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KINETIC THEORY FOR ELECTROSTATIC WAVES DUE TO
TRANSVERSE VELOCITY SHEARS

INTRODUCTION

"- 4hear in the flow velocity of a fluid leads to the low frequency and

long wavelength Kelvin-Helmholtz (K-H) instabilit . The velocity shear

can be generated in a number of ways. In a plasma the existence of an

inhomogeneous electric field component transverse to the ambient uniform

magnetic field can provide a transverse velocity shear. The evolution of

the K-H instability in this configuration has been extensively studied .-

Recently some space observations and laboratory experiments'seem to

indicate that ion-cyclotron-like waves are observed for subcritical field

aligned currents and therefore the origin of these waves are somewhat

mysterious. A crucial feature of these observations and experiments was

the presence of a transverse component of a zero order electric field. In

order to study the role of the transverse electric fields in the generation

of the ion-cyclotron-like waves 'y we suggested a mechanism based on the

coupling of the negative energy ion Bernstein modes (or the ion cyclotron

modes) in the region where the d.c. electric field is localized, with the

positive energy ion Bernstein modes (or the cyclotron modes) in the region

where the d.c. electric field is absent This is similar to the negative

6
energy wave growth in an inhomogeneous iirror geometry . In our initial

theory we idealized a typical electric) field profile by a piecewise/

continuous function for simplicity. T4e gradients of the electric field/
were ignored so as to avoid the K-H,,odes for which the second derivative

of the electric field is necessary. ''Here we use kinetic theory to obtain

the general dispersion relation rigorously, for the electrostatic

oscillations in a plasma, in the form of an integral equation for an

arbitrary electric profile. In vaviou- limits we reduce the integral

equation to second order differentifl ,qwtins to obtain the eigenvalues.

The integral equation will be solved in a subsequent paper.

Manuscript approved October 2, 1987.
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THEORY

The equation of motion of a charged particle in a uniform magnetic

field in the z direction and a nonuniform electric field in the x direction

is given by

d2  e2r = -E(x)x + 2 v x z, (1)dt2 - m

where 2 = eB0/mc is the gyrofrequency, e, m and B are the charge, mass and

the ambient uniform magnetic field. The constants of the motion are (i) H

(v2 + +2 + vi )/2 + eT(x)/m, the total energy, where E(x) = - 8T(x)/Ox;=(x +y+ vz

and (ii), X = x + v y/9, which is obtained by integrating the y component

of (1). Using v y = Q(X - x) in the expression for H we obtain the

Hamiltonian for an equivalent one dimensional 
problem,

H= v2/2 + Q2(X - x)2/ 2 
+ tm V(x) (2)

x g m

Minimizing the potential of (2) we obtain the guiding center position

v - V E(Q(3

another constant of the motion which is an implicit function of X and

therefore is not an independent constant of motion. Here VE(&)=-cE(&)/B.

In order to recover the fluid K-H modes as the fluid limit of the

kinetic formalism, we will need to construct an equilibrium distribution

function using the constants of motion, such that the equilibrium density

is uniform or nearly so. However, we would also like to be able to study

the more general case of an equilihiiim :ith an arbitrary density profile.

Therefore, we will choose the distribution function to be of the form



f0 (&,H) = nO(&)Fo(&,H), such that fFo d 3 v = constant. Then we obtain an

appropriate f0 for the study of the classical K-H mode by setting no() =

constant, and an appropriate f0  for the general case by relaxing this

condition. Such a distribution function which leads to an equilibrium

density uniform to 0(C) for a constant no, where c (=Pi/L) is the smallness

parameter, pi (=vti/2i) is the ion gyroradius and L is the characteristic

length associated with the external electric field can be found by a

systematic procedure and is given by,

f0 (, H )= N exp [-OH ]g(&), (4)

where N = n0(/2n)3/2, S = 1/vt, vt is the thermal velocity and,

g( = exp [ {e'()/m + V2(&)/2 ) 1/2

where f( ) = 1 + VE(&)/Q. The quantity n) parameterizes the magnitude of

the velocity shear. Note that there are two crucial parameters in this

problem; (i) l and (ii) c. Ve will allow n1 to be arbitrary but positive

while assuming c << 1. The equilibrium distribution can be expressed as,

N exp(- w2 )exp(-§ v)
f (&, 2 e- 2 (5) 0

where we have expanded the x dependence of (4) around E and neglected terms

of 0(C ) and higher. Here wi2 is,

2 E2 +'r(Q)u2  + ( U < > (6)
I = x  Y 2 3 yy

3
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where uy= v y - <v y> and I'< >11 indicates time average.

Integrating (5) over all velocities we can show that the equilibrium

density distribution n = no( 1 + o(C 2) ), is uniform to order c. It is

possible to devise a distribution function with density uniform to any

desired higher order in c, but this is not necessary here. For generality,

in the following we shall consider a nonuniform equilibrium density

profile, i.e. n 0 = n0 ().

Now using the definitions,

(r', t') = exp (-i(wt' - k yy'))V(x') (7a)

Vx') = kx expikxx') (kx )  (7b)

where f is the electrostatic potential for the perturbed electric field and

linearizing the Vlasov equation, we obtain the perturbed distribution

function

t

eQ
f (x, V-) = m x0[dk exp(i(k'x))*(k') +-fkV ( kyVg) fdt'A ] (8)

where, t = t' - t

A(t',x',y',z') = exp i(k' x' + kv(Y' -y) + kz'-Z) - ut) , (9) .,'2

x V z ywhere, T = t, + t10

= l(ljf Q exp V x E(y,) + (zo) ""9
o 2n
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Here Cn=p/Ln , and L = ((dn1()/d)/no(M))-1 is the scale length

associated with the equilibrium density profile. In order to evaluate the

time integral in (8) we need the orbits. The x component of (1) gives the

net force in this direction. Since vx is oscillatory in equilibrium, <x
>

= 0. This leads to the expression for an average equilibrium drift <vy> =

<VE(x)> in the y direction. Now expanding VE around & we obtain,

V E(M2)
<v y2> = VEM +2T() < (vy - VE(M)) > + 0(C3) (11)

Transforming the equation of motion (1) into a frame moving with <v > in yy

direction (i.e., vy 4 uy = vy - <v y>) and to the spatial coordinate & (i.e.

x 4 ) we obtain the transformed equations of motion,

vx ;Q +l( &)U <u2> - Uy ; 6 -Qv (12)
x y yQ y y x

where we have neglected terms of 0(C ) and higher. These equations lead to

(see Appendix I),

Nor

vx w Sine Sin2, (13a)v x  3 i Sn 6/2,. %

6wi

u = Cosl - w Cos2a (13b)

y 12n

%A.

and

W9

2 (x'-xCos T +0 CoO + ' ~os2(0+v'VQt)J-Cos2$ , (14a) ,

5
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y - w 1 Sin(vwIQx) Sin (2(i+t -?)I- Sin2f) + <v >x,(14b)

I -y =-Sn- /2 J ( y

z -z = v - , (14c)

2=2 2 "s {U2>UU33} 2 )w2/ 2"

where wi2 vx +
f(&)Uy +VE (&)(<u >u /3)/Q 2  and w=V E ()w /9 Also

#=-VQt+9 where 4 is the velocity space angle at t=O. The oscillatory terms

of the order 0 in the orbits are not important except in the derivation of

the Jacobian of transformation from the integration variables (XVxVy) to

which will be necessary in the following. For simplicity K

therefore, we shall ignore the oscillatory terms of O(Q) everywhere except

in the derivation of the Jacobian. This restriction can easily be relaxed.

Using (13) and (14) in (8) we obtain -,

f~~ ~ oxV- eL (,H dk~exp(ikI xl+(kl) -e
k w

JJ, (a'Z (w - k V )exp(i[n'(4 - ') + kx- '--SintJJ
-dxx "()(15)

n' W -FV"I n' 9- k y < v y> - kzz) Z)

where a,' = k'wi/Q, k2 ' 2 + k2/,2 ,  tan - (' x/ky), = x+u /

x y y y

and J n are Bessel functions. The projection of (15) in k is

xr N

' .%

* t, t'



f ~ jXk f(k') judX f -x(- k, )xJ

I
J, I(cy') J n ()((O k yVg) k + n1-nl~

-~n (wn <V>kY(y y >nk v

(16)

The perturbed density is then obtained by integrating the perturbed

distribution function over all velocities

nk - e md Jdv dvdxdkl4*(k')fo[x ~x-xxepik- F] (17)
lk x =  - 1 x x x

where,

F = (cv-kV) n n a)exp(i(n'-n)f+nx-n' 'J (18)
yg n -n'/lQ-k <v >-k v

n',n Y y z z

Equation (17) is the most general form for the perturbed density for either

ions or the electrons. In the quasineutral limit the most general

dispersion relation for the electrostatic waves, in the form of an integral

equation, is given by E. fexp(ik xx)nlkdkx = 0, where ot represents the

species.

Now we transform the integration variables in (17) from (x,v xv y) to

(M,w,$) using the appropriate Jacobian, which in this case is (see - -

S

Appendix II) J=-/rw; and expand the ,:-:ponentials in x and [ around and

retain terms up to O(cL) to obtain.

7
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where, (9

G 2 2 2

(1-F)(1-i(k--k x ) E(w" v. ( - (kx -kx) "rkQ2

(20) 54

We shall first obtain the differential equation for the fluid K-H modes as .

the fluid limit of (19).

(a) Low Temperature But Arbitrary Shear.

Consider kll=0 and En=O. For a quasineutral plasma the condition that !

the net perturbed density (19) vanishes provides the electrostatic

dispersion relation. Further, since kll1=0 the electron contribution to the £i[A

net perturbed density is ignorable so that the ion perturbed density set "

equal to zero leads to the desired general dispersion relation. We shall .

now proceed to specialize the general dispersion relation for low 

temperature (ky B. 0). Upon integration the term proportional to Cos in

y1

G, vanishes and n' becomes n in (18). Since low temperatures are of•'_.
interest we keep n=0,dl terms in F. Higher harmonics are associated with

higher orders in temperature. The argument of the Bessel functions can be

written as d=(W/Vt)(kiL) and assuming that the factors (kL) and (W/Vt)

are less than or of order unity. e can expand the Bessel functions to

0(e 2 ) so that,

y. A

8 '

Gvnihsan ' eoesn in (8. icelwtepraue aeo
.,-ntees we.-,,, ,' ,, ,,.. , kee =, term .... F.. .Hi.-h.r harmnie are asoiae with... -. - -. . ....
%~ ~ hge orer in tempera: ... ' ture,?-.,' .The" arumn .... .the--".' Bess . fucton c-an .'.' be%"''''. %'.'



[ k (<v>V k2 2

1-F =1- I+ - 2 2 1 2 -12 2 2 2 I J 2

IN

S k2 2w 2kxk' 2ikywlS(k'-k )
w ix 2 ,x 2 2 x J (21)4 2 xk W 12_ VjQ2 +  1l2 _ rJ2

It is important to note that under these conditions the terms of order

unity in (1-F) drop out. Therefore, the term proportional to <v >-V =

VE, (w2/22 +  2 22
E(w2 +pi )/2n 2  _ O( 2) which is responsible for the K-H

instability, along with the other terms of the same order, are the leading

terms of (19). This will lead to the dispersion differential equation

(22), describing the K-H modes. However, when a-O(l), the Bessel functions

can no longer be expanded and consequently the role of the O(c2 ) terms, and

in particular the VE" term, will diminish in importance. This situation,

which corresponds to cases in which ky pi>O(1) (c may still be small), may

lead to a significant change in the character of the mode, and possibly to

finite gyroradius stabilization of the K-H instability.

In order to obtain the dispersion differential equation for the K-H

modes we need to obtain nl(x)=fnlkx exp(ikxx)dkx, for the ions and set it
2

equal to zero. After carrying out the w1 integration, pi can be factored

out and the resulting equation becomes temperature independent in the pi-O

limit. The k integration provides a delta function, 2n8(x-E), which makesx

the i integration trivial and converts the . dependence into x dependence.

Thus, performing the i integration after using fdk'l (k ')exp(ik'xf)=

( ) , we obtain the second order 'lii ,,t n i ;] equation for the K-H modes in

the zero temperature limit.

'p.

9 i
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d2 A(x) B(x)k' - (x) *(x) =0 , (22)dx 2  dy W1

where,
2 kyVE(X) 1 + YI(x)Q 2  (-

W 2 2 ' (23)
f1- l(x)Q2

2(Cn( x) -1)9
B(x)= 1 + 2 - 2 , (24)

1%

C(x) =2 S 2x) 2  (25)

and wl=C- kyVE(x). Equation (22) is the dispersion differential equation

for the fluid K-H modes valid for arbitrary shear strength i.e., for

arbitrary values of VE'/9 i as long as n>O. Starting from the fluid

equations one can also derive (22). It should be noted however, that when

Y1 becomes small, the arguments of the Bessel functions become large. Thus

for 11-O the expansion of the Bessel functions for large argument may not be

a good approximation unless the ion temperatures and hence pi also becomes

vanishingly small. Thus if 1 is considered arbitrary then the fluid theory

is valid only when 1>0 and the arguments of the Bessel functions are

sufficiently small.

Pritchett and Coroniti used the fluid theory to obtain the dispersion

equation for the K-H modes for warm plasmas. They incorporated the

temperature effects through the pressure tensor and arrived at equation

(16) of reference (7) as the dispersion differential equation. If the

temperature related terms (which are included in the factor R in their

paper) are set equal to zero in £quati,II (16) of their paper then it

reduces to our equation (22). At this stage, by defining a transformation

10
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where D=r-( 1/) 
2 , it can be shown that all the 11 related

terms can be transformed away and (22) can be expressed in the form of

(34), which represents the classical K-H mode except that +(x) is replaced

by U. Thus, although the eigenfunctions are affected, the eigenvalues of

the classical K-H modes remain unaffected by the magnitude of the velocity

shear in the zero temperature limit. This is physically satisfying, since

if the gyroradius is zero and in the absence of an equilibrium x drift,

particles cannot sample the x direction and hence can not experience the

velocity shear irrespective of its magnitude. However, for finite

temperatures, the magnitude of the velocity shear will play a role as

evidenced in the simulation results 7 and the experimental results of

Jassby8 . Unfortunately in the simple model for the temperature assumed in

the reference (7) this cannot be explained since all the temperature
7

related terms can also be transformed away . For arbitrary shears the

temperature correction to the lowest order involves a great many terms and

will be discussed in a subsequent paper. Here we make the weak shear

approximation but treat temperature to be arbitrary and find that the

finite gyroradius stabilization of the k-H modes can be understood and

predicted by the kinetic theory.

(b) Weak Shear But Arbitrary Temperature.

Now we consider the limit where the shear is not strong but temperature

and k11 are arbitrary. In this limit, since the the x dependence of the

equilibrium quantities are weak, we can assume k x=k in (20) so that G=1-

F. Also for weak shears, 1- will be considered. For generality we will

also include an equilibrium density ptofile N(). The perturbed density

after carrying out the * integration becomes,

i- l



+ +0 +0 +M +0

nix= a dkxexp (ik x) fd& fdw w fdvzjdkx' $(kx' )N&)exp (i(kx'-kx)&).

-O 0 -Q -o o

.exp( 2 (w/+v2,) { - . .1+ toot , (26)
n 1 2 (x r z-kz

H e r e t d e n o t e s th e s p e c i e s a n d ) - k y V g ot = W 1  + )2 CC Co w h e r e w 2 ' I

kyV E P 2/2 and W* = k p . In the denominator we have approximated to

- ky <vy> = wl - o)2, thereby replacing w 2 by its average value 2v 2. Now

the w1 and the v. integrations can easily be performed to yield,

+M +M +0

nl (x)- - k kexp(ik x) d 'no(&) kx ' t(k x ' )exp (i(k x ' - ))

where r n(b)=I n(b)exp(-b), and I n are the modified Bessel functions and Z(Q) ,

are the plasma dispersion functions. Here bl= 2 (kx2+ky2 ) . We can expand ,

2 2 2 2=d /d. .,: .r n in k X Pa so that r n(b )  r n(b)+r n (b)k = +a ..... . where r n =rn /b.2 2 [
and b=k y 00, . Since we have consistently retained terms up to C '- we

neglect the terms 0(kx4 4) and higher which are of higher order in c.

Using this expansion for r(bl in C'7) ,, perform the remaining intergals e.W

to obtain,

12
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Wx) 1_ + 02 W) _____ w o 9a)2rI(b )d2

n2cc 2tI n !2'ko Ivt dx 2

+ + " 1 2cc0 z( a) n -,- r (b) ,x) , (28)

where X 2=m vta2 A OMe 2 , is the Debye length for the species o. The

quasineutrality condition lel(nii - nle)=O, leads to the general dispersion

differential equation for the electrostic modes in the low shear limit.

Retaining only the n=0 term for the electrons and considering e2 <<i2 we

obtain,

pA(x) 2 + 0(x) }(x) =0 (29)

where,

A(x) Z r n (b), (30)

n VTk1 V V. 1'

13
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and,

Q(x) : 1 + * Z( ,I2k1] r n(b) +

W 2  + w )2
W- i+ - _+ :, -- I

a + n 3 o (31)
AVx - 11lk 2  0v e 2ii Ive)

and, 22 *

1- an 0b(k bi) 2The1

22

Here =Ti /Te, r=m i //m and lo freque subscripts on w2 and ( which

are for the ions, are suppressed.

In order to recover the dispersion differential equation for the K-H

modes in the weak shear limit we set w* =0, k l=O and retain n=O,+l in (30)

and (31) so that,

2 2

(x) -~b + 1 _22 2 2r(b) . (32)

equation for the K-H modes widely used in the literature 2
,

( 2d2  2 &vE l- 2~

a nd,- pi + i p (x 0. (34)

dx 2 Y I

1 2

, " " *%.*i* w',"' °.','' -". ' '..' . ,,' -'' . %V'' . % ' . ' " '%-: " ,"", ,. . ,, . -. 5..% .% .",', ,, , . -' % %



For higher temperatures (ky pi>l) the Bessel functions can no longer be

expanded and as explained earlier the terms of the order 2,such as 02t

become less important. Neglecting w2 with respect to w and ignoring the

density gradient in (30) and (31) we recover the starting equations for the

5
higher frequency ion-cyclotron-like modes

NUMERICAL RESULTS

(i) Kinetic Kelvin-Helmholtz Modes

We now numerically find the eigenvalues of the general dispersion

differential equation (29), which is still in the weak shear limit, first

in the fluid limit to recover the fluid results for the electric field

profile E(x)=E0 tanh(x/L). We then use the parameters of the simulation7

to reproduce those elements of the table (1) of Pritchett and Coroniti
7

which are accessible to the weak shear limit of the theory. The

differential equation (29) is solved numerically by a shooting code for the

complex eigenvalues, w. We assume WKB nature of the solutions for x-+- and

as the boundary condition demand that the energy is outgoing. With *WKB

and C'WKB specified at the boundaries for an initial eigenvalue w0, we use

a variable stepsize integrator to obtain f and 0' at the origin where the

matching condition is examined. If the matching condition is not satisfied

a new w is assumed and the process iterates till the eigenvalue is

obtained with the desired accuracy.

To recover the fluid limit we consider c=0.1, c n=0, u=183 7,

0
VE=(VEO/v1)=l, U=kll/ky=0.0001 and t=3.5. For kyp.=O.O2, 0.05 and 0.08 we

obtain yL/V EO=.1369, 0.1868 and 0.1067. These results coincide with the

fluid calculations and are consistent with the normalised growth rate

against the dimensionless wavenundii pl , I for the fluid K-H instability

provided in figure (2) of reference (7). Thus the fluid results are

15
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recovered from the kinetic dispersion relation for the parameter range that

are fluidlike.

7
We now use T=1, to match the simulation parameters . Also since T=i.2I

cs=/2vi where cs 2=
2 (Te+Ti)/mi•  For VE= 2VEO/cs=0.764 we find that the

eigenvalues of (29) for k yL=0.393 and C=0.19 and 0.38 are given by yL/VEO=

0.188 and 0.191 while the corresponding eigenvalues for V E=1.513 are 0.184

and 0.189. Comparing these with the corresponding elements of the table

(1) in Pritchett and Coroniti 7 we find that our theory is in agreement with

the simulation results 7 . Figures (la) and (lb) are the eigenfunction and

the profile for the external electric field, for c=0.19 and VE=0.764. For

moderate shears (c<0.5) better agreement with the simulation can be

expected if the assumption of weak shear, i.e. kx =kx, is relaxed. This

will be the subject of a future article. Higher shear values however, are

inaccessible to the theory at the present simplified differential equation

level. For very high shears a dispersion relation in the form of an

integral equation as provided in (17), will become necessary. Also,

uncertainty in the simulation results is expected for higher shears where n

differs significantly from unity (but still positive), unless the initial

loading is in accordance with the equilibrium distribution given in (4).

When shear is weak and ci.=VEE (the peak value of VE (x)/Q) is small, n is

close to unity. For low temperatures (c-)0), the equilibrium distribution

function (4) can be reduced to a Maxwellian shifted in the y velocity by

the magnitude of t.-? E X B drift which is approximately VE(x). Such a

7
distribution function was used by Pritchett and Coronoti for the initial

loading. While acceptable for small (X and especially for low

temperatures, this method may lead to .;ignificant relaxation of the initial

16 S

..... ..... .
Oz



equilibrium for large al thereby affecting the equilibrium parameters

substantially. Thus, for large 1' the interpretation of the final

simulation results 7 remain dubious.

We now study a different electric field profile, E(x)2Esech2(x/L) .

Once again, to check the fluid limit we use c=0.1, x=1, p.f=1837 and

u=O.OO01. Figure (2) is a plot of the growth rates and the real frequency

of the K-H modes as obtained from equation (29) (solid lines) against b.

The dashed lines are the fluid results provided in Drazin and Howard9 in

their table (1) under sinuous mode. Good agreement can be expected for

c<<1. For larger c however, the 02 appearing in the denominator of (32)

and (33) can not be treated as neglgible. For larger c, the denominator

(2 can influence the results by enhancing the growth rates. This important

temperature related effect cannot be predicted by the fluid theory

including temperature, as given by Pritchett and Coroniti7.
10

A two dimensional particle simulation using an appropriate initial

distribution function to study the ion-cyclotron-like modes is currently in

progress. Ultimately we shall compare the K-H modes with the ion-

cyclotron-like modes5  through numerical simulation as well as through

10theory. Thus we will use M=100 which is being used in our simulation 0
.

To study the finite gyroradius stabilization of the K-H modes we plot the

growth rates normalised by the ion cyclotron frequency 2i against b, for

various values of u in figure (3). We consider T=3.5, c=0.43 and a mild

density gradient cn=-0.05 centered around xn0=l .33p i such that cn=-0.05 for

Xn-pi < x <xn+ i and 0 otherwise and as the d.c. electric field profile we

2consider E(x)=E0sech (x/L) (see figure (4)). The growth rates of the K-H

11modes are expected to reduce due t- the density gradient but with the

mild cn used here this decrease ,'; i i gn i ificant. From figure (3) we

see that for a given c the growth rates peak for a particular b. The peak
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of the spectrum is localized for b-0.16 (k yPi-0.4 and k yL-0.93) and is

maximum for transverse propagation (u=O.O001). As the obliqueness u is

increased, there is a sharp decrease in the peak value along with the

narrowing of the spectrum. Beyond u=0.007 5  the growth of the K-H mode is

substantially reduced.

(ii) Ion-Cyclotron-Like Modes

Now we consider the case where k yPi>l. As explained earlier, in this

domain we can no longer expand the Bessel functions and consequently the

0(c2) terms responsible for the K-H modes play only a minor role. For the

range, in which we are now interested, where k y Pi-3, we can neglect these

terms for convenience. To explain the ion-cyclotron-like modes we first

resort to the piecewise continuous field profile5 (see figure (5)). This

is an idealization of the actual field profile and we use it only to

demonstrate the principles involved and to obtain a good starting

eigenvalue for numerically tracking the eigenvalues for a smooth profile.

For a piecewise continuous profile it is trivial to derive the nonlocal

dispersion relation. Setting w2 and w equal to zeros in (30) and (31), we

use (29) as the differential equation for the modes in question. In the

region over which the electric field is localized (we shall refer to this

region as region I) there is a Doppler shift in the frequency, i.e.,

Wl=-kyVE, while outside this region where the electric field is

nonexistent (region II) there is no shift in the frequency. This is the

essential feature distinguishing the two regions. The matching condition

of the logarithmic derivatives of the solutions of (29) at the boundary

x=L/2, provides the nonlocal disprli!ln 1atinn.

18
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- KItan(Kl/2c) = iKl1  , (35)

762I
where K2 =Q(w 1 )/A(w 1) and KII is identical to KI  if W is replaced by w.

5For details we refer to our earlier papers . The dispersion relation was

solved5 for a wide range of parameters to find growing modes distinct from

the K-H modes. We first give a physical description for the origin of

these modes.

The dispersion relation of the electrostatic ion Bernstein modes is
5

D(w) = 1 - r0 (b) - 7.2 22 2
2 rn(b) (36)

0> (0 nQ

where kll - 0 is assumed. The energy density of these modes are,

U - D w 0  4wr nn2Q2  _2a(w), Or>0. (37)S( 2 - n (2n2Q 2 )2J
n00

Clearly, these are positive energy waves. Introduction of an uniform

electric field in the x direction initiates an E X B drift in the y

direction and consequently there is a Doppler shift in the frequency i.e.,

W--+W=o-kyVE. The energy density in the presence of the Doppler shift is,
1 y E %

U' - WWa(ol, which can be negative provided w <0. Now if we consider the 0

localized field configuration as shown in figure (5), then it is clear that

due to the E X B drift the energy density in the region I becomes negative

while it remains positive in regions II. A nonlocal wavepacket can couple

these two regions so that a flow of energy from the region I into the

region II will enable the wave t,, Based on this simple picture we

can predict some gross features of the instability. As for example, using
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the wave-kinetic description it is possible to obtain the energy balance

condition for the system from which important scalings governing the growth

rate can be predicted. The growth of the wave in region I implies a loss -

of energy from that region. By conservation of energy, this must be the

result of convection of energy into region II and any local energy

dissipation (S_) or free energy release (S+) processes in region I. The

rate of growth of the total energy deficit in region I is proportional to

the growth rate y, the wave energy density UI in region I, and the volume

of region I, represented here by the extent in the x direction (L) of

region I times a unit area AI in the plane perpendicular to x. The rate of

convection through Ai is just VGUII, where VG is the group velocity in the

x direction and UII is the wave energy density in region II. We can then

write the energy balance condition as,

YUILAI = (S-S- VGUII)Ai , (38)

where S and S represent the source and the sink in the region I. The
+ -

eigenvalues obtained from (35) are expected to satisfy the energy condition

(38). For the situation presently under consideration we do not have any

external source of free energy and since k(1 -O the natural dampings are

absent and therefore S +=S_=O. Now it is clear from (38) that if UI is

negative then y can be positive and hence the growth of the wave is

sustained by convection of energy into the region II from the region I. On Z.',
5-

the other hand if UI is positive then the convection of energy out of the

region I would lead to a negative ,vnwth rate and therefore to damping of

the waves. For S =0, an important AIi i, -in he predi:ted from (38) i.e.,

Y/VG 1/L which with proper normalizations can be written as Im(k xPi) .

20
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In figure (6) we plot Im(kxPi ) against c and confirm this scaling. In- ,

figure (6) other parameters are; VE= 2 .9 , T=1, u=O.O001, P=1837 and the

growth rates have been maximised in b.

We shall now study the ion-cyclotron-like modes for smooth profiles.

For this we use an electric field profile given by,

E(x) 0 (39)
A sinh 2(x/a)+l

where A=l/sinh 2(x0 /a) and x0=L/2. For a-)O (39) represents a "Top Hat"

profile which reduces to half of it's peak value at x~xO. As a increases

the profile becomes smoother and ultimately when a=x0 /sinh- (1) which makes

2A=1, the expression (39) reduces to E(x)=E0sech (x/a). The shooting code

used for the determination of the eigenvalues can operate best when the

initial guess for the eigenvalue is not too far away from the actual one.

Thus it becomes necessary to use (39) so that in the limit a-+O we have

excellent guess values obtained analytically from the nonlocal dispersion

relation (35). Starting with the eigenvalue for the a0 case we slowly

increase a to track the eigenvalues for the profiles with the desired

smoothness. For b-8 we have to retain n=O,±l,±2,±3,±4,±5,±6 harmonics and

the associated plasma dispersion functions in (29) which are evaluated

numerically; thus the computations for each eigenvalue is CPU time

intensive.

In figure (7a)-(7d) we display the transition of the electric field

profile from nearly piecewise continuous to smooth for four different

values for a. Here c=0.3. III fi ,,,e (8a)-(8d) we display the

corresponding wavepackets. Othel parameters are; b=8, t=3.5, u=0.011,

W=1837, iVE=0. 6, x nO=l1.66p i and c =-0.07 if XnO-O9pi< x <Xno+O. 9pi and zero I
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ip
otherwise. The growth rates did not vary much during this transition. For

a=0.1, 0.707, 1.41 and 1.89 the corresponding growth rates normalised by

the ion cyclotron frequency y/91=0.048, 0.05, 0.037 and 0.031. There is

only a 40% reduction in the growth rate from the sharp to smooth profile

and initially in going from a=0.1 to a=0.707 there is a slight increase in

the growth rate. This is in contrast to the K-H instability where the

growth rates are dependent on the second derivative of the electric field

and are therefore very sensitive to the scale size variation.

In figure (9) we provide a plot of the growth rate and the real

frequency of the ion-cyclotron-like modes normalised by the ion

gyrofrequency as a function of b. Here the profile in (39) is used with

a=1.87 and the rest of the parameters are identical to figure (8). We find

that the instability is peaked around kypi-3 which for c=0.3 corresponds to

k L-l0 which is an order of magnitude larger than the corresponding value
y

of the peak for the K-H modes. Further for u=0.0ll used here, the K-H

modes are expected to be non-existent and thus the domain for dominance for

the two modes can be quite distinct. This contradicts the conclusion in

reference (12) where a simulation based on only one set of parameters

obtained from the idealized field profile5 was used to conclude that the K-

H mode will always dominate the ion-cyclotron-like modes. Further the

inital ladig inthe12
initial loading in the simulation (assumed to be similar to that of %.'

reference (7)) is improper since cc for the parameters used was extremely G

large (greater than unity), and consequently the simulation1 2 showed a

strong relaxation of the initial nonequilibrium velocity profile.

In figure (10) we use the parameters for our simulation 1(to be 0

discussed in a separate article) i.".. u=10, [=3.5, E=0.43, u=0.038, c=-

0.05 for XnOPi< x <Xn+ pi and o nihei,.ise and xno=l.33pi to plot the

growth rate and the real frequency normalised by the ion gyrofrequency.

22
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Here for completeness we also include the ( 2  term in (29) to compute the %

growth rates and use exactly the same d.c. electric field and the density

profiles as was used to produce figure (3). The inclusion of the w2 term

does not change the eigenvalue by much. The peak of the spectrum is around

b-14. In figure (3) we used the same parameters to conclude that the

growth rate for the K-H modes are reduced significantly for u>0.0075 and

the peak of the spectrum is around b-0.2. Once again the domain of

dominance for the K-H and the ion-cyclotron-like modes are quite distinct.

Finally in figure (11) we provide a plot of the real and imaginary

parts of the eigenfrequency w normalised by the ion gyrofrequency 9. as a

function of VE9 the peak value of the equilibrium E X B drift velocity

normalised by the ion thermal velocity. Here b=lO, T=3.5, p=1837, u=O.Oll,

c=0.3, XnO=l. 6 6Pi, n=-O.O7 when xnO-0.90i< x <xnO+0.9pi and 0 otherwise.

For the external electric profile we use (39) with a=1.87. We see that the

real frequency is almost linearly proportional to VE which is in keeping

with the experimental results of Sato et al. 4 .

DISCUSSION

We have provided a kinetic theory to study the electrostatic waves that

can be excited in a collisionless magnetized warm plasma by a transverse

velocity shear. For k yPi<<l we recover the fluid K-H modes and when k yPi

is increased we find that the growth rates for the K-H modes are reduced

and for large enough k pi  the K-H instability is completely damped.
y1

Further, the growth of the K-H modes is severely affected by the the

parallel dynamics. It seems that for a collisionless plasma the K-H modes

can grow only for very small V A V..i becomes of order unity the

expansion of the Bessel functions!, it, ].,,iigei possible. Consequently the

terms of 0(c 2) responsible for the K-H modes diminish in importance. At
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this point the large k ypi ion-cyclotron-like modes dominate. Further,

larger k11 and density gradients inhibit the classical K-H wave growth while

both these effects favor the ion-cyclotron-like waves.

An important feature of the ion-cyclotron-like modes is the fact that

the real frequency of these waves are roughly around ky V E/2 (see figures

(9) and (11)). This is similar to the K-H waves and therefore the two

instabilities cannot be distinguished by the scaling of the real frequency

with k VE '

The linear dependence of the real frequency of the ion-cyclotron-like

modes on the d.c. electric field was not explicitly discussed in our
5

previous papers 5 This could have contributed to a misunderstanding which

led Pritchett 1 2 to conclude that since the modes in his simulation for

Pi/L=0.3 and for k ypi 0.47 and 0.94 displayed the linear dependence of the

real frequency on the equilibrium flow velocity they could not be the ion-

cyclotron-like modes that we have discussed. A similar misunderstanding
4.

was also displayed by Sato et al. in discussing their experimental

results.

Since the initial electric field profile used in reference (12) was not

in equilibrium, the system immediately relaxed (see Appendix-I, condition

(A22); here cl=(Pi/a)VE=( 2 .4)3=7 .2 >> 1) to what is shown in figure (4) in

reference (12) which is much different from the initial profile given in

12
their equation (2). In fact the initial profile is characterized by two

scale lengths L and a with a peak value of about 3v. while the final
* 1

2relaxed profile is more like a Gaussian or a sech (x/L) type characterized

by only one scale length L and with a peak value of around 2v.. Also, as
121

explained the spatial extent 1-. J thc electric field increased during

the course of the simulation. (,,ir I .t , Iv estimat i g the broadening of

L only by 20%, and considering that the final profile is approximately
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similar to sech 2(xIL) with Pi/L=0.25, then the modes at ky pi=0.47 and 0.94

would correspond to k L=1.88 and 3.76 respectively. These values will beY

larger if the spatial extent is broadened more than the 20% assumed. As we

have shown through the analysis of the kinetic K-H modes and Drazin and

Howard9 through the analysis of the fluid K-H modes for shear profile of

the type sech 2(x/L), the K-H modes are strongly damped for k L>1 and almosty

non existent beyond ky L-2. Thus, the mode at k yPi=0.47 can be the tail end

of the k-H spectrum but the mode at ky pi=0.94 seems to be completely out of

the theoretically predicted k-H spectrum and the growth rate in the second

mode is higher. Hence, the conclusion based on the simulations of

reference (12) that the K-H mode will always dominate over the ion-

cyclotron-like modes for a configuration with a localized electric field

perpendicular to an external magnetic field is at best dubious. However,

we do agree with the other conclusion 12  that the idealized field profile

(piecewise continuous) used earlier5 to demonstrate the physical principles

involved is not suitable for simulation purposes and that a strong

relaxation from such a profile to a smoother profile is likely. The fact

that the piecewise continuous field profile is an idealization was

emphasized in our earlier paper . Here we have provided an equilibrium

distribution (4), which if properly loaded should ensure a good equilibrium

even for moderate shears. Since the equilibrium distribution as provided

in (4), is an implicit function of & the guiding center position, it is not

in a convenient form for initial loading in a particle simulation. For

this purpose we will express (4) in terms of the real position x. From the

definition (3) for E we get,
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S= V y - V E (40)

Expanding VE( ) around x we can show iteratively that,

I,

v - V(x) VE(x)
- E 2fl3(x)Q3 (v- VE(x)) (41)

Comparing (40) and (41) we find that,

v - M v - VE2(X) 2
y E - )(x) +0(2) (42)

By definition u =v -<v > and using (42) along with the expression (11) for

22
<V y>, we can express Uy=(V y-V E(X))/n(x)  - 0(c2) Also expanding ()

around x it can be shown that l(Q)=n(x)+O(c). Using these to express w1 2

provided in (6), in terms of x we get,

2

w2 v2 + V - V E(x))J+Oc(3wi =Vx + r(x) + O(c ) , (43)

and therefore the equilibrium distribution expressed in terms of x becomes

f o=n0 f0 1 fOil where foil=/ /2ntexp(- 3vz2 /2) and

Sep r v2 (v 'VJ(x))]]

2nf01 = ex[ 1 + . (43)
/n(x)
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It should be noted that when expressed in terms of x the n dependence in
, 2

w1 2 changes from multiplying the y component of the velocity, to dividing

it. The distribution given in (43) is the zeroth order distribution

function. The correction to order c is given in Appendix-Ill.

Consider the case where c 1=V 0 /LQ, the peak value of the quantity VE /Q,

is much smaller than unity (weak shear). Now fl and if O(c) corrections

are to be ignored then (43) becomes a Maxwellian shifted by the magnitude

of the E X B velocity in the y direction. Such a distribution was used by

Pritchett and Coroniti 7 and is acceptable for weak shears (ci<<I)

especially for low temperatures. To find the correction due to o 1, we

express l/n(x)=l-VE /9 along with the assumption that the temperature of

the system will also be affected so that 041+68 such that 60-0(VE /Q).

Using these approximations and 80= VE /2Q we can express (43) as,

2r x( [v2 + (v VE W) 2 ])[1+3 )vVE(x) ) 2_ v 2)] (44)

The correction term proportional to cc was also discussed in the reference

(7) but it was not used for the initial loading since it was expected that

the system would make the necessary adjustments and that these would be

small, as long as oi <<. Thus as long as I is small the use of a shifted

Maxwellian appears to be acceptable, although (44) describes a better

initial distribution. For moderate shears, however, the particle loading

should be in accordance with (41). othriwise strong relaxation from the
prfl12 .A

initial profile will be inescapable. Such strong relaxation from a

nonequilibrium starting condition i : ,''u i b] accompanied by substantial

free energy release, which lead&: ...i 1:1.iimi state quite different from

the quiet equilibrium essential for simulation of an instability. A

27

%b
& _- -, '



further improved initial distribution function with the 0(c) corrections

included, is provided in Appendix-III.

It should be remarked that in most of the experiments4 and space

observations3 there exists a magnetic field aligned current in addition to

the transverse localized electric fields. In the case of an oblique double

layer the magnetic field aligned current can originate due to the d.c.

electric field component in the direction of the magnetic field provided

there are some collisions. As for example, in the experiments of Alport et lu

al. 4 the double layer has a component in the direction of the external

magnetic field which is larger than the perpendicular component, thereby

providing a large magnetic field aligned current also. Further, in some

recent space observations 1 3  ion-cyclotron-like oscillations have been

reported in conjunction with simultaneous observation of a perpendicular

component of a d.c. electric field and a magnetic field aligned current for

situations where the magnitude of the magnetic field aligned current is

below the threshold necessary for the excitation of the current driven ion
.. N

cyclotron instability 1 4  A recent study1 5  on the effect of the

perpendicular electric field on the current driven ion cyclotron

instability 14 indicates that the perpendicular component of the electric

field can lower the threshold for the current driven ion cyclotron

instability. The necessary condition for the current driven ion cyclotron

instability is that the parallel phase velocity W/kII of the ion cyclotron

waves resonate with the parallel electron drift Vd, such that (m-k11Vd)<O.

For subcritical Vd, (w-k11Vd)>O and therefore the Landau damping cannot be

14inverted . For simplicity again consider the idealized field profile as

given in figure (5). The introducti n of the perpendicular component of

the electric field initiates a E , V, dLtit and consequently there is a

Doppler shift in the frequency w i.e., wwl=)-kyVE in the region I over
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which the electric field is localized in the perpendicular direction. Now

the necessary condition for the onset of the current driven ion cyclotron I
instability in the region I becomes (o1-kllVd)<O, which can be satisfied

even though (w.-k1Vd) remains positive. Thus the threshold value for the

magnetic field aligned drift Vd necessary for the onset of the current

driven ion cyclotron instability is lowered.

For the cases where there is a magnetic field aligned drift in addition

to the transverse localized electric field, the term S in (38) is not zero+

and can roughly be estimated (using the local theory) to be proportional to

LUI Y1, where the local growth rate in the region I, yl=-QI/QRw' evaluated

at wA=wr . QR and 01 are the real and the imaginary parts of the local

dispersion relation identical to the expression given in (31) with W2 and

w set equal to zero, and QRw is the w derivative of QR. In the ion rest

frame the field aligned drift Vd provides an additional Doppler shift in

the electron term so that QI is proportional to (wl-kVd). Assuming that

the field aligned current is also localized within the region I so that

0R =UI Wr we can write the energy balance condition as,

yLAI UI =- (Wl-k1Vd)wrLAI- VGUIIAI (45)

We have neglected the ion Landau and cyclotron dampings. First consider

the case where the electric field is not strong enough to make wi<0 and

therefore UI>O but I is less than w. Since w 1<w it is possible to have

( lkyVE)<O when (w--kyVE)>0 and hence the first term in the right hand side

of (45) provides a growth even for subcritical Vd while the convection

leads to damping. Now if w 0f< ;,nd ,I,,,j,',,, U<0, the convection will

lead to growth and the fi. telm i ii ,I, ,i).hit hand ,:idc '.ill contribute to

~ ~damping. However, if kI:Vd <0 (which can be achieved by keeping Vd constant ,"'
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but changing the direction of parallel propagation or vice versa) growth in

the region I may be expected from both the right hand terms for (Wl-

kIVd )>O. This can be a likely scenario for most of the experiments and

space observations involving the ion-cyclotron-like oscillations for an

equilibrium that contains a d.c. electric field in addition to a uniform

magnetic field. More details will be provided elsewhere.

CONCLUSIONS

Using a kinetic approach we have studied the generation mechanisms for

the electrostatic waves in a magnetized warm plasma including a d.c.

electric field perpendicular to the external magnetic field. Two distinct

generation mechanisms are discussed (i) Kelvin-Helmholtz mechanism and (ii)

positive negative energy wave coupling mechanism. The Kelvin-Helmholtz
1

mechanism, first discussed about a century ago , depends directly on the

second derivative of the d.c. electric field while the other mechanism5

depends on the inhomogeneity in the energy density of the waves. The K-H

instability can dominate for small kyPi if the propagation is nearly

perpendicular. For a collisionless plasma the K-H instability is strongly

damped even if k11 is a tiny fraction of k y. In the theory we have shown

that the terms responsible for the K-H wave growth are proportional to

V(x) and are of order C Only when k yPi<<l the Bessel functions can be

expanded for large argument and the order unity terms drop out thereby

making the order c2 terms primary which then assures the dominance of the

K-11 instability. When k P is increased and is of the order of or greater
y i

than unity the Bessel functions can no longer be expanded and consequently

the order c2 terms responsible f ,i I -! wav'.es can not gain prominence.

At this stage inhomogeneour enetg:, , I,, i,, ,iv iv n mod(,,:' dominate. Also,

the dominance of the K-H modes can be reduced even for small kyP i if more
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oblique propagation (larger k11) are considered. Here we have also shown

that the inhomogeneous energy density driven modes can tolerate larger kll.

Thus the two modes are quite distinct and depending on the parameter range

(system size, temperature, density gradient etc.)one or the other can

dominate.

It should be pointed out that while the interpretation of the

inhomogeneous energy density driven modes is quite convincing for the "Top

Hat" like profiles as evidenced in figure (6), it is not so clear cut for

the smooth profiles. As the profile is made smoother additional physics is

introduced through various resonances that are now possible since W 1 can

now vary smoothly over a wide range of values as opposed to one constant

value in the region I and a different constant value in the region II for

the "Top Hat" profile. Geometry related effects can also play a role. It

was also noted that as the smoothness of the profile was increased it was

necessary to maintain a very small amount of the density gradient in the

transition zone in which the electric field is reducing to zero, to

preserve the growth rates. This however, makes the model more physical

4 .
since in actual experiments (e.g. see Alport et al. ) a density gradient is

present in the transition zone. It appears that the density gradient acts,.1..-

as a catalyst by maintaining the growth rate without much affecting the

real frequency, although the exact role that the density gradient plays is

yet to be fully appreciated. The important conclusion however, is the fact

that besides the K-H instability there is another branch that can also grow .-.

with shorter wavelengths and higher frequency in a plasma immersed in a

uniform magnetic field with a nonunifoirm transverse electric field. •

Finally we would like to point ,,t that in the -mall k pi  limit the

integral equation can be e::actly ,I,,,,I , ,hc r , vI , ,deir differential

equation (22). Thus the second order differential equation level of

•~~~~~~ P' % %%,%%"%%31



description to study the nonlocal wave dispersion properties employed in ON

this paper is more accurate for the K-H modes than the ion-cyclotron-like 
r

modes that grow for large k ypi . For greater accuracy the eigenvalues of

the integral equation which will result by using (17) as the perturbed

density, must be obtained. This will be the topic of a future article.
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APPENDIX I%

In this appendix we provide the derivation of the particle orbits to

0(C ). The x and y component of the equation of motion (1), can be written

as,

1 = Vy- ~V E(x) ,(Al)

V -Qv x(A2)

where V E(x) =-cE(x)/B 0 ' Expressing (Al) in the guiding centre frame ,

and retaining terms upto 0(c ) we get,

- (v - o
*~~~~V E Q1 1-.( - MEfi +Q VE)+(r)J (A3)

We now transform (A2) and (A3) to a frame moving with a velocity <v y> in

the y direction, (i.e. v y 4 u y±<v y>) so that,

y y 2

An expression for <v > was given in equation (11) in the text. Replacing

vby u y+<v y> in the right hand side of (11), we find that <v y>-V EM

V ()< y>/29Q2  (C) Substituting this in (A4) and transforming v yto

u +<v > in (A2), we obtain the equations of motion in the transformed
*y y

frames to 0(E 2,
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V(~
E 2 2)1x = l(&))QU + 29 <Uy> -U) , (A5)

6y =-v x  (A6)

Note that for a linear field, VE =0 and (A5) and (A6) reduces to a form

very similar to that of the equations of motion for zero electric field

except for the factor I() in (A5). For VE =0 it is fairly easy to solve

the equations of motion and we can obtain u y=Acost, where §=V5QT+T and A is

proportional to wi. Thus for V E *0 we assume u y=Acost+Bcos2f, where

B=O(c 2). Differentiating (A6) once and using (A5) for ' we get,

Vx

2 vEc) 2 2'
=Qr X=-r(;) - <u-u. A7

uy Ox )1&Quy 2uy > uy (0

.5

Substituting u =Acos§+Bcos20, in the left and the right hand sides of (A7)

y
we find,

2 2LHS -ri( )Q2Acosf - 4t(&)Q Bcos2$ , (A8)

2 2 VE(E ) A2

RHS = -i(&)Q 2Acost Q - 4 J cos2§ (A9)

where we have neglected terms smal-er than 0(c 2 ). Comparing the LHS and

the RHS we find that,

B -(A1O)
12n(&)Q2

%
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Thus,2

u Acos)2E cosp' (All)

2 I~Q

yy

dt{ y B(A i t E A 2
22

UsnAte weulanplmin qation ro (A7) ) and defitcnbe awcontnt as,

u u v(" M u
w 1 =vY + Q Q( -u - -_ <u >u 0 (A13)

Ustuing u w candeiint from (A ) and A ef)into a aondstann g teams
yy

2 2 Thus, 3

Susito n u~ )i cand be shon tAt,) and(1w/ntIA1 ad eaiig em

22

v - w sin$ 32 sin2, , (A15) I
X i 6r)(f~ Q 3/ S

WW

u ~ ~ = __ o-' , ,los2d . (A16)
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With the velocities known it is a simple matter to obtain the

positions,

r
x'-x= J v dx

t

=cos, - cost + 1 3 cos2t- cos2t (A18)/ ] x--- 12D(. 2 Q3

Rewriting ' = V)Qt'+i = Vi/t-+, where T = t'-t and t = ViQt+t, we get,

x- x = -W cos(f(- ' + - cos} +

I1)Q

w 2 cos(2(t+Vo-(QQ[)) - cos2} , (A19)
12n(2

" " 2 . 2 ' a,

where w = VE (M)wi /2 . Similarly y'-y can also be obtained. It should be "-

noted that when n<O, the orbits become unstable.

For computer simulations where a distribution of particles is in

consideration we can get an order of magnitude restriction necessary for

the stability of the orbit of a typical particle (characterized by a

velocity vt, the thermal velocity and a displacement p, the gyroradius). a'

From (A3) it is clear that as long as the first term in the right hand side

which is of order v is dominant the form of (A3) is, a-

3 40
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WTI". .4 -X 71--.,7-

2 .
X -2() + corrections , (A20)

where X=(-x)=(Vy-VE(&))/Q. Therefore the restoring force is proportional

to the displacement. This ensures periodic orbits which are stable. On

the other hand if the second term in the right hand side of (A3), which is
2 It 2.

proportional to v V (&)/s2, dominates then (A3) is of the form,

VE( ) 2
X= 9 2 X + corrections (A21)

The restoring force is now proportional to the square of the displacement.

Hence, the orbits are no longer periodic and therefore become unstable.

Thus as long as the second term of (A3) remain smaller than the first term

i.e., vt VEl ()/2Q
2<1(&)vt, we can expect stable orbits for the typical

particles. This restriction leads to the condition for stable orbits in a

simulation, -

P< (vE tr(&, - 1 (A22)
&() V M [ 2v ~~)11/

where R(&) is the local radius of curvature (=(IVE(&)/VE ()I)/2).

Simplifying (A22) by replacing the guiding center position E by the real

position x and considering the electric field profiles of the form

VE(X)=V f(x/L), we can define H(x) suich that.

2vt __

1(x) = 2rf " J , (A23)
V E  f(x)

3.. I
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where x=x/L and c=p/L. In order to have stable orbits so as to avoid (or

minimize) relaxation of the initial electric field profile used in a

computer simulation, H(x) should be positive for all x. If this condition

is violated then the orbits will become unstable and the profile will relax

until (A22) is satisfied.

40f
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APPENDIX H

In this appendix we evaluate the Jacobian of transformation from the

coordinates (xVxvy) to the coordinates, (&,w1,4). This Jacobian can be

written as,

ax Iax L x 1I

a v av
X XvX (Bi)

a Wttaw 1 ii' at s p

av av av

& 0aw1  ,i

Using the definition of as given in equation (3) in the text we can

evaluate the elements of the first row so that,

avav av

av av av

a&Xa xa (B2)

aw av av
aw at

where we have suppressed the subscripts. Multiplying the last row by 1/9 Ze

and adding it to the first row we get.
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a&vx  av Xat x  (3

J = --- - w--- -T (B3)

WW

Thus the determinant has been considerably simplified and can be expanded
as,

x a ( - a - - w (B4)

Recall that Vy=U+<v > and using the expressions for v and u from

By av aX B

(A15) and (A16), and using equation (11) from the text for <v y> we get,

S'" 22

VV(()wlw( c-s2

Vx =wsint E)3/29 sin24 (B5) :

w V Mw 2

Vy cost + (+ 2 2 3(B6) (B6

The derivatives necessary in (B4) can be easily obtained, and retaining

terms up to 0(12 ) we get,

x E
; - sinl - I :ill (B7)

.:.'...-
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av w vE( M)w2
YI sint + E)Q sin2t (B8)

av VE ( 2

at W i3st ) 3/222 cos2§ , (B9)

av V( s)w I cos2(

aw1 1r--E-) 2i(&)2g2 3

Using (B7-10) in (B4) we obtain,

J = - /fl(E)w I  (BIl)

h%'-
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APPENDIX III

In this appendix we provide an equilibrium distribution function

suitable for initial loading for a particle simulation studing the

electrostatic waves due to an equilibrium field configuration containing an

uniform magnetic field and a perpendicular component of a nonuniform

electric field. We shall include the corrections which are of the order C --

but ignore the order C corrections for the time being. Expanding Yl(&)

around x we get l1(&)=:(x)+(&-x)fl'(x)+O(c2), where l'=VE /S?. Using (41)

for (E-x) we can write down,

Vy(x) + VE VE) + 0( 2) (Cl)
( :( + (x)

Als6 from the expression for uy given in (A16) we find that the time

average <uy 2>=w1
2/2l(). Expressed in terms of x, <uy 2>=w 2 (1-(vy-

VE(x))V" E(x)/V2 (x)Q 2)/2f(x)+O(c 2). Using this and (Cl) in the expression

for w as provided in (6) we get,

2 (x)) 2 v2 -VE(x))2 " (x

+ i x + V(x)J + -vy () -( VE(x)) V1 f2(x)Q 2 + (C2)

(C2)

v.5
Using (C2) in the expression for f and expanding the 0(c) terms we get,

?.'. .

2
[v + (VY-V E(X)) '

exp 2 Vx + (x)

, :,,*

f L

01 2nI-
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2 2 if/
v -(vy VE(x)) V EMx 2

[i '21+ + O(C .(3
21Jx 2 (x)Q 3

If the O(c) term in (03) is set equal to zero we recover (43). For even

greater accuracy it is possible to obtain the O(c ) corrections also.
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Fig. 1 - (a) Real and imaginary parts of a typical
eigenfunction for E = Eo tanh (x/L) profile. Here E .
= 0.19, kvp i = 0.074, VE = 0.764, u = 1837, u =

0.0001 and r = 1. (b) The external electric field pro-
file for c =0.19.
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Fig. 2 - The real and imaginary frequencies normalized by 0, for the K -H instabilities for the d.c.
electric field profile given by E =E 0 sech 2 (x/L) are plotted as a function of b. The solid lines are
the eigenvalues of the equation (29) while the dotted lines are the fluid results given in the reference
(9). Here f 0. 1, r 1, A 1837 and u =0.0001. N
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Fig. 3 - A plot of the normalized growth rates of the K -H modes plotted as a function of b
for a number of u values. Here E = 0.43, u. = 100 and T = 3.5.
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Fig. 4 - The equilibrium field and density configuration used in the calculations of figure (3).
Here x,,o 1.33pi c = -0.05 when xo - pi < x < xO + pi and zero otherwise.

49%

e.P
.5

.I,-.

% ,,%

'-Up:

49p

,,S
':_ :.',":'.''." "-','-". . ". '. . "'"-"':"/- " " '-".".J ."- -" " -- - - " - -'U



BO

E 
,'

S /

L 0 L . x

2

LV

41

Fig. 5 -- A schematic representation of the piecewise continuous d.c. electric field profile.
I

.5 .U"

50

p -'¢-,-.r~ -.r,.. r ,, ,, .. % %,,', , . S , , . .' , ,. .-. , .., ', ,.. . • 5 *~5~~*.:. . -, . . - . -



0.20
I

0.18

0.16

0.14

Im(kxQi)

0.12-

0.10

0.08-

0.06 -

0.04

0.02i
0 0.05 0.10

Fig. 6 - A plot of the Im(k, pi) against E. The linear dependence confirms
the scaling y//V( o I/L. Here V1 = 2.9. r = 1. u = 0.0001 and # =

1837.
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profile given in the equation (39). Here c= 0.3,
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Fig. 8 - The real and imaginary parts of the
corresponding eigenfunctions for the profiles in
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= 3.5, u = 0.011 and .= -0.07 if
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Fig. 8 (Continued) - The real and imaginary parts of the
corresponding eigenfunctions for the profiles in
figure (7). Here b = 8, = 1837, VE = 0.6, r
-3.5, u = 0.011 and = -0.07 if
xo - 0.9PI < x < x,,( + 0.9oi and x,,, =

1.66 ,. (c) a = 1.41 and (d) a = 1.89.
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Fig. 9 - A plot of the normalized real and imaginary parts of the eigenfrequency of the ion-
cyclotron-like instability against b. Here E = 0.3, u = 0.011I, a = 1.87, T = 3.5, V E = 0.6, A1837 and -0.07 ifxo - 0.9pi < x < xo + 0.9pi and zero otherwise and xo = 1.66pi.
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DR. P.R. ROHRBAUGH LOS ALAMOS, NM 87545

DR. L.A. CARPENTER DR. M. PONGRATZ, EES-DOT b
DR. M. LEE DR. D. SIMONS, ESS-7, MS-D466
DR. R. DIVANY DR. S.P. GARY, ESS-8
DR. P. BENNETT DENNIS RIGGIN, ATMOS SCI GROUP
DR. E. KLEVANS

UNIVERSITY OF ILLINOIS
PRINCETON UNIVERSITY DEPARTMENT OF ELECTRICAL ENGINEERING
PLASMA PHYSICS LABORATORY 1406 W. GREEN STREET
PRINCETON, NJ 08540 URBANA, IL 61801

DR. F. PERKINS DR. ERHAN KUDEKI

SAIC UNIVERSITY OF CALIFORNIA,
1150 PROSPECT PLAZA LOS ANGELES
LA JOLLA, CA 92037 405 HILLGARD AVENUE

DR. D.A. HAMLIN LOS ANGELES, CA 90024
DR. L. LINSON DR. F.V. CORONITI

DR. C. KENNEL

SRI INTERNATIONAL DR. A.Y. WONG
333 RAVENSWOOD AVENUE
MENLO PARK, CA 04025 UNIVERSITY OF MARYLAND

DR. R. TSUNODA COLLEGE PARK, MD 20740
DR. WALTER CHESNUT DR. K. PAPADOPOULOS
DR. J. VICKREY DR. E. OTT
DR. R. LIVINGSTON

JOHNS HOPKINS UNIVERSITY
STANFORD UNIVERSITY APPLIED PHYSICS LABORATORY
STANFORD, CA 04305 JOHNS HOPKINS ROAD

DR. P.M. BANKS LAUREL, MD 20810
DR. R. HELLIWELL DR. R. GREENWALD

DR. C. MENG
U.S. ARMY ABERDEEN RESEARCH DR. T. POTEMRA
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY UNIVERSITY OF PITTSBURGH
ABERDEEN, MD PITTSBURGH, PA 15213

DR. J. HEIMERL DR. N. ZABUSKY
DR. M. BIONDI

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA UNIVERSITY OF TEXAS AT DALLAS
FAIRBANKS, AL 99701 CENTER FOR SPACE SCIENCES

DR. L.C. LEE P.O. BOX 688
RICHARDSON, TX 75080

UTAH STATE UNIVERSITY DR. R. HEELIS
4TH AND 8TH STREETS DR. W. HANSON
LOGAN, UT 84322 DR. J.P. McCLURE

DR. R. HARRIS
DR. K. BAKER DIRECTOR OF RESEARCH
DR. R. SCHUNK U.S. NAVAL ACADEMY
DR. J. ST.-MAURICE /IITAPOLIS, MD 21402
DR. N. SINGH (2 CYS)
DR. B. FEJER
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DISTRIBUTION LIST
(Unclassified Only)

DISTRIBUTE ONE COPY EACH TO THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

DIRECTOR BELL LABORATORIES
NAVAL RESEARCH LABORATORY MURRAY HILL, NJ 07974

WASHINGTON, DC 20375-5000 A. HASEGAWA
CODE 4700 (26 CYS) L. LANZEROTTI
CODE 47Cl
CODE 4780 (50 CYS) LAWRENCE LIVERMORE LABORATORY
COPE 4750 (P. RODRIGUEZ) UNIVERSITY OF CALIFORNIA

LIVERMORE, CA 94551

OFFICE OP NAVAL RESEARCH LIBRARY
WASHINI'ON, DC 22203 B. KRUER

ROBERSON J. DEGROOT
B. LANGDON

DIRECTOR R. BRIGGS
DEFENSE NUCLEAR AGENCY D. PEARLSTEIN
WASHINGTON, DC 20305

L. r'ITTER LOS ALAMOS NATIONAL LABORATORY
7. Pi'A SAD P.O. BOX 1663

LOS ALAMOS, NM 87545

COMMANDING OFFICER S.P. GARY
OFFICE OF NAVAL RESEARCH N. QUEST
WESTERN REGIONAL OFFICE J. BRACKBILL
1030 EAST GREEN STREET J. BIRN
PASADENA, CA 91106 J. BOROVSKY

R. BRANDT D. FORSLUND
J. KINDEL

NASA HEADQUARTERS B. BEZZERIDES
CODE EE-8 C. NIELSON
WASHINGTON, DC 20546 E. LINDMAN

S. SHAWHAN D. RIGGIN
D. BUTLER D. SIMONS

L. THODE
NASA/GODDARD SPACE FLIGHT CENTER D. WINSKE
GREENBELT, MD 20771

M. (1OIlDSTEIN, CODE 692 LOCKHEED RESEARCH LABORATORY
P... BENSON, CODE 692 PALO ALTO, CA 94303
T. NORTHROP. CODE 665 M. WALT 6XY.
T. blIRMINGHAM, CODE 695.1 J. CLADIS
A. FiC;UERO VINAS, CODE 692 Y. CHIU
Sliil ; F. FUNG, CODE 696 R. SHARP
D.S. S iCER CODE 682 E. SHELLEY

AERC',F"iACE C,)RPORATION NATIONAL SCIENCE FOUNDATION
A6/2451. P.O. BOX 92957 ATMOSPHERIC RESEARCH SECTION
LOS ANELFS, CA 90009 WASHINGTON. DC 20550 'p

A. Y- ,AN D VEACOCK
D. C,(,RNFY
M. . r '' "TFRr'TA TTnNAL CORP.

S.T" r."-"'" !"!, ,!REET -

SANI LEADR(, CA 94557
J. BENFORD
S. STAI~iNGS
Y. YOUNG
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SANDIA LABORATORIES UNIVERSITY OF CALIFORNIA
ALBUQUERQUE, NM 87115 SPACE SCIENCE LABORATORY

A. TOEPFER BERKELEY, CA 94720
D. VANDEVENDER M. TEMERIN
J. FREEMAN F. MOZERT. WRIGHT I

UNIVERSITY OF CALIFORNIA

SCIENCE APPLICATIONS PHYSICS DEPARTMENT
INTERNATIONAL CORPORATION IRVINE, CA 92664
LAB. OF APPLIED PLASMA STUDIES LIBRARY
P.O. BOX 2351 G. BENFORD
LAJOLLA, CA 92037 N. ROSTOKER

L. LINSON C. ROBERTSON
N. RYNN -

TRW SPACE AND TECHNOLOGY GROUP N
SPACE SCIENCE DEPARTMENT UNIVERSITY OF CALIFORNIA
BUILDING R-1, ROOM 1170 LOS ANGELES, CA 90024
ONE SPACE PARK (PHYSICS DEPARTMENT):
REDONDO BEACH, CA 90278 J.M. DAWSON

R. FREDERICKS B. FRIED
W.L. TAYLOR J. MAGGS

J.G. MORALLES
UNIVERSITY OF ALASKA W. GEKELMAN
GEOPHYSICAL INSTITUTE R. STENZEL -
FAIRBANKS, AK 99701 Y. LEE

LIBRARY A. WONG
S. AKASOFU F. CHEN
J. KAN M. ASHOUR-ABDALLA
J. ROEDERER LIBRARY

L. LEE J.M. CORNWALL
D. SWIFT R. WALKER

P. PRITCHETT
UNIVERSITY OF ARIZONA (INSTITUTE OF GEOHPYSICS
DEPT. OF PLANETARY SCIENCES AND PLANETARY PHYSICS):
TUCSON, AZ 85721 

LIBRARY PS

J.R. JOKIPII 
C. KENNEL

F. CORONITI
BOSTON COLLEGE
DEPARTMENT OF PHYSICS UNIVERSITY OF CHICAGO
CHESTNUT HILL, MA 02167 ENRICO FERMI INSTITUTE -.

R.L. CAROVILLANO CHICAGO, IL 60637
P. BAKSHI E.N. PARKER

I. LERCHE

UNIVERSITY OF CALIFORNIA, S.D. LIBRARY
LAJOLLA, CA 92037

(PHYSICS DEPARTMENT): UNIVERSITY OF COLORADO
T. O'NEIL DEPT. OF ASTRO-GEOPHYSICS
J. WINFREY BOULDER, CO 80302
LIBRARY M. GOLDMAN
J. MALMBERG LIBRARY

(DEPT. OF APPLIED SCIENCES):
H. BOOKER '. .
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CORNELL UNIVERSITY M.I.T. ,%

SCHOOL OF APPLIED AND CAMBRIDGE, MA 02139
ENGINEERING PHYSICS LIBRARY
COLLEGE OF ENGINEERING (PHYSICS DEPARTMENT):
ITHACA, NY 14853 B. COPPI

LIBRARY V. GEORGE
R. SUDAN G. BEKEFI
B. KUSSE T. CHANG
H. FLEISCHMANN T. DUPREE
C. WHARTON R. DAVIDSON
F. MORSE (ELECTRICAL ENGINEERING
R. LOVELACE DEPARTMENT):
P.M. KINTNER R. PARKER

A. BERS
HARVARD UNIVERSITY L. SMULLIN
CENTER FOR ASTROPHYSICS (R.L.E):
60 GARDEN STREET LIBRARY
CAMBRIDGE, MA 02138 (SPACE SCIENCE):

G.B. FIELD READING ROOM
R. ROSNER
K. TSINGANOS UNIVERSITY OF NEW HAMPSHIRE
G.S. VAIANA DEPARTMENT OF PHYSICS

DURHAM, NH 03824

UNIVERSITY OF IOWA R.L. KAUFMAN
IOWA CITY, IA 52240 J. HOLLWEG

C.K. GOERTZ
D. GURNETT PRINCETON UNIVERSITY
G. KNORR PRINCETON, NJ 08540
D. NICHOLSON PHYSICS LIBRARY
C. GRABBE PLASMA PHYSICS LAB. LIBRARY
L.A. FRANK F. PERKINS
K. NISHIKAWA T.K. CHU
N. D'ANGELO H. OKUDA
R. MERLINO H. HENDEL
C. HUANG R. WHITE

R. KURLSRUD
UNIVERSITY OF MARYLAND H. FURTH
PHYSICS DEPARTMENT S. YOSHIKAWA
COLLEGE PARK, MD 20742 P. RUTHERFORD

K. PAPADOPOULOS
H. ROWLAND RICE UNIVERSITY
C. WU HOUSTON, TX 77001

SPACE SCIENCE LIBRARY

UNIVERSITY OF MARYLAND, IPST T. HILL
COLLEGE PARK, MD 20742 R. WOLF

DAVID MATTHEWS P. REIFF
G.-H. VOIGT

UNIVERSITY OF MINNESOTA
SCHOOL OF PHYSICS UNIVERSITY OF ROCHESTER
MINNEAPOLIS, MN 55455 ROCHESTER, NY 14627

LIBRARY A. SIMON
J.R. WINCKLER
P. KELLOGG
R. LYSAK
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STANFORD UNIVERSITY
RADIO SCIENCE LABORATORY

STANFORD, CA 94305
R. HELLIWELL

STEVENS INSTITUTE OF TECHNOLOGY

HOBOKEN, NJ 07030
B. ROSEN
G. SCHMIDT
M. SEIDL

UNIVERSITY OF TEXAS
AUSTIN, TX 78712

W. DRUMMOND
V. WONG 

-

D. ROSS
W. HORTON

UNIVERSITY OF TEXAS
CENTER FOR SPACE SCIENCES
P.O. BOX 688
RICHARDSON, TX 75080

DAVID KLUMPAR

THAYER SCHOOL OF ENGINEERING 
o

DARTMOUTH COLLEGE
HANOVER, NH 03755

BENGT U.O. SONNERUP
M. HUDSON 

-

UTAH STATE UNIVERSITY
DEPT. OF PHYSICS
LOGAN, UT 84322

ROBERT W. SCHUNK

UNIVERSITY OF THESSALONIKI
DEPARTMENT OF PHYSICS
GR-54006 THESSALONIKI,
GREECE

L. VLAHOS

Rp cords I copy 
7,

* -

64

KAM,



JiJL

4-d". k z N


