D-A193 296 HEARTS: A DIALECT OF THE POKER PROGRAMMING ENYIRONMENT 11
SPECIALIZED TO SYSTOLIC COMPUTATIONC(U) WRSHINGTON UNIV
SERTTLE L SNYDER OCT 86 TR-86-18-01 NOOO14- BS-K-.2$4
UNCLASSIFIED G 12/3 NL

—

- e d) "l‘ e - l- ” -
_ . e ’ - ol e K55, RUN NN AT -NF-. \n.r.r l-l.
.-—u-.
LA
Py “x:
Pl
)
L A IR
N
»
&
Z
-
¥5
%
w B 4
P <,
\J
b4
- J N _
\nfif o (o] o0 x «
7 A =l 2 ¥
o == = - I 2
huu = = == W m
i @il o~ o o - g
X «~ °
7 m_____ Gﬂg & L ~t z %
K J2 . m o
. B E EERFIT - 23
- T 7 4
g = 2z
Plv A) — 7o) x 3
£3 . . S 2
¥ —m =il = 85
p—] — — Q 2
K _ e = =
L
)
Z
'ﬂ -
-
%)
A
o
-
B o
.‘.n”
Z [2]
&

. 7 \.r\d}i\i] gt ot g% S0 4 5 s, nﬁi v .(A ol b 1 VPP ITS Ve e -

g4 . Btk

T T T R N N R N R R W L W e M O O R T R Y TV T O T W UW TR U

; 20 3;
. N
Y Ty s » ‘ ¢ .".‘
. NG FiLE. (UR)
SECUNITY CLASSIFICATION OF THIS PAGE ‘When Data Entered) ::o:
= (
REPORT DOCUMENTATION PAGE BEF%%’EDC’SSEE‘E’%’;}QNFSORM) ::;:
m t. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER :
m none .I.:
N 4 TITLE (and Subtitle) $. TYPE OF REPCRT & PERIOD COVERED
l..:
Hearts: A Dialect of the Poker Programming Technical Report ﬁz
™ Environment Specialized to Systolic 6 PERFQRMING ORG. REFORT NUMBER "y
N Computation 86-10- ;
) 7. AGTHOR(e) 8. CONTRACT OR GRANT NUMBER(s) [
I:t N00014-86-K-0264
Lawrence Snyder bty
| N
Q 9. PERFCRMING ORGANIZATION NAME AND ADORESS 10. :RgiR‘AxOERLKEMENTT FﬁOaJ!EET, TASK \.
‘ﬂr University of Washington R UNIT NUMBERS o
Seattle, Washington 98195 a4
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ."n
. 1Yy ¢
Office of Naval Research October 1986 3@
Information Systems Program '3 NUMBER OF PAGES W
Arlington, VA 22217 9 W
4. MONITORING AGENCY NAME & ADDRESS/!f different from Controlling Oflice) 15. SECURITY CLASS. (of this report) .‘
Unclassified]
15a. DECLASSIFICATION: DOWNGRADING .' ':
SCHEDULE .|::,
oSN
16. DISTRIBUTION STATEMENT (of this Repor:) . :::l
S
Distribution of this report is unlimited. ii
P 4
&
o

W
17. QISTRIBUTICON STATEMENT (of the anstract entered in Blo~k 20, 1{ difterent fi -3 M k
Ny
EB I E C <o
M

ELECTE] B
APR 1 31988 v
18. SUPPLEMENTARY NOTES y
.‘Q‘

=N :f

D

L -

: »

Tu

19 K EY WOROS (Continue on reverse side ({ neceasary and identify by block number) ;:\

. ',\‘\
parallel programming, Poker Programming Environment, systolic arrays. ;:
programming environments, graphical programming ;:“

w

\ ®
- ’ 20 a8sST ﬂA:.T ’Continue on reverse aside If necessary .nd Identify b\: block number) . ;:-
The design of a parallel programming environment specialized to systolic g
computation is proposed. The system, called Hearts, is a dialect of the Poker ¢:1
parallel programming environment. The key feature of Hearts that enables it o
to be a convenient and efficacious facility for writing systolic programs is ‘
a novel concept of™program* that is graphical rather than textual. The use -
of this program form is illustrated in a full example of the Kung-Leiserson o
matrix product algorithm. o9

f

t
DD ."5n%, 1473 £017 on OF 1 NOV 6515 OBSOLETE W

o RO S R I B SCCTRITV ELRSS CAT o o F THIS PAGE Whan [ipte Kntere : .
(% A

Ca

1Y

i m m am R - \J

S -r WA T '-,- 4- ‘f‘f Te '4'_; , ',"-‘\‘._-’,_r%r‘f T

. 5 B > N o
P A UR T N R RO ION AN TOR A ARK AR WP WA A 0 Nl R R WL R ERNENER DO R RO ARSI U U OW U PR URE A ST Y (N T $sv @,
100 8%y &°4. $ 8

X
o
2
A ,‘
J
o
HEARTS: A DIALECT OF THE POKER PROGRAMMING ENVIRONMENT » :
SPECIALIZED TO SYSTOLIC COMPUTATION ".::'
5
]
4%
o
Ly
: =
LAWRENCE SNYDER o0
.
INTRODUCTION 0
e
e
Because systolic algorithms are commonly thought of as being directly implemented as :',;.‘:
hardware arrays, writing systolic programs would appear to be an activity without application, ‘3
and therefore without need for a programming environment. But the appearancs is deceiving. :8: ,
There are many times when one indeed does program systolic algorithms: when the systolic w3
array is programmable, during the design process (for simulation purposes) of hardwired array N
implementations, when a systolic algorithm is used on a general purpose parallel computer, \
or when one is engaged in research on systolic algorithms. Furthermore, systolic arrays share i y

with other parallel algorithms the characteristic of being deceptively complex — perhaps their

simplicity makes the deception even greater - 80 the benefits of a programming environment :j.
to ease the programming task become very important. In this paper we describe the design NG
of a parallel programming environment specialized to systolic computation and illustrate its QJ_
use 5

The “root language” from which the current proposal derives is the Poker parallel pro-

gramming environment [Snyder, 1984]. Althcugh Poker was originally developed for the CHiP "i
family of computers [Snyder, 1981, including the Pringle [Kapauan, et ol 1984], the language -\‘;'.")
has exhibited much wider applicability. Specifically, Poker is being retargetted [Snyder and :_:-::
Socha, 1986] for the Caltech Cosmic Cube [Seits, 1985 and it has recently been argued (Sny- e
der, 1986] to be ideal as the basis for a systolic programming environment. The design of this
new environment, called Hearts, is the topic of the present paper. Y
One of the key ideas of Poker, inherited by Hearts, is the novel notion of “program”. e
Specifically, the programmer’s view of the program sppears to be a dynamic version of a text- Z-C._';
book illustration. Such metaphorically rich pictures correlate closely with the programmer’s ',?"‘
thinking and thus simplify the programming task. (The next section is an example illustrating .
this similarity between the textbook and Hearts descriptions.) S
Although Poker was just described as s “language”, we also use the name to refer to "t.
the whole programming environment. In this sense Poker, and by extension Hearts, is an R
integrated set of facilities providing full support for editing, compiling, assembling, loading, :'.-:
tracing, debugging, as well as an interface to the underlying UNIX™™ operating system, cer- -
tain correctness checks, the external file system, library and “help” facilities. The system
is so complete that the user need not exit until the session is over; moreover, the system o\,
is sufficiently well integrated that the user moves effortlessly between the various “subsys- "y
tems” almost unaware that the change of activity has required different support from the) .:'-
environment. . oy
88 4 1-)¢3 2
L::
“_-f i

. . - O W \"\'\
: WLV T Y e W] ru " N N A A I T P SR > A
‘.-‘l".'l'. W1 B0 S0 050 908, et . i3 b, "I‘- Lnaia el AL WS S A T NG AL AL Aoy Wy i . e

. e m b A lim . . a2 s b bk tah Uob a8 wad tab Vad: Sul . RO
& T, 008 a0 0 B N8 D W g gl e Kad e d O p o, .4 ap e V& LT ANRIOTR) 0.9 8 Wb ¥ 4, $ s, b 1 » o r

— — - -
::'\ a9] by by by r"u f12 €13 e 0
e e oy ay by by by by n € €
ot ay ay a4y oy Byy byy b3 by | = | e €32 oy €

,"o a4 . by o, ‘a4 ‘a .

W
>
——
o

NI

\

e o e o == e o w

\
\
\
\
\

S
&

dg 52 an

'y

'

]

|

!

[}

:C ay L$}) ~ :

)

r

]

l

|

|

]

S\

o
/

L
’

/
>
-

R0

¥

X

-

oy
!
?
|
i
|
i

AlCeuon Fer

]
S CRAS A “
!

S

B

CoTae [
R i

soled

/
/ €3 i i3\

Tl
oy

b
\‘-——--———-—-
<
P
PSS p——

» d »
o]
“\

»
-
=
-

yn »

|
-

] n €2

oy €3 €8

- = ——
-
»~

”
- - —— o - —

Figure 1

Y
108
) . o - - . - - - -~ -~ A L

- A AR g P W P Y T T e T B L o 5y Ty w" o, L e, .
ORI G AT, L oAyt Y L G T AT A A7 AN AN .\\-.-s.\ A, A A A oy

> -

- o

" s -

S S S A S S e S S LS s N e

N T I T T I T R O O R O O O e

illustrated in the present example, for synchronization reasons. In any case, more than one
process may be defined, and processes may haye parameters in order to particularize them
more easily.

The sequential language used for process definition requires some extensions and some spe-
cialized semantics to simplify programming systolic computations. In the declarations, trace
variables provide a means of dynamically displaying the computation, and ports declares the
names to be used for the processor’s datapaths. (Both features are further explained below.)
The arrow operator,

< variable > <- < portname >
< portname > <- < variable >

specifies input or output depending on whether the port name is on the right or left, respec-
tively. The semantics are that a scalar value is transmitted, reading from a port name that
does not correspond to a datapath (see Figure 5) yields a 0, and writing to a port name
that does not correspond to a datapath is a noop. The command tock is a synchronisation
apecxﬂorl Control waits at the tock and proceeds only when the global clocking signal is
received*.

Pigure 2

The process code appears to be somewhat more complex than might seem to be needed
based on the original Kung and Leiserson description, but what complexity there is can be
attributed to declarations and to providing three entry points to the compute-idle-idle cycle.
Specifically, the process is parametrised with an integer, cycle, specifying whether the process
should begin by executing its inner product step (cycle=0), should execute the inner product
after one idle step (cycle=1) or after two (cycle=2). A second parameter, lastval of type
port, states which input stream'’s termination will signal termination of the process. This
specification, permitting values to “drain® out of the array, is required by the fact that,
although the end of the C array stream generally signals the end of the processing, C is
actually created internally (the processors on the east and south sides of the array simply
read the Cin port which returns the default value O because (see Figure 6) they do not label
an actual dats path) and thus will never terminate; the end of the A and B array streams
will terminate procsssing for processors on the south and east edges of the array, respectively.
The choice of terminator for the corner element is arbitrary. The streams are terminated by

a special token, EOS, mnemonic for end of stream. The remainder of the code should be
self-explanatory. (Tho branches into the body of the repeat-until loop violate the tenets of
software engineering and are used here only to reduce confusion in this presentation; several
more acceptable but more verbose solutions are available.|

' *Tick® Is also used in the system to measure time, but a full explanation goes beyond the scope of this
paper.

W\

- -
-
e .

- s .

g - s
Lok g I

-,

IR A ACLA AN N

4

}
'
'
1)

R R M LR I U W WL NV

SOACUOBORAINAON

A SRR Lty Ta "0"-“!.\—'V.\..\.'-.'-"h"-'N
" " .Ana.c [} - ' Lol s Loty

AR TALR R

w

code inner (cycle, lastval);

trace a, b, c;

ports Ain, Bin, Cin, Aout, Bout, Cout;
begin real a, b, ¢; int cycle; port lastval;

if cycle = 0 then go to LO /* Define cycle O entry pt*/
if cycle = 1 then go to L1 /* Define cycle 1 entry pt*/
a:= b= ¢:= 0; /® Cycle 2 entry point */
repeat
c=c+a*h;
Aout <- a, Bout <- b, Cout <- ¢;
: tock;
: tock;
tock;
a <- Ain, b <- Bin, ¢ <- Cin;
until EOS(lastval);
Aout <- a, Bout <- b, Cout <- ¢;

end.
Figure 3

Process Assignment. The process assignment activity associates processes and their ac-
tual parameters with processors. The specification is given using a modified version of the
communication structure graph in which a window is provided for each vertex. The name of
the process to be executed on the processor is entered in the window together with its actual
parameters, if any.

The matrix multiplication problem uses only one process having two parameters, cycle
and lastval, although it might have been equally convenient to use three processes — one each
of the different positions of the inner product step in the compute-idle-idle cycle - in which
case the variable eyele would not be required [Snyder, 1988]. Notice that the actual values for
cycle line up (on counter diagonals); the processors in the main block of the array all get their
last value from C'in; the choice of Ain or Bin as the actual value for lastvel was arbitrary for
the corner processor. -

Port Name Aseignment. Port naming simply labels the datapaths incident to a processor

_ with identifiers used in the process definition. As with the process assignment a modified ver-
sion of the communication structure graph is used, but for port naming the window associated

with each vertex is divided into eight “panes® corresponding to the eight compass points. The
port names, although clipped to five characters each in the display, are of arbitrary length.
The specification of the port names for the matrix product program is straightforward;
for example, Bin is in the northern most pane and Bout in the southern most because the B
matrix flows from the top to bottom. Notice that if a port name labels a direction and there

is no datapath incident to the processor at that compass point then reading that port yields

a 0 and writing to it is & noop.
Stream Neme Assignment. A stream is the sequence of values entering or leaving a systolic
array from its perimeter. The purpose of stream name assignment is to specify the direction of

data flow and to organise the streams together into logical units by associating like names and -

indices. These logical units can then be bound to file names, thereby providing the interface
between the Hearts system and the underlying file system.

e e
TR NI AN

s

' oo I8 o) f8

B s ol

R PP

U U UCASTAS RS AR S S A R OV YN

Figure 4 Figure 5

The stream names are given in a table, one entry per “dangling” edge, or pad. For each pad
a name, a (unique for that name) index and direction of flow are specified. To the right of the
vertical line, the table contains copious information derived from the other four constituent
parts of the program; this information is provided by the system for its mnemonic value.

The diagonals of the A and B arrays are stream inputs to the program. The fact that
each array uses one stream name with indices implies that each array will be stored in its
own file, since file names can be bound to stream names. The indices are used to specify
the position of the stream within the file: A file with k streams each of n values will contain
n fixed length records each with & fields; the index specifies the field position. Thus, the
assignment of indices for the A and B array is dictated by how the two band matrices are to
be stored in the file. Similarly, the specification of indices for the C array dictates how the
streams are to be composed into a file.

Notice that the systolic program is defined in Hearts by three pictures (the communication
structure definition, process assignment, and port name assignment), a segment of sequential
program text (process definition), and a table (stream name definition); these are not illustra-
tions of the program, they are the program. Hence, the Hearts program exhibits the pictorial

57

- e G

PORT NANE IRECTI
NOe

e

-

-

2

e

i”-

Figure 6

A0 AT M NI, A AR ADA AL

qualities of the textbook form, though it accomplishes them in a somewhat different way.
With the form of an example program fully established, it is now possible to describe the
Hearts programming environment.

THE HEARTS ENVIRONMENT

Hearts is an integrated parallel programming environment using interactive graphics to
give the programmer all of the facilities needed to write, debug and execute systolic programs.
In this section we describe the main features of the environment. -

Hearts, like Poker, does not have a textual form for its programs?, but rather represents
them as a relational database and presents the information to the programmer in a form
called a view. The benefit of this nontextual form is simple: The programmaer need not go to
the trouble of encoding the program and the system need not go to the trouble of decoding
(parsing) it. The view, prepared by the system at the programmer’s direction, provides
an interface between human and machine across which the information about the runtime
behavior of s systolic array is established without a textual encoding of that information.

Two displays are used to maximise the information available to the programmer: A pri-
mary, bitmapped graphics display shows most of the graphical views; the secondary display
is used only for process definitions which the programmer creates and modifies using a stan-
dard editor. Figure 7 shows a typical view on the primary display. In addition to the four
constituent parts of a program, (besides the process definition) that are shown as graphical
views, there are other views to support other facilities of the environment. The views are:

Interconnection View: Displays the communication structure of the systolic array;
the programmer interconnects the processors by drawing lines with cursor keys or
a mouse; see Figure 2. [Corresponds to Switch Setting View in Poker).

Code Nemes View: Displays the process assignment information using an abstrac-
tion derived from the communication structure where there is a window for each
vertex; the programmer moves from window to window entering the process name
and any actual parameters to the process; see Figure 4.

Port Names View: Displays the port name assignment information using an ab-
straction based on the communication structure similar to the Code Name View;
the programmer uses the cursor keys or mouse to move to the various windows and
within a window to move to the different panes when the port name is entered;
see Figure §.

1/0 Names View: Displays the stream name assignment information using a table,
the right half of which is prepared by the system; the programmer moves from line
to line, entering the names and indices of the streams and whether they are input
or output streams; see Figure 6.

Command Request View: Provides the programmer with the compilation, assem-
bly, linking, and loading functions so the program can be prepared for execu-
tion; to emphasize the nonstandard nature of Hearts, one of the available facilities
“compiles” the communication graph. Program execution can be initiated here in
“production” mode; execution for debugging programs is initiated in trace view.

3The process definition is textual, of course, but this is only one of the Sive program constituents.

2 . "} - ' - - - - - - - » W Py RN W B - » -’ '.. - - L] ‘-. '.. .‘. - ‘”
OO IS F"K' A -“ l"‘l -‘t‘.‘n J.ll“l‘o n? ‘ '1.’ VA # Lo ‘0 'd*"’ ih .’ A "* s {\" oy ..

........... 'y ., Aol

R AR R L LR A A ROANDUTKA R/ (RS AL R R R U URA N G0 @l 0 Gl 0 b0 S LN gl tal Yok gl Wad tad Vol egh) ARG XN UTRARIY

: +
D)
‘l i
ty l‘:
("- t]
by {]
Py (]
4]
Thy Jun S 84:24 VIEW: Trace - interconnect 5
. PHASE:) LAST PE: 1 1 NN TICKS: 0
Q‘]
Y
K
|} }
!]
i u
0 J
.l
..
! b
))
et v
l. .
! Fun trace "
[
" ¢
ty
" {
"W
t
A
K
y ;
{
)
Ky
W
M)
K}
.
]
b 1.000000
. 3.800000
s 3.000800
! . "’
v. .
] a ! 3
N inner {nner {nner
b . 808008 . 098000 .000000
! .500000 [.008000 .008000
:- .000000 .000000 .008000 3
&
L]
‘ —a | T q .
. {nner 1inner ‘* {nner R
. .000000 .000000 .800000 »
» .080000 .600089 .0006800 ~
. .900000 .000000 .000000 3
) v
. :
,]
/ .
d R
4] N
-
i
]
Z‘ ‘
0 :l
Y 1
. 3
X Figure 7 N
L
1)
!
TGS A A S S e N s G G VA (AR A AR AN P S A TV

O T T O T e DY TV I UV L ¥ L ™

Trace View: Displays the execution of the program while tracing the values of
the variables mentioned in the preamble to the process definition; like Code and
Port Names Views, Trace uses the abstracted version of the communication graph;
see Figure 7 where the a,b, and ¢ values are being traced and execution has been
captured at the moment when processor 2, 2 computes its first intermediate result.

System Parameters View: Displays the parameters, e.g. the number of processors,
of the array being programmed, and provides the programmer with the ability to
change them. [Corresponds to CHiP Parameters in Poker].

Each view provides many other facilities in addition to those just mentioned including screen
management facilities, help facilities, access to the underlying operating system, diagnostic
facilities, and so forth.

A new Hearts programming session would begin by defining System Parameters to specify
the size and type of array to be programmed, as well as other system characteristics. Next
the programmer will enter one of the views and begin specifying the information required for
that view. Although there is no mandatory order in which the user visits the views, there are
some weak dependencies: a program must be defined before tracing is possible, and pads must
be defined in the communication structure before stream names can be defined. Generally,
the programmer begins with the Interconnection View to define the communication structure,
but then moves between views frequently in what may appear to the observer to be a rather
random way.

A common property of systolic arrays is that much of the information is repetitious, and
so it would appear to be rather tedious to have to specify all of this repeated information. In
fact, there are a variety of facilities to enable the programmer to enter repeated information
easily. In the Code Names and Port Names views, for example, the same entry can be assigned
to all elements of multiple rows or columns with half a dozen key strokes. Similarly, in the [/O
Names View it is possible to assign stream names with consecutive indices to multiple pads
occurring in a pattern; thus for the Stream Names Definition in Figure 6 the programmer had
to make only three complete entries, one for each array, and three repetition commands.

When the program is complete the programmer can either check it by running predicate
checks which verifies that the program has certain properties, e.g. all processors are connected

in the communication structure, or he can move directly to the Command Request = ew to
compile it. After the program has been successfully compiled and linked it can eicher be
downloaded into the physical hardware, or down loaded into a simulator. In the latter case
the programmer can use the Trace View to watch a continuously updated display of the
progress of the simulated computation, and thereby observe bugs in the program. Should
bugs be found they can be corrected by returning to the appropriate “source view.”

CONCLUSIONS

There are two key points about the Hearts parallel programming environment: the novel
program structure and the new nontextual style of specifying it. These two features combine
to yield a convenient, efficacious programming environment for writing and running systolic
programs. In particular, the metaphorically rich pictures that the system provides the pro-
grammer offer a perspicuity comparable to dynamic versions of textbook illustrations.

The Hearts system described here is only a design which has not yet been fully imple-
mented. The Poker environment of which Hearts is a dialect, has been fully implemented
and has been used to write systolic programs. Not only has Poker provided the concepts and
experience needed to design Hearts, (and the figures shown in this paper, t00), it represents

N
B RGN L te T TN

~ M \\;\'1,‘,

. TRy LY Wl e T AT AT AT
Y R AR A AR e s AR DD A LA AN TN

B T R A R R R X O N S Y R X O O P I T 2 PR W WD

e 2w e mh

-

i

6 o a0 g

Tu gty e N N e Y
] «

about 90% of the facilities of the Hearts implementation. The major differences involve the
Interconnection View where the communication structure in Hearts is somewhat more easily
specified, the process definition language where more constructs specialized to systolic arrays
are provided, and in the backend simulator where a synchronous execution mode must be pro-
vided; minor differences abound and reflect improvements derived from our experience with

. this style of programming.

REFERENCES

Cuny, Janice and Snyder, Lawrence, Compilation of Data-driven Programs for Synchronous
Execution, Proceedings of the 10th Symposium on the Principles of
Programming Languages, ACM, 1983, 197-202.

Kapauan, Alejandro, Field, J. Timothy, Gannon, Dennis and Snyder, Lawrence,

The Pringle Parallel Computer, Proceedings of the 11th International Symposium
on Computer Architecture, IEEE, 1984, 12-20.

Kung, H.T. and Leiserson, C.E., Algorithms for VLSI
Processor Arrays. In Mead, Carver and Conway Lynn,

Introduction to VLSI Design Systems. Addison-Wesley, 1980.

Seitz, Charles L., Cosmic Cube, CACM 28(1), 1985, 22-33.

Snyder, Lawrence, Overview of the CHiP Computer, in John P. Gray (editor), VLSI 81,
Academic Press, 1981, 237-248.

Snyder, Lawrence, Parallel Programming and the Poker Programming Environment,
Computer 17(7), July 1984, 27-36.

Snyder, Lawrence, A Syntax-free Language for Parallel Computing,

University of Washington, 1985.

Snyder, Lawrence, Programming Environments for Systolic Arrays, First Annual
Symposium on Optoelectronscs and Laser Applications in Science and Engineering,
S.P.LLE., January 1986.

Snyder, Lawrence and Socha, David, Poker on the Cosmic Cube: The First Retargetable
Parallel Programming Language and Environment, Proceedings of the
International Conference on Parallel Processing, 1986 (to appear).

- - - « - . - - cng -, P R A T T S S R S ., c w,t e M T Y
o P A T e g PRI 0 PP A, P AR AN

el LTSRS VRN 1IN0 N0

NN

PR g g IR

2
0o

‘--'-._.v'.‘d- LR R AN A L N I I N S G
AR IS AMHLAERER SO R OO \.'.-_1

