
D-A193 290 HEARTS: A DIALECT OF THE POKER PROGRAMMING ENVIRONMENT iI
SPECIALIZED TO SYSTOLIC CONPUTATION(U) WASHINGTON UNIV
SEATTLE L SNYDER OCT 86 TR-86-18-Ui N81114-96-K-6264

UUCL SSIFIEDD
F G2/5 NL

-'~ ~ %t _ a5A

11111 lB1.8
BilI125 '4 1

MICROCOPY RESOLUTION TEST CHART
NA1IONAL BUREAU Of SlANDAOS- 1963 A i

% % %

% % %

% % .

x-a

IJIWiL wit~ N W 1 -U
';ECU' ITY CLASSIFICATION~ OF THIS PAGE (*hen Data Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION No. 3- RECIP:ENT*S CATALOG NUMBER

noneIN 4 TITLE (and Subtitle) S. TYPE 00 REPORT & PERIOD COVERED

Hearts: A Dialect of the Poker Programming Technical Report
()Environment Specialized to Systolic- 6. PERF RM~bj ORG. REPORT NUMBER

CD ~Computation86_0
7. Au.TIHOR(.,) 8. CONTRACT OR GRANT NUMBER(&)

Lawrence Snyder l01-6K24

9.B PERFORMING O RGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

University of Washington AE I OKUI UBR

Seattle, Washington 98195

11. CON4TROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research October 1986
Information Systems Program 13. NUMBER OF PAGES

Arlington, VA 22217 9
14 MONITORING AGENCY NAME 6 ADDRESStIf different fromt Contro!l~ng Office) IS. SECURITY CLASS. (of tis report) p

Unclassi fied

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DIS'RIBIJTION STATEMENT (of this Repor.I)

Distribution of this report is unlimited.

17. CIS-R[8UTION STATEMENT (of the aostract entered In Blo',k 20, If diferentI

IS. $UPPLEMENTARY NOTES

L D

19 KEY *ORDS (Continue on reverse side if neceasary ani dentffy by block number) %i

parallel programming, Poker Programming Environment, systolic arrays-
programming environments, graphical programming

-4 20 ASST ACT 'Conrtnu, on Paver,,.side If necessary and Identify hr block number) 1

Th dein fa aalel programiing environment specialized to systolic
computation is proposed. The system, called Hearts, is a dialect of the Poker
parallel programming environment. The key feature of Hearts that enables it
to be a convenient and efficacious facility for writing systolic programs is
a novel concept of~Wprogram" that is graphical rather than textual. The use
of this program form is illustrated in a full -example of the Kung-Leiserson
matrix product algorithm.

DD 1A 3473 ECII ZIN OF I NOV 65 IS OBSOLETE

S(cuRl-r CLASSII ICATION f 'Ir AFh c.M~r

HEARTS: A DIALECT OF THE POKER PROGRAMMING ENVIRONMENT
SPECIALIZED TO SYSTOLIC COMPUTATION

LAWRENCE SNYDER

INTRODUCTION

Because systolic algorithm ae commonly thought of as being directly implemented as
hardware arrays, writing systolic programs would appear to be an activity without application,
and therefore without need for a programming environment. But the appearance is deceiving.
There are many times when one indeed does program systolic algorithms: when the systolic
array is programmable, during the design process (for simulation purposes) of hardwired array
implementations, when a systolic algorithm is used on a general purpose parallel computer,
or when one is engaged in research on systolic algorithms. Furthermore, systolic arrays share
with other parallel algorithms the characteristic of being deceptively complex - perhaps their
simplicity makes the deception even greater - so the benefits of a programming environment
to ease the programming task become very important. In this paper we describe the design
of a parallel programming environment specialized to systolic computation and illustrate its
use.

The 'root langua' from which the current proposal derives is the Poker parallel pro-
gramming environment [Snyder, 1964). Although Poker was originally developed for the CHiP
family of computers [Snyder, 19811, including the Pringle [Kapaumn, et aL 1984], the language
has exhibited much wider applicability. Specifically, Poker is being retargetted [Snyder and
Socha, 1986 for the Caltech Cosmic Cube [Seits, 19851 and it has recently been argued [Sny-
der, 19861 to be ideal as the basis for a systolic programming environment. The design of this
new environment, called Hearts, is the topic of the present paper.

One of the key ideas of Poker, inherited by Hearts, is the novel notion of "program'.
Specifically, the programmer's view of the program appears to be a dynamic version of a text-
book illustration. Such metaphorically rich pictures correlate closely with the programmer's
thinking and thus simplify the programming task. (The next section is an e cample illustrating
this similarity between the textbook and Hearts descriptions.)

Although Poker was just described as a 'language', we also use the name to refer to
the whole programming environment. In this sense Poker, and by extension Hearts, is an
integrated set of facilities providing full support for editing, compiling, assembling, loading,
tracing, debugging, as well as an interface to the underlying UNIXTM operating system, cer-
tain correctness checks, the external file system, library and "help* facilities. The system
is so complete that the user need not exit until the session is over; moreover, the system
is sufficiently well integrated that the user moves effortlessly between the various 'subsys-
terns" almost unaware that the change of activity has required different support from the
environment. 8 A .-

all 012 Ills b,' b1 3 0 ell el C3 ',14

all all 3 b31 bfl b33 b34 C21 el el C1)£4

el 832 8131 ou b3 l b33 b34 b3S e31 (33 ell C3

000

933 1 491 % I. 43d
I 1I I

I

%92 Ir 10 o

ellT~ C23 ell

% %
C23 I1 %

m C42 cis (34

Figure 1

illustrated in the present example, for synchronization reasons. In any case, more than one
process may be defined, and processes may haye parameters in order to particularize them
more easily.

The sequential language used for process definition requires some extensions and some spe-
cialized semantics to simplify programming systolic computations. In the declarations, trace
variables provide a means of dynamically displaying the computation, and ports declares the
names to be used for the processor's datapaths. (Both features are further explained below.)
The arrow operator,

< va ahle > <- < portname >
< potwne > <. < vaiable >

specifies input or output depending on whether the port name is on the right or left, respec-
tively. The semantics are that a scalar value is transmitted, reading from a part name that
does not correspond to a datapath (see Figure 5) yields a 0, and writing to a port name
that does not correspond to a datapath is a noop. The command tock is a synchronisation
specifier: Control waits at the tock and proceeds only when the global clocking signal is
receivedl.

Figure 2

The process code appears to be somewhat more complex than might seem to be needed
based on the original Kung and Liseruon description, but what complexity there is can be
attributed to declarations and to providing three entry points to the compute-idle-idle cycle.
Specifically, the procee. is parametrized with an integer, ped., specifying whether the process
should begin by executing its inner product step (cycle=O), should execute the inner product
after one idle step (cyclemal) or after two (cycle=2). A second parameter, lastusl of type
port, states which input stream's termination will signal termination of the process. This
specification, permitting values to "drain' out of the array, is required by the fact that,
although the end of the C array stream generally signals the end of the processing, C is
actually created internally (the processors on the est and south sides of the array simply
read the Cin port which returns the default value 0 because (see Figure 6) they do not label
an actual data path) and thus will never terminate; the end of the A and B array streams
will terminate processing for processors on the south and east edges of the array, respectively.
The choice of terminator for the corner element is arbitrary. The streams are terminated by
a special token, EOS, nemonic for end of stream. The remainder of the code should be
self-explanatory. [The branches into the body of the repeat-until loop violate the tenets of
software engineering and an used here only to reduce confusion in this presentation; several
more acceptable but more verbose solutions are available.J

I "Tkk" Is &o used In the system to measure time, but a full explanation gos beyond the scope of this
paper.

code inner (cycle, lastval);
trace a, b, c;

ports Ain, Bin, Cin, Aout, Bout, Cout;
begin real a, b, c; nt cycle; port lstval;

If cycle = 0 then go to LO /* Define cycle 0 entry pt*/
If cycle = 1 then go to LI /, Define cycle 1 entry pt*/
a:= b:= c:= 0; /* Cycle 2 entry point /
repeat
c:= c + a eb;
Aout <- a, Bout <- b, Cout <- c;

L2: tock;
LI: tock;
LO: tock;

a <- Ain, b <- Bin, c <- Cln;
until EOS(latval);
Aout <- a, Bout <- b, Cont <- c;

end.
Figure3

Proce" Asgpament The proem assignment activity associates proceses and their ac-
tual parameters with procesors. The specification is given using a modified version of the
communication structure graph in which a window is provided for each vertex. The name of
the process to be executed on the processor is entered in the window together with its actual
parameters, if any.

The matrix multiplication problem usm only one procem having two parameters, cycle
and lastyal, although it might have been equally convenient to use three processee - one each
of the different positions o the inner product step in the compute-idle-idle cycle - in which
case the variable cycle would not be required (Snyder, 1986. Notice that the actual values for
cycle line up (on counter diagonals); the processors in the main block of the array all get their
last value frmn Cin; the choice of Ain or Bin as the actual value for lastuel was arbitrary for
the corner processor.

Port Name Aigsmes. Port naming simply labels the datapaths incident to a processor
with identifiers used in the procem definition. As with the process assignment a modified ver-
sion of the communication structure graph is used, but for port naming the window associated
with each vertex is divided into eight "panes corresponding to the eight compasm points. The
port names, although clipped to five characters each in the display, are of arbitrary length.

The specification of the port names for the matrix product program is straightforward;
for example, Bin is in the northern most pane and Bout in the southern most because the B
matrix flows from the top to bottom. Notice that if a port name labels a direction and there
is no datapath incident to the processor at that compass point then reading that port yields.
a 0 and writing to it is a noop.

Strem Name Assignment. A stream is the sequence of values entering or leaving a systolic
array from its perimeter. The purpose of stream name assignment is to specify the direction of
data flow and to organize the streams together into logical units by associating like names and
indices. Thes logical units can then be bound to file names, thereby providing the interface
between the Hearts system and the underlying file system.

p - ,

%*•: -' 1 V '.~%* '% .~.'~ %~, .p.p *.*~*

Figureie Figuree
Thestea nme ae ivn n tbl, neenrype danglg edge o Freachpa

The diaoso to AE Ind BW Iny arhtemonustotepogrmh t t At

ownI fioe sicflnnmsna en tsr ea names Theondie are usdtosify

ainentonio the AInd Bs arysdictte by ho the to admte are tol

streamsm are tol beomwslno s

Noc tathstl po grm efndi Hat bStrepcue tecm uiIoN

prora trext (naoces definin a table (s etrea ner definito)tesg e are not ieluhtrad

pirns of the program they ifatio ihe prom. Hece the Hyeat progra eiits hepicoral

ow ie sinc filnmecabbundtostea nms IFh inics aeue tpcf

srasiii t cp- i-i. .ne
Noietat th ytli rga i ei in Heart bytrepcue (h omncto

stutr eiiin proes aet an t nmasimeasegmn fsqeta
prga textr oe d f~inito) and. atbe(ramn edfinon);esearo luta

Fray h linner 4
Fray ROM4 iner
ray -t tinmerf~**
Fray __________

Fray - p lain it linner
Fra ________e

T-447e
r rrarFigure 6

a ~ - '..~'rsW~I% ! ~ ~ wa

qualities of-he textbook form, though it accomplishes them in a somewhat different way.
With the form of an example program fully established, it is now possible to describe the

Hearts programming environment.

THE HEARTS ENVIRONMENT

Hearts is an integrated parallel programming environment using interactive graphics to
give the programmer all of the facilities needed to write, debug and execute systolic programs.
In this section we describe the main features of the environment. -

Hearts, like Poker, does not have a textual form for its programs2 , but rather represents
them as a relational database and presents the information to the programmer in a form
called a view. The benefit of this nontextual form is simple: The programmer need not go to
the trouble of encoding the program and the system need not go to the trouble of decoding
(parsing) it. The view, prepared by the system at the programmer's direction, provides
an interface between human and machine acros which the information about the runtime
behavior of a systolic array is established without a textual encoding o that information.

Two displays ae used to maximize the information available to the programmer. A pri-
mary, bitmapped graphics display shows most of the graphical views; the secondary display
is used only for procen definitions which the programmer creates and modifis using a stan-
dard editor. Figure 7 shows a typical view on the primary display. In addition to the four
constituent parts of a program, (besides the proess definition) that ar shown as graphical
views, there are other views to support other facilities of the environment. The views are:

Interconnection View. Displays the ommunicati on structure of the systolic array;
the programmer interconnects the processors by drawing lines with cursor keys or
a mouse; me Figure 2. [Corresponds to Switch Setting View in Poker].

Cede Names View. Displays the process assignment information using an abstrac.
tion derived from the communication structure where ther is a window for each
vertex; the programmer moves from window to window entering the process name
and any actual parameters to the process; see Figure 4.

Poret Names Vies- Displays the port name assignment information using an ab-
straction based on the communication structure similar to the Code Name View;
the programmer uses the cursor keys or mousn to move to the various windows and .
within a window to move to the different panes when the port name is entered;
see Figure 5.
I/O Names View: Displays the stream name assignment information using a table,
the right half of which is prepared by the system; the programmer moves from line
to line, entering the names and indices of the streams and whether they are input
or output streams; se Figure 6.

Comma d Request View. Provides the programmer with the compilation, assem-
bly, linking, and loading functions so the program can be prepared for execu-
tion; to emphasize the nonstandard nature of Hearts, one of the available facilities
"compile? the communication graph. Program execution can be initiated here in
aproduction' mode; execution for debugging programs is initiated in trace view.

'The process defsMitlon Is textual, of course, but this is only one of the five progrnm constituente.

" -'2,

' 'Thu Jun S 84:24 VIEW: Trace - Interconnect

0ii D... F R MS: I LAST PE: 1 1 NLM TICKS:

111DD1D lun trace

Ine ne ne ne

Msl 484 189 el

.999189Fiur .799 .988 484

.8 1 6 . .- 9 4 . 46*N 8df*,6

Trae Vies- Displays the execution of the program while tracing the values of
the variables mentioned in the preamble to the process definition; like Code and
Port Names Views, Trace uses the abstracted version of the communication graph;
see Figure 7 where the a, b, and c values are being traced and execution has been
captured at the moment when processor 2, 2 computes its first intermediate result.
System Parameters Vie:r. Displays the parameters, e.g. the number of processors,
of the array being programmed, and provides the programmer with the ability to
change them. [Corresponds to CHiP Parameters in Poker].

Each view provides many other facilities in addition to those just mentioned including screen
management facilities, help facilities, access to the underlying operating system, diagnostic
facilities, and so forth.

A new Hearts programming session would begin by defining System Parameters to specify
the size and type of array to be programmed, as well as other system characteristics. Next
the programmer will enter one of the views and begin specifying the information required for
that view. Although there is no mandatory order in which the user visits the views, there are
some weak dependencies: a program must be defined before tracing is possible, and pads must
be defined in the communication structure before stream names can be defined. Generally,
the programmer begins with the Interconnection View to define the communication structure,
but then moves between views frequently in what may appear to the observer to be a rather
random way.

A common property of systolic arrays is that much of the information is repetitious, and
so it would appear to be rather tedious to have to specify all of this repeated information. In
fact, there are a variety of facilities to enable the programmer to enter repeated information
easily. In the Code Names and Port Names views, for example, the same entry can be assigned
to all elements of multiple rows or columns with half a dozen key strokes. Similarly, in the I/O
Names View it is possible to assign stream names with consecutive indices to multiple pads
occurring in a pattern; thus for the Stream Names Definition in Figure 6 the programmer had
to make only three complete entries, one for each array, and three repetition commands.

When the program is complete the programmer can either check it by running predicate
checks which verifies that the program has certain properties, e.g. all processors are connected
in the communication structure, or he can move directly to the Command Request " ew to
compile it. After the program has been successfully compiled and linked it can either be
downloaded into the physical hardware, or down loaded into a simulator. In the latter case
the programmer can use the Trace View to watch a continuously updated display of the
progress of the simulated computation, and thereby observe bugs in the program. Should
bugs be found they can be corrected by returning to the appropriate "source view."

CONCLUSIONS

There are two key points about the Hearts parallel programming environment: the novel
program structure and the new nontextual style of specifying it. These two features combine
to yield a convenient, efficacious programming environment for writing and running systolic
programs. In particular, the metaphorically rich pictures that the system provides the pro-
grammer offer a perspicuity comparable to dynamic versions of textbook illustrations.

The Hearts system described here is only a design which has not yet been fully imple-
mented. The Poker environment of which Hearts is a dialect, has been fully implemented
and has been used to write systolic programs. Not only has Poker provided the concepts and
experience needed to design Hearts, (and the figures shown in this paper, too), it represents

a., . ..,, ., * I: ,. ., .%,, , ;

about 90% of the facilities of the Hearts implementation. The major differences involve the
Interconnection View where the communication structure in Hearts is somewhat more easily
specified, the process definition language where more constructs specialized to systolic arrays
are provided, and in the backend simulator where a synchronous execution mode must be pro-
vided; minor differences abound and reflect improvements derived from our experience with
this style of programming.

REFERENCES

Cuny, Janice and Snyder, Lawrence, Compilation of Data-driven Programs for Synchronous
Execution, Proceedings o.f the 10th Symposium on the Principles of
Programming Leanuages, ACM, 1983, 197-202.

Kapauan, Alejandro, Field, J. Timothy, Gannon, Dennis and Snyder, Lawrence,
The Pringle Parallel Computer, Proceedings of the 11th International Symposium
on Computer Architecture, IEEE, 1984, 12-20.

Kung, H.T. and Leiserson, C.E., Algorithms for VLSI
Processor Arrays. In Mead, Carver and Conway Lynn,
Introduction to VLSI Design Systems. Addison-Wesley, 1980.

Seitz, Charles L., Conic Cube, CA CM 28(1), 1985, 22-33.
Snyder, Lawrence, Overview of the CHiP Computer, in John P. Gray (editor), VLSI 81,

Academic Press, 1981, 237-246.
Snyder, Lawrence, Parallel Programming and the Poker Programming Environment,

Computer 17(7), July 1984, 27-36.
Snyder, Lawrence, A Syntax-free Language for Parallel Computing,

University of Washington, 1985.
Snyder, Lawrence, Programming Environments for Systolic Arrays, First Anu l

Symposium on Optoelectroaics and Laer Application, in Science and Engineering,
S.P.I.E., January 1986.

Snyder, Lawrence and Socha, David, Poker on the Cosmic Cube: The First Retargetable
Parallel Programming Language and Environment, Proceedings of the
International Conference on Parallel Processing, 1986 (to appear).

F

N

wcb

'p fl//fl

d.IK /7oM~
ric~

