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I. SUMMARY

This is a study of some fundamental aspects of the structural

dynamics and vibration control of large structures. One focus is the

development of a limiting performance formulation with minimum settling ."‘::::
time which can accept multiple design objectives efficiently. This new “':
formulation is intended to meet the need of rather comprehensive design ::‘éé;
objectives for the control of large space structures. Another objective :.?:::3

A
of the study is to develop a systematic way of designing a control "
system based on the limiting performance characteristics. An indirect ":‘%‘:‘ﬁg
synthesis methodology is proposed. It is shown that closed loop control :';;:::E
laws can be based on the optimal response trajectories in the time :’
domain. The method is successfully applied to the control of proof-mass .:'::‘:;
actuators. :::‘::
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II. RESEARCH OBJECTIVES

1. A Comprehensive Limiting Performance Study

A comprehensive limiting performance study was to be performed. In
order for the varied and stringent design objectives of large space
structure control problems to be met in terms of limiting performance,
it was considered essential that a broader limiting performance
formulation be developed; In addition to the capability of taking
various objectives the resulting trajectories were required to be
unique. In conjunction with the synthesis study of feedback control
laws, limiting performance characteristics in the modal coordinates were

to be provided.

2. Synthesis of Feedback Control Laws

Since the limiting performance characteristics with minimum

b settling time could give optimal response trajectories in the time
domain even when the problems included constraints, it was anticipated
that a methodology to give control laws based on these characteristics
% would be an efficient design tool. An objective of this research was to
develop such a methodology. In order to assure robustness and
practicality, it was felt that such control laws should be of closed

r loop form.
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3. Inertia Damper Design

The control laws developed were to be applied to the control of
proof-mass actuators. Since the control characteristics of proof-mass
actuators are dominated by the constraints on the control force and the
rattlespace, the control laws should be able to be designed to handle

the constraints efficiently.
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II1. RESEARCH PROGRESS AND STATUS

1. Limiting Performance Characteristics with l1 Norm and Minimum

Settling Time

The limiting performance is defined as the minimum peak value of
certain responses while other system responses are constrained. Min-max
norms are utilized in the performance index to achieve the limiting
performance characteristics. Since the min-max norm employed to
minimize the maximum peak value among the peak values of the selected
responses does not provide unique peak values except the maximum peak
value, an 11 norm with weights is proposed here to avoid the
non-uniqueness of the peak values and to provide flexibility in
selecting the performance index. Also, it is shown here how to
supplement min-max norms with additional performance measures to settle
the responses in minimum time. The formulations presented provide a
general approach to find unique optimal response trajectories. The‘
resulting characteristics are referred to as limiting-performance/

minimum-settling-time (LP/MST) characteristics.

Problem Statement

A linear vibrating system can be represented by a system of second

order linear differential equations

Mx + Cx + Kx = FE(t) (1)




WR

where x is an n-dimensjonal vector and M, C, and K are mass, damping,
and stiffness matrices with appropriate dimensions, f(t) is an
nf-dimensional vector representing a forcing function, and F is a
coefficient matrix which is used to place the forcing function in the
equations of motion. By replacing portions of the system to be designed
by generic or control forces which can represent any configuration, the
limiting performance characteristics of the system can be found. With
the control forces, u(t), the system to be studied can be described by

the equations of motion

Mx + Cx + Kx + Vu(t) = F£(t) (2)
where u(t) is an nu-dimensional control force vector, V is a coefficient

matrix, and C and K represent the resulting damping and stiffness

matrices after replacing portions of Eq. (1) with control forces.

Define a state vector
s=[x x] (3)
Then, Eq. (2) can be represented by the state equations

s(t) = As(t) + Bu(t) + CE(t) (4)

where s(t) is a 2n-dimensional state vector, A, B, and C are constant

coefficient matrices represented by




e (5)
| -M 'K -M °C
P [0
B=| _yly . (6)
[0
b C = i W lF (7)
where I is the identity matrix and O is the null matrix.
r The problem is to find an optimal control g*(t) based on a
performance index as the weighted sum of p system responses
minimize J=wT‘=wJ + woJ, + +w ] (8)
¥l =Wy P W * e W0
where
P
T max
1=033. Jp]=to$t$tf|P1§+P2y.+P3£| (9)
h w=[w w W ]T (10)
= 1 72 P
b where t, and t, are given initial and final times, Pl’ P2 and P3 are
prescribed constant coefficient matrices, and w is a prescribed constant
coefficient vector containing weights. Equations (8) and (9) represent
h l1 and min-max norms, respectively. The solution is to be computed such
that the peak values of j are unique and the response trajectories after
the peak values of responses are settled in minimum time.

Constraints are imposed on the dynamic system under study. The
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format of the constraints is

vy $Qs +Qu +Qf Cyy fore St e, (11)
where 7y and y, are nc-dimensional lower and upper constraint vectors
and Ql' Q2 and Q3 are constant coefficient matrices. The quantity nc is

the number of constraints

Linear Programming Formulation

Since the problem defined above has a linear performance index and
linear constraints, standard linear programming can be used to solve the
optimization problem, provided that the problem has not been stated to

be physically over-constrained. In this section, a linear programming

@
formulation without imposing minimum settling time is studied. If the
system in Eq. (4) is discretized using N uniform time intervals, a set
of state difference equations is obtained for k = 1,2,...,N
L
s(k) = Gs(k-1) + H[Bu(k) + Cf(k)] (12)
¢
where
s(k) = state vector at time ty = kh
u(k). f£(k) = control and external excitation vectors, assumed to be
« constant over the interval te-1 <CtX ty
G = eAh
H = ]2 eA(h_T)dT
¢ .
h = time interval = ¢, -t ,
7
d
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The state vector, at any time t = t,» can be expressed as a function of

the initial state s(0), the control history u(1), u(2). ..., u(N), and
the external excitation £{1). £(2), ..., f(N). For k =1.,2, ... .N
K Ko x-j
s(k) =G s(0) + = G * H[Bu(j) + CL(J)] (13)
i=1

The constraints in Eq. (11) are discretized similarly
¥, (k) € Q5(K) + Qu(k) + Quf(k) < yy(k) for k = 1.2,....N (14)

Having discretized the state equations, these constraints can only be
enforced at the end of each interval. At "intermediate"” times, they may

be violated.

Consider now the linear programming formulation of the limiting
performance problem. The objective function of Eq. (9), which reflects
the min-max norm, can be converted into a constraint set. Since j is

the vector of maximum values of |P1§(k) + Pzg(k) + P3£(k)| for all k,

[P s(k) + Pou(k) + Pof(k)| < j (15)

To place the 1, norm of the performance index in Eq. (8) into linear

1
programming form. define a (p+nc) x p augmented matrix J which has
elements of vector j along its diagonal as the only non-zero elements,

i.e.,




Also, to merge constraints in Eqs. (14) and (15), define augmented

matrices

61=[Z1], 52=[P2],and63=[23] (17)
1 3

and augmented vectors
7y = [0F yi(01" and §, (k) = [07 ¥ ()] (18)

where 0 is a p-dimensional null vector. Then Eqs. (14) and (15) can be

merged as

I~

-3+ Qs(k) + Quu(k) + QE(K) < yy(k) (19)
-3 - Qs(k) - Quu(k) - Quf(k) < -y (K) (20)

Substituting Eq. (13) into Egs. (19) and (20). the constraint equations

have the control sequence u(k) as the only unknowns. For k = 1,2,....N
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343, 3 ¢ Imu) + a0 <
- - k _ k k-j -
500 - 3,¢"0) - § = FIHer(s) - 3,200 (21)
j=
-8, 3 O man) - Guoo <
- - k I -
.09 + (0 + G = e () + 4,200 (22)
Jj=

Since the control u(k) should be unrestricted in sign, a standard linear

programming technique for dealing with such variables is introduced.

Define

u(k) = U (k) - U (k) (23)
where

U'(k) 20 and U (k) 20 (24)

To place this optimization problem into a standard linear programming

* form, define
- (4]
where
| w=' T e’ ve)' o vmTem’T (26)
and
L gT = [ ET QT ] (27)

10
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where O is a 2N-dimensional null vector. The vector w can be selected

to provide unique values of peaks, i.e., Jl' J2""’Jp‘ Then the linear

programming problem is to minimize

J=cz (28)
subject to the constraints

Hz < b (29)

where H and b are a 2N¥(p+nc) x (2N»*nu+p) coefficient matrix and a

2N»(p+nc) coefficient vector, respectively, representing constraints of

Eqs. (21) and (22).
Limiting-Performance/Minimum-Settling-Time Formulation

The unique peak values can be obtained based on the linear
programming formulation of the previous section. Formulations are
studied to achieve the minimum settling time characteristics after the
peak values. Two methods are available to achieve the minimum settling
time and they can produce identical minimum settling time responses.

One utilizes additional performance indices and the other utilizes
additional constraints. The additional performance indices and
constraints can be employed independently or simultzneously depending on
the requirements of a problem. However, in order to minimize the size
of the linear programming problem, additional performance indices for

the responses selected in the performance index and additional

11




constraints for the constrained variables are suggested to be employed.

To provide the minimum settling time characteristics for the
responses in the performance index, the performance index of Eq. (8) is
separated into two performance indices. Assume that the peak values of
the limiting performance occur during the time between t, and t,- One
of the performance indices, referred to as the transient performance

index, is given by

38 = wlyt (30)

where

t max
"= ¢ ¢ecr, [Pys+ Pou+ Pyl (31)
o - t
where t. is the time limit for the transient period. The other,
referred to as the steady-state performance index, is defined as

J° = !Tis (32)

where

S max
i Tt <ttt

IP s+ P
¢ $tsty Tl

ou + Pof| (33)

Note that the same ET and Pl' P2, P3 are used in the performance
indices. The transient performance index is used to give unique

response trajectories up to the point of the peak values and the

steady-state performance index is used to settle the response
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trajectories after the peaks within the desired values in minimum time. éﬁ
1t |F

Q.‘ i

See Fig. 1. o
iy
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Fig. 1 A Response Trajectory with Transient and Steady-State ot

Performance Indices (i = 1,2,...,p)
Now, the global performance index is defined by
B=gt+ (34)

The objective functions of Eqs. (31) and (33), which reflect min-max

norms, are also entered into the constraints. Since lt is the vector of
.S

the maximum values of |P1§ + Pou + P3£| for t <t <t _and sois j° for

t, £tg te the constraints from the objective functions are, if they

are discretized using the same discretization of Eq. (12),

1}
O
—
=

IPis(k) + Pyu() + Pof(k)| < §° for k

and (35)

1
4
(o
=
[
+
[
=z

|Ps(k) + Pou(k) + Pyf(k)| < §° for k

where Nt is the discretized time limit for the transient period.

13




Fig. 2 A Response Trajectory with Transient

and Steady-State Constraints

To achieve minimum settling time characteristics for the responses
in the constraints, consider two sets of constraints. One set of them,
referred to as the transient constraints, is used to represent the
original constraints in Eq. (11) from t, to t.. An additional

constraint set, referred to as steady-state constraints, is imposed from

xSL$Q1§+ u + Quf < ygy for t, <t <t (36)
where Ygp » Ygy are nc-dimensional coefficient vectors representing lower
and upper bounds of steady-state constraints. The steady-state

constraints represent the desired values of the responses after the

peaks. The responses are required to be settled within these values in




the smallest value of tt' Note that the matrices Ql' Q2. and Q3 in Eq.

(36) are identical with those in Eq. (11). See Fig. 2. for an

illustration.

To take the new performance index of Eq. (34) into linear
programming, define p x p matrices jt and js which have elements of
vectors it and js. respectively, along their diagonals as only non-zero

elements. Also, define (p+nc) x 2p matrices Jt and J° such as

3t - [gt g] (37)
3 - [g gs] (38)

where O represent null matrices. The two sets of constraints are
discretized and merged into the constaints from the performance index,

Eq. (35)., using augmented matrices and vectors of Eqs. (17) and (18).

Then, for k = 1.2.....Nt—1. the constraints are
=3+ Qus(k) + Qou(k) + Qi) < Fy(k) (39)
-3% - Qus(K) - Quu(k) - QuE(k) < -y (K) (40)
and, for k = Nt.Nt+l.....N. the constraints are
~3% + Qus(k) + Quu(k) + Qut(k) € Tgy(k) (41)
-3°% - §s(k) - Quu(k) - QHE(K) < ¥ (K) (42)
15




Substituting Eq. (13) into Eq. (39) to Eq. (42). the constraint

equations have control sequence u(k) as only unknowns.

To place this optimization problem into a standard linear

programming form, define

t
. 4
z = Js (43)
2
where u is given by Eq. (26) and
=[x w0 (44)

where O is a 2N-dimensional null vector. Then the linear programming

problem becomes: minimize

B=c'z (45)

subject to the constraints

AN

[~

N
I
o>

(46)

where H and b are a 2N%(p+nc) x (2N*nu+2p) coefficient matrix and a

2N»(p+nc) coefficient vector, respectively, representing constraints of

Eq. (39) to Eq. (42).




2. Limi ting Performance Based Feedback Control Synthesis and Its

Application to the Control of Proof-Mass Actuators

The control characteristics of proof-mass actuators are dominated

by the constraints on the control force and the rattlespace. This

constrained control problem raises a serious difficulty in designing a
system using conventional control system design methods such as linear
control or optimal control. It has been known that the limiting
performance formulation with the minimum settling time can provide an
optimal open loop control law for the proof-mass actuators. In order to
enhance the practicality and robustness of the open loop control and to
provide a systematic approach to handle constrained control problems,
feedback control synthesis methods based on the limiting performance
trajectories are developed. Some control laws developed with these new

approaches for the control of proof-mass actuators are presented.

Suboptimal Design Synthesis of Feedback Control Systems

Methods of designing suboptimal feedback control laws based on the
LP/MST characteristics are presented here. Assume that the system is to
’ be controlled by active actuators and the actuators are subject to
constraints. The active controllers are assumed to be controlled by a
constant state variable feedback and the feedback gain matrix is found
o based on the LP/MST characteristics. Two distinct design synthesis
methods to construct feedback control laws are studied. For general
equations of motion including systems with a non-proportional damping

o4 matrix, a suboptimal feedback gain matrix is found using the constrained

17
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curve fitting technique based on approximating optimal response w2

Rl
s
trajectories. For decoupled equations of motion, e.g., systems with a ':f:'
proportional damping matrix, another synthesis method can also be '.;::
igtet.
utilized. In this method. closed loop eigenvalues are first extracted .:::
",
using the curve fitting based on approximating optimal response :
trajectories and the eigenvalues are assigned using an eigenvalue AR
0
assignment method based on a constant state variable feedback to find .:,:
)
X
the feedback gain matrix. ,t!"f
i
4
Identification of Feedback Control Based on the Optimal Response ::‘a"t
o
Trajectories ‘
-
R
One of the two methods to construct feedback control laws based on :~:f
e
the LP/MST characteristics is studied here. With this method. the ":gf
constant state variable feedback gains are obtained directly by fitting .;‘:;a
i
W
the optimal response trajectories. This method can handle equations of ~
_ 85yt
motion with a non-proportional damping matrix. However, there is no ‘§
- 3
b guarantee that the resulting system will be stable. N ¥
>
Y,
:;r
Computation of LP/MST Characteristics :’\r\-
< The first step is to compute the LP/MST characteristics. By ",
.'..t
replacing portions of a system to be designed by generic forces which zgj
can represent any configuration, the LP/MST characteristics of the $ ‘:
r system can be found as described previously. \_.
\,
By
Identification of Constant Feedback Gain Matrix
9

The optimal LP/MST trajectories §*(k) = [_)g*(k)T ;‘(k)T]T and g*(k)
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(k = 1,2,...,N) are used as a starting point. Assume that the active

controllers are controlled by a constant state variable feedback, i.e.,

u(k) = Ds(k) (47)

where D is an nu x 2n constant feedback gain matrix. Since nu
controllers are considered and optimal control forces are available for
each controller, it is possible to proceed controller by controller.

For controller j (j = 1,2,...,nu), a suboptimal linear control law to be

determined is described by

Ymax, for u%(k) > Ymax
J J J
uj(k) = uj(k) for uminj < uj(k) < umaxj (48)
u s u .
minj for uj(k) < min,
vwhere
W) = d;5"(k) (49)

QJ = jth row of D matrix

Note that Eq. (48) serves to enforce a constraint on the control force

of controller j

u u
minj < uj(k) < maxj (50)

Then the problem becomes to find the optimal feedback gains gj (for j =

1,2,...,nu) which minimize

19
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H, = kilAj(k) (51)

where
* S
Aj(k) = |uj(k) - uj(k)l (52)

To find gj efficiently a curve fitting method based on a least squares

residual function of Eq. (51) can be used.

Identification of Feedback Control Based on the Assignment of the

Optimal Closed Loop Eigenvalues

In this section it is assumed that the equations of motion can be
decoupled, i.e., the damping matrix is proportional or the system is
undamped. In this method, the optimal response trajectories are
calculated in the modal coordinates and the curve fitting technique is
used to find closed loop eigenvalues for each mode. Then, the state
variable feedback gains are obtained using an eigenvalue assignment
technique. This method can guarantee the stability of the resulting
gains. Also, the constraints on the response variables can be enforced

during the design process.

A
P

Computation of LP/MST Characteristics in Modal Coordinates

Replace portions of a system to be designed by generic forces,
decouple the equations of motion by using the normal mode method, and

compute the limiting performance characteristics in the modal

coordinates.
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Start from Eq. (2). Using the normal mode method and the

transformation

x(t) = ®a(t) =

r

Il M3

1irqr(t)

where Qr is obtained by solving
(K - QEM)Qr =0, r=12,...,n

Eq. (2) appears as

ArY A

Mg + Cg + Kg + Vu = Fi(t)

where
ﬁ = QIMS = modal mass matrix
6 = $T6$ = modal damping matrix
ﬁ = 3TR$ = modal stiffness matrix
F=oF
> V=oly

‘ By using the state vector

I >
[}

[gT QT]T

b Eq. (55) can be represented by a state equation

(53)

(54)

(53)

(56)

(57)
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s(t) = As(t) + Bu(t) + C£() (58)

where
~ [ o I
-M 'K M C
~ [ o
B=1 1y (60)
~ [ o
C=| &% (61)

The performance index and the constraints can also be transformed with

the relationship
s(t) = os(t) (62)

Then the problem can be solved in the modal coordinates using one of the

formulations given previously.

Identification of Suboptimal Closed Loop Eigenvalues

The optimal limiting performance trajectory for each mode in modal
coordinates, q:(k) (r=12,....n; k=1,2,...,N), is used as a starting
point. The first task is to find optimal (: and w: for each mode which

will minimize

N 2
H: = 3 A'(k) (63)
k=1
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where the measure of approximation is

Al(k) = lai(k) - q (k)| (64)

where

q, (k)

a.{C. w}

The analytical solutions for the time response of the

decoupled SDOF system.

To find optimal (: and w:. a least square curve fitting technique is
employed. Now the closed loop eigenvalues for each mode can be

calculated by the characteristic equation

A*z + 2§*w*k*+ 0*2 =0, r=12,...,n (65)
r rrr °r
or
2 * % . »*2 '
e = Chor # 1 o1 - e (66)

Since the closed loop eigenvalues are now known for each mode,

eigenvalue assignment techniques can be used to find the feedback gain

matrix.

Assignment of Closed lLoop Eigenvalues
Several assignment techniques are available, often differing

according to the characteristics of eigenvalues to be assigned. From

Eq. (4) the system to be designed is written as
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s(t) = As(t) + Bu(t) + Cf(t) (67)
and the problem is to find the feedback gain matrix D such that
u(t) = Ds(t) (68)

which will produce the specified closed loop eigenvalues A: (r =1,2,.
.n) of Eq. (66) from the matrix

A=A+BD (69)

Application to the Control of Proof-Mass Actuators

As a proof-of-the-concept example, the suboptimal design synthesis
method is employed to find suboptimal feedback control laws for the

proof-mass actuators.
Proof-Mass Actuators

One of several designs for a proof-mass actuator is shown in Fig.
3. It incorporates two doughnut shaped samarium cobalt magnets and an
annular soft iron yoke which combines the functions of moving mass and
magnet. This assembly moves over a fixed coil whose current is
controlled to produce the required force on the magnet, and thus the
required reaction on the structure to be damped. Given this coil size,
the maximum force available is limited by the current which can be

carried by the coil without overheating. In the prototype design, it




was found possible to achieve a maximum force of 1.92 Newtons over a
travel of plus or minus 0.0127 m (a total range of one inch). The mass
of the moving yoke was 0.278 kg. The design provides for two sensors,
an accelerometer which will be attached to the damper in a fully
collocated application, and a sensor to measure the relative position of
the proof-mass within the housing. The accelerometer is to be of the
servo type, because it has to provide control signals down to zero
frequency, while the position sensor is essential if the effects of
striking against the stops which limit travel were to be avoided. In
the design shown in Fig. 3, a linear variable differential transformer
(LVDT) is used. However, an alternative sensor is also used quite
successfully. This incorporated a tapered aluminum sleeve shrunk over
the yoke (the yoke could have been tapered during manufacture) used in
conjunction with a proximeter (which measures the distance to a
conducting surface).

l

Fixed Coil Winding Assembly
Cobalt Ring Magnet

Shaft

zzznvui%l!!ﬁ .NA | LVDT Model No. 500
L\ NRNZ 7L DC Schaevitz

—— T

e e

e e — e e o . . ma T

Ball Bushing
(Linear Bearing)

Fig. 3 A Schematic Diagram of a Proof-Mass Actuator
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Problem Statement

The system to be considered, a single DOF mass-spring system, is
shown in Fig. 4. A proof-mass actuator is attached at the end of the

mass. The equations of motion of the system in Fig. 4 are

Mx1+Kx1=u

(70)
m, = -u
The natural frequency of the spring-mass system is chosen to be
o=VEKM=2Irad/s = 1 Hz (71)

\

=
]

2.78 kg

p—
3
]

0.278 kg

Fig. 4 A Single DOF Mass-spring System with the Proof-mass Actuator

Let d = Xg = X and introduce the state vector s = [x1 X d d]T. Then a é\,'
o

set of first order differential equations is obtained.
s = As + Bu (72)
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F. 01 00 0 Ve
20 0 0 M W

A= | B = (73) 0

0 0 01 o] o

y,

W0 0 0 - _Mtm i

3 M )
4

Due to the physical limitations, the proof-mass actuator has constraints 4

!.'

@ on the distance it can travel and the force that can be generated. '3
5‘;'

0":

2 0.‘:1

= - L

|d|_<_dmax_1.27x10 m (74) ,'::;:

¢ | u| ¢ U = 2N

"ol

2R

The initial conditions are given by Afi

LY

® 3
T e

s(0) = [0.0lm O O O] (75) thd

0

e

oy,

PY The problem is described in two phases. The first phase is to find 3
the optimal trajectories of control, u*(t). and the state variables, ég

4

¢,

§*(t). to bring the displacement of the mass M, Xy within 2% of the .fﬁ

(e

€ initial value in the minimum settling time and the second phase is to X
, 2%
find suboptimal feedback control laws based on the optimal trajectories ;;

2

using the methods for suboptimal design synthesis of feedback control {}

¢ systems. ::
-~

';'C‘,

)

Computation of LP/MST Trajectories 7

/

The computation can be done using one of the formulations given

27
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before. The resulting LP/MST trajectories are shown in Fig. 5. 2::
]
° 20 |
Control u(t) @
()] . My
\ "“
ot
0.0 gty
44
{
@ B,
4
-3.9 o
0.0 ‘::
)
)] Displacement x,(t) b ,:
i M}
® 0 ~— ot
2
"
liy
4.0 .
P 0.02 Rattlespace .3"
(u) d(t) I,-—v\ %
V)l
0
‘ o
1 i |
o 4.02 i
’ Time [sec] 2.3 LN,
[N % |
Fig. 5 LP/MST Trajectories
® 3
0 ‘
Identification of Feedback Control Based on Fitting Optimal Response p;
=
Trajectories \
¢
The LP/MST trajectories shown in Fig. 5 are employed to find
suboptimal feedback gain matrix D. In this subsection the method based
« on fitting optimal response trajectories is used. Since nu = 1 and 2n =
4, the problem becomes to find a vector d such as
¢ u(k) = d s(k) (76)

28




Using a curve fitting technique, the suboptimal feedback gains are

®
obtained as
d=[ -81.86 11.50 30.26 8.017 ] (77)
[
and the resuting closed loop eigenvalues are
@
-107.4, -4.821, -0.5277+5.9561 (78)
The constraint on the control force is enforced by Eq. (48) with Eq.
¢ (74). The time response using these feedback gains for given initial
\
1 conditions, Eq. (75), is shown in Fig. 6. Note that the constraint on
the relative displacement is violated.
@
T | T T T T 1
1 or- :
Control. u(t)
o
-1.0F .
0'01'; Displacement, xl(t) A
Y ,/-\
Ik N T N
¢ v
-0.01p0 A <
i
0.01-‘lI \ Ia) Rattlespace, d(t) <
£ k
| \
[m] L \I ||/ ‘\" //\\ \//\\/.—\v‘.—__‘
€ k‘ "'I W/
-0.01pF Y 4
¥,
1 L ! L i ! Lol
0.0 Time [sec] 6.0
L Fig. 6 Time Responses Using Suboptimal Feedback Gains
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-0.01fF 9
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Fig. 7 Time Response Considering the Knocking
* |
[ I B T 1 1 T |
1.0pF -
Control, u(t) \
[N],’/"""'1 /l - ‘-r\._,-q
® -1.0 i/ i
001 ~. Displacement, x,(t) )
~.
[m]f - J
¢ -0.01} ] 73
[m].// Rattlespace. d(t) ] :33
( ~-0.01pm - :&E
R
0.0 Time [sec) 1.0 ‘:_h
¢ Fig. 8 A Closer Look on the Response During Knocking %
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To consider the influence of knocking between the proof-mass and the
housing, time response is simulated by putting elastic impacts when the
proof-mass violates the limit on the rattlespace and is shown in Figs. 7

and 8. Note that the knocking does not cause instability.

Identification of Feedback Control Based on the Assignment of Optimal

Closed Loop Eigenvalues

The LP/MST trajectories shown in Fig. 5 are employed to find
suboptimal feedback gain matrix D. In this subsection the method based
on the assignment of optimal closed loop eigenvalues is used. Since the
equations of motion are decoupled, the normal mode method is unnecessary
for this problem. Optimal damping ratios and natural frequencies for
the mass—-spring system and the proof-mass are obtained based on the

measure of approximation, Eq. (64). The resulting g*and @ are CT =

b

0.1087 and w: = 6.3641 for the mass-spring system and Q; = 0.0381 and Wy

= 6.1479 for the proof-mass actuator. Now, the closed loop eigenvalues
to be assigned are determined from Eq. (66)
’ A

1o = ~0.6918 * 6.3261 (79)

-0.2342 + 6.143i

+

A3.4

I+

Using an eigenvalue assignment technique, e.g., a method based on the

generalized control canonical form, a feedback gain matrix D of Eq. (68)

can be obtained as




D=1[9.827 0.3844 11.605 0.5517 ]

and the resulting time responses are shown in Fig. 9.

constraint on the rattlespace is not violated.

required to damp out the disturbance compared to the previous time

responses of Fig. 7.

1.0

(N1

0.01

[m

o

-0.01

0.01

~
3
—

-0.01

0.

Fig. 9 Time Responses Using Suboptimal Feedback Gains

Position Loop Based Design Synthesis of Feedback Control

The two methods shown previously give systematic approaches for
designing feedback control systems based on the LP/MST trajectories.
Although the gains identified by fitting the optimal response

trajectories give a better damped result, the constraints were violated

Note that the

However, more time is
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and stability would not be guaranteed for any control problems using
this method. On the other hand, the gains obtained by assigning optimal
closed loop eigenvalues give a stable control law without violating
constraints, but more time is required to damp out the disturbance. To
achieve stable, well-damped performance without violating constraints,
the idea of a position loop is considered in conjunction with the

identification method based on fitting optimal response trajectories.

Mass-Spring System

u . 52 ] X 1 X1 .
M52 + K s2
Proof-Mass -
X 1 - 1 | d .
—| — 5 -
s

Fig. 10 Block Diagram of the System

Accelerometer

—————————— —— o —
— K, 1

l I
Mass-Spring System |
2

c + A - u s 1 *1
- 1 =l m — 5 —S
Ms™ + K s
- +
| |
| | Proof-Mass -
| As L[] - T |4,
2 m s2
| f I
L Proximeter J
______ _.l_______—___K o o o e m —— — =
P

Fig. 11 Block Diagram with a Position Loop
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The equations of motion in Eq. {70) can be represented by a block

diagram. As implied in Fig. 5, the optimal motion of the proof-mass
along its finite length track is rather simple compared to the
trajectory of the control, u(t). Therefore, instead of utilizing the
control force as an input to the system, the relative displacement of
the proof-mass is used as the input control variable. The block diagram
of Fig. 10 is expanded by attaching a position loop to the plant, as
described by the dashed lines in Fig. 11. Now, the input to the system
is the controlled relative position of the proof-mass dc, while d
represents the actual relative position. The accelerometer and
proximeter feedback gains are Ka and Kp. while A1 and A2 are control

gains. For Ka= Kp: 1 the equations of motion appear as

X, = (—Kx1+ Almd + A

. ond = Amd )/(H + m) (81)

d=-Ad-Ad+Ad (82)

and the resulting control force is given by
u = —(d + xl)m (83)

The state equation for the expanded system, using the state vector

s=[ Xy x, d d ]T. becomes

1
s(t) = As(t) + Bd (84)
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To determine the gains A in the position loop, consider a

transfer function d/dc

2
d/d_ = A /(s Ays + A))

(85)

(86)

(87)

Select (p: 0.707 to minimize the settling time of the actual relative

The percentage overshoot of the system

position in the position loop.

will be 4.325 %.

To take the overshoot into consideration the maximum

rattlespace should be reduced to

1.217 x 10 2m

(88)

Assume that the external excitation to the system will not exceed the

control force level,
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where wp is selected from Eq. (89)
2 -
mp = umax/(mdmax) or 0, = 24.3 rad/s (90) A
»
Under these conditions the system will not violate the given
constraints, Eq. (74).
r‘ The input dc is determined using the identification method based on
fitting optimal LP/MST trajectories, i.e., d*(k) and §*(k) for k =
1.2,...,N. The task is to find gain d such that
|
d*(k) = d 57(k) = a°(k) (o1)

o where __.'_
o
o~

. S
g:[dxl d:. dydj;] (92)
® 1
Note that Ed should be set equal to zero to obtain meaningful curve
fitting results. Using a curve fitting technique, suboptimal feedback
|
gains are obtained as
d = [-0.4439 -0.3878 O -0.0349] (93)
¢
and the resulting closed loop eigenvalues are :
.;_ \l
¢
-31.40 + 26.89i and -2.092 + 2.595i (94) ~
&
:-.1
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Fig. 12 Time Response Obtained by the Position Loop

The constraint on the rattlespace is enforced by

d for a°(k) > d
max max
s s =
d (k) = | d (k) for a7 (k)| < d_ . (95)
-d for a%(k) < -d
max max %
--_'\;
\\_'.-
For the initial conditions of Eq. (75), the time reponse is given in Y
9
Fig. 12. Note that the figure shows a response similar to that of Fig. {E
Y
7 without violating the rattlespace constraint. .t_
~ ‘ﬂ.
\‘
s,

o
: .‘l;"a

R g
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