AD-A193 325 DATABASE DESIGN AND MANAGEMENT IN_ENGINEERING
OPTIMIZATIONCU) IOWA UNIY IOWA CITY OPTIMAL DESIGN LAB

~J S ARORA EB 89 ODL-88. 2 AFOSR-TR-88-0366
UNCLASSIFIED AFOSR-82-0322 F/G 12/7

A
-7
|||||-—-'—_-:.9 S I o
= K
L 2T
“ = | IS
lizs flis. pe
MICROCOPY RESOLUT!F)N TEST CHART ‘

* VP8 SRR A ST Aty AT AR BT 00 8T8 470, 0 0.0 0K Y 8,8 8¢ 0

L A
N.\J.\"‘- \.’w\.,,\
~ N -'I"\-’
WAty

T !

-

a.

[T R ™

.'r.:

r

*y

5

6

.‘

‘\

&

i

b

('

%

N

%

%

R LR SRS BN SO N SRR
NSO ML OO B CG O o, A%, 0%
4-.'4-_4-.'.(\.- L ST N AR AT Y b

\-“¢\ﬂ* 'i\"-..\ \‘_*-“'\\\'&*'\ ()

RO RRL A ARG SRR UL CLEN Eh RN !

AD-A193 325 AFOSR-TK. 5 8- 0 566

Technical Report No. ODL-88.2

DATABASE DESIGN AND MANAGEMENT IN
ENGINEERING OPTIMIZATION

JASBIR S. ARORA

OPTIMAL DESIGN LABORATORY

College of Engineering
The University of lowa
Iowa City, IA 52242-1593

Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Air Force Systems Command, USAF
Under Grant No. AFOSR 820322 _ _

DTIC

ELECTE
¢ APR 011968

February 1988

L’
-

_-j‘:a'-{"-
’-,.ég‘i

oz

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None
28 SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
5. DECLASSIFICATION/DOWNGRADING SCHEDULE Unlimited
:)
% PERFORMING ORGANIZATION REPORT NUMBER(S) . MONITORING ORGANIZATION REPORT NUM easb

ODL-88.2 AFOSR-TR- 3 8-V

6a. NAME OF PERFORMING ORGANIZATION rb. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

(If applicable)
ODL AFOSR/NA

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
College of Engineering Bolling AFB
The University of Iowa D.C. 20332-6448 ¢
Iowa City, TIA 52242 T

Optimal Design Laboratory

8e. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION A{r Force Office (If appliceble)
of Scientific Research NA Grant No. AFOSR 82-0322
Bc. ADDRESS (City, State ond ZIP Code) 10. SOURCE OF FUNDING NOS.
Directorate of Aerospace Sciences E{:@S,‘,‘,“:fo_ ""?,’;CT -r:cs: WOR:O',""'T
Boiling AFB, D.C. 20332-6448 RIS
V1. TITLE (include Security Clamsification) Tjatabase Design and 61102F 02% Bl ; 2
Management in Engineering Optimization z
12. PERSONAL AUTHOR(S) '
J.S. Arora
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT e
Final Technical From 10-82 to_2-88 1988-2-22 151 NN
16. SUPPLEMENTARY NOTATION :
g
COSAT!I CODES 18, SUBIECT TEAME /Condniue 9 it If necessary ana iaentify 0y oiock numoer)
LIEL0 1 GROuP Sus. GR. Database Management, Design, Evaluation, Engineering, N
Optimization, Interactive &,\’\'
19. ABSTRACT (Continue on reverse if necessary and identify by block number) (!{::.\
“PIn this report, the research ccmpleted under the project in the area of database manage- A
ment in engineering design and optimization is described. Database management concepts used WS\
in business applications were studied and concepts suitable for engineering applications e

were developed. Data structures that need to be managed were identified. Database design
methodologies were studied and a suitable methodology for engineering designs and optimiza-
tion applications was developed. Several prototype database management systems (DBMS) were
designed, developed and evaluated. Several prototype application programs utilizing a data- W
base management were developed to evaluate performance of DBMS. Based on these implementa-
tions and studies, the usual relational data model was generalized to handle engineering dat

types. Specifications for an integrated DBMS capable of handling relations, vectors and :sﬁxj:
matrices (of different types) were developed. A system based on the specifications, called -P:d‘:{
MIDAS/GR was implemented and evaluated. MIDAS/GR stands for Management of Information for :'-'f.\"i
Design and Analysis of §ystems/Generalized Relational Model. _ Research was conducted to -F._vr.".‘-’

P =
20. ons'rmaunonmvmuauuw OF THACT [23. ABSTRACT SECURITY CLASS(FICATION
c. p N .: tD
UNCLASSIFIED/UNLIMITED [[L/SamE As arT. & DTic UsERs ﬂ/ LN L .
22e. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFF ICE SYMBOL
A
Dr. Anthony K. Amos (Include Arse Coo¢!

202-767-4937 NA

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. Unclassified
F‘ SECURITY CLASSIFICATION OF THIS PAGE AN

N‘ - " .o . N ; N .. . < A

1% * \'\\\‘-' .-n
‘ﬁ “:&m{s o f e l'

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

f 19. determine appropriate algorithms for implementation of various steps in the database
management system. During the research project, severai reports were submitted, and
papers presented at conferences and published in journals. Several Ph.D. and M.S.
Theses were completed. These are listed in the report. All the journal articles
published under the project are given in Appendices.

SR E TR

. 3y
IR

i :\'fa"\jr)" :

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS
1. INTRODUGCTION.itiiiiiitiitiiiiaiitettttrenteerttttttttaasasesaenasasnsssnsanes 1
2. THESES COMPLETED AND REPORTS SUBMITTED...........ccccceceviiiinenenns 3
2.1 Ph.D. DiSSErtationsccouvueeerriitiniiiniiiiiiitiieisinioneiuisioncsierioreeenes 3
P % O T | (1T TN 3
2.3 Other Reports Submitted...........cocoiiiiiiiriiiiiiiiniininrireneeeennns 3
3. JOURNAL ARTICLES PUBLISHED.......cccccoieiiiiiiiiiiiiiririiicceneneieinianns 4
3.1 A Survey of Database Management in Engineering..............c.c..cocoivininin 4
3.2 Database Management Concepts in Computer-aided design
Lo 1110012 Ln o D 4
3.3 MIDAS: Management of Information for Design and Analysis
Of SYSIEMS ..ottt ittt ittt cretttenetaeeenasaraenenns 4
3.4 Data Base Design Methodology for Structural Analysis and
Design OpHITHZAtON «.....cvvrerrnirieisieitiiieieirieteriietireieerireereianennes 4
3.5 SMART: Scientific Database Management and Engineering
Analysis Routines and TOOISc.coiiiniieiiiieniiiiiiiniiiiiinen, b
3.6 Evaluation of the MIDAS DBMS in an Equation-Solving
ENVITONIMENE ... iiiieiiiiiiiiiiniitiiiiiiiiiiiiiiiirritreneneeneneciensasnenns 5
3.7 Uses of Artificial Intelligence in Design Optimization...........c...cocccvueuenens 5
3.8 Implementation of an Efficient Run-time Support System for
Engineering Design Environment............cccooviiiiiiiniiiiiniiiiiiinnnn 6
3.9 Design and Implementation Issues in an Integrated Database
Management System for Engineering Design Environment...................... 6
3.10 Role of Data Base Management in Design Optimization
R3TE3 5 ¢ 1 SO P 6
3.11 An Integrated Database Management System for Engineering
Applications Based on an Extended Relational Model.....................o..... 6
4. CONFERENCE PRESENTATIONScuitiiiiiiiiiiiiiiiniiiiieiiiieanen, 8
4.1 Database Management Concepts in Engineering Design
101141101721 1o, SO P PPN 8
4.2 MIDAS: Management of Information for Design and Analysis
Of SYSIEINS ...ouiniiinitiiiiiiiiiiniiet ittt iietitie ittt aeatas i aeetesenneninens 8
4.3 A Methodology to Design Database for Finite Element
Analysis and Structural Design Optimization Applications............c.cccceu.. 8
4.4 Use of Alin Design Optimization.........c..cooevuiiiiiiniiiiiiiiiiniiiiniiinninn.n. 8
4.5 Development of an Artificially Intelligent Nonlinear
Optimization EXPert SYStemccviuiuiiieriieniniiiieeneneneeieneniienn 9
4.6 Role of Database Management in Design Optimization Systems................ 9
4.7 A Nonlinear Optimization Expert System.............ccocviiiiiiiiiiiiininn 10
4.8 Interactive Design Optimization of Framed Structures..............cceeeeneee. 10
4.9 An Integrated Database Management System for Engineering
Applications Based on an Extended Relational Model.......................... 10
4.10 A Structural Optimization Program Using a Database
Management SYSeMcccouviiuirinininiiiierniienirtiiiiiiaeie e 11
APPENDIX 1. A Survey of Database Management in Engineering 12

WA A AN S

APPENDIX 2. Database Management Concepts in Computer-aided

Design OptimizZation..........ocviveiieneiiniiireeecrsereesseeaseaeneaanrnens
APPENDIX 3. MIDAS: Management of Information for Design and

Analysis Of SyStemS.......c.ccuuieiiiiiiiiiiiiiiiiieniiiiie e
APPENDIX 4. Data Base Design Methodology for Structural Analysis

and Design Optimization.........ccoccciieieieirinenencaenenseresssnenenrnens
APPENDIX 5. SMART: Scientific Database Management and

Engineering Analysis Routines and ToOIS..........ccccceveviiiininacnnnin,
APPENDIX 6. Evaluation of the MIDAS DBMS in an Equation-Solving

ENvIrONmMent.....cooiiiiiiiiiiiiiiiiiniiieiiiiiiennintierieeesntsnersannnns
APPENDIX 7. Uses of Artificial Intelligence in Design Optimization.....................

APPENDIX 8. Implementation of an Efficient Run-time Support System
for Engineering Design Environmentccoiiiiiiiiiinini,

APPENDIX 9. Design and Implementation Issues in an Integrated
Database Management System for Engineering Design
ENVIronment.......ccooviiiiiiiiiiiiniiiiiiiiirinininincanicaeenreneannns

APPENDIX 10. Role of Data Base Management in Design Optimization
Sy SIS i iiiiniiiiiiititieeeuenrneeneenrnsenenasnaeeenaentnrenanrannanans

APPENDIX 11. An Integrated Database Management System for
Engineering Applications Based on an Extended
Relational Model.........coiniiiiiiiiiiiiiiiiiiiniiii e,

Accession For
NTIS GRARL mf—
DTIC TAB O
Unannounced O
Justification

By

Distribqtien/

Availabilit! Cod__el
" lavail and/or
Dist Specifxl .

| -/

B g AL s

I‘ TN A - c SN AT A A : Yy :g .'-{::-(\- -_;’.,-.q_‘ gt rt A e AT -""- 'V::ﬁ' AT AT AT A T

4

R U W R U SR TR OO O O OO R XK Y B TN U T VR T RISV CTRT) OV N T TN TR R PO O RO R TR T O
n":‘:".,::‘.'
e
oo
s
o:l' :::n:‘:'
[51
L PRI
1. INTRODUCTION R
..' 0".0‘;
A major thrust of the research was to study and develop database design and ":"
management techniques for engineering applications. Structural design and optimization i,
was to be considered as the major area of application. Considerable progress was made in P
this important area of management of large numerical databases. The area is perceived to ,.'o::')
be of extreme importance. The reason is that as the computing power increases, we want ::.t::.::!
to solve more complex problems. Need to integrate various disciplines to design complex |::'n$:l‘.:':
systems becomes acute. We want to design efficient systems that can operate in extreme OcaAnnE
environments. All these requirements lead to computationally extensive problems. L
Software to solve such problems becomes quite large and complex. Data generated and s "::.;':
managed become quite large. In addition, the flow of data is quite complex and atintlit
unmanageable without a well defined database and database management system (DBMS). ‘j:j-,"ﬁ" "::
e
In the current project, we studied the database management concepts in computer- pe b
aided design and optimization. Type of data encountered and their usage was studied. e 3
Data structures that are encountered in above application and, in general, other engineering peih
applications were studied. Then we studied the existing database management models that e
had been used in the past. Based on this investigation it was determined the relational data oﬁ.'-:.:::.;c
model came close to satisfying the requirements of the engineering (numerical) data. The ‘«':::“u.l:-i
model can handle large relational data quite efficiently. It is, however, unsuitable for OV
handling large matrix data types. This led to the development of what we call the ‘:'\‘! _
"generalized relational data model.” Basically, the standard relational model was PN
generalized to handle additional data structures that are encountered in engineering A
applications. ! ..':o ‘
L) '.@
A few existing database management systems, such as System R and RIM, were }‘ N
studied. This was done to learn about the implementation details as well as the algorithms .]
used in them. Based on these studies and needs of engineering data, specifications for a NN,

suitable database management system were developed. Several experimental DBMS were
designed and implemented to study their performance. Detailed implementation plans were
developed. Various algorithms suitable for implementation of various capabilities were
studied and the algorithms suitable for a DBMS to meet the specifications were selected.
Several experimental codes were developed and implemented to evaluate database
management concepts, algorithms and database design procedures.

This report contains all the developments outlined in the preceding paragraphs.
Chapter 2 contains a list of M.S. and Ph.D. dissertations completed under the project and
the reports that have been submitted previously. Chapter 3 contains a list of journal articles
that have been published. Abstract of the articles are included here and full length papers
are given in Appendices at the end. Chapter 4 contains a list of conference presentations
and tctil:d papers that have appeared in the proceedings. Abstracts of the papers are also
included.

Finally, a computer software called MIDAS/GR which stands for Management of
Information for Design and Analysis of Systems /Generalized Relational Model is
submitted as a part of the final report. A users manual for the system is also submitted.
This experimental system has evolved as a result of several designs, redesigns and
implementations. The system can handle relations, vectors, matrices and other variable size
objects. The system is organized as a library. Programmers can use the library facilities
from their programs. Data sets can be created and deleted while the program is running.
Data can be inserted or retrieved; it can be stored in one form and retrieved in another.
Thus, the system provides run-time support for data management. Using the system,

complex software can be developed and debugged in a relatively short time. With some
additional effort the system can be converted into a commercial quality product.

Using this modern DBMS, creation of a software environment for engineering
analysis and design is in progress. MIDAS can be used in two modes of operation:

1. Itcan be used to connect existing software components through a database, and

2. It can be used to develop new software that uses system facilities to manage
permanent and transient data; in this mode the system provides run-time support for
management of large amount of data.

Once this environment has been established, several numerical problems will be solved to
evaluate the performance of the system.

IR RN RN U TN O IR OY OO AT Y Y LUSTOWI LYY Y e Y, N . Vo 072 8'0 48 0 B B0 8.0 2,000 2.6 1.% 4. 8a¢ 12" ‘Bal 8.0 32" ® .t fab Ba* et e L

B o

>

B tE

; 2. THESES COMPLETED AND REPORTS SUBMITTED ;:\

SO

! 2.1 Ph.D. Dissertations)

1. T. SreekantaMurthy, "Computer-Aided Structural Design Optimization Using a '~ t:

_ Database Management System,” Civil Engineering; submitted as Technical Report No. .::

ﬁ 85.17, November 1985. o

| 2. G.J. Park, "Interaction Design Optimization with Modern Database Management """
Concepts," Mechanical Engineering; submitted as Technical Report No. ODL-86.9, -

X0 November 1986. ‘ ;,E
/ '..

s 3. S.S. Al-Saadoun, "A Design Optimization System with Central Database for Framed] "“::«

: Structures,” Civil Engineering; submitted as Technical Report NO. ODL-86.21, !

v November 1986. "ot

3

ﬁ 2.2 M.S. Theses ,i:.':f

U "‘:’

1. Y-K Shyy, "A Database Management for Engineering Applications,” Mechanical a:;k

@ Engineering; submitted as Technical Report No. 85.23, November 198S. ::::::

) QL WA
2. S. Mukhopadhyay, "A Database Management System Using A Generalized Relational L]

Model," Computer Science; submitted as Technical Report No. 86.27, November W

W 1986. A
¥ b
3. R. Venkatraman, "Query Optimization in Deductive Database,"” Computer Science; byl

submitted as Technical Report No. ODL-88.1, February 1988. ol

=~
)

2.3 Other Reports Submitted

ok

e
::'C; 1. SreekantaMurthy, T., Rajan, S.D., Reddy, C.P.D., Staley, D.T., Bhatti, M.A. and ROt
L Arora, J.S., "Database Management in Design Optimization," Technical Report No. N
CAD-§S-83.17, October 1983. Wl
it 2. SreekantaMurthy, T. and Arora, J.S., "A Survey of Database Management Systems," A
Technical Report No. CAD-SS-84.19, August 1984. N

w \-f

%ﬁ 3. SreekantaMurthy, T. and Arora, J.S., "Database Design Methodology and Database < T

‘ Management System for Computer-Aided Structural Design Optimization," Technical A
= Report No. CAD-SS5-84.20, September 1984.

b Yy 4. Arora, J.S., Haririan, M., Paeng, J.K., Ryu, Y.S., SreekantaMurthy, T. and Wu, .' \

C.C., "Database Design for Structural Analysis and Design Optimization," Technical N

E Report No. CAD-S5-84.20, October 1984. N,

i 4
5. Arora, J.S. and Mukhopadhyay, S., "Specification for MIDAS/GR: Management of ;

, Information for Design and Analysis of Systems: Generalized Relational Model,"” A
% Technical Report No. CAD-SS-84.24, December 1984, 0,
A LN

6. Arora, J.S., "Database Design and Management in Engineering Design Optimization,” :: y

i& Technical Report No. ODL-85.31, September 1985. ’

3. JOURNAL ARTICLES PUBLISHED

3.1 SreekantaMurthy, T. and Arora, J.S., "Survey of Database Management in '
Engineering," Advances in Engineering Software, Vol. 7, No. 3, pp. 126-132, o
1985.

Abstract. Database management in engineering fields is becoming extremely ﬁ
important. A number of reports and papers have been published on this subject and
computer-aided design applications. It is important to know state-of-the-art to fully utilize

the benefits of this new field. The paper contains a survey of literature on database e
management for engineering applications. The survey is broadly classified into database b4
management concepts and systems. Research work of various authors in related areas such

as database design methodology, data models, data definition and manipulation languages, T
database integrity and consistency are reviewed. Various database management systems @
(15 in all) currently in use are reviewed and their features tabulated. Capabilities and

usefulness of these systems are emphasized. The survey is intended to provide important N
developments in data management field to the engineering community. Also, it should be ﬁ
useful to those currently engaged in research on the subject. ‘

3.2 SreekantaMurthy, T. and Arora, J.S., "Database Management Concepts in e !
Computer-Aided Design Optimization," Advances in Engineering Software, Vol. 8, ol
No. 2, pp. 88-97, 1986.

Abstract. This paper deals with database management concepts in computer-aided ;Ig
design optimization. Complex nature of engineering data and the need to organize them are ™
emphasized. Database management concepts applicable to finite element analysis and
design optimization are explained. Various aspects associated with the development of data ne
models, such as conceptual, internal and external models are discussed. Suitability of rx Ty
external models, like hierarchical, network and relational, are discussed with reference to ;
design optimization requirements. Some techniques to organize data of large matrices for -
efficient numerical computations are given. Concepts of normalization of data, global and S
local databases are described. Details of a suitable database management system are o
described in a separate paper. .

o>

3.3 SreekantaMurthy, T., Shyy, T-K. and Arora, J.S., "MIDAS: Management of 2
Information for Design and Analysis of systems," Advances in Engineering)

Software, Vol. 8, No. 3, pp. 149-158, 1986. W,

L

Abstract. The paper describes features, system design and implementation of a -
database management system called MIDAS. The system has capability to organize data of -
both relational and numerical models, and meets several important requirements - a good e
data model, ability to organize large matrix data, handle various data types, simplified data S
definition and data manipulation languages, dynamic data definition, multiple database N
organization, speed of data access, and provision for temporary databases. Tabular and o
matrix form of data generated and used in design and analysis of system can be Y
conveniently organized. Details of various commands of the database management system i
MIDAS are presented. oy

l:\'f

3.4 SreekantaMurthy, T. and Arora, J.S., "Data Base Design Methodology for 3
Structural Analysis and Design Optimization," Engineering with Computers 1, pp.

149'160, 1986. n‘)a

Abstract. A methodology to design data bases for finite element analysis and ~
structural design optimization is described. The methodology considers three views of data "o :a

A N7
!
o

T YR

' l'_.fq
"

G N R P U O VOV U WO W T W T U PR WO W WP WU R WO TP WO T OW

o
o
o e
<5 (J
Ty
s i".:":;:
@ organization - conceptual, internal, and external. Tabular and matrix forms of data are ‘ "':
included. The relational data model is used in the data base design. Entity, relation, and Pt
attributes are considered to form a conceptual view of data. First, second, and third normal %
! forms of data are suggested to design an internal model. Several aspects such as oy
processing iterative needs, multiple views of data, efficiency of storage and access time, ;::.f
and transitive data are considered in the methodology. :::.t;
8t
% 3.5 Arora, J.S., Lee, H.H. and Jao, S.Y., "SMART: Scientific Database Management '::::}
and Engineering Analysis Routines and Tools," Advances in Engineering Software, it
! Vol. 8, No. 4, pp. 194-199, 1986. "
bio :.;:;:.'
Abstract. Development of user-friendly and flexible scientific programs is a key '\:'.'t
A to their widespread usage, extension and maintenance. The paper describes capabilities of)
VoA a library called SMART that can be used in the development of such programs. The library o
o contains many interactive programming aids and screen management utilities that can help o
in development of the user interfaces. A very flexible full screen data editor is available. ey
@ Many other subroutines are available, such as vector and matrix operations, in-core data . ',.}i‘
. management, out-of-core numerical and relational database management, and graphics. ::;::
The library is not advocated to be comprehensive. It is meant to show the kind of th
P capabilities that are needed in development and maintenance of scientific programs. Such)
@ libraries can be of particular use in research on computational methods for scientific Wi
applications. o
Bl
! g
s 3.6 SreekantaMurthy, T., Shyy, Y-K., Mukhopadhyay, S. and Arora, J.S., "Evaluation a
L of the MIDAS DBMS in an Equation-Solving Environment," Engineering with e
Computers 2, pp. 11-19, 1987. e
x S
h Abstract. The paper describes an evaluation of a data base management system,
MIDAS, for the solution of linear equations. A brief description of the system is given. It)
" is used and evaluated employing skyline and hypermatrix approaches for solving large ::
ga.j matrix equations. Performance of the two subsystems of MIDAS - MIDAS/N and
L MIDAS/R - is measured and compared in terms of several system parameters. v
Programming for efficient use of the available memory is noted. Suggestions for 4,
application programming using MIDAS are given. Major conclusions of the study are that -
=0 memory management schemes, data structures, and data access methods of the DBMS play \i»._)
very important roles for its efficient use in dynamic environment. Such methods must be et
v developed and implemented for large-scale engineering applications. ‘:;S '
Ny ‘e,
g 3.7 Arora, J.S. and Baenziger, G., "Uses of Artificial Intelligence in Design vt
Optimization," Computer Methods in Applied Mechanics and Engineering 54, pp.
5 303-323, 1986. S
s ..::-.
Abstract. In this paper, basic ideas and concepts of using artificial intelligence in :j'.:
> design optimization of engineering systems are presented. The purpose of the study is to o
e develop an experi (knowledge-based) system that helps the user in design optimization.
Two basic ideas are advocated: (1) the successful numerical implementation of algorithms
xy needs heuristics; and (2) the optimal design process can be greatly benefited by the use of -
'yt heuristics based on knowledge captured during the iterative process. Various steps in the NN
M optimization process, where artificial intelligence ideas can be of tremendous help, are o
delineated. Some sir~ple rules are presented to utilize the knowledge base and raw data as o~
. it accumulates in the iterative process. A simple example is used to demonstrate some of RO
f the basic ideas.
)

3.8 Mukhopadhyay, S. and Arora, J.S., "Implementation of an Efficient Run-Time
Support System for Engineering Design Environment,” Advances in Engineering
Software, Vol. 9, No. 4, pp. 178-185, 1987.

Abstract. The need for both relational and matrix data types in engineering
applications has been long recognized. While matrices form mostly temporary or semi-
permanent data private to a program, relations are either permanent data in public domain
used by different programs or final results of a program to the end user. Though several
systems came up in the last few years with various degree of facilities and level of
efficiency, none however, met the requirement of versatile data struciure or run-time
support required in a volatile, large 1/O environment of engineering database.

This paper describes implementation of a system and its evaluation using an
existing users' interface. Benchmarking shows that the system is far superior to the
existing ones and also incurs little overhead for DBMS calls.

3.9 Mukhopadhyay, S. and Arora, J.S., "Design and Implementation Issues in an
Integrated Database Management System for Engineering Design Environment,"”
Adbvances in Engineering Software, Vol. 9, No. 4, pp. 186-193, 1987.

Abstract. The need for a unified database management system for various
engineering applications has long been felt. Due to the conflicting requirements, so far,
most of the attempts in this field are at best partially successful. This paper presents broad
perspectives of design and implementation issues of an integrated database management
system. A unique feature of the system is its ability to define a unifying data model for
matrices and relations. The system also provides for a unified language interface for
different user groups. System architecture and a few distinguishing features are described.
An evaluation of the system is presented.

3.10 Park, G.J. and Arora, J.S,, "Role of Data Base Management in Design Optimization
Systems," J. Aircraft, Vol. 24, No. 11, pp. 745-750, November 1987.

Abstract. To study the role of data base and data base management system, an
interactive design optimization software system called IDESIGNS is developed to solve
nonlinear programming problems. Four promising algorithms are included to overcome
the lack of unanimous choice of an algorithm. Tuning parameters and procedures of
algorithms are implemented through extensive numerical experimentation. The interactive
process consists of menu displays, advice for decisions, and applicable messages. Input
data can be created interactively and the designer can change problem parameters,
algorithm, and design variable data at any point of execution. If a design variable does not
effect the optimization process, it can be given a fixed value interactively. Discrete variable
optimization can be performed by using design variable status capability of the system.
Graphics facilities are provided for decision making. The system consists of several
modules that communicate with each other through a data base managed by a data base
management system. Several example problems are solved in batch and interactive
environments to test the system.

3.11 Arora, J.S. and Mukhopadhyay, S., "An Integrated Database Management System
for Engineering Applications Based on an Extended Relational Model," Engineering
with Computers, to appear, 1988.

Abstract. Engineering analysis and design of complex systems require the use of
large software components. Development, maintenance, and extension of such a software
system needs modern design and implementation techniques. Usually a large amount of
data is generated. Flow of data is also quite complex adding further complications in

«

e o e

l."\\ﬁ
L NP4
PR bl W

“y

.
i

»
¥ at

~>
',,%

r %S
Py
Pl

'/-./ . N
1]

[7

Pd

i
')".:.

e e e e .~ W o aaamama

maintenance and extension of the software. A sophisticated database management system
is needed to support data handling during the run-time environment as well as for the
integration of various software components. Design and development of such a DBMS
needs new concepts and ideas such that efficiency of calculations is not sacrificed.
Degradation in efficiency due to the use of a DBMS can hinder large scale applications.
The paper describes a generalized relational model to handle large matrices and tables that
are encountered in numerous engineering applications. A DBMS based on the model is
designed and implemented. The system supports run-time data management as well as data
sharing between various software components. A preliminary evaluation of the system
against some existing ones reveals the new concept and design to be quite appropriate for
engineering applications. The system is very efficient and compact. Some details of
design and performance of the system are given and discussed.

i‘f L4

'.;s
l',‘

Y " _a

& oy 5

Vs

5“- &{'.,

..}“11 ®.7.
eyl

4. CONFERENCE PRESENTATIONS

4.1 SreekantaMurthy, T., Reddy, C.P.D. and Arora, J.S., "Database Management
Concepts in Engineering Design Optimization," proceedings of the 25th
AIAA/ASME/IASCE/AHS Structures, Structural Dynamics and Materials
Conference, May 14-16, 1984, Palm Springs, CA, (84-0967-CP) pp. 360-372.

Abstract. The paper deals with database management concepts in engineering
design optimization. Complex nature of engineering data and the need to organize them are
emphasized. Requirements of a good database management system (DBMS) for handling
such data are presented. Various aspects associated with the development of data models,
such as conceptual, internal and external models are discussed. Suitability of external
models, like hierarchical, network and relational models, are discussed with reference to
design optimization requirements. Some techniques to organize data of large matrices for
efficient numerical computations are given. Essential components of a good DBMS, such
as data definition, data manipulation, query capabilities, and memory management schemes
are described. Existing DBMS for engineering applications are reviewed. Finally, details
of an Engineering Database Management System (EDMS) are presented.

4.2 SreekantaMurthy, T., Shyy, Y-K. and Arora, J.S., "MIDAS: Management of
Information for Design and Analysis of Systems," Proceedings of the AIAA 26th
Structures, Structural Dynamics and Materials Conference, Orlando, Florida, April
1985 (85-0618-CP), pp. 85-95.

Abstract. The paper describes features, system design and implementation of a
database management system called MIDAS. The system has capability to organize data of
both relational and numerical models, and meets several important requirements -- a good
data model, ability to organize large matrix data, handle various data types, simplified data
definition and data manipulation languages, dynamic data definition, multiple database
organization, speed of data access, and provision for temporary databases. Tabular and
matrix form of data generated and used in design and analysis of systems can be
conveniently organized using MIDAS. Details of various commands of the database
management system MIDAS are presented.

4.3 SreekantaMurthy, T. and Arora, J.S., "A Methodology to Design Database for
Finite Element Analysis and Structural Design Optimization Applications,"
Proceedings of the AIAA 26th Structures, Structural Dynamics and Materials
Conference, Orlando, Florida, April 1985 (85-0743-CP), pp. 494-504.

Abstract. A methodology to design databases for finite element analysis and
structural design optimization is presented. The methodology considers three views of data
organization -- conceptual, internal and external. Tabular and matrix forms of data are
included. Relational data model is used in the database design. Entity, relation, and
attributes are considered to form a conceptual view of data. First, second and third normal
form of data are suggested to design an internal model. Several aspects like processing,
iterative needs, multiple views of data, efficiency of storage and access time, and transitive
data are considered in the methodology.

4.4 Arora, J.S. and Baenziger, G., "Use of Al in Design Optimization," Proceedings of
the AIAA 26th Structures, Structural Dynamics and Materials Conference, Orlando,
Florida, April 1985 (85-0801-CP), pp. 834-846.

Abstract. In this paper, basic ideas and concepts of using artificial intelligence in
design optimization of engineering systems are presented. The purpose of the study is to

W'
)£

|

24

P4
Yy

PN .\.E

MM&-mhmmmmmm}M&W&mwwxmwmmma_ M

!

}.

Z:

L
ol

%

10 555

Ay

R SR T O O O OO R U U R R R RO T Yo MO G IR OO O AT WU WA W W T R A RN SUCIUY RS R VKA AR UV A A U5 UY UM LN

I‘|‘ f\l .l’ 'l|
e

A
. T
| g
develop an expert (knowledge-based) system that helps the user in design optimization. 'n".":::::',:;
| Iterative numerical algorithms must be used to accomplish this objective. It is well known kS, ' o
1 that some algorithms when implemented in a computer program do not behave the way they DA
‘ are theoretically supposed to. Two basic ideas are advocated: (1) the successful numerical OR300
implementation of algorithms needs heuristics; and (2) the optimal design process can be " '-’.:::!:tﬁ
greatly benefited by the use of heuristics based on knowledge captured during the iterative (OCNRMY
process. Various steps in the optimization process, where artificial intelligence ideas can be eI
of tremendous help, are delineated. Some simple rules are presented to utilize the ‘:4::‘:::4;
knowledge base and raw data as it accumulates in the iterative process. A simple example AOEORR
is used to demonstrate some of the basic ideas oY -F;
NG
4.5 Baenziger, G. and Arora, J.S., "Development of an Artificially Intelligent Nonlinear VoW ',:":"
Optimization Expert System," Proceedings of the 27th AIAA Structures, Structural bk ,!.::ﬂ
Dynamics and Materials Conference, San Antonio, TX, May 19-21, 1986, pp. 67- f :::::‘.‘
‘77. a8 s B8V 8%
Abstract. In the last SDM Conference some basic ideas on the use of artificial Iy
intelligence in design optimization were presented. In the present paper, the layout and .;\"‘"".:;f.’
design of an Artificially Intelligent Nonlinear Optimization Expert System is delineated. h,‘:'}.,h:.:
Implementation details of the system, including a general purpose inference engine, and the 0 :-;:‘.-:.
knowledge base for Nonlinear Optimization are discussed. The design of the expert system vl
combines a modular rule based inference engine with database management and a nonlinear —
optimization package IDESIGNS. The inference engine has four major parts: an ordered o"::::“":‘
forward-chaining inference algorithm which plans the combinations of actions required to ..":0:2:'{.&
achieve the application solution, a multi-objective backward-chaining evaluation algorithm, ' ',% 3y
a knowledge base compiler, and a processor which operates the other parts by carrying out ML ::

default plans and the plan developed. The most efficient and successful plans and search LY

graphs are saved in composite form for future reuse. The system learns from statistical ~r -
efficiency and success to modify the rule evaluation order and alternative plan selection. N
The nonlinear optimization knowledge base is rule oriented and includes control of W
algorithm selection, active set strategy, and reactions to solution conditions such as design e
variable trends, solution failure, convergence, instability, and other optimization concerns. | ,s’\‘:::j
Also included are rules that provide the basis for the interactive consultant functions of the W
system. 3. o
]

4.6 Park, G.J. and Arora, J.S., "Role of Database Management in Design Optimization pa n-"_,.-:‘,. ‘
Systems," Proceedings of the 27th AIAA Structures, Structural Dynamics and ’.t-\\, -
Materials Conference, San Antonio, TX, May 19-21, 1986, pp. 620-629. miadsd
iy,

Abstract. To study the role of a database and database management system, an e
interactive design optimization software system IDESIGNS is developed to solve nonlinear 7“:»’:.'.9’;4-
programming problems (NLP). Four promising algorithms are included to overcome the :i.:-';"-;.::
lack of unanimous choice on an algorithm. Tuning parameters and procedures of ';-:q}?}-!
algorithms are implemented through extensive numerical experimentation. The interactive ’,-.'911'_:-;1
process is well designed with menu displays, advice for decisions, and applicable 0N
messages. Input data can be created interactively and the designer can change problem [
parameters, algorithm, and design variable data at any point of execution. If a design R
variable does not affect the optimization process, it can be given a fixed value interactively. NS
Discrete variable optimization can be performed by using design variable status capability LIROARAY
of the system. Graphics facilities are provided for decision making. The trend or history AN
of design parameters are displayed on the graphics terminal. The system consists of PaLIYE!
several modules which communicate with each other through a database managed by a)

DBMS. The DBMS is well exploited in managing complex data organization of the Y oLl
interactive system. Structural optimization problems are solved in batch and interactive h :::.\:éj

A O L R AN D

environments to test the system. IDESIGNS has been also coupled to the finite element
analysis program ADINA to solve nonlinear response optimization problems. The
developed system is quite robust with diverse capabilities and wide possibilities for
extension. The study shows (1) how database and DBMS has to be used in design
optimization, (2) advantages and disadvantages of using a database and DBMS, and (3)
what interactive capability is possible and what are its advantages. The systems like
IDESIGNS can be very useful tools in the practical design process.

4.7 Arora, 1.S. and Baenziger, G., "A Nonlinear Optimization Expert System,"
Proceedings of the ASCE Structures Congress ‘87, Session on Knowledge Based
Structural Design an Optimization, Orlando, FL, August 17-20, 1987 in Computer
Applications in Structural Engineering, D.R. Jenkins (Ed.). ASCE, pp. 113-125.

Abstract. Several methods for optimum design of systems have been developed
over the last twenty years. Most methods, however, work well only when used by the
optimization expert. Designers who are not optimization experts have difficulties in making
the algorithms and programs based on them work for their application. This indicates that
the rules used by the expert in making the program work should be captured and put in the
knowledge base to provide consulting help to the designers. Such an expert system should
be well designed for knowledge acquisition and utilization. The paper describes the layout
of such a nonlinear optimization expert system. Some of the rules used in the system are
discussed. A simple application is included to demonstrate some of the capabilities.

4.8 Al-Saadoun, S.S. and Arora, J.S., "Interactive Design Optimization of Framed
Structures,” Proceedings of the ASCE Structures Congress ‘87, Session on
Interactive Design and Optimization: Algorithms, Applications and Software,
Orlando, FL, August 17-20, 1987, in Computer Applications in Structural
Engineering, D.R. Jenkins (Ed.), ASCE, pp. 357-372.

Abstract. Optimum design of framed structures under multiple loading and
constraint conditions requires substantial computational effort. Optimization algorithms
when turned loose on such problems can actually fail resulting in wastage of human as well
as computer resources. Therefore it is prudent to monitor progress of optimization
algorithms for such complex design applications. The paper describes a formulation for
optimum design of framed structures. The AISC code limits on element stresses, member
maximum deflection, stability and slenderness ratios, width thickness ratios and nodal
displacements are imposed in the design process. A procedure for optimization is
developed and described. An interactive software to solve the problem is designed and
implemented. It uses modular approach and modern database management concepts. The
system is used to solve two design optimization problems. A postprocessor is available to
select members from the AISC tables. The system is another step in making practical use
of optimization a reality.

4.9 Arora, J.S. and Mukhopadhyay, S., "An Integrated Database Management System
for Engineering Applications Based on an Extended Relational Model," Proceedings
of the Symposium on Engineering Data Base Management: Critical Issues, (R.E.
Fulton, Ed.) ASME CIE Conference and Exhibition, New York, August 9-13,
1987, pp. 49-58.

Abstract. Engineering analysis and design of complex systems require the use of
large software components. Development, maintenance, and extension of such a software
system needs modern design and implementation techniques. Usually a large amount of
data is generated. Flow of data is also quite complex adding further complications in
maintenance and extension of the software. A sophisticated database management system

=2 81

5 |

S

3B

J
7
Yoy

v

A

_ﬁ
R

22

(R
3

[

-y
. " f
iy

Py

&

L4

by e Jo

ol

L an o o

Yy

is needed to support data handling during the run-time environment as well as for the
integration of various software components. Design and development of such a DBMS
needs new concepts and ideas such that efficiency of calculations is not sacrificed.
Degradation in efficiency due to the use of a DBMS can hinder large scale applications.
The paper describes a generalized relational model to handle large matrices and tables that
are encountered in numerous engineering applications. A DBMS based on the model is
designed and implemented. The system supports run-time data management as well as data
sharing between various software components. A preliminary evaluation of the system
against some existing ones reveals the new concept and design to be quite appropriate for
engineering applications. The system is very efficient and compact. Some details of
design and performance of the system are given and discussed.

4.10 SreekantaMurthy, T. and Arora, J.S. , "A Structural Optimization Program Using a
Database Management System," Proceedings of the Symposium on Engineering
Database Management: Critical Issues, (R.E. Fulton, Ed.) ASME CIE Conference
and Exhibition, August 9-13, 1987, New York, pp. 59-66.

Abstract. Data management is one of the most important tasks in the development
of sophisticated computer programs for optimization of practical structural systems. The
paper describes and discusses the implementation of a structural optimization program
which uses a relational database and a data management system. Features of the program
and modules used in the program are described. Organizational structure of the database
and the database design process are described. Data definition and data manipulation
routines used in the optimization program are described. Several structural optimization
example problems were solved to demonstrate the working of the program. Finally, the
database, the data definition and manipulation routines, and the performance of the
optimization program are evaluated and discussed.

11

v > v e W RSN W LW T e) e T % 3 v] 5% "}
',‘l.’.l'- 0."5.! W, l‘!‘l'- I..‘l A .-kl.,‘o'.l-l.?.l'-l & A .- .t L oAl .v .u "‘nl *, ' NV -0.0 " "’C‘n ' 7 §% ,‘. l.l."e‘l

TR TN .|‘|“l

n % P |

(>

LD

)

o 8 a8

A

AN

O l.‘;:

O

O R R R R R O T A R R O O T A O N O N O T s I O T Y T L O N N OO o o o

APPENDIX 1

A SURVEY OF DATABASE MANAGEMENT
IN ENGINEERING

by
T. SreekantaMurthy and J.S. Arora

Advances in Engineering Software

Vol. 7, No. 3, 1985

12

G 1 N T R T T o R N A T A Ty

{J

P,

Tl

“!?l
L

-_‘.

-~
- -

i
Y

X) ;
i]

g
A
- -
2

%

e
AN
.~_:.r &,
el J,'\

\

v"‘.“-(\. W
o)
- !l‘. .h

L]
TNy

‘' d;r [4
f;ﬂf':"" 7
? ‘
&
® 7L

¥
LN \S Y
A.\L.{\. AL e

A survey of database management in engineering

T. SREEKANTA MURTHY and J. S. ARORA

Optimal Design Laboratory, College of Engineering, The University of lowa, lowa City,

14 52242, USA

Database management in engineering fields is
becoming extremely important. A number of
reports and papers have been published on this
subject and computer-aided design applications. It
is important to know state-of-the-art to fully utilize
the benefits of this new field. The paper contains
a8 survey of literature on database management for
engineering applications. The survey is broadly
classified into database management concepts and
systems. Research work of various authors in
related areas such as database design methodology,
data models, data definition and manipulation
languages, database integrity and consistency are
reviewed. Various database management systems
{15 in all) currently in use are reviewed and their
features tabulated. Capabilities and usefulness of
these systems are emphasized. The survey is
intended to provide important developments in
data management field to the engineering com-
munity. Also, it shouid be useful to those currently
engaged in resear h on the subject.

INTRODUCTION

Unprecedented developments in computer usage in the last
five years have fostered equally impressive developments in
usage of database management systems in various applica-
tions. Of particular importance is the use of database
management in computer-aided design of engineering
systems. The present day computer-aided design is a speedy
way of designing better systems. Previously, the process
was tedious and slow because of manual data generation or
use of desk calculators. Development of finite element
method in the mid-1950s along with modern digital com-
puters, have made analysis and design of large systems
possible. These developments, however, led to the problem
of dealing with targe matrices in smail computer memory.
Large amount of finite element data has posed a challenge
to engineers to properly manage data. Furthermore,
developments in design optimization algorithms posed
a serious problem for designers in organizing large amounts
of design data. Similarly, data management problems were
encountered in other engineering disciplines.

The desire for data organization in the engineering field
is not new. Engineers in pre-computer days, were systemati-
cally using set tables, charts and drawings to describe their
system. With the use of small programs to generate analysis
and design data, the standard methodology for dats logging
in tables and charts became less rigorous. This trend
continued even with the computer-sided design of large

Accepted October 1984. Discussion closes September 19853,

126 Advy. Eng. Sofi-vare, 1985, Vol. 7, No. 3

systems and brought about a total chaos in data organiza-
tion. The situation was not different even within the
environment of computer programs. As the computer
programs for engineering were able to deal with large
probiems, the data storage on disk became more common.
The data storage schemes were too tedious and made
efficient and easy use of data almest impossible.

With use of computers in husiness and commercial fields,
data management in accounting, inventory control, produc-
tion scheduling, and other fields became important during
early 1970s. An enormous amount of knowledge exists for
data management in these areas. Sophisticated database
management systems have been used and are constantly
being improved. However, introduction of database manage-
ment in the engineering field is quite recent. Due to the
complex nature of information in engineering applications,
the growth of database management systems has not taken
place to the same extent as in husiness applications.

In this paper, a survey of literature on database manage-
ment in engineering is given. The survey is broadly classified
into database management concepts and database manage-
ment systems. Rescarch work of various authors in related
areas such as database design methodolngy, data models,
data definition and manipulation languages. database
integrity and consistency are reviewed. Several database
management systems that are currently in use are reviewed.
Their capabilities and drawbacks are emphasized and
tabulated.

DATA MANAGEMENT TERMINOLOGY, USE AND
REQUIREMENTS

A number of papers have been published on database
management concepts for engineering applications. The
paper by Fellipa (1979) serves as an introduction to the
subject of database management for scientific and engineer-
ing applications. The paper highlights the difference
between the husiness data management and scientific data
management. A comprehensive list of terminology relevant
to scientific computing is given in another paper by the
author (Fellipa, 1980). Since the terminology used in
business DBMS is fairly new to engineers, this list serves as
a starting point to get acquainted with various terminology.
It is interesting to know how scientists actually use their
data. The paper by Bell (1982) discusses some issues about
data usage and also gives comparison between data model-
ling for scientific and business applications. Difficulties
associated with identification of data entities, naming of
entities and other related data modelling aspects are dis-
cussed. In order to bring out the difference between the use
of database for business and engineering applications,
Foisseau and Valette (1982) present a list of criteria. Special
nature of scientific data identifies requirements of DBMS
for scientific computing. Lopatka and Johnson (1978)
provide a review of the requirements for s DBMS in

0141-1195/R5/030126-07 $2.00
© 1985 CML Publications

et NN N e Lt Lt e

supposting of engineering applications. CAD/CAM data
management requitements for aircraft industty were
identified by Fulton snd Volgt (1976). Southhall (1980)
present requitements for management of engineering
information in the areas of integration support, information
management and computer program management. Data
managenient tequitenents for IPAD and capabilities of
infounation processor IPIP ase given by Johnson, Comfort
and Shull (1922).

DATABASE DESIGN METHODOLOGY

Several research studies have been conducted to find out
8 suitable way to design a database for engineering applica-
tions. There exists basically (wo different approaches to
database design — one approach fitst generates a global
schema and then derives local views from it; another
approach oblaing local views of dilfesest users and then
integrates them to form a global view. Buchman and Dale
(1979) analyee different methudologies to database design
and present 3 framework for evaluasting thewm. llowever,
these methodologies appear 1o be not suitable (or product-
modelling databases. Lilichagen and Dokkar (1982) discuss
the key principles needed for coustructing product-
modelling databases. Also, the paper depicts various
methudoulogies for data abstraction processes leading to
conceptual schemas. The number of stages required in the
data abstraction process o transfer real world data to
physical storage media is stil not known. Grabowski,
Eigner, and Raush (1978) adopted a fous-stage concept to
altgin problem-independency as well as independence from
a programming language and specific hardware. A table
compating various levels of data abstraclion used by several
rescarchers is given in another paper by the authors
(Grabowski and Eigner, 1979). It has been widely accepted
that the three conventional data models (hierarchic,
network and relational) are not powerful enough to express
all semantic structures of CAD data. Thesefore, the authors
suggest the use of semantic data madels which serves as
a theosetical tool for database designers in picturing
information structures of CAD applications. The semantic
model acts as an intenmediate level of data absteaclion
between well known data moudels and real world informa-
tion. However, the use of the semanlic data model is still
cuntsoversial and several research studies on this model are
cited in Ebetlein and Wedekind (1982).

b Y

DATABASE NETWORK . s

The concept of nctwark of databases is beconiing Increas.
ingly impuitant in organizing data of several enginecring
applications. Databascs can be considered interconnccied,
to forn a network, through s set of programs which use
them. Several researchers, Fellipa (1979), Fishwick and
Blackburm (1982),'and Managaki (1982) have discussed the
use of database network. Data of final design and results of
pesmanent nature which can be accessed by several applica-
tions can be stured in global database. Intennediate results,
trial and ecror design process data necded fos individual
programs are stured in local databuses. Database neiwork
for mictocompulter. requires decomposition of s database
into sub-databases. Jumarie (1982) made a preliminary
study on suitability of a centralized database. The concept
of master file which acts as » ditectory (o databases and
pioblems associated with integration of data in such data-
bases ste discussed by Cezekalinski and Zgorcelki (1982).

DATA MODELS

The well-known dsta models — hierarchicsl, network and
telational — have been studied by many researchers to find
out their suitability for organizing engineering data. Kotiba
(1981) discusses applicability of ANSI/SPARC, CODASYL
and the relational approach to CAD sofiware design. The
thsee levels of data view proposed by ANSI/SPARC are
grining wide acceptance and are likely 10 be incorporated
in future CAD systems. On the other hand, relational
approach is based on set concepts and provide s sound
wathematical backgiound. This appioach provides high
level of data independence, user friendly data definition
and data manipulation capabilities. Relational model is
becoming popular among datubase designers and users.
Scveral researchers are currently working on this model.
Fishwick and Blackburn (1982) discuss some advantages
and disadvantages of a relativnal model from an engineering
point of view. The paper reposts the use of a relational
database managewment systemn in sn integraled design
systems. Bluckburn, Storaasli and Fulton (1982) in another
paper demonstrate the use of a relational database in CAD.
Haskin and Lori (1982) have shown how the relational
database managements systems (System R) can be extended
to acconunodate arbitrary length of data items commonly
encounlered in engineering applications. The relational data
mudel for CAD applications is emphasized by Valle (1976)
stressing the (lexibility aspect of selational view of dats.
Also the paper gives some examples related to the use of
telational organization of graphic data. Some aspects of
design of a relational information management system with
reference to CAD and interactive data handling are also
given. Foisseau and Valette (1982) piopose a CAD data
model based on ‘type’, ‘object’ and ‘refation’, and function
concepts. Studies on the hierarchical model are mainly with
reference to organizing laige watrices. Lopez (1974) and
Pahl (1981) use a hierarchical model for finite elemient data
organization. Hypermatrix stiffness and load data are found
o be most suitable to hieraschical data epresentation,
A paper by Elliot, Kunni snd Browne (1978) describes
a hierarchical mode! of data and a DBMS system design
based on it. Sowme practical examples on structusal design
and wind tunnel data management are also given in the
paper. llowever, this system requires a precompiler to
decode the data description and data manipulation com-
mands in a source program.

DATA DEFINITION AND DATA MANIPULATION
LANGUAGES

Devclopiment of suitable dats definition (DDL) and data
manipulation languages (DML) fur engineering spplications
have been of interest to many authors. One of the major
considerations in the design of data definition language was
to keep the syntax concise and easy to use for application
programmers. de..ral other important considerations in
DOL dcsign sre desciibed in detail by Elliot, Kunni and
Browne (1978). They use special indicators in the source
progiam code to identify the DDL and DML commands
and to translate them using a precompiler to FORTRAN
statements. Thesc DDL and DML statements can be used
1o operate on a hicrarchical data structure. Special features
of DOL and DML in a celationsl databsse manageinent
system for interactive design are described by Shenoy and
Patnaik (1983). In engincering design environment, data-
buse schema are comtinuously updated, deleted and
mudified. By combining DDUL und DML, independence of

Adv. Eng. Suftware, 1985, Vol 7, No. 3 127

A A N T N L BN T S RN T e DR ST B

...‘ YK
"l '.‘4‘%

LE4%S
’ [
r L f_.l“.).‘ \.‘
s
’

o
v

A I I
t‘f\"_-.‘_".'fs Fo L,

compilation and datsbase can be achieved. Lafue (1979)
suggested merging DDL and DML which are traditionally
separate in database management systems. Thus, dynamic
data definition is an important requirement of engineering
database management systems. It is desirable to have 8 DDL
and DML that support hierarchical, network and relational
models. In this regard, IPIP software (Johnson, Comfort
and Shull, 1980) supports both network and relational data
models. ’

DATABASE INTEGRITY AND CONSISTENCY

Larger implications of integrated design databases are
beginning to be understood. A large amount of information
and an associated variety of data representations require
automation of management of integrity and consistency of
databases. In this regard the paper by Eastman (1978) gives
some conceptual tools for organizing design systems and
implementing automatic integrity management. Lafue
(1978) addresses several issues related to semantic integrity
and consistency maintenance of design databases. It is
shown that the hierarchical structure is suitable for dealing
with integrity maintenance of databases. A mechanism for
effecting automatic integrity management based on validity
fMags is presented by Eastman and Fenves (1978). It is
important to note that database support must extend
considerably beyond providing passive 1/O capabilities and
must provide substantial assistance in integrity maintenance
at various design stages. The implementation of Integrity
management schemes have not yet been fully realized.
Entity state transaction management proposed by Kutay
and Eastman (1983) allows partial integrity management
schemes and is applicable to large engineering problems.

NUMERICAL DATA MANAGEMENT

The application of data management in numerical computa-
tions is fairly new. Finite element analysis and design
optimization procedures require a substantial amount of
matrix data processing. Data management systems require
special facilities to deal with data of large matrices.
A recognition of this need is made by Diani (1982) and
a model is developed for numerical database arising in many
scientific applications to keep track of large, sparse and
dense matrices. The paper presents a generalized facility
for providing data independence by relieving users of the
need for knowledge of physical data organization on the
secondary storage devices. Because of the limitation of core
storage and to reduce the input-output operations involved
in secondary storage technique, many investigations have
been conducted on the efficient use of primary memory.
A detailed survey by Pooch and Nieder (1973) gives various
indexing techniques that can be used in dealing with sparse
matrices. Darby-Dowman and Mitra (1983) describe
& matrix storage schema in linear programming. Rajan and
Bhatti (1983) presented a memory management scheme for
finite element software. Sreekanta Murthy, Reddy and
Arora (1983) describe the database management concepts
that are applicable to the design optimization field.

DATABASE MANAGEMENT SYSTEMS

Several database management systems (DBMS) have been

. developed or sre in the development stage. In the following

section, 15 systems are reviewed. The capability of these
systems are emphasized and important festures are tabu-
Iated.

128 Adv. Eng. Software, 1985, Vol. 7, No. 3

a’ 4 e

DELIGHT - Design Language with Interactive Graphics
and a Happier Tomorrow

DATHAN - A Data’Handling Program for Finite Element
Analysis .

EDIPAS —~ An Engineering Data Management System
for CAD

FILES — Automated Engineering Data Management
System

GIFTS - GIFTS Data Management System

GLIDE — GLIDE Language with Interactive Graphics

ICES — Integrated Civil Engineering System

1414 — Information Processor for IPAD

PHIDAS — A Database Management System for CAD

REGENT - A System for CAD

RIM ~ Relational information Management System

SDMS — A Scientific Data Management System
SPAR — SPAR Database Management System
TORNADO - A DBMS for CAD/CAM System
Xto — A Fortran Dirdet Access Data Management
System
LY

DELIGHT. 1t stands for Design Language with interactive
Graphics and a Happier Tomorrow (Nye, 1981). In its
philosophy, the DELIGHT system is very close to the
GLIDE system (Eastman and Henrion. 1980). DELIGHT is
an interactive programming language. It has a good exten-
sion and debugging capability. It provides high-level graphic
commands, a built-in editor and well-defined interface
routines. A single statement, procedure or part of an
algorithm can be tested without having to write and load/
link a program. The system relies on virtual memory
management of the operating system. It is difficult to use
the system with large scale programs. Multiple users are not
allowed in the system.

DATHAN. It stands for Data Handling Program. It is
written mainly for finite etement analysis applications
(Sreekanta Murthy and Arora, 1983). The program has
some basic in core buffer management scheme. It has the
capability to store permanent and lemporary data sets.
Substructure files can be arranged quite easily with the
same data set names for different substructures. Both
integer and real data types can be handled. A drawback
of the system is that the user has to keep track of the
location from which a new data set has to begin. The
system has FORTRAN data manipulation commands which
are simple to use.

EDIPAS. [t stands for Engineering Data Interactive Presenta-
tion and Analysis System (Heerema and van Hedel, 1983).
It is 3 tool for data management, analysis, and presentation.
The data management part provides a utility to initialize
a project database, input programs to load data from files
into database under user controls, and a set of routines to
extract data from and load data into database in a con-
trolled way. EDIPAS allows users to name a database,
a data structure, and data entities. it allows the user to
employ one or more hierarchical levels. The data is stored
in entities called blocks. A data block allows matrices,
single values and characteristic values as data elements.
A database administration support provides initialization of
database, access of users, deletion of data structures, audit
database contents, and the back-up facility. The system
does not have a data redefinition facility. limprovements are
being made to include a redefinition facility in order that
the data structures and their levels can be manipulated.
Extension of an authorization provision from database level
to the level of data element is being incorporated.

LIPS T ATAT AT ES A AT AR AIES I IS S "b'-‘,'f"o"‘_-‘_-‘,"’_-‘-'.p"a'(‘.- o f‘{.-'.f"_f Cal 2P "L 2
O P A PO AC NN A R A 3 y s W

A = EE B

2

e

T =5

£

5

K

FILES. This is an automated engincering data management
system (Lopez, 1974). 1t is extreinely flexible with respect
to the definition of a database and methods of accessing it.
Information storage and retrieval may be performed using
problein-oriented languages. Hierarchical data structure is
praovided. For exawmnple matrix type of data encountered in
finite element application can be organized using hieraschi-
cal data structure. The first two levels in hierarchy may
contain pointers to the third level containing actual matrix
data. The program aliows dynamic memory allocation. Data
transfer takes place between FORTRAN common block
and database. FILES has a data definition language. The
System does not have data mapping language to specify
mapping of data items and arrays to an extesnal device. The
data definition language (DDL) depends on the problem
oriented language (POL). Therefore DOL cannot be used
independently. The system requires a distinct data manage-
ment compiler.

GIFTS. This is an interactive program for finite element
analysis (Kamel, McCabe and Spector, 1979). It is a collec-
tion of modules in a programn library. Individual modules
un independently and comumwunicate via the unified
database. The database manager processes requests for
opening a file, closing a file, storing data set in a file, and
retrieving data set from a file. The program has a memory
management scheme. Each data set is stored in 8 separate
random access file. Paging is carried out within the working
storage. A unique set of four routines are associated with
a data set for vpening and initializing the working storage,
for reading a data set, for creating/modifying the data set,
and for realizing the working storage. Drawbacks of the
system are that every new data set created requires four
new routines to be written. Each data set is associated with
a separate common block, thereby increasing the number of
common blocks in the system. The data manager is applica-
tion dependent and cannot be used as a stand alone system.
GLIDE. This is a context-free database management system
(Eastman and Hlenrion, 1980). It is designed to provide
3 high level facility for developing an individualized CAD
system. It can be viewed as a language, a database inanage-
ment system, and a geumetric modelling system. It allows
users to define new rccord types known as FORM that
consists of a set of attribute fields. It provides a primitive
data type set to organize a database. It provides an excellent
geometric modelling system or a graphic system. The
drawback of GLIDE is that it does not allow multi-
dimensional arrays.

ICES. Integrated Civil Engineering System is a computer
system designed fur solying civil engineering problems
(Roous, 1966). ICES consists of a series of subsystems each
cotresponding to an engineering discipline. It provides
a Problen Oriented Language which can be used to write
subsystem programs (e.g. coordinate geometry program,
stress analysis program). Command Definition Language is
used by a programmer to specify the structure and required
processing for each subsystem command. A Dsta Definition
Language is used to specify the subsystem data structuse. It
uses its own programming language called ICETRAN
{ICES FORTRAN) and has a precompiler which transiates
ICESTRAN to FORTRAN statements.

A dynamic data structuring capability is provided in
the system which helps to organize dynamic arrays in the
primary memory. The hierarchical data structure is used for
data modelling. Three hierarchical levels, equivalence class,
members and attributes, are provided. Data is stored on
secondary storage using random access files. The data

16

management program uses buffers to convert logical records
to physical secords. An identifier {s supplied by the pro-
grammer which is a pointer giving the position on secondary
storage of physical record. The programmer has a choice to
either store data using dynamic arrays or use the data
management systemn depending on the amount and use of
the data. A drawback of the systein is that it uses a pre-
compiler ICETRAN to convert to the FORTRAN program
instead of directly to machine language. Physical stoiage of
data requires knowledge of address and pointers which the
progranuners have to give. Only three levels of hierarchy are
adopted and it is difficult 1o extend to many levels of hier-
archy.
IPIP. This is a state-of-the-ast database management system
satisfying engineering requirements (Johnson, Comfort and
Shull, 1980). 1t otfess a number of capabilities ranging from
support for multiple schemas and data models to support
for distributed processing, and data suppost fos distsibuted
processing, and data inventory niagagement. An integrated
software architecture supports all user interfaces: program-
ming languages, interactive data manipulation and schema
languages. IPIP supports a multiple-schema architecture
of ANSI/SPARC database group. Three types of schemas -
conceptual, external and internal schemas are supported.
IPIP schema and data manipulation languages exhibit a high
degree of integrz*ion and compatibility. The logical schema
supports both the network and relational data models, and,
functionally, the hierarchical data model. The internal
schema of IPIP is written using the internal schema language
compiler. The internal schema language overlaps that of the
logical schema language to the greatest practical extent to
minimize the amount of schema language with which the
administrator must deal. IPIP software subcomponents
consist of user interface, and data manager. The software
of user interface is made up of precompilers, a query
processor and compilers. Data manager software is made up
of a scheduler, a message procedure interface processor,
8 common semantic processor, a database coatrol sub-
system, a data manipulation subsystem, a record transiator,
a presentation service, an access module, a resource manager
and stubs.
PHIDAS. This is a data management system specially
desighed for handling a collection of structured dats on
minicomputers(Fischer, 1979). The architecture of PHIDAS
is in accordance with the ANSI-2 schema. It has an external
subschema based on the network model of CODASYL and
an internal schema for physical tuning particularly suited
for engineering database. The data description language is
provided to describe schema and sub-schema. PHIDAS also
has a storage structure description language. Data manipuls-
tion language is FORTRAN call statements to subroutines.
A drawback of the system is that it is difficult to represent
matrix type data,
RIM. This stands for Relativnal Information Management
System (Comfort and Erickson, 1978). RIM has the
capability to create and modify data element definition and
relationships without co..piling the schemas or reloading the
database. It also provides the capability to define new types
of data for use in special applications such as graphics. RIM
supports three types of data: real, integer and text. Data
definition and data manipulation languages are available to
define or manipulate relations. The user has the capability
to project, intersect, join and subtract relations. RIM has
good query language. RIM’s modification commands permit
the user to update relation definition, change data values,
attribute names, delete tuples and delete the entire refation.

Adv. Eng. Software, 1985, Vol. 7, No. 3 129

r'..:’?

&
S5

A5

Utility commands such as LOAD, and EXIT are provided to
load a new database and close an existing database. A draw-
back of RIM is that it does not allow a relation having
s row size more than 1024 computer words. The applica-
tion oriented FORTRAN cail statements do not have the
capability to define attributes, relations, rules, etc., required
in defining 3 schems. The system does not support manage-
ment of a temporary database. Simultaneous operations on
2 number of databases are not possible.

REGENT. This is a system for the support of computer-
aided design (Leinemann and Schiechtendahl, 1976). The
main goal of the development was to provide a so-called
‘system nucleus’ in the sense of ICES. Improvement claimed
for the system is that it has a powerful base language PL/1
instead of FORTRAN. Interactive use has been considered
in system development. The database management of
REGENT provides facilities to compress a database, copy
data between databases, and to change name and size of
data elements. The database of REGENT is not a database
in the usual sense. It is some sort of partitioned data set
concept, built up using a tree structure of sequential files,
but the internal structure of these files is known only to
those programs that use them.

SDMS. This is 2 database management system developed
specifically to support scientific programming applications
(Massena, 1978). It consists of a data definition program to
define the form of databases, and FORTRAN compatible
subroutines to create and access data within them. Database
contains one or more data sets. A data set has form of
a relation. Each column of a data set is defined to be either
2 key or data element. The key must be a scalar. Data
elements may be vectors or matrices. The element in each
row of the relation forms an element set. Temporary
database capability that vanishes at the end of a job is
provided. A scientific data definition language provides
3 program-independent data structure. Both random and
sequential access of data set is possible. Data elements
include scalars, fixed and variable length vectors, fixed and
variable-size matrices. Data element types include text, real
and integer. A drawback of the system is that it does not
have a query language. Generalized database load/unload
is not available. Double precision data type is not allowed.
The system is implemented only on Cyber series computers.
SPAR. The computer program is a collection of processors
that perform particular steps in finite element analysis
procedure (Whetstone, 1977). The data generated by each
processor is stored on a database compiler that resides on
an auxillary storage device. Each processor has a working
storage area th... contains the input and the computed data
from the processor. Allocation of spaces in the storage area
is a problem dependent and is dynamically allocated during
execution. Data transfer takes place directly between
2 specified location on disk using a set of dats handling
utilities. SPAR database complex is composed of 26 data
libraries or data files. Libraries 1-20 are available for general
use. Libraries 21-26 are reserved for temporary and internal
use. The database manager uses a master directoty to locate
the table of contents which in turn is used to locate the
data sets in the database. Physically, the auxillary storage is
divided into sectors of fixed size and each read/write opera-
tion begins at the beginning of a sector. Drawback of the
system is that it does not provide either a hieracchical or
relational data structusre. Excessive fragmentation may take
place if the sector size does not happen to be an integral
multiple of the data that is stored.

TORNADO. This is a DBMS system developed for CAD/

130 Adv. Eng Software, 1985, Vol. 7, No. 3

17

CAM application (Ulfsby, Steiner-and Oian, 1979). It is
a CODASYL network system written in FORTRAN and is
very useful for handling complex data structures. it handles
variable object length and dynamic length records. The
system allows different data types — integer, real, character,
double precision, double integer, complex and logicai data.
The system has easy to use data definition language and
data manipulation language. TORNADO system is highly
portable. Data in the database can be accessed by name.
There is no restriction on data set types and allows many-
to-many relationships. Some drawbacks of the system are
that the size of a data object defined by the system is
limited by the largest integer value that can be represented
in the computer, the size of the database is limited by the
maximum size of a file, a multi-file version is not available
and the database cannot be used by multiple users at the
same time.
X10. This is a set of subroutines that provides a generalized
data management capability f8r FORTRAN programs using
a direct access file (Ronald, 1978). The system allows
arrays of integer, real double prgcision and character data
storage. Both random access and sequential access of data
is provided. Variable length record [/O is allowed in the
system. The bit map scheme is used to identify the unused
space for storage of data to minimize disk storage require-
ments. The program allows a restart facility using saved
files following completion of a partial execution or after
a program termination. The system at present is only imple-
mented on IBM360 or DEC PDP1! computing systems.
The system does not provide a data definition language.
Nor does it provide either hierarchical or relational data
structures.

Capabilities of various systems are summarized in the
table.

SUMMARY AND CONCLUSIONS

A survey of database management in engineering is pre-
sented. Various topics starting from database management
terminologies, requirements, data models, to advanced
research topics like integrity of database, transaction
management, database design methodology are covered.
Many research studies on engineering data management are
derived from studies on business data management area.
Therefore, they do not address many problems of engineer-
ing database management. Several researchers are currently
working on database management topics related to
computer-aided design. But, a majority of them are related
to graphic applications. There is a great scope for further
research in engineering database management.

Application of database management to finite element
analysis and design optimization is fairly new. Many of the
general engineering database management concepts can bhe
applied to data organization of analysis and design com-
putations. Only a few researchers have worked on numerical
database management. Many problems of data organization
in engineering computing are still not solved.

Several database managements systems that are suitable
for engineering data organization are reviewed. Their
capabilities and limitations are described. Some of the
database management systems are used in finite element
analysis and design optimization problems. There is a need
for good database management systems that can deal with
engineering computation, as well as graphic data.

[U

[

This research is supported by the Air Force Office of
Scienulic Reseasch, Grant No. AFOSR 82-0322.

REFERENCES

Atinuwala, K. A. and Mayne, R. W. Interactive computer methods
fot design optimizatwon, Computeraided Design 1979, 11 (4),
201

Bell, Jean Data modelling of scientific simulation programs, Int.
Cunf un Management of Data, ACM-SIGMOD, pp. 79-86, 1982

Blackburn, C. L., Stotaasli, 0. O. and Fultun, R. E. The role and
appiation ol database management in integrated computer
dossgn, Journal o) American Institute of Aeronautics and Asiro-
nautics 1982, pp. 603-613

Browne, J. C. Data detinition, stsucturcs, and management in
suwitilic computing, Proc. of ICASE Conference on Scieniific
Cumnputing, pp. 25-56, 1976

Beyant,). C. A Jdata manageinent system for weight control and
Jdesgn-10-cost, NASA Cunference Publication 2055, 1978

Buchinann, A. P. and Dak, A. G. Evaluation criteria tuc logical
Jatabase Jesgn nwthodologics, Computer-aided Design, pp.
121-126, 1979

Comtudt, D. L. and Esickepn, W. J. RIM - A prototype fur a scla-
tional inlunmativn managenent system, NASA Cunference
Putlications 2035, 1978

Cackabiishi, L. and Zyorzciskiy, M. Design detabuse organization and
auetss probieins in large-wale machine manutactusing industry,
I th: Structuies and Dutabases for CAD, [FIP, 1982

Dain. O. A. Numcrical database managenwent system: A model,
Imt. Conf. on Management of Data ACM-SIGMOD, 1982

Dasby-Dowman, K. and Mitra, G. Matrix storage scheines in lineas
prugtamang, SIGMAP Bulletin ACM, No. 31, pp. 24-138, 1983

Date, C.). An Introduction 10 Databese Sysiems, Addison-Wesky,
Reuding, Mass., 1977

Detwa, (. T. Advanced progiam weight control system, NASA
Cunference Publicanon 2055, 1918

Eastinan, C. M. and Hentiun, M. The glide language for CAD,
J Technical Councils of ASCE 1980, 106 (TC1), 171

Eastman, C. M. and Feawes, S.). Design representation and con-
awMency mainicnance nceds in engineeting Jalabases, NASA
Cunjerence Publication 2055, 1978

Eastmans, C. M. The tepiesentation of design problems and main-
tenance of their structuse, Antificial Intelligence and Pattern
Recogmiton in Computer-anded Design, 1F1P, 1978

Eburkews, W and Wodckind, 11, A incthodulugy fue emnbedding
Joogn databases intu intcgrated engineceing systems, 1ie Suuc:
tutcs and Databases fur CAD, [FIP, 1982

clP R

PRI RTRCNELTSFAS AT R

."‘.l'.\.f -I','-‘ W W

T Naf b Yol ¢ [N \ T ataa g atat b e ¥t g0 iy 2y A S0 i S0 Sah wop gl VEL ‘a€L A0a RV, VIR * * 4 XK PO J e b
18
Table 1. Features of verious database management systems for engineering applications
A = Available H = Hieraschicul N = Networtk R = Relational D = Dats set
AS = Available but specialized F=[ORTRAN PL=PL/l O = Others
Matrix Simulita-
Data Jdata Geo- neous
dynamic Data Appli- Inter- organi- metric access
data Dats manipu- Memoty cation active zation Jdata o Multiple
Host External Internal defini- definition ltion manage- inter- capa- capa- cupa- multiple user Temporary

Nu DBMS linguage mudel model tion lunguage language mens face bility bility bility database facility database

{ DELIGHT AS AS A A A A A

2 DATHAN F D A A A A A AS A

3 EDIPAS H A A A AS A

4 FILES F H AS A AS A A A A

§ GIFTS F D A A AS AS A

6 GLIDE AS AS A A A

7 LS (6] H.D AS AS AS AS

8 IPIP H.N.R A A A A A A A A A

9 PIHIDAS F N A A A d A AS A
10 RIM F R A A A A A A A A

11 REGENT PL AS AS AS AS

12 SDMS ¥ R A A A A A A
1} SPAR F D A A A A A

14 TORNADO F N AS A A LN A A
15 xlo F A AS A
ACKNOWLEDGEMENT Elliots, L., Kunii, H. S. and Browne J. C. A data management

system for cngineering and scientitic computing, NASA Con-
ference Publication 2055, 1918

Emkin, L. Z. ICES concepts — A modern system approach, Comput-
ing 1n Civil Engineering, pp. 89-107, 1978

Felippa, C. A. Database manugement in scientific computing -
I. General description, Computers and Structures 19719, 10, 513

Felipps, C. A. Dutabuse management in scientilic computing —
1. Data structuses and program hitecture, Comp 1 and
Structures 1980, 12, 131

Felippa, C. A. Fortran-77 sinulation of word-addiessable files,
Adv. Eng. Sofiware 1982, 4 (4), 156

Fischer, W. E. PHIDAS - A database nanagement sysiem for
CAD/CAM witwate, Computer-aided Design 19719, 11 (),
146

Fishwick, P. A. and Blackbuta, C. L. The integration engineering
programs using a rclational database scheme, Computers in
Engng, Int. Cowmp. Engang Cunt., pp. 173-181, 1982

Foisscu,). and Valkette, F R. A computer-aided design data model:
FLOREAL, Filc Structures and Databascs tos CAD, IFIP, 1982

Fulton, R. E. and Voigt, 8. J. Computcr-aided design and computer
scicnce technology, Third ICASE Conf. on Scientific Computing,
pp. 57-82, 1976

Galletth, C. U. und Giannotti, E. |. Interactive computer system
functional design of mechanising, Computer-aided Design 1981,
13(3). 159

Grubowski, i1. and Eignes, M. A data model for a design dutsbase,
Fike Structurcs and Databascs tur CAD, [FIP, 1982

Gerabowski, Il. Eigner, M. and Rausch, W. CAD data-structures for
minicomputers, Third Int. Conf. on Computers and Engng, pp.
$30-544, 1978

Grabowski, H. and Eigner, M. Scmantic datamodel requizcments and
realization with a relutional duta steucture, Computer-aided
design 1979, 11 (3), 158

Haskin, R. L. and Loric, R. A. u :xtending the functions of
s tclational dutubase system, Ins. Conf. on Management of Data
ACM, pp. 207-212, 1982

Haug, E. J. and Arora,). S. Applied Optimal Design, John Wiley and
Sons, 1979

Heercina, F.). and van Hedel, H. An engi ing data mansgement
system for cumputcr-sided dosign, Adv. Eng. Sofiwere 1983,
$(2), 67

Jefferson, D. K. and Thomson, B. M. Engincering dats management:
expeticncs ad prujections, NASA Conference Publication 2035,
1978

Jenne, R. L. and Joseph, D. H. Managemeat of atmospheric data,
NASA Conference Publication 2055, 1918

Johason, . R. Comtutt, D. L. and Shull, V. D. An engineering data
management systom tos IPAD, TPAD: Integrated Programs for

Adv. Eng. Software, 1985, Vol 7, No. 3 131
N ARt G S (T A

'.;u'.;o'.;n(

¢ {4

‘::‘c."':' v
o ‘:'c'

U
Mttt

'3
g

S
?(.',}'r ‘ e

vy
o
B

"

=
r]
gL

2

SRR

o .:‘ v
4 &]
' y .‘I {S"
L
[

4

>

Aerospace-vehicle Design, NASA Conference Publication 2143,
1980

Jumarie, G. A decentralized datsbase vis micro-computers: a pre-
Himinsry study, Computers in Engineering, int. Comp. Engng
Conf. ASME, pp. 183-187, 1982

Kamel, H. A., McCabe, M. W. and Spector, W. W. GIFTSS System
Menuel, University of Arizons, Tucson, 1979

Koriba, M. Databsse systems: their applications to CAD software
design, Computer-aided Design, 1983, 1S (5), 277

Kunni, T. 1. and Kunni, H. S. Architecture of a virtual graphic
database system for interactive CAD, Computeraided Design,
1979, 11 (3,132

Kutay, A. R. and Eastman, C. M. Transaction management in

I engineering databases, Engineering Design Applications, Proceed-

‘ ings of Annusl Meeting, Database Week, ACM SIGMOD, 1983

‘ Lafue, G. Design database and database design, TThird Int. Conf on

| Computers in Engng and Building Design CAD78, Brighton

Metropole, Sussex, UK, 14-16, 1978
Lafye, G. M. E. Integrating language database for CAD applications,

| Computer-aided Design, 1979, 11 (3), 127

Leinemann, K. and Schiechtendahl, E. G. The Regent system for
CAD, CAD Systems, /IFIP, 1976

Lillehagen, F. M. Towards a methodology for constructing product
modelling databases in CAD, File Structures and Databases (or
CAD,IFIP, 1982

Lopatka, R. S. and Johnson, T. G. CAN/CAM data management
needs, requirements and options, NASA Conference Publica-
tions 2055,1978 .

Lopez, L. A. FILES: Automated enpinecring data management
system, Computers in Civil Engineering, Electronic Computation,
pp. 47-71,1974

Lopez, L. A, Dodds, R. H., Rehak, D. R. and Urzua, 1. L. Applica-
tion of data management to structures, Computing in Civd
Envineering, 1978,477

Managaki, M. Mulitilayered database architecture for CAD CAM
systems, File Structures and Databases for CAD, /FIP, 1982

Mastin. }. Computer Databese Organization, Prentice-Hall Inc,,
Englewood CHff, NJ, 1977

Massena, W. A. SDMS -- A Scientific Data Management System,
NASA Conference Publication 2055,1978

Nye, W. DELIGHT - Design Language with Interactive Graphics and
a Happier Tomorrow, Electronics Research Laboratory, Uni-
versity of California. Berkeley, CA, 1981

Pahl, P. J. Data mansgement in finite element analysis, Wundetlich,

132 Adv. Eng. Software, 1985, Vol. 7, No. 3

19

W., Stein, E. and Bathe, K. |. (eds) Nonlinear Finite Element
Analysis in Structural Mechanics, Springer-Veriag, Berlin, 1981

Pooch, U. W. and Neider, A. A survey of indexing techniques for
sparse matrices, Computing Survevs, 1973.5(2), 109

Rajan, S. D. and Bhatti, M. A. Data management in FEM-based
optimization software, Computers and Structures, 1983, 16
(1-4), 317

RIM User's Guide, Boeing Commercial Airplane Company, PO Box
3707, Seattle, Washington, 98124, 1982

Ronald, D. P. XI0 - A Fortran direct access data mansgement
system, NASA Conference Publication 2055,1978

Roos, D. ICES Svstem Design, The MIT Press, Massachusetts, 1966

Rouscopoulag, N. Toaol for designing conceptual schemata of data-
buascs, Computer aided Design 1979, 11 (2), 119

Schrem, E. lF'unctional software design and its graphical representa-
tion, Computers and Structures 1978, 8, 491

Shenoy, R. S. and Patnaik, L. M. Data definition and manipulation
languages for a CAD database, Compureraided Design 1983, 1§
(3). 131

Somckh, E. and Kirsch, U. Intcractive optimal design of truss
structurcs, Computer-gided Desigm 197y, 253

Southhall,). W. Requirements for company-wide management of
enginecring information. IPA1® Intcgrated Programs for Aero-
«pace-vehicle Design, NASA Conference Publication 2143. 1980

Steckanta Musthy, T, Reddy, C. P. D. and Atrora, }. S. Database
management concepts in cnginecring design optimization, Mroc
AIAAJASME[ASCE[AHS 25th Structures. Structural Dynamics
and Material Conference, 1984

Sreckanta Murthy, T. and Arora, J. S. A simple databas manage-
ment program (DATHA®), Technical Report, Division of
Matcriat Fngne, The University of lowa, 1983

Steckanta Murthy, T. and Arora, J. S. Database management con-
cepts in design optimization, Technical Report, Division of
Material Fngng, The University of lowa, 1983

Sreckanta Murthy, T., Reddy, C. P. and Arora, J. S. User's manual
for cngincering databasc management system EDMS, Technical
Report, Division of Matcrial Engng, The University of lowa,
1983

Ulfsby, S.. Steiner, S. and Oian,). TORNADO: A DBMS for CAD/
CAM systems, Computergided Design 1979, 193

Valle, G. Relational data handling tcchniques in computer-aided
design process, CAD Systems, /FIP, 1976

Whetstone, W. D. SPAR Structurel Analysis System Reference
Manual, System Level Il, Vol. I, NASA CR-145098-1, 1977

>/

b A
vy

5

X

F

A)
5 . !

w

P I PR S 3

LS

AN Y Y

P A L

P

APPENDIX 2

DATABASE MANAGEMENT CONCEPTS IN
COMPUTER-AIDED DESIGN OPTIMIZATION

by
T. SreekantaMurthy and J.S. Arora

Advances in Engineering Software

Vol. 8, No. 2, 1986

21

Database management concepts in computer-aided

design optimization

T. SREEKANTA MURTHY and J. S. ARORA

Optimal Design Laboratory, College of Engineering, The University of lowa, Iowa City,

Towa 52442, USA

This paper deals with database management con-
cepts in computer-aided design optimization.
Complex nature of engineering data and the need
to organize them are emphasized. Database manage-
ment concepts applicable to finite element analysis
and design optimization are explained. Various
aspects associated with the development of data
models, such as conceptual, internal and external
models are discussed. Suitability of external
models, like hierarchical, network and relational,
are discussed with reference to design optimization
requirements. Some techniques to organize data of
large matrices for efficient numerical computations
are given. Concepts of normalization of data,
global and local databases are described. Details
of a suitable database management system are
described in a separate paper.

INTRODUCTION

In the design of complex structural and mechanical systesns,
the need for data management has increased considerably.
Sophisticated engineering design optimization methods, use
large amounts of data and require substantial computer
analysis. Also, these methods use finite element and other
nuinerical techniques during analysis. The volume of data
generated during analysis are used in design sensitivity and
optimization phases. Data generated and used depends
dircctly on the nuiber of iterations performed by the
optimization algorithm. Designer needs to exercise control
over the data and the program to properly guide the iterative
process towards acceptable designs. Significant improvement
in design capability can be achieved with effective inanage-
ment of data. A properly designed database and a database
management system when used with interactive computer
graphics will be an invaluable tool for an engineer involved
in the design process.

Data management systems in business applications such
as accounting, inventory control and task scheduling, are
quite sophisticated. However, due to the complex nature of
engineering applications, growth of their data management
systems has been very slow. Although advancement in
coirvuter-aided design (graphics) has led to the development
of some database systems (DBMS) and concepts,’™* not
much has been done in development of a suitable DBMS for

Accepted July 1985, Discussion closes June 1986.

88 Adv. Eng. Software, 1986, Vol. 8. No. 2

.ty "
N Al T Tty

et meA At A o
S DA A Oy

engineering design optimization. Therefore, it is important
to look at the role of data management in design. and to
study the applicability of various database management
concepts in engineering design optimization.

This paper examines various database management
concepts available for design optimization. Even though
most of the concepts are frequently used in business
database management, they are new to the engineering
community. A number of terms are used in the paper for
describing these concepts.*™ Since many of the terms are
derived from business applications, they do not bring out
clear dcfinition when used in engineering context.®™'!
Therefore, they are explained with finite element analysis
and design optimization examples.

Design and implementation of a good database for any
application needs a sophisticated DBMS. Without such a
system it is not possible to evaluate different designs for
the database. Requirements of a §ood DBMS for design
optimization must be formulated.'* Available methods for
database design and management can be evaluated in the
light of these requirements. Various data models applicable
for design. optimization are described with examples. In a
separate paper,'? database management system having many
of the desirable fcatures for design optimization and other
engineering applications is described.

NEED FOR DATABASE AND ITS MANAGEMENT
IN COMPUTER-AIDED DESIGN OPTIMIZATION

In optimal design of structural and mechanical systems, we
generally use nonlinear programming techniques.'® The
design objectives and constraints for the system are described
in a mathematical model. Design of a system is specified
using a set of parameters called design variables. The design
variables depend on the type of optimization problem. In
design of aircraft components such as stiffened panels and
cylinders, the design variables are spacing of the stiffeners,
size and shape of stiffeners, and thickness of skin. In
optimization the structural systems such as frames and
trusses of fixed configuration the sizes of the elements are
design variables. Thickness of plates, cross-sectional areas
of bars, moment of inertia represent sizes of the elements.
If shape optimization is the objective, the design variables
may include parameters related to geometry of the system.
The constraints for the system are classified into the
performance and size constraints. The performance con-
straints are on stresses, displacements, and local and overall
stability requirements in the static case; frequencies and
displacements in the dynamic case; flutter velocity and
divergence in acroelastic case, or a combination of these.

0141-1195/86/020088-10$2.00
© 1986 Computational Mechanics Publications

AEARAR S MNPty

)

R ¢ la s ~p v s mo™
.#'r‘.' LT,

Ly

—

P AT

27,

o A S A
1) - L
o) A

v N

WY g
P

R
.

Vel

[%Y.
9}{_-‘_‘lu b

"

oy

v WX 2wy
» ."
g 1’-).: .:._‘\ 3d

10>

r
o

LSRR
WX

I‘ h
‘g

<

"_:13"

cus
+
oo

<
LA Ps

ety

TR AN N XJ) e SOl a8 e i 8a Pap i ' %

L

[4

v
'
M 2

54

Ve

A
>

&

7

1" 2
X

&

v
L3

LA
LAy

o

o,
.h"“.l

The size constraints are the minimum and maximum value
of design variables. In nonlinear programming, the scarch
for the optimum design variable vector involves iterative
schemes. The design variable data at the nth iteration is
used to compute a direction vector and a step size along it.
The direction vector involves computation of gradients of
objective and constraint functions with respect to the
design variables. Data belonging to equivalent design
variables are grouped there by reducing the size of design
variable vector.

In most problems of structutal and mechanical system
design, behaviour of the systemn can be defined using state
variables, e.g., stresses, displacements, and other response
variables. In such a case, state space forinulation is frequently
employed.'* Design sensitivity coefficients in terms of
matrix equation are determined in state space formulation.
Adjoint equations are used to define a set of variables that
provide design sensitivity information. Symmetric matrix
equations can be uscd to advantage thereby reducing the
data storage requircinents.

Finitc element and other numcrical methods are uscd for
analysis of structural and ecchanical systems. Finite
element method uscs data such as element number, nodal
connectivity, element stiffness matrix, element mass matrix,
element load matrix, assembled stiffness, mass and load
matrices, displacement vectors, cigenvalues, cigenvectors,
buckling modes, decomposed stiffness matrix, and the
stress matrix. In general, data used in finite clement and
other nuinerical analysis procedures is quite large. Syminetry
of stiffncss and mass matrices is taken into account so that
data storage requirement is reduccd. Hypermatrix or other
special schemes are generally used in dealing with large
matrix equations.

For design of large structures, efficient design sensitivity
analysis is particularly critical. For such structures, sub-
structuring concept can be effectively integrated into
structural analysis, design sensitivity analysis, and optinal
design procedures.'® In this concept, one deals with small
order matrices as the data can be organized substructure-
wise. The degrees of frecdom can be clussified into boundary
degrees of freedom and interior degrecs of frecdom. Data
for the stiffness matriccs corresponding to these degrees of
freedom can be separatcly stored. Data of constraint
functions corresponding to internal and boundary degrces
of freedom are used in detcrmining dcesign scnsitivity
calculations. Adjoint matsix data is stored for cach sub-
structure.

Many real world probleins will have features that are not
explicitly contained in general optimal design formulation.
Problems with peculiar features need to be treated by
making minor alterations in the general algorithm. Inter-
active computation and graphics can be profitably employcd
in design optimization. At a particular itcration, the designer
can study the data of design variables, constraints which are
active, performance of the system, cost function, admissible
direction of travel, sensitivity coefficients, etc. He can inake
judgemnent regarding suitability of a particular algorithm,
change of system parameters, and redcfine convergence
patameters to achicve optimal design. Interactive graphics
requires additional data for display of system tnodel, results,
and graphs.

Thus, for design optimiczation, data generated during
analysis must be saved in the database. This data is used
for formulation of constraints. Constraints are checked for
violation. Design sensitivity analysis of violated constraints
is carried out using wost ot the data generated during

22

analysis. Once design sensitivity analysis has been completed,
a dircction finding problem is defined and solved. Note that
the size of ditection finding problem at ecach iteration
depends on the number of active constraints. Therefore,
sizes of data sets change from iteration to iteration. Thus,
the nature of data is quite dynamic. We should be able to
dynamically create large data sets, manipulate them during
the iteration, and delete some of them at the end of iteration.
Useful trend information from each iteration must be saved
for processing in later iterations. Note that a row of the
history snatrix (such as design variable values) is generated
at each iteration. However, to use the trend information for
a quantity (e.g., a design variable), we need to look at its
value at the previous iterations. This implies that we should
look at a column of the history matrix. Therefore, we
should be able to create data in one form and view it
another. Thus, we must have an intelligent and sophisti-
cated DBMS. Data must be organized, saved in a database,
and properly managed for design optimization.

DATABASE MANAGEMENT CONCEPTS FOR DESIGN
OPTIMIZATION

The problem is how to organize data in a database, what
Kind of information is to be stored, what kind of database
management system is suitable, and how data is manipulated
and used. In this regard, sophisticated techniques are
available in business duta management area to deal with
complex data organization problems. The techniques used
in existing finite element programs, however, are primitive
and difficult to use. Therefore, a study of database manage-
ment concepts is nade to understand various methods
available for data organization and to implement them for
structural design applications. The concepts are explained
here with reference to finite element analysis and design
optimization examples. They are, however, suitable for
other engineering and scientific applications.'*

Definition of various terminologies

A number of terminologies and definitions are given
to facilitate descriptions in subscquent sections. More
discussions can be found in refs. 6-11.

Database. A database is defined as a collection of inter-
related data stored together without harmful or unnecessary
redundancy to serve multiple applications. The data stored
so that they are independent of programs which use them.
A comnon and controlled approach is used in new data
and in modifying and retrieving existing data within the
database. The data is structured so as to provide a founda-
tion for future application developiment. One system is
said to contain a collection of databases if they arc entirely
separate in structure.’

Logical data structure. Data in a particular problemn
consists of a set of elementary items of duta. An item
usually consists of single element such as integer, real and
character or a set of such items. The possible ways in which
the data items are structured define different logical data
structures.

Model. The lugical structure of data.

Schema. The coded forin of logical data structure is
called schema.

Adv. Eng. Software, 1986, Vol 8 No. 2 89

A A A T T DI TR NN A AT S

v,

Ut

‘)3 o g ata s § Wi Ud KR LTI WSO T

Entity. An entity may be ‘anything having reality and
distinctness of being in fact or in thought'.®

Entity set. An entity set is a collection of entities of the
same type that exist at a particular instant, eg., set of
finite elements (ELEMENTS) and set of nodes (NODES).

Property. Property is a named characteristic of an
entity, eg.. element name, and element material type.
Properties allow one to identify, characterize, classify and
relate entities.

Property value. 1t is an occurrence of a property of an
entity, e g., ‘element name’ has property value BEAM.

Domain. A domain is the set of eligible values for a
property.

Element name = (BEAM, TRUSS, ..))

Element material type = (STEEL, ALUMINIUM, . .)

Length= x x > 0and x < 100

Atrtributes. Columns of a two-dimensional table are
referred to as attributes. An attribute represents use of a
domain within a relation. Attribute names are distinct from
those of the underlying domains;eg.,

Domains: NODES= i i>0andi<n
DOFS= j j>0andj<m
Attributes: NODE! - First node of an element derived
from domain NODES
DOF1 — First d.o.f. derived from domain
DOFS

ELEMENT (E#, NODE1, NODE2)
Attributes NODE1, NODE2 are derived from
the domain NODES.

Relation:

Entity key. Entity key is an attribute having different
values for each occurring entity and provides unique
identification of a tuple. An entity represents a compound
key if it corresponds to a group of attributes. It is also
called candidate key.

Functional dependence. An attribute A4 is functionally
dependent on the attribute B of a relation R if at every
occurrence of a B-value is associated with no more than
one A-value. This is denoted as R.8. =+ R.A. As an example,
consider the relation: ELEMENT (ELMT#, EL-NAME,
AREA). EL-NAME is functionally dependent on ELMT#.
AREA is functionally dependent on ELMT#. ELMT# is
not functionally dependent on EL-NAME, because more
than one element could have the same name. Similarly,
ELMT#is not functionsily dependent on AREA.

An attribute can be functionally dependent on a group
of attributes rather than one attribute. For example,
consider the relation for a triangular finite element:

CONNECTION (NODE! #, NODE2#, NODE3#, ELMT#

Here ELMT# is functionally dependent on three nodes
NODE1#, NODE2#, and NODE3#. Given any one of
NODE!#, NODE2#, or NODE3# it is not possible to
identify ELMT#. These functional dependencies are shown
in Fig. 1.

Full functional dependency. An attribute or a collection
of attributes A of a relation R is said to be fully function-

90 Adv. Eng. Software, 1986, Vol. 8, No. 2

SR

. J‘,.-I' " _.-".'.r‘__uf

CWIRIW. P 4202 -1 I.I. .'«..‘ Iy o
23
ELMT# NODEL#
EL-NAHE:] | NODE2§ ——
AREA NODE 3§ ——
ELMT# «w—
Figure 1. Functional dependencies

-’ .

'

Figure 2. Full functional dependency

Figure 3. Transitive dependence

ally dependent on another collection of attributes B of R if
A is functionally dependent on the whole of B but not on
any subset of B. This is written as R.B. = R.A. In the Fig. 2,
for example, ELMT# in the relation CONNECTION of a
triangular finite element is fully functionally dependent on
concentrated attributes NODE1#, NODE2#, and NODE3#
because three nodes combined together define an element.
NODE! #, NODE2#, or NODE3# alone does not identify
ELMT#.

Transitive dependence. Suppose A, B and C are three
distinct attributes or attribute collections of a relation R.
Suppose the following dependencies aloways hold: C is
functionally dependent on B and B is functionally depend-
ent on A. Then C is functionally dependent on A. If the
inverse mapping is nonsimple (i.e., if A is not functionally
dependent on B or B is not functionally dependent on O),
then C is said to be transitively dependent on A4 (refer to
Fig. 3). This is written as

RA -+ RB,RB. ~RARB ~R.C
Then, we can deduce that
RA -RCRC+RA
For example, consider the relation
EL-DISP(ELMT#, EL-TYPE, DOF/NODE)
Here ELMT# -+ EL-TYPE
EL-TYPE » ELMT#

EL-TYPE -~ DOF/NODE,
DOF/NODE + ELMT#

W
‘*‘o

L0

.l
]

. &= 21

|

£ss

[4
-

{ B KN

4

A

A

J

2
N
N
5

..'

s

Yyl

o o
-
*

-
-

i
i

.
(]

‘AP 2

> w o,
2 ,-.(-./ "I'

I)’

LA s gyl]
%%
'$‘5 o o«

ﬂ'.'o

4V BT 4t AL Tal b a e Tl Val N ¥ T 8, %0 Vet ol ¥ .3 Vo8 g Vo' 2000, 0" 4. @ 620 ' 5.0 0. 8 0 070 2% %6 2%2. 28 2% %" 10822 %80 Ve 02" F1% 00" 00t A 02" ¥ Bad 0.0 200" (e ..,:;‘
R
24
, 0
\ o
& Therefore ELMT# ~ DOF/NODE (transitively models — viz, hierarchical, network and relational. These ,:(
dependent) data models are described in the following subsections with o
reference to finite element analysis and design optimization ,:!:
E VIEWS OF DATA AND DATA MODELS data. b
A database can be viewed at various levels depending on Data set approach. User organizes the data using uniquely / n
the context. External view represents the data as seen by named data sets.'* Data sets are grouped to form a data l".‘i
4 the interactive terminal users and application programmers. library. How the contents of the data sets are managed is w
. Conceptual view deals with inherent nature of data occurring completely up to the application programs. Since most of !
in the real world information and represents a global view the engineering data are highly unstructured, the data set :":
of the data. The data organization describing the physical offers a simple solution to describe the user’s view of the '
layout is dealt at the internal level. At this level, one is data. This type of organization is quite simple, flexible and
-, concerned with efficiency and storage details. There is one casy to usc by application programmers. Further improve- . J.“
more level of data organization below the internal level ment in this type of organization can be done by defining ot
i where the actual storage of data on a particular computer ordered data sets. For example, row, column or submatrix ,
S system becomes the main consideration. But, this aspect is order may be used to deal with matrix data. The data ‘
o a specialist’s job and has no general guidclines. Therefore, librarics formed by this approach may be classified according

it is not discussed here. Three levels of data — external,
conceptual and internal are used to describe various views

to project or their usage. For exanple, data of substructures
in finite element analysis may be grouped substructure-wise,

T of data and are explained in the next three sections. These cach in a scparate library. This type of data modelling, ."l
A levels of data organization were suggested by ANSI/SPARC however, has high redundancy. Also, it is not suitable for ::.'
(Standard Planning and Requircinents Comunittee). It is interactive use. !.':

, gaining wide acceptance in designing a database.) :l
% Traditionally users define the data in a database in terms Hierarchical model. Data is organized at various levels U
[of data sets. Other common approaches are through data using a simple trec structure. A tree is composed of hierarchy : ..!

of elements called nodes. A detailed description of hicrarchi-
cal modcl can be found in Date.® Hicrarchical structure o
appears to fit data of many design problems.'*™** To)

illustrate an application of a hierarchical model, consider

o
STRUCTURE a structure idealized by finite elements. Data pertaining to ::.,
complete structure may be placed at root level. Finite i
. elements data, node nuinber data and material data can be Ny
placed at the next level. Such a model is shown in Fig. 4.
1 1 An example of hierarchical model fur hypermatrix data is) -,
- shown in Fig. 5. Depending on the size of hypermatrix, it) T
o can be divided into number of submatrices and arranged at . "
re NODES ELEMENTS MATERIAL various hierarchical levels. In design optimization applica- ; oond
tions, the concept of design variable is fundamental to the .
Figure 4. Hierarchical model for finite element analysis development of a hierarchical nodel. Organiczing design i\
.J‘.I' . \ }-
(o
oym v
2 A
3 #
Structure ; W
Laad
«.:_'. |
5__',
::-', Substructure
" ! i
<
::‘u". 1
! | 1 ! 1
f" internal Boundary Iat/Boundary Internal Boundary
J Stiffness Stiffness Stiffness Load Load
Submatrix Submatrix Submatrix Submatrix Submatrix |
&z |
Figure 5. Hierarchical model for hypermatrix representation
Prons
e Adv. Eng. Suftware, 1986, Vol 8, No.2 91 !
. :‘p
L R R S A O W N T R) \:'..' [\':i' .‘:-o".._;-.' AT T g.."-.' _'_.\,“_-_' a8, A"t .':P.':I'.'-}"- .,".$- AT AT AT A T T r\d\r\ ~|(\ 4

o

PR RN N ROV RO RN O O IO RO », 9 0 W A iah el MO O 0804 Ly UM ot
W
| &
25 ﬁ .::
'_ ""'l
ETAR
PROJECT |§§Q]
-
o
PART NO. g:
»n
l [
ESCYC | l DES MAT B
Iy
Design Cycle Material No. T
B
DESGRP MAT PRO .
2
Design Variable | Design Group | Design Variable e |Vlg |@ .
Link # Shape (.“_1"
: &
A
DESDAT
e
£
Length Height Width Thickness
e
Figure 6. A hierarchical model for design variable data B
%
variable data using a hierarchical model is described as can form data model with items such as elements and -0
follows. Figure 6 shows various levels of data in the hier- nodes. Disadvantages of the model are in its complexity and '
archical model. Root level in the model represents project the associated data definition language. .
name, foliowed by part number in the immediately next '_’:’ o
lower level. Part number has two dependent nodes having Relational mudel. A data inodel formed using relations e .
design cycle DESCYC and material number DESMAT is known as relation model.>™® A relational data model is . :-(
data. At the fourth level DESGRP data consisting of constructed from a tabular representation of the data. Y
design variable number, design group link, and design Figure 7 shows a relational model. The rows of the table '.-: :
variable shape data are indicated. Material properties data are referred to as tuples. The columns are referred to as A
MATPRO is also set up at the same level. Lower most attributes. The relational model provides an easy way to T
level consists of detailed design data. We can see from the represent data. The relational operations such as JOIN, "
above examples that hierarchical model fits naturally with INTERSECT and PROJECT can be used to form new S.;l hC
the usual subdivision of design data. relations. This model can provide easy access to data for '_-..‘j G
the user. Also, tabular structure of the model provides a - “.’-ﬁ
Network model. A collection of arbitrarily connected convenicnt way of representing engineering data that are .-"".
logical relations is called a network. A data model defined generally in this form. b0, Y &
by such a network is called the network model. It is more Relational model is quite appropriate for design optimi-
general than the hierarchical model as it allows many-to- zation applications, since retricval of data requires smailer T
many relations. For example, in finite element analysis we preconceived paths. Applications generally require a com- :\H
L
A
92 Adv. Eng. Software, 1986, Vol. 8, No. 2 e

=

v " '\'~‘q.'-.‘\ﬂ ML W S U AN
NI S A e R

I‘;{Eﬁ.?

Figure 7. Relational model

plete set of related items simultaneously. Retrieving parts
of information is not useful. In such a case the relational
model which is set oriented provides a suitable way to
organize the design data.

Numerical model. Most of the computations in design
optimization involve operations on matrices like matrix
addition, multiplications, solution of simultaneous equations,
and eigenvalue calculations. The data models presented
earlier are not tailored to handle matrix data effectively.
It is necessary to provide a user-friendly facility for defining
such nuinerical data and manipulating a numerical data-
base."®® It is possible to provide such a facility by defining
a new data model called numerical model. This numerical
model is basically a variation of hicrarchical data model
having two levels of data representation. At the first level
information pertaining to type and size of data is placed.
The second level contains the actual numerical data. This
model is shown in Fig. 8. A matrix is referenced through a
user defined NAME or NUMBER. Various levcls of sub-
matrix organization can be defined through parameter
called LEVEL. TYPE indicates the type of matrix: square,
lower triangular, upper triangular, banded syminctric,
banded nonsymmetric, diagonal, etc. ORDER indicates
user’s view of matrix storage; e.g., rows, columns or sub-
matrices. For storage or retrieval of matrix data, the unit
of transaction will be in terms of ORDER; i .e., row, column
or full matrix. Dimension of matrix is reprcsented by the
number of ROWS or COLUMNS. PRECISION parameter
specify the tolerance required while performing floating
point operations. NULL parameter specifies if inatrix is null
or not. By checking this paramcter unnecessary operations
on null matrices can be eliminated, thereby saving consider-
able storage and execution time.

Examples of numerical model are shown in Fig. 8. Sub-
matrix organization for level | is shown in Fig. 8a. The
matrix information for level 0 can be described in the
same way as shown for level 1. Symmetric banded matrix
organization is shown in Fig. 8b. Note that rows or coluinns
ate of variable size. Fig. 8c shows an upper triangular matrix
represented in the imodel.

Choice of data model. It is seen that various types of
data models described in previous paragraphs could be used
for design optimization applications. {t is not possible to
expect effective use of any one model in all situations.
However, from practical considerations, we have to choose
one data model! for implementation purposes. Choice can
be made on the merits of a data model to organize design
and analysis data.

A hierarchical data model is suitable where the data to
be organiced occurs in a truely hierarchical fashion. The
model, however, requires complex manoeuvres through
a chain of pointers to access a particular data. Aiso, it has
a fixed structure and offers little flexibility to change for
alternate structures. Another drawback of the hicrarchical
model is the complexity of database design requiring
tedious process of establishing links between data. If new
kinds of data are to be added or new inforination must be
gencrated from a database, it is necessary to add new links.
Generally, this process requires redesigning the entire
database. Network data models have similar problems,
although addition of new item is much casier compared to
the hicrarchical data model.

Relational data model provides maximum fexibility of
all the three data models. Moreover, relational data model
is easier to understand. Users find it natural and familiar to

ato | 1| square | mow | 20 | 20 |10°19] o

.......

@ -

Bl |0 |s-BanD | Row | 20| 5 | 10710 | o

(b)

1| o u-TrIAN | mOW |15 | 15] 10°10] o

(c)

Figure 8. Examples of numerical data model: (a) A square
matrix; (b) a symmetric banded matrix; (c) an upper tri-
angular matrix

Adv. Eng. Software, 1986, Vol. 8, No.2 93

2 5

,s '.;;1_
o

¥

Fird

A
.,.
21;3

-

RO

Ry 2%

P

) s D v Yo g¥ WS gl "t Ao hat el ¥ " D 80008 Y - ~.'. L 54 'l‘ .',,.~ ~.‘-.'« .‘..‘;
- x ::;
B »
27 !
| o,
organize data in tabies. A major advantage of the model is of many complicated design optimization procedures l ON
the ease with which database can be changed. As the design where identification of entities, relations, etc., is not clear. L, e
evolves new attributes and relations can be added, and Moreover, new design optimization methads continuously . {-ﬁ ,
existing ones deleted easily. The model is more appropriate evolve, leading to change in conceptual models and thereby ' A
for design applications, since data storage and retrieval uses imposing constraints on existing models. But it is important (o
a less preconceived path. It is possible to support a simple to examine the suitability of available tools and techniques i -)
query structure using this model. for conceptualization before they can be totally rejected. N
Thus, it is seen that the relational data model is appro- - -]
priate for design and analysis applications. The relational Internal model W
data model alone, however, does not provide the capability Logical organization of data to be stored on physical \$‘. ."g
to organize large matrix data. A numerical model which is storage media is described by an internal model. It is :K: ":'
basically a variation of the hierarchical model appears to basically organization of elementary relations or parts of
be quite effective in representing matrix data structures. In them and storing them as a unit to reduce number of ..
any general design situation, coexistence of these data accesses. One approach to define an internal model is by ﬁq Pyt
modelling facilities is desirable. means of refations and use of normalization®? criteria to A ")
obtain relations consistent with the conceptual model. Such ' "
A conceptual data model a collection of relations reduces redundancy, eliminates \
Conceptual model describes the structure of all types of undesired anomalies in storage operations, and ensures '.,h'. o
data that need to be stored in a database. It represents real database integrity. So far intuitive approaches have guided é;- Q
world data independent of any computer constraints and the design of an internal model for many existing finite P
therefore provides a theoretical basis for organizing data of clement packages. With the availability of new tools for "
finite element analysis and design optimization problems. designing an internal model a more rigorous and logical Ac W
A logical approach for conceptualization of data is through approach can be used to design a database. :% v
information collection and analysis of data.® Conceptual Relational and numerical data modclling concepts are : ﬁ.:
model can be derived either by first forming global views appropriate to design an internal model for finite element ":,
and then deriving local views, or by aggregating local views analysis and optimization data. Collection of relations and oy N
to form a global view. The first approach involves entity matrices can be interpreted as sets, records and data items. o O
identification, relation formation, and name assignment. Such sets are stored together and accessed as a unit. Details Lo
The other approach is based on combining segregated of how the data items are connected to form a record, set *
views of usages and information contents of individual and finally physical blocks are part of the physical data oy
perspectives. structure. The task of physical data structure is to produce) b,
Information collection is through identification of an access path for transferring logical data to physical » :,
entities based on their properties. To illustrate how this space. Stored data mapping description encodes the access o
may be done in design optimization, consider the entity path to corresponding storage structure. This mapping Ay
PLATE. The entity has properties of two side dimensions, provides flexibility for tuning the physical structure inde- —
thickness, and material constant £. The associated property pendent of the logical structure to achieve varying degree of O
values are, say, 100, 50, 0.5, and 107, respectively. These efficiency and physical data independence. . e
property values belong to a certain domain, for example, NN
domain of property ‘dimension’ is x 0 € x < 200 . Entity External model :-:. :-’
sets are formed by considering entities so identified. Attri- One of the important requirements of a database is to hab
butes are associated from entity sets to domain. Finally, provide facility for data retrieval by different application 1)
unique names are assigned to the entities and attributes programs depending on their needs. Different application e 3
so formulated. programs can have different views of a database. To illustrate =
Various complexities are involved in entity identification this consider the needs of two finite element analysis SO
in design optimization area. Design specifications of a system programs. Let one finite element analysis program use o
are expressed quantitatively in terms of a mathematical skyline approach to assemble and solve system equations. WA TR
model using design variables, They are dependent on the Another program using hypermatrix approach to perform SN,
type of optimization problem. For example, in optimization similar task needs to use the same database. Basically, the L ,':h“
of trusses of fixed configuration, sizes of members become two application programs using some common data such as »
design variables. If shape optimization is the objective, geometry, material and other finite element idealization el X7
design variables consist of parameters related to geometry data should be able 10 derive them through an existing _1'.\ o
of the system. Therefore, one cannot arbitrarily form an databasc. This aspect of catering to the needs of different L \:;
entity set ‘Design Variable’. Further, in identification of application is possible through an external model. e o
entities, time must be modelled appropriately. Data structure as seen by an application program or " -':..-'
Analysis of information about conceptual objects — interactive user is called an external data model. Data AT
entities, attributes and relations — leads to the formation of retrieved from actual physical storage in the database LT
a conceptual model which replaces the real world informa- undergues transformation till it reaches the user. Trans.
tion. It requires determination of functional dependencies formation involves rearrangement of data from internal level K ™
of various kinds.* 7 But it is difficult to clearly identify all to external level into a form acceptable to the application -
possible dependencies in the design data. Moreover, these program.
dependencies could change from time to time. Finally, Some constraints have to be observed while designing an
transformation of list of conceptual objects into irreducible external model. Constraints arise while rearranging data
units called elementary relations gives a conceptual model from internal data structure to an external data structure.
representing all relevant data. An important constraint is that internal data structure must
Assumption that all design data can be conceptualized be consistent with the conceptual data structure. Any
into a model may not hold good. This is particularly true retrieval and storage operation specified on the external
94 Adv. Eng. Software, 1986, Vol. 8, No. 2

B

W 5 %2 23 I

r o
| 3 N

E

model must be correctly transformed into corresponding
operations on the internal model and at the same time data
must be consistent with the conceptual data model. Also
design of the cxternal model must fit the database manage-
ment system capability.

Normalization of data

It was seen in the previous sections that data items are
grouped together to form associations. An issue of concern
here, is how to decide what data iteins have to be grouped
together? In particular, using a relational model, deternmining
what relations are needed and what their attributes should
be? As database is changed, older views of data must be
preserved so as to avoid having to rewrite the programs
using the data. However, certain changes in data associations

- could force modification of programs, and could be
extremely disruptive. If grouping of data items and keys is
well thought of originally, such discuptions are less likely to
occur.

Normalization theory®™® provides certain guidelines to
organize data items together to form relations. The theory
is built around the concept of normal forms. A relation is
said to be in a particular normal form If it satisfics a certain
specified sct of constraints. Three normat forms — Ist, 2nd
and 3rd — are described below.

First normal form (1NF). A relation is said to be in the
first normal form if and only if it satisfies the constraint of
having atomic values.

28

As an example, Fig. 9 shows the relation CONN between
four attributes ELMT#, E.NAME, NODES# and DOF/
NODE with domains D,, D,, Dy and D,. The relation is
first shown not in the INF and then in the INF.

Second normal form (2NF). A relation is in second
normal form if and only if it is in INF and every non-key
attribute is fully functionally dependent on each candidate
key.

Let us see if the relation CONN of Fig. 9 in the INF is
also in the 2NF. Consider a non-key attribute E-NAME:

ELMT#, NODES# - E-NAME
ELMT# -+ E-NAME
NODE# # E-NAME
Therefore, ELMT#, NODES# # E-NAME, ie., E-NAME

is not fully functionally dependent on (ELMT#, NODES#).
Similarly for the non-key attribute DOF/NODE:

ELMT#, NODES# -+ DOF/NODE
ELMT# - DOF/NODE
NODE# » DOF/NODE

Therefore, ELMT#, NODES# # DOF/NODE. Since neither
E-NAME not DOF/NODE is fully functionally dependent
on candidate key (ELMT#, NODES#), the relation CONN
is not in 2NF.

Conversion of the relation CONN to 2NF consist of
replacing CONN by two of its projections (refer to Fig. 10):

Domafin Dl Domain Dz Domatin D3 Domain D4 ,
BEAM NODE #1 No. of DO
ELMT#1 s per node
ELMT#2 TRUSS NODE#3 6
NODE #4 3
ELMTSI PLATE NODE #5 2
Key Key Key Key
CONN | ELMT# | E-NAME | NODES # | DOF/NODE ELMT# | E-NAME | NODES # | DOF/NODE
1 1 BEAM 1 6
1 BEAM 2 6 1 BEAM 2 g
3 2 TRUSS 3
TRUSS S 3 2 TRUSS 5 3
PUATE 2 3 PLATE 2 2
3 2 3 PLATE 3 2
4 3 PLATE 4 2
5 3 PLATE S 2
Not in INF In INF

Figure 9. First normal form for a relation CONN

P UTE e o NN e
TN OO NI AN SN

Adv. Eng. Software, 1986 Vol 8 No 2 9§

o ‘I"Jl'...‘.. ‘

la® 4a® 12" 00" 02" ¥2",

i
.--.f ‘J\(_‘f__

Pl ol
LarNA

S
Al

b

5 Ny '_l

»

LI |
'u":7
O
D

AT

e I
rrEL
(-:‘.‘n"a‘.'h'v

i@
*

.
L

4

{ g-"a‘

-
0}

2, .'\"\;:
A

S 2 3 0V 14~ gav R a- P V8" aie o g% a0 a'd 2" 08 0.0 8 0" Sl da $ob Fab bad ted tal tad Rat ghongt Py DA VR A1 RO B0 00 MV GF B b bd Gy 0Lt g) o R L PR gl g §

29 - -

NAM-DOF + CONN (ELMT#, E-NAME, NODES#,
DOF/NODE)

ELMT-NODE + CONN (ELMT#, E-NAME, NODES#,
DOF/NQDE)

Relation ELMT-NODE does not violate 2NF because its)
attributes are all keys. . |

ELMT# >

Third normal form {3INF). A relation is in the third
normal form if it is in second normal form and its every E-WE -
non-prime attribute is non-transitively dependent on each A,
‘ candidate key of the relation.
| For example, consider the relation NAM-DOF (Fig. 10) ,
to see if it is in third normal form. It still suffers from a E

fack of mutual independence among its non-key attributes. ;
The dependency of DOF/NODE on ELMT#, though it is -t ’
functional, is transitive (via EENAME). Each ELMT# value DOF/ NODE -)
determines an E-NAME value and in turn determines the -q
DOF/NODE value. This relation is reduced further into s

relations NAME and DOF. These relations (Fig. 11) are in
the third normal form. f

DOF E-NAME | DOF/NODE g

Global and local databases

Computer-aided design of complex structural systems
uses several application programs during the design process.
Many of these programs require common information such
as geometry of the structure, finite element idealization
details, material properties, loading conditions, structural
stiffness, mass and load distributions, and responses resulting

BEAM
TRUSS
PLATE

NN

from the analysis runs. Also, it is common that data generated SN
by one program is required for processing in subsequent :,_)
programs in certain predetermined pattern. These data do °
not include transitory information such as intermediate]
results generated during an analysis run. The transitory e
information is highly unstructured and its usage pattern NAME EL"T' E-NAME [

230 TP Y T e] L3P ¥ -..v.,\- "_'J"."))
L{‘."_\. AL AU A PR DR LGRS

o
- 1 BEAM R
NAM-DOF | ELMT# | E-NAME | DOF/NODE 2 TRUSS |
3 PLATE | ..
| 7
1 BEAM 6 Figure 11. Third normal form for relation NAM-DOF R
2 TRUSS 3 2%
3 PLATE 2 Ty
P P
is known only to applications that use them. Generaily, PN ‘(:
the transitory information is deleted a* the end of a run. 'Y
Therefore, there is a need for systematic grouping of the e B
ELMT-NODE NOD data. ORI
ELNT# € A network of databases offers a systematic approach to t- N
support data of multiple applications.?3* A network of :’.
databases consists of a global database connected to a “ g
1 1 number of local databases through program data interface. ".': B
i 2 Application programs which use them may be thought of : . ’
2 3 as links connecting the databases. A global database contains g
2 5 common information required for all applications whereas . .:‘-
3 2 a local database contains only application dependent St '.,:‘
transitory data. Data in global database is highly structured }.r',‘ "o
3 3 and integrity of the database is maintaincd carefully. Data :';h'
3 4 in a local database, however, is extremely flexible and p ',,.;.'
3 5 integrity is not of importance. »t &“
The network of databases offers considerable aid in the —r
structural design process. Any changes made to the datain ;S‘,
Figure 10. Second normal form for relation CONN global database is immediately available for use in other "ft\
% R
DOENCN
96 Adv. Eng. Software, 1986, Vol. 8, No. 2 D
o
ST I
[] :\:‘:
.;:\'«

Ve it dt e

ORURTR TNV v Leug Saf val sy Wag tah bap

applications of the system. Any new application program
can be added to share the common data. The data views
in global databascs are clear to all applications and any
modified views can be easily incorporated to suit a new
application. Local databases arc dependcnt on application
programs and are highly efficient in data transfer operations
since no overhead is involved in maintaining complicated
data structures. It supports trial and error design process
by providing scratch pad work space which can be erased
from the local database at a specified design stage. Any
intermediate results can be stored in a local database. Final
tesults of a design can be transferred 10 a global database.

DISCUSSION AND CONCLUSION

Various concepts of database management applicable to
engineering design optimization are discussed and illustrated
with examples. Even though needs of database management
in engineering and business applications are different, there
is some commonality between them. The currently available
tools and techniques for developing a good database manage-
ment system have to be studicd before they can be totally
rejected. Also it is suggested to make use of available
database managemcnt concepts and tailor them to suit our
needs.

Conceptualization of design data, and internal and
external models are discussed. User’s view of data is described
through hierarchical, network, relational and numerical
models. Relational model is quite useful for optimization
and general engineering applications. Numerical model is
quite promising for dealing with matrix data. Coexistence
of these data modelling facilities provides much flexibility
to the user. Normalization of data is useful to associate
various data items in an efficient and nonredundant way.
Concept of global and local database provide a means to
otganize data at various levels in the design optimization
enviconment. A companion paper'? describes a database
management system that is under developnient based on
these concepts.

ACKNOWLEDGEMENTS

This research is sponsored by the Air Force Office of Scien-
tific Research, Grant No. AFOSR 82-0322. The material of
the paper is derived from presentations made by the
authors at the 25th and 26th AIAA Structures, Structural
Dynamics and Materials Conferences.

REFERENCES

1 Ulfsby, S., Steiner, S. and Oian,). TORNADO: A DBMS for
CAD/CAM systems, Computer-Aided Design 1919, 193

10

11

12

13
14

19
20

21

2

23

Fischer, W. E. PHIIDAS ~ A database management system for
CAD/CAM software, Computer-Aided Design 1979, 11 (3),
146

Comnfort, D. L. and Erickson, W. J. RIM - A prototype for a
relational information management system, NASA Conference
Publications 2055,1978

Fulton, R. L. and Voigt, S. J. Computer-aided design and com-
puter science technology, Third ICASE Conf. on Scientific
Computing 1976,57-82

Browne, }. C. Data definition, structures, and management in
scientific compuling, Proc. of ICASE Conference on Scientific
Computing 1976, 25-56

Date, C. }. An Introduction to Database Systems, Addison-
Wesley, Reading, Mass., 1977

Martin, }. Computer Data-base Organization, Prentice-Hall,
Inc., 1977

Vetter, M. and Maddison, R. N. Database Design Methodology,
Prentice-Hall International, 1981

Felippa, C. A. Database management in scientific computing —
I. General description, Computers and Structures 1979, 10,
§3-61

Felippa, C. A. Database management in scientific computing -
11. Data structures and program aschitecture, Computers and
Structures 1980, 12, 131

Sreekanta Murthy, T. and Arora, J. S. Database management
concepts in design optimization, Tech. Report No. CAD-SS-
83.132, The Univessity of lowa, Oct. 1983

Steckanta Murthy, T., Shyy, Y-K. and Arors, J. S. MIDAS:
Management of information for design and analysis of sys
tems, Adv. in Engng Software, in press

Haug, E. J. and Arora,). S. Applied Optimal Design, John
Wiley & Co., 1979

Bell, Sean, Data modelling of scientific simulation programs,
Int. Conf. on Management of Data, 2-4 June, ACM-SIGMOD,
1982, 79-86

Sreekanta Murthy, T. and Arora, J. S. A simple database
management program (DATHAN), Technical Report, Division
of Material Engng, The University ot lowa, Jan. 1983

Pahl, P. J. Data management in finite element analysis, in
Wunderlich, W., Stein, E. and Bathe, XK.). leds) Nonlinear
Finite Element Analysis in Structural Mechanics, Springes-
Verlag, Berlin, 1981, pp. 716-24

Elliott, L., Kunii, H. S. and Browne, 1. C. A data management
systemn for engineering and scientitic computing, NASA4 Con-
ference Publications 2055, 1978

Lopez, L. A., Dodds, R. H,, Rehak, D. R. and Urzua, J. L.
Application of data management to structures, Computing in
Civil Engineering 1978,477

Daini, O. A., Nuinerical database management system: a model,
Int. Confer. on Management of Data ACM-SIGMOD, 1982
Rajan, S. D. and Bhatti, M. A. Data management in FEM-
based optimization software, Computers and Structures 1983,
16 (1-4), 317

Jumarie, G. A decentralized database via micto-computers
a preliminary study, Computers in Engineering, Int. Computer
Lngng Confer. ASME 1982, 4,183

Blackburn, C. L., Storaasti, O. O. and Fulton, R. E. The role
and application of database management in integrated com-
puter-aided design, Journal of American [nstitute of Aero-
nautics and Astronautics, 1982, 603

Rajan, S. D. SADDLE: A computer-aided structural analysis
and dynamic design language, PhD Dissertation, The University
of lowas, 1983

Adv. Eng. Software, 1986, Vol 8, Nu.2 97

30

€ e e o~

- -

- A -

- W e

Pt o

[d
L}

PR
% " S
i
& By

A
i

[

)
5

sy
h%)

) -I.l.:
.. L)

'I I l.

5

r o
P

>
L}

'.-ff‘

R e)

’ e

ot a
)

i T]
ﬁ
“\

P

s o2

PR
L

ok

<

]
Ao
P

’5

ZREe PRI Sr RS P = I AN N
e e POt OL
N ST ST S T AAAAN
k o]
.“{
9
\‘l.
— “
» © ..-
B Y
VII
\f
o
: & %
‘ & X
> Z N "
3 o M .
— o o
<5 g
S 5 £ :
4] A
= O & A 9 ;
] & M ¢ v § 3
s m = - 2 S 5 Me M f ;
3 & Z M > B o5 s
? < B < € § =
3 = g
\0: E D M (53 ...v
b O Z, m 8 NN
3 << g 3
¥ 4 4 8 <
. <0 & .
2 = = :
5 LKJ E .- N
2 S .-n.
” =° m
: = .
i > o
: P
| 3
g :
Ed r.-

D

o W W0t M od L 0 Y S Y

32

MIDAS: management of information for design and

analysis of systems

T. SREEKANTA MURTHY, Y-K. SHYY and J. S. ARORA

Optimal Design Laboratory, College of Engineering, The University of lowa, Iowa City, [A 52242, USA

The paper describes features, system design and
implementation of a database management system
called MIDAS. The system has capability to
organize data of both relational and numerical
models, and meets several important requirements
— a good data model, ability to organize large
matrix data, handle various data types, simplified
data definition and data manipulation languages,
dynamic data definition, multiple database organiza-
tion, speed of data access, and provision for
temporary databases. Tabular and matrix form of
data generated and used in design and analysis of
system can be conveniently organized. Details of
various commands of the database management
system MIDAS are presented.

INTRODUCTION

Management of information has become an extremely
important task in computer-aided design and analysis
of engineering systems. Organization of large volume of
design information is a complex task and requires careful
considerations. Complexity in organizing information
arises due to several reasons. First, the scientific methods of
information management are still in their infancy in the
engineering field when compared to sophisticated methods
used in business applications. Secondly, the nature and use
of engineering design information is different from business
information. Thirdly, design information processing needs
to consider efficiency aspects, as data is stored and retrieved
a large number of times during execution of application
programs. Since, a major part of design and analysis work
is management of information, significant improvement in
designer and application program efficiency can be achieved
through better ways of managing such information.

Several systems for management of information are
available for engineerinlg applications. Systems such as
FILES,! GIFTS;? RIM,” SDMS* SPAR.® PHIDAS® and
TORNADOQ? have been used in some engineering applica-
tions. They have been developed with varying degree of
sophistication and have a variety of capabilities. A study
was made to find out the capabilities and usefulness of

existing data management systems for design and analysis

applications. It was found® that use of such systems is
limited to special applications for which they were
developed. In particular, information programs such as
FILES, GIFTS, and SPAR were used for finite element

Accepted July 1985, Discussion closes September 1986,

0141-1195/86/030149-08 $2.00
© 1986 Computational Mechanics Publications

analysis application. They are closely tied to the finite
element analysis program and it is difficult to modify
and extend them for design applications. On the other hand
information management systems like RIM were found
quite useful in integrating general engineering analysis
programs, but their applicability to finite element analysis
and design optimization is limited. Thus, a need of a good
data (information) management system (DBMS) which can
deal with organization of both design and analysis data
exists.

With various requirements {discussed in the next section)
in view, a database management system called MIDAS was
designed. It was decided to use an existing package as much
as possible. RIM is the most advanced system available for
scientific database management. It supports relational data
model facility. So, it was decided to see if the system can
be extended to satisfy the requirements stated above. It
was found difficult to extend RIM to have multiple data-
bases, to organize large matrices, and to be efficient in
handling large data sets and large memory. It essentially
meant rewriting the memory management, and data defini-
tion and manipulation parts. So, it was decided to use RIM
as is but add new data definiton and data manipulation
subroutines that could be called from a FORTRAN applica-
tion program. This subsystem is called MIDAS/R which
stands for MIDAS-Relational Data Management System.

A second subsystem called MIDAS/N was designed
which stands for MIDAS-Numerical Data Management
System. MIDAS/N supports numerical data model facility.
This subsystem can handle multiple databases, small and
large matrices, and small and large memory environment,
This paper is intended to discuss the requirements of a
DBMS, language facilities, system design and commands
available in MIDAS. This will show the features required
in a DBMS for engineering applications.

REQUIREMENTS OF A DBMS

It is important to lay down requirements of a good DBMS
before discussing various features of MIDAS. Requirements
of a DBMS for design optimization oriented applications
differ considerably from requirements of business DBMS.
They even differ from those for the computer-aided design
(graphics) DBMS. For more discussion on the differences
between business and engineering application DBMS, refs. 9
and 10 can be consulted. Before the requirements for a
good DBMS are stated, types of DBMS are defined.

Context-free DBMS: Such a system is designed to work
as a stand-alone package. The application program executes
under the control of DBMS, i.e. DBMS acts as the main pro-
gram. Thus data manager must be modified or extended
when a new application is introduced.

Adv. Eng. Software, 1986, Vol 8, No. 3

149

D LI Y -
- > o K SIS T

K,

¥, - .
P S R AT AS WS

-

. A _‘-

e ey »
MY f-: e

£

»
.“-j\

x

% S|
<&,

v\l {

. ’ .;7‘,51.-

P
X

. ’-‘,' -
’._.‘

AR
e d

I'l
Py

P

,1 o, .’l'

7

O 3EIE,

4

Tala

2% }

e &5

X

{
<EN

o oaf® AN
b -

97

Tal vey ta¥ 2 %4 % Vol Salltat gt vty EN RGN NT

Application-oriented DBMS: Such systems are designed
for a particular application. Their data definition, data
manipulation and query languages use syntax of the appli-
cation. It is either not possible to use the DBMS for other
applications or it requires extensive modifications.

Application-independent DBMS: Such a system is
designed based on the concept of a library of subroutines,
and is not tied to any particular application. Any applica-
tion software can call standard subroutines from the DBMS
libary to define, manipulate, and query its database.

Current trends in database management are toward
designing a DBMS that meets certain standard requirements
such as data independence, flexibility in data modeling, and
device independence. Apart from these, some additional
requirements must be met by DBMS for engineering design
applications:

1. As FORTRAN is the host language for majority of
the engineering applications, it is necessary to pro-
vide application interface with DBMS through stan-
dard FORTRAN statements.

2. Data model provided in DBMS must be easy to
understand and apply for design application pro-
grammers and users. Data model must be flexible to
suit the requirements of different applications. Rela-
tational and numerical data models are desirable.!!

3. Since the system will be used for design optimiza-
tion in multidisciplinary environment, it must be an
application-independent DBMS.

4. Design data consists of arrays and matrices to a large
extent. Often matrix data are in the form of banded,
submatrix, and triangular, A suitable data model,
therefore, required to organize matrix data.

5. DBMS should be able to deal with various data
types such as characters, short integers, long inte-
gers, single precision, double precision, and complex
numbers.

6. Speed of storage and retrieval is one of the most
important requirements of a DBMS in design
optimization, Short access time will considerably
reduce the total execution time in an iterative
nature of design process.

7. Simple to use data definition and data manipulation
languages are required. Applications often define
data dynamically. For example, size of various
matrices, length of data, etc., are not known at
compilation time. They are also modified {requently,
It is necessary to privide data definition capability
to cater to these special needs.

8. DBMS should provide additional capability to organ.
ize the available primary memory. A suitabie memory
management schems should be incorporated.

9. A good query language is required for interactive
design applications. Query language should be
general to cover all spplications.

10. Provision for managing a temporary database will
considerably help designers in evaluating trial
designs and transfering the acceptable final design
to a permanent database. Temporsry databases
will also be needed in iterative design optimiza-
tion process. Thus, DBMS must be able to handle
muitiple databases simultaneously.

Data Definition Language (DDL)
Data definition language is a means to describe data
types and logical relations among them. This definition

150 Adv. Eng. Software, 1986, Vol 8, No. 3

. . . o - e m e me ap
S TS AR AR LE RS TR L PR 0 £

should identify the types of data subdivisions, assign a
unique name to data types, specify the sequence of occur-
rence, specify the keys, assign length of data items, specify
the dimension of a matrix and specify the passwords for
database security. In building a data definiton language for
design optimization following points must be considered.
First, data definition must be compatible with FORTRAN
as a host language. Since data definition is continuously
redefined in an application program, DDL must have
feature to define data dynamically. Also provision for
query of schema must be provided.

Data Manipulation Language (DML)

Data manipulation language consists of FORTRAN
callable subroutines for storing, retrieving and modifying
data in the database. These commands should be simple as
they are frequentiy used in an application program. Data
manipulation language commands include utility, schema
information, create, and add commands. Utility commands
are used for opening and closing a database, and printing
error messages. Data manipulation commands’ main opera-
tions are to get data from a database and store data into the
database. Schema commands are useful in verifying data defi-
nition in situations where they are continuously changing.

Memory management

Efficient use of primary computer memory, is possible
through judicious allocation of available space. Memory
management scheme dynamically controls the allocation
of available memory space. The memory is organized into
pages and page sizes are assigned. The size of a page is set
multiple of a physical record. The performance is better
with larger page size. However, the space may be wasted
if there are too many partially full pages. Small page size
leads to increased page replacement activity and main-
tenance of large size page table. Variable length pages
require more programming taskk. Memory management
scheme should keep track of the pages in the memory.
Paging scheme may adopt some kind of page replacement
algorithm, for e g. ‘Least Recently Used (LRU)’ algorithm.
In LRU algorithm, a page counter is maintained for each
page. When the page is to be replaced, the page with the
highest counter value becomes the candidate. Page replace-
ment is done when no free pages are available. Page not
modified may be overwritten, instead of replacement.
Memory management scheme should be developed such
that the user has some control over the size of the pages.
This feature helps in determining the appropriate page
size while operating on large order matrices in design
optimization problems. Fragmentation of large matrices
in pages can be avoided by using page size in multipies of
matrix size. Matrix operations such as addition, multiplica-
tion and transpose by row representation can have page
size in terms of number of rows of the matrix. The aigo-
rithms that solve large order simultaneous equations by
submatrix approach require at least a few submatrices to
be present simultaneously in the memory. In such a case,
allocation of one submatrix per page induces fewer page-
faults. This leads to reduction in 1/O activity of iterative
algorithms and brings down the execution time.

Query language _

Query language allows the user to interrogate and update
a database. Even though design optimization algorithms are
automated, it is necessary to provide flexibility and control

P A e e e~

~ o m m e e A e =

— A e o~ at e e

S e
A e e

"’;:4?,::
A

2

s

_<
"¢

‘,

M oo a8 a3 2t e had b a L va e abetate a0 arg a0 ia- a0et latadat i ote et e’ T Ne alg 2yt A * tnt A KTy Nt _ et Bt *A Pl %l e g e g0
~ 1
AN
34 ;
e ;)
o
to the user for modification in actual design process. This tion, attributes and matrices can be renamed. Redefinition : ;'.)
control is useful to execute decisions which either cannot of a matrix storage order is possible. For example, a matrix o o
be automated or are based on designer’s intuition and stored in a row order can be redefined to a column order. :
judgement. Requirements of a query language include data Also, data types in a matrix can be redefined. =X ’
independence, simplicity, nonprocedurality, extendability Dynamic data definition facility is one of the important ~
and completeness. Query commands must be general and features of MIDAS. This means that DDL has the facility .
not limited to any special problem. The syntax of query to define relations and matrices during run time. Dynamic :
should be simple enough to be understood by a non- data definition is essential to many application programs, F\-
programming user. Some typical queries are FIND, LIST, since it is not always possible to define relations and their N
SELECT, PLOT, CHANGE, ADD, DELETE, RENAME, attributes till a certain amount of problem related data is)
OPEN and CLOSE. Query of large order matrices requires processed. Dynamic data definiton of MIDAS also enables
special conditional clauses so that data may be displayed addition of new relations, attributes, matrices during the
in parts. Formatted display of data is essential while dealing course of execution of design and analysis programs. A -
with floating point numbers. typical DDL syntax in Backus-Naur Form (BNF) for e e
In design optimization, a convenient query language is defining relation and matrix data is given in Fig. 1. A ‘ ‘ ¥
essential. Using the query commands, the applications detailed list is given in ref. 13. AR
programmer can formulate his design optimization problem. Data manipulation language of MIDAS offers capability C:A: o

. ¥
iy

Cost and constraint functions can be defined by querying
the database. Active set of constraints and their values can
be obtained using appropriate commands. Use of query
language has been recently demonstrated in structural

to store, retrieve, modify and delete data in a database.
Both relation and matrix data can be manipulated. Data-
base name and relation or matrix name are used as a
basic set of arguments in data manipulation commands.

v}

e

design optimization.!? This particular query language uses
the syntax of structural design problems. Using the query
language, stress and displacement constraints are formulated

The DML has facility to store or retrieve data of a rela-
tion in two different ways depending on the convenience
of the user. One way is to store data of a relation in a

VI

Pl

and checked for violation. For general design environment, sequential order of row numbers and retrieve them using ¥
we need a much more general and flexible query language. row numbers. A second way is to store data in a relation)
without any reference to row numbers. New data created =9
at a later stage are added at the end of existing data in a A
LANGUAGE FEATURES OF MIDAS relation. Retrieval of data is possible in the same order in :,'_:..' :)
One of the important considerations in the development of which it was stored. Also, data of selected attributes of a St A
MIDAS is the language. It is developed to provide simple to relation can be stored and retrieved. The DML also has the Loy
use data definiton language (DDL) and data manipulation capability to copy data of a relation from one database to A v
language (DML) for both application programmers and another, —
interactive users of the database.!® These commands do not MIDAS data manipulation language can be used to BRI,
contain any reference to the storage structure of the data- manipulate data of large matrices. Matrices can be stored in -
base. Since application programmers use FORTRAN as the row, column or submatrix order and can be retrieved in any S
host language, the data definition and manipulation facili- of these orders. For example, a matrix stored in a row order ‘-:-" X

»
]
<+

v g .

s % 's

ties are provided through FORTRAN subroutine call can be retrieved in a column order. This facility is useful in

statements (commands). These commands interface the matrix operations such as transpose and multiplication. The v
application program and MIDAS. An interactive database "
user can define and manipulate MIDAS database using .
query language. RN
MIDAS data definition language for application inter- alaties Maffaltien Statematsis o dlaserved Pracedsrs HLIFD 0
face consists of those declarative constructs of FORTRAN (<falstion Onflaftion Argusmnt Parc:) NN
needed to declare database objects: variables, arrays, Helation Cariaition Parsmmter Part>:: = catabate name>, RN
FORTRAN data types, and extensions to FORTRAN to Aalation asme>, e ¥
support objects not handled by FORTRAN. An extension Attribute nemes>,)
to FORTRAN needed to define relations and matrices is Attridate types>, ¥

provided through CALL statements. Arguments of sub-
routine call statements, for example, are used to specify
database name, relation name, attribute name and size,
etc. MIDAS data definition language ¢!Jows data types —
long integer, short integer, real, do- ole precision and

Attribute row sizes»,
Attridbute colume sizes>,
<Attribute kays>,

Kglation dafiaition errer cage>

'’ l’l’ .(.1"'
IR Tato
I A
r‘-'l'u'l'-""'

 ddeadiodd off o o

dutriz Defiastien Statement>:: * Reserved Precedure WSOFN> -

character. (<Matria Oaflaftion Argummst Part>) ;
Large matrices can be defined using DDL of MIDAS. dtets Dafiaftion Argumsat Mrt>i: « cDatsbase aaans, <
Matrix types such as square, rectangular upper triangular, Sutets aems, s ‘e
lower trangular, and hypermatrices can be defined. A (how dtamwston of sobmatetes)| cauil>) :-‘.:

. L% I,

]
.
.

matrix can contain data of integer, real or double precision Cccolum sfaseston of soametriss If<astis
data types. Matrix data definition requires specification of ’
matrix type, data type, number of rows and columns, num. (RMTI(COLBRI)(SMTRIL] caterage ertnr>, SN
ber of rows and columns of a2 submatrix, and storage order o 1120 of matrie, T
such as row, column or submatrix order. Several matrices
can be defined in a database which are organized at a num-
ber of hierarchical levels.

MIDAS data definition capability has the facility to
modify and delete existing data definitions. Database, rela-

A,

Columm size of matrin>,

datrin slemmat €ats types>,

datrin sefinitien orrer cader
Figure 1. Typical data definition syntax for relation and
matrix definition

Adv. Eng. Software, 1986, Vol. 8 No. 3 151

P
L)

»

A
o

7

W
N
v
a

)

d

hd

!

rr
'..

[¢
s

¥

~
s
a,

'-.'1 .
P
s,

v
{' "

—v %
%
P

$e
i»

Saletion Retrigve) Sotempats:: o <Betarved preceduore APSNET>

(<Balotien retrieval persmmter part>)
dglatien Matrievel Pecemster Part>:: o Batebete nammd,

dgistion aame>,

(ow sumber>]| comits,

<Sar mffer>,

drrer coter
* deserved precedurs WIMET>

{Matetn retriaval porsmater port>)
(<Matris Astrieval Pocamster part>):: » <Batobste memes,

owtrie Matrigvel Statamemt>::

Fatriz same>,
<Starting rew or columm or svbmetric aumber>,
<inding rew or column o tebmatria mmber>
<Sata retrievs! erdery,
ner wifers,
Aow stamnsion of weer Wffer>,
Coluan dimesion of esor buffer>,
<€rrer cote>
Figure 2. Typical data manipulation syntax for retrieval
of relation and matrix

DML also has commands to copy a matrix from one data-
base to another, to compress a database, to open and close
databases. A typical DML syntax ir BNF to retrieve data of
a relation is given in Fig. 2. A mots detailed list is given in
ref. 13,

MIDAS uses query language of the RIM program. The
query language can be used to interactively define and
manipulate relations in a database. The general syntax of
the query command is

(command) (expression clause) (conditional clause}

A detailed description of these commands is given in RIM
users guide .}

SYSTEM DESIGN

Database management system — MIDAS consists of two
subsystems MIDAS/R and MIDAS/N. The subsystems
are capable of organizing data of relatational and numerical
models respectively. MIDAS/R is based on modification
and extension of subroutines of RIM.? The other subsystem
is specislly developed to organize matrix dats. The next
few paragraphs summarize the important design features of
both MIDAS/R and MIDAS/N subsystems,

MIDAS/R design features

Database structure of MIDAS/R is the same as the RIM
database. Each databass consists of three files. The first
file stores reiation and attribute names and their details.
The second file contains the actual data. The third file
contains pointers to keyed attributes. The program is
written in FORTRAN77. It consists of a number of
subroutines having well-defined functions. Functions of
these subroutines can be generally classified into (i) com-
mand processors, (ii) input-output processor, (iii) flle
deflnition and initialization routines, (iv) memory manage-
ment routines, (v) addressing and seaiching routines, (vi)
conditional clause and rule processing routines, and (vii)
security routines.

Extensions to RIM program are made to include dynamic
data deflnition facility. The command processing routines
wers changed to incorporate this facility. Any new definition
of a relation or an attribute during execution of a program

182 Adv. Eng. Software, 1986, Vol. 8, No. 3

35

is stored in a file for processing. Command processing
routines are used to verify syntax of the relation and
attribute definition. Later, these data definitions are com-
piled and stored in the first file of the database.

Modification of the application interface commands are
made to simplify the data storage, retrieval and modifica-
tion of data. The original set of conventional data manipula-
tion commands in RIM were found to be tedious to use in
applications such as finite element analysis programs. This
was because, even for a simple retrieval of data at least two
or three DML calls had to be made. In the MIDAS/R pro-
gram, such storage and retrieval of data are made generally
using one call statement.

MIDAS/R data manijpulation commands use relation and
database names for data manipulation operations, whereas
in RIM, users are required to assign integer numbers to refer
to predefined relations of a database that are to be manipu-
lated. The use of database and relation names in data
manipulation commands reduces programming errors on
the part of users which otherwise may cause reference to a
wreng relation, Also, by specifying database and relation
names, user is allowed to refer to a relation in another data.
base, directly, without using commands for opening and
closing of database files. Arguments of data manipulation
commands of MIDAS/R for storage, retrieval and modifica-
tion have provisions for specification of row number of a
relation. The routines for storage and retrieval internally
use the row numbers to transfer users data to specified
locations in a relation. This provision of row number speci-
fication in the argument has facilitated in simplifying
application program logic.

MIDAS/N design festures

The second subsystem MIDAS/N is specially developed
for organizing matrix data. The system is programmed in
FORTRAN77. It has data definition and data manipulation
subroutines to define large matrix data and to manipulate
them. Rectangular, square, upper triangular, lower triangular
and hypermatrices can be defined in a database.

MIDAS/N has the capability to create a number of data-
bases. They can be temporary or permanent. An important
feature {s that these databases can be assessed simul-
taneously. A database can store data of a number of
matrices of different type, such as character, short integer,
long integer, real or double precision real. Each data set
has several access models such as row order, column order
or submatrix order. Any part of a data set can be accessed
just by one call statement. Dimensions, order, and data
type of a data set can be redefined dynamically. The size
of a database and a matrix is unlimited, but depends oniy
on the availability of disk space. Databases of MIDAS/N
can be organized at a number of hierarchical levels and
can be accessed using a path name as shown in Fig. 3.

In MIDAS/N, the available memory (called the buffer) is
divided into pages. Data set is also divided into pages of the
same size when it is defined or transferred into the memory
buffer. MIDAS/N handles ail access requests and trans-
actions sgainst data sets. Each transaction is in terms of
pages. Once part of a data set is requested, some pages must
be assigned to it. When there is no free page, some page
must be (reed. Page replacement strategy decides the page
to be freed. MIDAS/N chooses the ‘least recently used’ page
for replacement. For handling transactions, information
about data sets and page usage must be kept and managed.
Information about data sets and page usage must be kept

«
1

2
‘-

"."\

5"‘ "

[4
%t

o

P— r'r'l'

...-.
s
» e
LRI]
D e)

"

it Y

-y

l‘ L

R R g

.
* "y

1, Luaas
AN ad Y

Dt
s’
r
PR

TR R R
L A Y
g

T}

g

” —-.l ..l:.l;-l (‘r I

4y

TR '
L [

e e T N
e

L

s,

A NS
RN

- .
'4{ P WA
t 2L Ll

@

S
W

~

o

A A AN

s

‘.'

Level

Level

Path name to database F 1 A> (> F

Figure 3. Hierarchical level of database organization

and managed. Information about data sets is stored in
the ‘data set information’ table. Information about page
usage is stored in the ‘memory buffer information’ table.

Some important considerations in designing MIDAS/N
are:

(i) The system should efficiently utilize large as well
as small memory buffer.

(ii) It should efficiently handle large and small data
sets.

(iii) The system should give flexibility to the user to

store the data in one form and retrieve it in

another form.

Various commonly used data models in scientific

applications shoudl be available.

(v) Duplication in overhead information should be

avoided.

(vi) The system should be efficiently used in personal
computer as well as its larger host.

(vii) The system should be application independent.

(iv)

The system is organized into several distinct segments as
shown in Fig. 4. Each segment can be modified or extended
without effecting others. Each block is briefly explained in
the following.

(i) Application Program Interface (API). This represents
the interface between application program and the data-
base management system. This part is designed so that it
does not change in the future, as any change would require
changes in the application programs. [t can be, however,
extended to add more capabilities.

(ii) Application Program Interface Processing System
{APIPS). This is actually the processing part of the appli-
cation program interface. Its job is to process caller’s
requests for validity and correctness. Once this is done,
it transfers the request to a sequence of calls to the memory
management system.

(iii) Memory Management Interface (MMI). This is the
connection between application program interface pro-
cessing system and memory management system. Since any
modification in this part will cause modification in APIPS

and Memory Management System, it should be designed |

with care so that it does not need frequent modifications.

(iv) Memory Management System (MMS). The job of the
Memory Management System is to transfer data between
the user buffer and memory buffer, calculate required logi-
cal pages, and call /O system to read-in and update logical
pages or information records.

{ff.’-lf

o s.\s\.-\.-\.""-\-‘ "-""s. s.'\"\"\. LS

O 00"h 'L 0% 4

Lavel 1

Level 2

SAL N Ve PR e Ly T

36

(v) Input/Output System (1/O System). This part con-
tains a few subroutines to perform disk 1/0.

(iv) Physical data. Information tables and data are on the
physical disk.

Three information tables used by APIPS and MMS are:

(A) APIPS information table (database information
table). This contains information about currently opened
databases. The information of each database includes its
name, status, access type, logical unit number, modification
index, and the names and addresses of its data sets. This
table is used by APIPS only.

(B) Common information table (data set information
table). This contains data set information of several
recently used data sets. Data set information includes data
set dimensions, submatrix dimensions, data type, data
model, storage order, starting address, total number of
words, and left pointer of a double link. This table is
shared by APIPS and MMS.

(C) MMS informnation table {Memory Buffer information
table). This contains information about each page in
memory buffer and usage status of the pages. Page informa-
tion includes logical page number and modification index.
Usage status includes free pages, the least recently used
page, and each data set connected pages. It is used by MMS
only.

MIDAS/N is also in the form of a library of subroutines,
Application programs can call these subroutines to perform
the required functions. When the application program loads
it, only the referenced subroutines are loaded. MIDAS/N
has a number of user interface routines. More functions wil]
be added and the library will grow in the future. Design of
the system is such that the application program loads
only a small part of MIDAS/N. This part includes a few

Application Pregram

(1) Application Program
taterfoce
(Lm)

(A) APIPS
Information Table

{11) Application Program
Interfoce
Procesting System

{8} Common
nformation
Tadle Shared (111) Memsry Management
by APIPS Interfoce
e

(fv) Namsry Monsgmmat
System

(v) Input/Output
Systes
{vi) Maysical Dsta l

Figure 4. System Organization

I l (€} ne T
iaformstion Tably

Advy. Eng. Software, 1986, Vol 8 No.3 153

v""u’l‘-.r.

O R A S ERASAN, T

[l o
.

.

{{ .
«)
1

4
t

vEL
LY

&

T 4
>)";":

W PSS PIIIILL

[4
h Y

s
R

L]

\§ L -\u'_l

x>

T

e

o e

<=

L = -'xi‘f'_n—'

..,‘;,“ ,{ T

X,

Ex 0
MATRIX DATA

IELM
JELM

= A vector of row size of attributes
= A vector of column size of attribute |
KEY = A vector of key attribute indicator

Actes) 3
A KA ¢ H [|

Oata Oufinition Block

Figure 5. Physical storage structure

called APIPS routines and all the routines of MMS and /O
subsystems.

In MIDAS/N, dimensions of the memory buffer and
overhead information records are defined by parameters.
We call these system parameters. Changing the system

parameters does not influence the organization of the data.”

base. This means that a database created by one application
program can be used in others without matching their
system parameters. With this property, each module of a
modularized system can load MIDAS/N with the system
parameters which are chosen for its efficiency. For
example, the preprocessor of finite element programs can

A relation can be defined using this routine. A row and
column intersection in a relation table can contain either s
single data item, a vector or a matrix. Details of data type
and layout of data in a typicai relation are given in Figs. 6
and 7 respectively.

Data Set Definition: CALL RDSDFN (NAME, DSNAME,
DTYPE, IELM, JELM, IERR)

DSNAME = Name of the data set

DTYPE = Data type (see Fig. 6)
IELM = Row size of attribute (see Fig. 6)
JELM = Column size of an attribute (see Fig. 6)

A data set is defined as a collection of data belonging to
same data type such as single data item, vector, or matrix.
In some sense, data set is a reiation having only one attri-
bute. Name of data set has to be unique in a database.

choose smaller page size with more number of pages, since Oescription L e san
this module has a lot of small data sets. For the equation
solving module, it is better to choose larger page size and Integer . ! !
less number of pages because the module uses a fewer e . ! '
large data sets, This property is also important for a DBMS Oeedle Precision L] 1 1
to communicate data between a personal computer (or a Integer Vector tvec . 1
minicomputer) and its larger host. The reason is the available Nett Vecter avec - 1
memory buffer for DBMS in a personal computer is much teuble Pracision Vecter ovee . N
smaller than that in the host. tntager Motrts —_— - .
faetl Yatria WAt [} L]
IMPLEMENTATION OF MIDAS Dubie Procisies Macrix ur . .
(... \(Text or Cheracter L tig L] 1
o In the following paragraphs data definiton and data
N manipulation routines (commands) of both MIDAS/R and ' ™'*™ & '6UF S SN L0 0 tasicacs thot data fu of veristle fomyes.
MIDAS/N are given to show their capabilities. Also, matrix Figure 6. Data type and size of a relation
= operation routines developed for use in analysis and design !
of system are given.
AV
" Data definition routines of MIDAS/R mirwah Mbraent et Mot
W Database initialization: CALL RDBINT : - —
| t" ‘ This routine initislizes MIDAS/R and must be used Cne s hod
l before using any other routines of the system.) AN
e Database definition: CALL RDBDFN (NAME, STAT, [

-

e el J

;.-_‘2 IERR) ~
L ? 2 PR sz or
NAME = Name of the database 'S i
e STAT = Permapent or temporsry status of the s 11
o) database e s
sl IERR = Error Code
e A unique database can be defined using this routine.
-,:5 A temporary datsbase is deleted when it is closed. 4 ' rraa LI |
N‘ a s &N
? Relaticr Definition CALL RELDFN (NAME, RNAME, e i
. NCOL, CNAME, CTYPE, IELM, JELM, KEY, IERR) e !
r RNAME = Relation name '
t NCOL = Number of attribute columns e e s oA L nn s |
CNAME = A vector of attsibute names jetritte ¢ (B8 -4, Jmnc '
:,',-:- CTYPE = A vector of atrribute type Figure 7. Layout of dats in a typical relation _ ?
s |
B
,. 154 Adv. Eng. Softwere, 1986, Vol 8, No. 3 ‘

Y <ol | ¥ B da* Sa s
@ b tal el “a¥ Ca¥atat ioal. v ate00a B a8 2% 5% 1% 8% 4 & 8'0.0%0.8 08 0 8" 1A B0 et Bat 0aF 1at 0a® 08 40 020 0at 0y® e "', 07%05%0 0" 0" o 0h Y g% gty O WONOr O

38
-
Data Set Redefinition: CALL RDRDFN (NAME, DSNAME, OLDNAM = Old name of the relation .)':‘ 4
DTYPE, IELM, JELM, IERR) : NEWNAM = New mane of the relation " e,
This routine redefines a data set using new data type, A
. : . ; Rename an attribute: CALL RRNATT (NAME, DSNAME, saa LA
and new attribute size. Old data set definition and its OLDATT, NEWATT, IERR) b
data is lost. 1Y)
Data definition ending: CALL RDSEND (IERR) OLDATT = Old attribute name Y t
After database, relations and data sets have been NEWATT = New attribute name X 0
defined, data definition process is ended by calling this Copy a relation: CALL RDSCPY (NAMEl, NAME2, ;"‘3 Y
routine. During execution of this call statement, the data DSNAMI1, DSNAM2, IERR) WN '
definition is verified and iled i .
ehnt lOl‘l'lS verf ecdan) compiled internally NAME} = Name of the database containing data =
Data manipulation routines of MIDAS/R NAME2 =Name of the database where data has to ",
Data manipulation routines open, close, store, retrieve, be copied % "!‘

modify, and delete data, rename a relation or a data set,
rename an attribute and copy data sets in a database.

Open a database: CALL RDBOPN (NAME, STAT, [ERR)

DSNAM1 = Relation name containing data
DSNAM2 = Relation name where data has to be copied

Using this routine, data from one relation can be copied

A database closed earlier can be opened using this to another relation. Both the database and relation must]
routine. It must be opened before any operation is per- have been defined before copying the data.
formed. oy XM
Coundition specification for retrieval of data: CALL :E "l'.r
9.0

Close a database: CALL RDBEND (IERR)

RDSRUL (NUM, ATNAM, COND, VALUE, BOOL, IEER)

A database is closed using this routine. It transfers the . |:l',
memory buffer data into the database and closes the files, NUM = Number of conditions - "g:
. . ATNAM = A vector of attribute names
Store data in a relation. CALL RDSPUT (NAME, DS- COND = A vector of logical operator (EQ, GT, LT) ﬂ 830
NAME, KROW, UBUF, IERR) VALUE = A vector of attribute values ') |
KROW = Row number BOOL = A vector of Boolean operator (AND, OR) o
UBUF = User buffer containing data IERR = Error code AT
Data can be stored into a relation from application As mentioned for RDSGET routine, data values satisfying :-5‘: z t
program work area (user buffer) with this routine. Data is certain conditions can be retrieved. The conditions are Y
transferred from user buffer to the specified row of a specified using RDSRUL. This routine must be executed 03 Y,
relation. If more rows have to be stored, a FORTRAN DO before calling RDSGET. A maximum of ten conditions L
loop over the row number in the application program will can be specified at a time. The following example illustrates vr? Fo
transfer all the required row.v;.‘ More details of the routine use of the routine. Condition on a relaxation X: }‘
are given in the user's manual, Attribute A-GT 15.3 -AND- Attribute B+LT-20.1 ¢ 0
Retrieve data from a relation: CALL RDSGET (NAME, Use NUM = 2; ATNAM(1) =*A’; ATNAM(2) = ‘B’ ﬁ‘
DSNAME, KROW, UBUF, I[ERR) . L p . \
Data can be retrieved from a relation into a user buffer COND(1) = “GT 'FONDQ) ='LT . i)
using this routine. Requested row is transferred from the VALUE(1) = 15.3; VALUE(2) = 20.1; e B
relation to user buffer, FORTRAN DO loop over the row BOOL(1) = ‘AND o2 BN
number is necessary if more than one row has to be retrieved. Interactive commands & ,‘:‘.\
Data can be retrieved in the same order as it was stored by MIDAS/R provides interactive support for creating, P
initializing row number as zero. Data of a relation satisfying updating, modifying, and deleting a database. Interactive ':.\ .{ Y
certain condition (for example, attributes having certain commands are general and can be used in any application. _1:-: Q
values) can be retrieved into user buffer. User specifies the The system provides terminal prompts for the users to Ry

condition on data values that must be satisfied for retrieval
by using RDSRUL routine (explained later). The details for
various ways of data retrieval is given in the user’s manual.'*

Modify dara in a relation: CALL RDSMOD (NAME,
DSNAME, DROW, UBUF, IERR)

Once a database is loaded using RDSPUT, it can be
modified by calling RDSMOD. This routine modifies a row
of the relation. RDSGET routine must be called before
calling this subroutine. The row of the relation is retrieved
into user buffer. The row or its part is modified and stored
back.

Delete rows of a relation: CALL RRWDEL (NAME,
DSNAME, KROW, IERR)

Rows of a relation can be deleted using this routine.
This is useful in elimination unwanted values in a relation.

Delete a relation: CALL RDSDEL (NAME, DSNAME,
IERR)

Rename a relation: CALL. RDRNAM (NAME, OLDNAM,
NEWNAM, IERR)

respond with appropriate commands. The interactive
session starts with a display of MENU and requests the
user to choose one of the five options: CREATE, UPDATE,
QUERY, COMMAND and EXIT. The interactive session
ends with an EXIT command. The detailed commands for
each of these options are entered at appropriate instant.
For details of interactive commands, refer to RIM user's
manual.}

Data definition subroutines of MIDASIN

Data definition subroutines of MIDAS/N can be used
to define databases and matrices. These are FORTRAN
call statements and can be directly interfaced with an
application program.

Database definition: CALL NDBDFN (NAME, PTHNAM,
TYPE, STAT, IERR)

PTHNAM = Path name in database hierarchy
TYPE = Random or sequential access file type

This routine can be used to define a database, Path
name specifies the hierarchy of databases that are stored

Adv. Eng. Software, 1986, Vol 8, No. 3 15§

LUN OV RN H".“ ."‘ LY - .. -

in a computer system file directly organized at various
levels.

Renaming a database: CALL NDBRNM (OLDBN, NEWBN,
PTHNAM, IERR)

OLDBN = Old database name
NEWBN = New database name

Matrix definition. CALL NDSDFN (NAME, DSNAME,
ISUB, JSUB, ORDER, NROW, NCOL, DTYPE, I[ERR)

DSNAME = Data set (Matrix) name

[SUB = Row dimension of a submatrix if present
JSUB = Column dimension of a submatrix if
present

ORDER = Order of data storage (explained below)
NROW = Row size of the matrix

NCOL = Column size of the matrix

DTYPE = Data type of data elements in matrix

A matrix (data set) can be defined by calling this routine.
Order of the matrix refers to the data storage order which
can be row-wise, column-wise, or submatrix-wise. In case of
a triangular matrix, order is either row-wise or column.wise.

If submatrices are used, then size of a submatrix should be
given.

Matrix redefinition: CALL NDSRDF (NAME, DSNAME,
ISUB, JSUB, ORDER, NROW, NCOL, DTYPE, IERR)

This routine redefines a matrix in a different storage
order. A matrix which is in either row, column or sub-
matrix order can b redefined to any other order (row,
column, submatrix). An upper triangular matrix can be
redefined as either row or column order. Similarly a lower
triangular matrix can be redefined as either row or column
order. Data types can be redefined as integer, real and
double precision (except characters),

Matrix renaming: CALL NDSRNM (NAME, OLDNAM,
NEWNAM, IERR)

OLDNAM = Old name of a matrix
NEWNAM = New name of a2 matrix

Data manipulation routines of MIDAS/N

Data manipulation routines of MIDAS/N can be used to
open, close, delete and compress a database, stors, retrieve,
delete and copy a matrix.

Open a database: CALL NDBOPN (NAMB, PTHNAM,
IERR)

Close a database: CALL NDBEND (NAME, IERR)
Any modifications to data in the memory buffer are
transferred to the database before closing it.
Delete a database: CALL NDBDEL (NAME, PTHNAM,
IERR)
Compress a database: CALL NDBCMP (NAME, IERR)
Compresses s database. Empty spaces created due to
deletion or redefinition of matrices are removed by moving
data in s datsbase. This command helps in efficient utiliza-
tion of disk space.
Store a matrix: CALL NDSPUT (NAME, DSNAME, NSTR,
NEND, ISTR, ORDER, UBUF, IROW, ICOL, IERR)

NSTR = Starting row, column or submatrix number

for storing data

NEND = Ending row, column or submatrix number
for storing dats

ISTR = Starting element number of each row or
column

186 Adv. Eng. Software, 1986, Vol. 8, No. 3

UBUF = User buffer (array name)
IROW = Row dimension of the user buffer
ICOL = Column dimension of the user buffer

This routine stores a matrix data from user buffer into a
database. Full or part of a matrix can be stored and its size
specified using NSTR and NEND. Row or column storage
order can be used for a matrix whose order is defined as
row-wise, column-wise or submatrix-wise in data definition.
Submatrix storage order can only be used for a matrix
defined as submatrix.

Retrieve a matrix: CALL NDSGET (NAME, DSNAME,
NSTR, NEND, ISTR, ORDER, UBUF, IROW, ICOL,
IERR)

A matrix can be retrieved into a user buffer from a
database using this routine, Full or part of a matrix can
be retrieved.

Retrieve a matrix in row order: CALL NDGETR (NAME,
DSNAME, NSTR, NEND, ISTR, UBUFF, IROW, ICOL,
IERR)

Retrieve a matrix in column order: CALL NDGETC
(NAME, DSNAME, NSTR, NEND, ISTR, UBUFF, IROW,
ICOL, IERR)

Retrieve a matrix in submatrix order: CALL NDGETM
(NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW,
ICOL, IERR)

Matrix must have been defined in submatrix order
during data definition.

Store a matrix in row order: CALL NDPUTR (NAME,
DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL,
IERR)

Store a matrix in column order. CALL NDPUTC (NAME,
DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL,

IERR)

Store a matrix in submatrix order: CALL NDPUTM
(NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW,
ICOL, IERR)

Matrix should have been defined in submatrix order.

Copy a matrix: CALL NDSCOPY (NAME], DSNAME,
NAME2, IERR)

NAME1 = Name of the database containing matrix
data

NAME2 = Name of the database into which matrix
has to be copied

This routine copies a matrix from one database to
another database.

Delete a matrix: CALL NDSDEL (NAME, DSNAME,
IERR)

Matrix Operations Utilities

MIDAS/N has several routines to carry out operations
on matrices stored in the database. These include matrix
addition, scaling and multiplication routines. Algorithms
for these utilities are developed to utilize the storage order
of the data sets; i.e., if a matrix is stored in the row order
in the database, an algorithm is developed to use it in that
order. This is done to minimize the disk [/O and thus per-
form the operstions efficiently. The current routines in the
system are listed in the following. More routines will be
added as need arises.

ST s

= Rt o

eSS

-
ko

M.

.0

P

[y

e

C preELlEA

Ay vy e,
'.’," AIRAR

-

Y

o

o

v

e

*3

S MIIPINT N N SO B 2 R e, i NG i A N, N A A e e S "‘-.

Multiply general matrices: CALL NMTPYx (NAME],
DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3,
IERR)

NMTPY1: Computes AB =C
NMTPY2: Computes ABT = C
NMTPY3: Computes A’B = C
NMTPY4: Computes ATBT =C

Add matrices: CALL NMADDx (NAME1, DSNAME],
NAME?2, DSNAME2, NAME3, DSNAME3, IERR)

NMADD1: Computes A+ B =C
NMADD2: Computes A + BT =C
NMADD3: Computes AT+ B=C
NMADD4: Computes AT + BT = C

Subtract matrices: CALL NMSUBx (NAME|, DSNAME1,
NAME2, DSNAME?2, NAME3, DSNAME3, [ERR)

NMSUBLI: Computes A ~B =C
NMSUB2: Computes A —BT =C
NMSUB3: Computes AT —B = C
NMSUB4: Computes AT —BT =¢C

Scale of matrix: CALL NMSCLx (NAME1, DSNAMEI,
NAME?2, DSNAME2, SCALE, I[ERR)

NMSCL1: Computes A*SCALE =C
NMSCL2: Computes AT*SCALE =C

Transpose of a matrix: CALL NMTRPZ (NAMEI1, DS-
NAME1, NAME?2, DSNAME?2, IERR)

Computes AT = C

Multiply a matrix by a diagonal matrix: CALL NMTDGx
(NAME1, DSNAME], NAME2, DSNAME2, ARRAY,
IERR)

NMTDG1: Computes ARRAY®*A =C
NMTDG2: Computes ARRAY*AT
NMTDG3: Computes A*ARRAY =C
NMTDG4: Computes AT*ARRAY =C

Rearrange rows/columns of a matrix: CALL NMSRTx
(NAME1, DSNAME|, NAME2, DSNAME2, ARRAY,
IERR)

NMSRTI1: Rearranges rows according to the order
specified in ARRAY

NMSRT2: Rearranges columns according to the order
specified in ARRAY

Equation solvers and matrix decompeosition routines

MIDAS/N has several routines to decompose and solve
a linear system of equations. The coefficient matrix may be
stored in skyline or banded form. It may also be a full
matrix. In the following, these routines are listed. Other
equation solvers and eigenvalue extractors will be added
at the later date.

Decompose a Symmetric Matrix by Skyline Method .
CALL NMSKY! (NAMEl, DSNAME!, NAME2,
DSNAME2, NEQ, MAXCOL, IER)

Perform Backward and Forward Substitutions to Solve
a Decomposed System of Linear kquations by Skyline
Method.

CALL NMSKY2 (NAMEl, DSNAME!, NAME?2,
DSNAME?2, NAME3, DSNAME3, NEQ, MAXCOL, IER)

Solve a System of Linear Equations by Skyline Method.
CALL NMSKY3 (NAMEl, DSNAME1, NAME2,
DSNAME?2, NAME3, DSNAME3, NEQ, MAXCOL, IER)

RO h LI Ky, 2 e

Decompose a Symmetric Banded Matrix by Cholesky's
Method.

CALL NMBNDI1 (NAME1, DSNAME1, NEQ, MBND,
IER)

Performs Backward and Forward Substitutions to
Solve Decomposed System of Linear Banded Equations.
CALL NMBND2 (NAME1, DSNAME1, NAME2,
DSNAME?2, NEQ, MBND, IER)

Solve System of Linear Banded Equations by Cholesky s
Method.

CALL NMBAND3 (NAMEl, DSNAME!, NAMEZ2,
DSNAME2, NEQ, MBND, IER)

Decompose a General Full Matrix .
CALL NMGSL1 (NAME1, DSNAME], NEQ, [ER)

Perform Backward and Forward Substitutions to Solve
a Decomposed General System of Equations.

CALL NMGSL2 (NAME1, DSNAMEl, NAME2,
DSNAME?, NEQ, IER)

Solve System of Linear Equations.
CALL NMGSL3 (NAMEl, DSNAME], NAME?2,
DSNAME2, NEQ, [ER)

Decompose a Full Symmetric Matrix by Modified
Cholesky's Method.
CALL NMSYMI (NAME1, DSNAME1, NEQ, IER)

Perform Backward and Forward Substitution to Solve
a Decomposed Symmerric System of Linear Equations.
CALL NMSYM2 (NAME]1, DSNAME]l, NAME2,
DSNAME?2,NEQ, IER)

Solve a Full Symmetric System of Linear Equations by
the Modified Cholesky's Method.

CALL NMSYM3 (NAME}, DSNAMEI, NAME2,
DSNAME2, NEQ, IER)

DISCUSSION AND CONCLUSIONS

A database management system MIDAS has been imple-
mented. The system supports relational and numerical
data models which are essential for organizing design and
analysis data, User-friendly data definition and data
manipulation commands help in improving efficiency of
application programmers and designers. Dynamic data
definition enables definition of relations and matrices
during runtime. Multiple database capability is useful for
design of systems. MIDAS appears to satisfy the require-
ments of a database management system for design and
analysis of systems. Design of a database for structural
analysis and optimization is in progress. The database will
be implemented with MIDAS so that it can be evaluated
along with the DBMS.

.

ACKNOWLEDGEMENT

This research is sponsored by the Air Force Office of Scien-
tific Research, Grant No. AFOSR 82-0322. Material of the
papet is decived from a presentation made by the authors
at the 26th AIAA, Structures, Structural Dynamics and

. Materials Conference.

REFERENCES

! Lopez, L. A. FILES: Automated cngineering data management
system, Computers in Civil Engineering, Electronic Computa-
tion, 1974, 47

Adv. Eng. Software, 1986, Vol 8, No. 3 157

SRRy

FOUTR DUR A AT

L

S

lba

Dl
=
E%

L4% L
oL ol 'tll’)_‘v' ¥
Sy Y WSS ' o
iﬁgﬁ‘ 3

-t i"ﬁ
.\.h'i
S
AR |
Cat _-_" Y
[
"a” W
© - .{«
——
[Py, ’
o g
wﬂ' v~
@
TR
RN
g ¢
N
N
N

‘nr'j

[
=

v’!‘l .3.. v \ 103.

O W W W W

Kamel, H. A., McCabe, M. W. and Spector, W. W. G/FTSS
Systam Manusl, University of Zrizons, Tucson, 1979

RIM User's Guide, Boeing Commercial Airplane Company,
PO Box 3707, Seattle, Washington, 98124, 1982

Massona, W. A. SDMS -~ A Scientific Dsta Management System,
NASA Conference Publicstion 2055, 1978

Giles, G. L. and Haftks, R. T. SPAR dats handling utilities,
NASA Technical Memorendum 78701

Fischer, W. E. PHIDAS - A database management system for
CAD/CAM softwaze, Computer-Aided Design, 1979, 11 (3),
146

Ulfsby, S. Steiner, S. and Oian, J. TORNADO: A DBMS for
CAD/CAM systems, Computer-Aided Design, 1979, 193
Sreekanta Murthy, T. and Arona, J. S. A survey of database
management in engineering, Journal of Advences in Engineering
Software, 1985, 7 (3) 126

Felippa, C. A. Databass management in scientific computing -

158 Adv. Eng. Software, 1986, Vol 8, No. 3

a

o

'Y ™

* 0

AR %) ‘*‘l 'f*"q‘"#‘-"f‘f"f‘ ST \.

10

12

13

14

q-;- ’\'.'- ‘f‘ﬂ‘.-"'f‘ \:"-’ ‘f‘ - v'.-\""
o W% 0 o A% O () .

1, General description, Computers and Structures, 1979, 10, §3
Felipps, C. A. Database management in scientific computing -
{1, Data structures and progsam architecture, Computers and
Structures, 1980, 12, 131

Steekanta Murthy, T., Reddy, C. P. and Arora, J. S. Database
management concepts in engineering design optimization,
Proceedings of AIAA of the 25th SDM Conference, Palm
Springs, CA, 1984

Rajan, S. D. SADDLE: A computer-aided structural analysis
and dynamic design language, PAD Dissertation, The University
of lowa, 1983

Sceekanta Murthy, T. and Arora, J. S. Database design metho-
dology and database management system for computer-sided
structural design optimization, Technical Report CAD-SS84.
22, The University of lowa, 1984

Steekanta Murthy, T. and Arora, J. S. MIDAS user’'s manual,
Technical Report, The University of lowa, 1984

-'F-’- ‘f*f-'\fv‘f

v ey ey o
e Py
'-.(\ N gg'.‘l' .

Y
L4

i“.“f

0 7
e/

v
ol

-~
1"?’
L,

’:'-'l’t'l'. b e]
i el)
A wy

,
¢

*

%%

X
250

‘.'b\‘l‘l

50
5y

[

v tls. N0

e
LYY

.
..,

,M\
AN '?,;.

=

APPENDIX 4

DATA BASE DESIGN METHODOLOGY FOR STRUCTURAL
ANALYSIS AND DESIGN OPTIMIZATION

by
T. SreekantaMurthy and J.S. Arora

Engineering with Computers
1, 1986

42

h
Py

;’4. 'i'.\ “r

R

L)

oo

-

H“
S¥rx

X

bﬁﬁﬁt&lﬁﬂ.‘*

L s gt o > g _gau got . 4 N\ SR U

W W W WL W W W W W W e e e e S48 ¥

Engineering with Computers 1, 149-160 (1986)

< ‘ "

4 Npringer-Vedag New York Inc 1986

Data Base Design Methodology for Structural Analysis and Design Optimization

T. Sreekanta Murthy and J.S. Arora

Optimal Design Laboratory. College of Engineering. The University of lowa, lowa City. [A 52242

Abstract. A methodology to design data bases for finite element
analysis and structural design optimization is described. The
methodology considers three views of data organization—con-
ceplual. internal, and external. Tabular and matrix forms of data
are included. The relational data model is used in the data base
design. Entity, relation, and attributes are considered to form a
conceptual view of data. First. second. and third normal forms of
data are suggested to design an internal model. Several aspects
such as processing, iterative needs. multiple views of data. effi-
ciency of storage and access time, and transitive data are consid-
ered in the methodology.

1 Introduction

Data base design topic has recently caught attention
among many engineering data base management en-
thusiasts. Designing a good data base is extremely
important for successful implementation of finite el-
ement analysis and structural design optimization
methods in a computer-based environment. Com-
plexity of analysis and design data imposes severe
constraint to design a good data base. Intuitive
methods are still being used as no systematic ap-
proach is available to design data bases of large and
complex structural design software. In view of the
computer-aided design of structural systems, a
good data base design methodology is very much
needed.

~ Several reasons exist for emphasizing a system-
atic methodology to design a data base. First, the
iterative nature of structural optimization process
together with a large amount of computation make
data organization a complex task. Second, the well-
known finite element programs like NASTRAN,
ANSYS, ADINA, and GIFTS have no centralized
data base organization. Thus it becomes extremely
difficult and cumbersome for general users to ex-

Reprint requests:).S. Arora, Optimal Design Laboratory,
College of Engineering. Ihe University of lowa, lowa City, |IA
242

tract intermediate data generated by the programs
for structural optimization use. Qut-of-core data or-
ganization in the programs were based on intuition,
since few scientific data base design techniques for
large engineering programs were available at the
time the programs were developed. Third, the de-
signer needs control over the program and data to
obtain optimum design of structures. Finally, a
good data base will enable addition of new optimiza-
tion and other programs without extensive modifi-
cation of the data base or programs.

In this paper a methodology to design data ba-
ses for finite element analysis and structural design
optimization applications is presented. The method-
ology aims to replace the intuitive design of data
bases by a systematic method. Also, the methodol-
ogy provides a basis for integrating several applica-
tion programs through a common data base.

2 Background

Advocates of engineering data base management
software have realized that their system will not be
of much use to organize data without a well-de-
signed data base. This situation has drawn the at-
tention of some investigators to find possible ways
of designing a data base. The paper by Koriba [1]
describes several approaches followed in business
applications and their suitability to CAD applica-
tions. Most commonly known approaches are
ANSI/SPARC, CODASYL., relational, hierarchi-
cal, and network. Among them, the ANSI/SPARC
approach, which recognizes three levels of data
views (conceptual, internal, and external), provides
a generalized framework and basis for a good data
base design.

Hierarchical approach has been tried by Lopez
12} and Pahl {3} for finite element analysis applica-
tion. Data base design using this model, however, is
tedious. since much time is spent working out con-

W V"l-f\f\f.‘-‘\

b sty e SO VAR LS RARTRE LR L R

Wy

\
FALZNANN

G
r

)

<€

D

»,
- -

N
-

v
o

e AN 'k.' F
A INN; R ®
t :

A

> /‘v{;"’
. ‘:l’_’):}

-
< 7
.. A

TERL

.i.lg

UV N

e,
ey

150

nections between various data items. Penalty for
faully data base design is high as some data may
become totally inaccessible due to poor design.
Moreover, any modification of a hierarchical data
base is difficult. If new data items need to be added,
new links must be established. This sometimes re-
quires restructuring of the entire data base.

The relational data model has several advan-
tages [4]. It has simple tabular structure that is easy
to use. Data base design is simple as no links or
pointer are used in relational model. Data base can
be easily modified using a simple set of data manip-
ulation commands. The model is particularly suit-
able for engineering applications since a relation
can be regarded as a two-dimensional array. Vari-
ous columns can be referred to by names or column
numbers and rows by their numbers. These types of
data structures are quite natural in engineering ap-
plications. Fishwich and Blackburn {5} used a rela-
tional data model with the finite element program
SPAR and optimization package PROSSS. But the
use of the model was limited to interfacing these
programs by using a relational data base manage-
ment system.

Data base design follows some well-defined
steps. The basic problem is that once all the data
items have been identified. how should they be
combined to form useful relations. The first step is
the extraction of all the characteristics of the infor-
mation that is to be represented in the data base.
Analysis of the information and their integration
into one conceptual model is the second step. The
conceptual data model obtained by this process is
abstract. It is independent of any computer restraint
or data base management software support. In or-
der for the conceptual model to be useful, it must be
expressed in terms that are compatible with a par-
ticular DBMS by considering efficiency of storage
space and access time. An internal model is devel-
oped for this purpose which is compatible with the
conceptual data model. Finally, the data base de-
sign requires accommodation of different users of
the data base by providing an external data model.
The systematic process by which one trasverses the
different steps of data base design and performs the
mapping from one level of abstraction to the next is
called a data base design methodology.

Several methodologies are used in design of
data bases for business applications. Suitability of
some of the methodologies to computer-aided de-
sign applications has been investigated by Buchman
and Dale 16]. The investigators analyzed three ex-
isting mcthodologics—Bubenko's methodology,

44
Murthy and Arora

Kahn's methodology. and Smith and Smith's meth-
odology, with relerence to applications in engineer-
ing design of a chemical plant. A list of criteria for
evaluating the methodologies is given. Salient char-
acteristics of these methodologies are outlined here.
In Bubenko's methodology. entities are identified
and classified from query and transaction descrip-
tions. A strong point of this method is the provision
for two levels of abstractions. Grouping of entities,
however, is highly intuitive and application depen-
dent. Kahn's approach has characteristics of sepa-
rating the data base design problem into two per-
spectives: information structure perspective, which
describes the interconnection of information, and
the usage perspective. which deals with the pro-
cessing requirement of information. The method re-
quires design of two schema—one processing and
the other information oriented—which are merged
at the end of data base design to get a conceptual
model. This methodology merges local views into
global view by aggregating entities. Designers’ intu-
ition is required in this methodology to form nonre-
dundant entities and relations. The Smiths’ method-
ology ignores information analysis and considers
only abstract objects of interest. An object can be
viewed as an eatity, attribute, or relation depending
solely on the viewpoint of the user. The abstraction
step used in this method is highly intuitive. Gra-
bowski and Eigner |7] pointed out the necessity for
a semantic model construction in the CAD applica-
tion. They described three available semantic
models, using the example of a geometric model of
a line: (1) based on binary association, (2) based on
entity and attribute association, and (3) expanded
relational model.

The methodologies described earlier are at the
research state in the business data management
field and are not suitable for engineering applica-
tions. Also, many of them do not discuss details of
the procedure or implementation aspect and hence
cannot be directly used for designing an engineering
data base. Therefore it is necessary to adopt good
features and guidelines provided by existing metho-
dologies and arrive at a suitable one to design data
bases for finite element analysis and structural de-
sign optimization applications.

The proposed methodology to design data bases
considers several features and requirements of fi-
nite element analysis and structural design optimi-
zation applications. Some important features of
data considered in the methodology are—tabular
structure, matrices, static information, operational
information, multiple views of data for ditferent ap-

v LR - - .'.
oy ’ B ,\.\!’.’P:f L% _5"‘1‘.1 ﬁﬂ.‘.‘.;:;’;iii-.xf " ’ W&d&.‘m&f‘f A)(AL(A_ A*JA!..A‘!‘”L(\J‘K

AN

ottt cmpra e A P . e e T AT e T W AT AT T AT
L '-".\J:‘-'.\':\t‘::\i\i"i"i\:&i M' I.:l':n"".' 3¢ .’\:".n}.a.".. NIRRT R T T L I VY, P Ve I PRI W O N W I VOISV

Data Base Design Methodology for Structural Analysis and Design Optimization 15t

plication. and iterative changes in data. Tabular
structure of data can be conveniently organized us-
ing a relational data model. whereas large matrix
data needs a different approach [4]. A simpler ap-
proach to design a data base is by considering static
and operational information separately for an initial
design and later merging them to arrive at a final
design. Multiple views of data are necessary to ac-
commodate theoretical, implementational, and us-
er’s requirements. Conceptual, internal, and exter-
nal views of data suggested by ANSI/SPARC is
considered to accommodate multiple views of data.
The methodology uses entity set. relationship set.
and attributes to form syntactic basic element of the
conceptual model.

In summary, the methodology given in the pa-
per considers the following aspects: (1) three views
of data—conceptual. internal, and external as sug-
gested by ANSI/SPARC: (2) entity set, relationship
sel, and attributes to form syntactic basic elements
of the conceptual model; (3) relational data model;
(4) matrix data: (5) processing requirements: and (6)
normalization of data for relational model.

3 Methodology to Develop a Conceptual
Data Model

Analysis of the data used in finite element analysis
and structural design optimization is necessary to
develop a conceptual data model. In the analysis
the information in use or needed later is identified,
classified, and documented. This forms the basis for
a conceptual data model to represent structural de-
sign data and design process as a whole. In the fol-
lowing sections familiarity with terminologies of re-
fational model {4, 8, 9] is assumed.

The following steps are proposed to develop a

conceptual data model:

I. Identify all the conceptual data objects of
structural analysis and design optimization.

2. Data identified is stored in a number of rela-
tions. The data reduced to elementary rela-
tions representing inherent association of
data.

3. More elementary relations are derived from
the ones formed in Step 2. This step uncov-
ers more relationships between basic data

- collected in Step 2.

4. Redundant and meaningless relations ob-
tained in Step 3 are removed to obtain a con-
ceptual data model.

The conceptual model obtained by this process

is abstract, representing the inherent nature of
structural design data and is independent of any
computer restraint or data base management soft-
ware support. These steps are now discussed in de-
tail.

3.1 Udentification of Conceptual Data Objects

The following steps are proposed to identify the
conceptual data objects used in structural design.
Entity sets and attributes are considered to be the
syntactic basic elements of the model. Domain defi-
nition is extended to include vectors and matrices.
An attribute value can be the relation name or nuil.
Step 1. Identify each type of entity and assign a
unique name 10 it.

Step 2. Determine the domains and assign unique
names to them. This step identifies the information
that will appear in the model. such as attributes.
Step 3. ldentify the primary key for each type of
entity depending on the meaning and use.

Step 4. Replace each entity set by its primary key
domains. Determine and name relations corre-
sponding to the association between the primary
key domain and other domains. This step gives a
collection of relations forming a rough conceptual
data model.

Example

We consider a sample structural design problem to
describe these steps.

Step 1. The following entity sets can be identified
for the structure:

STRUCTURE (S). BEAM (B), TRUSS (T).
MEMBRANE-TRI (TRM), MEMBRANE-QD
(QD). NODE (N), ELEMENT (E)

Step 2. We can identify the following domains:

STRUCTURE# Structure identification number linteger)

B# Beam element identification number
(integer)

T# Truss element identification number
(integer)

TR# Triangular membrane clement
identification number (integen)

QD# Quadrilateral membrane clement
identification number tinteger)

NODE# Node number tinteger)

E#» Element number (imteger)

EL-TYPE Element type {BEM2, BEM3. TRS2.

TRS3. TRM2, TRM3, QDM2. QDM3}

Ve T T R -

LML P T il LW AR

45

LS Bl R NN

‘.

-
':bn ’
k]

3
.

x

fow 0
e
1@

g MU
o~ .:-_Ew
ot '\'_::

1%

z
Yy

s

2
Y

R
.

152

MATID Material identification code. for example.
{(STEEL-1, STEEL-2, ALUM-S,
COMP-1}. It also refers to a relation or
table of material proper..:s: for
example, STEEL-1 refers to relation
STEEL and material subtype |

MATPRO Matenial property {E. . G, . . .}

CSID Cross-section-type identification code: for
example, {THICK-1, THICK-2,
RECT-1. CIRC-5. ISEC-6. LSEC-15}. It
also refers to a relation of
cross-sectional details. For example,
RECT-1, refers to a relation RECT and
a cross-section subtype [

CSPRO Cross-sectional property {H, W, T.

R.. ..}

DOF# Degrees of freedom numbers

LOAD-TYP Load-type {CONCENTRATED.
DISTRIBUTED. TEMPERATURE.,
ACCELERATION}

X X coordinate (real)

Y Y coordinate (real)

Z Z coordinate (real)

DESCRIPTION Description (characters)

VEC Vectors {integer, real, and double
precision vectors}

MATX Matrices {integer, real, and double
precision matrices}

VECID Vector identification code = {x-y| x =
vector description, y = number}: for
example, FORCE-5, LOAD-10

MAXID Matrix identification code = {x-y| x =

matrix description. y = number}; for
example, EL-STIFF-10, EL-MASS-$

Step 3. The following entity keys are identified

STRUCTURE# for entity set structure
B# for entity set beam
T# for entity set truss
TR# for entity set TRM
QD# for entity set QD

E# for entity set element

Step 4. In the association between entity sets and
domain the entity sets from step | are replaced by
their primary keys. Attribute names are derived
from domain names to provide role identification.
The following relations are identified:

For entity set TRM

TRM (TR#. E#. EL-TYP. MATID. E,
NODEI#. NODE2#, NODE3#. CSID,
T. LOAD-TYP. LOAD#. VECID.
VEC. MAXID, MATX)

PN

e e A A AT A
AN AT N MM NG

e Al et AT A Lt
N N NN,

46
Murthy and Arora

A triangular membrane element s identified by
TR#. Element number E# uniquely identifies the
finite elements of a structure. Attributes NODE | #,
NODE2#, and NODE3# are derived from domain
NODES. Similarly, E is the role name for domain
MATPRQO. CSID identifies the cross-section prop-
erty T. Vectors and matrices associated with the
clement are identificd through VECID and MAXID.,
respectively. Similarly, the relations TRUSS.
BEAM, QDM ure obtained.

3.2 Reduction to Elementary Relations

In the previous section we described a method to
identify entities, domains, and relations to produce
a rough conceptual model of the structure. Our idea
is to develop a conceptual model that contains all
the facts and each fact occurring only once. In order
to produce a conceptual data model. we transform
the rough model into a better model by using a set of
elementary relations [8). Using the concept of func-
tional dependencies, full functional dependencies,
and transitive dependencies [4, 9] we can establish
rules for reducing a relation to an elementary rela-
tion. The following steps are identified to form ele-
mentary relations:
Step 1. Replace the original relations by other new
relations to eliminate any (nonfull) functional de-
pendencies on candidate keys.
Step 2. Replace the relations obtained in step | by
other relations to eliminate any transitive depen-
dencies on candidate keys.
Step 3. Go to step S if the:

a. relation obtained is all key

b. relation contains a single attribute that is

fully functionally dependent on a single can-
didate key.

Step 4. Determine the primary key for each relation
that may be a single attribute or a composite attrib-
ute. Take projections of these relations such that
each projection contains one primary key and one
nonprimary key.
Step 5. Stop when al! elementary relations are ob-
tained.

Example

To see how these steps are used, we consider the
relation TRM that was given earlier and reduce it to
elementary relations:

LI T A I S B I I I I P P R
__-.,.,,f__.,.) .{.,_rw__‘._,,\ NN '- '.

RS "
&

o

rov
L

0
l-l."."l

L]
e
o
LS

Y Y YTy e
SRR

TP AR 0 2 "R 2T Rn S el g g R Sk o8 Pl LD g 60 Bk 6,0 SR Vel Sud ST S ol b Suk ba) Vol Sel Sl A a B AR gl Rl) B e R, R R A R D S R M

Data Base Design Mcthodology for Structural Analysis and Design Optimization 153

Table 1. Transitive closure for elementary relations

Derived Dependencies Composition Semantically
relations meaningfu!
ERI1S E# - EL-TYP E# — TR# — EL-TYP YES

ER16 E# — NODEI1# E# — TR# — NODEI# YES

ER17 E# — NODE2# E# — TR# — NODE2# YES

ERI8 E# — NODE# E# — TR# — NODE1# YES

ER1Y E# — MATID E# — TR# — MATID YES

ER20 E# — CSID E# — TR# — CSID YES

ER2I E# — LOAD-TYP E# — TR# — LOAD-TYP YES

ER22 E# — MAXID E# — TR# — MAXID YES

ER23 TR# — E TR# — MAXID — E NO

ER24 TR# - T TR# — CS-TYP—-T NO

ER2S TR# — VEC TR# — VECID — VEC NO

ER26 TR# — MATX TR# — MATXID — MATX NO

Step 1. There are problems associated in interpreting

ERI (TR#. E#)
ER3 (TR#. NODEI#)
ERS (TR#. NODE3#)

Step 2.
ER6 (TR#, MATID)

ERS8 (TR#, CSID)
ERI0 (TR#. VECID)
ERI2 (TR#. MAXID)

ER2 (TR#, EL-TYP)
ER4 (TR#, NODE2#)
ERI4 (E#, TR#)

ER7 (MATID. E)
ER9(CSID. T

ER11 (VECID. VEC)
ER13 (MATXID, MATX)

Step 3. The preceding relations contain a single at-

tribute, so go to step S.

Step 4. Skip

Step 5. ERI to ER13 are elementary relations.
The steps can be applied to the rest of the rela-

tions identified earlier to get a set of elementary

relations for the sample structural problem.

3.3 Determination of Transitive Closure

While deriving a large number of relations for ob-
taining a conceptual data model it is possible that
some relations might have been missed. In general,
one can derive further elementary relations from
any incomplete collection of such .zlations. To ex-
plain in a simple way how such additional relations
can be derived, consider two relations ER1(A,B)
and ER2(B.C). which imply functional dependen-
cies: A— B and B — C. Taking the product of these
functional dependencies, we get A — C, Therefore,
from suitable pairs of elementary relations repre-
senting functional dependencies. further elemen-
tary relations can '.e derived. Deriving all such rela-
tions from the initial collection of elcmentary rela-
tions yields a transitively closed collection of ele-
mentary relations called transitive closure [8).

VNN SN T T

relations in transitive closure. For example, con-
sider relations ER1 (TR#, MATID) where TR# —
MATID, and ER7 (MATID, E) where MATID —
E. Transitive closure for this set yields the relation
ER (TR#, E) which implies TR# identifies E. This
relation, however, does not represent true informa-
tion since material property E is dependent only on
the material number and not on the element num-
ber. The relation could be wrongly intrepreted.
Therefore such semantically meaningless depen-
dencies must be eliminated. It is possible to deter-
mine transitive closure, by using directed graphs
and the connectivity matrix [10].

The transitive closure for the example produces
additional dependencies as given in Table 1. We
have eliminated meaningless dependencies from the
list.

3.4 Determination of Minimal Covers

We need to remove redundant elementary relations
to provide a minimal set of elementary relations. A
minimal cover is the smallest set of elementary rela-
tions from which transitive closure can be derived
[8]. The following points are noted: (1) minimal
cover is not unique, (2) deriving several alternative
minimal covers from a transitive closure guarantees
that every possible minimal cover is found, and (3)
we can select a minimal cover that best fits the
structural design process needs.

An example of finding a set of minimal cover
from the transitive closure derived in previous sec-
tions is given in Fig. 1. A set of minimal cover for
this transitive closer is {ERI, ER14, ER6, ER7} and
{ERt, ER14, ERI19, ER7}, out of which one set may
be chosen to suitl our requirement.

47

o

]
»

T %
(X7

1
'n ";l

.
« & . -
« e
et
o o

-

R

1 TR

AR AN

oA

L R
T

o

P
»

[N

a 2 A A2

.

o
3@
iy

"l
- L“L“

]
rSP
- €
LA)
<,

T
'»

0

)
£ a 8
O

FRAN]
vt

PO

LY

34
e

P4
L2
‘l
"'-’--
Ay
A AR,

1A

n Y
At

AT

154

ER 19 ER 7

TR & €N MAT1D E

! !
' ER 14
\ 7/
* ER6 ’
\ ~ /\-

S~ ER23 -7 REMOVED

—_—_—— e —

(1) Transitive Ciosure

ERd
————
————

3
ERG\ /:me

MATID

fenr

€

TR # »

(11) Rearrangement

TRa %, € TRM Y E#

N ;

MATIO MAT1D
E E

Fig. 1. Digraph representation of minimal cover

The preceding procedure can be applied to
other transitive closures derived in the previous
section. Thus we can get further sets of minimal
covers. Each minimal cover is a nonredundant list
of elementary relations and is an appropriate con-
ceptual model of the structural design data.

4 Data Base Design to Support an
Internal Model

An internal model deals with the logical organiza-
tion of data to be stored on physical storage de-
vices. An approach to build an internal model by
means of an n-ary relations is given here. The n-ary
relations have to be consistent with the conceptual
model and have to follow certain rules. Any storage
and update operations (insert, modify, delete) must
not lead to inconsistency in data. To avoid anomo-
lies in storage and updiate operations (insert, mod-
ify. delete) must not lead to inconsistency in data.

48
Murthy and Arora

To avoid anomalies in storage and update opera-
tions, we adopt a normalization procedure |9]. In
the following discussion we describe a methodology
to support an internal model based on normalization
procedures.

An example of an element stiftness matrix is
considered here to describe the methodology. Con-
sider the conceptual model given by the following
elementary relations:

ER1 (TR#. EL-TYP)
ER3 (TR#. NODE2#)
ERS (TR#. MATID)
ER7 (TR #. CSID)
ERI(NODE#. X)
ERI(NODE#. 7)
ERIVIMATXID. MATX)
ERIS (TR#. E#)

ER2 (TR#. NODE#)
ER4 (TR#. NODE3#)
ER6 (MATID. E}
ERR(CSID. T
ERIDINODE#. Y)
ERI2 (TR#. MATXID)
ERIS th#. NODE#)

Data needed for the gencration of element stiff-
ness matrix is derived from various domains and
represented in a single relation TRM-D as shown in
Fig. 2. Our main intention is to get all the data re-
quired for generation of stiffness matrices for trian-
gular membrane elements in one access or a mini-
mum number of accesses. It is observed that the
relation in Fig. 2 is not in the first normal form.
Therefore this unnormalized relation should be re-
placed by a semantically equivalent relation in INF
as shown in Fig. 3. The advantage of INF over the
unnormalized relation is that operations required
for application programs are less complicated and
easy to understand.

To check consistency of this model, first we
identify the key attributes. Candidate keys are com-
pound, consisting of (E#. NODE#) and (TR#,
NODE#). The primary key is selected as (TR#.
NODE#). Secondary keys are TR#. E#. MATID,
CSID, NODE#. and MATXID. These key attrib-
utes of the relation are consistent with those in the
elementary relation. Second, we need to identify
whether all the attributes in the internal model and
dependencies between them are consistent with the
conceptual model. It can be observed that attributes
NODE1#, NODE2#, and NODE3# do not appear
in the relation. Therctore these three attributes
should be included in the relation. The rclation
TRM-D is now written as:

TRM-D (TR#, E#, EL-TYP, E, CSID, T,
NODES#. NODE1#. NODE2#, NODE3#,
X. Y, X. MATXID, MATX)

The functional dependencies reflected by elemen-
tary relations ERI to ERIS are satisfied in the inter-
nal model with the values shown in Fig. 3. There-

PR PR
-

-

LXK

"l"-"."‘ L

’

"l
R

)

“
»
»

L 2]
B e s
AL AL LA

&“h‘ .1.‘7{1, ;

-

......-
sy

g

el 4l

-
i

" .".'

.y ..
s ‘9?#

’ '('.f.‘l’ -4" i'.l

'.- R 1-
10 l.l‘< .'ll

LN VI MW L
W\.’%._ N ks

Data Base Design Mcthodology Tor Structural Analysis and Design Optimization

Domain Domatn
IRy MAT D

Iss

Domain Domain —
csiv NOUE S

Gais_) -

Dumain Domain Doma in Domatn 2‘-:.2
EL-1YP Material Property Cross-sectional Property (1) fad
s
wp | €2 [EL-Tvp| maTID € csin T | Noveg x[-v(7| marxio| max =
5 |1.5.]7. .
to[1s| tem3 [steeL-s | 10 | mmexes fo.r | 7 [3jal]sl [sieer | (50 Y-
2.06.%. RN
_,4__,__ - _ e s
) e
12 |5.[9.|8 .
2 |16 | 1am3 [avom-a |ooxro’ | niek-a focz | e Drlalbu sweez |yttt
1 |1]s.[s "o
N
- o
Fig. 2. A tentative internal model
A
IRy [€0 [EL-17P] MATID € csio T (noved| x| v| 2] maixio| marx
1111 o
a A
1 {1s| tem3 | steeL-s | 10 k-8 fo.t | 5 LS| siEer | (it 50
LS4
to{1s | mma [steer-s| 108 Juweces Joon |1 3 jacjs. | siEer | i
tofis | vema | osteee-s | w8 fuockes foou |8 [2.]e {3 stEer | ity THTY
2 [16 | 1aM3 | aumca [o.9xid? | neeea o2 | 12 Us.lels. [swrea |ttty .
2 |16 | tru3 | atomea | o.9x00” [vmick-a o2 | e [ralfe L sieez f (it
2 {16 | 1am3 [ALom-a |o0.9x107 | mrck-a fo.2 | 18 [3.fs.la fsieez | (it e
™
Fig. 3. Relation TRM-D in INF
oy i
(AL .-_:-‘
fore at this instant the internal model is consistent key and the third relation has all keys. Note that by o
with the conceptual model. However, it would be splitting the relation TRM-D no information is lost e
no longer consistent if arbitrary changes in the val- and the relations are still consistent with the con- ‘.
ues of the table are made. Also. note that many ceptual model. However, TRM-D1 relation is still o
values in the relation TRM-D are redundant. These not satisfactory since it can lead to anomolies in 3

inconsistencies and redundancies occur because of
the anomalies in the INF. Thus it is not desirable to
use the relation in Fig. 3 to represent the internal
model. Modification to 2NF is necessary to avoid
the anomalies [9] in the storage operations. The re-
lation TRM-D should be converted into a set of se-
mantically equivalent relations as follows:

storage operations. Modification of the relation is
necessary to 3NF to avoid anomalies in storage op-

AR
RN

eration. Nonkey attributes must be nontransitively -
dependent on candidate keys to avoid these anomo- ::
lies. It can be observed from the relation TRM-DI IR

of Fig. 4 that attributes E, T. and MATX are transi-
tively dependent on TR# through MATID, CSID.

)
1

. e - . and MATXID, respectively. Removing these transi- :-',-':'.
rRN%géi;R;:O%ﬁ:B;lJ/Y\,‘;:SDNS%%:?; T tive dependencies, we get the following relations: .'_":‘.-:
T, - » u‘:f
MATXID. MATX) TRM-D4 (TR#. E#. EL-TYP, NODEI#, Ro
TRM-D2 (NODE#, X. Y, 2) NODE2#, NODE3#, MATID, CSID. (Y
TRM-D3 (E#. NODE#) MATXID) .
- '\'.l
The preceding three relations TRM-D1, TRM-D2, TRM-D3 (MATID. E) n
and TRM-D3 are all in 2NF because the first two TRM-D6 (CSID. T) 2.
relations do not possess any compound candidate TRM-D7 (MATXID, MATX) :-:
nc
4
7
M e e e e N e S e e S ST

2

2,

goo

“a

re
455N
2,

A

S 0t Sa¥ #2% 00 4 Lot tav da? | * dat Sat sa? a2t fa'o 00’ 0% 01", 0"
-

50
156 Murthy and Arora
1RN-01
TRp[EF [EL-TYP{ NOUELS | MODEZD { MOUE3S| MATID € csto | v | marxin| manx
1] 15] A3 5 ! 8 | steeLs| w? | mickes fo.t| siFen)00
2)16 | w3 | 22 14 18 | aum-a fo.9x10” | nck-a fo.2) sieez f|100)
1RN-D2 1RN-D3
mues| 1} ov |2 €| noues
LJ0 T R YO I 8 5 | s
RN T3
8 | 2.1 6 |3 15 | 8
12 | s.| 9 |a 16 | 12
Mmoo 16 | 14
18 | 3| 5. |8 6 | 18

Fig. 4. Relations in 2NF

The preceding three relations together with
TRM-2 and TRM-D3 constitute the internal model
for element stiffness matrix generation purpose.
This internal model is consistent with the concep-
tual model identified earlier. Also. note that the
number of relations in the internal model is only 6 as
compared to 15 elementary relations in the concep-
tual model.

In summary. the following steps are necessary
to derive an internal model that is consistent with
the conceptual model. Normalization procedures
have to be adopted at each step to reduce redun-
dancy and to eliminate undesired anomolies in stor-
age operation. This ensures integrity of the stored
values in the data base. At each step unsatisfactory
relations are replaced by others.

Step 1. Form relations with attributes derived from
a set of domains.

Step 2. Eliminate multiple values at the row-
column intersection of the relation table. Vectors
and matrices are considered to be single data items
for this step.

Step 3. The result of Step 2 is the relations in the
INF. Take projections of INF relations to eliminate
any nonfull functional dependencies and get rela-
tions in the 2NF.

Step 4. Take projection of relations obtained in Step
1 10 eliminate transitive dependencies to form rela-
tions in the INF. Thus a set of relations in the 3INF
is the internal model.

5 Some Aspects to Accommodate an External
Mode:

One of the important requirements of a data base is
to provide factlity for data retrieval by different ap-
plication programs depending on their needs. Dif-
ferent application programmers can have different
views of a data base. Data structure as seen by an
application program or interactive user is called an
external data model. Transformations are required
involving rearrangement of data from the internal
level to the external level into a form acceptable to
the application program. Some contraints have to
be observed while designing an external model.
Constraints arise while rearranging data from inter-
nal data structure to an external data structure. Any
retrieval and storage operations specified on the ex-
ternal model must be correctly transtormed into
corresponding operations on the internal model.
and at the same time, the internal model must be
consistent with the conceptual data model. An ex-
ample of how an external model is derived from an
internal model is given subsequently.

Suppose a particular user would like to know
the coordinates of nodes of each triangular finite
element for a generation of element stiffness matri-
ces. This means that the external model:

EL-CORD (TR#. E#. EL-TYPE. X1, Y1, Z1, X2,
Y2.72 X3.Y3. 73)

£

(:f -'.’n"_ I: \"l j
A <
A Xy St 5 R

»

1;4;.

s

-

e

s 's.’p-

& " Yl
‘ '.'&;‘1"?‘{ T
proe

w " y
X
e R

%

® 2%

«

8
DAL LA
2k

]
.
.

fio
ol g

A
.
LS
Y

'\
' %
L

W

AN, W NP S 'f.:d\:.l_.:.l:.:-'_:f.:f_'f AN A A AR A N

R T LA T N OMEAC S TR R R N IR W G SR Y

Data Base Design Methodology for Structural Analysis and Design Optimization 157

has to be provided for that particular user. Note
that the external view EL-CORD contains data
items from two different relations—TRM-D4,
TRM-D2. Therefore a procedure is required to
transform the internal data model (relations TRM-
D4, TRM-D2) to the external data model (relation
EL-CORD). This can be done using JOIN and PRO-
JECT operations [9) as follows:

TRM-A (TR#, E#, EL-TYP, NODEI#) «
TRM-D4

TRM-B (TR#, E#, EL-TYP, NODE2#) «
TRM-D4

TRM-C (TR#. E#, EL-TYP, NODE3#) «
TRM-D4

TRM-D (TR#, E#, EL-TYP, XI. YL, Z1)
= TRM-A*TRM-D2

TRM-E (TR#. E#. EL-TYP, X2. Y2, Z2)
= TRM-B*TRM-D2

TRM-F (TR#. E#. EL-TYP, X3, Y3, Z3)
= TRM-C*TRM-D2

EL-CORD (TR#, E#., EL-TYPE, X!, Y1, Z1,
X2, Y2, 22, X3,Y3.23)
= TRM-D*TRM-E*TRM-F

NOTE: « indicates PROJECT,; * indicates JOIN

It can be seen from the algorithm that we did
not modify the original relations TRM-D4 and
TRM-D2 to retrieve the data required for a particu-
lar inquiry. The relations TRM-D4 and TRM-D2 are
stitl consistent with the conceptual model. There-
fore pure retrieval operations for rearrangement of
data does not cause any inconsistency in data val-
ues.

Now, consider the reverse process of trans-
forming external data structure to internal data
structure. Suppose a particular user wants to insert
the nodal coordinates of a finite element using the
external view EL-CORD. Here relation EL-CORD
has the only key TR# and has no reference to the
node number to which the element is connected.
Insertion is not consistent with the conceptual
model because it requires the coordinates of nodes
which are dependent on keys NODE#. This restric-
tion is also reflected in the internal model—TRM-
D2 that requires NODE# as key values for inser-
tion. Thercfore the transformation of relation
EL-CORD into the internal model is not possible.
From this example it follows that there are restric-
tions for rearranging data from external model to
internal model.

6 Methodology to Incorporate Matrix Data into 2

Data Base e
h“\

In finite element analysis and structural design opti-

mization, we encounter the problem of storage of o

large order matrices. This data is unique to the ap- @.:'_cf

plication, so no attempts have been made to design
such data bases in the business data base manage-
ment area. Consequently, there is a need for the F
development of a new generalized user friendly "
technique to deal with large order matrices. For the

purpose of our discussion, matrices are grouped)QJ
into five types and are referred by the type number: 5 W
(1) square matrix A, (2) banded matrix A, (3) hyper-
maltrix /. (4) skyline matrix S, and (5) sparse matrix 5
P. A methodology is proposed in this section con- @ ,
sisting of conceptual, internal and external views of)
large matrices. -
Conceptually, a matrix is a two-dimensional ar- &J
ray of numbers. These numbers appear in a certain s
pattern; for example. square. sparse, symmetric, di-
agonal, banded, lower triangular form, upper trian- \.\g \
gular form, unitary form, tridiagonal form, hyper ::’
matrix form, and skyline form. A matrix is uniquely
identified by a name. Rows and columns of the two- a3
dimensional array are used for identification of data
elements in the matrix. A conceptual view of a ma- -
trix can be represented by the following elementary .
relations: }.‘:‘
N
ERI (NAME, MATRIX TYPE)
ER2 (NAME, NUM-OF-ROWS) e
- 3
ER3 (NAME, NUM-OF-COLUMNS) o :‘.;\-;
ER4 (NAME, ROW, COLUMN, e
DATA-ELEMENT-VALUE) wr I
ERS (NAME, NUM-OF-HYPER ROWS) W R
ER6 (NAME, NUM-OF-HYPER COLUMNS) ®
ER7 (NAME. HYP-ROW, HYP-COLUMN, AN
ROW, COLUMN, DATA-ELEM-VALUE) 4 oy
ER8 (NAME, BAND-WIDTH) e
ER10 (NAME, SUB-MAT-ROW-SIZE) s
ERI11 (NAME, SUB-MAT-COLUMN-SIZE) — e
ER12 (NAME, VECTOR OF ey
SKYLINE-HEIGHT) b

ERI13 (NAME, HYP-ROW, HYP-COLUMN,
NULL-OR-NOT)

The attributes of these elementary relations are self- - -
descriptive. These elementary relations completely

define a matrix and provide the conceptual struc- 3
ture of the matrix. %

o
/.

2
L

105

/.
Ny
Er

o an

.
.
.
.
\
s
1
2
f
a
[]
,
"
:
‘2

I I

g

S I R

w

o~
1
%)

~ A

.
e

158

An internal (storage) structure for large order
matrices has to be developed that is consistent with
the conceptual structure. Storage schemes have to
be developed based on efficiency and processing
considerations. The special nature of the matrix,
that is, sparse. dense, or symmetric, should be used
to provide storage efficiency. We can classify vari-
ous matrix types considered in the previous section
into two basic types—sparse and dense. Note that
banded or diagonal matrices are not to be mistaken
as sparse. Many possible storage schemes are avail-
able to store dense and sparse matrices. Conven-
tional storage schemes—row-wise, column-wise,
submatrix-wise are useful for storing dense matri-
ces. Choice among these storage schemes should be
based on consideration of several aspects—storage
space, processing sequence. matrix operation, page
size, flexibility for data modification, ease of trans-
formation to other storage schemes or user’s views,
number of addresses required to locate rows or sub-
matrices, and availability of data base management
system support. These aspects are considered in
detail now.

Storage space. The row storage scheme can be
used for square, banded, and skyline matrix types.
However, this scheme is not appropriate for the
hypermatrix. Symmetric, triangular, and diagonal
properties of a square matrix can be used in saving
storage space if the variable length of rows is used.
Similar schemes can be used for banded and skyline
matrices to store data elements that appear in a
band or skyline column. Submatrix storage can be
used for all matrix types. The submatrix is most
appropriate for hypermatrix data. Both schemes
have disadvantages when zero elements within a
row or submatrix have to be stored.

Processing sequence. Row storage requires
that the assembly of matrices, storage, and retrieval
be made only row-wise. This becomes incfficient if
row-wise processing cannot be made. The subma-
trix approach is suitable for all types of processing
sequence—row-wise, column-wise, or in any arbi-
trary order.

Matrix operations. Operations such as trans-
pose, addition, multiplications. and solutions of si-
multaneous equations are frequently carried out at
various stages of structurai design. The row storage
scheme is highly inefficient for matrix transpose
when column-wise storage is required. During mul-
tiplication of two matrices A and B, a column of B
can be obtained only by retrieving all of the rows of
B. Therefore. the row storage scheme becomes in-
appropriate for such an operation. However, the

52
Murthy and Arora

submatrix storage scheme docs not impose any
such constraints in matrix operation, thus providing
a suitable internal storage scheme.

Page size. A page is a unit or block of data
stored or retrieved from memory to disk. For a
fixed page size, only a number of full rows or a
number of full submatrices together with fractional
parts of them can be stored or retricved at a time. 1t
is clear that frugmentation of rows or submatrices
takes place depending on the size of rows or subma-
trices. Large row size will overlap more than one
page in memory and cause wastage of space. The
submatrix scheme has the advantage of providing
flexibility in choosing the submatrix size to mini-
mize fragmentation of pages.

Flexibility for data modification. For modifica-
tion of rows of a matrix, both row and submatrix
storage schemes are suitable. But the row schcme
would be more efficient than the submatrix storage
scheme. For modification of a few columns of a
matrix, the row storage scheme requires a large
number of 1/0.

Transformation 10 other schemes. The subma-
trix storage scheme requires a minimum number of
data access to transform to the column-wise storage
scheme.

Address required. The submatrix storage re-
quires a fewer number of addresses to locate data
than the row storage scheme, provided submatrices
are reasonably large.

Thus for internal storage of large order matrices
in a data base, the preceding aspects should be care-
fully considered. It appears that both submatrix and
row storage schemes can be appropriate for various
applications.

In order that the internal storage scheme be
consistent with the conceptual model, we need to
store additional information about the properties of
the matrix. That additional information is given by
the elementary relations ERI. ER2., ER3, ERS,
ER6, ERY to ERI3. These can be combined and
stored in a relation. A typical relation required for
the internal storage of submatrices is shown in Fig.

35

So far we have considered schemes for internal
organization of large matriccs. Since different users
view the same matrix in different forms—banded.
skyline, hypermatrix, triangular, or diagonal. it is
necessary to provide external views o suit individ-
ual needs. The unit of transactions on various views
of a matrix may be row-wise, column-wise. subma-
trix-wise, or data clement wise. If the internal
scheme is submatrix-wise, the external view rced

XX

"

’
-

% %eta Y Y- WL

2

PO e S

LN

LI oy TR i ARV
Ve s 2 .
IS o5

a

A l‘."\"‘t{r‘- v‘

¢ L1
'-('n y

NEINS I L LI,

A

w0, ‘I_"

L

I

pd
K4
<
v

o

.

'a!‘-

<

L

A A N A N S N N A e A e e R e

Data Base Design Methodology for Structural Analysis and Design Optimization 159

HYP-ROM | wvp-coumn | muL or iR
NAke w. ., NoT SUBMATRIX
A 1 1 (2:2]
A 1 2 (::%]

Fig. 5. Relations for matrix storage

not be submatrix wise. Therefore transformations
are necessary to convert the internal matrix data
into the form required by a particular user.

Next, we consider the sparse matrix storage
scheme. Several storage schemes hiave been sug-
gested by Pooch [i1] and Danini [12]. They are the
bit-map scheme. address map scheme, row—column
scheme, and threaded list scheme. Out of these, the
row—column scheme is simple and casy to use.
Also. the row-column scheme can be easily incor-
porated into the relational model. Therefore. this
scheme can be considered for storing sparse matri-
ces encountered in design sensitivity analysis.

The row-column storage scheme consists of
identification of row and column numbers of non-
zero elements of a sparse matrix and storing them in
atable. This scheme provides flexibility in the modi-
fication of data. Any nonzero value generated dur-
ing a course of matrix operation can be stored or
deleted by simply adding or deleting a row in the
stored table. The external view of the row-column
storage scheme can be provided through suitable
transformation procedures.

7 Processing, Efficiency, and Other
Considerations

In the following paragraphs special consideration
needed for satisfying processing, efficiency, and it-
erative needs of finite element analysis and struc-
tural design optimization are discussed. Many pro-
cedures in structural design, such as element
stiffness matrix routines, generate huge amounts of
data. Generally, it is not preferable to store such
data in a data base at the expense of disk space and
data transportation time. This inefficiency can be
avoided by storing only a minimum amount of data
needed to generate the required information (ele-
ment stiffness matrix). In generai, a data model can
be replaced by (1) an algorithm that generates the
user-requested information, and (2) a set of (mini-

mum) data that will be used by an algorithm to gen-
erate user-requested information.

A network of data bases offers considerable aid
in iterative structural design process. [t consists of a
global data base connected to a number of local data
bases through a program data interface. A global
data base can be used to store common information
required for all applications, whereas a local data
base contains only application-dependent transi-
tory data. Local data bases are dependent on appli-
cation programs and are highly efficiear in data ac-
cessing, since no overhead is involved in supporting
complicated data structures. It supports ilerative
design process by providing temporzry work space
that can be erased at the end of an iteration. Any
intermediate data gencrated by applications can be
stored in a local data base.

A number of parameters pertaining to structural
problem definition and applications generally re-
quire storage in a data base. Users should have
complete flexibility in organizing such parameters
in a relation because they are dependent on problem
and application.

Special consideration is needed in naming rela-
tions belonging to different substructures. One op-
tion is to name uniquely all relations of various sub-
structures. Another way is to store all relations in a
data base that is used only for storing data of a
particular substructure.

8 Conclusions

A methodology to design a data base for a finite
element analysis and structural design optimization
is described. The methodology adopts several good
features of available data base design techniques.
The data base design using three views of data con-
siders both theoretically possible and implementa-
tional aspects of data organization. The relational
data model is shown to be quite useful in providing
a clear and simple picture of data for designing a
data base. Special characteristics of analysis and
design data such as vectors, matrices, and process-
ing of data are accommodated in the methodology.
Examples used for discussing the methodology are
relevant and can be easily extended to the actual
data base design. The methodology is expected to
provide a good start in arriving at a systematic ap-
proach to design data bases for computed-aided
analysis and the design of structural systems. The
design of such a comprehensive data base is in pro-
gress [13). A software system to process such a data

53

Y.
Y'Y

3

M
.

A

”

%
¥

\ .'r'{.

=

v v ‘l
Sy

).’.?

® sy

}
i

’l(.l.“,.'!.l. ".' !
CAF Pl

N
D)
e

Ty N,
R ST S
"'l ;‘-{5 AN v

e

e

[

P

e Ay

o

base has been designed. [t is being implemcnited
with a specially designed data base management
system called MIDAS [14]. The data base design
and the system will be evaluated and the results
reported in the near future.

Acknowledgment

This research is sponsored by the Air Force Office of Scientific
Research, Grant No. AFOSR 82-0322. Material of the paper is
derived from a presentation made by the authors at the 26th
AlAA, Structures. Structural Dynamics and Materials Confer-
ence, April 15-17. 1985, Orlando. Florida.

References

. Koriba. M. (1983) Database systems: Their applications to
CAD software design. Comput-Aid. Des. 15(5) 277-288

2. Lopez. L.A. (1974) FILES: Automated engincering data
management system. Comput. Civ. Eng. Electr. Comput..
ASCE 47-71

3. Pahl, P.J. (1981) Data munagement in finite element analysis.
In: Nonlinear Finite Element Analysis in Structural Mechan-
ics. (Eds. W. Wunderlich. E. Stein. K.J. Bathe) Berlin:
Springer-Verlag. pp. 714-716

4. Sreckanta Murthy, T.. Arora, J.S. (1986) Database manage-
ment concepts in computed-aided design optimization. Adv.
in Eng. Soltware, to appear, April

Murthy and Arora

S. Fishwick, P A, Bluckburn, C.L. (1982) The integration ¢n-
gineering programs using a relational database scheme.
Comput. Eng. Int. Comput. Eng. Conf., pp. 173181

6. Buchmann, A.P.. Dale, A.G. (1979) Evaluation ¢criterial for
logical datubase design methodologies. Comput-Aid. Des.
121-126. Vol. 11, No. 3, May

7. Grabowski. H., Eigner, M. (1982} A data model for a design
database. File Structures and Databases for CAD. In: Pro-
ceedings of the International Federation of Information Pro-
cessing. pp. 117144

8. Vetter. M., Maddison, R.N. (1981) Database Design Meth-
odology. Englewood, NJ: Prentice-Hall {nternational

9. Date, C.J. (1977) An Introduction to Database Systems.
Reading, MA: Addison-Wesley

10. Sreekanta Murthy, T.. Arora. J.S. (1984) Database design
methodology and Databise Management System for Com-
puted-Aided Structural Design Optimization. Technicul Re-
port CAD-SS-84.20. Optimal Design Laboratory, College of
Engineering, The University of lowa

11, Pooch, U.W., Nieder. A. (1973) A survey of indexing tech-
niques for sparse matrices. Comput Surv. 5(2). 109-133

12. Daini, O.A. (1982) Numerical database management system:
A model. Int. Conf. on Data Management, Association for
Computing Machinery. Special Interest Group on Manage-
ment of Data, 192-199

13. Arora. J.S., Al-Saadoun, S.S.. Harirtun. M., Sreekanta
Murthy, T., Wu, C.C. (1985) Preliminary design of a general
purpose structural design optimization system (S-DOS). Re-
port No. ODL 85.8, Optimal Design Laboratory, College of
Engineering, The University of lowa, lowa City, A, July

14. Sreekanta Murthy, T., Shyy. Y-K.. Arora. J.S. (1986)
MIDAS: Management of information for design and analysis
ol systems. Adv. in Eng. Software. to appear. April

3
+
PP

{5
* .:{:': -

x

Pl
A

-
-

Y Xr.'"e‘.."
'}ﬁ?\'¢ﬁ
KT {;a

iB

o
{.
<

%
R
’ - .

£,

5 gy
S

»
-
»

T ¥ 9

'.l.l

Loy Y
’égﬁﬂf‘
;grfwr

Ly
5 &

Pé
. "'
Y

2w

2

Lis s % 8
5

.
Y

5
PEL S
-

RS
o

[y
l._
2

)

’
A
>
s :

I‘-"";‘ "
2
[d

LLN

II‘.‘
7
[J

| of

-

£N
4

ol |

¥
%

4z

o2 -/
s S %

W
v o

APPENDIX 5

SMART: SCIENTIFIC DATABASE MANAGEMENT AND
ENGINEERING ANALYSIS ROUTINES AND TOOLS

by
J.S. Arora, H.H. Lee and S.Y. Jao

Advances in Engineering Software

Vol. 8, No. 4, 1986)

-l - vy . ~ Sall W, Wy
- LR S N S L Rk Sl B R S A AT A v e N

56

SMART: Scientific database Management and
engineering Analysis Routines and Tools

J.S. ARORA,H. H. LEE and S. Y. JAO

Optimal Design Laboratory, College of Engineering, The University of lowa,

lowa City, I4 5224, USA

Development of user-friendly and flexible scientific
programs is 2 key to their widespread usage, exten-
sion and maintenance. The paper describes capa-
bilities of a library called SMART that can be used
in the development of such programs. The library
contains many interactive programming aids and
screen management utilities that can help in
development of the user interfaces. A very flexible
full screen data editor is available. Many other sub-
routines are available, such as vector and matrix
operations, in-core data management, out-of-core
numerical and relational database management,
and graphics. The library is not advocated to be
comprehensive. It is meant to show the kind of
capabilities that are needed in development and
maintenance of scientific programs. Such libraries
can be of particular use in research on computa-
tional methods for scientific applications.

1. INTRODUCTION

Development, extension and maintenance of scientific com-
puter programs is a complex and arduous task. Proper pro-
gramming tools and aids must be developed and made
available to the programmers. Many of the programs must
be interactive. This is particularly true for the engineering
design and optimisation programs. Most design problems
must be solved in an iterative manner, Design engineers
using the program would like to have control over the
design process. They like to know how the design process
is progressing and whether the design is moving towards
their intuitively anticipated solution. If the design process is
not proceeding satisfactorily, the designer would like to
interact with the program. He may want to change problem
parameters, formulation, solution algorithm, restart, or quit
the program. Interactive graphics capability can also con-
siderably help in decision making. These requirements
dictate that program interaction, data management, and
solution algorithms must be designed carefully before
implementation. Proper programming tools can consider-
ably speed up the process of implementation and debugging
the program.

This paper describes capabilities of a library of sub-
routines developed in FORTRAN77 to facilitate develop-
ment of scientific programs. It is called the SMART library
which stands for Scientific database Management and

Accepted May 1986, Discussion closes December 1986,

194 Adv, Eng. Software, 1986, Vol. 8, No. 4

engineering Analysis Routines and Tools. The current
implementation of the library is not comprehensive, It
shows desired capabilities and needs for general purpose
programming tools. The current version of the library is
divided into six sections. Capabilities available in each
section are described in the paper in a summary form, It
includes interactive programming and data editing tools,
vector and matrix operation routines including sparse
matrix operations, in-core management routines, out-of-
core database management for relational and numerical
type of data, routines for operations on the data stored in
the database, and certain graphic utilities. Interactive menu
displays, menu selection, data entry, graphics, numerical
data table display with headers, and other highly useful
subroutines for scientific program development are avail-
able. The library has been used quite extensively in the
development of general purpose design optimisation and
structural analysis software. It has considerably reduced the
program coding and debugging time. The library has been
implemented on PRIME computers and Apollo work-
stations,

The subroutines of the library are carefully designed for
efficient operations. For example, structure of the program-
ming language is exploited in vector and matrix operations
routines, In addition, most of the routines utilise 2 few
lower level kernels to implement matrix utilities. The
kernels can be implemented in a machine language to
enhance computational efficiency. The subroutines can be
also automatically vectorised for supercomputers.

To show capabilities of the library, name of each sub-
routine is given with a brief explanation of its function. All
subroutines are written in FORTRAN77. Some subroutines

are dependent on the I/O device and this is indicated with
a'*,

2. INTERACTIVE PROGRAMMING AIDS (IPA) AND
DATA EDITING UTILITIES

Development of an input/output processor for an applica.
tion program usually requires substantial effort. Having
recognised this fact, several subroutines have been designed
and implemented in FORTRAN to speed up development
of the I/O processor. Using the available subroutines, the
programmer can design and implement interactive sessions,
menu display and selection, data table displays, data entry
and data editing. In addition, certain string manipulation
routines have been developed to aid the application pro-
grammer. The names of subroutines in this part start with
the letter “T". Some integer function subprogram names
start with the latter ‘L.

N141-1195/86/040194-05 $2 00
© 1986 Computational Mechanics Publications

.....

1

P L

%

N
s

X
MO

\\r

l'l
a
1 §

P2
A)

L

LI 3 -
s Fe
5 4 N

P A

‘“f‘-?'i‘-.'

o

‘v

*

>]

%

LA
v

Lol

;"{

s
. -'kl'.

o

<

Vo
A

)

LYYy

Y

5

- ® X 2 3 ¢ ¢ 3 3
At &P
";'.";1 o e LT

e |

e

| 0 g

S

F e

‘el T s

N W Woa W o YW W WY W W W VY

System initialising routine

TINIT®: Defines the terminal type and output unit number
for the system. The subroutine must be called to initialise
the system.

String processing routines
These routines may be used to manipulate strings of
characters (see also string table processing routines).

LTRIM: Returns the trimmed length of a string.

ILNBLK: Returns the location of the nonblank portion of a
string.

TSHFTL: Shifts a string by N positions to the left.

TSHFTR: Shifts a string by N positions to the right.

TJUST: Left justifies characters in a string,

_TIUSTR: Right justifies characters in a string.

TINSRS: Inserts characters into a string.

TREMVS: Removes characters from a string.

TCOPY: Copies data or a string.

String table processing routines

A variety of processes may be set up using these string
table routines. The string table is a user defined array of
character strings which the routines manipulate.

TSEPAR: Separates a string into substrings which are
separated by delimiters *,’ *=' or blank(s).

LCTABI: Sequentially searches for the specified string in a
string table and returns its location. The search can be
over the entire table or specified rows.

LCTAB2: This subroutine is a binary search counterpart of
LCTABI. It searches the specified string in a string table
anc¢ returns its location. The search can be over the
entire table or specified rows.

TSORTA: Sorts a string table into the alphabetical order.
TINSRT: Inserts a string into the string table after a speci-
fied location. The size of the table is increased by one.
TREMVT: Removes an element from a string table by

location.

TINSRG: Inserts data into a data table by location.

TREMVG: Removes data from a data table by location.

Number-string conversion routines)
Simple conversion routines and more complex expres-
sion evaluating routines are included here.

TCNVRT: Converts a string which may be an arithmetic
expression to its value,

TSETC: Sets a constant value for calculating the result of
an arithmetic expression.

TGETC: Gets a value of a constant from the constant table.

TDELC: Remaves a constant from the constant table.

TSAVEC: Saves the constant table to a file.

TLOADC: Loads the constant table from a file.

TNUMST: Converts a string to 2 number of specified data
type. The string can be an arithmetic expression.

TSTNUM: Converts a given number of specified data type
to a string. The format can be also specified.

TDTYPE: Encodes data type into useable form.

LFIELD: Retums string format field length (for use with
TSTNUM).

TZERO: Assigns a zero value to a variable.

Screen control routines

Given that the terminal type is initialised by TINIT,
certain terminal screen functions can be controlled by these
routines.

TCURSR™*: Moves the cursor to the specified position.

TCLEAR®: Clears the screen.

TBELL: Outputs a bell sound.

TINSTR: Moves the cursor to the specified position and
reads a string.

TOUSTR: Moves the cursor to the specified position and
displays a string,

TOUNUM: Moves the cursor to a specified position and
displays data.

TYESNO: Performs the interactive YES/NO query and
returns the code.

On-line reference display routines
Provides a menu and tests the user response.

TMENU: Displays a menu contained in an array and per-
forms the interactive selection. The entire or partial
menu in the array can be displayed.

Full screen data edit routines
Several routines are provided to allow easy editing of
data from arrays or tables.

TEDIT!1: Displays a description of data items contained in
an array and performs data input or editing interactively.
An entire list or a partial list of data descriptions, con-
tained in the array can be displayed,

TEDIT2: Displays a relation table and performs data input
or editing interactively.

TEDITM: Displays a matrix and performs data input or
editing interactively.

TEDITC: Edits the constant table for number-~string con-
version routines.

Data output routines

TPRINT1: Prints a one-dimensional array of data items to
a file unit. This is a hard-copy counterpart of subroutine
TEDIT1.

TPRNT2: Prints a relation table to a file unit. This is a
hard-copy counter-part of subroutine TEDIT2.

TPRNTM: Prints a matrix to 2 file unit. This is a hard<opy
counter-part of subroutine TEDITM.

Sorting routines

Severa] sorting routines are available based on different
methods. These routines are for numeric data of various
types which may be specified for each routine.

TSRTI: Straight insertion sort.
TSRT2: Binary insertion sort.
TSRT3: Straight selection sort.
TSRT4: Bubble sort.

TSRTS: Shaker sort.

TSRT6: Heap sort.

TSRT7: Quick sort.

3. VECTOR AND MATRIX OPERATIONS ROUTINES

This part contains various vector and matrix operation sub-
routines, Capabilities for elementary vector and matrix
operations, symmetric, banded, and sparse matrix decompo-
sition, equation solvers, eigenvalue extractors and updating
of factorised matrices are avaifable. Single as well as doublc
precision routines are available. The subroutines are care-
fully designed to operate on vectors rather than individual
elements. They can be easily installed on vector computers.
All routines in this part start with the letter 'Z". The second

Adv. Eng. Software, 1986, V'ul. 8, No. 4 195

. > . .
LA EAE N T T S e
WO S LS L O A AT OO

57

A

«

ty e iy G 4 A Y
R

','- N
/ N(;'./\'i

s N ‘l’ ?

Pl

2.ter for each subroutine name is either ‘S’ or ‘D’; ‘'S’
implies single precision and ‘D’ implies double precision,

Vector operations

ZSMAX OR ZDMAX: Finds the largest positive element in
a vector starting from a specified position. It also returns
the position of the element.

ZSMAXA OR ZDMAXA: Finds the absolute maximum
element in a vector starting from the specified location.
It also returns the position of the element.

ZSDOT OR ZDDOT: This is a function subprogram to
calculate the dot product of two vectors.

ZSSOTX OR ZDSOTX: Sorts a vector according to the
specified order. The original vector is saved.

ZSSCLX OR ZDSCLX: Scales a vector by a constant. The
original vector may be saved.

ZSAADDV OR ZDADDV: Adds two vectors to produce a
third vector. The original vectors may be saved.

ZSSUBV OR ZDSUBV: Subtracts one vector from another
to produce a third vector. The original vectors may be
saved.

ZSVINI OR ZDVINI: Initialises a vector to zero.

ZSUNIT OR ZDUNIT: Computes the length of a vector
and normalizes it to a unit vector.

ZSNORM OR ZDNORM: Computes the Euclidean norm
of a vector.

ZSCROS OR ZDCROS: Computes the cross product of two
vectors and stores it in a matrix.

ZSXPCY OR ZDXPCY: Scales a vector by a constant and
adds the resuiting vector to another vector to produce
a third vector. The original vectors may be saved.

ZSIND OR ZDIND: Generates (in an integer vector) indices
according to the ascending order of elements in a vector.

Matrix operations

ZSMINT OR ZDMINT: Initialises a matrix to zero.

ZSMSCL OR ZDMSCL: Scales a matrix by a constant, The
original matrix is destroyed.

ZSMADD OR ZDMADD: Adds two matrices to produce a
third matrix. The original matrices may be saved.

ZSMSUB OR ZDMSUB: Subtracts two matrices to produce
a third matrix. The original matrices may be saved.

ZSATAU OR ZDATAU: Takes the transpose of a matrix
and pre-multiplies the original matrix by it. Columns of
the original matrix are assumed to be unit vectors. All
diagonal elements are set to unity. If any off-diagonal
element is close to unity, then the corresponding two
column vectors are nearly parallel.

ZSATAG OR ZDATAG: Takes the transpose of a matrix
and pre-multiplies the original matrix by it. Columns of
the matrix are assumed to be general vectors.

ZSATAI OR ZDATALI: Takes the transpose of a matrix and
pre-multiplies the original matrix by it. The order of
multiplication of columns of the matrix is specified in a
vector. Columns of the original matrix are used in that
order for multiplication.

ZDAAT OR ZDAAT: Calculates the transpose of a matrix
and post-multiplies the original matrix by it.

ZSMATM OR ZDMATM: Multiplies two matrices to gener-
ate a third matrix.

ZSTRAN OR ZDTRAN: Computes the transpose of a matrix
and stores it in a second matrix.

ZSAMX OR ZDAMX: Multiplies a matrix by a vector and
stores it in another vector.

ZSAMXI OR ZDAMXI: Multiplies a matrix by a vector
according to the order of columns specified in an integer
vector.

196 Adv. Eng. Sofnware, 1986, Vol, 8, No. 4

- T T W W S T P oM e N T AT K e ey R e Y N A A PN
T A T e A I A M T A A L S A N A R

ZSATX OR ZDATX: Takes the transpose of a matrix and
multiplies it by a vector to generate another vector.

ZSSOTA OR ZDSOTA: Sorts columns of a matrix accord-
ing to the indices in an integer vector,

ZSAMD OR ZDAMD: Post-multiplies a matrix by a diagonal
matrix. The diagonal matrix is in vector form. The
original matrix may be saved.

ZSDMA OR ZDDMA: Pre-multiplies a matrix by a diagonal
matrix. The diagonal matrix is in vector form. The
original matrix may be saved.

ZSDMX OR ZDDMX: Multiplies a diagonal matrix by a
vector. The diagonal matrix is in vector form. The
original vector may be saved.

ZSCOPY OR ZDCOPY: Copies a matrix into another matrix.

ZSCUTL OR ZDCUTL: Copies an upper triangular matrix
to the lower part.

ZSCLTU OR ZDSCLTU: Copies a lower triangular matrix
to the upper part.

ZSCOMP OR ZDCOMP: Compacts a two-dimensional array.
The subroutine can be used to change the dimension of
a two-dimensional array. For example, an NAx NC
matrix containing useful data in the M x N upper left
part (M <NA and N <NC) can be compacted by the
subroutine. The new dimension of the matrix will be
M x N. The space (NA*NC — M *N) is released.

ZSEXPN OR ZDEXPN: Expands the dimension of a two-
dimensional array. The purpose of this subroutine is
opposite to that of the compression subroutine ZSCOMP.
An Mx N matrix is expanded to NAxNC where NA>M
and NC>N.

ZSLTMV OR ZDLTMV: Post-multiplies a lower triangular
matrix, stored in one-dimensional form, by a vector.

ZSTLMV OR ZDTLMV: Post-multiplies the transpose of a
lower triangular matrix, stored in one-dimensional form,
by a vector.

ZSUTMV OR ZDUTMYV: Post-multiplies an upper triangu-
lar matrix, stored in one-dimensional form, by a vector.

ZSTUMV OR ZDTUMV: Post-multiplies the transpose of
an upper triangular matrix, stored in one.dimensional
form, by a vector.

ZSLDLP OR ZDLPLP: Updates the Cholesky factorisation
of a matrix for the addition case by a method given by
ref. 2.

ZSLDLM OR ZDLDLM: Updates the Cholesky factorisation
of a matrix for the subtraction case by a method given in
ref. 2.

ZSLTMD OR ZDLTMD: Post-multiplies a lower triangular
matrix, stored in one-dimensional form, by a diagonal
matrix stored in vector form. It returns a lower triangular
matrix in one-dimensional form,

ZSUTMD OR ZDUTMD: Post-multiplies an upper triangu-
lar matrix, stored in one-dimensional form, by a diagonal
matrix in vector form. It returns an upper triangular
matrix in the one-dimensional form.

ZSLTXR OR ZDLTXR: Solves a linear system of equations
whose coefficient matrix is lower triangular matrix
stored in the one-dimensional form (Lx=b). The
right-hand side vector is destroyed.

ZSTLXR OR ZDTLXR: Solve the linear system of equa-
tions whose coefficient matrix is the transpose of the
lower triangular matrix stored in one-dimensional form
(LTx = b). The right-hand side vector is destroyed.

ZSUTXR OR ZDUTXR: Solves the linear system of equa-
tions whose coefficient matrix is upper triangular matrix
stored in one-dimensional form (Ux = b). The right-hand
side vector is destroyed.

L S e P
l..l .r.'-‘ :

Jo

24

A S
"-_ P

e n s B P

>
[

4

s o -
iy et
..';4' LA

J."'

ST

Pl

s

>r

."J @

[A
5
Ll

Iﬁv

[4

FE]

[

R MEa Ala R Vap 529 b Gh S0 &

b’J)

al Ea g Nt

ZSTUXR OR ZDTUXR: Solves the linear system of equa-
tions whose coefficient matrix is the transpose of an
upper triangular matrix stored in one-dimensional form
(UTx = b). The right-hand side vector is destroyed.

ZSBUMX OR ZDBUMX: Post-multiplies on upper
triangular banded matrix by a vector. The banded part
of the matrix is squeezed into a rectangular array. The
diagonal elements are squeezed to the first column.

ZSBLMX OR ZDBLMX: Post-multiplies the transpose of an
upper triangular banded matrix by a vector. The banded
part of the matrix is squeezed into a rectangular array.
The diagonal elements are squeezed to the first column.

ZSBMUX OR ZDBMUX: Post-multiplies a symmetric
banded matrix by a vector. Only the upper part of the
banded matrix needs to be input. The diagonal elements

. are squeezed to the first column.

ZSBNOR OR ZDBNOR: Normalises each column of a
matrix with respect to a positive definite symmetric
banded matrix.

ZSDPGE OR ZDDPGE: Decomposes a general square matrix
into lower and upper triangular matrices,

ZSFSGE OR ZDFSGE: Performs forward substitution to
solve the unit lower triangular system of linear equations.

ZSBSGE OR ZDBSGE: Performs backward substitution to
solve the upper triangular system of linear equations.

ZSSLGE OR ZDSLGE: Solves a general system of linear
equations.

ZSDPGV OR ZDDPGV: Decomposes a general matrix with
a global pivot strategy.

ZSDFSGV OR ZDFSGV: Performs forward substitution to
solve the unit lower triangular system of linear equations
with a global pivot strategy.

ZSBSGV OR ZDBSGV: Performs backward substitution to
solve the upper triangular system of linear equations
with a global pivot strategy.

ZSSLGV OR ZDSLGV: Solves a linear system of equations
with a global pivot strategy.

ZSGINV OR ZDGINV: Inverts a matrix and computes its
determinant.

2SSYDU OR ZDSYDU: Decomposes a symmetric full
matrix into an upper triangular matrix leaving the lower
triangular portion undisturbed.

ZSSYFS OR ZDSYFS: Performs forward substitution to
solve the unit lower triangular system of linear equations
obtained from the subroutine ZSSYDU or ZDSYDU.

ZSSYBS OR ZDSYBS: Performs backward substitution to
solve the upper triangular system of linear equations
obtained from the subroutine ZSSYDU or ZDSYDU.

ZSSYDD OR ZDSYDD: Decomposes a symmetric full
matrix into UTDU.

ZSSYSL OR ZDSYSL: Solves a symmetric linear system
of equations by decomposition.

ZSSYIN OR ZDSYIN: Inverts a symmetric full matrix.

ZSCBDU OR ZDCBDU: Decomposes a symmetric banded
matrix stored in squeezed rectangular form.

ZSCBFS OR ZDCBFS: Performs forward substitution to
solve the decomposed symmetric banded system of
equations obtained from the subroutine ZSCBDU or
ZDCBDU.

ZSCBBS OR ZDCBBS: Performs backward substitution to
solve the decomposed symmetric banded system of
tcuations obtained from the subroutine ZSCBDU or

ZDCBDU.

ZSCBDD OR ZDCBDD: Decomposes a symmetric banded
squeezed matrix into upper triangular and diagonal
matrices.

ZSCBSL OR ZDCBSL: S. . a symmetric banded system
of linear equations.

ZSVBDU OR ZDVBDU: Decomposes a symmetric variable
band width matrix.

ZSVBFS OR ZDVBFS: Performs forward substitution to
solve the decomposed symmetric variahle band width
system of linear equations obtained from the subroutine
ZSVBDU or ZDVBDU.

ZSVBBS OR ZDVBBS: Performs backward substitution to
solve the decomposed symmetric variable band width
system of linear equations obtained from the subroutine
ZSVBDU or ZDVBDU.

ZSVBDD OR ZDVBDD: Decomposes a symmetric variable
band width matrix into upper triangular and diagonal
matrices.

ZSVBSL OR ZDVBSL: Solves 2 symmetric variable band
width linear system of equations,

ZSJACB OR ZDJACB: Solves a generalised eigenproblem
using the generalised JACOBI jteration method with the
option of selecting output environment.

ZDEIGN: Solves for the smallest eigenvalues and the corre.-
sponding eigenvectors in the generalised eigenproblem
using the subspace iteration method.

ZDEIGR: Solves for the smallest eigenvalues and corre-
sponding eigenvectors in the generalised eigenproblem
using the subspace iteration method.

ZDEIGJ: Solves a generalised eigenproblem using the
generalised JACOBI iteration method without the op-
tion of selecting output environment.

4. IN-CORE DATA MANAGEMENT SYSTEM (IDMS)

A set of FORTRAN subroutines is described to handle the
in-core data management for engineering applications. The
in-~ore data management system (IDMS) performs the chores
of dynamic partitioning of arrays for application programs.
The programmer can easily manage an in-core array. The
data in the array can be INTEGER*2, INTEGER*4,
REAL*4, REAL*8 or CHARACTER®*n, where n is an
arbitrary positive integer. Each ‘Data Set’ (a group of data
of the same data type) is in the form of a matrix. All data
sets are stored in a single memory biock and managed by
IDMS. The memory block is declared by the user as a
named COMMON block. The named COMMON ‘CORE’ is
compulsory.

By using IDMS subroutines the programmer can easily
perform the following in-core data management:

1. Define a data set (reserve the memory for a data set)
Change the dimension of a data set
. Change the format of a data set
. Delete a data set from the memory block
. Duplicate a data set
. Load (or save) the in<ore data from (or to) a file
. Get information about memory block or a specified
data set
8. Get error codes and error messages
9. Store (or retrieve) data to (or from) a data set
10. Perform operations on the data sets
11. Perform full screen editing of the data set
12. Print a data set to an output device.

Errors are detected by [DMS (it is optional) and stored in
memory. This memory is updated soon after each call to
IDMS. The user can get error messages and error codes after
each call or optionally, can have them displayed at the
terminal.

Nownes LN

Adv. Eng. Sofnvare, 1936, Vol 8, No. 4 197

59

OO i AL RS A AT AN ARSI E X R AR

Ly
ey

.
L)
-
.
L]

s,

-

| S

\-‘-
R

3) Y v
Y

Gcneral routines

XINIT: Turns on the IDMS, creates a map for data manage-
ment, and initialises it.

XDEF: Defines a data set for storing data.

XCNAME: Changes the name of a data set.

XCDIM: Changes the dimension of a data set.

XCFMT: Changes the output format of a data set.

XDEL: Deletes a data set from the memory block.

XCOPY: Copies a data set.

XSAVE: Saves the memory block in a file.

XLOAD: Loads the memory block form a file.

Information request routines

XERROR: Returns the current error message,

XERINF: Retums all the information about data set
‘DSNAME".

Function LOCAT: Returns the location (address in the
block) of a data set.

XNAME: Return names of the data sets.

XCORE: Returns status of memory allocation.

Data access routines

XGET: Gets an element from a data set.

XPUT: Puts an element into a data set.

XGETS: Gets a portion (submatrix) of data set from
memory block to anather array,

XPUTS: Puts a portion (submatrix) of data set from an
array to the memory block.

XEDITM: Performs full screen edit of the data set.

XPRNTM: Prints a data set to an output device.

5. DATABASE MANAGEMENT SYSTEM MIDAS

MIDAS is an advanced database management system
capable of organising and managing large amounts of data
for engineering applications. Detailed description of the
system, its design, capabilities and commands are given by
Sreekanta Murthy et al.* Therefore only a summary of its
capabilities is described here.

MIDAS consists of two subsystems MIDAS/N and
MIDAS/R. These subsystems are capable of organising data
of numerical and relational models respectively. MIDAS/N
is specially developed to organise matrix data. This sub-
system can handle multiple databases, small and large
matrices of various type, and small and large memory
environment. Memory management is used in MIDAS/N
to efficiently utilise the available computer memory which
is divided into a number of pages of fixed size. Number of
pages and page size can be varied by changing a few para-
meters. Least recently used page replacement strategy is
adopted in the memory management system,

MIDAS/R is based on medification and extension of the
RIM system,''® which stands for MIDAS — Relational Data
Management System. The traditional relational model is
extended in RIM such that its attributes can be variable
length vectors and matrices. This is done to organise matrix
type data usually encountered in engineering applications.
A user interface has been added to the system so that it
can be used with FORTRAN programs.

Both subsystems of MIDAS provide simple to use data
definition and data manipulation languages for application
programmers. Data definition language consists of sub-
routine CALL statements to define relations and matrices.
Integer, real, double precision and character data types are
allowed. Large matrices such as square, rectangular, upper
triangular, skyline and hyper-matrices can be defined.

198 Adv. Eng. Sofnrware, 1986, Vol. 8, No. 4

IO
Pl ol P P A,

R I S AT
" o R L P, R T S

) .
-y a¥ o

FL a0 e' b CSARAEL AT AL
Dynamic data definition is possible. Data manipulation
language offers capability to store, retrieve, modify and
delete data in the database.

Using MIDAS/R, relations can be stored and retrieved
in row order, and matrices can be stored and retrieved in
submatrix order. Subroutines for conditional search on
various attributes are available. Traditional relational
algebra commands are also available. The subsystem can be
used for interactive manipulation of data and queries.

MIDAS/N is more suitable for storing and manipulating
large matrices that can be created in one order and mani-
pulated in another, Their dimensions can be changed during
run time. Several subroutines are available to manipulate
matrices stored in the database. Matrix decomposmon and
equation solving subroutines are available.

6. GRAPHICS UTILITIES

Graphics utilities are provided for basic graphic operations
such as drawing graphs on a terminal. One or several curves
can be drawn simultaneously, and graph axes and labels can
be provided by using several routines specifically written
for this purpose.

The graphics routines are written for and are specific to
certain terminal types, which include Tektronix (under
4027 mode), HP2648A terminals, and Apollo workstations.

There are three types of routines — first level, second
level and device driver routines. First level routines can be
alled directly by the user to plot curves, axes and labels.
The second level routines are more basic and are called by
the first level routines. The device driver routines are for
specific graphics terminals.

Several co-ordinate systems are used depending on the
level of the routine. Included are user’s co-ordinates, world
co-ordinates (which range from 0-100) and device co-
ordinates (in terms of pixels). Each level of routines scales
the co-ordinates provided by the calling routine to its own
co-ordinate system,

First level routines

First level routines provide complete graph and curve
development capability for the application programmer.

GPLOTV: Draws a curve fory versusx for the data provided.
GPLOTM: Draws multiple curves for y versus x for the data
provided.

Second level routines

Second level routines provide the basic component
routines used by ne first level routines and also some basic
graphics utilities for the application programmer.

GAREA: Defines display boundaries for the device and
draws x and y axes and labels for the axes.

GCVTRT: Converts a real number array of tic marks into a
character array.

GDRAW: Draws a curve according to the input data.

GEND: Ends graphic operations.

GFDGT: Computes the number of digits needed to display
the scale on the axes.

GFIND: Finds the minimum and maximum values in a

vector,

GHTEXT: Displays a character string horizontally starting
from the point (x, y).

GOUTLN: Draws the outline of the entire graphics area.

GRANGE: Separates the differences between the maximum
and minimum values on the axes into intervals for tic
marks.

Py Ty rs v\
o e e a"a"ats".

-

SN

N

5y

.
3
L)

v

oA AR

-

s

,
’

5

'rw!l EAaR ok Ra¥ Pa fo Sal Sat Ra® Bu¥ Be- Sa0 30° Vo' Sav '

GVTEXT: Displays a character string vertically starting
from point (x, y).

GXINDX: Draws the x-axis tic marks and labels them.

GYINDX: Draws the y-axis tic marks and labels them.

Device driver routines
The device driver routines provide the most basic routines
specific to terminal types listed above.

GUERAS: Clears the graphics screen and returns the termi-
nal to the text mode.

GUTEXT: Displays a character at a point.

GUMOVE: Moves the pen to a point.

GUPEN: Draws a line from the current pen position to a
point.

GUSET: Sets parameters for character size, spacing and
angle, and for line type.

GUSTRT: Initialises the graphics terminal.

GUWNDO: Computes scale factors to convert from world
co-ordinates to device co-ordinates.

7. DISCUSSION AND CONCLUSIONS

In this paper, capabilities of a library of subroutines, called
SMART, for scientific program development are described.
The library has routines for interactive program develop-
ment, data entry and editing, in<core data management,
out-of-core data management, vector and matrix operations
for in-core or out-of-core data, linear algebra and graphics.
The library has been used in the development of several
structural anaysis and design optimisation programs for
sducational and research purposes. It has considerably
facilitated in their development and debugging.

Ll LA T

The library has been carefully designed for efficient
numerical operations. For example, most of the matrix
operations, equation solvers and eigenvalue extractors use
lower level kernals for various vector operations. The kernals
are also written in FORTRAN?77. They can be, however,
written in the machine language to enhance efficiency. In
addition, the subroutines are written in such a form that
they can be easily vectorised automatically by compilers.
Thus the library can be installed on vector computers with-
out any additional effort. Current implementation is on
PRIME supermini-computer and Apollo workstations,

Plans also exist for addition of subroutines for various
finite elements and basic finite element operations. It is
concluded that more SMART libraries are needed to support
scientific software development in academic research as
well as commercial environment.

ACKNOWLEDGEMENT

This work is based on a project sponsored by the Air Force
Office of Scientific Research, No. AFOSR 82-0322.

REFERENCES

1 Comfort, D. L. and Erickson, W. J. RIM — A Prototype for a
Relational Information Management System, VASA Conference
Publication 2055. 1978, 183-196

2 Gill, P. E., Murray, W. and Saunders, M. A. Methods for comput-
ing and modifying the LDV factors of a matrix, Math. Comput.
1975, 29 (12), 1051-1077

3 RIM User’s Guide. Boeing Commercial Airplane Company, PO
Box 3707, Seattle, Washington 98124, 1982

4 Sreekanta Murthy, T., Shyy, Y.-K. and Arora,). S. MIDAS:
Manaygement of Information for Design and Analysis of Systems,
Advances in Engineering Software, 1986, 8 (3), 149-158

Adv. Eng. Software, 1986, Vol. 8, No. 4 199

22
AT

ok

s

¥

e ."-,

APPENDIX 6

EVALUATION OF THE MIDAS DBMS IN AN
EQUATION-SOLVING ENVIRONMENT

by
T. SreekantaMurthy, Y-K Shyy, S. Mukhopadhyay and J.S. Arora

Engineering with Computers

2, 1987

62

LAY

E

o i A B

EIXAANS

RS

%% Y {‘- ' ;-l.

o T

3
-

he
%

[2
«

"3

1

EEL 4

. s e .o
RPN
v lale a0
LIS TS

R s R R TN

- Cate st atet st AL St e A i i et o

Enginecning with Computers 2, 11-19 (1987) m)
Evaluation of the MIDAS DBMS in an Equation-Solving Environment

T. Sreekanta Murthy, Y-K. Shyy, S. Mukhopadhyay. and J.S. Arora
Optimal Design Laboratory. College of Engineening. University of lowa. lowa City. [A 52242

Abstract. The paper describes an evaluation of a data base man-
agement system, MIDAS, for the solution of linear equations. A
brief description of the system is given. It is used and evaluated
employing skyline and hypermatrix approaches for solving large
matrix equations. Performance of the two subs:stems of Mi-
DAS—MIDAS/N and MIDAS/R—is measured and compared in
terms of several system parameters. Programming for efficient
use of the available memory is noted. Suggestions for application
programming using MIDAS are given. Major conclusions of the
study are that memcry management schemes, data structures,
and data access methods of the DBMS play very important roles
for its efficient use in dynamic environment. Such methods must
be developed and implemented for large-scale engineering appli-
cations.

1 Introduction

In the last few years, data base management sys-
tems (DBMS) have started to play an important role
in the computer-aided design and analysis of engi-
neering systems. Several data base management
systems (DBMS) are available for engineering ap-
plications. Systems such as MIDAS {1}, FILES {2},
GIFTS [3], RIM [4], SDMS 5], SPAR (6], PHIDAS
[7]1, and TORNADO [8] have been developed with a
varying degree of sophistication and have a variety
of capabilities. A survey [9] of existing data base
management systems was made to find out their
capabilities and usefulness for design and analysis
applications. It was found that use of many of the
systems is limited to those applications for which
they were developed. Thus, there was a need to
have a good DBMS that could deal with data organi-
zation of design and analysis applications. A data
base management system called MIDAS [1] was de-
signed and implemented based on data base man-

Reprint requests: 1.S. Arora, Optimal Design Laboratory,
College of Engineering, University of [owa, lowa City, 1A §2242.

agement concepts [10] developed for engineering
applications.

It is important to evaluate the capabilities and
usefulness of a data base management system be-
fore implementing it in an engineering application.
Such a system should meet several requirements [1)
so that it can be used effectively. Speed of data
storage and retrieval is one of the most important
requirements given in Ref. 1. Short access time will
considerably reduce total execution time in an itera-
tive design process. Therefore, a data base manage-
ment system should be evaluated to see if it satisfies
the requirements of an engineering application.

In this paper, an evaluation of the data base man-
agement system MIDAS is given. The evaluation
is made by using it in several programs for an out-
of-core solution of linear equations. Such systems
of equations are encountered in many engineering
applications, such as static and dynamic analysis of
structures and mechanical systems, heat transfer
applications, fluid mechanics, eigenvalue analysis,
and others. MIDAS has two subsystems that use
different memory management, data access meth-
ods, and data models. The performance of the sub-
systems is measured by noting several parameters
with a view toward evaluating memory manage-
ment, data models, and access methods. The paper
gives details of the performance and describes
methods of developing applications by using MI-
DAS. It suggests efficient ways of integrating a
DBMS in engineering applications.

2 Description of MIDAS

A detailed description of MIDAS is given in Refs.
1, 11, and 12. MIDAS stands for Management of
Information for Design and Analysis of Systems. It
consists of two subsystems MIDAS/N and

3 " .
ete'e

»
14 ‘I.J

iy

ALLLL O,

by
-

.....
I
Hh b

Y

LR
.

i L

N

¢
l'.",n' .1".1"1

)."ir

« ¥
&

.7.‘)":

-
a

O

‘a'il

PR

2 ..,.1\1
L)

[)
F

Ty v,
)'
’

r»——.-
"
e

[o 3
2

-

k’:’i‘:’.’i’ PR D A AT I I AT

FYXE YWY Y $ 0 80 0 0 0 6V a0 % A% 0% % “atha‘abaal

MIDAS/R. These subsystems are capable of orga-
nizing data by using numerical and relational
models [10], respectively. MIDAS/N is specially
developed to organize matrix data. This subsystem
can handle multiple data bases. small and large ma-
trices of various type, and small and large memory
environments. Memory management is used in
MIDAS/N to utilize efficiently the available com-
puter memory, which is divided into a number of
pages of fixed size. The number of pages and page
size can be varied by changing a few parameters.
The least recently used page replacement strategy is
adopted in the memory management system.

MIDAS/R is based on modification and exten-
sion of the RIM*" system. This modification was
made to see if the system can be extended to satisfy
the requirements [1] of engineering applications. It
was found difficult to extend RIM to have multiple
data bases. organize large matrices, and be efficient
in handling large data sets and large memory. It
essentially meant rewriting the memory manage-
ment, data definition, and data manipulation parts.
Thus, it was decided to use RIM as is but to add
new data definition, data manipulation, and mem-
ory management subroutines. This subsystem is
called MIDAS/R, which stands for MIDAS-Rela-
tional Data Management System. The traditional re-
lational model is extended in RIM so that its attri-
butes can be variable length vectors and matrices.
This is done to organize matrix-type data that is
usually encountered in engineering applications.

Both subsystems of MIDAS provide simple-to-
use data definition and data manipulation languages
for application programmers and interactive users.
Data definition language consists of subroutine
CALL statements to define relations and matrices.
Integer, real, double precision, and character data
types are allowed. Large matrices such as square,
rectangular, upper triangular, skyline, and hyper-
matnces can be defined. A dynamic data definition
[1] is possible. Data manipulation language offers
capability to store, retrieve, modify, and delete data
in a data base. Both relation and matrix data can be
manipulated. Using MIDAS/R, relations can be
stored and retrieved in row order and matrices can
be stored and retrieved in submatrix crder. Using
MIDAS/N, matrices can be stored and retrieved in
row, column, or submatrix order.

3 Evaluation of MIDAS

The solution of a large number of simultaneous
equations is one of the most common application

PR Sl St S
- T

A iy

64

Murthy et al.

programs that can use a DBMS. The data base man-
agement system MIDAS is evaluated by using it in
an out-of-core equation-solving application. The
two subsystems—MIDAS/N and MIDAS/R—are
separately used for solving equations. This enables
us first to evaluate performance of the two subsys-
tems separately and later to compare them with
each other. This way the memory management
schemes, data models, and access methods of the
two subsystems can be evaluated. The approaches
employed for solving equations and performance of
the subsystems are given in the following subsec-
tions.

3.1 Skyline and Hypermatrix Approaches for
Solving Equations

Sparsity in assembled matrix equations is used to
advantage in reducing storage space and computa-
tion time. Of the three common approaches—
banded, skyline [14], and hypermatrix [15] storage
schemes, the later two are known to be more effec-
tive in conserving computer resources. Therefore,
these approaches are selected for storing large ma-
trices. Both approaches use a Gaussian elimination
scheme to decompose the coefficient matnix. For-
ward and backward substitutions are carried out to
obtain the solution of the equations. Thus, theoreti-
cally, the number of arithmetic operations is the
same.

Computer programs for solving symmetric
equations using skyline and hypermatrix ap-
proaches were developed. The skyline approach
uses the left-hand side (LHS) coefficient matrix in
skyline form. Each column of the LHS coefficient
matrix is of variable length, storing only nonzero
values. Each column, however, includes zero val-
ues within it. The right-hand side (RHS) and solu-
tion for unknowns are stored in a column vector. A
numerical data model [10] consisting of two levels
of matrix data organization is used with MIDAS/N.
The first level contains details about skyline height
and addresses of diagonal elements; the second
level contains actual matrix data. A relational
model is used to represent skyline data with
MIDAS/R. A variable length vector is used as an
attribute of a relation. Two separate programs were
developed for solving equations, one using the
MIDAS/N, and the other using the MIDAS/R sub-
system.

The computer program for solving equations
employing the hypermatrix approach uses the LHS
coefficient matrix in partitioned form. A large ma-
trix is divided into a number of submatrices. Only

" .
»

FRLE.

£5s
¥ x

ole

.

]

DA

. ,‘. f‘(‘":’l L4

Ty
()

PRTSTATY SRS
) - ’. L)

«

B

'
LN
/"

.V

Evaluation of the MIDAS DBMS

Table 1. Performance of MIDAS/N

Page Number of Half-bandwidth: 10

Half-bandwidth: 30

size pages
CPU NREAD NWRITE NCALL

CPU NREAD NWRITE NCALL

256 20 33 340 127 16262
(248)* (22698) (1001) (11487)
1024 20 3 70 30 16262
2 (6013) 1339 (11487)

12§ 1394 480 38688
(486) (39545) (1326) (22939y
1S 337 120 38688
41 (10370 (435) (22939)

+ Data without parentheses is for skyline approach.
* Data in parentheses is for hypermatrix approach.
Number of equations: 1000.

the upper symmetric portion of the LHS matrix is
stored. Similarly, the RHS matrix is also divided
into a number of submatrices. The solution vectors
are also stored in submatrix form. Null submatrices
in the LHS and RHS are not stored or manipulated.
Partially full submatrices, however, store zero coef-
ficients within them. Again, a numerical data model
is used for matrix data organization with MIDAS/N.
The first level contains nonnull submatrix num-
bers and their sizes; the second level contains ac-
tual matrix data. The relational data model is used
with MIDAS/R. Two more programs were devel-
oped; one using MIDAS/N, and the other using MI-
DAS/R.

Thus, in total, four computer programs are de-
veloped for solving equations:

1. SKYSOL solves the equations using MI-

DAS/R by the skyline approach.
2. SKYSOLB [12] solves the equations using
MIDAS/N by the skyline approach.

3. HYPSOL uses MIDAS/R to solve equations

by the hypermatrix approach.

4. HYPMDN uses MIDAS/N to solve equa-

tions by the hypermatrix approach.

Two sets of large equations were solved using
the four computer programs SKYSOL, SKYSOLB,
HYPSOL, and HYPMDN. The first set of equa-
tions has 1000 unknowns and a half-bandwidth of
10. The second set of equations has 1000 unknowns
and a half-bandwidth of 30. For the hypermatrix
approach, a submatrix size of 10 is used. These
equations were solved with different memory man-
agement schemes. Performance of the programs
was measured by noting the central processing unit
time (CPU), the number of reads made on physical
data base (NREAD), the number of writes made on
physical data base (NWRITE), and the number of
calls made to the data base management subrou-
tines (NCALL). Detailed performance of the pro-
grams is discussed in the following sections. All cal-

-t L S T R A L L X LA S ".-' .'.."..:, S
b‘})&!ﬂr*:&!'ufnf I I A PCIC AN | P

culations were performed on a PRIME 750
computer.

The primary focus of the present investigation
is on the evaluation of subsystems of MIDAS and
not on the algorithms for the solution of equations.
However, comparisons of the two algorithms on the
selected set of systems of equations will be made.

3.2 Performance of MIDAS/N

The two computer programs SKYSOLB {12} and
HYPMDN using MIDAS/N were used to solve the
two sets of equations. The results of CPU,
NREAD, NWRITE, and NCALL are given in Ta-
ble 1. The equations are solved for two cases of
page size and the number of pages as follows: (1) 20
pages of 256 short integer words and (2) 20 pages of
1024 short integer words.

The following points are observed from the ta-
ble. As page size is increased from 256 words to
1024 words, the CPU time for solving equations us-
ing skyline and hypermatrix approaches reduces,
but not to a considerable extent. The number of
reads and writes for the larger page size is much less
than that for the small page size. The number of
writes is smaller than the number of reads, due to
the replacement of unmodified pages by new data
causing more reads than writes. Note that the num-
ber of calls to MIDAS/N routines remains the same
for both page sizes, as expected. The number of
calls to MIDAS/N increased as bandwidth in-
creased.

The skyline approach for solving equations of
1000 unknowns with a half-bandwidth of 10 and a
page size of 256 words took 33 s, whereas the hy-
permatrix approach with the same memory manage-
ment scheme took 248 s. The hypermatrix approach
is about 8 times slower than the skyline approach.
In solving the second set of equations with a band-

PR
L
A -"
o

-
L]
.
a-'_:'} i

14

. ,joj

O
&
-'l"l_"_’L

A
v

s
PPN RS A

YL

2

.:..-.1

Ta N,
X

'1'1

[
ay -

e e et e e a AT T N m Tt et
PO AN S AN MO AN

}._.T‘_A_..l__-}.l\. =

Table 2. Performance of MIDAS/R

66

Murthy et al.

Page Number of Half-bandwidth: 10

Half-bandwidth: 30

size pages

CPU NREAD NWRITE NCALL

CPU NREAD NWRITE NCALL

256 20 229 16103 218 12984
(2721 (92312) (564) (12082)
1024 20 19 13970 74 12984
(1623) (50678) (619 (12082)
20480 2 | 303 65 12984
(928) (26644) (495) (12082)

3139 65602 530 32594
(8208) (275060) (1157) (24117)
1576 31417 191 32594
(3718) (115788) 1327 Q24U
1298 27481 145 32594
(1312) (27497) (2598) (24117)

* Data without parentheses is for skyline approach.
* Data in parentheses is for hypermatrix approach.
Number of equations: 1000.

width of 30, the skyline approach used 125 s,
whereas the hypermatrix approach used 486. In this
case, the hypermatrix approach is about 4 times
slower than the skyline approach. We see from the
result that as the bandwidth increases, the differ-
ence in CPU time between skyline and hyperma-
trix approaches reduces, because the percentage of
nonzero elements within the nonnull submatrices
reduces considerably as the bandwidth increases.
Arithmetic operations on nonzero elements reduces
with the lower percentage of nonzero elements,
thus reducing CPU time. It is believed that as the
bandwidth increases and large submatrix size is
used, the large difference in CPU times between the
two approaches will reduce substantially. Note,
however, from Table 1 that the data organization
with hypermatrix approach is such that NREAD
and NWRITE are quite large as compared to those
with the skyline approach. It appears the hyperma-
trix approach will be less efficient as compared to
the skyiine approach. Definite conclusions, how-
ever, cannot be given because relative efficiency is
a function of the programming habits and data orga-
nizations.

3.3 Performance of MIDAS/R

The two computer programs SKYSOL and HYP-
SOL using MIDAS/R were used to solve the two
sets of equations. A preliminary investigation
showed RIM’s memory management to be ineffi-
cient. This fact is also discussed in more detail
in Section 3.6. Therefore, in the results reported
here, the new memory management routines of
MIDAS/R are employed. These routines reside a
layer above RIM's memory management system
and utilize its lower-level routines for physical read

-",:-F_:l‘,'." A

R A LR

and write operations. The new memory manage-
ment system has its own buffer whose size. number
of pages, and page size can be changed. The results
of CPU, NREAD, NWRITE, and NCALL are
given in Table 2. The table shows results for three
different cases of page size and number of pages as
follows: (1) 20 pages of 256 short integer words, (2)
20 pages of 1024 short integer words, and (3) 2 pages
of 20480 short integer words.

The following points are observed from the ta-
ble. As the page size is increased CPU time for
solving equations using skyline and hypermatrix ap-
proaches reduces. The number of reads (NREAD)
for large page size is less than that for the small page
size. NWRITE also has a similar trend except for
the case of hypermatrix approach with a page size
of 1024 words, where it increases when page size is
increased. The number of writes is much smaller
than the number of reads. This may be due to the
hashing scheme used in the MIDAS/R address-
ing and searching routines. The MIDAS/R program
makes a large number of reads to search and locate
the required data. Further, note that the number of
calls to MIDAS/R routines remains the same for all
page sizes, as expected. The number of calls to MI-
DAS/R increases as bandwidth is increased.

The skyline approach for solving the first set of
equations with a page size of 256 words took 229 s,
whereas the hypermatrix approach for solving the
same equations with the same memory management
scheme took 2721 s. The hypermatrix approach is
about 10 times slower than the skyline approach. In
solving the second set of equations with a band-
width of 30, the skyline approach used 3139 CPU s,
whereas the hypermatrix approach used 8208 CPU
s. In this case, the hypermatrix approach is about 3
times slower than the skyline approach. Thus, we
see from the results that as bandwidth is increased,

AR TR

—-— {‘.' ..A

AT

=

A

Evaluation of the MIDAS DBMS

Table 3. Comparison of MIDAS/N and MIDAS/R using skyline approach

Page Number of Half-bandwidth: 10 Half-bandwidth: 30
size pages Skyline height: 10 Skyline height: 30
CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL
256 20 33 340 127 16262 125 1394 480 38688
(229)® (16103) (218) (12984) (3139) (65602) (530) (32594)
1024 20 3 70 30 16262 LS 337 120 38688
(370 (74) (12984) (1576) (31417) 9t (32594)

* Data without parentheses is for MIDAS/N.
® Data in parentheses is MIDAS/R.
Number of equations: 1000.

the difference in CPU time between skyline and hy-
permatrix approaches again reduces. The remarks
given at the end of Section 3.3 regarding relative
efficiency of the two approaches also apply to the
preceding data.

3.4 Comparison of MIDASI/N and MIDAS/R
Using Skyline Approach

The efficiency of MIDAS/N and MIDAS/R is com-
pared in solving equations using the skyline ap-
proach. The two computer programs SKYSOL and
SKYSOLB were employed to solve the two sets of
equations. The comparison of results is given in Ta-
ble 3. Equations are solved for two cases of page
size and the number of pages as follows: (1) 20
pages of 256 words and (2) 20 pages of 1024 words.

The following points are observed from the ta-
ble. MIDAS/N used 33 s of CPU time for solving
1000 equations with a half-bandwidth of 10 and a
page size of 256 words, whereas MIDAS/R took 229
s for solving the same equations. Thus, we see that
MIDAS/R is about 8 times slower in this case. For a
page size of 1024 words, MIDAS/R is about 4 times
slower than MIDAS/N. The number of writes in
MIDAS/R is about 2 times that of MIDAS/N, and
the number of reads in MIDAS/R is also very high
as compared to MIDAS/N. We could attribute this
high value of reads to the nature of addressing and
searching employed in MIDAS/R. MIDAS/N uses
an indexing (direct addressing) scheme to locate the
data, whereas MIDAS/R uses a hashing scheme,
which uses a large number of reads and searches to
locate the required data. The number of calls to
MIDAS/N, on the other hand, was higher than in
MIDAS/R because MIDAS/N uses addresses of di-
agonal elements stored in a single row vector to
locate the columns of the skyline matrix. MIDAS/N

P R

is required to locate this address before accessing
the skyline vector. MIDAS/R does not require such
addresses, since skyline vectors are stored in vari-
able length rows, thereby using a fewer number of
calls to MIDAS/R. In the case of the second set of
equations with a half-bandwidth of 30, similar
trends of CPU, NREAD, NWRITE, and NCALL
are observed.

Therefore, from the preceding results, we see
that memory management, data model. and data ac-
cess method in MIDAS/R are inefficient as com-
pared to MIDAS/N.

3.5 Comparison of MIDAS/N and MIDAS/R
Using Hypermatrix Approach

The efficiency of MIDAS/N and MIDAS/R is com-
pared in solving equations using the hypermatrix
approach. The two computer programs HYPSOL
and HYPMDN were employed to solve the two sets
of equations. The comparison of results is given in
Table 4. Equations are solved for different cases of
page size and number of pages.

The following points are observed from the ta-
ble. MIDAS/N uses 248 s of CPU time to solve 1000
equations with a half-bandwidth of 10 and page size
of 256 words, whereas MIDAS/R takes 2721 s of
CPU time to solve the same set of equations. Thus,
MIDAS/R is about 10 times slower than MIDAS/N
in this case. For a page size of 1024 words,
MIDAS/R is about 8 times slower than MIDAS/N.
The number of reads in MIDAS/R is about 4 times
more than in MIDAS/N for a page size of 256
words. On the other hand, the number of writes in
MIDAS/R is about 2 times less than in MIDAS/N
for the same size. For a page size of 1024 words, the
number of reads in MIDAS/R is about 8 times those
of MIDAS/N, whereas the number of writes in

"y \.'~f‘f\-.\f\--..-"\f.‘l.~. ‘f

i .
Ay

o

o o

et

5‘.'

e

AY

»

L
-,

S
Y 83.
KAV RN

'/l"’_"
LR

e

T

f

erxs
LT

A%

P

'y

-

oa.

oL

Xy
.
S,

=

1

Z

22

s e

7,

l"

Yy rm
PLS
’\%‘x

68

Murthy et al.

Table 4. Comparison of MIDAS/N and MIDAS/R using hypermatrix approach

Page Number of Half-bandwidth: 10

Half-bandwidth: 30

size pages
CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL
256 20 248 22698 1001 11487 486 39545 1326 22939
(2721 (92312) (564) (12082) (8208) (275060) (1157) (24117)
1024 20 211 6013 339 11487 411 10370 435 22939
(1623} (50678) (619) (12082) (3718) (115788) (132D) 24117

* Data without parentheses is for MIDAS/N.
® Data in parentheses is MIDAS/R.
Number of equations: 1000; Submatrix size: 10*10.

Table S. Performance of memory management (MM) of
MIDAS/R

Total Memory of CPU With additional MM CPU
RIMs built-in MM interface

Page size No. of pages

1 9216 1597 256 20 229
1024 20 120
2048 20 82
2 20480 1543 256 20 228
1024 20 116
2048 20 il
3 81920 1514 256 20 222
1024 20 112
2048 20 75
4 163840 1608 256 20 218
1024 20 16
2048 20 81

Number of equations: 1000; Half-bandwidth: 10.

MIDAS/R is about 2 times those in MIDAS/N. The
number of calls in MIDAS/R are slightly higher
than in MIDAS/N. This is because MIDAS/R uses
two call statements—RDSGET and RDSMOD—to
modify data, whereas MIDAS/N uses only one call
statement—RDSPUT—to modify data. Similar
trends of CPU, NREAD, NWRITE, and NCALL
are observed for the second set of equations.

Therefore, from these resuits we can again see
that MIDAS/R is inefficient, as compared in MI-
DAS/N.

3.6 Performance of Memory Management of
MIDAS/R

As mentioned earlier, the MIDAS/R program is
based on modifications and extensions of the RIM
program [4]. A new memory management interface

was added to provide improvements in performance
of the RIM program. Here a comparison of the per-
formance of RIM's built-in memory management
system and the performance of MIDAS/R with the
additional memory management is made. The CPU
times to solve 1000 equations with a SYKSOL pro-
gram are used to compare the performance. Table S
shows the CPU time for various sizes of RIMs built-
in memory management schemes and additional
memory management schemes. Observe from the
table that the CPU times does not vary considerably
by increasing the total memory of the built-in mem-
ory management scheme of RIM. This indicates
that the RIM program is not capable of utilizing the
large memory of the computer effectively. By intro-
ducing the additional memory management scheme
in MIDAS/R, we see that CPU time reduces consid-
erably. As page size increases from 256 to 2048
words, CPU time reduces from 228 to 79 s for Case
2 of 20480 words of memory. Similar trends are
observed for other sizes of memory management
buffer. Therefore, we see that memory management
plays a very important role in the dynamic environ-
ment of engineering applications. Also as observed
in Table 5, memory management of the RIM pro-
gram can be substantially improved.

4 Programming for Efficient Use of Available
Memory

The computer programs for solving equations de-
scribed in Section 3 use only a minimum of work-
space, which is just sufficient to hold the needed
columns of the skyline matrix or the submatrices in
the hypermatrix approach. In such a case, the effi-
cient use of available memory depends completely
on the memory management of the DBMS. How-
ever, every call to DBMS is associated with certain

- NS R .
D REELE R '

AT

'; .
"2

A

Evaluation of the MIDAS DBMS

Table 6. Performance of MIDAS/N with additional workspace using skyline approach

Workspace REAL*8 Page size: 256

Page size: 1024

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

16270

25 35.5 340 127
25 (330 3400 (12D (16262)
100 17.6 340 127 5203
200 7.2 339 127 843
800 5.8 340 127 167
1000 5.7 340 128 134
4000 5.4 364 136 34
10000 5.3 342 130 12

* With SKYSOLB using the minimum workspace of 25 REAL*R words.

16270

333 0 30

(30.7y (70 (30 (16262)
Is.1 70 30 S203
63 70 30 843
48 10 30 167
4.7 70 30 134
45 70 kY| 34
43 6l 33 12

Number of equations: 1000: Half-bandwidth: 10; Skyline height: 10; Number of pages: 20.

overhead which increases as the number of calls to
DBMS increases, leading to increased execution
time. Therefore, alternative schemes are necessary
to improve the efficiency of application programs
that use a DBMS.

One possible way to make efficient use of avail-
able memory is by providing a sufficiently large
workspace in the application program itself. The
application programs should be developed with ad-
ditional logic to use the workspace as much as pos-
sible before doing any transaction on the data base
using the DBMS. This way, it is possible to reduce
the number of calls to the DBMS, which in turn
reduces the 1/0 and CPU times.

Using the approach described previously, an-
other equation solver called SKYSOLA {12} was
developed employing MIDAS/N. Available work-
space, which is larger than the minimum required,
is assigned to various subroutines of SKYSOLA.
Additional program logic is incorporated to make
use of the workspace in the best possible manner.
The program is used for solving equations of 1000
unknowns and a half-bandwidth of 10. The perfor-
mance of the system is measured for several sizes of
workspace. The results are given in Table 6. Note
that the data manipulation language of MIDAS/R is
such that a program similar to SKYSOLA cannot
be developed with it. MIDAS/R must read one
record of a relation at a time, so there is no advan-
tage in providing extra workspace in the application
program.

The following points are observed from the ta-
ble. For a minimum work space of 25, the program
SKYSOLA uses more CPU than SKYSOLB for a
page size of 256 words. This is because additional
logic in SKYSOLA uses some CPU time. As the

e S P At e
S O AL I A O

workspace is increased from 25 to 10000 words,
CPU reduces from 35.5 s to 5.3 5. Also. the number
of calls to MIDAS/N reduces from 16270 to 12. This
reduction in CPU time and number of calls to
MIDAS/N is quite significant. Note that the in-
crease in the workspace beyond 800 words does not
reduce the CPU time significantly. It remains al-
most constant at around 5 s. Similar results are ob-
tained for a page size of 1024 words. Note that the
number of reads and writes for a page of 1024 words
is much less than those for a page size of 256 words.
Also CPU time is less for a page size of 1024 words.
From these observations, we can conclude that by
using workspace efficiently in the application pro-
gram, CPU time can be reduced. However, we also
note that beyond a certain amount of workspace.
there may not be further significant reduction in the
CPU time.

§ Suggestions for Application Programming
Using MIDAS

It is useful for an engineering application program-
mer to be familiar with the internal structure of the
DBMS. In particular, the programmer should be
aware of the memory management scheme used and
understand the effect of changing system parame-
ters. The choice of a page size and the number of
pages can have an effect on the efficiency of an
application. Several points are noted that will per-
mit the use of MIDAS and other such systems effec-
tively:
1. A larger page size is suitable when data is
accessed scequentially. It is not suitable when
data is accessed in a random manner. In the

ACCs

Y h YN
Pl

AR
v

I S

g

.
L3

L

.

1%

yy ¥
L
g
%

(4

-,
s

k3

e 77
35

'vﬁ‘,}
P4

.
N
a2

e

)
-

-7 =

M ZE TS

oo

5

o

e
t’~l.

)

P 0% 0% 0% 07 0a% e’ 020 §10 4a® Jab fa? a? fa¢ got B¢ Bat-g, ¥ oM O

latter case, the entire data from a page may
not be used before replacing it, or before go-
ing 1o the next page. Also. a larger page size
may lead to internal fragmentation of data, if
page management is not properly designed.

2. A large number of pages is beneficial to a
program using several data sets simulta-
neously or when data is retrieved randomly.

3. If the number of pages is too small compared
to the number of data sets currently used,
then page replacement activity may increase
(thrashing).

4. For better efficiency, the page size should be
the same as that of the operating system
(i.e., the unit of transfer). The reason is that
if the page size is smaller than the operating
system'’s page size, then each call to read the
data may cause the operating system to
transfer more data into the memory. A larger
page size should be chosen as a multiple of
the operating system’s page size.

5. Use as much workspace as possible in the
application program to reduce the CPU time.
Also, minimize the number of calls to the
DBMS. A general-purpose DBMS has a cer-
tain amount of overhead that can be avoided
by efficiently utilizing the workspace avail-
able in the application program. The DBMS
is still essential for organizing a large amount
of data in complex applications. The use of
extra workspace in an application program,
however, complicates its logic to manage it.
Also, the application program may become
difficult to maintain.

6 Discussion and Conclusions

The data base management system MIDAS is eval-
uated by organizing the data for and solving sets of
linear equations. Its subsystems, MIDAS/N and
MIDAS/R, are used with skyline and hypermatrix
approaches. The following conclusions are drawn
from the evaluation:

1. MIDAS/N is more efficient than MIDAS/R
in solving large sets of equations. This is pri-
marily due to the data models, data access
methods, and memory management schemes
in the two subsystems. The relational data
model used in MIDAS/R is inappropriate for
representing large matrix data in a runtime
environment.

2. Memory management and data access meth-
ods of the DBMS play an important role in

70

Murthy et al.

cngineering applications. Proper methods
for these steps must be developed and imple-
mented for efficient use of a DBMS in the
dynamic environment.

3. Memory management of MIDAS/N can ef-
fectively use large memory. Further im-
provements are possible by eliminating se-
quential search used at several places.

4. Memory management of MIDAS/R (RIM
[4]) is inefficient for engineering applica-
tions. [t can be substantially improved.

5. Application programs should be carefully
designed to minimize the number of calls to
the DBMS by properly using the available
workspace. This makes the application pro-
gram slightly more complex.

The present study has helped in refining the re-
quirements of a DBMS that has to be used in the
dynamic runtime environment. Many complex engi-
neering applications fall into this category. The re-
fined specifications for the system are given in Ref.
16. Enhanced data definition facility, memory man-
agement scheme, and storage layout are proposed.
A unified data definition facility for matrices and
relations, while retaining their distinct features, is
developed. The memory management scheme is de-
signed to handle large as well as small buffers effi-
ciently. The memory and physical storage is orga-
nized in terms of pages. A page can contain data
from one or more data sets. This scheme essentially
rules out the possibility of internal fragmentation in
large pages. These enhancements will be imple-
mented into MIDAS and evaluated in the future.

Acknowledgment

Research is sponsored by the Air Force Office of Scientific Re-
search, Air Force Systems Command, USAF, under Gramt No.
AFOSR 82-0322. The U.S. government is authorized to repro-
duce and distribute reprints for governmental purposes. notwith-
standing any copyright notation thereon.

References

. Sreekanta Mourthy, T.: Shyy. Y-K.:. Arora,).S. (1986}
MIDAS: Management of information for design and analysis
of systems. J. Adv. Eng. Soft. 8(3), 149-158

2. Lopez, L.A. (1974) FILES: Automated engineering data
management system. J. of Str. Div., Am. Soc. of Civ. Eng.,
Vol. 101, No. ST4. April. pp. 661-676

3. Kamel, H.A S McCabe, MW Spector. W W (1979 GIFTS
S System Manual, University of Arizona, Tucson

4. RIM User's Guide. t1982) Bocing Commiercial Anplane
Company, P.O. Box 3707, Scattle, WA

4,’5 -.‘H L Y

- A
VYY)

"

-

Y,
X

=

PP
% &

%

e

..' ."‘.'.-.."..'
D

(]
w’s

» '] - ..' _.l -
373 oy

[N

LN
o

.{:

wﬂﬂmmm" OV L W U W U T T U T AR R AT S A A
2 8s d'ad al et et i Rty ‘ v K

€4

71

Evaluation of the MIDAS DBMS 9 A

n

~

=
Massena, W.A. (1978) SDMS—A scientific data manage- 12. Shyy. Y-K.. Mukhopadhyay. S.; Arora. J.S. (1985) A Data- °

ment system. NASA Conference Publications 2053

. Giles. G.L.; Haftka, R.T. (1978) SPAR data handling utli-
ties. NASA Technical Memorandum 78701

. Fischer, W.E. (1979) PHIDAS—A database management
system for CAD/CAM Software Comput.-Aided Des. 11(3).
146-150

. Ulfsby, S.. Stiener, S.: Oian, J. (1979) TORNADO: A DBM

base Management System for Engineering Applications.
Technicat Report No. ODL.85.23. Optimal Design Labora-

tory. College of Engineering. University of Jowa, lowa City.
June

. Comfort, D.L.; Erickson. W.J. {1978) RIM—A prototype

for a relational information management system. NASA
Conference Publication 2055, pp. 183-196

’. E ; E .:-2»-2: Py rrtfr"

for CAD/CAM systems. Comput.-Aid. Des. 11, 193-197 14. Bathe, K-J.; Wilson, E.L. (1976) Numerical Methods in Fi-

9. Sreckanta Murthy, T.: Arora, J.S. (1985) A survey of data- nite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall v
base management in engincering. J. Adv. Eng. Soft. 7(3), 15. von Fuches. G.: Roy. J.R.. Schrem. R. (1972) Hyperma- Sl
126-132 trix solution of large sets of symmetric positive-definite lin- :'

10. Sreekanta Murthy, T.; Arora, §.S. (1986) Database manage- ear equations. Comput. Meth. Appl. Mech. Eng. 1, 197- 2 &
ment concepts in computer-aided design optimization. J. 216 Fad] b
Adv. Eng. Soft. 8(2), 88-97 16. Arora. J.5.. Mukhopadhyay, S. (1984) Specification for Mi- oL b

1. Sreekanta Murthy. T.. Shyy, Y-K.: Arora, J.S. (1985) MI- DAS-GR Management of Information for Design and Analy- 3
DAS: Management of information for design and analysis of sis of Systems: Generalized Relational Model. Technical Re- o= e
systems. In: Proceedings of the 26th American Institute of port No. CAD-$5-84.24, Optimal Design Laboratory. vir
Aeronautics and Astronautics—Structures, Structural Dy- College of Engineering, University of lowa, lowa City. De- ;‘.ﬁ
aamics. and Materials Conference, pp. 85-95. Orlando. FL cember

‘)“_ﬂ
(g

.

o
& &

w,
{\

"
%

[2 dm o
P
Aty

L e

4T

'y

»

Vs
EIRIRIP I
PR T S

v
!

r

-
by

)
»
o
s

rs
»

i "
e) l';
ERRAAIY

=

.
-

il
Ny

Id

oy

ket g 8 4

-~

”
i g

»

o AT T A" 4t AT A AT T A A
L"nmi}.a?&}a?r?mﬂ-?\r?ﬁ’chh-rl-chm A

i i i N RS, e e et ol a8 AR

:R“‘ :‘
A A

g Y - Ty g, . ava e
-' . " .L .‘ _, b » ..' N 1% - Pl 3 2 ' » .

APPENDIX 7

USES OF ARTIFICIAL INTELLIGENCE IN
DESIGN OPTIMIZATION

by

J.S. Arora and G. Baenziger

Computer Methods in Applied Mechanics and Engineering
54, 1986

72

3 X T

e,

‘r-

2
-

N A ALILACR,

e T Jn
oy g]]

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 54 (1986) 303-323
NORTH-HOLLAND

USES OF ARTIFICIAL INTELLIGENCE IN DESIGN OPTIMIZATION*

Jasbir S. ARORA and G. BAENZIGER

Optimal Design Laboratory, College of Engineering, The University of lowa, Iowa City, 1A 52242,
US.A.

Received 5 March 1985
Revised manuscript received 15 July 1985

In this paper. basic ideas and concepts of using artificial intelligence in design optimization of
engineering systems are presented. The purpose of the study is to develop an expert (knowledge-based)
system that helps the user in design optimization. Two basic ideas are advocated: (1) the successful
numerical implementation of algorithms needs heuristics; and (2) the optimal design process can be
greatly benefited by the use of heuristics based on knowledge captured during the iterative process.
Various steps in the optimization process, where artificial intelligence ideas can be of tremendous help,
are delineated. Some simple rules are presented to utilize the knowledge base and raw data as it
accumulates in the iterative process. A simple example is used to demonstrate some of the basic ideas.

1. Introduction

Artificial intelligence (Al) is the science of creating intelligent behavior on computers.
Computer programs having built-in intelligence are called expert or knowledge-based systems.
They perform a task normally done by experts or specialists in a field, and in doing so they use
captured, heuristic knowledge. General introduction to the field of artificial intelligence can be
found in articles by Waldrop [1-3]. An excellent introduction to the subject from the
engineering point of view is presented by Dym [4]. In-depth discussion of artificial intelligence
and expert systems can be found in a book by Rich [5] and books edited by Hayes-Roth,
Waterman, and Lenat {6}, and Barr and Feigenbaum [7).

The principles of Al can be applied to almost any field. Expert systems have been
developed [4] in the fields of medicine for diagnosis, finite element analysis as a modeling
consuitant, locomotive repairs, hydrology for estimating input parameters for watershed
simulation, seismic-damage assessment, design of high-rise buildings, VLSI design in electrical
engineering and others. Use of Al is particularly suitable in the field of engineering design, where
rules of thumb (heuristics) have been developed over the years through successful design and
redesign of similar systems.

*This research is sponsored by the Air Force Office of Scientific Research, Grant No. AFOSR 82.0322. The
material of the paper is derived from a presentation made by the authors at the 26th AIAA Structures, Structural
Dynamics and Materials Conference, April 1985.

0045-7825/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

27

of

/1@
ol

.-
SN 5N

Ll 1'
ﬁ."f.f(l

5 vy Py e TSI YT Y
» ~a,bai. et M bia 4Ta 400 8% " jea 12 890 5" 020 B Buld' B2® Rt U , , o JAm" o * aia’ i e~ gha " S g - Xy L (]
oot 1§ o'21a 87 RS 4 ‘ Y ! fat 2e® ! r Yy

&
-
[
-

n
P
- 4
o
R 74 ~
&3 304 J.8. Arora, G. Baencziger, Uses of Al in design optimization by 3
S
The Al concepts can also be used in optimal design of systems. So far, methods of A
optimization and associated programs have been used mostly by the experts in the field. The b
limited use of the methodology by general designers has resulted in failure more often than in A
success. We need to examine why the experts have been able to apply techniques to almost
i any design probiem but the general designers have not. The main reason is that experts can "
observe the behavior of the algorithm, diagnose failures and erratic behavior, and fix them

by adjusting certain parameters. The question then is: can we capture the experts’ knowledge, that
develop appropriate rules and implement them in an expert system? The answer is yes. The
optimal design process is iterative where the same set of calculations is performed repeatedly. ;
Data from each iteration can be saved to provide knowledge about the problem helpful in v
finding an optimal design. We will use the data that the experts use to monitor the progress of

T
it

o ”
é-:_ the algorithm and develop rules required to adjust parameters. Y
Another reason for using Al in optimal design is that no one algorithm can efficiently solve '
ox all classes of problems. We can monitor characteristics of the optimization problem and Y
h‘j‘r develop rules to switch back and forth between algorithms. Even if an algorithm is theoretic- N
b ally guaranteed to solve a class of problems, its numerical implementation needs heuristics 4
ey (due to round-off, truncation, etc.) to achieve convergence. 0
t;! The purpose of the paper is manifold: (1) to elaborate on why Al techniques are nceded in ' !

the design-optimization process; (2) to describe how Al techniques can be used; (3) to discuss
some general concepts about the architecture of the expert system (the objective would be to
- lay out a plan for development of such a system); and finally, (4) to exemplify the ideas
through a primitive expert system and experience with it.

ﬁ 2, The expert system: an overview
g‘:;s The development of more powerful software in engineering has been accompanied by an
L increasing complexity and detail in program control structures. Increasingly, the decision-

making process has been incorporated into programs to help the user operate the software.

It is only with the advent of Al that the study of human intelligence has been approached
with the intent of incorporating aspects of that intelligence in engineering programs. Our goal
is to apply knowledge of optimization towards the improvement of the design process. We
> must not only incorporate that knowledge, but also knowledge about intelligence itself (how

-
52

M

;(;', we solve problems, operate the process, and make decisions).

i Considerable effort is required in the planning stages of development to avoid problems

— later. Consideration is given to the scope of the problem modeled, the type of knowledge

’lf."-: involved, the form in which the knowledge is represented, and the type of inference engine
’ used.

oar Expert systems are designed to deal with a particular application, capturing an expert’s

.‘:-:: knowledge and implementing rules based on it. Since expertise comes in narrow fields, an .

= expert system can be developed only for a particular application. The scope is limited, in the

e present case, to the control of nonlinear optimization algorithms. By limiting the scope, the

0 knowledge base is maintained at a workable size, the decision process is faster, and the form

- of the knowledge is reduced to a few specific representations.
The rules developed and used by an expert can be of two types: (1) based on a well-defined

h,-rnwwx'\“wxhﬂ"\l‘lﬁwwxi!"i‘(‘uv\ avaVa

75

1.8. Arora, G. Baenziger, Uses of Al in design optimization 305

algorithm and easily coded in conventional programs (algorithmic rules); and (2) based on
experience and heuristics but not part of a conventional algorithm (nonalgorithmic rules). It

. turns out that both types of rules can be used in an expert system for general design
optimization.

2.1. Components of knowledge-based systems

An expert system is likely to have the following four components: (1) input/output facility: (2)
knowledge acquisition facility; (3) knowledge base; and (4) inference engine. The input/output
facility can include interactive queries, reports, and graphics. We will see later in an example how
this is accomplished. The knowledge acquisition essentially consists of identifying the data that
need to be collected and converted to a usable form. The process of knowledge acquisition may be
broken down into phases [4]: (1) identification; (2) conceptualization; (3) formalization; (4)
implementation; and (5) testing.

The process of developing an expert system is, to a large extent, the development of an
applied knowledge base in a form which may be used efficiently by an inference engine. The
knowledge base contains the knowledge of an expert about control of optimization algorithms.
Our application, a numerically intensive design process, deals with aspects of optimization
such as numerical precision, rates of convergence, recognition of convergence, active sets,
feasible and infeasible designs, and constraint violations. The numerical results of an algorithm
include new design points, function and gradient values, directions, and step sizes from
‘ successive iterations.

Two types of knowledge bases can be used in the design-optimization process: (1) an
existing knowledge base about a class of design problems which is accumulated over a period
of time, e.g., for design of aircraft structures, bridges, roads, etc.; and (2) a generated
knowledge base that is accumulated for a particular design problem during the iterative
process. Primarily, the second type is considered here, although both types of knowledge can
be useful for the expert system.

The inference engine is at the heart of the system and is based upon new techniques
developed in the artificial intelligence field. These techniques are rapidly evolving into a
coherent set of search and deduction strategies.

\ 2.2. Domain of application

! To develop an expert system we must precisely define its domain of application. In this
‘ paper an expert system for the following general nonlinear programming problem is discussed:

A

(P) minimize f(b), bER", Ny
subjectto g(b)=0 i=1,...,n, ‘.
gl(b)soo i="+l,...,m. ..:
AN,
Here b is a design variable vector, f(b) is a cost function, g,(b) are constraints, n is the number) ~:":
of equalities, and m is the total number of constraints. Many design-optimization problems AN N
represented in the above model possess the following special characteristics which influence t\-.j
development of an expert system: - \J:;-
(SN Pl
- =R
3
e '-f"v
XA NN
N \?.
LS |'ﬁl‘

NI

o
v w7V
S
Py]
'?‘1

oy \.V

\ M -yt g R mge - - e e T T T ‘-ﬂ-‘.‘."'.&-‘. vl
y y y \ - A N \' . . \ .’ -'- "'- -J * ¢‘ - f, - i {".‘ i‘ (\’. v, A}.‘*_l_.» e A"‘\'.‘ Pl LA i ' B A
[ty AN A, N B TR G TR LT TR L A A o

4,0°0,9° o % O % o8 AaltS, oS STA T - \ v R R A kY
L5
?";'x 76 o
) '
"". 306 1.S. Arora, G. Baenziger, Uses of Al in design optimization -
LI \ r
.’I '
(1) Most functions in the problem P implicitly depend on design variables b. The function E’
evaluations are tedious and time-consuming.)
. (2) Evaluation of gradients of such functions needs special algorithms.
(3) Function and gradient evaluation need special-purpose programs that can be quite '
AL complicated and large. ~3
.2 (4) During each design-optimization cycle, ninety percent of the computational effort is ‘o
spent in function and gradient evaluation. Therefore, the information generated during each {
iteration should be utilized to the maximum extent possible. One of the objectives of the
g expert system will be to accomplish this task. i
» ;’
T
. -
&f; 3. Need for Al in design optimization o
- There are many facets of optimization which might incorporate the strategies of an expert r
P system. Many of the processes already include some measure of the expert’s knowledge, but :.t
K.~ the complexity of the software does not allow the level of application possible. We will discuss -~
. Pt
. some instances in the design-optimization process where artificial intelligence is needed.
3.1. Optimization algirithms
o Many optimization algorithms have been developed [8-14] to solve the problem P. Among)
t)\-'. these, the recursive quadratic programming method of Pshenichny (8,9, 12], the cost function
Cin
bounding method of Arora [13], feasible directions methods [9, 10}, a hybrid method [14],
cy and multiplier methods [9, 11] appear to be quite promising. All methods have certain common
h calculations during each iteration. They all need: (1) cost and constraint function values; (2)
gradients of cost and constraint functions; (3) solution of a subproblem (although each method &
. defines it differently); (4) step-size determination after a direction of design change has been Pe
;»j determined; and (5) some mechanism to enforce global convergence. -
d Of the five methods listed above, the first four fall into the class of primal methods and the :~
multiplier methods fall into the class of transformation methods. Some methods, like the e
F recursive quadratic programming method {8, 9, 12} and the hybrid method [14}, accumulate
A second-order information about the problem. This can lead to superlinear convergence. ;:-.
. Careful implementation of the methods is needed, however. Each method has its own f’
LI peculiarities and needs its own rules. All of the above methods use active-set strategies -
e implying that only a subset of the constraints is used in defining the subproblem at each e
iteration. If the active set is not properly identified, convergence difficulties can occur. Both active)
g',:-_ set identification and convergence problems can be dealt with in the expert system. -
".r _:
3.2. Numerical problems with algorithms :::"
) ::"; If numerical algorithms are not carefully implemented in computer software they may not ' -
b behave the way they are theoretically supposed to. One reason for this is the occurrence of)
. truncation and round-off errors. In addition, many algorithms are proved to converge when .
- certain parameters tend to zero or infinity. The rate at which the parameters go to their o
reat limiting value can influence the numerical behavior of the algorithm. To avoid division by zero the -
\-l
. '..J ." '
y
‘ I
LY
A R
.,)
rr :
b v e R L A G o

L'.:i',

~

J1.S. Arora, G. Baenziger, Uses of Al in design optimization 307

use of range parameters must always be considered. Optimization algorithms are not different from
any other numerical algorithm and encounter the above-mentioned difficulties. Thus, heuristics
can be used to accomplish robust implementation of algorithms.

3.3. Providing expert performance for the designer

The level of knowledge required to successfully use optimization software has limited its use
to the experts themselves. The average designer is unable to grasp the heuristic insight into the
problem solution. Attempts made by the designer to duplicate the efforts of the expert in using
the software can result in frustration. Effective use of the software by nonexperts requires that
many of the details of the solution process be incorporated into the software and removed
from the designer's responsibilities. This requires software capable of setting parameters,
making decisions, and recognizing critical conditions in the process. The software must act as a
consultant to the designer and as a control system for the optimization algorithms.

Several instances where the software system can provide expert performance for the
designer are described in the following:

(1) The system can identify discrepancies in the gradient calculation of cost and constraint
functions and report the findings to the designer so that he can fix them.

(2) It is possible that no feasible design exists for the problem. The system can identify flaws
in the problem formulation by identifying the constraints that cannot be satisfied.

(3) The system can recognize characteristics of the problem and select appropriate al-
gorithms to solve it. For example, it could classify the problems as (i) linear, (ii) unconstrained,
(i) mildly nonlinear, and (iv) highly nonlinear. This can be accomplished by capturing
appropriate knowledge and developing rules to use it. Proper algorithms should be available
to deal with each class of problems.

(4) Another area where the system can provide expert performance is the identification of
design variables that have the most or the least influence on the design process. This can be
done by comparing the sensitivity coefficients of all functions with respect to various design
variables. This information can be of extreme importance to the designer. He can give
‘fixed-design’ status to variables that have the least influence, and optimize the ones that are
most critical. Overall efficiency of the optimal design process can be improved.

3.4. Making the optimization process more efficient

The optimization process requires many finely tuned components to successfully find
solutions to large or complex nonlinear programming problems. Even with the parameters and
controls finely tuned, the process may still take considerable time and computational power to
find a solution.

The expert is often able to see, after some iterations, the ways in which the algorithm has
been inefficient in its search for the solution. The patterns of data available during the search
can be used to help guide the optimization process in a direction which would lead to the
solution much faster than if unaided.

The selection of the starting point may be improved by preliminary analysis of the problem,
use of gradients of functions and experience with the optimization algorithms available. If an
algorithm performs better with a feasible or infeasible starting point, then selection of the

LN ~atpcp cp e - » -
o ,.\I._J\{\J‘..J o et e A

U
L .

TR T L AN

[4
s

I

-

<&
iJ~.}J

PR A
l'....:.)"'ls.".’s; '

s
‘\'w.

",

4
[o

'r," ,s

~
(4

y
s
3]

Y L L .
BRADA

] S

L
-,"u::
FAP AP ar

w

B
%
"

=5

308 J.S. Arora, G. Baenziger, Uses of Al in design optimization

starting point should reflect that fact. Often, the algorithm converges very slowly from a
specific region in the design space. It may be better in those cases tc select a new starting point
than to continue with the computations in progress.

Krowledge of the design space and the functions involved can be incorporated into the
proc.ss and used to aid in the solution search. Some regions of the solution space may be
undefined. Some may be restricted due to bounds on the solution space which are used to limit
the solution to physical reality. These limitations can be recognized by the system and
efticiently dealt with. In addition, algorithms may be more effective in some circumstances
than in others. An algorithm which has been used up to the current design point may no
longer be as effective as another algorithm available in the system.

Another way to improve efficiency of the iterative process is to use the trend information to
adjust parameters. For example, the expert system can observe trends in each design variable
and advise appropriate actions. Some design variables may have changed very little for this
last few iterations. They may be given ‘fixed-design’ status. Others may be increasing or
decreasing continuously. The expert system can extrapolate to predict their optimum values.

Certain strategies incorporated in the nonlinear programming algorithms have a very
sensitive nature. For instance, to help limit the volume of computations, not all constraints
are considered at every iteration. It is a matter of judgement as to when a constraint should be
considered and when it need not be considered. This has been accomplished in the past by
collecting the set of active constraints based on a parameter, ¢, indicating how close the
current design point is to violating a particular constraint. The method achieves the desired
goal but is inefficient due to its inflexibility, as functions are often added and removed in
successive iterations. This fact can be recognized and used to keep particular constraints in the
active set during successive iterations to calculate better search directions.

3.5. Solving difficult problems

Convergence in nonlinear optimization is often difficult to achieve. Round-off errors and
other numerical pitfalls in the iterative processes can occur and limit the success of the search.
These effects may, in many ways, be reduced by the design of the optimization algorithm itself,
but cannot be eliminated entirely. The type of behavior characteristic of these effects can be
monitored and dealt with during the optimization process.

Different algorithms can be used at different stages of the search to expedite convergence.
For instance, an approximate method which requires fewer computations can be used initially
to speed up the search. Later, when convergence becomes a problem with the approximate
method, a more exact method can be used.

4. Architecture of the expert system

Once the type and form of the knowledge have been catalogued, consideration must be
given to the means to manipulate, interpret, and evaluate it. The system must have an
input/output facility capable of dealing with input from both the user and the expert, tracing
the behavior and decisions of the system during testing by the knowledge engineer, and
printing, permanently or temporarily, the intermediate results, key decisions, conclusions, and
output data for the user. The system must have recyclable logical relations which it uses to

78

A R
1°*:

[

.
o e

IO

'8, i)

»

« ¢
Y
ot

L A

1@ .

]
o}
«

‘ "l ',—4

WA

o)
il d s

T O

s Sata 808, t gt Sl Sty ATy
r\nnr..nn- B el O Rk Ba a0 Pk £ S (20 20 Sk Sl Oud Tat d) i Spb S0l SNl N‘LKI_‘.WNT.“\'MQ 1ttt L S St tub Sl Sl S A RSV Sl tate pia vl Wiy Pa XSS N

]
,

79

J.S. Arora, G. Baenziger, Uses of Al in design optimization 309 o

operate inferential strategies. The system should provide consulting support to the user like an

o
expert in the field would. For example, the system may respond to failure of an algorithm by .
listing various options for the user to try, just like the expert would. Al

A basic purpose of the expert system would be to solve the optimization problem P as o~

' efficiently as possible, and in so doing guarantee an answer which can be any of the following: :-.'.','

’ (1) An optimal solution exists and the system guarantees to find it. oo

(2) A solution does not exist and system reports this fact.)
(3) An optimum exists but the system cannot find it due to errors in the input data, problem @
formulation, or other parameters. It simply reports the best solution for a given formulation. X
In the following paragraphs, we will first discuss general facilities and features needed of an
expert system. Then we will define a general architecture for the system. Pad

4.1. Interface with the optimization algorithms

The algorithms involved in engineering related nonlinear optimization are modular in
nature and in operation. Usually they are based on iteration after iteration of the same
computation-intensive search, where a single direction and step size are selected. Certain

completed and control is returned to the main program. Certain information computed during
the iteration is saved as a history of computations and is available to evaluate the condition of
the problem solution. Part of the knowledge base must be devoted to the interpretation of the N
data and to the translation of the patterns into conditions that the control portion of the N
system uses to make decisions. Thus, two aspects of the problem have been identified; pattern
matching of the gross data to control conditions and decision making (selection of control
parameters) based on those conditions. Both aspects require heuristic knowledge, but there
are enough differences in the tasks to consider separating not only the processes but also the
heuristic knowledge. This may be an advantage in more ways than expected. The advantages
include: decrease in the size of the knowledge base searched and consequently the decrease in)
the overall time required; an organizational simplification in the knowledge collection phase;
and the possibility that the processing of the gross data can occur as the data are produced, not
waiting for the algorithm computations to be completed.

4.2. Default parameters

The system developed must have default parameters for several reasons. It is possible that,
for a given problem, many detectable conditions may be observed simultaneously or that none
may occur at all. The system initially cannot be aware of the behavior of the solution search
until the functions and gradients have been computed for one or two iterations. The default
algorithm selection should be based on initial information given and any previous experience
with problem solutions of a similar nature. For flexibility the defaults must also allow user >

X input. This would allow a knowledgeable user to experiment with the initial phases of the .

solution search.
n“\-f
4.3. A rule-based system “w
A

What is a rule-based system?

A rule-based system is one that deals with simple logical relationships between data and -
between rules to extend the available knowledge to determine knowledge that is not available.

POt R e T AL R N L P R U AT AP T S A" A AN Y RS fl"!'\'\'\-'.“'h-'..v.“.“l'.ﬂ-:" }ﬂ?l':v:'f:\ﬁ
bﬁ\ﬂﬁb‘ -F?-f:‘n'.h‘:'n\:' -.F.,-.':'-t'?-(‘:-(- -f'} ,':’ ;(‘:"n":'i'_\.'.'.x. PRI R A &i‘;&'&;ﬁkiﬁ.‘ﬁt\.ﬁ&!‘.dha.lujkk A OANA AN AL

information is involved in each iteration. After determining a new design point, the iteration is B

>

.

il EAA _.l“f\f"f"l
A s'&"ﬁi Y

)
P

B

%Y Ny
A .
Pl

/g

$he%

RS,
: ':’1"J")l‘J\

o

-

IR A NV UST O I AR KR R A R,

- g

The logical relations generally deal with the existence or truth of a condition in its domain and
represent the heuristic information provided by the expert.

Why a rule-based system?
B The knowledge of engineering problem solving and engineering problems are appropriately
[Q modeled by the simple logical relationships of the rule-based system. These problems involve
primarily numerical manipulation and not creative development. The rule base in this type of
problem solving is less extensive and better defined than in the creative design of the architect

o or artist and does not tend to be as cumbersome [15]. Specific algorithms, solution techniques,
and parameters may be decided precisely so that specific conditions or behaviors of the

a7 problem solution may be dealt with. The process to determine the specific conditions,
c(;’."} however, is somewhat different. The conditions result from different sources, some of which
’ require processing large quantities of information. Observing the behavior of the problem
requires a pattern-matching search rather than a decision-making search. The difference is

@ subtle but the orientation of the search may be quite different. The logical decision-making

process is more suited to a forward chaining or data driven process, whereas the pattern-

[
& 310 J.S. Arora, G. Baenziger, Uses of Al in design optimization
I matching process, with large volumes of data, is more suited to a goal-oriented backward

ﬂ chaining search. The larger extent of search required in the latter case and the numerical
nature of the data involved cause some problems for the rule-based system and the data

. representation.

e

A Critical issues for the rule-based system

The rules must be flexible enough to deal with quantitative relationships as well as Boolean
m ones. Tests as to whether a specific rule is applicable or true may require that numerical
equalities and inequalities be tested.

The rule-based system must also be able to deal with incomplete information or an

S

unknown evaluation. There may be insufficient information to determine a condition, yet this
™ does not mean the condition does not exist. The continuing iterative process also requires the
ability to negate conditions that were previously affirmed because the conditions of the
] solution search may be transitory.
|
f Other types of systems
| -t Other types of systems are available as inference engines for expert systems. They may
1 {;'- incorporate syntactic, frame, hierarchical, or other organizations and processes. They are
‘ specially suited to only certain applications and disciplines. To the extent that these forms of
l s organization are suitable to the engineering problem solving at hand, they may be in-
1 ,’.;v corporated with minor variations in the rule-oriented system, though at some loss of efficiency.
%:: 4.4. Pattern matching
= Gross data interpretation is a pattern-matching process which must be incorporated into the
‘o optimization control program. For large multivariable nonlinear optimization problems the
'Q{; identification of the behavior and conditions occurring in the problem solution are obscured by
o\ the quantity of interpretable information. This process may be a continuous one that is
iy performed in parallel with the actual optimization algorithm chosen. Certain discontinuities in

."_ -’.{-'r-.{‘;¢ 'f-—"(:;f'l'v)‘";“'.ﬂ'.f -f.'\-"I'J‘.'('.“'J':J':o"‘-f'f e

J.S. Arora, G. Baenziger, Uses of Al in design optimization 311

the algorithms used, in the search behavior observed, or in the solution space itself make the
pattern-matching task more difficult and perhaps place the greatest limitation on the form of
the system.

4.5. Dealing with incorrect and probabilistic information

The success of the solution search is occasionally impeded by insufficient or incorrect
information. The lack of sufficient data is usually obvious and may be dealt with early by
halting the program or by using defaults. Incorrect information, however, is often obscure and
may never be discovered. The system requires decisions based on correct information to arrive
at a solution efficiently. In the problem at hand, only the original problem conditions and
occasional intermediate parameters are provided by the usér. The algorithms themselves are
often able to determine errors in the input data. In addition, the system developed must
attempt to substantiate other aspects of the user input and internal decision-process con-
ditions.

Certain aspects of the solution search are probabilistic. The probability that a combination
of rules determines a condition or selects a parameter which is appropriate depends on the
certainty of the heuristic knowledge, predictability of the solution space or judgement about
the parameters involved. Selection of starting points falls in this category as does algorithm
selection, convergence, and other aspects. These may be dealt with, in part, by numerical
relationships. The redeeming aspect of our application is its iterativeness and regenerativeness.
It is possible to test the decisions made and return to choose a new or modified decision. We
can backtrack as required when performance does not meet our expectations. This ability does
not eliminate the need to consider the certainty of the decisions. In large problems, back-
tracking might involve significant computational waste.

4.6. Transparency and debugging

There are some opponents to the inclusion of expertise in software. The primary reasons
are that there is no way of determining whether the software includes appropriate principles,
whether the application of the knowledge is appropriate, and whether the software is
computationally and operationally correct. This is a significant problem for the computer
scientist and expert. It is dealt with, to some extent, by the improvement of software
documentation, by writing a readable software code, by reporting an audit trail, and also by
doing extensive testing and debugging during development. There is no way to make software
perfect, but it is possible to relieve many of the apprehensions involved by making the
processes transparent. By providing run-time explanation and tracing of what is happening,
what processes are being used, and what knowledge has been applied to make indicated
decisions, the developer may document the software’s computations, inform the user of what
is going on, and perhaps even provide him with an education in the particular field of
expertise.

The types of information to be retained and presented depend on the user of the system and
should be separated into various aspects of the process. One aspect is decision making, which, due
to the logic-oriented rule base, may provide step-by-step relationships between the conditions
observed and the decisions made. Another aspect is the observed behavior or conditions
themselves, which may be explained by the specific data or trend information used and retained in

D) &

T L A T T AT S T A e St T e S N N e Tt e e LS,
. ' o o B v o o' A Al

2

<.' 2

5"
&

2
AL

A

-
-

1
b
D

‘;;?- ",

,-
4l

P

R
.

i

Nele

'L
1]

v oA P
10
.ﬂ.I,

..1
o 8 A

a e W 3L
i
B, .

s)

,5'

o

..

J-&.P-'.’. e

@
[

312 J1.S. Arora, G. Baenziger, Uses of Al in design op.imization

the history of the computations. Yet another aspect is the algorithm itself and its principles and
computations. The development of traces for these aspects for explanation to the user also aids in
the process of debugging. The logical errors are more obvious if the information is provided in the

less cryptic form required of such process traces.

4.7. Concurrent programming and decision making

Certain aspects of the expert system may be operated in parallel. While the algorithm is
being performed on the data, available data can be processed in the pattern-matching and
decision process. Certain decisions must be left until the output data is complete, such as
algorithm selection or decisions involving the design point and the step determined in the

AN

-

%

]

SR
S

latest iteration. The real-time performance can be quicker if parallel computations can be
made. This does not mean the computer power expended will be less. That depends more on
the degree of additional efficiency provided by the system’s heuristic ability. The efficiency of
the process may not always be of paramount importance. Our goal, in addition to making the
optimization process more efficient, is to make it easy to find solutions to problems which were
difficult to solve without the more sophisticated control system.

4.8. The system architecture

The expert system must be organized in a modular form. A possible organization of the
system is shown in Figs. 1 and 2. Fig. 1 shows an overall organization of the expert system. It
has a module that controls the use of various algorithms. It has an interaction facility as well as
an output facility. Its inference engine is simple, using tules of the expert and the knowledge
base accumulated during the optimization process to decide which algorithm to use. Fig. 2
shows an overall organization for the implementation of an algorithm. Various components
needed to carry out functions of the algorithm are shown as (1) input/output facility; (2)
access to user-provided subroutines or programs defining the optimization problem (function
and gradient evaluation facility); (3) access to a sophisticated data base management system;
(4) interactive graphics and query facility; (5) access to knowledge and data bases; (6)
knowledge acquisition facility; (7) inference engine for the algorithm; and (8) rules for

=

intelligent implementation.

Fig. 1. Overall organization of the expert system for design optimization.

INFERENCE
ENGINE
INPUT/
ouTPUT Svsren
FACILITY
KNOWLEDGE/
DATA BASE
ALGORTTHM 1 t\mmnm 2 ALGOR1THM n

(P I P W D W W W I N O Foe T Y W LA

&
83
e
J.S. Arora, G. Baenziger, Uses of Al in design optimization 313 g-;n
- Omid,
INPYT/ DESIGN DAIA BASE
ouTPUT OPTIMIZATION MANAGEMENT i
FACILITY PROBLEM DEF INITION SYSTEM
-
23
INTELLIGENT INTERACTIVE m
IMPLEMENTATION ALGORITHM | GRAPHICS/QUERY
RULES FACILITY
o
»
A
INFERENCE KNOMLEDGE - KNOWLEDGE/ o
ACQUISITION
ENGINE EACILLTY DATA BASES
Fig. 2. Organization for implementation of Algorithm i.
()
V8
LA}
5. Incorporating expert knowledge into the system 1 35)
-
5.1. Form of the knowledge
The form of the knowledge inherent to our problem is a mathematically oriented rule o
structure. The mathematical nature of engineering problem solving makes the inclusion of o
numerical relationships crucial to the application of rules. It makes the rule base much more
flexible but also makes the mechanics of the system much more complex. The concept requires '1
the development of variable data identities and values. This implies the development of an £

inference engine that acts also as a compiler or an interpreter. Variables are not useful unless
accompanied by relationships (e.g. >, <, =, etc.) and further parameters to specify specific N
data from data sets. The iterative nature of optimization search requires that data be identified NS

with a specific iteration or algorithm. The same identification applies to the association with
constraints and design variables.

ROy

5.2. Sample optimization rules '
In an attempt to illustrate some of the criteria to be dealt with, a small sample of the rules :f_';'_. :’
envisioned are included below. The application to which they relate is small compared to the ok ;‘ !
entire problem at hand so one can see the tremendous task involved in planning and T
incorporating the knowledge for the entire system. A few simple variables are abbreviated for o {'51
simplification. Many of the variables require further parameters to identify the specific datum to e
which they refer. Algorithm data variables (VAR-)identify data, condition flags (FLAG-) identify e
Boolean knowledge about the problem circumstance, and action clauses (ACT-) provide the Sl 6'2
-~ 2
e
o~y

N
o 3@

, Y

»

b

S
r

w

- R P T PR e R S I o T L VLT L N PR A T R Vo '-"‘J"l“.".f‘."." ‘J'""'f‘f- AN

ﬁ"’.‘\u‘lﬁ'ﬁi}’k‘hﬂ'ﬁ{f G R R O A RN VARG R A VROV G AL AN AL VL VL A O
ua o o -8 e

314

; initiative to perform a non-rule-oriented function or algorithm. The rules are generally of the form
E *IF preconditions. . . . THEN conclusions. . .’.

£
4

Es

The issue represented here is that of active constraint instability. In the optimization search

the direction of search sometimes must be normal to a particular constraint. When this occurs

| the algorithms are at odds between improving the objective function value and satisfying the
constraint. Zig-zagging can occur with the constraint becoming active and then inactive in

alternate steps. These behavioral characteristics can be used to modify the search beneficially by

% either always including the constraint in the active set or by leaving it out of the set (ignoring it).
o Computationally, either of these alternatives may be better than the zig-zag behavior indicated.
The first rules below provide tests for such a condition. When the behavior is exhibited, the

9 rules would signal the condition by setting a flag, followed by relating the condition to other
,:j conditions and eventually, by performing some appropriate action. Actually some rules set flag

' conditions and others reset them (NOT FLAG-). The second set of rules relate the condition to
J— some appropriate action. Depending on the inference-engine architecture, the action may be dealt
@ with in many ways. The simple mode envisioned here is that, whenever an action clause becomes

true, the engine immediately performs the appropriate function or algorithm associated with it.
After the action is complete the clause is reset (a sort of single shot analogy).

A'a A A 75 5% A% e g SR INRIRVS Ro, RY

84

J.S. Arora, G. Baenziger, Uses of Al in design optimization

g
::,,. Simple rule variables
' CN Constraint-Number
. IN Iteration-Number
CIN Current-Iteration-Number
! DV Design-Variable-Number
e
Fud
P Rules to identify conditions
IF VAR-Constr-Value (CN, CIN) < g-Active-Criterion
VAR-Constr-Value (CN, CIN-1)> g-Active-Criterion
~7 VAR-Constr-Value (CN, CIN-2) < g-Active-Criterion
THEN NOT FLAG-Constr-Activity-Stable (CN) "
R IF VAR-Constr-Value (CN, CIN) > e-Active-Criterion o
- VAR-Constr-Value (CN, CIN-1) < e-Active-Criterion hty
VAP -Constr-Value (CN, CIN-2) > ¢-Active-Criterion y
m THEN NOT FLAG-Constr-Activity-Stable (CN) o
“ \
:"’,',4. IF VAR-Constr-Value (CN, CIN) > g-Active-Criterion S
VAR-Constr-Value (CN, CIN-1) > g-Active-Criterion N
- THEN FLAG-Constr-Activity-Stable (CN) N
e .‘J:
o IF VAR-Constr-Value (CN, CIN) < g-Active-Criterion N
VAR-Constr-Value (CN, CIN-1) < g-Active-Criterion =
THEN FLAG-Constr-Activity-Stable (CN) 3
f.'- ALY
5l IF FLAG-Constr-Activity-Stable (CN) s
‘ THEN NOT FLAG-Constr-Removed-from-Active-Set (CN, CIN-1) 5!

'y

PR X AANE Ll Lt L L Ml oy

NOT FLAG-Constr-Added-to-Active-Set (CN, CIN-1)

85

J.S. Arora, G. Baenziger, Uses of Al in design optimization 315

Choosing appropriate actions

IF NOT FLAG-Constr-Activity-Stable (CN)
NOT FLAG-Nonlinear-Constr (CN)
VAR-Constr-Value (CN, CIN) < ¢-Active-Criterion
THEN ACT-Remove-Constr-from-Active-Set (CN)
FLAG-Constr-Removed-from-Active-Set (CN, CIN)

IF NOT FLAG-Constr-Activity-Stable (CN)
NOT FLAG-Nonlinear-Constr (CN) K0
VAR-Constr-Value (CN, CIN) > ¢-Active-Criterion -";:-

THEN FLAG-Constr-Removed-from-Active-Set (CN, CIN)

IF NOT FLAG-Constr-Activity-Stable (CN)
FLAG-Nonlinear-Constr (CN)
VAR-Constr-Value (CN, CIN) > g-Active-Criterion
THEN ACT-Add-Constr-to-Active-Set (CN)
FLAG-Constr- Added-to- Active-Set (CN, CIN)

| R

]

IF NOT FLAG-Constr-Activity-Stable (CN)
FLAG-Nonlinear-Constr (CN)
VAR-Coastr-Value (CN, CIN) < £-Active Criterion
THEN FLAG-Constr-Added-to-Active-Sc¢t (CN, CIN)

IF NOT FLAG-Constr-Activity-Stable (CN)
FLAG-Constr-Added-to-Active-Set (CN, CIN-1)

THEN ACT-Add-Constr-to-Active-Set (CN)
FLAG-Constr-Added-to-Active-Set (CN, CIN)

B

IF NOT FLAG-Constr-Activity-Stable (CN) oy
FLAG-Constr-Removed-from-Active-Set (CN, CIN-1) -
THEN ACT-Remove-Constr-from-Active-Set (CN) -
FLAG-Constr-Removed-from-Active-Set (CN, CIN) o
N
This is a simplified version of the rules required for the problem. The rules relate only the S
epsilon-active criteria to the conditions. Additional knowledge would also be incorporated to o
deal with the details of simply active and violated constraint activity. Other criteria might also 7%
be involved. vih
Some discussion must be made of the use of the word NOT in the rule clauses. The purpose . ‘_p;
of the word NOT is twofold: to select the negation of a clause as the precondition and to -'25 -k"‘-'f
negate or reset the flag as a conclusion. In all Boolean logic systems the concept of negation is N ;”A
required. Here it is extended to affect the condition flags as switches. e
Conditions can exhibit an inhibitory effect as well as a supportive one. The presence of the S ';"
nonlinear condition, which must be established as a precondition, effects the application of the I~:}:
rules. Its presence is a logical mechanism to inhibit one rule and support another. I~‘.~:~
| ~ Certain rules to identify active constraints at the optimum have also been discussed in o
; [16-18]). They are based on local monotonicity analysis of cost and constraint functions. The R
{ rules utilize Kuhn-Tucker necessary conditions, Lagrange multipliers, and gradients of cost ,!."S]
: and constraint functions. A production system based on these rules and certain global rules o ;-::d
| (based on designer’s knowledge about the specific problem) has been demonstrated in [18]. ;j ;_::-
l Example problems clearly show advantages of using expert’s knowledge in the design- :
‘ optimization process. N

- e @2 B° -1 2% ‘Ria” . . ¢ QLT T ORI R wY \ A Sl) 528 vt ae A%
R ML LR WL W he® . 8 Rt INAX SO VN AR M LN VY UV OWLS U Ly -l A w W et (W EYVA A S RN i LA

i@ 86 i%
n v
¥

()

g‘?‘ 316 J.S. Arora, G. Baenziger, Uses of Al in design optimization N
XA,
5.3. Relating rules =
)
m: Also associated with the knowledge about instability or zig-zagging of the epsilon activeness L&
. 3 o . . » . . u
of a constraint is the recognition that a trend is also occurring in the design variables as the ¢
o search moves along the constraint. This condition can be cited by adding to the conclusions ¥}
& (THEN clauses) of the rules above or by adding a separate rule as follows: !
]
ol
IF NOT FLAG-Constr-Activity-Stable (CN)
& THEN FLAG-Possible-Design-Trend :":
2 /
| This rule may be used to initiate evaluation of design-variable trend locating rules which -
W determine the design variables which exhibit the inferred trend. These rules might include the "
e following: g
Trend condition rules :;l
¢
& IF FLAG-Possible-Design-Trend :t
VAR-Design-Change (DV, CIN) >0 o
: VAR-Design-Change (DV, CIN-1) >0 4
ﬁ THEN FLAG-Design-Trend (DV) '
IF FLAG-Possible-Design-Trend !
g VAR-Design Change (DV, CIN) <0 M
,‘.p;r VAR-Design-Change(DV, CIN-1) <0 5
o THEN FLAG-Design-Trend (DV) ,.;
i IF FLAG-Possible-Design-Trend ’;.
VAR-Design-Change (DV, CIN)~ 0
VAR-Design-Change (DV, CIN-1) ~0 od
THEN FLAG-Static-Design-Variable-Trend (DV))
t
0 IF FLAG-Design-Trend (DV)
| :..'- VAR-Design-Change (DV, CIN) > VAR-Design-Change (DV, CIN-1) N
VAR-Design-Change (DV, CIN-1) > VAR-Design-Change (DV, CIN-2) .‘
THEN FLAG-Increasing-Nonlinear-Trend (DV) 3
g IF FLAG-Design-Trend (DV) r"'
A . VAR-Design-Change (DV, CIN) ~ VAR-Design-Change (DV, CIN-1) :: X
. VAR-Design-Change (DV, CIN-1) ~VAR-Design-Change (DV, CIN-2) =3
;_:3- THEN FLAG-Linear-Trend (DV) j
> IF FLAG-Design-Trend (DV) X
VAR-Design-Change (DV, CIN) < VAR-Design-Change (DV, CIN-1) : A
i VAR-Design-Change (DV, CIN-1) < VAR-Design-Change (DV, CIN-2) "
o THEN FLAG-Decreasing-Nonlinear-Trend (DV) >
ot Flexibility can be built into the rule base if care is taken by making the rules independent. }‘
,:i. The independent rule structure can be a two-edged sword, however, and can trap the unwary 4
) in an inflexible system. For example, take the above relations between the unstable activity of ’
- a constraint and the design-variable trends. The latter is instigated by a simple flagged
::,»-f' condition as a precondition. If the rules were incorporated as is, then the search for trends in
i variables would occur only if a constraint was unstable. We, of course, do not mean to limit
" the search for trends in this way. We must work with the rule base until all aspects of the rules oy
[‘
N

(L7027, a0 tat 9.0 @a¥ $oF T4 ot 10 057 €47 27 020 0aV fa¥ ds¢ Sa¥ So¥ 50t Bav fa® Bov §4% 0a® bp' ®ota% 007 00 0 10 0l Uatate v s Aat Ner B 0 S R P A B o R iy S e SR R R R .)‘.‘V'.."F;

87

J.S. Arora, G. Baenziger, Uses of Al in design optimization 317

relate appropriately. In the above casc, parallel rules without the flagged condition could be
added or some more elaborate rules developed. A caution should be made about making rules
too independent. If, for example, we eliminated the flag requirement from the preconditions
of the rules searching for trends in design variables, we would loose a link between the two
conditions. This link is as much a part of the heuristic knowledge as the observance of trends.
There are therefore some trade-offs involved in the formulation of the rule base. Often the
means of evaluating rules include the occurrence of such links to develop a train of thought.

To a certain extent these rules resemble the logic of many of the standard computer-
programming languages. In the expert system, however, they will not be dealt with in the same
fixed way. Knowledge about goals, search, and rule evaluation are applied to perform the
logical manipulations in an organized and eflicient manner. The order of the performance of
the rule evaluations can make a significant difference in the conclusions reached. The problem
could be avoided by exhaustive rule application to find conditions followed by control
decisions but this is not always possible. In identifying conditions the quantity of data available
would prohibit an exhaustive search.

5.4. Data base requirements

The data base management systems (DBMS) must have the capacity to deal with the new
knowledge including data and rules. The system may use both in-core and fixed disks to access
any volume of information with reasonablc access time. The DBMS must be designed for use
with an expert system. Access times must be sufficicntly quick and flexible enough to deal with
both a single datum out of large volumes of data and a more complicated rule structure. Such
a system called MIDAS is being developed and tested [19).

These are not minor issues in the performance of the expert system. The addition of the
inferential computations to the optimization computations being already performed imposes an
additional burden on the DBMS. Delays in the flow of information may produce unreasonable
real-time performance problems.

6. An interactive design-optimization system

An interactive design-optimization system called IDESIGN [20] has been developed over
the past four years. It is a fixed rule-base expert system written in FORTRANT77. 1t is used
here to illustrate how some of the ideas and rules discussed previously have been implemented
and extended through the use of expert knowledge.

The architecture of the system is shown in Fig. 3. Only in-core data management is used in
the current version. Various rules are imbedded throughout the system. Although the system
is designed using small subroutines, it is not modular in the true sense. The system is being
redesigned and implemented with MIDAS [20).

The user has to provide two types of information to use the system. First, he must prepare
four subroutines to describe the optimization problem, which calculate cost function, con-
straint functions, and gradients of cost and constraint functions. The controlling program calls
appropriate subroutines to calculate these quantities whenever desired. Second, the user must
provide the input data which defines bounds on design variables, equality and inequality

e

ht af by Wy Uy
VWP

»

‘l'
.
o

]
2
LA

s

S Ess] A

w

AF

-

PR YR AT AT R PR RRIA N EFE T TF WP TP F] WP WLV e VS WMLV A

88 ¢
o
bog
318 J.S. Arora, G. Baenziger, Uses of Al in desig.i optimization [P:l"
™
l"
g DESIGN DATA [
DEFINITION o
™
| R
' i
& | o
(]
s || v !
- PROBLEN EVALUAT 0N
o f '
-“’, l ‘:::)
F"w"‘ INTERACTIVE [o
Lt SESSION "
! p |
Nd I 3
% | ,
o
% iwRovERENT [— — — . W
3 Y
P [m | convergence? pa,
E"\' {:)
v (
. YES)
C 2
.
A
:;f?‘ Fig. 3. Structure of interactive design system IDESIGN.
fu
L4 '~§
constraints, starting design estimate, convergence parameter and other control information. i
& The input data can be provided interactively or read from a fite. The system has its own editor, R
- so the input data can be edited. 0
o Three optimization algorithms are available in the system: the cost-function bounding o
e method [13], a constrained variable metric method [14], and a hybrid method [14]. The ‘:
L program can be run in an interactive mode as well as in a batch mode. A wide variety of 'Y
— interactive capabilities are available. Interactive graphics is also available to observe and use the
‘_;,_, trend information. We will describe some of the capabilities with the help of a simple spring
design problem [13] formulated as
or minimize f= (n+2)Dd?,
4 subject to g, = 1.0~ D’n/(71875d*) <0,
g2 = (4D? - dD)/(12566(Dd> - d*)) + 1/(5108d%) - 1 <0,
Qf,{» g = 1-140.45d/(D*n)<0,
Won g8.=(D+d)1.5-1=<0,

where d = wire diameter, D = coil diameter, and n = number of coils. The constraints on

e

. . . P - o A m T m
S O AR N . RPN _".r\.\.' <

TN TWRAY VW 0NN AN AL SO PN SOOI RO SR B Yy
89 2‘.2
-
J.S. Arora, G. Baenziger, Uses of Al in design optimization 319 ,’.\:
e
design variables are
L
005=<d=<020, 025<D=13, 2=snsl1S. ol
6.1. Automatic gradient checking SR
The system has a built-in procedure to check gradients using the expressions provided by L
the user. It first determines the appropriate increment in design variables for use in the finite —
difference procedure. Then the gradients evaluated with finite differences and with analytical N
expressions are compared. If they differ by less than 6% (8 = 1), then the gradient expressions =
provided by the user are assumed to be correct. Otherwise, a warning message is issued iy
identifying the function having possible errors, and the user is given the option of either .'-j,'.;
continuing or aborting the run. s
The user can also omit gradient expressions in the subroutines and use the system's .
capability to automatically evaluate them at each iteration. ?53
6.2. Starting point improvement)
The system provides consulting support to improve the starting point without operating any &Vf
optimization algorithm. This is particularly useful when the starting point is infeasible. To
perform this consulting duty, the system checks sensitivity coefficients of all constraints with -
respect to each design variable. When sensitivity coefficients with respect to a design variable o
for all violated constraints have the same sign, that variable can be changed to decrease all e
violations. The system uses this knowledge to suggest all possible changes. The user can select a (s
suitable change. A typical interactive session to improve the starting design for the spring A
problem is shown in Fig. 4. It can be seen that in just two changes suggested by IDESIGN, all e
constraints have been corrected without a severe penalty on the cost function. Note that there L
were substantial changes to the design. The final design reported in Fig. 4 is not too far from the Kl
optimum. If the program were allowed to run without consulting help, it would have taken 12 ¥
iterations to reach the optimum. ,
The example shows the use of the knowledge of the expert to reduce the number of < 1
iterations in obtaining a solution. Sy
6.3. Use of trend information ‘,:::'.:
The system stores histories of design variables, constraints, maximum violation, cost Sl
function, and the convergence parameter. It can plot these histories at a graphics terminal. oo
With these the user can make design decisions interactively. For example, if a design variable L:-;' '.;
is moving in one direction, it can be extrapolated. If a constraint is never violated, it may be AR
dropped from further consideration. If the cost function is not improving significantly, the Y
process may be terminated. If a design variable has not changed in several iterations it may be N N
fixed at the current value. Further development of the system, including interpolation IS
functions and rules, will be made to provide more consulting support to the user.)
' In addition to the above, we can add to the system the capacity to determine whether a o
variable is very sensitive or not sensitive at all. Insensitive variables can be initially kept fixed e
and only the sensitive ones optimized. Currently, IDESIGN only displays the sensitivity :
coefficients for various constraints in the form of bar charts at a graphics terminal. -'1 K
-

a-".;:,:g

[V 25 35 o 3% O 2 J |

1.

I
-3

o)

W TR WL L W UWA V(W Vs Vg Wl W e Y: SN

90
320 J1.S. Arora, G. Baen:ziger, Uses of Al in design optimization
CURRENT DESIGN VARIABLES ARE:
1 0.5000£-01 2 0.1300£+01 3 0,2000E+01
COST FUNCTION VALUE = 0.1300E-01
MAX. VIOLATION = (0.2488E+01
The design can be improved by increasing any of the following variables:
var, No. Current Value Suggest Value Current cost New Cost
1 0.5000€£-01 0.6210E-01 0.1300€-01 0.1929€-01
3 0.2000€+01 0.1500€+02 0.1300E-01 0.5525€-01
The design can be improved by decreasing any of the following variables:
var. No. Current Value Suggest Value Current cost New Cost
2 0.1300£+01 0.,3218E+00 0.1300€-01 0.3218E-02
which variables do you want to change?
Variable No: 2
New value: 00,3218
Constraints might be all sattsfied.
Do you want to modify again? N
CURRENT DESIGN VARIABLES ARE:
1 0.5000€-01 2 0.3218€+00 3 0.2000E+01
COST FUNCTION VALUE = 0.3218E-02
MAX. VIOLATION = 0.8516E+00
A The design can be improved by fncreasing any of the following varfables:
var. No. Current Value Suggest Value Current cost New Cost
3 0.2000E+01 0.1500€+02 0.3218€-02 0.1368E-01
which variables do you want to change?
Variable No: 3
New Valtue: 15
Some constraints are still violated.
Do you want to modify again? Y
No further improvement can be made without new sensitivity coeff.
Stiil want to modify? Y
The design can be improved by fncreasing any of the following variables:
var. No. Current Value Suggest Value Current cost New Cost -
1 0.5000E-01 0.5019€-01 0.1368E-01 0.1370€-01 LK
3 0.1500€+02 . 0.1368E-01 . ity
P
The design can be improved by decreasing any of the following variables: :\:\
[l'
var. Ko. Curreat Value Suggest Value Current cost New Cost ::.}
2 0.3218E+00 0.3174E+00 0.1368E-01 0.1363E-01
Which variables do you want to change?
Variable No: 2
New Value: 0.3174
Constraints might be all satisfied.
Do you want to modify again? N
CURRENT DESIGN VARIABLES ARE:
1 0.5000E-01 2 0,3174e+00 3 0.1500£+02
COST FUNCTION VALUE = 0.1349E-01

MAX. VIOLATION = 0.0000E+00

Fig. 4. Interactive session with IDESIGN to improve the starting point for the spring design problem.

— o P

Y At A AN RIS

TR Seb tat, Bt gt oy p " s’ o i - Sugal Aa’oint Agv 'l i gle o iiae g0 a0, VTV AT AN Y

2 P
i’ 91 “&
2 J1.S. Arora, G. Baenziger, Uses of Al in design optimization 321 ?’:}

’ Ind

,‘3\ 6.4. Algorithm selection
S ==
h Three algorithms are available in the system. The user can specify his selection in the input ';

) .) , . . OoN
W data. The cost function bounding algorithm uses only first-order information whereas the
:::’ constrained variable metric method generates approximate second-order information (Hessian i"‘S
% of the Lagrange function) and uses it in defining the direction. The method has a local
) superlinear rate of convergence which means that, once the design point is in a certain .

! neighborhood (domain of convergence) of the optimum, the algorithm converges quite rapidly. .

- This is generally characterized by the fact that the step size is unity in the neighborhood of the ':r?

A solution. The algorithm can be slow outside the domain of convergence because the ap- v
j‘: proximate second-order information is not very accurate due to variations in the active set. To _
e overcome this difficulty, a hybrid method has been developed which starts with the first-order tj‘&
7 algorithm and switches to the constrained variable metric method once the design is in the p

' proper neighborhood. Heuristics have been used to determine when to make the switch. Some
o of the rules used are: (1) small difference between upper and lower bounds on the optimum S

X, cost; (2) convergence parameter smaller than a specified value; (3) no change in the active set o

w for several iterations; and (4) small changes in the cost function for several iterations. These
[rules have worked well for some 120 test problems. r
.
- 6.5. Automatic restart
When the constrained variable metric method is used, it is sometimes advantageous to ?.(,'
5 restart the procedure, (i.e., set the Hessian to identify). As evidence of this situation, the b
“‘:f spring design problem, when started with a design of (1, 2, 3), takes 158 iterations without the
"0._ restart option and 75 iterations with it. This clearly indicates that the restart option can speed i‘g
-~ up the convergence. The question then is, what data and knowledge should be used to decide e

& when to restart the algorithm? Again, several heuristic rules have been developed and .

t: implemented: (1) changes in the active set; (2) a large condition number for the approximate):',\'.'
B Hessian matrix; and (3) a small step size. oty
N
& 6.6. Robust implementation of algorithms ‘

W Special care has been exercised to implement algorithms so that they are numerically REL
:.}", robust. For example, the subproblem is normalized at each iteration such that all the gradients -
< have a unit norm. This has worked extremely well in numerical tests. Whenever something -0
N goes wrong with the solution procedure, the system either takes a corrective action or provides RS
- information for the user to correct the problem. Many rules have been used to accomplish -
s robust implementation of algorithms. o

-
™ 7. Discussion and conclusions o :
| R

) In this paper, some basic ideas on development of an expert system for general design- j
2 " optimization applications are presented. The need for the use of Al concepts and some specific NN
';: instances where they can be helpful in the design-optimization process are discussed. A b !
L7, general architecture of an expert system for the application is developed. Advantages of such a \
L system are demonstrated with the help of a primitive expert system called IDESIGN. ;
14
X J

X \
¥ N
K o

{

P AR R RS L

. - -, - S T S S S
-A"‘A\'.Jl '.A.':‘.A .)l_a\.AIA _A\A.. Mm;.g}m‘.:‘.;"_amaﬁ.& -u,,.n\,,-\.n L»'!.,'s.l.l.&“\ P R A, SRR SR RO S

DATABASE DESIGN AND MANRGEMENT IN ENGINEERING
OPTINIZATIONCU) IOWA UNIV IONA CITY OPTIMAL DESIGN LAB
J S ARORA FEB 88 0DL-88.2 AFOSR-TR-88-8366
AFOSR-82-8322 F/G 12/7

C TS TR WIS
l,~f~,.'\hu IR N ;,'b‘..‘

o

‘

fFFFEEEE

:.EEEE

= e
122 Tt e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS {963 A

(7508 200 M0 ® Vel ot Tap Tod Pad ScU LB (00 T 8 Vg T o Uig 0cp gl Vof VoS Va0 028 008 Tak b . f tud S0 40 4.0 0.0 W 0 U 0.0 8 0 0.0 Al 8.0 b op bip Bn L g R h ST LR LD A Rl L Lt

92

322 J.S. Arora, G. Baenziger, Uses of Al in design optimization

(T

It appears that the possible advantages of including Al techniques in the optimum dcsign
process are significant. The expense of developing an expert system and knowledge base,
which will transform the state-of-the-art optimization algorithms into an expertly controlled ‘
system, is worthwhile. The efforts required include the development or adaptation of an I
inferential generator to manipulate the expert knowledge and the accumulation and
refinement of that knowledge. Both tasks involve considerable time and effort to be certain
that the performance of the resulting system is both capable and efficient.

The system must be based on the most up-to-date developments and strategies in the Al
field and, since the field is changing rapidly, the system must also provide for future
developments. We envision the capacity of the system, in the not too distant future, as being
able to develop or plan an attack strategy for a particular problem and to learn from its
success and failure so that it can apply that knowledge to subsequent problems. Our
experience with this and other aspects of how we solve problems and streamline production
should be directed to the advancement and improvement of the performance of design-
optimization systems.

References

[1) M.M. Waldrop, Atrtificial intelligence (I): Into the world, Science 223 (1984) 803.

[2) M.M. Waldrop, The necessity of knowledge, Science 223 (1984) 1279.

[3) M.M. Waldrop, Artificial intelligence in parallel, Science 225 (1984) 608.

[4] C.L. Dym, Expert systems: new approaches to computer-aided engineering, in: Proceedings of the 25th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Palm Springs, CA
(May 1984) 99-115.

[5] E. Rich, Artificial Intelligence (McGraw-Hill, New York, 1983).

(6] F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, eds., Building Expert Systems (Addison-Wesley, Reading,
MA, 1983).

[7] A. Barr and E.A. Feigenbaum, eds., The Handbook of Artificial Intelligence (Kaufman, Los Altos, CA, 1981).

[8] J.S. Arora and A.D. Belegundu, Structural optimization by mathematical programming, AIAA J. 22 (6) (1984)
854-856.

[9] A.D. Belegundu and J.S. Arora, A study of mathematical programming methods for structural optimization;
Part I: Theory; Part II: Numerical aspects, Internat. J. Numer. Meths. Engrg. 21 (1985) 1583-1624.

(10] G.N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: with Applications (McGraw-
Hill, New York, 1984), ’

[11] G.V. Reklaitis, A. Ravindran and K.M. Ragsdell, Engineering Optimization: Methods and Applications
(Wiley, New York, 1983).

(12] OK. Lim and J.S. Arora, Extensions of Pshenichny's algorithm for engineering design optimization, Comput,

. Meths. Appl. Mech. Engrg., to appear.
T {13] J.S. Arora, An algorithm for optimum structural design without line search, in: E.Atrek, H. Gallagher, K.M.
Ragsdell and O.C. Zienkiewicz, eds., New Direction in Optimum Structural Design (Wiley, New York, 1984)
W Ch. 20.
s {14] P.B.Thanedar and J.S. Arora, An efficient hybrid optimization method and its role in computer-aided design,

in: Proceedings CAD/CAM Robotics and Automation Conference, University of Arizona, Tucson, AZ,

February 1985,
[»:r {15} Artificial intelligence and pattern recognition in computer-aided design, in: Proceedings International Federation
M- of Information Working Conference (North-Holland, Amsterdam, 1978).

[16] S. Azram and P. Papalambros, An automated procedure for local monotonicity analysis, Trans. ASME J.
Mech., Transmissions Automated Design 106 (1984).

ey A e S e e T e W L e S AN MR

J.S. Arora, G. Baenziger, Uses of Al in design optimization 323

[17) S. Azram aud P. Papalambros, A case for a knowledge-based active set strategy, Trans. ASME J. Mech.,
Transmissions Automated Design 106 (1984).

[18] H.L. Li and P. Papalambros, A production system for use of global optimization knowledge, Trans. ASME J.
Mech., Transmissions Automated Design, to appear.

{19] T. SreckantaMurthy, Y.-K. Shyy and J.S. Arora, MIDAS: management of information for designs and
analysis of systems, Paper No. 85-0618-CP, AIAA 26th Structural Dynamics and Materials Conference,
Orlando, FL, April 1985.

{20} J.S. Arora, P.B. Thanedar and C.H. Tseng, User's manual for program IDESIGN 3.3, Optimal Design
Laboratory, College of Engineering, University of lowa, lowa City, 1A, December 1984.

B R E R R E &

-

bz

i ¥

) B%

L T At R g g Bt 0T AV gl AN g€ VR da¥ Vaf i Sag ud W Va9 <uf Sag V.9 ¢ AN KR AARREN AN ; U VLY LUPUNL J T Vo 4 - - P AR EREENEN NN

9 4 'rﬂ-‘. ‘1
APPENDIX 8 e

IMPLEMENTATION OF AN EFFICIENT RUN-TIME SUPPORT 'i.';.z
SYSTEM FOR ENGINEERING DESIGN ENVIRONMENT A

by 3

S. Mukhopadhyay and J.S. Arora i

N
I o
) in 1‘:.\
LR
o 2
. o
N
» h 8,
)
& B
N
5 Advances in Engineering Software '
G Vol. 9, No. 4, 1987
i
Y

by g At 8 Sad af G R a1 et Sak vad ‘gl el el a8 0g) - TR VTR R AN TR ATTTOR OV ORI IANUNY ANATACRIINUY Y ‘l“"

95

-

-
T

2= R

Implementation of an efficient run-time support
system for engineering design environment

»

S. MUKHOPADHYAY and J. S. ARORA

i F

Optimal Design Laboratory, College of Engineering, The University of Iowa, lowa City,
Towa 52242, USA

2

v

module for data transfer. Memory management module

The need for both relational and matrix data types
in engineering applications has been long recognized.
While matrices form mostly temporary or semi-
permanent data private to a program, relations are
either permanent data in public domain used by
different programs or final results of a program to
the end user. Though several systems came up in
the last few years with various degree of facilities
and level of efficiency, none however, met the
requirement of versatile data structure or run-time
support required in a volatile, large 1/O environ-
ment of engineering database.

This paper describes implementation of a system
and its evaluation using an existing users’ interface.
Benchmarking shows that the system is far superior
to the existing ones and also incurs little overhead
for DBMS callis.

INTRODUCTION

As the complexity of data grew, the conventional DBMS

manages MIDAS/GR buffer. It partitions the buffer into
pages of fixed size. All 1/O at this level is in terms of pages
and using I/O library. It uses stack management module to
implement least recently used (LRU) page replacement
policy.

The coordinating module in access method is the data
management module. It provides facilities of data definition
and data manipulation. It uses memory management module
to read/write appropriate data. There are four modules
which are designed to aid data management in specific
tasks. They are page management, list management and seg-
ment management, and index management. Page manage-
ment formats and manages all access to a relation page. List
management module maintains all system lists in alphabeti-
cally increasing order of names. Segment management
allocates and frees segmented memory (file is treated as a
contiguous byte address space). Index management takes
care of all operations involving indices. Figure 1 shows the
schematic view of the organization of different modules.

BUFFER ORGANIZATION
MIDAS/GR buffer is logically divided into two pools:

posed major handicaps. The design of MIDAS has evolved Block Buffer (BB) and Page Buffer (PB). Block Buffer
due to the necessity of secondary storage management in contains all administrative informations, e g. cursor table, wa 3
engineering apfﬁcatiom. in particular structural design page tables, page page tables (for large data objects), etc. D Sxt
optimization.""* It was felt that such a system should sup- Page Buffer contains the data pages and page table pages Al 1
port both relational and numerical data models with an (for large data objects). Figure 1 shows the coarse con- | 2
integrated data definition and manipulation facility. Such figuration of Block Buffer and Page Buffer. ("-“%‘ ol
facilities would lead to ease in programming (involving large When an object is opened, an entry is allocated in the bl N

data), and make such programs less error prone, and more
efficient.

Requirements of a DBMS for engineering application
took shape in the last few years through work on MIDAS:
Management of Information for Design and Analysis of
Systems>* The biggest shortcoming of the current system,
MIDAS/N, is that it cannot handle relations. A cursory look
in the design of MIDAS/N showed various drawbacks in its
design which lead to internal searches at critical DBMS
calls. It was decided to develop a completely new system
with extended facilities, The new system is MIDAS/GR ¢

cursor table. It has two pointers: pointer to a master record
which contains all attributes of the data object and the
other to the page table. # '

A page table contains entry for each page. They are the o
addresses of the page in disk and in page buffer, address of
the page entry in LRU stack, and a mark bit to recognize if
the page is modified. For each page in the page buffer,
there is an entry in the stack. This entry contains the address
of the entry in page table. Logically there are two stacks:
stack of clean pages and stack of dirty pages.

The top most entry represents the most recently used

e

"
..c:'t'

L I

'r.. 2

There are seven modules which form the core of page and bottom most entry represents the least recently >
MIDAS/GR access method. Task of each module is clearly used page. Figure 2 shows the detailed configuration of o
defined and they interact with each other through well MIDAS/GR buffer. 1
defined interface. In the lowest level is I/O library which 2)
invokes operating system routines for transfer of data T
between d?:k ang m);in memory. This module provides a MEMORY MANAGEMENT :
machine independent interface to memory management Selection of memory management mechanism plays key *p

role in system performance. However, there is no unique A o

Accepted April 1987. Discussion closes December 1987. method which will perform best in all situations. There are '-:.: v';
h I- : ;

0141-1195/87/040178-08 $2.00 ! Gl

178 Adv. Eng. Software, 1987, Vol. 9, No. 4 © 1987 Computational Mechanics Publications []

e
K

R OOV TN O A I A I Y I NI TS U NIy Yy

Data Management
Matrix Management

Fixed Length Vector
Management

Veriable Length Vector
Management

Relation Management
Enquiry Management

RN U T TN NN YN W Y O OOy O YOO

96

——————>{ Pege Management |
—————>{ List Management |

== Segment Manegement |

-—>[Index Management]

Memory Management

\

1/0 Librery

Figure 1. Organization of MIDAS/GR access module

Block Buffer Page Buffer

Date Cursor Table Date Poages

Pege Table for Dats
Peges and Page Table
Pages

Page Toble Peges

Least Recently Used
(LRUY) Stack

Figure 2. Block buffer and page buffer

three different memory management schemes used in
MIDAS/GR. Each is efficient in its context: Management of
Segmented Secondary Storage, Management of Segmented
Main Memory, Management of Paged Primary Memory.

Management of Segmented Secondary Storage: Cur-
rently secondary storage is accessed using operating system’s
file management facilities. A file is considered a linear
address space at page level, i.e. unit of access (address and
transfer) is a page. Since we allow dynamic allocation and
deallocation of space (objects are created, expanded and
destroyed dynamically), there will be lots of holes in the
file. One solution is to compact every time memory is
deallocated; compaction is, however, much slower process,
whereas it is much more economical to search a well
organized hole list.

Since disk access is slow, hole list is organized in the
header of the file and retained in the main memory after it
is read first time. Figure 4 shows the structure of the hole
list. It is arranged in increasing order of the address of avail-
able space. Since this list contains sufficient information,
no disk access is necessary for allocation and deallocation
purposes.

Management of Segmented Main Memory: A page of
variable length record is a linear address space at record

level. When any information in a page is accessed, the whole
page is in memory. Therefore, one does not incur any extra
overhead if control information is kept along with the used
and available space.

A modified version of Boundary Tag method with
improved first fit algorithm (using rover counter, Knuth
19737 is used for allocation and deallocation of space. In
this method only one byte at the beginning of a block is
used. This reduces storage overhead (which is at a premium
in a page), and also allows us to use a very simple algorithm
for space liberation, as there is no search or collapsing of
adjacent free blocks involved. Even space reservation
involves little search as allocation is distributed over the
page using a rover counter. However, allocation procedure
is slightly complex, and runs little longer as collapsing of
adjacent free blocks is done at this time. Figure 5 shows the
configuration of free and used space.

Management of Paged Primary Memory: This mechanism
is used to manage the page buffer. Page buffer is a collec-
tion of page frames which are equal to the physical slots
on disk. Each opened object has a page table which points
to the page frame belonging to it. Available page frames in
page buffer are linked together.

These pages are managed in a least recently used basis.
LRU policy is implemented using two stacks: stack of dirty
pages and stack of clean pages. Top most entry of the stack
is the most recently used page and the bottom most one is
the least recently used page. Every time a page is accessed,
its position in the stack is moved to the top. They are
implemented using double links. They dynamically share
same memory. Total space occupied by two stacks together
equal to the number of page frames in the page buffer.

Pages are simply read into the page buffer till it is full.
Once it is full and a new page has to be read in, the system
reuses the page frame of the least recently used clean page.
If there is no clean page in page buffer then the content of
the least recently used dirty page is written back to disk
and the page frame is reused.

Adv. Eng. Software, 1987, Vol. 9, No. 4 179

)

G ... [

1y

97
File Block Buffer Page Buffer
To Attribute
Data Cursor Table [Record -
" % » g * »
" n» 1 L
» »*
" Page Table = #|_Page Table *
»* »
*
L] T H= -
|
L2 B IR
» - »* *
Top Top
» *
- *
* *
- -)
- Bottom Bottom »
* Clean Stack Dirty Stack
LRU Stack
Figure 3. MIDAS/GR buffer configuration
DATA MANAGEMENT
Addrass of Availgble Length of Available
Space Space The data language is an English keyword-oriented syntax
for query, as well as for data definition, data manipulation,
. * and control. It provides facilities ranging from simple
: : queries to complex data manipulation intended for profes-
sional programmers. The same language may be embedded
in a host language program or may be used as a stand alone
. . system. The syntax of the language is given in the com-
Figure 4. Hole list for storage gement panion paper Mukhopadhyay and Arora.® Examples of
different operations are given in the following.
bit 1 bit
je—e—
- | Size . | Size A. Data definition language
Forwerd Link 1. Create a two dimensional 1000 * 1000 temporary matrix
Beckwerd Link named STIFFNESS, with double precision elements and
band width 20.
CREATE TEMPORARY MATRIX STIFFNESS (1000,
1000) BANDED 20: (DOUBLE PRECISION);
2. Create a permanent relation known only to this user
named XCOMP with attributes NODE_NO, COORD,
FORCE, MOMENT.
CREATE PERMANENT PRIVATE VECTOR XCOMP:
NODE_NO (INTEGER, KEY),
*- 8 bit byte nd - 8 bit byte nd COORD (REAL NONULL)
Free block Used block FORCE (RE AL)' ’
Figure 5. Configuration of free and used space MOMENT (REAL);
180 Adv. Eng. Software, 1987, Vol. 9, No. 4
N N A SN TN T SN N e T s e S Do e NN T I a2 Saa T

'l

-

-
-

AR

- |

EY

<)
Lol 4%

.

M R

=

Ay
L]

L
-;.

-
~

_—y
%

fof)
)

T
2.

-
o7

DTS TS et e’ A" P HEt et Rt I 0L R oA

kﬁﬂ@i&imﬁbm&iﬁ%imiﬁﬁﬂﬁﬂi

. Create a permanent shared relation ELEMENT with

attributes ELM_NO, MAT_NO.

CREATE PERMANENT SHARED VECTOR ELEMENT:
ELM_NO (INTEGER, KEY),
MAT_NO (INTER);

. Create a relation NODE with attributes NODE_NO,

COORD, ELM_NO.

CREATE VECTOR NODE:
NODE_NO (INTEGER, KEY),
COORD (VEC (3): REAL),
ELM_NO (INTEGER, NONULL);

. Create an index INODE on relation NODE with unique

key using attribute NODE_NO.
CREATE UNIQUE IMAGE INODE ON NODE
{NODE_NO),

. Create a link LELM from relation ELEMENT to relation

NODE where the relations are clustered (in the same
pages), ordered by NODE_NO.

CREATE CLUSTERING LINK LELM

FROM ELEMENT (ELM_NO)

TO NODE (ELM_NO)

ORDER BY NODE_NO;

. Destroy relation NODE.

DROP VECTOR NODE;

. Query language

Retrieve all the elements from the matrix STIFFNESS
where row number greater than 5 and column number
less than 70.

RETRIEVE *

FROM STIFFNESS

WHERE ROW > §

AND COL <70,

. Retrieve unique NODE_NO, FORCE pair from relation

XCOMP where NODE_NO less than S0 and FORCE
greater than 5, and order them in ascending order of
NODE_NO.

RETRIEVE UNIQUE NODE_NO, FORCE

FROM XCOMP

WHERE NODE_NO < 50

AND FORCE> S

ORDER BY NODE _NO ASC,

. Data manipulation language
. Retrieve all data fields from relation ELEMENT2 where

ELM_NOgreater than 50,and insert ELM_NO, MAT_NO
fields to the relation ELEMENT.

INSERT INTO ELEMENT (ELM_NO, MAT_NO):
(RETRIEVE *

FROM ELEMENT?2

WHERE ELM_NO > 50);

. Insert (10, 2.2, 5.7, 132, 3) data to the relation NODE.

INSERT INTO NODE (NODE_NO, COORD, ELM_NO):
(10,2.2,5.7,132,3);

. Delete (set to zero) all the elements of the matrix

STIFFNESS where row greater than 100 and column
greater than 100.

DELETE STIFFNESS

WHERE ROW > 100

AND COL> 100;

. Delete the tuple from the relation NODE where

NODE_NOis §.
DELETE NODE
WHERE NODE_NO = §;

98

5. Delete all the tuples from the relation ELEMENT which
has 3 nodes.
DELETE ELEMENT X
WHERE (RETRIEVE CNT (*)
FROM NODE
WHERE ELM_NO = X .ELM_NO) = 3;

6. Update all the elements of the row number 30 to value
25 of the matrix STIFFNESS.

UPDATE STIFFNESS
SET 25
WHERE ROW = 30;

7. Update COORD value to 2.54 times in all tuples where
ELM_NOis 2,10, 19, or 25 in relation NODE.
UPDATE NODE
SET COORD = COORD * 2.54
WHERE ELM_NO IN (2, 10, 19, 25);

EVALUATION

Application programs have been accessing MIDAS using a
well defined interface. The specification of this interface
is given in MIDAS/N User's Manual.® The same interface
is implemented on top of MIDAS/GR access method. As a
result MIDAS/GR has become accessible to all applications
that have been using MIDAS.

For the purpose of benchmarking MIDAS/GR and com-
paring it with MIDAS/N, an application program is chosen.
This program solves a system of equations using the skylire
method. The reason for choosing this program is that in
most engineering problems it is necessary to solve a system
of equations, and the performance of the application
depends critically on the performance of the equation solver.

The equation solver is flexible in its use of the main
memory. While running in a large system, it can take
advantage of large memory and make requests for data in
bulk, therefore, making less calls to MIDAS; this leads to
better performance. Whereas in a smaller system, it uses little
core memory and makes repeated calls to MIDAS for data
transfer; this usually leads to lower performance of the
system. The management of workspace within an applica-
tion, therefore, has profound effect on overail system
performance. So, the size of workspace is included as one
of the parameters along with the size of the problem, while
evaluating MIDAS/GR.

For benchmarking MIDAS/GR and for companng its
performance with MIDAS/N, different system and run-time
environments are chosen. It is felt that among system
parameters page size and number of pages in the buffer
should make most noteworthy effect on the system per-
formance. Among run-time parameters workspace size and
number of equations are chosen for variation. The values of
the parameters are chosen as follows:

Parameter Values
Page size 1 KB 4KB 16 KB
Number of

pages 16 nos. 64 nos. 256 nos.
Workspace

size 8 KB 32KB 128KB
Number of

equation 1000, S000, 10000, 20000, 30 000, 40 000
Half-band

width 100 - -

Adv. Eng. Software, 1987, Vol. 9, No. 4 181

A '..,’)
b % B T 3o]

i'&"."f':'k

P

LA

FELLALS A

TS

L

ro

& 2

o’

o
-
et

A S

P

ﬂ;&

5'.3

-

All tests are run on a DN460 Apollo computer with 2MB
of primary memory.

Tables 1-3 show variation of cpu time with buffer size
(page size * number of pages), for different page sizes.
The computation time shows the expected trend (i.e. cpu
time goes down as buffer size goes up) in most cases, except
where the buffer size is very large. For large buffer (1 MB
and beyond) the result is very close but slightly erratic. The
reason is that currently the buffer is implemented in virtual
memory. For large buffer, some portion of it may be allo-
cated on disk, which may degrade system performance.

Tables 4-6 shows the effect of page size on cpu time.
The results seem to favor larger page size over the smaller
one, except for small workspace (8 KB), where optimal
page size lies between } KB and 16 KB. It may be noted,
however, that this result may not show the trend reliably,
as the unit of transfer and allocation still remains un-
changed (1 KB). A larger page may be fragmented over the
disk; then it will require more than one seek to transfer a

Table 1. Buffersize (in KB) vs. cpu time (in seconds) for ! KB page
Workspace = 32 KB. No. of equation = 10 000

CPU time in CPU time in
Butfer size MIDAS/GR MIDAS/N Ratio
(KB) (s) (s) MIDAS/N: GR
16 11497 21628 1.88
64 9518 18 287 1.92
256 8623 12627 1.46

Table 2. Buffer size (in KB) vs. cpu time (in seconds) for 4 KB page
workspace = 32 KB. No. of equation = 10 000

CPU time in CPU time in
Buffer size MIDAS/GR MIDAS/N Ratio
(KB) ®) (s) MIDAS/N : GR
64 9670 18 362 1.90
256 8423 12252 1.46
1024 8 440 12331 1.46

Table 3. Buffersize (in KB} vs. cpu time {inseconds) for 16 KB page
Workspace = 32 KB. No. of equation = 10 000

CPU time in CPU time in
Buffer size MIDAS/GR MIDAS/N Ratio
(KB) (8} (s) MIDAS/N . GR
256 8413 12172 1.45
1024 8 457 12 254 14§
4 096 8 384 12 247 1.46

Table 4. Page size (in KB) vs. cpu time (in seconds) for 8 KB
workspace

Buffer size = 256 KB. No. of equation = 10 000

CPU time in CPU time in
Page size MIDAS/GR MIDAS/N Ratio
(KB) (s) (s) MIDAS/N : GR
1 8 798 127177 1.45
4 8622 12 439 1.44
16 8763 12 286 1.40

182 Adv. Eng. Software, 1987, Vol. 9, No. 4

99 »

0w
Table 5. Page size (in KB) vs. cpu time (in seconds) for 32 KB 'l:,
workspace :'..l
Buffer size = 256 KB. No. of equation = 10 000 :,:
)
CPUtimein CPU time in an X
Page size MIDAS/GR MIDAS/N Ratio -
(KB) (s) (s) MIDAS/N :GR T
4
1 8623 12627 146 ¥
4 8423 12 252 1.46 0y ot
16 8413 12172 1.45 3
1, v
e,
L))
Table 6. Page size (in KB} vs. cpu time (in seconds) for 128 KB n vy
workspace e oy
Buffer size = 256 KB. No, of equation = 10 000 .
o
CPU time in CPU time in 2]
Page size MIDAS/GR MIDAS/N Ratio o]
(KB) (s) () MIDAS : GR k 3
1 3519 3968 113 y
4 3402 37177 111 =3
16 3390 3725 1.10 - Yy
g ¢
A
3% ta)
Table 7. Workspace size (in KB} vs. cpu time (in seconds) for 8w)
16 KB buffer '
Page size = | KB. No. of equation = 10 000 o 3
I A0
Workspace CPU time in CPU time in ,ﬁ-f_ .,n:
size MIDAS/GR MIDAS/N MIDAS/N:GR e A
"ot
8 11 709 21793 1.86 .4
32 11 497 21628 1.88 .
128 3468 4001 115 4 i
[3
]
'0
3
Table 8. Workspace size (in KB} vs. cpu time (in seconds) for ..:!
64 KB buffer i ;
Page size = 1 KB. No. of equation = 10 000 A
Workspace CPU time in CPU time in il .
size MIDAS/GR MIDAS/N Ratio QR
(KB) (s) (s) MIDAS/N : GR
8 9711 21 440 221
32 9515 18 257 1.92
128 3527 4010 1.14
Table 9. Workspace size (in KB) vs. cpu time (in seconds) for

256 KB buffer
Page size = | KB. No. of equation = 10 000

Workspace CPU time in CPU time in
daze MIDAS/GR MIDAS/N Ratio
(KB) (s) (s) MIDAS/N : GR
8 8 798 121 1.45
32 8623 12627 1.46
128 3519 3968 113

page. This can be corrected partly by clustering relevant
pages, and fully by changing the unit of allocation and
transfer to the new page size.

Tables 7-9 show variation in cpu time with workspace.
Cpu time goes down as the size of workspace increases;

Ex

though it is an intuitively correct result, this trend is
influenced to a good extent by the algorithm of the equation
solver. Larger the workspace, it performs less operations
and makes less calls to DBMS; this in turn reduces cpu time.
Therefore, the results show the variation of cpu time with
respect to workspace size in a magnified scale.

Tables 10-12 show increase in cpu time as the size of the
problem (i.e. number of equations) increases. The increase
is quite reasonable; it increases about ten times for ten-fold
larger problem. Cpu time, however, decreases as the size
of the buffer increases.

Table 13 compares cpu time using MIDAS/GR with
large workspace and cpu time without using any database
management system (data kept in virtual memory).

In general, MIDAS/GR is about twice as fast as MIDAS/N.
Exceptions are the cases where workspace is very large,
since large workspace leads to little use of DBMS as most
of the data reside in main memory. Even in such cases
MIDAS/GR is superior to MIDAS/N. The study shows that
proper design of the DBMS is extremely important for
engineering applications.

Table 10. Number of equations vs. cpu time (in seconds} for
64 KB buffer

Page size = 4 KB. Workspace = 32 KB

CPU time in CPU time in
No. of MIDAS/GR MIDAS/N Ratio
equations (s) (s) MIDAS/N: GR
1 000 878 1639 1.87
5 000 4933 9560 1.94
10 000 9670 18 362 1.90
20 000 20 316 37360 1.84
30000 30 465 55562 1.32
40 000 40 641 77935 192

Table 11. Number of equations vs. cpu time (in seconds) for
256 KB buffer

Page size = 4 KB. Workspace = 32 KB

CPU time in CPU time in
No. of MIDAS/GR MIDAS/N Ratio
equations (s) (s) MIDAS/N : GR
1 000 772 1124 1.46
5 000 4320 6 076 1.41
10 000 8423 12252 1.46
20 000 18 111 25199 1.39
30 000 26 324 37099 1.41
40 000 35 296 49 462 1.40

Table 12. Number of equations vs. cpu time (in seconds) for
1024 KB buffer

Page size = 4 KB. Workspace = 32 KB

CPU time in CPU time in
No. of MIDAS/GR MIDAS/N Ratio
equations (9 (3 MIDAS/N : GR
1000 754 1092 1.45
5000 4316 6116 1.42
10 000 8 440 12331 1.46
20 000 18 188 25 286 1.39
30 000 26 439 40 211 152
40 000 35424 49 791 1.41

100

Table 13. Number of equations vs. cpu time (in seconds} for
128 KB workspace

Page size = 1 KB. Buffer size = 16 KB

CPU time in CPU time w/o Penalty for

No. of MIDAS/GR DBMS DBMS use
equations (s) (s) (%)
1000 322 281 146
5000 1729 1502 15.1
10 000 3468 3023 14.7
20 000 7013 6193 13.2
30000 10551 9 241 14.2
40 000 14 059 12 228 15.3

Another interesting observation relates to the use of
DBMS itself. It is a popular belief in scientific field that one
must make great sacrifice in efficiency to use DBMS (for
other gains). Our result shows that with DBMS (MIDAS/GR)
the program runs only about 14% longer than that without
DBMS (database is in virtual memory). Though this small
increase in cpu time is acceptable in most cases, we believe
that a good database management system should, in fact,
improve efficiency. The reason for MIDAS/GR not per-
forming to its specification is known to us. The current
shortcomings of MIDAS/GR and the remedies are discussed
in next section. With those remedies incorporated, we are
sure that MIDAS/GR will be unbeatable even in efficiency.

CURRENT LIMITATIONS

Limitations of MIDAS/GR arise mostly from two sources:
disk management and memory management. Currently
MIDAS/GR uses the operating system’s file management
faclity to store and access data in disk. This leads to related
data scattered all over the disk. The operating system does
not support the clustering of disk pages. Consequently it
takes longer time to access data. Also, the unit of transfer
(between disk and main memory) is fixed by the operating
system's page size. Current page size is 1 KB which is quite
small for engineering applications.

Similarly, the memory management module has no
control over primary memory of the computer. It defines
its buffer in virtual memory, and transfers pages between
virtual memory and virtual disk (disk + operating system
buffer for disk) using operating system’s facilities. This
mechanism can lead to inefficiency under certain circum.
stances, particularly when running large programs. Consider
a dirty page in the buffer which is actually in disk. To
replace this page, it has to be read and then written to the
disk. This is useless disk access overhead.

Current memory management policy is to replace least
recently used clean page if available, otherwise replace least
recently used dirty page. This could lead to inefficiency
under certain circumstances. Consider a situation when all
the pages in the buffer are dirty. Now, if MIDAS/GR
receives only ‘read requests’, all these requests will be
serviced by a single page of the buffer. The disadvantage is,
if the same page is requested more than once (not consecu-
tively) then each request may force an actual disk read.

FUTURE PLANS

1/O Management: Implementation of disk management and
memory management modules on top of operating system’s

Adv. Eng. Software, 1987, Vol. 9, No. 4 183

DT

R

L4

o

Ul 0 3
@ e

.
[y
A

]
" \.\‘.
s

’ P s
AN A

[

s

v

il

.l'.([4

a

P T MR TN TR TR TV TR PUYUPUWU RS TPURUN SIS WU R TITE WU N U WOON N Y WO RS W N AU T R AT T AT R T
TR PUWUPITIWC —_
4 bl s

F |

101

AR IR I NI I DI O, O0s Yo ah i in oA ¥

facilities has two inherent disadvantages: duplication of
effort with larger program execution time due to indirect
handling, and inability to rise over the vagaries of a general
purpose operating system. To improve the system time, it
is important to be able to store logical database pages in
proper physical slots of the disk; particularly, clustering of
related pages is important to reduce disk access time; simi-
larly, it is important to ensure that MIDAS/GR buffer
defined in main memory remains there at all times,

In other words, specific operating systems tasks should
be replaced altogether by MIDAS/GR routines. Since
MIDAS/GR memory management and disk management
policies are designed to suit specific application, programs
would run much more efficiently in the new set up.

Salvage Program: In current implementation, if an appli-
cation program using MIDAS/GR crashes unexpectedly, it
may force the database into inconsistent state, or even
make it inaccessible. A salvage program is required to bring
the database to a consistent state, The salvage program
scans through the system catalog and deletes entries when-
ever it finds their presence leads to inconsistency. Therefore,
consistency is achieved at the expense of deleting some
data object.

Lock Subsystem: It is important to provide concurrent
access to the database to optimize its use, and also to
tacilitate parallel execution of related modules in applica-
tion program. This, however, is not possible without a
concurrency control mechanism. We, therefore, plan to
implement a lock subsystem to regulate concurrent access
to the database without jeopardising its integrity.

Recoverv Mechanism: In any working environment, it
is important that a job is able to continue after an inter-
ruption without losing any previously done work. The
interruption can be in many forms: crash due to error in
application program, crash due to DBMS error, job abort
due to wrong DBMS call, job abort due to non-availability
of data, deadlock etc. After the program is restarted it
should be possible to redo the already done work and
continue from that point; it is even better if the program
is allowed to restart automatically (when it is not crash due
to error). On the other hand, if it is not possible to continue
after a program crashes, all the work done by the program
must be undone.

We plan to implement a log subsystem which keeps trail
of activities on selected data objects. Such data objects can
be brought to consistent state after a fail; while other data
objects will be marked as changed or inconsistent after an
unexpected failure, and the same will be notified to the
next user.

Data Language: MIDAS/GR provides a unified approach
to define and manipulate various data models (relational
and numerical) through a data subdanguage. This language
may be used from a host programming language or as a
stand alone utility.

The advantage of having the same language for pro-
grammers and terminal users is the ease of communication
and use. Our immediate plan is to write an interpreter for
the terminal users, since 1t is comparatively easy to imple-
ment. Subsequently, we plan to develop a compiler to
process the application programs using MIDAS/GR.

So far in our design we have omitted a few important
aspects of database management system: authorization,
integrity and distributed database. Authorization, though
a crucial issue in business application, we felt, can be post-
poned in our work. This, however, should not be construed
as that security is not important in engineering applicati.1s.

184 Adv. Eng. Software, 1987, Vol. 9, No. 4

Our next objective is to design a simple and efficient
authorization mechanism based on password. Entries of this
subsystem will be in hierarchical form, eg. organization,
project, programmer; where children entities by default
inherit their parents’ authority.

The problem of integrity is the problem of ensuring that
the data in the database is accurate, i.e. the problem of
guarding the database against invalid updates. An integrity
subsystem should monitor the transactions, specifically
update operations, and detect integrity violations. In the
event of a violation, it should take appropriate action, for
example, rejecting the operation, reporting the violation, or
even correcting the error.

Distributed database management system is our answer
to efficient parallel processing over a network. As we know,
current emphasis on software design in engineering applica-
tions is to incorporate as. much parallelism in the algorithm
as possible. Parallel algorithms are developed at various
levels of granularities. At a coarser level, parallelism is in
terms of programs, where independent modules (connected
through a database) run in parallei.

To achieve true parallelism, different modules may run
on different nodes in a network. It will be efficient if the
database is distributed over the network, instead of a central
location servicing all requests, which will lead to bottle-
neck in the network. A distributed version of MIDAS/GR
can solve this problem. In our context of local area network,
we feel, it may still be advantageous to keep the public
domain of the database in a central location, while the
private ones can be distributed to appropriate nodes.

CONCLUSION

The need for both relational and matrix data types in
engineering applications has been long recognized. While
matrices form mostly temporary or semi-permanent data
private to a program, relations are either permanent data in
public domain used by different programs or final results
of a program to the end user. Several systems have been
proposed in the last few years* with various degree of facili-
ties and level of efficiency; none, however, meets the
requirement of versatile data structure or run-time support
required in a volatile, large 1/O environment of engineering
database.

We believe that MIDAS/GR is unique in its design and
capabilities. Its biggest strength lies in its ability to define
a unifying data structure, using primitive (integer, real,
double precision) and structured (vector, matrix, string,
record) data types. Relation is just one of the many user
defined data types (vector of records). Because of its
general approach, matrices can be defined as easily as any
other data types (say, relation), and it can have its own
composite data elements, and qualifiers (sparse, banded,
etc.). Similarly, relations can have non-atomic attribute
values (i.e. a matrix or a vector).

Data objects are broadly grouped in two categories:
static and dynamic, e.g. a matrix is a static object, whereas
a relation is a dynamic object. Distinct storage organization
is adopted for static and dynamic data objects to optimize
access time and storage utilization; this distinction is, how-
ever, transparent to end users who view data through their
own definition.

ACKNOWLEDGEMENT

Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under

(2

o

.
»
.

»
‘

5,

xs

e
“r

“

& d5

-

7.7
222

%

AR
i"t"';';'_;' >

4%

r

iy,

=

o7 I

A Y
‘Y

[
[RCA

vt

W BE

o

&

B

AR Ty T - L3 o o’
BN e e A P TS A P A O R S S A by

Grant Number AFOSR 820322. The US Government is
authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation
thereon.

REFERENCES

1 Rajan, S. D. and Bhatti, M. A. Data management in FEM-based
optimization software, Computers and Structures 1983, 16
(1-4), 317

2 SreekantaMurthy, T. and Arora, J. S. Database management
concepts in computer-aided design optimization, Advance in
Engineering Software 1986, 8 (2), 88

3 SreekantaMurthy, T., Shyy, Y. K. and Arora, J. S. MIDAS-
management of information for design and analysis of systems,
Advances in Engineering Software 1986, 8 (3), 149

4 SreekantaMurthy, T. and Arora, J. S. Computer-aided struc-
tural optimization using a database management system,
Technical Report No. ODL-85.17, Optimal Design Laboratory,
College of Engineering, University of lowa, 1985

5 Mukhopadhyay, §. and Arora, J. S. Design and implementation
issues in an integrated database management system for engin-

A AT LT T e e VW GO

e e et T

D SV D I DI XY T DIV Wy

102

eering design environment, Advances in Engineering Software
1987, 9 (4), 000

6 Mukhopadhyay, S. A database management system using
generalized relational model, Master'’s Thesis in Dept. of Com-
puter Science (May), The University of lowa, lowa City, lowa
52242, 1986

7 Knuth, D. E. Art of Computer Programming, Vol. 1, Funda-
mental Aigorithms, Reading, Mass., Addison-Wesley, 1973

8 Shyy, Y. K., Arora, J. §., Mukhopadhyay, S. et al. MIDAS/N
User Manual, Optimal Design Laboratory, College of Engineer-
ing, University of lowa, 1984

BIBLIOGRAPHY

Arora, J. S. and Mukhopadhyay, S. Specification for MIDAS-GR
management of information for design and analysis of system:
generalized relational model, Technical Report No. CAD-SS-
84.24, Optimal Design Laboratory, College of Engineering,
University of lowa, 1984

Astrahan, M. M, Blasgen, M. W_, Chamberlin, D. D. er al. System R:
Relational approach to database management, ACM Trans. on
Database Systems 1976, 1 (2), 97

Adv. Eng. Software, 1987, Vol 9, No. 4 185

ESITE AL S SN

e ettt ety e
P T e e T T T T

b Y

s

™

II'- "y

oy
o

“x

-’
o

-'.. sl’ ‘-‘
LY rLe

il
ey Y
bl5)

%

|®

5

.
A

’4.'.'-'.

v et Ea (e Ba¥ et Net Vit vg" Y 8.0 0 V" 0D 2" S0 0o §.0°0.8 9a0 $ad Cat ot Uah vl vl gy ond e) ol Sab ‘BY a0 ek gl 'ml aly giotpte! La¥asite jin p¥a fte 0ig 8lg A'p Gig din b gt).

® 103
) APPENDIX 9

¥ DESIGN AND IMPLEMENTATION ISSUES IN AN
. INTEGRATED DATABASE MANAGEMENT SYSTEM
18 FOR ENGINEERING DESIGN ENVIRONMENT

)
5} : -~ :
:, ®

1,‘:5 (Y
» by oy
g% i
S. Mukhopadhyay and J.S. Arora ot
0‘ y "
0
. N
b
B J L]
Ol
in K
e Q‘_
. "‘
.;.c::_

%

-
..{

) . . . X
-, A
- Advances in Engineering Software)
- »
A
" Vol. 9, No. 4, 1987 Tl
. - Ca®
.f .n.'.v.'
» "1 '
e :ﬁ:”
J\' :{:i
"i"’.ﬁ
~ NN
'Q bgﬁ
o
L\ e
A
N } ';:: ’ 0
Ay
.- W
o
¥ Y
>
N g e g e RN T VRGNS e N e N S e e e e\ N

et gt

¥
1)
'
L)

o

va©

T "a " "w " n" LIPS R Y - Ny o o e
A A ey A L W N AL AT A W A R e N

T T T T T A O N O TN IO R M PO R TP A W U WM™

104

Design and implementation issues in an integrated
database management system for engineering design

environment

S. MUKHOPADHYAY and J. S. ARORA

Optimal Design Laboratory, College of Engineering, The University of lowa, Iowa Ciry,

lTowa 52242, USA

The need for a unified database management system
for various engineering applications has long been
felt. Due to the conflicting requirements, so far,
most of the attempts in this field are at best partially
successful. This paper presents broad perspectives
of design and implementation issues of an integrated
database management system. A unique feature of
the system is its ability to define a unifying data
model for matrices and relations. The system also
provides for a unified language interface for dif-
ferent user groups. System architecture and a few
distinguishing features are described. An evaluation
of the system is presented.

INTRODUCTION

Complexity of software for engineering applications has
grown exponentially over the years. This is particularly
true for the design optimization software where several
software components must be integrated to have a viable
design tool. The software components are user interface,
model generator, model analyzer, design problem defini-
tion module, design sensitivity analysis module, optimizer,
model update module and the post-processor. Such a large
software system generates a huge amount of data. It is clear
that for a highly flexible and efficient system, a very
sophisticated and advanced database management scheme
is needed. Large numerical as well as relational databases
must be handled in an efficient and integrated manner.
Thus, a very sophisticated database management system
(DBMS) is needed that can cater both the advanced users
(system programmers) as well as the casual users. This and
a companion paper® describe design and implementation of
such a DBMS.

In a recent paper? design and implementation of a
DBMS called MIDAS was reported. MIDAS stands for
Management of /nformation for Design and Analysis of
Systems. The system has wo distinct subsystems: MIDAS/R
and MIDAS/N. MIDAS/R handles relational data and is an
extended version of the well known DBMS called RIM,?
and MIDAS/N handies numerical data sets, such as various
types of matrices. It was hoped that with the two sub-
systems, an application software, such as the one for design

Accepted April 1987. Discussion closes December 1987,

186 Adv. Eng. Software, 1987, Vol. 9, No. 4

~.-‘.-

R AR I
SN

optimization of large systems could be developed using
both the relational and the numerical data models. Whereas
some application programs have been developed with
MIDAS as the DBMS, it has become clear that the use of
two separate subsystems is not convenient and efficient.
The two subsystems have their own architecture, memory
management and user interface. They do not communicate
with each other and their use in an application program
essentially amounts to using two independent DBMS. This
is highly undesirable.

Thus the issue of an integrated database management is
re-examined. Design and implementation of a2 new database
management system is reported in this and the companion
paper. The system is unique in its design concepts. The
strength of the system lies in its ability to define matrices
and relations using a unified data model. It also provides
facilities which were not hitherto available in a single DBMS
in an organized fashion. These facilities are made possible
mainly by the development of a new data model, which is
termed as the Generalized Relational Model. Accordingly
the system is named MIDAS/GR — Management of /nfor-
mation for Design and Analysis of Systems/Generalized
Relational model.

The system provides efficient run-time support to various
engineering applications handling large numerical and rela-
tional data. It also provides a central storage area for various
groups in a design department. For example, groups working
on structural geometry, structural layout, cost estimation,
material control, project planning, etc. need to share data
and interact with one another. The system provides neces-
sary interface and facilities for such purpose.

Detailed design of the new system is substantially dif-
ferent from its predecessors described by SreekantaMurthy,
Shyy and Arora? The paper describes broad perspectives
of design and implementation issues of the new integrated
database management system. The concept of a generalized
relational model is described. System architecture and data
models are explained. Other issues such as storage, index
and link organizations are also discussed. Details of imple-
mentation and system evaluation are given in the companion
paper.!

The paper also contains some results of running applica-
tions using the new system. The system is almost twice as
fast compared to its predecessor. Results are also comparable
in efficiency, if a program is run without DBMS (smaller
problem that fits in operating systems virtual memory).
Appendix contains an abridged version of the higher level
data language provided by MIDAS/GR in BNF notation.

0141-1195/87/040186-08 $2.00
© 1987 Computational Mechanics Publications

%

TN A L o '.r;.'-_'-' N
o B T W

.
-
- -

B2

5%

&

Fy. |

2

1
4

2

v
[

Aa

gi
:

T ATATRY

elererar
NP PRIy ‘V’M‘ i Wy VA, o

REVIEW OF LITERATURE

There is a functional separation between business and
scientific computing. It is therefore, not surprising that
commerical database management systems are unsuitable
in scientific applications. Important similarities, however.
exist between the two types of systems in terms of data
language, storage management, access method, concurrency
control, and recovery mechanism. This aspect is discussed
at length by Felippa.** Database management concepts in
computer-aided design optimization are discussed by
SreekantaMurthy and Arora.$

SreekantaMurthy and Arora” studied a number of exist-
ing database management systems for engineering applica-
tions. The survey includes systems such as DELIGHT,
DATHAN, EDIPAS, FILES, GIFTS. GLIDE. ICES, IPIP,
PHIDAS, REGENT, RIM, SDMS, SPAR. TORNADO, and
X10. Mukhopadhyay® referred to System R®and INGRES 1©
Felippa'! presented a new system called NICE.

None, however, is found suitable to meet the challenge
of integrated engineering environment. Most of the systems
(eg. MIDAS/N, GIFTS, etc.) support only numerical data-
bases and provide run-time support, while others (e g. RIM,
NICE) provides global database for different user groups to
share data. The latter systems (eg. RIM, INGRES, etc)
have tried to extend relational model to incorporate matrices
or vectors. This artificial definition of matrices leads to
difficulty in organization of numerical data. This also
makes direct access to individual data elements impossible.

GENERALIZED RELATIONAL MODEL

Relations are important for sharing data among different
users. Whereas most physical models in business applications
can be represented conveniently in database as relations,
engineering applications require both matrix and relational
data types. Most large matrices form temporary or semi-
permanent data private to a program. Relations are either
permanent data in public domain used by different users or
final results of a program to the end user. Therefore a new
scheme is needed to represent both relations and matrices
in a unified way for integrared engineering applications.

Engineers and scientists are well versed with the use of
matrices and vectors. It is natural for them to imagine a
relation as simply a two dimensional array whose each
column has unique definition. Thus the concept of a matrix
is generalized and the resuiting model is termed as the
generalized relational model. This scheme is supported by
primitive and structured data types. Using these data types
users can define their own data models.

The novelty of the new approach is that the relation is
derived from a matrix. In all previous attempts (RIM,
INGRES), one tried to extend relation for matrix data
type. This led to clumsy and inefficient handling of numeri-
cal data. In MIDAS/GR the basic data type is matrix.
Matrix can be one dimensional (vector) or two dimensionai,
and it can have elements with composite data structure.
Relations are derived from the matrices as vector of record.

SYSTEM ARCHITECTURE

The overall architecture of MIDAS/GR is described by its
two main components. The lower level component is Data
Storage Interface (DSI), and the upper level component is
called Data Language Interface (DLI). DSI is an internal
interface which handles access to single data elements. It

LA S o S S A NI Sy 2 S VAN S SN

manages space allocation, storage buffers, transaction
consistency, system recovery, etc. It also maintains indexes
on selected fields of relations and pointer chains across
relations.

The DSI has been designed so that new data objects or
new indices can be created at any time, or existing ones
destroyed, without quiescing the system and without
dumping and reloading the data. This facilitates gradual
database integration and returning of access paths. One can
redefine data objects, i.e. change dimensions of matrices
or add new ftields to relations. Existing programs which
execute DSI operations on data aggregates remain unaffected
by the addition of new fields.

DSI has many functions which can be found in other
systems, both relational and nonrelational, such as the sup-
port of index and pointer chain structures. The areas which
have been emphasized and extended in the DSI included
integrated data definition and manipulation facilities for
numerical (matrices) and relational data models, dynamic
definition of new data types and access paths, dynamic
binding and unbinding disk space, and crash resistance and
recovery.

Data Language Interface (DLI) is the external interface
which can be called directly from a programming language.
The high level data language is embedded within the DLI
and is used as the basis for all data definition and manipula-
tion. In addition, the DLI maintains the catalogs of external
names, since the DSI uses only system generated internal
names.

DATA MODEL

The basic data models in MIDAS/GR are matrices (1wo
dimensional) and vectors. Vectors are of two types: variable
length and fixed length. A fixed length vector can also be
considered as a degenerate matrix with only one row. A
special type of variable length vector is the relation (vector
of record). Figure | shows relationships among different
data models.

Matrix and fixed length vectors are static objects, i.e.
their sizes are statically determined at the time of their
creation. This essentially means that they can have elements
only of fixed size. In contrast, variable length vectors are
variable in nature. Not only is their size determined dyna-
mically (depending only on the number of elements defined),
also their elements may be of variable length.

There are four structured data types available in the
system: Record, Vector, Matrix, String. The type record
gives the most general method to obtain structured data
type. It joins elements of arbitrary, possibly themseives
structured types into, a compound type. Vectors and
matrices are in contrast homogeneous structures. They
consist of all components of the same type, called the base
type. The base type in turn may be a structured type. This
opens up the possibility of defining a number of special
data types. For example, a matrix of complex numbers,
where complex number is a record of two real numbers.

A vector of record may in general be treated as a relation
where each component of the vector is an occurrence of the
record, and each component of the record is an attribute of
the relation.

If a matrix is defined as matrix of matrices, the matrix is
considered to be made up of a number of submatrices.
Matrices may be accessed rowwise, columnwise, or sub-
matrixwise.

Adv. Eng. Software, 1987, Vol. 9, No. 4 187

s

ot g J

o

l"
(5

hi

)
"
7’
~
[4
IS

r’ﬂ:l

A N
Ps

“z"-ft

2,
a

A

!

» I 3

fof o
X
2

LYY
‘ﬁ&

Ay

Py
Y
}&I

T W T U TN TN N TN U R TS U T T T A U OV U NGO PO R PO T RO CRO OO AT AN Y, P 'e 5 P gV al .V eV ety
[__anien o . N N

|
i
i

106

Dats Object

Vector

Matrix

|

| |
Fixed Length
Vector

Variable Length
Vector

Other Relation
Figure 1. Data model of MIDAS/GR

String is a special structured data type designed to deal
with a sequence of characters. String may be used as base
type to define other structured data types.

There are four primitive types available in the system.
They are Integer, Real, Double precision, and Character.

STORAGE ORGANIZATION

The storage interface provides one potentially infinite linear
address space. However, it is preferable to partition a large
database into areas. Such a partition allows for smaller
addresses to be used. It improves flexibility for controlling
access to the database, and provides a means of factoring
out some common attributes of a collection of data. It is
also useful for selectively saving and restoring information.

The database consists of a set of disjoint areas, each of
which constitutes a linear address space. These areas are
used for storing user data, access path structure, internal
catalog information, and intermediate results. All the ele-
ments of a data object must reside within a single area;
however, a given area may contain several data objects,
indices, etc.

Areas are classified in three major types, depending on
the combination of functions supported and overhead
incurred: Public Area, Private Area, and Temporary Area.
Public Area contains shared data that can be simultaneously
accessed by multiple users. Private Area contains data that
can be used by only one user at a time (or data that is not
shared at all). Temporary Area contains only temporary
data which is lost as soon as the program terminates.

Data in public and private areas are recoverable (i.e. data
will not be lost in the event of a failure), but not the one in
temporary area. This reduces the overall overhead, as the
overhead associated with full support of concurrent sharing
needed for public data area, can be avoided for private and
temporary data.

The addressing of a particular location in an area could
be done at the byte level, by using a relative address from
the beginning of the area. However, such a continuous
space must be stored on auxiliary storage in records. We
therefore, decompose the address space into logical pages,
knowing that these pages will be stored on disk in physical
slots of identical size. A page is, therefore, unit of access
(address and transfer).

188 Adv. Eng. Software, 1987, Vol. 9, No. 4

e A e AR R R A Rt - Rt I XD

|

Two Dimensional
Matrix

Two distinct storage organizations are adopted for fixed
length data objects and variable length data objects. For
fixed length objects, all data elements are defined at the
time of creation. Therefore, full storage allocation is made
as soon as it is created. Whereas for variable length objects,
size of the object at any time depends on the number of
elements defined. Therefore, allocated storage is expanded
dynamically as more and more elements are defined.

For variable length objects, data aggregates may be
stored in a page and addressed using the page number and
the offset of the data aggregate from the beginning of the
page. This strategy has the disadvantage that a data aggre-
gate must remain in a fixed location within a page; this
leads to internal fragmentation within a page, as the data
aggregates are deleted. Figure 2 shows the organization of a
page of variable length object. This is a hybrid scheme,
which combines the speed of a byte address pointer with
the flexibility of indirection. This organization was originally
proposed by Astrahan et al.® for their experimental DBMS
System R.

Each individual record has a numeric identifier, called
Dald (Da for data aggregate). Each Dald is a concatenation
of a page number, along with a byte offset from the bottom
of the page. The offset denotes a special entry or ‘slot’
which contains the byte location of the data aggregate in
that page. This technique allows efficient utilization of
space within data pages, since space can be compacted and
data aggregates moved with only local changes to the
pointers in the slots. The slots themselves are never moved
from their positions at the bottom of each data page, so
the existing Dalds can still be employed to access the data
aggregates. Since the position of the byte offset at the
bottom of the page is fixed, internal movements of the data
aggregates within a page does not change its address. This
provides easy way to compact data aggregates within a
page. A variable length object is made up of a collection of
such pages.

A matrix is a fixed length object, i.e. its elements are
created or deleted all at once. Therefore, we do not have
the problem of internal fragmentation within a page for
such objects. Also elements in a matrix are accessed both at
random and in sequence. Therefore, it is important that the
logically contiguous elements are stored physically close to
each other. The elements may be stored rowwise, column-

,
|4

2 g .ﬁ‘h

Ry

g

4

'N!'ﬁ'm{“"' -nlﬁacm

b 020704 R0 Rt 8 0% 8 8 e B e 000 AFs A7 g 1o @Va STa §% ¥y a¥y -ty AR R BE APV}

1n7

N4

H eader |

Page —— >

Dald
Y *

Page Offset from
No. Bottom of

V

Record R]

S
- | Record R;

Page

[] BIEEXLEEE

Address of

Record R j
Figure 2. Page organization of variable length object

wise or submatrixwise. Qur previous experience shows that
if the request for data storage or retrieval varies from that
of storage order, I/O is extremely slow; in worst case it may
require reading or writing a page for every data element.

McKeller and Coffman’? show a technique that allows
quick access to matrices rowwise, columnwise and sub-
matrixwise. Matrices are stored submatrixwise. Each
submatrix contains a fixed number of rows and columns,
such that the size of the submatrix is not greater than a
page size. It is possible to choose number of rows and
columns of submatrices in such a way that minimizes wast-
age of storage space. Figure 3 shows storage organization
for such a data model. Fixed length vectors are stored
similarly where number of row is one.

Data objects are divided into two categories — small and
large. The mapping between logical and physical pages of
the data object is defined by using page table. For large
data objects the page table becomes quite large. Therefore,
the page table of the large object is defined as small fixed
length vector and stored in the database as a permanent
object. This technique leads to very small page table in the
virtual memory at the expense of one level of indirection
for each page access.

INDEX ORGANIZATION

An index is a logical ordering with respect to values in one
or more sort fields. Indices combined with scans provide
the ability to scan data objects along a value ordering. Also,
an index provides associative access capability. The DLI can
rapidly fetch data aggregate from an index by keying on the
sort field values. The DLI can also open a scan at a particular
point in the index, and retrieve a sequence of data aggre-
gates with a given range of sort values.

A new index can be defined at any time on any combi-
nation of fields; only restriction being that fields must be
atomic. Furthermore, each of the fields may be specified
as ascending or descending order. Once defined, an index is
maintained automatically by the DSI. An index can also be
dropped at any time,

SUB 1 1|suB12 | sup13|SuBIA
sSUB21|suB22|suB23 |suB24
SUB31|sua32|suB33|sSuB34

SUB41|SUB42 | SUB43| SUB44 <

Page
Figure 3. Storage organization of fixed length object

The DSI maintains indices through the use of a multi-
page index structure. An internai interface is used for
associative or sequential access along an index, and also to
delete or insert index entries when data aggregates are
deleted, inserted or updated. The parameters passed across
this interface include the sort field values along with the
Dald of the given data aggregate.

Many techniques for organizing an index have been pro-
posed. Knuth!? provides a survey of the basics. While no
single scheme can be optimum for all applications, a tech-
nique of organizing indices called B-tree'* has become
widely used. The B-tree is, de facto, the standard organiza-
tion for indices in a database system. For reasons of effici-
ency in both random and sequential access, we have adopted
a variation of B-tree, called B*tree.!s In a Btree all keys
reside in the leaves. The upper levels, which are organized
as a B-tree, consist only of an index. Leaf nodes are linked
together; this allows easy sequential processing.

Each index is composed of one or more pages. A new
page can be added to an index when needed as long as one
of the pages within the area is marked available. Each page
is a node and contains an ordered sequence of index entries.
For nonleaf nodes, an entry consists of a (sort value, pointer)
pair. The pointer addresses another page in the same struc-
ture, which may be either a leaf page or another nonleaf
page. In either case the target page contains entries for sort
values greater than the given one. For the leaf nodes, an
entry consists of {sort value, Dald) pair. For the same sort
value, the order of the entries are not defined. The leaf

Adv. Eng, Software, 1987, Vol. 9, No. 4 189

r W
GOOOUS
"‘l‘“
.“‘ .‘.'i
l'|“"'(‘
ol ‘l.q v
Rt
OO ". .

] i
A

g

'%.‘:‘7
sl
.‘ .'A

L'

:‘.’&'vg
LA P v
2o]® o

L4
»

_?,'.
AL
‘i’"f y

g \
[

MHMI&&#MP d

pages are chained in a doubly linked list, so that sequential
access can be supported from leaf to leaf.

LINK ORGANIZATION

A link is an access path which is used to connect data
aggregates in one or two data objects. The DLI decides
which data aggregates will be on a link and determines their
relative position. The DSI maintains internal pointers so
that newly connected data aggregates are linked to previous
and next twins; previous and next twins are linked to each
other when a data aggregate is disconnected.

A unary link involves a single data object and provides
a partially defined ordering of data aggregates. Unary links
can be used to maintain ordering specification (not value
ordered) of data aggregates, which are not supported by
DSI. It also provides an efficient access path through all
data aggregates of an object without the time overhead of
an internal page scan.

The more important access path is a binary link. It
provides a path from single data aggregates (parents) in
one object to sequences of data aggregates (children) in
another object. The DLI determines which data aggregates
will be children under a given parent, and the relative order
of children under a given parent. A data aggregate may be
parents and/or children in an arbitrary number of different
links. The only restriction is that a given data aggregate can
appear only once within a given link.

The main use of binary links is to connect child data
aggregates to a parent data aggregate based on value match-
ing in one or more fields. With such a structure the DLI can
access data aggregates in one object based on the matching
field in a data aggregate in a different object. This function
is specially important for supporting relational join opera-
tions, and also for supporting navigational processing
through hierarchical and network models of data. A striking
advantage is gained over indices when the children are
clustered on the same page as the parent. Another important
feature is that links provide reasonably fast associative
access without the use of an extra index.

The links are maintained in the DSI by storing Dalds
in the prefix of data aggregates. New links can be defined
at any time. When a new link is defined, a portion of the
prefix is assigned to hold the required entries. An existing
link can be dropped at any time. When this occurs, each
data aggregate in the corresponding data object(s) is accessed
by DSI in order to invalidate the existing prefix entries and
make space available for subsequent link definition.

CONCURRENCY CONTROL

Concurrency is introduced to improve system response and
utilization. But if several transactions are scheduied con-
currently then the inputs of some transaction may be
inconsistent even though each transaction in isolation is
consistent.

If the database is read only then no concurrency control
is needed. However, if transactions update shared data then
their concurrent execution needs to be regulated. If all
transactions are simple, and all data are in primary storage,
then there is no need for concurtency. However, if any
transaction runs for a long time or does [/O then concur-
rency control will be needed to improve responsiveness and
utilization of the system !¢

Concurrency must be regulated by some facility which
regulates access to shared resources. Locking is introduced

190 Ady. Eng. Software, 1987, Vol 9, No. 4

108

to eliminate three forms of inconsistency due to concur-
rency: Lost Update, Dirty Read, Un-repeatable Read.

A lock is associated with each object in the database.!”
Whenever using the object, transaction acquires the lock
and holds it until the transaction is complete. Even when
the object does not exist, it is locked to ensure that no
other transaction will create such an object before the
transaction terminates. In this case, the non-existence of
the object is locked; such non-existent objects are called
phantoms.

Locks are dichotomized as share mode locks (S-lock),
which allow multiple readers of the same object and exclusive
mode locks (X-lock) which reserve exclusive access to an
object. Responsibility for requesting and releasing locks can
either be assumed by the user or be delegated to the system.
Our approach is to use automatic lock protocols which
ensure protection from inconsistency, while still allowing
the user to specify alternative lock protocols as an
optimization.

Lock manager has two basic calls: Lock and Unlock.
Their formats are as follows:

LOCK (lock), {mode), {control)

Locks a specified object.
UNLOCK (lock): Releases the specified lock.

(lock) is the resource name. {mode) is one of the modes
specified. (control) can be either WAIT, in which case the
call is synchronous and waits until the request is granted or
is cancelled by the deadlock detector, or {control) can be
TEST in which case the request is cancelled if it can not be
granted immediately.

Since there are so many locks, it only allocates those
with non-null queue headers (i.e. free locks occupy no
space). Setting a lock consists of hashing the lock name into
a table. If the header already exists the request enqueues
on it, otherwise the request allocates the lock header and
places it in the hash table. When the queue of a lock becomes
empty, the header is deallocated.

A deadlock exists when every member of a subset of
concurrent transactions is locked out o/ a resource or facility
by one or more members of the subset; and each transaction
must have that facility or resource in order to continue
processing }® 1% As the user of a database system must have
the possibility of enlarging his exclusive access rights in
increments, deadlocks are unavoidable.

One easy solution to deadlock is to time out. Time out
causes waits to be denied after some specified interval. As
the system becomes congested, more and more transactions
timeout. Also, timeout puts an upper limit on the duration
of a transaction. In general, the dynamic properties of time-
out make it acceptable for a lightly loaded system, but
inappropriate for a congested system.

Deadlock prevention is achieved by requesting all locks
at once, or requesting locks in specified order, or never
waiting for a lock etc. In database context, deadlock pre-
vention is a bad deal because one rarely knows in advance,
what locks are needed, and consequently one locks too
much in advance. Therefore, a database management system
generally requires deadlock detection mechanism. Resolu-
tion of deadlock essentially becomes another source of
backup.

RECOYERY MANAGEMENT

For recovery purposes, data models are classified in two
groups: fixed length data objects and variable length data

=3 81

5

14
.

2 &3

RE &=

eI

5

L

. ur-
-
ick
en
no
he
\ of
‘ ed

),

W e W D

objects. Fixed length data objects are matrices and fixed
length vectors. In general, they are temporary and volatile
in nature, i.e. they come into existence when some design
program is run, and remain in the database while the design
or analysis process is in progress. In structural analysis and
optimization, they are typically stiffness matrix, damping
matrix, mass matrix or iteration matrix of design variables
and constraints.

Variable length data objects are variable length vectors
and relations. In most cases, they are less volatile in nature
and form permanent data in many scientific projects. They
typically represent geometrical data, material property,
general configuration data (structural, piping, etc.). Not
only that these data change little during the life time of a
project, they form part of the read only database after the
project is over.

It is uneconomical and unnecessary to provide recovery
facilities to fixed size objects, as they are either temporary
or can be derived from other permanent data. Moreover,
because of their large size, heavy I/O and volatile nature,
recovery can be more expensive than to regenerate them,
as may be required in worst case.

For recovery several methods are considered. Shadow
mechanism?® was originally considered for its simplicity.?!
However, it consumes large amount of disk space to hold
the shadow pages. In fact, considering the large I/O charac-
teristics of scientific databases, this may require even 100%
shadow overhead. Also, shadow mechanism is inefficient in
a database which is concurrently accessed by a number of
users.

The alternative mechanism adopted is ‘write ahead log
(WALY) protocol 2 WAL requires that log records be written
on secondary storage ahead of the corresponding updates.
Further, it requires that undo and redo be restartable, ie.
attempting to redo a done page will have no effect and
attempting to undo an undone page will have no effect
either. This allows restart to fail and retry as though it were
a first attempt.

In the event of a system failure which causes a loss of
disk storage integrity, it must be possible to continue with
a minimum of lost work. Such situations are handled by
periodicaily making copy of the database state and keeping
it in an archive. This copy and a log of subsequent activity
can be used to reconstruct the current state. The archive
mechanism periodically dumps a transaction consistent
copy of the database to magnetic tape.

Although performing a checkpoint takes only a short
time, dumping the entire database is a lengthy operation.
Moreover, it is desirable that dump be taken when the
system is in a quiesced state, such as at the time of con-
trolled system shutdown. Gray® describes a ‘fuzzy’ dump
mechanism which allows the database to be dumped while
it is in operation.

EVALUATION

Currently, application programs access MIDAS using a well
defined interface. The specification of this interface is given
in MIDAS/N User’s Manual.® The same interface is impie-
mented on top of MIDAS/GR access method. As a result
MIDAS/GR has become accessible to all applications that
have been using MIDAS.

For the purpose of benchmarking MIDAS/GR and com-
paring it with MIDAS/N, an application program is chosen.
This program solves a system of equations using the skyline
method. The reason for choosing this program is that in

109

most engineering problems it is necessary to solve a system
of equations, and the performance of the application
depends critically on the performance of the equation
solver.

Tables 1 and 2 gives some idea about the performance
of MIDAS/GR. More detailed resuits are contained in the
companion paper.! All tests are run on a DN460 Apollo
computer with 2 MB of primary memory.

In general, MIDAS/GR is about twice as fast as MIDAS/N.
Another interesting observation relates to the use of DBMS
itself. It is a popular belief in the scientific field that one
must make great sacrifice in efficiency to use DBMS (for
other gains). Our result shows that with DBMS (MIDAS/GR)
the program runs only about 10-12% longer than that with-
out DBMS (database is in the virtual memory). This small
increase in cpu time is acceptable in most cases.

At this time, MIDAS/GR does not manage its own disk
or primary memory. The increased run-time is attributed to
MIDAS/GR’s dependence on the Operating System for
memory management and disk space allocation. This leads
to duplication of effort in memory management and
infficiency in allocation of disk space. We believe that
MIDAS/GR will, in fact, improve efficiency in future when
it manages its disk and buffer directly.

CONCLUSION

A properly designed DBMS can have enormous impact on
the architecture of future software for complex engineering
applications. As more computational power becomes avail-
able, the range of applications and complexity of the
software increases. Extensions, maintenance and debugging
of the software can be considerably facilitated by the use of
a proper database and DBMS. Thus, a properly designed
and implemented DBMS will be an invaluable tool for
future software developments to solve complex-interdisci-
plinary engineering analysis and design problems.

Table 1. MIDAS/GR vs. MIDASIN
Page size = 4 KB, Buffer size = 64 KB, Workspace size = 32 KB

CPU time in CPU time in

No. of MIDAS/GR MIDAS/N Ratio
equations (s) (s) MIDAS/N: GR

1 000 878 1639 1.87

5 000 4933 9560 1.94
10 000 9670 18 362 1.90
20 000 20 316 37 360 1.84
30 000 30 465 55 562 1.82
40 000 40 641 77 935 192

Table 2. MIDAS/GR vs. Virtual Memory
Page size = 16 KB, Buffer size = 256 KB, Workspace size = 128 KB

CPU time in CPU time Penalty for

No. of MIDAS/GR wjo DBMS DBMS use
equations (s) (s) (%)
1 000 314 281 11.7
5 000 1680 1502 11.9
10 000 3390 3023 12.1
20 000 6831 6193 10.3
30 000 10 289 9 241 113
40 000 13 747 12228 124

Adv. Eng. Software, 1987, Vol. 9, No. 4 191

SR _."__.

-

& 2
{4
=

%

kgl o= =4

R

A
ek

,,_,
?;.'f.'
P

}l
Prd

)é.

;.' '
X
.
:" Though the design of MIDAS is directly influenced by
! the current structural optimization applications, it possesses
; features which make it amenable to more general engineer-
» ing applications. The main reason is that most of the needs
' of structural optimization typically represent requirements

of many other engineering applications.
. The new system presents an overall upgrade in all respects.
' Major advantages lie in data definition facility, memory
s management scheme, and storage layout. Unlike earlier
l: systems, it has unified data definition for matrices and
W relations, while retaining their distinct features.
',‘ The improvement in memory management is implicit
| in faster program execution. It has reduced overhead on
\ DBMS calls; therefore, application programmers need not
:l burden themselves with the management of large work
!: spaces. Also, buffer can be extended with the addition
: ' of new memory, resulting in improved performance.
)
"

APPENDIX A. DATA LANGUAGE SYNTAX
; The following is a shortened version of the BNF syntax for
B MIDAS/GR data language. In this notation, square brackets
3 [] indicate optional constructs, and the braces { ; indicate

repeating groups of zero or more items.
.

scatement ::= query

| dml-statement
l | ddl-statement
| concrol-statement

)

-

query ::» query-expr (ORDER BY ord-spec-ilst)
JUery-expe ::= query-block | (quecy-expr)
query-block ::= retrieve-clause [INTO target-list |
FROM from-list [WHEAE boolean-expg |
recrieve~clause ::= RETRIIVR [UNIQUE | ret-expr-liist
| RETRIEVE (UNIQUR | °
Tet-expr-list ::e ret-expf (., reC-expr }
TEL-ORPL ::® SNPI | VAL-NASe.° | cbl-name *
razget-~-list ::e= var-name (., vac-nase |
from-list ::= obj-name { var-name | (, abi-name (var-name }]
{.{ quecy-block 1]
ord-spec-list ::= field-spec [dizection | (., field-spec
{ dicection]}
field-spe . .:= field-name
| obj-name.fleld-name
| vag-name.{isld-name
digection ::= ASC | DRSC
where-clause ::= WRERE Doolean-expc

boolean-empr ::= boclsan-term

! boolean-expr OR boolean-term
t boolean-expr IXOR doclean-term
boolsan-tera ::= doolesan-factor
| boolean~term AMD doolsan-factor
bdoolean-factos ::= (WOT] boolean-primacy
boolesa-primacy ::= predicate | (boolean-expr)
predicate ::e expr CONpALison efpr
| eNPT CONpAEison obj-spec
| < field-spec-list > (NOT] IN full-ob)-spec
| obj-spec compatison full-cbjl-spec
full-obi-spea ::= obj-spec | litersl

192 Adv. Eng. Software, 1987, Vol. 9, No. 4

[

110

2bj=spec ::= query-dlock

I (quecy-expz)

| constant
field~-spec-~list ::= field-spec {, field-spec |
expr ::® arith-term

| expr add-op arith-term
azith-term ::= artgh-factor
| arith-term mult-op ar.ih-fac%or

arith-factor ::= [add-op | primacy
primazy ::= field-spec
fn ([UNIQUE] expr)
tn (*)

constant

I { expg)
compasisen ::iw comp-op | IN | NCT IN
comp~0p ::= = | <> | > | >= | < | <=

add-op ::® ¢ | =

aule-op = ¢ | /
a = tdentifier
zonstant ::w quoted-stting | number ! RCM | CCL | NULL
| USER | DATE
name ::= (creator.] identiflex
creator ::= ldentifier
field-name ::= idencifies ((su;acnpr.-l.u:)
subscript-list ::= subscript {, subscript }
UbSCLIPt ::= constant | var-name
tnteger ::= number
dml-statement ::= agsiqnaent
| insertion
| deletion
| update
assiqnuent ::e= ASSIGM TO receiver : quesy-expr
receiver ::= obj-name ((fleld-name-list)]
ingertion ::= INSERT INTO receiver :@ LlLnsecz-spec
LRISIT-IPEC = qUELY-eXPpr
| lizeral
field-name-list ::= fleld-name {, fleld-name}
deleticn ::e DELETE obj-name (var-name | { where-clause |
updace ::~ UPDATE obi-name (var-nase | set-clause-list
{ where-clause)
set~clause-list ::= set-clause (, set-clause }
set~clause ::= SIT [field-name = | expr
| SET (field-name =] (query-expr)
ddl~st L obJ
create-image
create-iink

define-view
| drop
| commant
create=-ob) ::= CAEATE | pemm-spec) [shared-spec) obj-detn
peTm=spec ::= PERMANENT | TEMPORARY
shared-spec ::= SHARED | PRIVATE
obj~defn ::= matrix-defn | uctgr-atn
saccix~defn ::= MATHIX matzix-name (integer, Llnteger |
[qualifier) : field-defa-list
magrix-name ::= ideatifier

qualifier ::= SPARSE | UPRTRN | LWRTRN | TRIDGL | BANDED inceger

fisld~defn-list ::= tisld-defn (, field-detn)

T I N 2t e A e T N T R oW T oty oA L TR N GO T Ve Sy oty b o ¥y

<57

s

3

£

£

A

- T

TWATUR WU TR TR TWATW TR VR TR TR TV R TR TV RN WU WU W R WA R N W WU W W WA W W AW W W W W W WV W o e W W TP
o

Iy

=n» = B

=24

&% =1

T B2

==
2.2

2 7R

‘.l.',L

X

2

A :

~
s

A

%0 8'al'p 8

&'y

FIFTE S

OO U YO T

fisld-detn
type ::e primitive-type | structuzed-type |(
prizitive-type

iie { field-name) | type [, NOWULL) [, KEY |
: prialtive-type |
ti® INTEGER | REAL

| DOUBLE PRECISION

i CHARACTER
stouctured-type ::= STR (integer)
TSTR {)
| VEC (integer)
I VEC (")
| MAT (integer, lnteger)

vectar-detn
vector-name

create-image :

Lnage-mod-list

image-mod :

create=lirk

::= VECTOR vactor-name : fleld~-defn-list

1:e tdentifier

;@ CREATE [Lmage-mod-list | IMAGE imaje-nare
ON obj-name (aord-spec-liist |}

1= {mage-mod {, image-mod |

:» UNIQUE | CLUSTERING

::= CREATE (CLUSTERING] LINK link-name
FROM obj-name (field-name-list)
10 obi-name (fie.d-name-list !

{ ORDER BY ord-spec-list |

dzop ::= DROP system-encity name
compent ::e COMMENT ON system-dntity rame : quoted-string
| COMMENT ON FIELD cbi-name.fleld-nane
: quoted-string
syscem-encity ::= MATRIX | VECTOR | VIEW | IMAGE | LINK
ACKNOWLEDGEMENT

Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under
Grant Number AFOSR 820322. The US Government is
authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation
thereon.

REFERENCES

1

Mukhopadhyay, S. and Arora, J. S. Implementation of an
efficient run-time support system for engineering design
environment, Adwances in Engineering Software 1987, 9 (4),
000

SreekantaMurthy, T., Shyy, Y. K. and Arora, J. S. MIDAS-
management of information for design and analysis of systems,
Advances in Engineering Software 1986, 8 (3), 149

Comfort, D. L. and Erickson, W. J. RIM-A prototype for a
relational information management system, NASA Conference
Publication 2055 1978

Felippa, C. A. Database management in scientific computing —
1. General description, Computers Structures 1979, 10, 53
Felippa, C. A. Database management in scientific computing —
[1. Data structures and program architecture, Computers Struc-
tures 1980, 10,53

m:%&m&&-ﬁ N WV R IENIIII WA AL IO

10

11

12

18

19
20
21

22

23

111

SreekantaMurthy, T. and Arora, J. S. Database management
concepts in computersided design optimization, Advances in
Engineering Software 1986, 8 (2), 88

SreekantaMurthy, T. and Arora, J. S. A survey of database
management in engineering, Adwances in Engineering Software
1985,7(3) 126

Mukhopadhyay, S. A database management system using
generalized relational model, Mater's Thesis in Dept. of Com-
puter Science, The University of lowa, lowa City, fowa 52242,
May 1986

Astrahan, M. M., Blasgen, M. W_, Chamberlin, D. D. ef al.
System R: Relational approach to database management,
ACM Trans. on Database Systems 1976, 1 (2) (June), 97
Stonebraker, M., Wong, E_, Kreps, P. et al. Design and imple-
mentation of INGRESS, ACM Trans. on Database Systems
1976, 1 (3), 189

Felippa, C. A. Architecture of a distributed analysis network
for computational mechanics, Computers and Structures 1981,
13, 405

McKellar, A. C. and Coffman, E. G. J1. Organizing matrices and
matrix operations for paged memory systems, Comm. of the
ACM 1969,12(3), 153

Knuth, D. E. 4rt of Computer Programming, Vol. 3, Funda-
mental Algorithms, Reading, Mass., Addison-Wesley, 1973
Bayer, R. and McCreight, E. Organization and maintenance of
large ordered indexes, Acta [nformatica 1972,1,173

Comer, D. The ubiquitous B-tree, Computing Survey 1979, 11
(2,121

Munz, R. and Krenz, G. Concurrency in database systems — A
simulation study, Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data (August), pp. 111-120, 1977

Gray, J. N., Lorie, R. A, and Putzolu, G. R. Granularity of
locks in a shared data base, Proc. First International Confer-
ence on Very Large Data Bases (September), pp.428-451,1975
Macri, P. P, Deadlock detection and resolution in 2a CODASYL-
based data management system, Proc. ACM SIGMOD Int.
Conf, on Management of Data (June), pp. 45-49, 1976
Coffman, E. G. Jr,, Elphick, M. J. and Shoshani, A. System
deadlocks, ACM Computing Survey 1971,3 (2),67

Lorie, R. A. Physical integrity in a large segmented database,
ACM Trans. on Database Systems 1977, 2 (1), 91

Arora, J. S. and Mukhopadhyay, S. Specification for MIDAS-
GR management of information for design and analysis of
system: generalized relational model, Technical Report No.
CAD-55-84.24, Optimal Design Laboratory, College of Engin-
eering, University of Jowa, 1984

Gray, J. N., McJones, P., Blasgen, M. er al. The recovery
manager of the System R data manager, ACM Computing
Survey 1981, 13 (2), 223

Gray, J. N. Notes on data base operating systems, Research
Report RJ2188 (February), 1BM Research Lab., San Jose,
Cal. 95193,1978

24 Shyy, Y. K., Arona, J. S., Mukhopadhyay, S. et al. MIDAS/N
User Manual, Optimal Design Laboratory, College of Engineer-
ing, University of lowa, 1984

BIBLIOGRAPHY

Shyy, Y. K., Mukhopadhyay, S. and Arora, J. S. A database manage-

ment system for engineering applications, Technical Report
No. ODL85.23, Optimal Design Laboratory, College of
Engineering, University of Jowa, 1985

SreekantaMurthy, T., Shyy, Y. K., Mukhopadhyay,S. and Arora,). S.

Evaluation of database management system MIDAS in equation
solving environment, Engineening with Computers 1987, 2
(H, 11

Ady. Eng. Software, 1987, Vol. 9, No. 4 193

PO W U R O W N U W WL W W W WU W W WU WO

Sy
112 ‘
APPENDIX 10 %

ROLE OF DATA BASE MANAGEMENT IN e
DESIGN OPTIMIZATION SYSTEMS S

G.J. Park and J.S. Arora h ,,t.'
J

J. Aircraft
Vol. 24, No. 11, 1987

l"!

R ol
"!":'r

L

T

Pt WL
’
V'} !’

[SN
f.(A AN Wy
d val@ .
.’ -,'“,"'.':'.- %

-

J _
] 2 {‘f f
Frrly

-

Y
;'{,'("I

54

I e I Y0 G0 e N O RN 0 0 DL PO N R I 0 B 00 i A 0 N N A AN A N AN

Y O O O SO R R O R T R R O T T S O IV O e T T vadadts 8 PV I

r 113 :
J. AIRCRAFT o™

P S8

VOL. 24, NO. 11, NOVEMBER 1987

e

Role of Data Base Management .S
. ° ° . . l:

in Design Optimization Systems — 3

L))
G. J. Park® and J. S. Arorat X
University of lowa, lowa City, lowa &‘3 s:
. e ol
= b

To study the role of data base and data base management system, an interactive design optimization software
system calied IDESIGNS ls developed (0 solve noalinear programmieg problems. Four promising algorithms are =a .
included to evercome the lack of unanimous choics of an algerithm. Tuning parameters and procedures of ;)Q "
sigorithms are implemented through extemsive numerical experimentation. The interactive process comsists of i I":
mesna displays, advice for decisions, and applicable messages. Input dats can be created interactively and the 9,
desiguer can change problem parameters, algorithm, and design variable data at any poiat of exocution. If a -

design variable does met effect the optimization process, it can be gives & fixed value interactively. Discrete :3{ b
varisbie optimizstion can be performed by using design variable status capability of the system. Graphics - v
facilities are provided for decision making. The system couasists of several modules that commusicate with each ’

other through a daia base managed by 2 data base management sysiem. Several exampie problems are soived in
batch and interactive eavironments 10 test the system. .

4
N
&
N X
Introduction cess. Graphics capabilities is almost unheard of in design ’ * o
HE nonlinear programming problem (NLP) in the finite- optimization. The software should have these facilities and 4
dimensional sppace is to mxm:uze a co& fun;tion £(d) for options for various controls and decision making. Also, as Lt
beS, where S is a subset of R” defined as range of applications of optimization expands, more complex DRIR ':
data are generated which must be handled properly through a :;-2 O

S=(b:g,(b) =0i=1,m":g,(b) SOimm’ +1.m; data base management system (DBMS). It should be possible TN
(6:2,(b) #:(8) m to easily refine existing capabilities and add new ones. To !:
by Sb,Sbysi=1.n) allow various options, several good algorithms should be im- | 4% '

L=T=T ’ plemented. o L.
and g;(b) are constraints, b a design variable vector, and b, To study the role of an organized data base and a data base =
and b, the smallest and largest values allowed for the ith management system, a general purpose software system called ~y

design variable, respectively.

The problem has been treated in the nonlinear programming
literature quite extensively. In that material, it is usually
assumed that the explicit form of the function /(&) and g, (d)
is available. However, if we allow the functions to be implicit,
then several classes of structural and mechanical system design
problems can be described by the model.!

A number of nonlinear programming algorithms have been
developed and used for optimal design.>* However, software
development for design optimization is lagging behind these
advances.”!! It is well known that some algorithms when im-
plemented in a computer program do not behave in the way
they are theoretically supposed to. Considerable expertise and
numerical experimentation is needed to properly implement an
algorithm. In addition, no single algorithm can efficiently
solve all classes of problems. Instead, a powerful software
system with various capabilities and facilities is desired to
minimize the difficulties. So far, software for design optimiza-
tion is either not available or it is tedious to use. Most of the
existing programs are not interactive. This means that the pro-

IDESIGNS is introduced in this paper. It is an interactive
design optimization system incorporating modern data base
management concepts. The system has ‘the foregoing
capabilities and is an extension of an earlier program called
IDESIGN3.'° That program does not use any data base
management system and has no out-of-core calculations. The
new system is designed using modern software development
and data base management concepts.

Selection of Algorithms for IDESIGNS

Although many algorithms are available for solving
nonlinear optimization problems, it is difficult to find an
algorithm that solves all classes of the problems efficiently. In
IDESIGNS, several good algorithms have been selected. These
are Pshenichny’s algorithm (LINRM),? cost function bound-
ing algorithm (CFB),* modified Pshenichny’s algorithm
(PLBA),> and a hybrid method.® These algorithms are
selected based on their generality, robustness, and efficiency.
They have performed reasonably well on a wide range of
applications.

The detailed procedures of the selected algorithms have |, V¥
been published in the literature. ! All algorithms roughly im- .':\' Xn
plement the following steps:)

1) Set k=0; estimate starting design variables; initialize)

gram does not allow any user control over the iterative pro-

e L L RS Y
B 478 08 48 4 % 8 4 A EaNalal 2 "

Presented as Paper 86-0991 st the ALAA/ASME/ASCE/AHS 27th
Strectures, Structural Dynamics and Materials Conferencs, San
Antomio, TX, May 21-23, 1986; received April 4, 1986: revision
recaived March 15, 1967. Copyright © American Instituts of Aero-
nsutics and Astronautics, Inc., 1987. All rights reserved.

°mmmm.omodnw,w-
lege of Enginesring (currently Assistant Professor, CAD/CAM
Center, Purdue University at Indianapolis, IN).

tProfessor, Civil and Mechanical , Optimal Design
Laboratory, College of Engineering. Member AIAA.

‘from step 2.

Cag™e e LA, W o] g LTS TSNS T TS - v
Radhling) ‘.\N* SRt Al 5

2) At the kth iteration, identify a potential constraint set.
Define and solve a subprobiem for the search direction.

3) Check the convergence criteria. If the criteria are
satisfied, the process is stopped.

4) Check the condition for the progress of the algorithm and
caiculate a step size, update the Hessian of Lagrangian if
necessary.

5) Update the design variables. The process is then restarted

- S L LW
A S I T S St s

746

Role of Data Base in Design Optimization

IDESIGNS implements the masjor steps of the selected
algorithms in separate modules. A module is a program that
can be compiled and executed independently. The sequence of
execution of modules is controlled by the main module. The
modules communicate with each other through the data base.
Interaction is allowed during the execution of the system from
the beginning to the end. The designer can control the progress
by changing the problem data and aigorithm at any point.

Interactive Capabilities in IDESIGNS®?

Design optimization programs require information about
the problem to be solved. This information includes: 1) input
data, such as number of design variablies, number of con-
straints, etc.; 2) cost and constraint functions; and 3) gradients
of cost and constraint functions. If the gradient expressions
are not supplied, the system produces them by the finite-
difference method. When there is a mistake in the input data
or problem definition, errors will occur in the solution pro-
cedure. The system gives explicit error messages to guide the
designer to correct mistakes.

The system allows for interactive data entry. A menu is
displayed for selection of proper data segment and entry. The
system is protected from user’s mistakes. If a data mismatch is
found, messages are given in detail. The procedure is simple,
so even a beginner can easily foliow it.

It is extremely useful and important to monitor the optimal
design process through the interactive session. Histories of the
cost function, constraint functions, design variables, max-.
imum constraint violation, and convergence parameter can be
monitored. When the histories are graphically displayed, they
are of great help in interactive decision making as well as for
gaining insight into the design process. Design sensitivity coef-
ficients of the cost function and potential constraints are
displayed in the form of normalized bar charts. This informa-
tion shows relative sensitivity of the design variables. If the
design process is not proceeding satisfactorily (there could be
inaccuracies or errors in the problem formuaition and model-
ing), it is necessary to stop it and check the formulation of the
problem. This will save human as well as computer resources.
Also, if one algorithm is not progressing satisfactorily, then a
switch can be made to another one or the process can be
restarted from any previous design. The system can give sug-
gestions for design changes by using the design sensitivity
coefficients. It is also possible to utilize the software in a batch
environment. In this case, the system uses default values for
the parameters found to be best through experience and
numerical experimentations.

Specification of the Status of Design Variables

1n the optimization process, some design variables have lit-
tle effect on the final solution of the problem. Also, in many
cases, some design variables reach their optimum value and
have little effect on the iterative process after that point. Thus,
we need to identify such design variables and fix them. In this
way, the problem is defined by only a few important variables
and its size is reduced. When a fixed variable becomes impor-
tant in the design process, it can be relessed to the active
group. The status of design variables can be defined interac-
tively in IDESIGNS.

The capability to specify the status of the design variables
can be exploited in practice to obtain a discrete optimum solu-
tion for the problem. When we design a structural or
mechanical system, the member sizes are the design variables.
Members must be selected from an available set, but design
variables are considered continuous in the optimization pro-
cess. This is one of the reasons that optimization has not been
extensively used in practical engineering design. The difficulty
can be overcome by defining the status of design variables. If a
design variable becomes close to an available size, it can be

G.J. PARK AND J.S. ARORA

LA A SRS AR]

J. AIRCRAFT

fixed to that value interactively. This also means that the
designer can use his intuition in selecting discrete member
sizes. This is very important because an expert designer’s ex-
perience is considered to be extremely valuable and reliable in
the engineering design community. Until the optimum is
found, design variables can be assigned fixed values nearest to
the ones available. The graphical display of various data can
help the designer in decision making.

An important point is when or how to determine the status
of a design variable. The ideal solution would be 10
automatically determine the status using a sophisticated
algorithm. This can be done by pattern recognition of the
trend, just as an expert designer would do. However, such a
solution requires knowledge of engineering capabilities that is
a topic of future research. In IDESIGNS, status of a design
variable can be changed only interactively.

Role of Data Base in IDESIGNS

In the design optimization process, large amounts of data
must be generated and manipulated. Specifically, the interac-
tive process needs enormous amount of data, so a proper data
base and a data base management system (DBMS) are essen-
tial. In addition, since IDESIGNS is composed of independent
modules, a DBMS is needed to communicate between the
modules. A data base for IDESIGNS is designed and managed
by a DBMS, as described in the next section. This systematic
generation and handling of large amount of data, along with
the modular structure, has greatly facilitated the coding and
debugging of the system.

Data Base Management in IDESIGNS

The data base is a centralized collection of data accessible to
several application programs and optimized according to a
data base definition schema. The data base management
system (DBMS) is a software program handling all access re-
guests and transactions against the data base.

In practical design optimization, finite-element and other
numerical methods are adopted during analysis of structural
and mechanical systems. In general, the amount of data used
in finite-clement analysis is quite large and various schemes
are used to reduce the storage of data. In addition, the for-
mulation of constraints and the design seasitivity analysis are
carried out using most of the data generated during the
analysis phase. Interactive computations and graphics aiso re-
quire additional data for the display of the system model and
intermediate results. Therefore, the data must be organized
and saved properly in a data base for efficient design
optimization.

Implementation of Dets Base in IDESIGNS

In IDESIGNS, a data base management system called
MIDAS/N is used for handling the data.'* MIDAS/N stands
for the management of information for design and analysis of
systems/numerical model. MIDAS/N is an application-
independent data base management system and uses a dif-
ferent approach to deal with data management problems of
scientific and engineering computing. It is designed specifi-
cally to handle numerical data. A data base of MIDAS/N is
stored in a file. It can be a direct or 2 sequential access file.
The status of a data base can be temporary or permanent.
Each data base contains several data sets, which can be either
one- or two-dimensional arrays (vectors or matrices). The
matrix can be rectangular or triangular. The data type of a
data set can be character, short integer, long integer, real, or
double precision real. Each data set has several access models,
such as row, column, or submatrix. Any part of a data set can
be accessed by just one call statement. The dimension of the
data set can be redefined dynamically.

At the beginning of each module in IDESIGNS, the
necessary data are retrieved from the data base. Generated
data are stored in the data base during the execution of the

114

PR A o aRl o R YR a0 B 0 ubE S '-)'.':-',Cn:'

LAt
LWy
hj\:: \
tane)

.
.'2'. >
‘-’b’:" :
Jats h
o, R
> ..'.
)

' d
rrE
X

" ?'.l"',
e,
S

RN
SNAR

b

>

L5
B "“.ﬁ{-'
B

Ly
[
X

PXAAS
LAY

° 5"'1 P4 q.!_'J'
m@

Ty 5‘!}
\/" &
X
- .Il

+
L
s

by
<
¢, 7

P
K ol o o AT AN L

NOVEMBER 1987

module. Connection with the data base needs additional CPU

- time; IDESIGNS is designed to minimize the additional time.
Usually, design optimization data are in the form of matrices
or vectors. One matrix is defined as a data set, and several vec-
tors having the same dimensions are included in a data set. For
interactive graphics, the history of the design data is stored in
the data base and retrieved when it is used.

Design of a Data Base
Collection of Information

To design a data baze for IDESIGNS, the flow of the op-
timization data for various algorithms must be studied.
Various vectors, matrices, and control parameters that are
cither input or generated during the solution process must be
identified. All of the data must be collected and properly
grouped to define the data base. In every module, these data
are retrieved from the data base and stored in 2 common array
for further processing. Table 1 lists the data for all the
modules. Data are stored or retrieved using the variable names
shown in the table. The variable names start with different let-
ters according to their dimensions. One or several optimiza-
tion data are stored in a data set.

Data Set Definition

By the characteristics of the optimization data, the data sets
can be defined. One data set represents a matrix or several vec-
tors having the same dimensions. If several vectors are includ-
ed in a data set, they are stored like a matrix. The list of data
sets is shown in Table 2. In some cases, a dats set is stored by
row but retrieved by column, or vice versa. These are also
shown in Table 2. A permanent data base FPERM is defined

at the beginning of the execution of the system and used in
each module.

Design of IDESIGNS
Structure of IDESIGNS
A general-purpose optimization software program can have
an overall structure as shown in Fig. 1. Each block can be
composed of several modules. Figure 2 shows the structure of
IDESIGNS and the sequence in which the modules are ex-

Table 1 List of dats

115
DESIGN OPTIMIZATION SYSTEMS 147

ecuted. Each block is a program that can be compiled and ex-
ecuted independently. As shown in Fig. 2, the modules have
two libraries, IDESIGNS.LIB and SMART.'* IDE-
SIGNS.LIB contains some subroutines common to many
IDESIGNS modules. SMART is a library containing several
general-purpose interactive aids and subroutines for matrix
and other standard operations. Some modules are used in one
algorithm, while others are shared by many. When the
modules are combined into one system, a main program con-
trols the flow of progress based on the decisions made in every
module. When each module is used independently, the
operating system capabilities are used for controlling the flow
of the calculations.

Each module has a buffer array for vector and matrix data
and it is distributed to each subroutine according to the needs.
A common array is declared for the problem parameters used
in all modules. At the beginning of a module, the problem
parameters are retrieved from the data base.

Definition of Optimization Problem

In this block of Fig. 1, the designer has to provide two types
of information to use the system: input data for the probiem

Design Data
Definition
A
Designer Supplied Definition of
Cost and Constraint Optimization <
Functions and | Problem
Gradients
9
i Design
Improvement
1
Stop 2% Convergence? YL

Variable
Data description Type Dimension® name Fig. 1 Oversil sractare of a design optimization program.
Cost function gradient Vector av ACOCGR
Values of design variables Vector av ADEVL
(Hessian matrix)* design change Vector av AHXDB
Increment of design variable Vector av AINCT Table 2 Structure of data base FPERM
Gradient of Lagraagien & previous Vector av ALOLD Dataset Included data Order of Order of
Lower bound of design variable Vector av ALOWR name (variable name) Dimension®* crestion use
Upper bound of design variable Vector av AUPPR SDINV ACOGR, ADEVL nvx9 Col Col
Lagrange multipliers of QP Vector nv+nc CLMQP AHXDB, AINCT
subprobiem ALOLD,
Coastraint functios value Vector nc CONFN ALOWR
Lagrange muitipliers Vector ne CORLM AUPPR, NFIX
Constraint gradient lengths Vector oc CSENM NORDR
History of constraint functions Matrix itrsxnc DCOFN SDINC CONFN, CORLM ncx3 Col Col
History of convergence parameter Vector itrs DCONP CSENM
History of cost function Vector itrs DCOST SDINQ CLMQP nv+ne Col Col
History of design varisbies Matrix itrsxav DEIVL SSENM TSENM nv x n¢ Col Col, row
History of maximum constraint Vestor itrs DMAXY SUPDT UPPAT nv(nv + 1) Col Col
violation +2+0v
Active constraint set Vector nc LC SHISA DCOND,. DCOST itrsx 3 Col Col
Design variabie status Vector nv NFIX DMAXV
Active set of previous iteration Vector ne NPREC SHISB DEIVL itrs x av Col Row
Coastraint sensitivity matrix Matrix avxnc TSENM SHISC DCOFN itrs xnc’ Col Row
Hessian matrix Vector avx(nv+ 1) UPPAT SINTG LC, NPREC ncx2 Col Col
+2+0v SSYST System parameters 300 Col Col

Snv = number of design varisbies, nc » number of constraints, itrs = number of
iterations.

o ~"‘~f \J'«,;-' o,

" ftv = number of design variables, nc = number of consraints, 1trs = number of
iterations.

3
SIS

{“;ﬂ L 4

APty

<

=y

Ny

y

o O T
;'J";'J Pl

5

»

5%

L4
h Y

[} (:r
-8_8_

1%;

L4

-
Iy

x_w
['s
L=

&y

[4

-

e &7

T BE B

748

and definition of the design problem. The input data for a
problem can be provided interactively from a terminal
through menu displays or from an input file. The definition of
the design problem in Fig. 1 is provided by the designer
through four independent modules. These are COSTFN,
CONSTFN, COSTGR, and CONSTGR, as shown in Fig. 2.
They contain the cost function, constraint functions, cost
function gradient, and constraint function gradients, respec-
tively. These modules can be very simple or very complex
depending on the application. The modules calculate function
values and gradients and store them in the data base. They can
be written using any utilities of the computer. If the analytic
expressions for the gradients are not available, IDESIGNS can
automatically calculate the gradients by the finite-difference
method. In this case, the modules for gradient calculations
need not be supplied.

Meduiles Seitable for Many Algerithms

The modules shared by every algorithm are as follows.
Inpust

This module is the first one executed in IDESIGNS system.
All input data for the design problem are defined. Input data
consist of five groups: 1) initial terminal session—file defini-
tions and terminal type; 2) problem definition—numbers of
design variables and constraints, etc.; 3) parameter defini-
tion—convergence parameters, printing code, etc.; 4) design
variable data—initial design, lower and upper bounds and
status of design variables; and 5) algorithm selection. Each
group of data is defined using a menu display. Between two
consecutive menus, the designer can change the data aiready
defined or the program can be terminated. Also, HELP facil-
ity is available at any point of process. Various menus used
during the interactive session are given in Park and Arora.??
P ,

By designer’s option, the interactive moduie can be execured
during any iteration. Features of this module are similar to the
INPUT module. The designer can control the progress of the
problem-solving procedure and problem data can be changed
at any point in the execution. Proper menus are displayed for

_
. Cwr] M
" [crere | [norerer]

Bk]
: ol 1
s Creme] |1 e
L:'_ of |*
= 11
0 RE
: :
o = =] ||
.

» (cme | [roe |
= =1 =

Fig. 3 Structure of IDESIGNS sad its modules.

P N A TR R g

“w R I A I P A WS

“w

G.J. PARK AND J.S. ARORA

changing the algorithm or the current data. To help the
designer’s decision, graphical displays for various data are
available. The histories of parameters are plotted. Relative
sensitivities for cost and constraiat function gradients are
shown as bar charts. Advice for design-variable change can be
given using linear extrapolation. When the design point is in
the infeasible region, the relation between the correction of
constraint violation and cost function improvement is used to
advise the designer by linear extrapolation of the sensitivity
information.

Active

The potential constraint subset is defined in this module.
The potential constraints identified here are used to define a
subprobiem that determines the search direction in the design
space.

Subsolver

Normalized* subproblems are solved for the search direc-
tion using the subroutine QPSOL' in this module. Fixed
design variables are dropped.

Modules for Problem Definition

As mentioned earlier, the COSTFN, COSTGR, CONSTFN,
and CONSTGR modules should be prepared for cost func-
tion, cost function gradient, constraint functions, and con-
straint function gradients, respectively. Any data in the data
base can be used, and the produced data can be stored in the
data base.

Modules for LINRM and PLBA Algorithms

These modules are used in LINRM and PLBA methods and
the hybrid method after a switch to the PLBA aigorithm is
made.

RQPSTEP

In this module, step size is determined by a one-dimensional
search that requires evaluation of the cost and constraint func-
tions. These are calculated using the designer-supplied
modules.

RQP
Data that the subprobiem will use to determine a search
direction are generated.

HESSUPT

The Hessian matrix of the Lagrange function is updated in
the PLBA algorithm in the factorized form. Through internal
options, the Hessian can be set to an identity matrix and a
direct update can be obtained when the full matrix is updated.
When the condition number of the Hessian matrix is over a
certain positive large number, it is set to the identity matrix.
RQPUP

From the output of the subsolver, the design increment vec-
tor is determined and covergence criteria are checked.

Modules for CFB Algerithm

These modules are used in the CFB algorithm and hybrid
method before switching.

CFBSTEP
Here, thg maxium constraint violation is calculated. From
the second iteration onward, the step size determined in the

CFBUP module is adjusted to remain within the bounds on
the design variables.

CFB

Here, the data for the subproblem are cal~ulated according
t0 the current design conditions.

s \I‘\.‘\-'\.'.'-

A\ “

. BORIU IR S
.‘\-“. ' CA

XN

- NOVEMBER 1987

~ Table 3 Interactive execution of 25 bar truss design problem*

Iteration Interactive change

i MVC =2.7207
Algorithm = R}
2 MVC =(.4780
PLBA algorithm is used from this iteration
7 No. Value Given value Status change
1 0.01 1.62 Fixed
2 1.43831 1.30 Fixed
4 0.0076 1.62 Fixed
7 2.20765 313 Fixed
10 3 2.0093 2.88 Fixed
7 3.13 Released
12 6 1.9958 2.38 Fixed
13 S 1.085928 1.80 Fixed
15 Optimum is found

MVC = 0.5693E - 06
ND=0.3034E - 07

Cost function = 0.7744E +03

CPU for data base=29.015

Net CPU =49.796

Total CPU=78.811

No. of calls for function evaluation = 2§
No. of total gradient evaluations = 163

Design variable values: 1.62, 1.8, 2.88, 1.62, 1.8, 2.38,
3.6298

SMVC = maximum constraint violation, ND = norm of direction vector.

CFBUP

The design increment vector is calculated and the con-
vergence criteria are checked.

Sample Applications

Performance of nonlinear programming algorithm can be
ascertained only by numerical experiments requiring coilection
and implementation of the test problems. In IDESIGNS, the
procedures of algorithms and tuning parameters are im-
plemented through extensive numerical experiments. !

Many numerical exampie problems have been solved using
the algorithms available in IDESIGNS. These include 115 test
problems from the mathematical programming literature,
small-scale engineering design problems, structural design
problems such as trusses and frames, dynamic response op-
ummuon,mdnonhneumpomopnmmon Details of all
these applications are given in Ref. 12. Here we describe some
details of applications to trusses and the interactive use of
IDESIGNS.

The seven trusses, given in Refs. 16 and 17, are optimized
for various constraint conditions, such as stress, displacement,
and natural frequency. Combination of trusses and constraint
conditions yields 15 problems. The formulation, design data,
and sensitivity analysis have been discussed in the litera.
tures.)%!” The number of design variables are 7-47, state
variables 8-150, and constrnints 18-629. Multiple loading
cases are treated.

For analysis of the structure and gradient calculation, a
computer program TRUSSGPT is employed. TRUSSOPT is
composed of four subroutines, each of which is attached to a
designer-supplied module in IDESIGNS. TRUSSOPT does
not use a data base management system.

Results for each problem in a summary form are given in
Ref. 12. The data collected for each problem include the
number of iterations, function evaluations, and gradient
evaluations, CPU times for data base management and total
execution, and optimum point. For the purpose of com-
parison, results of the PLBA algorithm in IDESIGN3 are also
included. IDESIGN3 is the previous version of [DESIGNS
that does not use a data base management system. CFB fails

A N A

L I S Rt

DESIGN OPTIMIZATION SYSTEMS 749

on three problems and LINRM exceeds the maximum itera-
tion limit in six problems. As expected, the performance of the
hybrid and PLBA methods is superior to others. This was also
observed in small-scale probiem applications. The results of
PLBA and the hybrid methods are similar to those of
IDESIGN3. If we compare IDESIGNS to IDESIGN3, the
number of iterations increases in five problems and decreases
in eight problems. The number of calls for function evalua-
tions increases in six problems and decreases in cight prob-
lems. The total CPU time of IDESIGNS is generally larger
than that for IDESIGN3. Two main reasons cause the increase
in IDESIGNS: 1) we need computing time for access to the
data base and 2) the data are redefined at the beginning of
each module. For example, the performances of PLBA and
IDESIGNS3 are exactly the same in the 25 bar truss with stress
constraints except the computer time. For the 47 bar truss with
all constraints, the number of calls for function evaluations
with PLBA is greater than that of IDESIGN3. However, the
total CPU time of IDESIGNS is less than that for IDESIGN3.
This is because the QP solver (QPSOL) in IDESIGNS is more
efficient than the QP solver (VEO4AD in the Harwell library)
in IDESIGN3. Therefore, the algorithm and the software for
solving the subproblem are also very important. When the
structure becomes larger, the CPU time for the data base com-
prises a smaller percentage of the total CPU time. This is
because the analysis needs a greater portion of the computing
time and TRUSSOPT does not use a data base and DBMS.

Interactive Use of IDESIGNS

The 25 bar truss given in Refs. 16 and 17 is interactively op-
timized with all constraints. In practical optimization, the
design variables are usually member sizes that must be selected
from the available sections. Thus, discrete variabie optimiza-
tion should be empioyed. The present structure is designed to
have double-angle sections given in the AISC code. The area
of cach member is considered as a design variable. The areas
available in the AISC code are 1.62, 1.80, 1.99, 2.13, 2.38,
2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84,
3.87,3.88,4.18, 4.22, 4.49, and 4.59. The design process sum-
marized in Table 3 is explained as follows:

Iteration |

Maximum violation of constraints is very large, so con-
straint correction step R3 of CFB algorithm is chosen to cor-
rect constraints.

Iteration 2
Maximum violation is corrected; PLBA algorithm is
selected from this iteration to the end.

Iteration 7

The design variables that are not changing during the
iterative process are assigned values closest to those available.
The history of the design variables is shown on a graphics ter-
minal for this decision.

Iteration 10

Design variable 3 is fixed and design variable 7 is released.
The sensitivity bar charts are exploited for this decision; that
is, a sensitive design variabie is released to the active status.

Iteration 12
Design variable 6 is fixed.

Iteration 13
Design variable § is fixed.

lteration 15

The optimum is found. All the design variables have fixed
values except the seventh. After optimum is found, design

. et A mena mn s .
DAL S SO A S AR

(e

re
%

F
PN

AN
AR

)
?

2
e 1™

«
P4

~r
«

1.
R

17> SRS T

e |

¥
5

or
F v

o4

ICOCNRA |

R}

|55

——
)
w ey

A}
-%

o

£

----- B A I N PR IR T R s I R R N S
Lﬁ““’f.ﬁf B I N U S P '...j"-'.\ 2 04 'h"\,'n'\P \l‘;‘ A(-”' RN TN by

750 G.J. PARK AND J.S. ARORA

varisble 7 is given the value 3.34. With these fixed values,

" there are no violated constraints. Therefore, these values can

be taken as the final solution.

At the final point, all the design variables have discrete
values. The cost function (0.774E +03) is higher than that
(0.5907E +03) obtained earlier.!> The reason is the lower
bound used there is 0.01, while the smallest available size is
1.62. The optimum cost function with 1.62 as the lower bound
and continuous design variables is 0.7161E+03 with the
design as 1.62, 2.1478, 2.3341, 1.62, 1.9737, and 3.4309.
Thus, the cost function increases by 8.1% when discrete
design variables are used.

Use of IDESIGNS with ADINA

The IDESIGNS system has been also used to optimize truss
structures with nonlinear response. A finite-element-method
software system called ADINA is used for nonlinear
analysis.'* Different modules are developed for cost and con-
straint functions and sensitivity information. The formula-
tion, analysis method, and design data are given in detail by
Haririan et al.!® Both geometric and material nonlinearities
are included and many problems are solved. Thus, coupling of
IDESIGNS to a commercial analysis sofiware has been suc-
cessfully accomplished.

Discussion and Conclusions

A software system can be evaluated only by numerical tests.
Numerous probiems have been solved in batch as well as in-
teractive environment, indicating that IDESIGNS is a reliable
software system. The conclusions based on the study are as
follows:

1) A software system IDESIGNS having diverse optimiza-
tion capabilities has been developed. A data base for the
system is designed and a data base management system is used
to handle the data base. Procedures to integrate the data base
management capabilities are developed and demonstrated.
Use of a DBMS facilitated development of the system
considerably.

2) The system can be readily expanded or combined with
other systems. The combination of IDESIGNS and ADINA il-
lustrates this capability. '

3) The algorithms in IDESIGNS are implemented by
numerical experimentation. Various problems have been ef-
fectively solved. In terms of the performance, PLBA and
hybrid methods show better results.

4) Interactive execution shows good performance for the
optimization process. Interactive change of problem para-
meters and design variable data can be exploited in probiem
solving. Experience with IDESIGNS shows that a design op-
timization software must support interactive and graphics
facilities for practical applications.

5) Discrete optimization is obtained by interactive definition
of the status of the design variables. Expert designer’s intui-
tion can be thus exploited, making the system extremely useful
in practical design optimization.

6) Data base and data base management systems have im-
portant roles in a powerful and user-friendly interactive design
optimization system. The data base facilities can be used to

collect raw data from which knowledge can be derived. Such
knowledge can then be incorporated into an expert system that
can act as a consultant and trouble-shooter during the design
optimization process. This will be a useful extension of the
system.®

7) Data base generation and management needs additional
computational effort. However, as the problem size increases,

the CPU time for data management decreases relative to the
total CPU time.

ST T T
J. AIRCRAFT

Acknowledgment

This research is sponsored by the U.S. Air Force Office of
Scientific Research, Air Force Systems Command under
Grant AFOSR82-0322. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes,
notwithstanding any copyright notation thereon.

References

'Arora, J. S. and Thandar, P. B., “‘Computational Methods for
Optimum Design of Large Complex Systems,” Computanonal
Mechanics, Vol. |, No. 2, 1986, pp. 221-242.

2Belegundu, A. D. and Arors, J. S., “A Recursive Quadratic Pro-
gramming Method with Active Set Strategy for Optimal Design,"” /a-
ternational Journal for Numerical Methods in Engineerning, Vol. 20,
No. §, 1984, pp. 803-816.

3Lim, O.K. and Arora, J. S., *‘An Active Set RQP Algorithm for
Engineering Design Optimization,’* Computer Methods in Applied
Mechanics and Engineering, Vol. 57, 1986, pp. 51-65.

‘Arors, J. S., ““An Algorithm for Optimum Structursl Design
Without Line Search,’” New Directions in Optimum Structural
Design, edited by E. Atrek et al., Wiley, New York, 1984, Chap. 20.

SVanderplaats, G. N., Numerical Optimization Techniques for
Engineering Design: With Applications, McGraw-Hill, New York,
1984.

$Thanedar, P. B., Arors, J. S., and Tseng, C. H., *‘A Hybrid Op-
timization Method and Its Role in Computer-Aided Design.'' Com-
puter and Structures, Vol. 23, No. 3, 1986, pp. 305-314.

"Gabriele, G. A. and Ragsdell, K. M., “‘Large Scale Nonlinear Pro-
gramming Using the Generalized Reduced Gradieat Method,”’ Jour-
nal of Mechanicai Design, Vol. 102, No. 3, 1980, pp. 566-573.

$Vanderplasts, G. N., Sugimoto, H., and Sprague, C. M.,
““ADS-1: A New General Purpose Optimization Program,'’ AlAA
P?a 83-0831, 1983.

Balling, R. J., Parkinson, A. R., and Free, I. C., “OPT.
DES.BYU: An Interaciive Optimization Package with 2D/3D
Graphics,” Recent Experiences in Multidisciplinary Analysis and Op-
timization, edited by J. Sobieski, NASA CP 2327, 1984,

"9Arora, J. S., Thanedar, P. B., and Tseng, C. H., “‘User's Manual
{or IDESIGN," Version 1.5, Optimal Design Laboratory, College of
Engineering, University of lowa, lows City, Tech. Rept. ODL-86.6,
1986.

" Atrek, E., Callagher, R. H., Ragsdeil, K. M., and Zienkiewicz,
O. C. (eds.) New Directions in Optimum Structural Design: Pro-
ceedings of Internationa! Sympaoysium on Optimum Structural Design,
1981, Wiley, New York, 1984.

13park, G. J. and Arora, J. S., “Interactive Design Optimization
with Modern Database Management Concepts,’”’ Optimal Design
Laboratory, College of Engineering, University of lowa, lowa City,
Rert. ODL-86.9, 1986.

ISreckantaMurthy, T., Shyy, Y. K., and Arora, J. S., **‘MIDAS:
Management of Information for Design and Aunalysis of Systems,"’
Advances in Engineering Software, Vol. 8, No. 3, 1986, pp. 149-158.

MAror, J. S., Lee, H. H., and Jao, S. Y., “SMART: Scientific
Database Management and Eangineering Analysis Routines and
Tools,’”” Advances in Engineering Software, Vol. 8, No. 4, Oct. 1986,
pp. 194-199.

Gin, P. E., Murray, W., Saunders, M. S., and Wright. M. H.,
User’s Guide for QPSOL, Systems Optimization Laboratory, Dept.
of Operstions Research, Stanford University, Stanford, CA, Rep.
SOL 84.6, 1984.

Thapedar, P. B., Arora, J. S., Tseng, C. H., Lim, O. K., and
Park, G. J., “Performance of Some SQP Algorithms on Structural
Design Problems,’’ /nternational Journal for Numerical Methods in

En;inan‘ng. Yol. 23, No. 12, 1986, pp. 2187-2203.

""Haug, E. J. and Arora, J. S., Applied Optimal Design:
Mechanical and Structural Systems, Wiley-Interscience, New York,
1979.

"Bathe, K. J., *‘On the Current State of Finite Element Methods
and Our ADINA Endeavours,”’ Advences in Engineering Software,
Vol. 2, No. 2, 1980, p. $9.

¥Haririan, M., Cardoso, J. B., and Arora, . S., “Use of ADINA
for Design Optimization of Nonlinear Structures,’ Compuiers and
Structures, Vol. 26, No. 1/2, 1987, pp. 123-134.

2 Arors, J. S. and Baenziger, G., **Uses of Artifical Intelligence in
Design Optimization,’’ Computer Methods in Applied Mechanics and
Enginesring, Vol. 54, 1986, pp. 303-323.

118 &0

PR
I
>

PPN PR P
ah 'y S y AN
it B I g

oy _"1:

ey %y Ta WY
g; l';
. ’f"

SN

M
4

y
.

N s
Ly
¥

y

S
557,

+

g

[4

('(ff
r 1

v LA
Qe
Pl ’l-’_"l.". “%%

5‘1‘ ?-v"‘-’) A g

yh Y
’, ‘,-\,{'.If-

R AR R A R

Ve

&

¥ 3
S

R R O O R RO N A Vo Y TG SRt 0 ATt 1t 1% 0yt tasty GVE e a%g g SPUNEFRN I

119
APPENDIX 11

AN INTEGRATED DATABASE MANAGEMENT SYSTEM FOR
ENGINEERING APPLICATIONS BASED ON AN
EXTENDED RELATIONAL MODEL

by
J.S. Arora and S. Mukhopadhyay

To Appear in

Engineering with Computers, 1988

W \
A

v Bab g §.5 gt b (N 5 €t Fa® 2 028 Bad Bt Bt 28" B 0o ® 0 B Ra®" 2a 8 8’8008 90 0 0 0. 445 0% 0V 1% a0 AR 4Ny

120

ABSTRACT

Engineering analysis and design of complex systems require the use of
large software components., Development, maintenance, and extension of such a
software system needs modern design and implementation techniques. Usually a
large amount of data is generated. Flow of data is also quite complex adding
further complications in maintenance and extension of the software. A
sophisticated database management system is needed to support data handling
during the run-time environment as well as for the integration of various
software components. Design and development of such a DBMS needs new concepts
and ideas such that efficiency of calculations is not sacrificed. Degradation
in efficiency due to the use of a DBMS can hinder large scale applications.
The paper describes a generalized relational model to handle large matrices
and tables that are encountered in numerous engineering applications. A DBMS
based on the model is designed and implemented. The system supports run-time
data management as well as data sharing between various software components.
A preliminary evaluation of the system against some existing ones reveals the
new concept and design to be quite appropriate for engineering applications.
The system 1is very efficient and compact. Some details of design and

performancé of the system are given and discussed.

INTRODUCTION
Management of information has become an extremely important task in
computer-aided design and analysis of engineering systems. Organization of
large volumes of design information is a complex task and requires careful
consideration [1]., Several systems for management of information are avail-
able for engineering applications [2]. Programs such as FILES [3], RIM (4],
SDMS [5], PHIDAS [6] and TORNADC [7] have been used in some engineering

applications.

R N A R A A I R R SSRGS R N I

N\ N e e

L

2§

&8

7

X

X

B

]2

l,:‘s

o
.,

-

CH® ICLCEN S

>

i

&

.,

27

g

-
-

PR AT

-

MRSV TR LY S VUV IVUY TV U TV P L W W, W, W a2 et o'l o'l 0 da B 8’ 8.0'% TN RO Y W Jegl lal Bal ol Sall Wad ‘2@ *40 o

i 3
121 '::':
& 3
These systems have been developed with varying degree of sophistication -::i
“ and have a variety of capabilities. A study was made to find out the capabil- :
ities and usefulness of the existing data management systems for design and .:S:::
ﬁ analysis applications [2]. It was found that the use of such systems is ':.i:':'
limited to special applications for which they were developed. It is diffi- .:
& cult to modify and extend them for design applications. Similarly, systems é
g': like RIM were found quite useful in integrating general engineering analysis ""
programs; but their applicability for finite element analysis and design)
, X
E?. optimization is limited [8]. Thus, a need for a good data management system f
. which can deal with organization of both design and analysis data exists [9]. ::E
%ﬁ This need for integrated database management ig further discussed in the next
g section. :
E;j :y
The paper describes broad perspectives of research issues in the design ;\
ﬁ and implementation of a new integrated database management system. Architec-)
- ture and storage organization of such a system are discussed. The new concept 2"
-
‘-ﬁ of a generalized relational model is introduced which forms the basis for E.'t
WY
g design of a new database management system (DBMS). The system is named 2
N MIDAS/GCR - Management of Information for Design and Analysis of ?
EEE Systems/Generalized Relational model. The paper also contains some results of 0
running applications using the new system. The system is almost two times _”
gﬁ faster than MIDAS/N [9,10], an existing DBMS handling only numerical data, {"
"N
H_(_: Results are also comparable in efficiency when the program is run without the :_;
& DBMS (smaller problem that fits in operating systems virtual memory). ;
N ::
of NEED FOR INTEGRATED DATABASE MANAGEMENT ::",
~
{,:4- Databases can be broadly classified into two types: tabular and numeri- “"';
cal. A tabular database contains data sets that look like tables (relations). N
ﬁ; Such databases can be quite large and usually contain permanent type of data.

122

Usually the amount of data processed at one time, and the disk I/0 are quite

small. These include databases for such industries as banking, airline,

]
!
]
.‘

transportation, etc. Several DBMS for processing these databases have been
developed. They generally have interactive facilities for query, insertion,
deletion and update of the database.

; Numerical databases contain matrix type of data sets., These databases
are usually temporary and can be very large. Usually the amount of data
processed and the disk I/0 can be very large. Such databases are generated
during engineering analysis and design optimization, numerical analysis, and
other scientific applications. As noted earlier, several DBMS of varying
sophistication to process numerical databases have been developed.

Most scientific and engineering applications need and use both tabular
and numerical databases. For example, in structural design and optimization
applications, the finite element model and the analysis results can be repre-
sented in a tabular database which is permanent or semi-permanent., However,
during analysis and iterative design optimization, a large amount of numerical
data is generated and processed. Such data must be stored and processed using
numerical databases and a suitable DBMS.

Business oriented DBMS cannot be used for engineering applications for a

variety of reasons. First, they do not support engineering data types; this

precludes their interaction with almost all technical programs. Second,

P A PR
o

[
3

engineering data exists in several forms; their integration {s a difficult

problem. Finally, most engineering application programs need a local database | ?
on which an enormous amount of computation is carried out involving the entire E*:',', g
[4
database; this means the DBMS must provide efficient run-time support to a . ﬁ%
large 1/0 application. :__: 21

"l

7
® AT,

P
-

4
L P I
ﬂ;g;

&l
L

,l

et acap e - - . - G L N I N P T T IR ST ST W O RS TR e
R"‘\:.':.",& \.'f‘-’»\':\"' e J\':\‘:\'.\i’-‘:‘t‘i“:“'ﬁ‘:ﬁ‘iﬂ'{gﬁh&‘) N e et et e e A AT et atatataNa e atat At s A

t
ﬂ
)
;
!
E
:

LN WL IE SR P S B T
I CTLIRrRT
P e AU S T

123

Also, DBMS developed to handle only numerical databases cannot be used
for applications requiring integrated databases. The reason is that it is not
only lnefficient to use such systems but also the programming becomes quite
clumsy due to non-availability of proper data structures, Thus, it |is
important to use a DBMS in engineering applications that 1is capable of
handling various data types.

The design of the new system [11-14] overcomes all the three problems and
facilitates implementation of a unified database management system for such
diverse applications as analysis and design of structural and mechanical
systems, generation of production information, inventory control, project
scheduling, etc. This will allow sharing of common data between business and

engineering applications.

GENERALIZED RELATIONAL MODEL

Relations are important for sharing data among different users. Whereas
most physical models in business applications can be represented conveniently
in database as relations, engineering applications require both matrix and
relational data types. Most large matrices form temporary or semi-permanent
data private to a program. Relations are either permanent data in public
domain used by different users or final results of a program to the end user.
Therefore a new scheme is needed to represent both relations and matrices in a
unified way for integrated engineering applications.

Engineers and scientists are well versed with the use of matrices and
vectors. It is natural for them to imagine a relation (table) as simply a two
dimensional array whose each column has unique definition., Thus the concept
of a matrix is generalized for relations and the resulting model is termed as

the generalized relational model. This scheme i3 supported by primitive and

PRI RIS W A L IR - PO G I N T T Ul U T I Tl TN Mt Mgl Sl U AL
R AR T A A A o A A O T AP P N NG

Ld le

LU Wiy
- ">

Lo

"v:_ w J'\

"

5 %
»

@
A
.

I L A
A
I -.'i
e

]
Al

o b
5"’
»

- - e ¢
5'5 '.':’ o
AR L ISR
[et

s
R

L4
‘L

8, 42, 1, f,
7Y

.";..I"f.' S

[N NN

S
&

?
>
w

WMW T X TER TR NP W VO T SO WL O W Wl 73.

Y
T
124
3
structured data types. Using these data types users can define their own data =
[&
models. -
0
The novelty of the new approach is that the relation is derived from a
Ko
matrix. In all previous attempts, e.g. RIM [4], one tried to extend relation éﬁg
for matrix data type. This led to clumsy and inefficient handling of numeri- -
b
cal data. In MIDAS/GR the basic data type is matrix. Matrix can be one ”ﬂ
» dimensional (vector) or two dimensional, and it can have elements with aﬁé

composite data structure. Relations are derived from the matrices as vectors

of records. g !

DATA MODELS OF MIDAS/GR 2

The basic data models in MIDAS/GR are matrices (two dimensional) and .
vectors. Vectors are of two types : variable length and fixed length. A E}E
fixed length vector can also be considered as a degenerate matrix with only ",
one row. A special type of variable length vector is the relation (vector of -
records). Figure 1 shows relationships among different data models. ig
Matrix and fixed length vectors are static objects, i.e., their sizes are -

.

statically determined at the time of their creation. This essentially means 3;
that they can have elements only of fixed size. 1In contrast, variable length Qb
vectors are dynamic¢ in nature. Not only is their size determined dynamically 3S
{depending only on the number of elements defined), their elements may also be ;3
un

of variable length.

There are four structured data types available in the system : Record,
Vector, Matrix, String. The type record gives the most general method to
obtain structured data type. It joins elements of arbitrary, possibly
themselves structured types, into a compound type. Vectors and matrices are
in contrast homogeneous structures. They consist of all components of the

same type, called the base type. The base type in turn may be a structured

) R I T T S R T e e O L R S G
A e e M T A T e e e T e g e e Ny

s 8

REAR Yy Ta Y e T ——

Sy 0% B¢

~a Y] TOTTNICY “ig eag Sog wan ¢ wall $ad " ‘San XY ‘Salh 8.8 Wl 4.8 Nad +) Y - W W 18" o W BLU ML WO W

125

type. This opens up the possibility of defining a number of special data
types. For example, a matrix of complex numbers, where complex number is a
record of two real numbers.

A vector of records may in general be treated as a relation where each
component of the vector is an occurrence of the record, and each component of
the record is an attribute of the relation. Since, a record can have a
component of structured data type, a relation may have non-atomic attribute
values,

If a matrix is defined as matrix of matrices, the matrix is considered to
be made up of a number of submatrices. Matrices may be accessed rowwise,
columnwise, or submatrixwise,

String is a special structured data type designed to deal with a sequence
of characters. String may be used as base type to define other structured
data types.

There are four primitive types available in the system. They are

Integer, Real, Double Precision, and Character.

UNIQUE FEATURES OF MIDAS/GR

MIDAS/GR is the first database management system designed to handle large
numerical databases with relational facilities. At the heart of the system
lies the new concept of generalized relational model. The new concept allows
us to unify numerical and relational data models into an integrated system.

The system provides efficient run-time support to various application
programs handling large numerical and relational data. It also provides a
central storage area for various groups in a design department. For example,
groups working on structural geometry, structural layout, cost estimation,

material control, project planning, etc. need to share data and interact with

- - - LY e

s
s"{

e
Hh S
Qﬁs

A

o

&0
PTG
AL

‘{‘ [d

.- e e e e e e i my aam v
s e T Y P T A e T P

NP
e Ly

125

one another. The system provides necessary interface and facilities for such
purpose.
Apart.

from the above, the system provides following facilities which

rogether make it a unique system:

Data Structure

a) The system provides integrated data definition facility, using primi-

tive and structured data types. Relation is just one of the many user

defined data types.

b) Because of its general approach, the system defines matrix as easily as

any other data type (say relation). As a result, matrix can be treated as

a distinet entity and it can have its own composite data elements.
¢) It provides several qualifier (sparse, banded,etc) to define special

types of matrices frequently used in engineering applications,. This

allows efficient handling of storage without direct involvement from the

user. Moreover, this provides uniform data structure for such matrices;

this effectively facilitates development and maintenance of system

routines to manipulate them.

Data Langgggg

a) It provides unifying data language. It treats relation and matrices

similarly. It is possible to make query (or other data manipulation

operations) on individual elements of a matrix.
b) It provides language with same syntax for both terminal users and for
those using them from a programming language. This leads to ease of
communication between two classes of users.

¢) It provides a language which is non-procedural,

i.e., its statements

are statements of intent on the part of the user, This makes search

optimization feasible. Also for a very large class of queries users need

T gy Cy Cua®oy 7. 7« " "a” e’ - " .-'.- . .,
R R T e I e T

L v . Lt e L T I]

2t o
L D%]
e
&{.‘
¥
-
’ .
-
N,
f:- oy
Par)
LR
1
b A E'
PAS N
e
‘
-
~
f -. *
T
oo
A ’}

“u

e
A

»
-
l.\'f ',.
rad
e
——
s:.\ -:::
D
PRI
LN
‘.-.-I
~ \‘"\

:.']

1]
18,5 4 @Y
IR0, Y

-
5

L

{

"
R
2 b

R RN AFARNK NS LAWY Wy o 9 MU W R VLY W A W IO AU A vap v) <9 q vah sal et ~al. gl a¥. gt At “R0o B0 Ay

127

not resort to loops or branching. This simplicity in turn means more

productivity.

Data Independence

The system provides multiple view of the same stored record. This is made
possible by maintenance of multiple access paths. Apart from physical
sequence, 1t maintains indexes and links (binary and unary) for direct
access and for sequential access in a different value ordering. This

leads t0 data independence.

Concurrent Usage

It allows several users to use the system concurrently, doing retrieval,

update and other operations, without conflicting with each other,

Recovery and Restart

It allows database to recover from crash, either undoing everything upto a
check point, or redoing upto a check point and then restarting from that

point.

SYSTEM ARCHITECTURE

The overall architecture of MIDAS/GR.is described by its two main compo-
nents. The lower level component is Data Storage Interface (DSI), and the
upper level component is called Data Language Interface (DLI), as shown in
Flgure 2. DSI i3 an internal interface which handles access to single data
elements. It manages space allocation, storage buffers, transaction consis-
tency, system recovery, etc. It also maintains indexes on selected fields of
relations and pointer chains across relations.

The DSI has been designed so that new data objects or new indices can be
created at any time, or existing ones destroyed, without quiescing the system

and without dumping and reloading the data. One can redefine data objects,

RS

. .'.:\-jN

o X)

L,
CXA
v -\"*.‘v;

. L
.""n o x
Ayt
[} o .,
B
U

i

'.':-‘h(‘h(' J\,’ o "r.
AL 4N

7.1 .
,_.{J :
2

%y
<s

7,
"l
5

h]
-

s
Fary,

o

)
- f []
\‘:.*:}

W L Pl TN W LV Sl Ml Tl Fatl Y Yy i LN ¥ LT U T S S N I e AT LG T % D IS T N TN | T,
N S S N TN AT RN MW N LN e e T S e e AN AN A e S Mo Nl P e e et

tR AR a™2a’i V8 ale ath ate- 08 Amate sty 62t At 64° Gn‘ Raf e Bt Ba0 Sat a0 Gab fat ful et Rat 02 agt Rt put R0 hot NA DO U AN LY LR LS et S} S R S N A Rt A R e Tl e

123

i.e., change dimensions of matrices or add new fields to relations. Existing
’ programs which execute DSI operations on data aggregates remain unaffected by
’ the addition of new fields. -

DSI has many functions which can be found in other systems, both rela- g;
tional and nonrelational, such as the support of index and pointer chain
structures. The areas which have been emphasized and extended in the DSI
include integrated data definition and manipulation facilities for numerical Eﬁ
(matrices) and relational data models, dynamic definition of new data types
and access paths, dynamic binding and unbinding disk space, and crash
resistance and recovery.

Data Language Interface (DLI) is the external interface which can be
called directly from a programming language. The high level data language is f‘?
embedded within the DLI and is used as the basis for all data definition and
manipulation.

Figure 2 shows the major modules of MIDAS/GR in current implementation.
In the lowest level is I/0 library which invokes operating system routines for
transfer of data between disk and main memory. Memory management module
manages MIDAS/GR buffer. It partitions the buffer into pages of fixed size.
All I/0 at this level is in terms of pages and using I/0 library. Data
management module provides facilities of data definition and manipulation.
Index management module provides facilities of index definition and manipula-
tion. Relation management module uses data management and index management

modules to provide facilities of relation definition and manipulation. Page

=
.
>

management formats and manages all access to a relation page. Segment. -

‘l
XA

5

management allocates and frees segmented memory (file is treated as a

LN

ey

rl
s

contiguous address space). Hash management manages a hash table for locks;

4

3
£
[N
AL

and lock management allocates and deallocates locks. Lock management is used

s
L}
»
—~ —_
TN
e
Y
Y

.7 5y Wb Ba® by BR ba¥ a0 et 0y 3a% Sat Q¥ NE' N3V Wa0 tat bataigt l et et e dat st gt Y W M W WM W T W, e, _m.‘fTf-"’N-"I".'Y'_‘h‘_"’_"_"f;.’;‘f;

129
2
by all the modules and also by the user programs to protect their respective
resources.
. The address space of MIDAS/GR is divided into pages. Broadly there are
;$ two types of pages : those containing administrative information and the
others containing user data. Data pages are in turn of two types : for
.
variable length objects and for fixed length objects. Two distinct storage
g’ organizations are adopted for fixed length data objects and variable length
. data objects, For fixed length objects, all data elements are defined at the
g, time of creation. Therefore, full storage allocation is made as soon as it is
e created. Whereas for variable length objects, size of the object at any time
i
: depends on the number of elements defined. Therefore, allocated storage is
:; expanded dynamically as more and more elements are defined.
. Data objects are divided into two categories - small and large. The
s mapping between logical and physical pages of the data object is defined by » s
L
using page table. For large data objects the page table becomes quite large. %3&‘
.; Therefore, the page table of the large object is defined as small fixed length Sf?.
vector and stored in the database as a permanent object. This technique leads i
o
’ to very small page table in the virtual memory at the expense of one level of
g indirection for each page access.
MIDAS/GR buffer i3 logically divided into two pools : Block Buffer (BB)
T; and Page Buffer (PB). Block Buffer contains all administrative informations,
. e.g., cursor table, page tables, page page tables (for large data objects),
2 etc. Page Buffer contains the data pages and page table pages (for large data i
g objects). Configuration of the buffer {s shown in Figure 3.
When an object i3 opened, an entry is allocated in the cursor table. It ii-fi
~ et
.‘ has two pointers : pointer to a master record which contains all attributes of ;h;‘
<. the data object and the other to the page table. A page table contains entry &S%E
2 R
. PN
.
= RO
A

e m - e gm- - B AR - M- AN R - “on v M - oy ™ - St m Tt A O R Y -v-*)‘!\
T A A Bl T Ty o 1 e e o R AT G R o A O SR SN Y

130

for each page. They are the addresses of the page in disk and in page buffer,
address of the page entry in LRU stack (for page replacement), and a mark bit
to recognize if the page is modified. For each page in the page buffer, there
is an entry in the stack. This entry containg the address of the entry in
page table. Logically there are two stacks : stack of clean pages and stack
of dirty pages. The top most entry represents the most recently used page and

bottom most entry represents the least recently used page.

ALGORITHMS FOR IMPLEMENTATION
MIDAS/GR is designed as a number of cooperating modules. They interact
with each other through well defined interfaces. Each module is designed
carefully to perform a specific job. Existing literature is studied to deter-
mine the most suitable algorithm and data structure relevant to a module.
Research issues related to these modules and relevant algorithms are described

in the following.

1/0 Library

At the lowest level i3 the I/0O library. It treats database as a linear
address space at the byte level, This module uses operating system routines
for transfer of data between the disk and the main memory. It provides a
machine independent interface to memory management module for data transfer.
The module will be replaced subsequently with a new disk management module

when it is ready.

Segmented Storage Management
Since we allow dynamic allocation and deallocation of space (objects are
created, expanded and destroyed dynamically), there will be 1lots of holes in

the file. One solution is to compact every time memory is deallocated;

AN T AR RN AN R R Y BN AR N S

.A ,-.
."l'l't]

VN

A

-

Ly

LA

"l "

wrPr LYY

PRSI S

P o A L
Y

v
e
P4

Y

X

34

) W W
'olb.

compaction, however, 13 a much slower process, whereas it {s much more
economical to search a well organized hole list.

Since disk access is slow, hole list is organized in the header of the
file and is retained in the main memory after it is read first time. The list
contains the addresses of the available spaces and its length; and it 1is
arranged In an increasing order of addresses. Since this 1list contains

sufficient information, no disk access 1is necessary for allocation and

deallocation purposes.

Paged Buffer Management

To reduce redundant I/0, i* is important to have a well managed buffer in
the main memory. Several memory management schemes are studied [15]. It is
felt that a paging mechanism with the least recently used replacement policy
will be the most suitable choice. Accordingly, the buffer is divided into a
collection of page frames which are equal to the physical slots on the disk.

LRU policy is implemented using two stacks : stack of dirty (modified)
pages and stack of clean pages. Top most entry of the stack {8 the most
recently used page and the bottom most one is the least recently used page.
Every time a page is accessed, its position in the stack is moved to the
top. Pages are simply read into the page buffer till it is full. Once it is
full and a new page has to be read in, the system reuses the page frame of the
least recently used clean page. If there i3 no clean page in page buffer then
the content of the least recently used dirty page is written back to disk and
the page frame is reused.

To achieve further efficiency, the system allows a page to be pinned in
the buffer. 1In that case the page will not be removed until it is unpinned.
This facility is useful when the system has fore knowledge about activities of

certain pages. Also the system allows two levels of page table. 1In that case

'
-
.
'
t
S
«
=

+ % v

A

Lty
e

3

Jo._

\J

5

Ld

3

&
-'..f v

C L,
)

Y
I"{

[’
"
rrrs

A;*ﬁ
2Pt

:“Eﬁﬁ
s

&
<ise

2,
P

-

h)

et ot Y 2
; N' .’; 1.?\ b

OO NCRRA™

St sl

st
i

4
.

‘e
SaA A

LR N
.
N
=
2

o

A
el

OO
f“. " ,",_ ety T d
) AR P

.
A
P wl Ao

55

')ﬁ
e

r
r
?.
.Q
N
OGS

®

&4, Y
l’l.".l"'
SN
HA 51

. &
-'
s

» ',;
Ay vy
NN

¢, L

A A
N
RGN
R
DRI
- "y . S e I R A N TS
. -Fvv ‘f'ﬂF’VV"J’J«deJdﬁdqu¢d¢xuJf\un\\yﬁfquﬁﬁﬁ

Aty

W e i e

t -'\l.'l.l'l ‘..(s (I ('f f [2
t " ", _..{m‘:.xf&f i\”a:’._'a. o .‘A-A"A}J}J A, lml‘;

'

"

Yo 80 870 A% 8% 8 a0 g h "1t iv‘l 4% N XA W " " M 1 . l'u't"l‘ ____ L] \J l‘ ic l'ho » L} [}

132

an entry in the page table points to a page which in itself is a part of the
next level of page table. This leads to smaller page table for large objects,

at the expense of indirection in data page access.

Stack Hanaggment

This module manages the two stacks for the implementation of the least
recently used replacement policy. For reasons of efficiency, they dynamically
share the same memory. Total space occupied by two stacks together equals the
number of page frames in the page buffer. The entries of each of the stacks

are connected together by double links.

Matrix Management

A matrix is a fixed length object, i.e., its elements are created or
deleted all at once. Therefore, the problem of internal fragmentation within
a page is avoided for such objects. Also elements in a matrix are accessed
both at random and in sequence. Therefore, it is important that the logically
contiguous elements are stored physically close to each other.

McKellar and Coffman [16] show a technique that allows quick access to
matrices rowwise, columnwise and submatrixwise. Matrices are stored sub-
matrixwise. Each submatrix contains a fixed number of rows and columns such
that the size of the submatrix is not greater than a page size. It 1is
possible to choose the number of rows and columns of submatrices in such a way
to minimize the wastage of storage space. Figure U4 shows storage organization
for such a data model. Fixed length vectors are stored similarly where the

number of rows is one.

Relation Hggéggpent

Figure 5 shows the organization of a page of variable length object.

This organization was originally proposed by Astrahan, et al. [17] for their

B3

R an
kK

ek

P

~an
v¥]

d

w
~

-
®

SX
e

2

O

st

{8

KRR
A

v o

"

t‘I.(v

A{:!fj'v'b‘.'\'ﬁﬁ \'gl 3 .‘&(v

J
-
;

(Y

ol A

W
%
E*)

e

ks

LY

experimental DBMS System R. Each individual record has a numeric identifier,

called Dald (Da for data aggregate). Each Dald is a concatenation of a page
number, along with a byte offset from the bottom of the page. The offset
denotes a special entry or 'slot' which contains the location of the data
aggregate in that page.

This technique allows efficient utilization of space within data pages,
since space can be compacted and data aggregates moved with only local changes
to the pointers in the slots. The slots themselves are never moved from their
positions at the bottom of each data page, so the existing Dalds can still be
employed to access the data aggregates. Since the position of the byte offset
at the bottom of the page is fixed, internal movements of the data aggregates
within a page does not change its address. This provides easy way to compact
data aggregates within a page. A variable length object is made up of a

collection of such pages.

Relation Page Management

A relation page is divided into a number of physical records. Allocation
and deallocation of space takes place with respect to physical records. A
modified version of Boundary Tag method with improved first fit algorithm
using rcver counter [18] is used for allocation and deallocation of space.

In this method only one byte at the beginning of a block is used. This
reduces storage overhead which is at a premium in a page. It also allows the
use of a very simple algorithm for space liberation, as no search or collap-
sing of adjacent free blocks is involved. Even space reservation involves
little search as allocation is distributed over the page using the rover
counter. However, allocation procedure is slightly complex, and runs little
longer as collapsing of adjacent free blocks is done at this time. Figure 6

shows the configuration of free and used space.

.......

134

Index Hanggggent

An index is a logical ordering with respect to values in one or more sort
fields. Indices provide the ability to scan data objects along a value
ordering. Also, an index provides associative access capability. The DLI can
quickly fetch data aggregate from an index by keying on the sort field values.
The DLI can also open a scan at a particular point in the index, and retrieve
a sequence of data aggregates with a given range of sort values.

Many techniques for organizing index have been proposed. Knuth [19]
provides a survey of the basics. While no single scheme can be optimum for all
applications, a technique of organizing indices called B-tree [20] has become
widely used. The B-tree is, de facto, the standard organization for indices
in a database system. For reasons of efficiency in both random and sequential
access, we have adopted a variation of B-tree, called B'-tree (21]. In a B*-
tree all keys reside in the leaves, The upper levels, which are organized as
a B-tree, consist only of an index. Leaf nodes are linked together allowing

easy sequential processing.

Sort Management

Sorting is required at various phases of database management, e.g., while
creating an index on an existing data object, or data is returned in an order
different from that of retrieval. So, it is necessary to have an efficient
general purpose sorting system.

Depending on the amount of data the system choses either array sort (data
contained entirely in the main memory), or file sort (data is spread in main
memory and disk). Array sort is based on Quick sort algorithm ([22,23]. File

sort 1s a superior version of Polyphase sort [24]. In our algorithm, we

combined an array sort method, called Heap sort [25], and used it in the

L,

o P]
o

*
4

4

S N

o
R0
"h":\’\"; L .‘

K

o T
b
Y

I
P
)

B

PRERER
.
CRNIII TS
) Y

DA

P
e

d
b aE s

3

distribution phase of initial runs. As a result these runs always have the

length of approximately the size of the available main memory.

Lock Management

Two types of locks are implemented - shared and exclusive. Shared lock
allows a number of processes to read an object concurrently. Exclusive lock
allows a single writer to modify an object. The algorithms, based on Courtois
et al. [26] are considered efficient and are implemented using semaphore

facilities of the operating system.

Hash Hanagement

This module provides facility for name resolution. A number of methods
are studied for hash addressing, collision handling and table layout. Finally
an algorithm based on scatter index table [27] is chosen. The data area is
chained together by double links. This leads to overall quicker performance

at the expense of slight space overhead.

EVALUATION

Currently, application programs access MIDAS using a well defined inter-
face. The specification of this interface is given in MIDAS/N User's Manual
[28]. The same interface is implemented on top of MIDAS/GR access method. As
a result MIDAS/GR has become accessible to all applications that have been
using MIDAS.

For the purntse of benchmarking MIDAS/GR and comparing it with MIDAS/N,
an application program is chosen. This program solves a system of equations
using the skyline method. The reason for choosing this program is that in
mu3t engineering problems it is necessary to solve a system of equations, and

the performance of the application depends critically on the performance of

the equation solver.

i) P A A L

o

]

._
(4’(5:’

A)
I‘.)\;.!III

&
b

DAY MmN AM
b ?
'\,‘:'_‘:;7.1

“» "»
Py
-

Table 1 and 2 gives some idea about the performance of MIDAS/GR. More

detailed results are contained in Refs. 13 and 14, All tests are run on a
DN460 Apollo computer with 2 MB of primary memory.

In general, MIDAS/GR is about ¢twice as fast as MIDAS/N. Another
interesting observation relates to the use of DBMS itself., It is a popular
belief 1in the scientific field that one must make great sacrifice in
efficiency to use DBMS (for other gains). Our result shows that with DBMS
(MIDAS/GR) the program runs only about 10-12% longer than that without DBMS
(dat.abase is in the virtual memory). This small increase in cpu time is
acceptable in most cases.

At this time, MIDAS/GR does not manage its own disk or primary memory.
The increased run-time 1s attributed to MIDAS/GR's dependence on the Operating
System for memory management and disk space allocation., This leads to dupli-
cation of effort in memory management and inefficiency in allocation of disk
space. We believe that MIDAS/GR will, in fact, improve efficiency in future
when it manages its disk and buffer directly.

It is noted here that MIDAS/N has been recently evaluated against RIM
[8]. Parameters such as the number of reads, number of writes, number of
calls to DBMS, and the CPU time were measured for the two systems. MIDAS/N
was determined to be far superior to RIM for dynamic run-time support environ-
ment.. Main drawbacks of RIM for such applications are in data models, data
access methods and the memory management scheme. Using the results of that
study, we can safely conclude that MIDAS/GR is far superior to RIM as a run-

time support system.

CONCLUDING REMARKS

In addition to the MIDAS/N user interface, MIDAS/GR supports a very

powerful and flexible user language developed in the BNF notation. The

L/ 1]
J.'I

L
(Z

b

U4

s

-
B/

g P
2

n

a1
-

i

S,

5

LY

A

‘-)‘r

-y

m w l .51‘ ;.";:l_ E .:.." vt m \“ . S_\j t:{ ;'."L'f._' "I ;'2 v ; -‘a ‘—.‘

137

language has numerous data definitions and data manipulation facilities for
vectors, matrices and relations. It can be used from the terminal on an ad
hoe basis, or from a programming language (currently C and FORTRAN). The
language is described in detail in the MIDAS/GR user's manual [29].

Creation of an efficient computer-aided analysis and design environment
needs run-time support of an integrated database management system. A
properly designed DBMS will have enormous impact on the architecture of future
software for complex engineering applications. As more computational power
becomes available, the range of applications and complexity of the software
increases. Extensions, malintenance and debugging of the software can be
considerably facilitated by the use of a proper database and DBMS. Thus, a
properly designed and implemented DBMS, such as MIDAS/GR, will be an invalu-
able tool for future software developments to solve complex - interdiscip-

linary engineering analysis and design problems.

ACKNOWLEDGEMENT
Research sponsored by the Air Force Office of Scientific Research, Air
Force Systems Command, USAF, under Grant Number AFOSR 82-0322. The U.S.
Government is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation thereon,

REFERENCES

1. SreekantaMurthy, T., and Arora, J.S., "Database Management Concepts in
Computer~Aided Design Optimization," Advances in Engineering Software, Vol. 8,
No. 2, 1986, pp. 88-97.

2. SreekantaMurthy, T., and Arora, J.S., "A Survey of Database Management
in Engineering,"” Advances in Engineering Software, Vol. 7, No. 3, 1985, pp.
126-133,

3. Lopez, L.A., "FILES: Automated Engineering Data Management System,"
Computers in Civil Engineering, Electronic Computation, 1974, pp. 47-71.

ORI s ;e _’.- NN '\‘.-_‘
P »’ Ly,

g
P - e N

'

R
ALY
A A

]

2l

{}7.-"}"}"
R

"7

o

u.' '-.' :'
NN
P

[]
% &

e

4., Comfort, D.L., and Erickson, W.J., "RIM-A Prototype for a Relational
Information Management System,”" NASA Conference Publication 2055, 1978.

5. Massena, W.A., "SDMS: A Scientific Data Management System," NASA
Conference Publication 2055, 1978.

ki

6. Fischer, W.E., "PHIDAS - A Database Management System for CAD/CAM
Software," Computer-Aided Design, Vol. 11, No. 3, 1979, pp. 146-150.

-

7. Ulfsby, S., Steiner, S., and Oian, J., "TORNADO: A DBMS for CAD/CAM
Systems," Computer-Aided Design, 1979, pp. 193-197.

8. SreekantaMurthy, T., Shyy, Y.K., Mukhopadhyay, S., and Arora, J.S.,
"Evaluation of Database Management System MIDAS in Equation Solving Environ-
ment ," Engineering with Computers, Vol. 2, 1987, pp. 11-19.

9. SreekantaMurthy, T., Shyy, Y.K., and Arora, J.S., "MIDAS - Management
of Information for Design and Analysis of Systems," Advances {n Engineering
Software, Vol. 8, No. 3, 1986, pp. 149-158.

10. Shyy, Y.K., Mukhopadhyay, S., and Arora, J.S., "A Database Management
System for Engineering Applications," Technical Report No. ODL-85.23, Optimal
Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA
52242, 1985.

11. Arora, J.S. and Mukhopadhyay, S., "Specification for MIDAS-GR Manage-
ment of Information for Design and Analysis of System : Generalized Relational
Model," Technical Report No. CAD-SS-84.24, Optimal Design Laboratory, College
of Engineering, University of Iowa, Iowa City, IA 52242, 1984,

12. Mukhopadhyay, S. and Arora, J.S., "A Database Management System using
Generalized Relational Model," Technical Report No. ODL-86.27, Optimal Design
Laboratory, College of Engineering, University of Iowa, Iowa City, IA 52242,
1986.

13. Mukhopadhyay, S. and Arora, J.S., "Design and Implemention Issues in
an Integrated Database Management System for Engineering Design Environment,”
Advances in Engineering Software, Vol. 9, No. 4, 1987, pp. 186-193.

14, Mukhopadhyay, S. and Arora, J.S., "Implemention of an Efficient Run-
time Support System for Engineering Design Environment," Advances in Engi-
neering Software, Vol. 9, No. 4, 1987, pp. 178-185,

15. Denning, P., "Virtual Memory," Computing Surveys, Vol. 2, No. 3,
1970, pp. 153-189,

16. McKellar, A.C. and Coffman, E.G., Jr., "Organizing Matrices and
Matrix Operations for Paged Memory Systems," Comm. of the ACM, Vol. 12, No. 3,
March 1969, pp. 153-165,

17. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., et al., "System R :
Relational Approach to Database management," ACM Trans, on Database Systems,
vol. 1, No. 2, 1976, pp. 97-137.

- ')'.I-"V".

A -’-J,.A-’-.‘.‘-'..-i-.,-_. = v

e~

(5
S oL

LG

R

HM m)
AN m Rl

u"

8

139

18. Knuth, D.E., Art of Computer Programming, Vol I: "Fundamental
Algorithms," Reading, Mass., Addison-Wesley, 1973.

19, Knuth, D.E., Art of Computer Programming, Vol. III: "Sorting and
Searching," Reading, Mass., Addison-Wesley, 1973.

20. Bayer, R. and McCreight, E., "Organization and Maintenance of Large
Ordered Indexes,” Acta Informatica, Vol. 1, 1972, pp. 173~189.

21, Comer, D., "The Ubiquitous B-tree," Computing Survey, Vol. 11, No. 2,
June 1979, pp. 121-137.

22. Hoare, C.A.R., "Quicksort", Comp. Journal, Vol. 5, No. 1, 1962, pp.
10-15.

23. Hoare, C.A.R., "Proof of a Recursive Program: Quicksort," Comp.
Journal, Vol., 14, No. 4, 1971, pp. 391-95.

24, . Gilstad, R.L., "Polyphase Merge Sorting - An Advanced Technique,"
Proc. AFIPS Eastern Jt. Comp. Conf. Vol. 18, 1960, pp. 143-48,

25. Williams, J.W.J., "Heapsor:t," Comm. of the ACM, Vol. 7, No. 6, 1964,
pp. 347-u8.

26. Courtois, P.J., Heymans, F., and Parnas, D.L., "Concurrent control
with readers and writers," Comm. of the ACM, Vol. 14, 1971, pp. 667-668.

27. Morris, R., "Scatter Storage Techniques", Comm. of the ACM, Vol. 1t,
No. 1, Jan. 1968, pp. 38-44,

28. Shyy, Y.K., Arora, J.S., Mukhopadhyay, S., et al., "MIDAS/N User
Manual", Optimal Design Laboratory, College of Engineering, University of
Iowa, 1984,

29. Mukhopadhyay, S. and Arora, J.S., "MIDAS/GR User's Manual," Optimal
Design Laboratory, College of Engineering, The University of Iowa, Iowa City,
IA 52242, 1987.

it

A s L e R S T R S e A SR

o oreresal

¢

VAN L LA AS LUl b M PR A Ay

‘A
140
NS
i
Table 1 : MIDAS/GR VS. MIDAS/N Ce.
Page Size = 4 KB _‘
Buffer Size = 64 KB S,t,r'
Workspace Size = 8 KB Al
Band width = 100
| o~
o
| No. of | CPU Time in CPU Time in Ratio
| EQns. MIDAS/GR MIDAS/N MIDAS/N : GR N
(Seconds) (Seconds) s
1000 899 1811 2.01 o
W
b
5000 Shyy 10, 437 1.92 el
10,000 9905 20,194 2.04 W2 K
20, 000 22,781 40, 945] 1.80 r!‘
RN
30,000 34,827 62,050 1.78 RNy
P
T
40,000 45, 251 81,329 1.80 o 3
7 Y
w

[¢
W

':

1
y
1

A
]
O %

.'
P)

<y

" ‘. '
Ay,

10;;_,
I‘l"

rd
[0 S
'[1_{1_". ot

Yy

'g;d
=

o T T P " A AR MR
R S PN 2t e A A AT A A AT AL MO A

;l""l'<

Table 2 : MIDAS/GR VS. Virtual Memory
Page Size = 16 KB

Buffer Size = 1024 KB
Workspace Size = 128 KB

g No. of CPU Time in CPU Time W/0 Penalty for
Eqns. MIDAS/GR DBMS DBMS use %
E}. (Seconds) (Seconds)
1000 301 281 | 7.1
N 5000 1601 1502 [6.6 LA
\\\ ."L-“i
- .\‘KJ
10,000 3376 3023 1.7 NN
o ;‘_»:_.J
s 20,000 6839 6193 [10.4 4~.-1
’*l'-"lj
30,000 [10,319 9211 1.7 e
q .'v-",f\
L]])-\'-\4
s 450,000 13,785 12,228 | 12.7 s
\ <l
LINEY
]

B P
bRk LA

W

o N N o s N A e I N T L T R T e g T e e A T A N N A A AL I AT A NN

preaiy

-~

oo

.
?
-

"!
*:“-

-
N
’
*y
T

-
o
I,

oy
>l
D

|
v
'.

142

Data Object

Vector ' Matrix

I f 1
| |1 |

Variable Length Fixed Length Two Drllr:terri‘imna]
vector Vector

| | .
| |

RN
Other Relation o
“ -,
NN
e
R
Figure 1. Date Model of MIDAS/GR o 1
INGIRR
L S) . ™,
l."
o
e .\
e
b -
L
~ 2
-:‘-_- '-.:F
e
e
IS
DA
[
N
AT
NS

3

i
PP gt Y Uy WY Ag- N "»
AR v
RANE 3%; 7

e AN A T

YT
LOL

/s

o T
oy Y

pad)

)
o

s

143

L

“ava 'l ta " e bl L8 CR (Y “Bat Ba? il fab " U]
MIDAS/GR Data Language Interface
MIDAS/GR Data Storage Interface
Data Relation
Management Management
Segment
Vector Management Index
Management Management
Hash
Management

Memory Management

170 Library

Figure 2. Organization of MIDAS/GR

(va'*" ",

L LN L ¥ l‘fl'-.f{ Wy o L™’ L 2" 2L 2 "o
R e A o S A e A A S ST e S

L ‘<" < ‘l‘:

, W,
ke 5 S

P o o o
5 bt

.. l‘ ’

oAy

¥

x

'L 2NN

A AL A

RSO S

" -]

O R

NS
I

[38

e » &y 'J"','.-" I l‘:‘ -.

e v e e

, LT PRt

N P
U

CIE S uit 2 O o
.I"\,'i b RSN

NS S

N

T O o W W RN W R W S T T R R o I N A A N o v o S S LN T L Y

0
144
i,'::.
File Block Buffer Page Buffer k
L
To Attribute . e N
Data Cursor Table | Record = o
*» * » * *
=
x % * * ® n
* % ‘::
: Page Table * *| _Page Table * Lo
*
*)
»* e
% | ® | » ‘&Q
»* * £ »*
Top Top s "
» » ue
* » YN
’ * - .-
* é .‘\:" I':'-‘
»* »* <. ':-:":
» Bottom Bottom » e A
* Cleen Stack Dirty Stack * o
LRU Stack — 2
Figure 3. MIDAS/GR Buffer Configuration o]
k4
-7,
RACERA A
VAL B o
o f.*j

»

Sy
»

Y
F‘-’ A gl Wi
A
e

|
]

\':\'.i
Y
}. _;\\ \." d
NS

s
0;?2":

Y}

‘o

.'
i 'l"l
AN

SO

]
1§
4
1]
1
1l
T
]
1}
€ r 7.2
hﬁﬁﬁ“
{5{5{1{.

145

2
y :?x' °

4

P ot R o
o A
F s

Z e

5,

L)
X

=

PR

SuBt11|sSuBt12|suB13]|SuUBIA4
sUB21|SuB22 |SuB23 |suUB24

SuB31|sSuB32|sSuB33|SuB34

s O

%"

rerrr
P
I‘I.t

%

N Y
)
|]

k{

Py
%

X SUB41|SUB42 | SUB43 | SUB44 |<

Ly

k]
a8y
k]
ﬂ

et et w
B :

L
' ¥
) Ay

) ~ Page

| A
- ."\'v“'“}. 1

Figure 4. Storage Organization of Fixed Length Object

|

. e ¥

\33#]
LY
DA

r
<
3

<
AL

o
A
< > .:-E-' .
Header "_x
> e
Record R Ara
Page ——— J A
3 RV
e
Dald — gt
> ~| Record R; e
. * R
f_.f._-
Page Offset from E-‘;‘:
No. Bottom of ’
Page
: Address of [[[*] »x=]3] = = x
Record Rj

, Figure 5. Page Organization of Variable Length Object

R

A % TS % 3% % S e I VY
.- ".~‘ - . 'y * r. * *} '

09° A" DN A 0 HL N -Jf'ﬂ"

P
.

146

| l!bﬂ ‘ l |1bit “

- Size + Size

Forward Link 4§§
Backward Link

Free Block Used Block

Figure 6. Configuration of Free and Used Space e

.‘.’. LY 5
et »
S B Sl B o "o AN Bl

:l 4
v
[£ W5 U U e O & R I W B W U

L
Pl
fan 22 oo @ & Y NPT

R L B A M N e D e

Y DO N XY T A

e - P A NE Tk e SAmaea . v
A A O T G A R R R L L T L TR LY LI

AY QT qu o o _ o " e W

