
7D-A193 299 A TRANSPARENT COPROCESSOR FOR INTERPROCESSOR 1/1
COIIUUCRTION IN AN MIND COMPUTER(U) WASHINOTON UNIV
SEATTLE DEPT OF COMPUTER SCIENCE T J HOLMAN ET AL.

UNCLASSIFIED JAM 7 NS14-86-K-S264 F/G 12/6

EoIIEEEEEEEIIi
MEu'..'
Illlll

Lr

too.

ft2 0

JIL251 1411

OTIC FILE COPY
;ECU,'ITY CLASSIFICATION OF THIS PAGE ("on Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM S

I RF.PORT NUMBER 2. GOVT ACCESSION NO. 3 RECIP:ENT'S CATALOG NUMBER

none I

M 4 TITLE (an'd Subtitle) 5 TYPE OF REPORT & PERIOD CCVERED IJ
J A Transparent Coprocessor for Interprocessor

Communication in an MIMD Computer Technical Report

~6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(s)

Thomas J. Holman, Lawrence Snyder N00014-86-K-0264

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA a WORK UNIT NUMUERS '

University of Washington
AU

Department of Computer Science
Seattle, Washington 98195

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research January 1987 "
Information Systems Program 13. NUMBER OF PAGES

Arlinqton, VA 22227 16
14. MONITORING AGENCY NAME & AODRESS(II different from Contro!llng Office) 15. SECURITY CLASS. (of thle report)

Unclassified

IS0. DECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
ha

Distribution of this report is unlimited. I

17. DIS-PIBUTiON STATEMENT (of the &Detract entered in Slo,:k 20. it dl!! erent fromt Report) j I "I

ELECTEr7

18. SUPPLEMENTARY NOTES A

19 KEY *ORO' (Continue on reverse aide II nececeery and identity by block number)

Parallel processing, MIM1D, communication, coprocessor, message passing,
communication delay,,

0 ABS
T
R ACT 'Continue on reverse ede it neceeery end Identify bv block number)

This paper presents the design of a high performance interprocessor communica-
tion coprocessor for non-shared memory MIMD architectures. The design provides
efficient interprocessor communication by relieving the computational processor
of all communication related activities and by minimizing the overhead of
packet assembly and disassembly. A multiprocessing scheme with zero process
switch time allows this coprocessor to handle many communication ports with no
additional overhead. Logical ports, which allow many computational processes
to share the same physical port, are handled automatically by the coprocessor.

D D , M, 1473 ED. N OF 1 O, 6 IS OBSOLETE

CCuR'Y CASStFICATIN -l1 "r.1i% 46C.F o' s I s-'* R'*

".

(.(

LP

A Transparent Coprocessor for Interprocessor
Communication in an MIMD Computer

Thomas J. Holman Ntis CRA&I -
Lawrence Snyder urIC TAB I

Computer Science Department, FR-35 , . eil
University of Washington . -

Seattle, Washington 98195

January 1987 ;,' ;,: . u,.,

I.--.-. Av , :.Iu'

CIP.

AN1LTED/

Abstract

This paper present. the design of a high performance i,.terprocessor commu-
nication coprocessor for non-shared memory MIMD architectures. The design
provides efficient interprocessor communication by relieving the computational
processor of all communication related activities and by minimizing the over-
head of packet assembly and disassembly. A multiprocessing scheme with zero
process switch time allows this coprocessor to handle many communication
ports with no additional overhead. Logical ports, which allow many computa-
tional processes to share the same physical port, are handled automatically by
the coprocessor.

This work was supported in part by the Office of Naval Research under contract N00014-86-K-0264 and
by the National Science Foundation under grant number DCR-8416878

S.'-

?*

1 Overview

It is not enough for parallel computers to apply multiple processors to a problem; par-
allelism should be exploited in every aspect of the computer organization. This "use
parallelism everywhere"' r,-Ie is especially relevent for interprocessor communication since
it commonly happens that there is communication and computational work to be done at
the same time. It follows then that organizing a processor element to have a coprocessor
devoted exclusively to interprocessor communication is a sensible idea. However, if the
interface between the computational processor and the communication coprocessor is not
well thought out, the problem will not have been solved, but rather displaced by one level
of indirection: The processor will now waste time communicating with the communication

coprocessor! In this paper we present a design of a communication coprocessor suitable
for non-shared memory MIMD architectures that provides a transparent interface to the
computational processor.

2 Introduction

The performance of non-shared memory MIMD parallel computers is, in general. limited
by the high cost of interprocessor communication. Further. in algorithms for this arclhitec-
ture, communication requirements are typically comparable to computation requirements.
creating a high demand for a scarce resource. Three factors contribute to this "commuri-
cations bottleneck". The first factor is the overhead incurred during the movement of data
from a data structure to a port in the sender, and from a port to a data structure in the
receiver. Specific sources of overhead for the sender include determining when the data is
ready. moving the data from the data structure to the port, and preparing the data packet
for transmission. For the receiver, the overhead comes from verifying and acknowledging
the packet. extracting the data, moving the data to its destination data structure, a-.d
finally signalling data availability. We will call this the staging overhead.

The second factor involved in the communicatiors bottleneck is the overhead of trans-
mitting control information along with the data, which we call the transmission overhead
This inciudes protocol bits, packet headers, and fault detection/correction information. If
a packet has m bits total and n bits of control information, then the transmission overhead

is n/rn. For example. in the Transputer [1]. a packet has 11 bits, 3 of which are cor.trol
bits. giving a transmission overhead of 0.27.

Finally. the third factor contributing to the communications bottleneck is the combi-
nation of the bandwidth of the communications port. called external bandwidth and the

bandwidth of the processing node's internal path used for staging, called internal band.

A.. .. A.. CS.'JAf' d' .8. + ,.

wdth. This imposes a lower bound on the time to make a data transfer, which is achieved
when both the staging and transmission overheads are zero. While this bound is not
attainable for the systems of interest here, it is a useful measure of the efficiency of a
communications architecture.

In this paper, we present the design of a communication coprocessor that reduces both
staging overhead and transmission overhead. Overhead is reduced in this architecture
by direct methods, which are described below, as well as by taking full advantage of
the concurrency achieved by having a separate processor for communications operations.
The methods used to interface the coprocessor to the main processor relieve the main
processor of all communications related activities. Transmission overhead is minimized by
a fault tolerant protocol streamlined for this parallel architecture. We view bandwidth
enhancement as an independent, technology related problem, which is beyond the scope
of this paper.

We begin in Section 3 with a presentation of the design goals that we consider important
in reducing overhead. The communication coprocessor architecture motivated by these
goals is presented in the three sections that follow: Section 4 describes the interface between
the coprocessor and the main processor, the port interface is presented in Section 5, and
Section 6 gives the details of the overall architecture uniting these interfaces.

3 Design Goals

Our basic goal is to minimize both staging and transmission overhead in non-shared mem-
ory .NIID architectures, sometimes called "ensemble architectures" [61, or microcomputer
arrays 4:. These architectures typically consist of a large number of identical processing
nodes linked together by a point-to-point communications graph. Each node is the combi-
nation of a serial processor, memory, and some number of communication ports with their
associated hardware. Examples of this type of architecture are the Cosmic Cube [3j and
the CHiP Computer [S].

Typically, the communication hardware in these MIMD architectures is a simple con-
" troller under command of the main processor, as in the Mosaic [2] element. A more
* sophisticated system, such as the Transputer, may include DMA capabilities. One of the

drawbacks of these designs for handling communications is that the main processor is re-
quired to perform some or all of the communications related operations. Because there
can be a substantial amount of communications activity, overall performance can be sig-

nificantlv reduced. A second drawback with these designs is that the memory and system
bus are time multiplexed between computation and communication, rather than allowing
these operations to proceed in parallel. Contention for these resources further reduces

3

performance. Both of these drawbacks manifest themselves as staging overhead for the
communications.

The first drawback can be effectively eliminated by using a communication coproces-
sor to perform all communications related activities. The main processor will now have
more time for computation. However, this does not necessarily isolate the main processor
from communications related activities. If we continue to use a shared bus, as in the Cal-
tech/JPL hypercube architectures [3,9], we will still have the second problem, i.e. there
will be contention between the processors for bus cycles. Also, having two communicating
processors introduces the additional problem of requiring some method of synchronization,
which adds overhead. Our goal is to develop a design that eliminates both contention and
synchronization overhead.

Another source of staging overhead is the movement of data to and from intermediate
buffers. We would like to eliminate any excessive movemcnt of data by rcading and writing
data directly to and from the destination data structure, that is, the data structure and
the buffer are one and the same. When intermediate buffers separate from a computational
data structure are required. they can be used, but we consider this to be the rare case.

Since we view the main processor as multitasking, it is possible to have more than one
task using a particular physical port. The communication coprocessor must then be able
to map the logical ports associated with a process to physical ports. When a packet arrives
at a physical input port, it will be tagged with the number of the destination logical buffer.
The coprocessor must interpret this number and send the data to the appropriate location
in memory. Data written to a logical output buffer, i.e. to some location in memory, must
n turn be sent out the appropriate physical port.

In addition. since the communication coprocessor must handle a number of physical
ports. it to should have multiple processes. These processes link logical buffers to buffers
in the physical ports. Because there are multiple ports each with one or more processes,
polling by a process waiting for data or space can potentially take cycles away from a
process that is actively moving data. In this case, polling simply adds to the sta.:ing
overhead, slowing down overall throughput. This can be alleviated by the addition of
hardware to detect and signal availability of a resource. Using these signals we can suspend
a process that has to wait for input data or output buffer space. When the data or space
becomes available, the hardware can activate the process. Since process switching time
will be reflected in communications overhead, it must be minimized.

As stated earlier, the requirements for computation and communication are roughly

%the same in algorithms designed for this type of parallel computer. It is also typical for
computation and communication to be finely interleaved in these algorithms. In this case,

there are no large bursts of data: rather communications activity is constant and is paced

4

.rN -

by the computstion. Buffering requirements for this situation are minimal.

There are, however, problems for which the interleaving is coarse, that is, computation
proceeds over a large data structure for a relatively long time, then some substantial
portion of the data structure is moved to another processing node. For example, a matrix
inversion algorithm where a subpart of the array is allocated to each processing node would

result in this type of behavior. As a result, we will get large bursts of data. A design with
fixed-sized buffers will be swamped by this activity. We seek to accomzaodate these types
of problems by providing variable sized buffers.

As the communication coprocessor becomes more sophisticated, the commands from
the main processor that direct it become more complex. In contrast, the more independent

we make the coprocessor, the less time we have to issue commands. Ideally, the command
interface should allow the main processor to completely specify the operations of the copro-
cessor before the computation begins. There should be no further necessity for guidance
during the computation.

In summary, our design goals for a communication coprocessor for the processing ele-
ments of a non-shared memory MIMD architecture are:

* Relieve the main processor of communications related activities by eliminating con- .5

tention and synchronization overhead.

* Reduce the use of intermediate buffering by using computational data structures
directly whenever possible.

o Provide a mechanism for mapping logical ports to physical ports.

o Handle multiple physical ports concurrently by using multiple communication pro-
cesses. Hardware should automatically suspend and activate these processes, and
process switching time should be minimized.

a o Provide variable sized buffers.

o Provide an efficient command interface that allows the complete specification of the
operations of the coprocessor before computation begins.

4 The Processor/Coprocessor Interface

The communication coprocessor must be interfaced to the main processor of a processing

node in a way that eliminates communications overhead for the main processor. A first

5

step toward this is to physically decouple the two processors. This can be done by using
a dual-ported memory where the main processor is connected to one port, and the com-
munication coprocessor is connected to the other. Figure 1 shows the basic configuration
of a processing node with this type of interface. Data memory contains all data shared
by the two processors. The main processor is assumed to have a separate memory for its
instructions and private data. The communication port interface is examined in Section 5,
while the internal workings of the coprocessor are covered in Section 6. In the remainder
of this section we focus on the processor/coprocessor interface.

Control p P Control
0 0 PMain Address r Data r Address Communication o

rProcessor t Memory t Coprocessor t
Data A]3 t S

Figure 1: Basic Processor Node Configuration

In the design shown in Figure 1, contention for the shared resource is eliminated by

allowing simultaneous access to the data memory. Because we allow simultaneous access.
we must address the issue of synchronization. One standard way to do this is to define
a buffer area in the memory and use shared pointers to access the buffer. One processor
can write to the buffer and the other can read from it. This is sufficient to synchronize
data movement between the two processors because each processor modifies only one of
the pointers. However, this technique has the overhead of having to compare pointers on
ever, access. Also, this technique does not lend itself to an automatic hardware signalling
scheme in case of a full or empty buffer. Rather, these pointers must be polled in software
"o determine the availability of data or space.

An alternative to this is the synchronization technique used in the HEP multiprocessor
[7. In this architecture, a bit, called the access state, is added to each memory location to
indicate whether it is "full" or "empty". A read operation examines the state of a location
and when it is "full", it indivisibly reads the data and sets the bit to "empty". Likewise,
a write operation waits for an "empty" state, then writes the data and sets the state to
"'ull".

Using this technique in our system eliminates the buffer pointers and the arithmetic

operations in the polling sequence. Now, "full" indicates that data is ready to be moved

out of a buffer, and "empty" means there is room for data to be placed in a buffer. Two
problems remain, however. First, we must have separate input and output buffers. This

6

is because "full" and "empty" have different meanings for an input buffer and an output
buffer. For example, "full" for an input buffer means the main processor can read data,
while "full" for an output buffer means that the coprocessor can read. Having separate
buffers disambiguates the meaning. The problem with keeping separate buffers is that for
a given memory size, the maximum sized problem we can accommodate is reduced by a
factor of two. Because of the data memory complexity, it is worth seeking a method that
better utilizes this resource. '

The method we propose to solve this problem is to add an additional bit to each memory
location to indicate whether that location is to be used for "input" or "output". Table 1
gives a summary of the state a location can be in, along with the operation allowed and
the state the location is in after an operation. For example, if the location is in the "input- %
empty" state, it can only be written to by the coprocessor, and after writing, goes to the "-

• input-full" state. Special read/write operations can be defined to bypass this mechanism
when necessary. For example, a "peek" operation would look at the value in a buffer
without changing the access state.

Initial State Operation Final state
input empty coprocessor can write input full

input full main processor can read output empty i
ouput empty main processor can write output full
output full coprocessor can read Tinput empty

Table 1: Memory Location State Table

The second problem that is not solved by using synchronization bits, is that the pro-
cessors must poll until data is available. As stated previously, this is a potential source of
inefficiency because we are using multiple processes. To solve this problem. we must be

able to suspend a communication process when a resource is not available, and reactivate
it when the resource is available. The scheme to allow this revolves around the buffers in
the shared memory. These buffers, called logical buffer3, connect a computational process
in the main processor to a process in the communication coprocessor. The process in the

coprocessor in turn connects the logical buffer to a physical port.

Consider processes in the coprocessor first. Because each physical buffer can have

many logical buffers associated with it, we may have one process per physical buffer or one

process per logical buffer. From the viewpoint of the logical buffers it is best to have a

process per logical buffer. This is because the resulting one-to-one correspondence makes

it easy to suspend and reactivate processes. For example, an output process is suspended 'S

when its associated logical buffer is empty, and reactivated when data is written to the

*. 7

buffer.

The resulting design for output processes utilizes the logical buffer number to suspend

and activate processes. Whenever data is successfully written to a logical output buffer.

the buffer number is used to index a process state vector, which keeps track of whether the

process is suspended or active. If the process is already active, then nothing happens. If
the process is suspended, this was a write to an empty buffer, and the process state is set
to active. When an output process tries to read an empty buffer, the failed read sets the

process state to suspended. On the physical buffer side, an output process is suspended
when it tries to write to a full buffer. When space becomes available in the physical buffer,

all processes waiting for the buffer should be reactivated. This is accomplished with a

global associative map with an entry for each output process. The number of the physical

port now ready is applied to this map, which generates an activation signal for each process

associated with the port. All physical ports must use this table, so a priority encoder is

used to control access to it.

On the input side, associating one process per logical buffer does not work, because the

mapping is one-to-many; there is one data item at the head of the input queue. which is

destined for one of many logical buffers. Multiple processes would simply delay this data

transfer. Alternatively, consider having one process for each physical input buffer. Now
data in the input buffer is transferred to its destination logical port without delay. This

process will be suspended if either the physical buffer is empty, or the current destination

logical buffer is full. If the process is suspended because the physical buffer is empty, then

the process is simply reactivated whenever data arrives in this buffer. For a process sus-

pended because a logical buffer is full, we must provide a mechanism to signal a successful

read of that particular logical buffer. This can be accomplished with an associative map

with one entry for each physical input buffer. The logical buffer number that caused the

process to be suspended is stored in this table. When the main processor successfully reads
a logical buffer, the number of the logical buffer is passed through this table. If an entr:
matches the logical buffer number, the corresponding process is activated.

Now consider the main processor. In this case, a process can have a number of ports.

some input and some output. We assume that this number is fixed, and that the number

of input ports equals the number of output ports. In addition, we assume that processes

in the main processor perform blocking reads and writes. This means that a process will

be suspended if an input port is empty or an output port is full. A lookup table with one

entry per process is sufficient to keep track of this. All logical buffer accesses that succeed

are passed through this table to activate processes.

Before we proceed to the command interface, let us summarize the design to this

point as it relates to our goals. The two processors have been effectively isolated by

a dual-ported memory. Synchronization bits allow this memory to be shared, and give

-" ". " "'"'.'.".:". -.'. , .. .,"-"--• , -"-"-'o.-.-'.. -'--, . •-. ."- -- . .,"" .- '':- >: ,:-",S

the coprocessor an efficient means of accessing the data structures of the main processor.
This architecture allows variable sized buffers and logical-to-physical port mapping to be
handled in a straight-forward way. In addition, large bursts of .ata are easily handled
because data is placed directly in the destination data structure. A complete hardware
signalling structure eliminates all polling.

The command interface between the main processor and the coprocessor must allow
the main processor to send the logical-to-physical port mapping, and the size and location
of each logical buffer to the coprocessor. Since communication between the processors
is through the shared memory, these commands must be sent using this facility. The
most straight-forward way to do this is to define a logical buffer for the communication
of commands, and to have an initialization process in each processor that communicate
with this buffer. If we allow two-way communications between these processes, then the
coprocessor can send status information back to the main processor.

5 The Communication Port Interface

The communication coprocessor moves data between the interface described in Section 4
and a number of input and output ports. These ports are grouped into input/output pairs
to form channels, which can be used to connect processing nodes together. All channels
are identical. operate in parallel, and perform all of Lhe operations involved in transmitting
data from a port buffer to another processor.

A block diagram of the hardware associated with a channel is shown in Figure 2. Each
. port consists of a data buffer, a buffer controller, a register to hold the current logical port

number. and logic to process the data. In the input port, this logic converts incoming
data to its internal form, detects protocol bits, and detects errors. This logic also detects
a change in the logical port number, updating the register appropriately. The output port

. logic converts data to its transmission form. generates protocol and error detection codes.
and detects changes in the logical port number.

The port controllers orchestrate the movement of data within the channel, and generate
signals to the coprocessor's main control section by consulting status information from
the buffer controller. When an attention signal is generated, the cause is passed to the is
coprocessor control where it is used to control the execution of the process associated
with the port. For example. when the input buffer goes from empty to almost empty, its

process is activated, and when the buffer becomes empty, the process is suspended. Table 2
summarizes the meanings of the port status bits.

An integral part of the design of the channel hardware, is the design of the packet and

9,

Data nputData * Conversion
LP Buffer LP# * Protocol nu

Detection Data
r Error Code

Detection

AlotFl Port

FulControl Priority

Receive
Status

Frige 2:uhaelrrhtcue(P Lgclpr ubr

Coto

r LP#Convrsio

Prtco0utuGeneratio
*~?~PJ ;,~ \%r '1 r ~ %~ *~ .* ~ -: . -t-

.1

Input
Status Action
empty suspend process

not empty activate process at low priority
almost full medium priority

full hold sender, high priority

Output
Status Action
empty high priority

almost empty medium priority
full suspend process

not full activate process at low priority

Table 2: Buffer Status Information

transmission protocol. In general, a packet consists of a header followed by a packet body
which may contain a logical port number, data, and error detection information. Within
this structure. four types of packets are allowed. The second two bits of the packet indicate
the packet type as shown in Table 3. The first bit is a start bit. When a packet arrives,
its type is determined after the first three bits. If it is a data packet, a request is issued
to the output port to send an acknowledgment. and if there is a logical port number, it
is extracted. If a subsequent error is detected in the packet, a request for retransmission
is sent. Since the acknowledge has already been sent, the sender is transmitting the next

- packet when it receives the retransmit request. To prevent overwriting this new packet.
*- the acknowledge for the retransmitted packet will not be sent until it has been completely

processed.

Header Packet Body Function
100 empty acknowledge
101 empty retransmit request
110 logical port, data, error code data transfer- set logical port
111 data and error codes data transfer

Table 3: Allowed Packet Formats

': The basic unit of data to be transmitted via a channel is a 32-bit word. The architecture
will be tuned to this unit, so sending single bytes or half-words will be expensive, but will

J 11r
-e i

r-

4

4"

almost never be required. It will be more common to have four bytes or two half-words

packed together. The number of bits of error code accompanying the 32 bits of data will
depend on the transmission error rate. The higher the error rate, the more bits will be
needed for detection. Some possible error codes and their impact on transmission overhead
are shown in Table 4. Note that error correction codes are not a viable alternative for the
expected error rates. For example, compare a seven-bit error correcting code to the 4-bit
panty scheme. An error rate greater than 1 in 15 packets would be required to justify the

error correction code. We expect the error rates to be very much less than this.

Error Code Overhead
7-bit ECC 29%
Byte Parity 24%
Word Parity 18%

Table 4: Error Codes and their Overhead

In summary, the port interface design presented above reduces transmission overhead
by allowing all channels to operate in parallel, and by having the channel perform all
transmission related operations. Also, the protocol presented provides flexibility while
minimizing transmission overhead.

6 Overall Design

A hig'h level block diagram of the overall architecture of the communication coprocessor is
4ho.-n :n Figure 3. As shown, channels are connected together by a data bus and a control
,;s The Coprocessor controller unit handles the processes which move data between the

por: bulfers and the external dual-ported memory, and handles the logical-to-physical
-.apping of buffers described in Section 5. Control signals to and from the data memory
include the operation code (read, write, peek, etc.), the logical port number, and operation
status signals.

The mechanism used in the coprocessor control unit to handle communication processes
is shown in Figure 4. Signals from the mapping tables and data memory, are applied to

,he process status vector, which holds the state of each process. A process can be either
suspended or active, so each element of the status vector has one bit.

The status vector is used to control the token ring by allowing active processes to hold
the token and by causing suspended processes to be passed over when the token moves.

12

.

ii

Channel

Control ICoprocesso r

AdeE Control

Data

LChannel *"

n ----

Figure 3: High Level Block Diagram of the Communication Coprocessor

'5

Signals from mapping tables :

and data memory

S State Vector

S..

Current
PgW

I Processor

Registers

Figure 4: Mechanism for Handling Multiple Processes

13
P"'

4

kr
'6

A

The position of the token, in turn. indicates the process currently being executed. When
the "next" signal is applied to the token ring, the token moves to the next active process.
A constraint on the token ring is that it must be able to move the token through the entire
ring in one process execution cycle. This is necessary for the case of one active process.

The process queue has one entry for each output process and one entry for each input
process. The size of this queue is then the sum of the maximum number of logical output
buffers and the number of physical input buffers. Alongside this queue is a memory that
contains the values defining each logical buffer. Five values are required to define each
logical buffer: the starting location, the ending location, the head pointer, the tail pointer
and the step size to get to the next element. Logical output process numbers can be used
to index this table directly to obtain the correct set of values. For input processes we must
concatenate the process number and the logical buffer number to get an index.

One advantage of this process control mechanism is that addition and deletion to and
from the "logicar' process queue, which is variable sized, has no impact on the performance
of the coprocessor. Setting the state vector entry for a process to suspended automatically
removes it from the queue, and setting the state to active automatically adds it to the
queue. Another advantage is that the process switch time is zero. This is due in part to
the token ring, and in part to the separate storage allocated to each process.

When a process runs, it can execute any number of cycles before the control unit
switches to the next process. However, to prevent any individual buffer from filling up, we
want to cycle through all processes in as short a time as possible. The smallest execution
step for a process is the movement of one unit of data between a physical port and a logical
port. The actual number of these steps executed will depend on the process priority, which
is set by the state of the physical buffer (see Section 5), with the lowest priority processes
executing one step.

To better understand how this design reduces communications overhead, consider an
example illustrating how data would move between data structures in two different proces-
sors. To begin, the main processor writes data to a data structure, then goes on with its
computations. The location written to is now part of a logical output buffer. Suppose this
buffer was empty. This means that the corresponding communication process is suspended
and that the write to the empty buffer will activate this process. When this process reaches

the head of the process queue, the coprocessor will move the data from the logical buffer
to the physical buffer in the port. The data is then transmitted to the destination port
buffer automatically and independent of the coprocessor. When the data arrives at its
destination port buffer, it will then be moved to a logical port by the process associated
with the physical port.

Now consider the staging overhead in the data transfer just described. Data availability

14

is signalled automatically as soon as the data is written to the logical buffer. There is no
overhead in this operation for either the sender or the receiver. Data movement has been
minimized to one memory read and one memory write at each end of the transfer. Finally,
preparation of the data packet for transmission is done automatically be special channel
hardware. This overhead as well as the transmission overhead are completely hidden by
permitting data movement within the coprocessor to proceed in parallel.

7 Conclusions

Non-shared memory MIMD architectures must provide efficient interprocessor commu-
nication in order to meet the demands of the algorithms developed for them. Existing
architectures do not provide the necessary communication throughput, hence they have
a "communications bottleneck" that can severely limit performance. The sources of this
-'bottleneck" are staging overhead, transmission overhead, and bandwidth limitations.

We have addressed the problem of efficient interprocessor communications in this type
of IIMID architecture by introducing a communication coprocessor that minimizes staging
and transmission overhead and relieves the main processor of all communications related
activities. The coprocessor is multiprocessing with zero process switch time, allowing it to

efficiently handle a number of communication channels. In zcddition, each channel operates
independently of and in parallel with the other channels. with transmission and reception
of data performed simultaneously within a channel. The protocol utilized minimizes trans-
mission overhead while providing flexibility and fault tolerance.

References

. I' INMOS Databook. LNMOS Corporation. 1986.

S12] C. Lutz, S. Rabin, C. Seitz, and D. Speck. Design of the Mosaic Element. In Proceed.
ings, Conference on Advanced Research in VLSI, pages 1-10, Artech, 1984.

[31 J.C. Peterson, J.O. Tuazon. D. Lieberman, and M. Pneil. The Mark III H.'ypercube-
Ensemble Concurrent Computer. In Proceedings of the International Conference on
Parallel Processing, pages 71-73, IEEE, 1986.

!4) Charles L. Seitz. Concurrent VLSI Architectures. IEEE Transactionj on Computers.
C.33(12):1247-1265, 1984.

5 Charles L. Seitz. The Cosmic Cube. Communications of the A CM, 28:22-33, Jan 1985.

v15
b ; ,C, ,,,,3' ,!d ,j, '~ -w " ,'w ,',w~ .,LN %.'... '., --,.r.' ".j - Le w .d._. .'w" - .,.,.d .' .'',""" ''

I.

[6] Charles L. Seitz. Ensemble Architechures for VLSI - A Survey and Taxonomy. In Paul

Penfield, editor, Proceedngs, Conference on Advanced Research in VLSI, pages 130-
135, 1982. '

[71 Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. Proceedings of SPIE . The International Society for Optical Engineering,
298:241-248, 1981.

[81 Lawrence Snyder. Introduction to the Configurable, Highly Parallel Computer. Com.
puter, 15(l):47-56, 1982.

[9] J. Tuazon, J. Peterson, M. Pneil, and D. Lieberman. Caltech/JPL Mark II Hyper-
cube Concurrent Processor. In Proceedings of the International Conference on Parallel

Processing, pages 666-673, IEEE. 1986.

I

mil. i

16.-,

% % 4wj -W-V

r J,

e.

44

