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I. SUNKARY

This is a study of some fundamental aspects of the structural

dynamics and vibration control of large structures. One focus is the

development of a limiting performance formulation with minimum settling

time which can accept multiple design objectives efficiently. This new

formulation is intended to meet the need of rather comprehensive design

objectives for the control of large space structures. Another objective

of the study is to develop a systematic way of designing a control

system based on the limiting performance characteristics. An indirect

synthesis methodology is proposed. It is shown that closed loop control

laws can be based on the optimal response trajectories in the time

domain. The method is successfully applied to the control of proof-mass

actuators.

.



II. RESEARC OBJECTIVES

1. A Comprehensive Limiting Performance Study

A comprehensive limiting performance study was to be performed. In

order for the varied and stringent design objectives of large space

structure control problems to be met in terms of limiting performance,

it was considered essential that a broader limiting performance

formulation be developed. In addition to the capability of taking

various objectives the resulting trajectories were required to be

unique. In conjunction with the synthesis study of feedback control

laws. limiting performance characteristics in the modal coordinates were

to be provided.

2. Synthesis of Feedback Control Laws

Since the limiting performance characteristics with minimum

settling time could give optimal response trajectories in the time

domain even when the problems included constraints, it was anticipated

that a methodology to give control laws based on these characteristics

would be an efficient design tool. An objective of this research was to

develop such a methodology. In order to assure robustness and

practicality, it was felt that such control laws should be of closed

loop form. 0
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3. Inertia Damper Design

The control laws developed were to be applied to the control of

proof-mass actuators. Since the control characteristics of proof-mass

actuators are dominated by the constraints on the control force and the

rattlespace. the control laws should be able to be designed to handle

the constraints efficiently.

IL
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III. RESEARII PROGRSS AND STAT[S

1. Limitina Performance Characteristics with t Norm and Minimum

Settling Time

The limiting performance is defined as the minimum peak value of

certain responses while other system responses are constrained. Min-max

norms are utilized in the performance index to achieve the limiting

performance characteristics. Since the min-max norm employed to

minimize the maximum peak value among the peak values of the selected

responses does not provide unique peak values except the maximum peak

value, an 1.1 norm with weights is proposed here to avoid the

non-uniqueness of the peak values and to provide flexibility in

selecting the performance index. Also, it is shown here how to

supplement min-max norms with additional performance measures to settle

the responses in minimum time. The formulations presented provide a

general approach to find unique optimal response trajectories. The

resulting characteristics are referred to as limiting-performance/

minimum-settling-time (LP/MST) characteristics.

Problem Statement

A linear vibrating system can be represented by a system of second
0

order linear differential equations

Mx + Cx + Kx Ff(t) (1)

4
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where x is an n-dimensional vector and M. C. and K are mass, damping.

and stiffness matrices with appropriate dimensions, f(t) is an

nf-dimensional vector representing a forcing function, and F is a

ccefficient matrix which is used to place the forcing function in the

equations of motion. By replacing portions of the system to be designed

by generic or control forces which can represent any configuration, the

limiting performance characteristics of the system can be found. With

the control forces, u(t)• the system to be studied can be described by

the equations of motion

Mx + Cx + Kx + Vu(t) = Ff(t) (2)

where u(t) is an nu-dimensional control force vector, V is a coefficient

matrix, and C and K represent the resulting damping and stiffness

matrices after replacing portions of Eq. (1) with control forces.

Define a state vector

T *T T
s = [T T (3)

Then, Eq. (2) can be represented by the state equations

s(t) = As(t) + Bu(t) + Cf(t) (4)

where s(t) is a 2n-dimensional state vector, A, B, and C are constant

coefficient matrices represented by

5



A=[ o M ] (5)

B = _M-IV (6)

c= [ 01F (7)

where I is the identity matrix and 0 is the null matrix.

The problem is to find an optimal control M_* (t) based on a !

performance index as the weighted sum of p system responses

minimize J = N = wlJI + w2J2 + "'" + wpJp (8)

where

S 1 J2 "" Jp T _< t _ tf P1s + Pu + PPfI (9)

w = [ W2I ... Wp IT(10)

where to and tf are given initial and final times, PI1 P2 and P3 are

prescribed constant coefficient matrices, and w is a prescribed constant

coefficient vector containing weights. Equations (8) and (9) represent

11 and min-max norms, respectively. The solution is to be computed such

that the peak values of I are unique and the response trajectories after

the peak values of responses are settled in minimum time. E

Constraints are imposed on the dynamic system under study. The %

6OZ
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format of the constraints is

yL Ql. + Q2 u 
+ Q3  Y yU for t 0 t tf (11)

where YL and Yu are nc-dimensional lower and upper constraint vectors

and QI. Q2 and Q3 are constant coefficient matrices. The quantity nc is

the number of constraints

Linear Programming Formulation

Since the problem defined above has a linear performance index and

linear constraints, standard linear programming can be used to solve the

optimization problem, provided that the problem has not been stated to

be physically over-constrained. In this section, a linear programming

formulation without imposing minimum settling time is studied. If the

system in Eq. (4) is discretized using N uniform time intervals, a set

of state difference equations is obtained for k = 1,2,...,N

s(k) = Gs(k-l) + H[Bu(k) + Cf(k)] (12)

where

s(k) = state vector at time tk = kh

u(k). f(k) = control and external excitation vectors, assumed to be

constant over the interval tkl < t < tk
G Ah  "

G e~

H jfh eA(h-T)drT
0

h =time interval =tk - tkl

7
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The state vector, at any time t = t., can be expressed as a function of

the initial state s(O). the control history u(l), u(2)..... u(N). and

the external excitation f(l), f(2) .... .(N). For k = 1.2. ,N

kk k-j
s(k) G s(O) + I G H[Bu(j) + Cf(j)] (13)

J=l

The constraints in Eq. (11) are discretized similarly ii
YL(k) < Q1S(k) + Q2u(k) + Q3f(k) < yu(k) for k = 1,...,N (14)

Having discretized the state equations, these constraints can only be

enforced at the end of each interval. At "intermediate" times, they may

be violated.

Consider now the linear programming formulation of the limiting

performance problem. The objective function of Eq. (9), which reflects

the min-max norm, can be converted into a constraint set. Since I is

the vector of maximum values of IPlS(k) + P2!(k) + P3f(k)J for all k'

iPls(k) + P21(k) + P3 -fk)I < J (15)

To place the I1 norm of the performance index in Eq. (8) into linear

programming form. define a (p+nc) x p augmented matrix j which has

elements of vector j along its diagonal as the only non-zero elements,

i.e..



J0 .2 . 0

* .0

3= 0. 0OJ (16)

0 .. . 0

0 .. . 0

Also, to merge constraints in Eqs. (14) and (15). define augmented

matrices

Q Q p [2 ],andQ, [p 3 (17)

* and augmented vectors

yU(k) = [gT YT(k) ]T and - (k) = [gT T (k T (18)
U - U YJ) YLk)

where 0 is a p-dimensional null vector. Then Eqs. (14) and (15) can be

merged as

-j + Q j(k) + Q2u(k) + Q3f(k) U(k) (19)

-3 - Ql I(k) - Q~u(k) - Q3L(k) -yL(k) (20)

Substituting Eq. (13) into Eqs. (19) and (20), the constraint equations

have the control sequence u(k) as the only unknowns. For k =1.2,..N

9



kk- I k-7+)--( Q ) - F:Z2(k) <

j=l

kk

-j + Qx 7kG Hmu(j) + Q~u(k)
J=l

yL(k) + Q1Gks(O) + I G +Cf(J) Q3
-L(k) (22)

j=l

Since the control u(k) should be unrestricted in sign, a standard linear

progranmming technique for dealing with such variables is introduced.

Define

u(k) = _ +(k) - _(k) (23)

where

U_+(k) 0 and U-(k) + 0 (24)

To place this optimization problem into a standard linear programming

form, define

Mz)= (k)-] -k (25)

where

U ~~ T+ T-) TT0adI () 0(4

u - [_+(1)T U- (1)T U+(2 )T U(2)T ... U +(N) T U (N)T] (26)

and

S- [ wTT ] (27)

10



where 0 is a 2N-dimensional null vector. The vector w can be selected

to provide unique values of peaks. i.e.. J1, J2 -. -J p. Then the linear

programming problem is to minimize

J = C TZ (28)

subject to the constraints

Hz < b (29)

where H and b are a 2N*(p+nc) x (2NDnu+p) coefficient matrix and a

2N*(p+nc) coefficient vector, respectively, representing constraints of

Eqs. (21) and (22).

Limitinf-Performance/Minimum-Settling-Time Formulation

The unique peak values can be obtained based on the linear

programming formulation of the previous section. Formulations are

studied to achieve the minimum settling time characteristics after the

peak values. Two methods are available to achieve the minimum settling

time and they can produce identical minimum settling time responses.

One utilizes additional performance indices and the other utilizes

additional constraints. The additional performance indices and uj

constraints can be employed independently or simultaneously depending on

the requirements of a problem. However, in order to minimize the size

of the linear programming problem, additional performance indices for

the responses selected in the performance index and additional

11 H7



constraints for the constrained variables are suggested to be employed.

To provide the minimum settling time characteristics for the

responses in the performance index, the performance index of Eq. (8) is

separated into two performance indices. Assume that the peak values of

the limiting performance occur during the time between t and tt . One

of the performance indices, referred to as the transient performance

index, is given by

J  = t (30)

where

it= tax IPlS + P2u + P3 f (31)

where tt is the time limit for the transient period. The other,

referred to as the steady-state performance index, is defined as

js X Ts (32)

where

N so tht t a i + P + P f  (33) M

i

Note that the same w and P.' P P are used in the performance P

indices. The transient performance index is used to give unique

response trajectories up to the point of the peak values and the

steady-state performance Index is used to settle the response

12
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trajectories after the peaks within the desired values in minimum time.

See Fig. 1.

to T tf

Fig. I A Response Trajectory with Transient and Steady-State

Performance Indices (i = 1,2,...,p)

Now, the global performance index is defined by

jg = jt + js (34)

The objective functions of Eqs. (31) and (33). which reflect min-max

norms, are also entered into the constraints. Since I t is the vector of

the maximum values of lPl s + P g + P3_1 for to < t < tt and so is Is for

tt < t < t f, the constraints from the objective functions are, if they

are discretized using the same discretization of Eq. (12).

Ipl_(k) + P.(k) + P3f(k) _l for k = 0.1....Nt

and (35)

IP1 (k) + P2u(k) + P3f(k)l I s  for k = Nt.Nt+l.....N

where Nt is the discretized time limit for the transient period.

13



S--- -- --- -
YU tYU

I II
to t

YSL

YL

Fig. 2 A Response Trajectory with Transient

and Steady-State Constraints

To achieve minimum settling time characteristics for the responses

in the constraints, consider two sets of constraints. One set of them,

referred to as the transient constraints, is used to represent the

original constraints in Eq. (11) from t to t t . An additional

constraint set, referred to as steady-state constraints, is imposed from

tt to tf

YSL -  Ql + Q2 + Q3f -'YSU for tt _ t < tf (36)

where YSL' ySU are nc-dimensional coefficient vectors representing lower

and upper bounds of steady-state constraints. The steady-state %

constraints represent the desired values of the responses after the

peaks. The responses are required to be settled within these values in

14
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the smallest value of t t . Note that the matrices Q1 ' Q2 ' and Q3 in Eq.

(36) are identical with those in Eq. (11). See Fig. 2. for an

illustration.

To take the new performance index of Eq. (34) into linear

programming, define p x p matrices it and is which have elements of

vectors It and Is, respectively, along their diagonals as only non-zero

elements. Also, define (p+nc) x 2p matrices J and J such as

^t it 0
= [1t1](37)

s L [ 0  j (38)
00

where 0 represent null matrices. The two sets of constraints are

discretized and merged into the constaints from the performance index.

Eq. (35). using augmented matrices and vectors of Eqs. (17) and (18).

t- 1
Then, for k = 1.2.....N the constraints are

_jt + Qls(k) + 2u(k) + Q3f(k) _ yu(k) (39)

_ t _ 1s(k) - _ (k) - Q k) _ (40)

t t
and. for k = N .N +1,...,N. the constraints are

+ Q _(k) + 82(k) + Q3f(k) _ ysu(k) (41)

-3s - Ql_(k) - 32(k) - Q3 _E(k) -SL (k) (42)

15
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Substituting Eq. (13) into Eq. (39) to Eq. (42). the constraint

equations have control sequence u(k) as only unknowns.

To place this optimization problem into a standard linear

programming form. define

[Jit

_: (43)

where u is given by Eq. (26) and

-_T =[T T 0T ] ()
TTT1 - (44)

where 0 is a 2N-dimensional null vector. Then the linear programming

problem becomes: minimize

jg = ̂ Tz (45)

subject to the constraints

Hz < b (46)

where H and b are a 2N*(p+nc) x (2N*nu+2p) coefficient matrix and a

2N*(p+nc) coefficient vector, respectively, representing constraints of

Eq. (39) to Eq. (42).

16
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2. Limiting Performance Based Feedback Control Synthesis and Its

Application to the Control of Proof-Mass Actuators

The control characteristics of proof-mass actuators are dominated

by the constraints on the control force and the rattlespace. This

constrained control problem raises a serious difficulty in designing a

system using conventional control system design methods such as linear

control or optimal control. It has been known that the limiting

performance formulation with the minimum settling time can provide an

optimal open loop control law for the proof-mass actuators. In order to

enhance the practicality and robustness of the open loop control and to

provide a systematic approach to handle constrained control problems.

feedback control synthesis methods based on the limiting performance

trajectories are developed. Some control laws developed with these new

approaches for the control of proof-mass actuators are presented.

Suboptimal Desizn Synthesis of Feedback Control Systems

Methods of designing suboptimal feedback control laws based on the

LP/MST characteristics are presented here. Assume that the system is to

be controlled by active actuators and the actuators are subject to

constraints. The active controllers are assumed to be controlled by a

constant state variable feedback and the feedback gain matrix is found

based on the LP/MST characteristics. Two distinct design synthesis

methods to construct feedback control laws are studied. For general

equations of motion including systems with a non-proportional damping .I

matrix, a suboptimal feedback gain matrix is found using the constrained

17
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curve fitting technique based on approximating optimal response

trajectories. For decoupled equations of motion, e.g., systems with a

proportional damping matrix, another synthesis method can also be

utilized. In this method, closed loop eigenvalues are first extracted

using the curve fitting based on approximating optimal response

trajectories and the eigenvalues are assigned using an eigenvalue

assignment method based on a constant state variable feedback to find

the feedback gain matrix.

Identification of Feedback Control Based on the Optimal Response

Tralectories

One of the two methods to construct feedback control laws based on

the LP/MST characteristics is studied here. With this method, the

constant state variable feedback gains are obtained directly by fitting

the optimal response trajectories. This method can handle equations of

motion with a non-proportional damping matrix. However, there is no

guarantee that the resulting system will be stable.

Computation of LP/MST Characteristics

The first step is to compute the LP/MST characteristics. By

replacing portions of a system to be designed by generic forces which

can represent any configuration, the LP/MST characteristics of the

system can be found as described previously.

Identification of Constant Feedback Gain Matrix

ST'~ T TThe optimal LP/MST trajectories s (k) = [x (k) x (k)T] and u (k)

W C V



(k = 1.2. N) are used as a starting point. Assume that the active

controllers are controlled by a constant state variable feedback. i.e.,

u(k) = Ds(k) (47)

where D is an nu x 2n constant feedback gain matrix. Since nu

controllers are considered and optimal control forces are available for

each controller, it is possible to proceed controller by controller.

For controller j (j = 1.2....,nu), a suboptimal linear control law to be

determined is described by

U ( x for u (k) > Umax

u (k) us(k) for Umin u(k) Umax (48)

Umin. for u (k) < Umin
ij

where

u3(k) = dji(k) (49)

d = jth row of D matrix

Note that Eq. (48) serves to enforce a constraint on the control force

of controller j

A.

U min (k) < Umax (50)

Then the problem becomes to find the optimal feedback gains d. (for j = ,

1,2,....nu) which minimize

19

VV



N 2
Hj ( )kA (k)2  (51)

k=l

where

A (k) = Ju(k) - us(k)l (52)

To find d efficiently a curve fitting method based on a least squares

residual function of Eq. (51) can be used.

Identification of Feedback Control Based on the Assignment of the

Optimal Closed Loop Eigenvalues

In this section it is assumed that the equations of motion can be

decoupled, i.e., the damping matrix is proportional or the system is

undamped. In this method, the optimal response trajectories are

calculated in the modal coordinates and the curve fitting technique is

used to find closed loop eigenvalues for each mode. Then, the state

variable feedback gains are obtained using an eigenvalue assignment

technique. This method can guarantee the stability of the resulting

gains. Also, the constraints on the response variables can be enforced

during the design process.

Computation of LP/MST Characteristics in Modal Coordinates

Replace portions of a system to be designed by generic forces.

decouple the equations of motion by using the normal mode method, and

compute the limiting performance characteristics in the modal

coordinates.

20
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Start from Eq. (2). Using the normal mode method and the

transformation

n^

_(t) = og(t) = qr(t) (53)
r=l

where !t is obtained by solving
rV

Z2 Q, r 1.2,..n (54)

Eq. (2) appears as

Mg + Cg + K- + u= Ff(t) (55)

where

M = ;TM0 = modal mass matrix

C = 0 T; = modal damping matrix

K = T KO = modal stiffness matrix (56) l,

F = ;TF

By using the state vector

T. .T T

19 9 ] (57) 1%

Eq. (55) can be represented by a state equation

21

Z.1
icoa 02



a(t) = As(t) + Bu(t) + Cf(t) (58)

where U

The performance index and the constraints can also be transformed with

the relationship '

'00

B(t) = (t) (62)

00~

Then the problem can be solved in the modal coordinates using one of the ,U,

formulations given previously. -.

-,p

Identification of Suboptimal Closed Loop Eigenvalues B

The optimal limiting performance trajectory for each mode in modal

coordinates. q'*(k) (r = 12....n; k = 1,....N). is used as a starting

point. The first task is to find optimal " and w for each mode which •
*r r

will minimize 0%

N 2
H' I A;(k) (63)
r k=lr-

22U



where the measure of approximation is

Ar(k) = jq*(k) - qr(k)l (64)

where

qr(k) ql r, r)

= The analytical solutions for the time response of the

decoupled SDOF system.

To find optimal r and ( , a least square curve fitting technique is

employed. Now the closed loop eigenvalues for each mode can be

calculated by the characteristic equation

X2 + -X+ 2 = 0, r = 1,2,...,n (65)r rrr r

or

? C =- * + i w*v/1 C (66)r rr r r

Since the closed loop eigenvalues are now known for each mode,

eigenvalue assignment techniques can be used to find the feedback gain

matrix.

Assignment of Closed Loop Ei~envalues

Several assignment techniques are available, often differing

according to the characteristics of eigenvalues to be assigned. From

Eq. (4) the system to be designed is written as
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_(t) = As(t) + Bu(t) + Cf(t) (67)

and the problem is to find the feedback gain matrix D such that

u(t) = Ds(t) (68)

which will produce the specified closed loop eigenvalues X (r = 1,2,...
r

,n) of Eq. (66) from the matrix

= A + BD (69)

Application to the Control of Proof-Mass Actuators

As a proof-of-the-concept example, the suboptimal design synthesis

method is employed to find suboptimal feedback control laws for the

proof-mass actuators.

Proof-Mass Actuators

One of several designs for a proof-mass actuator is shown in Fig.

3. It incorporates two doughnut shaped samarium cobalt magnets and an

annular soft iron yoke which combines the functions of moving mass and

magnet. This assembly moves over a fixed coil whose current is

controlled to produce the required force on the magnet, and thus the

required reaction on the structure to be damped. Given this coil size.

the maximum force available is limited by the current which can be

carried by the coil without overheating. In the prototype design, it

%
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was found possible to achieve a maximum force of 1.92 Newtons over a

travel of plus or minus 0.0127 m (a total range of one inch). The mass

of the moving yoke was 0.278 kg. The design provides for two sensors,

an accelerometer which will be attached to the damper in a fully

collocated application, and a sensor to measure the relative position of

the proof-mass within the housing. The accelerometer is to be of the

servo type, because it has to provide control signals down to zero

frequency, while the position sensor is essential if the effects of

striking against the stops which limit travel were to be avoided. In

the design shown in Fig. 3, a linear variable differential transformer

(LVDT) is used. However, an alternative sensor is also used quite

successfully. This incorporated a tapered aluminum sleeve shrunk over

the yoke (the yoke could have been tapered during manufacture) used in

conjunction with a proximeter (which measures the distance to a

conducting surface).

Fixed Coil Winding Assembly

Yoke ~ollHousingShf

LVDT Model No. 500

LVI 

40

Pole Piece ,LVIYT Connector
Ball Bushing

(Linear Bearing)

Fig. 3 A Schematic Diagram of a Proof-Mass Actuator
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Problem Statement

The system to be considered, a single DOF mass-spring system, is

shown in Fig. 4. A proof-mass actuator is attached at the end of the

mass. The equations of motion of the system in Fig. 4 are

Mx + Kx = U (70)
11

m:K2 = _u

The natural frequency of the spring-mass system is chosen to be

(= ,/-K = 211 rad/s =1 Hz (71)

K

M = 2.78 kg

*xl m=O0.278 kg

U%

Fig. 4 A Single DOF Mass-spring System with the Proof-mass Actuator

Let d =x 2 -x 1 and introduce the state vector s = [x1 x1 d d] . Then a

set of first order differential equations is obtained.

s= As + Bu (72) Y
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where

0 1 00 0

A = -W20 0 0 B = /M (73)
0 0 1 0

L W2 0 o o j-_M _ _

Due to the physical limitations, the proof-mass actuator has constraints

on the distance it can travel and the force that can be generated.

Id I< d = 1.27 x 10-2m (74)

uIUMa =2N

The initial conditions are given by

s(0) = [O.Olm 0 0 0]T (75)

The problem is described in two phases. The first phase is to find

the optimal trajectories of control, u (t), and the state variables.

s (t), to bring the displacement of the mass M. x1, within 2% of the

initial value in the minimum settling time and the second phase is to

find suboptimal feedback control laws based on the optimal trajectories

using the methods for suboptimal design synthesis of feedback control

systems. b

Computation of LP/MST TraJectories

The computation can be done using one of the formulations given
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before. The resulting LP/MST trajectories are shown in Fig. 5.

IN] Control u(t)

S.0S

[in] Displacement x,(t)

O.O{Rattlespae
d(t)

Time [sec] 2.5

Fig. 5 LP/MST Trajectories

Identification of Feedback Control Based on Fitting Optimal Response

Tra.ectories

The LP/MST trajectories shown in Fig. 5 are employed to find

suboptimal feedback gain matrix D. In this subsection the method based

on fitting optimal response trajectories is used. Since nu = 1 and 2n =

4. the problem becomes to find a vector d such as

u(k) = d4 s(k) (76)
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Using a curve fitting technique, the suboptimal feedback gains are

obtained as

d = [ -81.86 11.50 30.26 8.017 ] (77)

and the resuting closed loop eigenvalues are

-107.4. -4.821, -0.5277+5.956i (78)

The constraint on the control force is enforced by Eq. (48) with Eq.

(74). The time response using these feedback gains for given initial

conditions. Eq. (75). is shown in Fig. 6. Note that the constraint on

the relative displacement is violated.

1.0"
Control. u(t) V

[N]

001 Displacement, xI(t)

-0.01 , %

0.01 Rattlespace. d(t)

-0.01

0.0 Tim sec] 6.0

Fig. 6 Time Responses Using Suboptimal Feedback Gains
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10.01

0.0 Time [sec] 6.0

Fig. 7 Time Response Considering the Knocking

1.0..
Control, u(t)

0.0 " . .. .. Displacement, xi (t)

Em]

[t

-0.01 --5s

0.0 Time [sec] 1.0

Fig. 8 A Closer Look on the Response During Knocking
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To consider the influence of knocking between the proof-mass and the

housing, time response is simulated by putting elastic impacts when the

proof-mass violates the limit on the rattlespace and is shown in Figs. 7

and 8. Note that the knocking does not cause instability.

Identification of Feedback Control Based on the Assignment of Optimal

Closed Loop Eixenvalues

The LP/HST trajectories shown in Fig. 5 are employed to find

suboptimal feedback gain matrix D. In this subsection the method based

on the assignment of optimal closed loop eigenvalues is used. Since the

equations of motion are decoupled, the normal mode method is unnecessary

for this problem. Optimal damping ratios and natural frequencies for

the mass-spring system and the proof-mass are obtained based on the

measure of approximation, Eq. (64). The resulting C and (Pare 1 =

0.1087 and W = 6.3641 for the mass-spring system and C* = 0.0381 and w0

= 6. 1479 for the proof-mass actuator. Now, the closed loop eigenvalues

to be assigned are determined from Eq. (66)

$
X1,2 = -0.6918 + 6.326i (79)

X 3,d= -0.2342 + 6.143i % ..'

3.4 7
Using an eigenvalue assignment technique, e.g., a method based on the

generalized control canonical form, a feedback gain matrix D of Eq. (68)

can be obtained as
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D = [ 9.827 0.3844 11.605 0.5517 ] (80)

and the resulting time responses are shown in Fig. 9. Note that the

constraint on the rattlespace is not violated. However, more time is

required to damp out the disturbance compared to the previous time

responses of Fig. 7. a

1 II ]= i I I

Control. u(t)

-,o #
(N]

Displacement. Xl(t)

-0o 0.o 1 i ,, Iq

0.m) Rattlespace. d(t)

-0.01-"-

0.0 Time [sec] 20.0

Fig. 9 Time Responses Using Suboptimal Feedback Gains

Position Loop Based Design Synthesis of Feedback Control

The two methods shown previously give systematic approaches for

designing feedback control systems based on the LP/MST trajectories.

Although the gains identified by fitting the optimal response

trajectories give a better damped result, the constraints were violated
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and stability would not be guaranteed for any control problems using

this method. On the other hand. the gains obtained by assigning optimal

closed loop eigenvalues give a stable control law without violating

constraints, but more time is required to damp out the disturbance. To

achieve stable, well-damped performance without violating constraints,

the idea of a position loop is considered in conjunction with the

identification method based on fitting optimal response trajectories.

Mass-Spring System

u _ s2_ 1 l
Ms 2 + K

Fig. 10 Block Diagram of the System

Accelerometer
r --- - ----- - -

I5

P -Proof-ass

L I ~ ~~Proximeter ..|

V

Fig. 11 Block Diagram with a Position Loop
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The equations of motion in Eq. (70) 
can be represented by a block

diagram. As implied in Fig. 5. the optimal motion of the proof-mass

along its finite length track is rather simple compared to the

trajectory of the control, u(t). Therefore, instead of utilizing the

control force as an input to the system, the relative displacement of

the proof-mass is used as the input control variable. The block diagram

of Fig. 10 is expanded by attaching a position loop to the plant, as

described by the dashed lines in Fig. 11. Now, the input to the system

is the controlled relative position of the proof-mass d , while dc

represents the actual relative position. The accelerometer and

proximeter feedback gains are K and K , while A and A are control
a p 1 2%

gains. For K = K = 1 the equations of motion appear as ,

..
J

x= (-Kxl+ Almd + A2md - Almdc)/(M + m) (81)

d =-A d - A2d + Ad c  (82)

and the resulting control force is given by

u = -(d + xl)m (83)

The state equation for the expanded system, using the state vector 0

IT."
1 d becomes

Ss(t)= As(t) + Bd (84)
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where

0 1 0 0 0*A

= K/(+m) 0 Alm/(M+m) A (+m) - A1m/(M+m) (85)

0 0 0 10

0 -AI  -A2  1 L A i

To determine the gains A1 and A2 in the position loop, consider a

transfer function d/d
c

d/d A1/(s+ A2 s + A 1 ) (86)

where

S2
A = 2 and A2 2[w (87)

Select fp= 0.707 to minimize the settling time of the actual relative

position in the position loop. The percentage overshoot of the system

will be 4.325 %. To take the overshoot into consideration the maximum

rattlespace should be reduced to

=1.217 x 10-2m (88)
max

Assume that the external excitation to the system will not exceed the

control force level, i.e.,

2 u /m (89) N
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where (w is selected from Eq. (89) 1
p

(
2

W=U :/(m, or w 4. a/p(0

Under these conditions the system will not violate the given

constraints. Eq. (74).
A-.

The input dc is determined using the identification method based on

fitting optimal LP/MST trajectories, i.e., d (k) and s (k) for k =

1.2.....N. The task is to find gain d such that

d (k) -d s(k) = dS(k) (91)

where

= [ d x d d (92)

Note that d should be set equal to zero to obtain meaningful curve
d

fitting results. Using a curve fitting technique, suboptimal feedback

gains are obtained as

d= [-0.4439 -0.3878 0 -0.0349] (93)

and the resulting closed loop eigenvalues are

@I
-31.40 + 26.89i and -2.092 + 2.595i (94)
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I L I I i i % =i-.

1.0
Control. u(t)

-1 .0

0.01-, Displacement. xl(t)

-0.01•

0. 011-- J ,% Rat tlespace, d~t)

Cm3 \ ' \ ,o'

-0.01-~

I I I I I I

0.0 Time [sec] 6.0

Fig. 12 Time Response Obtained by the Position Loop %

'4"

The constraint on the rattlespace is enforced by

f for dS(k) ) d

dc(k) = ds(k) for IdS(k)l < dmax (95)

-d ax for dS(k) < -dax

For the initial conditions of Eq. (75), the time reponse is given in I 1 1-

Fig. 12. Note that the figure shows a response similar to that of Fig.

7 without violating the rattlespace constraint.
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