett and Coronoti7 for the initial
loading. While acceptable for small o) and especially for low

temperatures, this method may lead to =ignificant relaxation of the initial
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equilibrium for large oy thereby affecting the equilibrium parameters :'::;:
substantially. Thus, for large oy the interpretation of the final :::::
simulation results’ remain dubious. c,
We now study a different electric field profile, E(x)=Eosech2(x/L). ::':%
Once again, to check the fluid 1limit we use €=0.1, 1t=1, p=1837 and :':::“.‘
u=0.0001. Figure (2) is a plot of the growth rates and the real frequency ol
of the K-H modes as obtained from equation (29) (solid lines) against b. S‘,
The dashed lines are the fluid results provided in Drazin and Howard9 in ::
their table (1) under sinuous mode. Good agreement can be expected for ":A"
€<<1. For larger £ however, the W, appearing in the denominator of (32) ‘:E.:.:.:z
and (33) can not be treated as negligible. For larger &, the denominator :&’:Eil:
w, can influence the results by enhancing the growth rates. This important ';
! temperature related effect cannot be predicted by the fluid theory -
including temperature, as given by Pritchett and Coroniti7. :;'E%:
A two dimensional particle simulation10 using an appropriate initial ‘
distribution function to study the ion-cyclotron-like modes is currently in :
progress. Ultimately we shall compare the K-H modes with the ion- ::g:s
cyclotron-like modes5 through numerical simulation as well as through
theory. Thus we will use u=100 which is being used in our simulationlo. "i'.
To study the finite gyroradius stabilization of the K-H modes we plot the &:
growth rates normalised by the ion cyclotron frequency Qi against b, for ‘gj
various values of u in figure (3). We consider t=3.5, £=0.43 and a mild \
density gradient en=—0.05 centered around Xn0=1'33°i such that en=—0.05 for '_"'),EE
xno—pi< X <xn0+°i and O othervise and as the d.c. electric field profile ve :‘:5,
consider E(x):Eosechz(x/L) (see figure (4)). The growth rates of the K-H .-,
modes are expected to reduce due to the density gradient11 but with the &{
mild € used here this decrease 'a: not =ignificant. From figure (3) we :'::,\
see that for a given € the growth rates peak for a particular b. The peak :
17 )
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of the spectrum is localized for b~0.16 (kypi~0.4 and kyL~0.93) and is

maximum for transverse propagation (u=0.0001). As the obliqueness u is
increased, there is a sharp decrease in the peak value along with the
narroving of the spectrum. Beyond u=0.0075 the growth of the K-H mode is

substantially reduced.

(ii) Ion-Cyclotron-Like Modes

Now we consider the case where kypi>1. As explained earlier, in this
domain we can no longer expand the Bessel functions and consequently the
0(82) terms responsible for the K-H modes play only a minor role. For the
range, in which we are now interested, where kypi~3, ve can neglect these
terms for convenience. To explain the ion-cyclotron-like modes we first
resort to the piecewise continuous field profile5 (see figure (5)). This
is an idealization of the actual field profile and we wuse it only to
demonstrate the principles involved and to obtain a good starting
eigenvalue for numerically tracking the eigenvalues for a smooth profile.
For a piecewise continuous profile it is trivial to derive the nonlocal
dispersion relation. Setting w, and w* equal to zeros in (30) and (31), we
use (29) as the differential equation for the modes in question. 1In the
region over which the electric field is localized (we shall refer to this
region as region I) there 1is a Doppler shift in the frequency, i.e.,
w+w1=w—kyVE, while outside this region where the electric field is
nonexistent (region II) there is no shift in the frequency. This is the
essential feature distinguishing the two rvegions. The matching condition

of the logarithmic derivatives of the solutions of (29) at the boundary

x=L/2, provides the nonlocal dizperzion relatinn,
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- KItan(KI/Ze) = iKII , (35)

vhere KIZ=Q(w1)/A(w1) and K11 is identical to Ky if W is replaced by w.
For details we refer to our earlier paperss. The dispersion relation was
solved5 for a wide range of parameters to find growing modes distinct from
the K-H modes. We first give a physical description for the origin of
these modes.

The dispersion relation of the electrostatic ion Bernstein modes isB,

D) = 1~ Tob) - ) 52 n ey (36)
w - n"Q

n>0

vhere k” ~ 0 is assumed. The energy density of these modes are,

aD 4wrnn292 2
U= o= ® Z —2—_-?—2 = w o(w), 0. (37)
n>0 (0" - n"Q")
Clearly, these are positive energy waves. Introduction of an uniform

electric field in the x direction initiates an E X B drift in the y
direction and consequently there is a Doppler shift in the frequency i.e.,
w*w1=a»kyVE. The energy density in the presence of the Doppler shift is,
ur ~ wwlo(wl), vhich can be negative provided w1<0. Now if we consider the
localized field configuration as shown in figure (5), then it is clear that
due to the E X B drift the energy density in the region I becomes negative
while it remains positive in regions II. A nonlocal wavepacket can couple
these two regions so that a flow of energy from the region I into the
region II will enable the wave to 1o, Based on this simple picture we

can predict some gross features of the instability. As for example, using
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the wvave-kinetic description it is possible to obtain the energy balance

condition for the system from which important scalings governing the growth
rate can be predicted. The growth of the wave in region I implies a loss
of energy from that region. By conservation of energy, this must be the
result of convection of energy into region II and any local energy
dissipation (S_) or free energy release (S+) processes in region I. The
rate of growth of the total energy deficit in region I is proportional to
the growth rate y, the wave energy density UI in region I, and the volume
of region I, represented here by the extent in the x direction (L) of
region I times a unit area Ai in the plane perpendicular to x. The rate of
convection through Al is just VGUII’ vhere VG is the group velocity in the
x direction and UII is the wave energy density in region II. Ve can then

write the energy balance condition as,

vULA, = (S-S - V.U 0A (38)

I
vhere S+ and S represent the source and the sink in the region I. The
eigenvalues obtained from (35) are expected to satisfy the energy condition
(38). For the situation presently under consideration we do not have any
external séurce of free energy and since k“~0 the natural dampings are
absent and therefore S+=S_=0. Now it is <clear from (38) that if UI is
negative then y can be positive and hence the growth of the wave is
sustained by convection of energy into the region II from the region I. On
the other hand if UI is positive then the convection of energy out of the
region I would lead to a negative grovth rate and therefore to damping of
the waves. For S+=O, an important - aling «an bhe predicted from (38) i.e.,

y/VG « 1/L which with proper normalizations can be written as Im(kxpi) « g,
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In figure (6) wve plot Im(kxpi) against ¢ and confirm this scaling. 1In
figure (6) other parameters are; V£=2.9, T=1, u=0.0001, u=1837 and the
"growth rates have been maximised in b.

We shall now study the ion-cyclotron-like modes for smooth profiles.

For this we use an electric field profile given by,

Ey

A sinhZ(x/a)+1

E(x) =

P I

vhere A=1/sinh2(x0/a) and x0=L/2. For a»0 (39) represents a "Top Hat"

2

profile which reduces to half of it’s peak value at X=X As a increases

v v
2

g

the profile becomes smoother and ultimately when a=x /sinh—l(l) vhich makes

0
A=1, the expression (39) reduces to E(x):Eosechz(x/a). The shooting code

iy

used for the determination of the eigenvalues can operate best when the
initial guess for the eigenvalue is not too far away from the actual one.
Thus it becomes necessary to use (39) so that in the limit a-»0 we have
excellent guess values obtained analytically from the nonlocal dispersion
relation (35). Starting wvith the eigenvalue for the a0 case we slowly
increase a to track the eigenvalues for the profiles with the desired
smoothness. For b~8 we have to retain n=0,+1,+2,4+3,4+4,+5,+6 harmonics and
the associated plasma dispersion functions in (29) which are evaluated
numerically; thus the computations for each eigenvalue is CPU time
intensive.

In figure (7a)-(7d) we display the transition of the electric field
profile from nearly piecevise continuous to smooth for four different
values for a. Here £=0.3. In figme (8a)-(8d) we display the
corresponding wavepackets. Other parameters are; b=8, 1=3.5, u=0.011,

u=1837, VE=0.6, X 0=1-66p; and € =-0.07 if x_,-0.9p,< x <x 4+0.9p, and zero
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otherwise. The growth rates did not vary much during this transition. For

a=0.1, 0.707, 1.41 and 1.89 the corresponding growth rates normalised by
the ion cyclotron frequency Y/Qi=0.048, 0.05, 0.037 and 0.031. There is
only a 40X reduction in the growth rate from the sharp to smooth profile
and initially in going from a=0.1 to a=0.707 there is a slight increase in
the growth rate. This is in contrast to the K-H instability where the
growth rates are dependent on the second derivative of the electric field
and are therefore very sensitive to the scale size variation.

In figure (9) we provide a plot of the growth rate and the real
frequency of the ion-cyclotron-like modes normalised by the ion
gyrofrequency as a function of b. Here the profile in (39) is used with
a=1.87 and the rest of the parameters are identical to figure (8). VWe find
that the instability is peaked around kypi~3 which for €=0.3 corresponds to
kyL~10 vhich is an order of magnitude larger than the corresponding value
of the peak for the K-H modes. Further for u=0.011 used here, the K-H
modes are expected to be non-existent and thus the domain for dominance for
the two modes can be quite distinct. This contradicts the conclusion in
reference (12) wvhere a simulation based on only one set of parameters
obtained from the idealized field profile5 vas used to conclude that the K-
H mode will always dominate the ion-cyclotron-like modes. Further the
initial loading in the simulation12 (assumed to be similar to that of
reference (7)) is improper since oy for the parameters used was extremely
large (greater than unity), and consequently the simulation12 shoved a
strong relaxation of the initial nonequilibrium velocity profile.

In figure (10) we wuse the parameters for our simulationlo(to be
discussed in a separate article) 1i.o.. p=100, 1=3.5, £=0.43, u=0.038, €,="
0.05 for xno—pi< X <xn0+pi and © othervise and x ):l.j}oi to plot the

nU

growth rate and the real frequency normalised by the ion gyrofrequency.
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Here for completeness we also include the wy term in (29) to compute the
growth rates and use exactly the same d.c. electric field and the density
profiles as was used to produce figure (3). The inclusion of the Wy term
does not change the eigenvalue by much. The peak of the spectrum is around
b~14. In figure (3) we wused the same parameters to conclude that the
growth rate for the K-H modes are reduced significantly for u>0.0075 and
the peak of the spectrum 1is around b-~0.2. Once again the domain of
dominance for the K-H and the ion-cyclotron-like modes are quite distinct.

Finally in figure (11) we provide a plot of the real and imaginary
parts of the eigenfrequency w normalised by the ion gyrofrequency Qi as a
function of Vﬁ, the peak value of the equilibrium E X B drift velocity
normalised by the ion thermal velocity. Here b=10, t=3.5, p=1837, u=0.011,
e=0.3, xn0=1.66pi, €n=—0.07 when xn0—0.9pi< X <xn0+0.9pi and O otherwise.
For the external electric profile we use (39) with a=1.87. Ve see that the
real frequency is almost linearly proportional to VE vhich is in keeping
with the experimental results of Sato et a1.4.
DISCUSSION

We have provided a kinetic theory to study the electrostatic waves that
can be excited in a collisionless magnetized warm plasma by a transverse
velocity shear. For kypi<<1 we recover the fluid K-H modes and when kypi
is increased we find that the growth rates for the K-H modes are reduced
and for large enough kypi the K-H instability is completely damped.
Further, the growth of the K-H modes 1is severely affected by the the
parallel dynamics. It seems that for a collisionless plasma the K-H modes
can grow only for very small k- A= Pvpi becomes of order unity the
expansion of the Bessel functions a1« no fonger possible. Consequently the

terms of 0(82) responsible for the K-H modes diminish in importance. At
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e this point the large kypi ion-cyclotron-like modes dominate. Further,

;Q larger k” and density gradients inhibit the classical K-H wave growth while

both these effects favor the ion-cyclotron-like waves.

; An important feature of the ion-cyclotron-like modes is the fact that !
25» ' the real frequency of these waves are roughly around kyVEO/Z (see figures :
i (9) and (11)). This 1is similar to the K-H waves and therefore the two ' ’N
Rf instabilities cannot be distinguished by the scaling of the real frequency . ;
j& with kyVE. $
The linear dependence of the real frequency of the ion-cyclotron-like '1

f§E modes on the d.c. electric field was not explicitly discussed in our *;
g. previous paperss. This could have contributed to a misunderstanding which \
; led Pritchett12 to conclude that since the modes in his simulation for

pi/L=0.3 and for kypi 0.47 and 0.94 displayed the linear dependence of the

EE real frequency on the equilibrium flow velocity they could not be the ion- i
-- cyclotron-like modes that we have discussed. A similar misunderstanding —g
] was also displayed by Sato et a1.4 in discussing their experimental

'3 results. y

N 4
“} Since the initial electric field profile used in reference (12) was not ii
: in equilibrium, the system immediately relaxed (see Appendix-I, condition i:
\ (A22); here a1=(pi/a)x7E=(2.4)3=7.2 >> 1) to what is shown in figure (4) in
:E reference (12) which is much different from the initial profile given in :?
*: their12 equation (2). In fact the initial profile is characterized by two 5_
; scale lengths L and a with a peak value of about 3vi wvhile the final l:
? relaxed profile is more like a Gaussian or a sechz(x/L) type characterized é;
: by only one scale length L and with a peak value of around 2vi. Also, as :r
i; explained12 the spatial extent [. of the electric field increased during :f

the course of the simulation. Conterati o« lv estimating the broadening of

P

Y,

L only by 20%, and considering that the final profile is approximately
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similar to sech’(x/L) with p,/L=0.25, then the modes at kyp;=0.47 and 0.9
would correspond to kyL=1.88 and 3.76 respectively. These values will be

! larger if the spatial extent is broadened more than the 20% assumed. As ve

. have shown through the analysis of the kinetic K-H modes and Drazin and
Howard9 through the analysis of the fluid K-H modes for shear profile of
the type sechz(x/L), the K-H modes are strongly damped for kyL)l and almost
non existent beyond kyL~2. Thus, the mode at kypi=0.47 can be the tail end
! of the k-H spectrum but the mode at kypi=0.94 seems to be completely out of
the theoretically predicted k-H spectrum_and the growth rate in the second
mode is higher. Hence, the conclusion based on the simulations of
reference (12) that the K-H mode will always dominate over the ion-
cyclotron-like modes for a configuration with a localized electric field
perpendicular to an external magnetic field is at best dubious. However,
\ we do agree with the other conclusion12 that the idealized field profile
(piecevise continuous) used earlier5 to demonstrate the physical principles

involved is not suitable for simulation purposes and that a strong

X relaxation from such a profile to a smoother profile is likely. The fact
‘ that the piecewise continuous field profile is an idealization was
emphasized in our earlier papers. Here we have provided an equilibrium
i distribution (4), which if properly loaded should ensure a good equilibrium
‘ even for moderate shears. Since the equilibrium distribution as provided
; in (4), is an implicit function of & the guiding center position, it is not
)
in a convenient form for initial loading in a particle simulation. For
this purpose we will express (4) in terms of the real position x. From the
definition (3) for & we get,
|
:
.
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E_x=‘_,L9._E_(2

Expanding VE(E) around x we can show iteratively that,

v - Vo(x)  Ve(x)
Y E _ E (v _ 2
X = “Se S (vy= Vg(x))

Comparing (40) and (41) we find that,

v, - V.(x)
? + 0y . (42)

v, -~ VE(E) = n(x

y

By definition uy:vy-<v > and using (42) along with the expression (11) for

<vy>, ve can express uy:(vy—VE(x))/n(x) - 0(82). Also expanding n(§)

around x it can be shown that n(&)=h(x)+0(e). Using these to express wl2

provided in (6), in terms of x we get,

e o o e ‘“;'.'._ &S ’

B ¥,

and therefore the equilibrium distribution expressed in terms of x becomes

2
“41‘.

7.7

=n,f vhere f0”=/6/2nexp(—8v22/2) and

Eo=noforfon
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It should be noted that when expressed in terms of x the nh dependence in
wl2 changes from multiplying the y component of the velocity, to dividing
it. The distribution given in (43) 1is the =zeroth order distribution
function. The correction to order € is given in Appendix-III.

Consider the case where u1=V0/LQ, the peak value of the quantity V '/Q,

E
is much smaller than unity (weak shear). Now n21 and if O(g) corrections
are to be ignored then (43) becomes a Maxwellian shifted by the magnitude
of the E X B velocity in the y direction. Such a distribution was used by
Pritchett and Coroniti7 and is acceptable for weak shears (a1<<1)
especially for low temperatures. To find the correction due to oy we
express l/n(x)=1—VE’/9 along with the assumption that the temperature of

the system will also be affected so that B+8+8B such that 56~0(VE'/Q).

’
Using these approximations and 86=BVE /2Q we can express (43) as,

fo,= 75 exp (- B[ v& + (v,-vpon? ])[usv—fg)—((vy-vE(x))z- v2] ] (44)

0L 2n

The correction term proportional to o) vas also discussed in the reference
(7) but it was not used for the initial loading since it was expected that
the system would make the necessary adjustments and that these would be
small, as long as al<<1. Thus as long as L) is small the use of a shifted
Maxwellian appears to be acceptable, although (44) describes a better
initial distribution. For moderate shears., however, the particle loading

should be in accordance with (43). otherwvise strong relaxation from the

L . 12 . , - .

initial profile will be inescapable. Such strong relaxation from a
nonequilibrium starting condition iz invariably accompanied by substantial
free energy release, which leads ++ 1 inamic srate quite different from

the quiet equilibrium essential for simulation of an instability. A
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further improved initial distribution function with the 0(€) corrections .ﬂﬂ
included, is provided in Appendix-III. "
It should be remarked that in most of the experiment54 and space \“g

. . . . ‘s N
observations3 there exists a magnetic field aligned current in addition to l\?
" "'
the transverse localized electric fields. In the case of an oblique double hath.
layer the magnetic field aligned current can originate due to the d.c. M
electric field component in the direction of the magnetic field provided w

there are some collisions. As for example, in the experiments of Alport et

a1.4 the double layer has a component in the direction of the external -

magnetic field which is larger than the perpendicular component, thereby

ey
providing a large magnetic field aligned current also. Further, in some ﬁgﬁ
recent space observations13 ion-cyclotron-like oscillations have been ‘;$“
reported in conjunction with simultaneous observation of a perpendicular ¢ &
component of a d.c. electric field and a magnetic field aligned current for kﬁ%
situations where the magnitude of the magnetic field aligned current is iﬁi
below the threshold necessary for the excitation of the current driven ion ?.':
cyclotron instabilitylA. A recent study15 on the effect of the 5;’
. e , . A
perpendicular electric field on the current driven ion cyclotron o |
instabilityl4 indicates that the perpendicular component of the electric :;3
field can lower the threshold for the current driven ion cyclotron Ef,;
instability. The necessary condition for the current driven ion cyclotron gg?
instability is that the parallel phase velocity w/k”, of the ion cyclotron b:;j
waves resonate with the parallel electron drift Vd, such that (w—k”Vd)<0. _ \ ﬁ
For subcritical Vd’ (w—k”Vd)>0 and therefore the Landau damping cannot be aﬁ.
invertedlA. For simplicity again consider the idealized field profile as :‘N
gt
given in figure (5). The introduction of the perpendicular component of ?; X
the electric field initiates a E . b dtift and consequently there is a ':

Doppler shift in the frequency w 1i.e., w+w1=w—kyVE in the region I over

f‘\r‘ A ﬂ_'.‘f,.f '."-r'-r~‘—\
NI AN MMM
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which the electric field is localized 1in the perpendicular direction. Now
the necessary condition for the onset of the current driven ion cyclotron
instability in the region I becomes (w1 I d)<O vhich can be satisfied
even though (w—k”Vd) remains positive. Thus the threshold value for the
magnetic field aligned drift Vd necessary for the onset of the current
driven ion cyclotron instability is lowered.

For the cases where there is a magnetic field aligned drift in addition
to the transverse localized electric field, the term S+ in (38) is not zero
and can roughly be estimated (using the local theory) to be proportional to
LUIyl, where the local growth rate in the region I, le_QI/on’ evaluated
at w=w_. QR and QI are the real and the imaginary parts of the local
dispersion relation identical to the expression given in (31) with w, and
w* set equal to zero, and QRw is the w derivative of OR. In the ion rest
frame the field aligned drift Vd provides an additional Doppler shift in

the electron term so that Q is proportional to (wl—k”Vd). Assuming that

I

the field aligned current is also localized within the region I so that

QRw=UI/wr we can write the energy balance condition as,

YLA Up = - (w -k Ve LA (45)

1 Velirhy

We have neglected the ion Landau and cyclotron dampings. First consider

the case where the electric field is not strong enough to make w,<0 and

1
therefore UI>O but Wy is less than . Since w1<w it is possible to have
(wl—kyVE)<O when (w~kyVE)>0 and hence the first term in the right hand side
of (45) provides a growth even for =ubcritical Vd while the convection
leads to damping. Now if w]<0 and concequently UI<0‘ the convection will

lead to growth and the firzt term in the vipht hand side w711l contribute to

damping. However, if k”Vd<O (wvhich can be achieved by keeping Vd constant
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N but changing the direction of parallel propagation or vice versa) growth in 2
" ~
. the region I may be expected from both the right hand terms for (w;- i,
, k“Vd)>0. This can be a 1likely scenario for most of the experiments and '“‘
\ M
3 space observations involving the ion-cyclotron-like oscillations for an %2
0
Y A
u equilibrium that contains a d.c. electric field in addition to a uniform &Q
5. . EN
magnetic field. More details will be provided elsewhere. ‘1!
» v
l..
J
‘ CONCLUSIONS o
[} Do}
Using a kinetic approach we have studied the generation mechanisms for .j‘
s
‘ the electrostatic waves in a magnetized warm plasma including a d.c. “3
:' 'QI_
4 electric field perpendicular to the external magnetic field. Two distinct ss
) '
i Cl
- generation mechanisms are discussed (i) Kelvin-Helmholtz mechanism and (ii) ) |
J
. positive negative energy wave coupling mechanism. The Kelvin-Helmholtz f‘
-] ‘
% mechanism, first discussed about a century agol, depends directly on the by
’ :
[ second derivative of the d.c. electric field while the other mechanisms, %
I depends on the inhomogeneity in the energy density of the waves. The K-H &
; +
: _ ) ) ) ) 3
| instability can dominate for small kypi if the propagation is nearly sse
1 \
!_' perpendicular. For a collisionless plasma the K-H instability is strongly e
& damped even if k” is a tiny fraction of ky. In the theory we have shown ;&f
. &
; that the terms responsible for the K-H wave growth are proportional to >
“~
" >
\ VE (x) and are of order 82. Only when ky°i<<1 the Bessel functions can be ’
expanded for large argument and the order wunity terms drop out thereby ]
o
o LS
. making the order 82 terms primary which then assures the dominance of the Q(
. o
. K-H instability. When kypi is increazed and is of the order of or greater o
i than unity the Bessel functions can no longer be expanded and consequently o
y )
2 . . . . i3
the order €° terms responsible fo:r the [I'-H wvaves can not gain prominence.
J
) At this stage inhomogenecous energ. den<it. diiven moder: dominate. Also, M
) !
the dominance of the K-H modes can be reduced even for small kypi if more
)
7
\
i ﬁbf
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oblique propagation (larger k”) are considered. Here we have also shown

that the inhomogeneous energy density driven modes can tolerate larger k”
Thus the two modes are quite distinct and depending on the parameter range
(system size, temperature, density gradient etc.)one or the other can
dominate.

It should be pointed out that while the interpretation of the
inhomogeneous energy density driven modes 1is quite convincing for the "Top
Hat" like profiles as evidenced in figure (6), it is not so clear cut for
the smooth profiles. As the profile is made smoother additional physics is

introduced through various resonances that are now possible since w, can

1

nowv vary smoothly over a wide range of values as opposed to one constant

value in the region I and a different constant value in the region II for
the "Top Hat" profile. Geometry related effects can also play a role. It
was also noted that as the smoothness of the profile was increased it was
necessary to maintain a very small amount of the density gradient in the
transition zone in which the electric field is reducing to zero, to
preserve the growth rates. This however, makes the model more physical
since in actual experiments (e.g. see Alport et a1.4) a density gradient is
present in the transition zone. It appears that the density gradient acts
as a catalyst by maintaining the growth rate without much affecting the

real frequency, although the exact role that the density gradient plays is

yet to be fully appreciated. The important conclusion however, is the fact

" o (,!
G5
Py

that besides the K-H instability there is another branch that can also grow

with shorter wavelengths and higher frequency in a plasma immersed in a

j‘ r'

PR s

uniform magnetic field with a nonuniform transverse electric field.
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Finally we would like to point ont  that in the small kvpi limit the
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integral equation can be exactly v duoed o the second order ditferential

. R
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equation (22). Thus the second otder differential equation level of
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description to study the nonlocal wave dispersion properties employed in

this paper is more accurate for the K-H modes than the ion-cyclotron-like

@lysyysy

A

modes that grow for large kypi’ For greater accuracy the eigenvalues of

e
'

! the integral equation which will result by wusing (17) as the perturbed

s
S S

- -

density, must be obtained. This will be the topic of a future article.
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y APPENDIX 1 O
il ‘,;.
K In this appendix we provide the derivation of the particle orbits to t.
B 0(82). The x and y component of the equation of motion (1), can be written §

(0
N X

as,

X

; ]
V.= v - W , A

;. b o By - 00 o

1y

& !
. ol

g Vy = “y (A2) NS

A O

W (X,

where VE(X) = - cE(x)/BO. Expressing (Al) in the guiding centre frame &, ;

:‘ . 2 l":\

0 and retaining terms upto 0(€”) we get, *h

W

i\

w !

2
¥ . (vy = VE(E)) 1] 3 d
g b, = 2N (v, - Vp(D) - — V() + 0(e?) (A3) i

ISP,

-

N We now transform (A2) and (A3) to a frame moving with a velocity <vy> in

the y direction, (i.e. vy 2 uy+<vy>) so that,

e

T
h

]

2
u + <v.> - V(&) "
5 v, - sz[n(a)uy e (e (<> - V(D)) - by - < — ) vE(a)] - (4)

(e

o

, X 29

v
Ty G Ry gy
* L

PN AAAS

An expression for <vy> wvas given in equation (11) in the text. Replacing

s vy by uy+<vy> in the right hand side of (11), we find that <vy> - VE(Z) =
VE"(£)<uy2>/292n + 0(83). Substituting this in (A4) and transforming Vy to

»
-
«

x5

5

Sy

- uy+<vy> in (A2), we obtain the equations of motion in the transformed

9

frames to 0(82),

PN

“II‘J"

o

.y
R
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(A3)

<
I
=
—~
m
S~
<
+
rojm
Q
—~
N
=
v
|
(=4
[3~]
f S —

a, = -Qv . (A6)

Note that for a linear field, VE =0 and (A5) and (A6) reduces to a form

very similar to that of the equations of motion for zero electric field

except for the factor n(&) in {AS). For VE'=0 it is fairly easy to solve
the equations of motion and we can obtain uy=Acos@, vhere #=vNQt+® and A is
proportional to v - Thus for VEntO we assume uy=Acos¢+BcosZ¢, vhere
B=0(€2). Differentiating (A6) once and using (A5) for Ox ve get,

. V()
. 2 E 2 2
uy = -9v, = - n()u, - ( wp> - ul ) X (A7)

Substituting uy:AcosQ+Bcos2¢, in the left and the right hand sides of (A7)

we find,

LHS = -n(Z)9°Acos® - 4n(&)9°Bcos2é (48)
" 2
9 9 Vp(8) A

RHS = -n(E)%Acoss - (n(&)2’B - E—7—] cos2e (A9)

vhere we have neglected terms smal.er than 0(82). Comparing the LHS and

the RHS we find that,

".F( LA '
| B = - —-;—~—§ . (A10)
12n(&) @
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Thus,

o o ok g o4

r‘ A
L4

NETS
u_ = Acos?d - - cos2é® , (All)
y 12n(E)R

222 ol

_5
et

. " 2
u - Vo(&)A
v, e gl - Jiasing - B

~ sin2é . (A12)
X e 679

5

X

&
-~

The constant A is still undetermined.

P g
'»‘:"r

/.

w

After multiplying Equation (A7) by &y it can be written as,

b g
.",.

o

.2 2 " 3

U u Vo.(&) , u
{ <o - ( AN <u§>uy ] } -0 . (A13)

o e i o

b

L
-~
L

o
Sk

[ ¥

as,

L8

PR

Using (A6) we can eliminate Gy from (A13) and define a constant w

1

RS

-

7
’?‘,

V()

2 2 Y 2
W= v+ n({)uy - 92 ( T - <uy>uy ) . (A14)

|
|
!

00

aaa A
LSS Y
Fn

£X

Substituting uy and Vo from (Al11) and (Al2) into (Al4) and retaining terms

o

S

up to 0(82) it can be shown that, A=wl//ﬁ. Thus,

S
Ny

;ﬂxﬂﬁb

® 2re

" 2
Ve(&)w]

en(g)>/2¢?

LS

« wls1n¢ -

<
I

sin2¢ (A15)

. .
L

‘
“ "-"l,.'\

9
’

v, v;(a)w'
u, = cosd - - =~ cos2¢d . (A16) o

/(L) 10Ny 0°

P
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With the velocities known it is a simple matter to obtain the

positions,

t!
X' - X = J Vo dx
t
v, V"(E)w2
= - — cos®’ - cosé + ——————5—3 cos2®’ - cos2@ . (Al18)
N(x)Q 12n(8)°Q

Rewriting ¢’ = VNQt’+% = /hQt+®, where T = t'-t and ¢ = /net+¥, ve get,

X' - X = - { cos(/n(E)Qt + ¢) - cos¢ } +

\%

—7—{ cos (2(¢+»/n(£)521)] - cos2® } , (A19)
12n(§)"Q

- " 2 2
where w = VE (E)wl /.

Similarly y’-y can also be obtained. It should be
noted that when n<0, the orbits become unstable.

For computer simulations where a distribution of particles is in
consideratien we can get an order of magnitude restriction necessary for
the stability of the orbit of a typical particle (characterized by a
velocity Ve the thermal velocity and a displacement p, the gyroradius).

From (A3) it is clear that as long as the first term in the right hand side

which is of order v is dominant the form of (A3) is,

t’
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i.= - an(i)x + corrections , (A20) .Qﬁ

where x=(£-x)=(vy-VE(E))/Q. Therefore the restoring force is proportional .jﬂz
to the displacement. This ensures periodic orbits which are stable. On h”
the other hand if the second term in the right hand side of (A3), which is

"
proportional to Vtsz (E)/Qz, dominates then (A3) is of the form, o

Ve(8) &
X = 9—5— X" + corrections . (A21)

The restoring force is now proportional to the square of the displacement.
Hence, the orbits are no longer periodic and therefore become unstable. a%
Thus as long as the second term of (A3) remain smaller than the first term

F
" t
i.e., Vtsz (E)/292<n(£)vt, we can expect stable orbits for the typical 85{

particles. This restriction leads to the condition for stable orbits in a

)
simulation,

2vtn(£)]1/2

Py
R(E) ¢ [ V(O (422) N

"

where R(E) is the 1local radius of curvature (=(|VE(E,)/VE (E)I)l/z). ;b
2

Simplifying (A22) by replacing the guiding center position & by the real -

position x and considering the electric field profiles of the form iy

VE(x)=VEOf(x/L), we can define H(x) =uch that, ;':

2v , PR WAL )

H(x) = + 2ef (0 J ‘ L L) . (A23) R

0
Ve

'

’.';\.\*\\
gy

D>

g

39

]

R

Py L
L -",V‘I‘" Ll aa " s '\l{‘\f """ Ly Oy Vo [ [ -\'d"“ I:\'
S i e o R D e e N T

v Al oLy
{ A W 478, 0.9,



.'..- W %, &, \J \J o 20 . WK M & 5 ‘Rt “Ria'g%y" W UWUN Sab 4 A‘.‘ “‘ 24 e Y LA T \ LAYPAR - IVA. . W . .‘ .‘ « P

(
‘ -
s.l. o
\.i i
20 :
o, - (N
: where x=x/L and €=p/L. 1In order to have stable orbits so as to avoid (or A
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(A
0 P . c s . . . . %
< minimize) relaxation of the initial electric field profile used in a .
': computer simulation, H(x) should be positive for all x. If this condition ':
e,
P C . . . s
\ is violated then the orbits will become unstable and the profile will relax ':
‘\'. .l
1) . . . N
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APPENDIX Il

" W S e

In this appendix we evaluate the Jacobian of transformation from the
coordinates (x,vx,vy) to the coordinates, (E,wl,é). This Jacobian can be

vritten as,

- o -

, ax x ax
ow a¢
! %y, 0 il vioE
:. avx v avx
! J=| 37 = Fr . (B1)
! %y e M lg 8 N
! v v v
' T ET T
; W
¥ v ,® 11g, 9 v, &
N
& Using the definition of § as given in equation (3) in the text we can
' evaluate the elements of the first row so that,
]
1 v 1 v 1 av
n&)- 5 3 - g e - 5 35
) Q 3¢ Q v Q ad
’ 1
' av., av._ av,,
; J - I e Er (B
¥
v av_ av
A A Y
, 13 awl 9
i
o
g wvhere we have suppressed the subscripts. Multiplying the last row by 1/Q

and adding it to the first row we get,
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n(&) 0 0
v v v
X X X
J - T ™, % - (83)
v v v
- A L X
9k v, 1]

Thus the determinant has been considerably simplified and can be expanded

as,

(-]

V. 9V ov_ oV

EY ] 3 8wl '

<

J = n(&)

(3]

vy

Recall that vy=uy+<vy> and using the expressions for . and uy from

(Al15) and (Al6), and using equation (11) from the text for <vy> ve get,

b v;(a)wf 28 5
v. = w,sin® - ————F—5 sin ’ (B5)
X 1 6n(£)3/2Q2

vy Vg(a)wi 28
v = cosd + Vp(8) + ——is ( 1 - cos2é ) : (B6)
Y /n(® 4n(E)“e

The derivatives necessary in (B4) can be easily obtained, and retaining

terms up to 0(82) ve get,

v Vo (&)
52 - sing - B s (B7)
1 In(gy W
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v) VE(E)Vf :
- - sin¢ + ———=> sin2¢ , (B8) A

n(¥&) 6n(E)°Q

Pr g

=)

av,, v;(g)wf
v cosé - — 3753 cos2® ’ (B9)
3n(g)"" e

Q
L-J
i}

£S5

Q
<
W

_Yy _ _cos$ VE(E)WL cos2¢$ )

= + - (B10)
¥Omm anie? ( >

iy o

-i‘k'j}fag?

S

Using (B7-10) in (B4) we obtain,

Pk

S W

o e
x

\ J=- »/n(f.)wl . (B11)

VT N

: il

"

2277

S]™

>

[
-"I’~,‘ 7’7

O
43 »

A AT AT N AT AT R T AT Al AT AR T T e T AT R e At aT s e T N

N T I I I N B T PO - AT I IR . el L L T ~ NS
K ‘\' e e N e e e e N e e e O N P e o, v
':e’t‘e'l.e!‘.v e oty .‘l LR l, * z N ’ 'ﬂ‘f "'¢ n N " N, " % o K g o " . J\‘ 4 % " » ‘ \ " .. K N " !



R N T R T O T T R R TR Ty ‘g p" ), o™ Q 4 4 o PRt

APPENDIX [II

In this appendix we provide an equilibrium distribution function
suitable for initial loading for a particle simulation studing the
electrostatic waves due to an equilibrium field configuration containing an
uniform magnetic field and a perpendicular component of a nonuniform
electric field. We shall include the corrections which are of the order ¢
but ignore the order 82 corrections for the time being. Expanding n(&)
around x wve get n(E):n(x)+(£-x)n’(x)+0(22), vhere n’=VE"/Q. Using (41)
for (&-x) we can write down,

"

v, - V(%) | V(%)
n(® = e+ (Tieg— ) -

e (c1)
Q

Alsﬁ from the expression for uy given in (Al16) we find that the time

average <uy2>=w12/2n(£). Expressed in terms of x, <uy2>=w12(1—(vy—
"

VGO L) /mP(x)€8)/2n(x)+0(e?).  Using this and (C1) in the expression

for w 2 as provided in (6) ve get,

1
2 9 (v - VE(x))2 Vi (v - VE(X))2 V;(X) 2
Vi = Vx * n(x) * (Vy - VE(X))(_E" - n(x) ) I + 0(e%).

(C2)

Using (C2) in the expression for fOi and expanding the 0(€) terms we get,

2
-V
expsq- é V2 + —L——(v E(X))
2] 'x n(x) (
. B 1

/n(x) !
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v (v.-V_.(x)) V. (%)
X y E E 2
(v -V (x)][l " s(— - ] + 0(e )} . (C3)
y E 2 2n(x) 2n2(x)92
If the 0(g) term in (C3) is set equal to zero we recover (43). For even
greater accuracy it is possible to obtain the 0(52) corrections also.
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Fig. 1 — (a) Real and imaginary parts of a typical
eigenfunction for E = Ej tanh (x /L) profile. Here ¢

20 30 40

= 0.19, kyp; = 0.074, Vg = 0.764, p = 1837, u

0.0001 and 7 = |. (b) The external electric field pro-

file for ¢ = 0.19.
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Fig. 2 — The real and imaginary frequencies normalized by Q; for the K —H instabilities for the d.c.
electric field profile given by E = E sech?(x /L) are plotted as a function of b. The solid lines are
the eigenvalues of the equation (29) while the dotted lines are the fluid results given in the reference
(9). Heree = 0.1, 7 =1, u = 1837 and u = 0.0001.
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Fig. 4 — The equilibrium field and density configuration used in the calculations of figure (3).
Here x,0 = 1.33p, ¢, = —0.05 whenx,y — p; < x < x,9 + p; and zero otherwise.
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profile given in the equation (39). Here ¢ = 0.3,
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