
AO-A193 29? POKER ON THE COSMIC CUBE: THE
FIRST RETRETABILE

1~

DEPT OF COMPUTER SCIENCE L SNYDER ET AL. JUN 86

UNCLASSIFIED TR-66-02-05 N94-96-K-6264 FG L2?5NLPIRLE ERGRMMNGE E E EU)WAHIGTN E I7
HMENEN

111101I.6

- .J2 I36

P. P l-

HC10cagifi0A
'

I;ECU ITY CLAS5IFICATION OF THIS PAGE (hen Dote Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIP:ENT'S CATALOG NUMBER
none

4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Poker on the Cosmic Cube: The First Technical Report
Retargetable Parallel Programming G. PERFORMING ORG. REPORT NUMBER

Language and Environment 86-02-05

7. AuTmOR(e) S. CONTRACT OR GRANT NUMBER(o)

TO Lawrence Snyder and David Socha N00014-66-K-02-1

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERSUniversity of Washington

Department of Computer Science
(Seattle, Washington

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research June 1986
Information Systems Program ,3. NUMBER OF PAGES

Arlinaton, VA 22217 15
14 MONITORING AGENCY NAME & ADDRESS(If different from Contro'ling Office) IS. SECURITY CLASS. (of this report)

Unclassi fied
IS.. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited. D

DTIC
17. DISTRIBUTION ST TE EN o eabsrac. et e d in ,., , , k 2 0. (1 di:'.,.- ro'1-a C

19. SUPPLEMENTARY NOTES %

19 K(EY w~ftDS (Continue on reverse aid* if necessary and Identify by block number)

Poker parallel programming environment: Cosmic Cube: retarcetting parallel X
architectures: software portability j-

a0 ABSTRACT (Continue wn reverse side If necessary and Identify by block number) 'S

This paper describes a technique for retargetting Poker, the first complete
parallel programming enviornment, to new parallel architectures. The
specifics are illustrated by describing the retarget of Poker to CalTech's .
Cosmic Cube. Poker requires only three features from the target architecture:
MIMD operation, message passing inter-process communication, and a sequential
language (e.g. C) for the processor elements. In return Poker gives the
new architecture a complete parallel programming environment which will
R e PgeEojaFIl,,pp kythout modification, into efficient

DD An M 1473 EOION OF I NOV 65 IS OBSOLETE
., ' €"11"'1 ______

SCCUPI"V CL.ASSIP CATI$,re r PAGIE Who- f014 Mm*,,,

%*.~~~~~ . 0.. .*~%*%*** %* ,.

-'717

Poker on the Cosmic Cube:
The First Retargetable Parallel Programming

Language and Environment

Lawrence Snydet
David Socha

NTIS c.- 4
Department of Computer Science, FR-35 C T

University of Washington ,. L J

Technical Report 86-02-05

June 1986 Y.

D~t I,.,, ' :

AI

I * --

Abstract '

This paper describes a technique for retargetting Poker, the first com-
plete parllel programming environment, to new parallel architectures.
The specific are illustrated by describing the retarget of Poker to Cal-
Tech's Cosmic Cube. Poker requires only three features from the target
architecture: MIMD operation. message passing inter-proces communi-
cation, and a sequential language (e.g. C) for the processor elements.
In return Poker gives the new architecture a complete parallel program-
ming environment which will compile Poker parallel programs, without
modification, into efficient object code for the new architecture.

' ,.

884
?. .tU~S 4 4 ~44~~~ ~ , -~% U i,.. U .P ' 4 .. ' ~*~jj:. ~ . - -

Poker on the Cosmic Cube:
The First Retargetable Parallel Programming Language and

Lawrence Snyder
David Socha

Department of Computer Science, FR-35
University of Washington

Seattle, WA 98195

Abstract
This paper describes a technique for retargetting Poker, the first complete parallel program-

ming environment, to new parallel architectures. The specifics are illustrated by describing the
retarget of Poker to CalTech's Cosmic Cube. Poker requires only three features from the target
architecture: MIMD operation, message passing inter-process communication, and a sequential
language (e.g. C) for the processor elements. In return Poker gives the new architecture a com-
plete parallel programming environment which will compile Poker parallel programs, without
modification, into efficient object code for the new architecture.

1 Introduction i
Software portability for sequential computers became an issue in the early sixties as higher-level languages
began to supplant the machine specific assembly languages and as machine varieties proliferated; it was a
much harder problem than originally supposed and it remains a serious problem today. By comparison,
portability of a parallel program should be substantially more difficult because:

" architectural differences among parallel computers are much more fundamental than among sequential
machines, and

" the characteristic that makes portability difficult - the dependence of program on machine specific
features - arises often in parallel computation in order to get good performance.

We say "should be more difficult" because to date there is little experience: There is little production parallel
software and there are few truly parallel languages, and few parallel machines. But in spite of the potential
problems, there is some reason for optimism.

The Poker[i] language has been retargetted from the Pringle Parallel Computer [2] to the CalTech Cosmic
Cube (3]. Thus, progranm written for the CHiP (4] family of computers can run on one of the cube family
of architectures witAoul modification. This is possible because

" the Poker language uses a reasonably universal program abstraction,

" Poker programs have a (unique) structure that is both visible and simple, and

" the Poker language and environment is structured to make retargetting simple.

Supported in prt by Naticaud Science Foundation Grant DCR-6416873
mn by Ofice of Namd Fasgerch Contract No. N0001-Ss-K.0328.

. . ."%%t

There is no impediment to porting the Poker language to other parallel computers as this paper will explain.
The benefit of portable parallel software is obvious: Programs can be written without regard for the

underlying architecture. However, portability only guarantees that programs will funclion. With Poker,
we are making a stronger claim: Poker programs will run with an efficiency that is comparable to that
of programs which were specifically written for that architecture. This leads to a key point about the
retargetable Poker parallel programming environment:

Poker requires a small set of system functions of the host architecture and can thus serve as the
definition of the basic software support required of a new parallel computer.

Simply by creating the few basic interface systems that Poker requires, an architecture automatically in-
herits the available Poker programs and a complete software environment. This vastly reduces the software
development efforts for new parallel machines.

2 Overview

Before explaining the details of the retarget, some familiarity with the Poker system must be acquired.
Towards this end we present first a high level view of the Poker system pointing out some of the key
components and their interactions. Later, we discuss the relevant software and hardware pieces, devoting a
section each to: the Poker programming environment, the Cosmic Cube, and the new cross-compiler. Finally,
we connect all the pieces and discuss the effects of the new extended system.

Figure I shows the relationship between the Poker Parallel Programming Environment and the parallel
computers which can be programmed with it. Poker is a sequential system that makes extensive use of a
relational database to represent prograns. It is written in C[5] and built on top of UNIX'.

To see how Poker works, focus on two components of the system: the cross-compiler and the debugging
environment. The cross-compiler accepts a Poker program as input and produces an object version suitable
for execution on one of three machines: the Pringle, the Cosmic Cube, or a simulator/emulator of a parallel
machine that runs on whatever sequential machine is hosting Poker itself. The compiled version is then V
down-loaded to the target parallel computer and executed. During execution, the run-time support of the
machine sends tracing information back to Poker's debugging environment so that the programmer can view
the execution of the program within the Poker environment. r

Thus, one writes and runs programs from an environment that provides flexible interactive graphic
support and a view of the program consistent with its definition. During the program debugging activity
there is communication between the front-end processor and the back-end parallel machine to facilitate
program tracing. When the program is debugged, no tracing is requested and Poker serves as the operating -

system for the back-end machine, running the program "flat out."
Thus, Poker is both a language and an environment: A sequential system from which to compile, exe-

cute, and debug programs on parallel computers. A "port" of the Poker language entails retargetting the
cross-compiler and constructing the run-time software to support the communication between the Poker
environment and the parallel computer. Only the Poker programs and run-time system get ported to the

new machine; the Poker environment runs on a sequential computer. 2 This paper will detail the activities
required in crosing the vertical line of Figure 1.

3 The Poker Programming Environment

The Poker programming environment is built around a programming abstraction thbt is common to non-
shared memory parallel algorithms, as described in the next section. However, Poker's interface to the

IUNIX in a trade ark of AT&T Bell Laborstories2Currently, the Poker environmnt runs on a number of computers, including Vaxes, Vax-steitio, Sun workstations, IBM
PC/RI., and HP-9000s.

2 S.. 1Z

% %

Poker Environment

__ __ __ __ __ IM

mlator/ imlatr Cow Cuber_______

a a 0n~

Bu-Msae PokerW Syste Po0rt

Figure 1: An Overview of the Poker System.

3

%I

tree. ..

se: parnt 4- max (m V" luftVaki. reghtVakse)
leaf. Parent -c- rnyV"u

Figure 2: The Maximum Algorithm.

abstraction is quite non-standard. Section 3.2 on Concrete Poker Programs outlines the structure and
semantics of Poker programs. As we shall see, this formulation of parallel algorithms lends itself to easy
retargetting for new parallel architectures.

3.1 Abstract Poker Programs.

A non-shared memory parallel algorithm is conceptualized as a finite graph. The graph's vertices are labeled
with process names corresponding to sequential programs. The graph's edges are of two types: Edges between
vertices are communication paths between processes, and edges "dangling" off of the graph are channels
through which streams of data pas to or from the graph. (Technically, graphs cannot have dangling edges,
of course, but it is convenient to abuse the definition.)

For example, Figure 2 shows the maximum algorithm. The graph is a binary tree. The vertices are
labeled with one of: the name of the loaf process, which passes its local value to its parent, or the name
of the tree process, which receives two values from its children, finds the maximum of these values and its ,.
local value, and passes the result to its parent. The dangling edge is a stream containing a single output
value produced at the root.

A problem is not generally solved by a single algorithm of this form. Rather this form is usually one
.phase" of a computation. The problem is partitionedi into a series of phases, each possibly with a different
graph structure. Inter-phase communication is permitted only among those that share the same "location"
as described by a one-to-one mapping function. Values from previous phases may be inherited by the vertex
executing in the corresponding vertex in the next phase.

3.2 Concrete Poker Programs.

Unlike a C or Pascal program, a Poker phase progrum is not a monolithic piece of text. Rather, it is
composed of five components that correspond closely to the abstraction just presented (Figure 3 shows the
five components of the maximum algorithm encoded as a Poker phase program).

o Communication Graph: A finite graph with dangling edges. The boxes correspond to processes and
thus will be the vertices of the graph. The circles, which are switches for the CHiP computer [4], can
be ignored for the present discussion.

4

Communication Graph Process Definition

coa tree:
000 000 0trace tre. malue;

0 0 0 ports Pam$t. left. risks;

tree()

0 0 it alwalus. Vale*;

0 0 0 0 0Value ' left
It (valies 3, eBlale)

0 0 0 0a7yalwae v alue;

0 0 0 0yalue t- rt&":
if (value P nywalue)

0 0 0 0 alft a value;

0o o o o 0 000000pareat c- eyvalue;

Process Assignment Port Name Assignment

140 lw I et I I Wa
rI

OR WON

Sre trea Name Asinmn

I me Stream. Name Assiment

Figure 3: The five parts of a Poker program.

r

5

" Process Definition: A (usually small) set of processes written in a sequential language, in this case
a slightly modified version of C[51. These can be thought of as standard procedures with formal
parameters called at the beginning of a phase.

* Process Assignimentg: A labeling of the vertices of the graph with the names of the processes and actual
parameters, if any, to be executed at that processing site.

" Forl Name Assgnment~: A labeling of the edges of the graph, but from the point of view of the vertex,
i.e. each edge has two names, one for each end, or "port". %

" Stream Name Assignmenti: A labeling of the dangling edges of the graph giving names to the input
and output stream; these names will subsequently be bound to files.

The correspondence of the five Poker program components to the phase abstraction given above should be
clear.

A Poker program is composed of a finite set of phase programs together with an execution scheduler that
describes the sequence in which they are to be invoked. Those vertices of different phases which occupy the
same location in the Switch Setting View may communicate across phase through the use of inter-phase
variables.

Inter-phase variables live for the duration of the Poker program and exist separately from the variables
declared local to a phase. The local process codes may access the values of inter-phase variables by the
import and export statements:

import local from inter-phase
export local to init-phaei

Import copies the value of the inter-phase variable into the local variable. Export copies the value of the
local expression into the inter-phase variable. This is the only way to pass information between phases. It
provides a well-defined interface to inter-phase communication and lets process codes load from and store to :
inter-phase memory during the course of computation.

Two other features of Poker C are the trace list and inter-process communication. The optional trace
list found in the declaration section of each routine specifies the variables whose values will be traced in
the debugging environment, if a traced execution of the program is requested. Trace "variables" are not
restricted to the conventional "variables" of Poker C. They may include variables, labels, and other itemns
such as the current procedure and depth of recursion.

Process input and output, respectively, are given by expressions of the form:

variable <- port
port <- variable

The values transmitted are simple scalar values from the language, and arrays and structures not containing
pointers. Messages are tagged with their type so that process 1/O may be type checked using structural type J
equivalence.

3.3 The Programming Environment.

The Poker system is the set of facilities that assist the programmer in writing and running Poker programs.
Poker uses two displays: One is a bit-mapped display having the general form shown in Figure 4 and used
for interactive graphical programming of the parallel aspects of the program. The second terminal is used
with a standard editor to write the sequential C process text.

Poker stores program as a database, displaying the program in one of several views [6]. Figure 4 shows
the display for the Switch Setting View; the other views are analogous, with the appropriate Poker program
constituent displayed in the lower half of the screen. The seven views are

%,

ri Suni Feb 1 11:38 VIEW: Swuitch Setting - null
II IIHAM~SE 3 LAST PE: I I SAVED PE: NUN

I F1 1

000 00000

0 0 00 0

0 0 0 0 0

00~ 0 00 I
0 40 0 ~0 j0

000000000 -.

Figure 4: The Poker Display showing the Switch Setting View.

7

%I

%%%%i '.-:v o F]' .% d~ %. ~J*. o E, _ o a. *o J .

" SwtchSetinf iew Usd todefne he Cmmuicaion rap (Fgure3);theprogammr ues.

mous orkeyad t drw apictre f te grph y cnnecingtheboxe wih fne.

" Sw0c Saestn View: Used to define the Core mNmueiAsionmGrap (Figure 3); the programmer es ah
nmus or kheya stoa a phicturectofnhsrp. yconcigteboe ihlns

* Codean Nequ View: Used to efineite, Prcsseb, Asinmnt (Figue3);Pte programm.Te motetfom o
bto boxpeatering the namges of the coprocssatin.culprmeesfay

* Prtae View: Used to d efiney the Pctiothae Assipgnm(iu3; the programmer mtrsoe, from
boxgl t p xeteproga hl acing the namesvechnes of the ports.arabes

" 10i Namee View: Used to deie the Streaml NaesAsignen (Fcieure);ith programme. Tersh
inamues ofratheestream an the dimrecos. csosintepoeso rd(6inFgr)

Ntcttthe display o thmpogst of therga coputitetnldsifrationdfndi te rga
v c iew: Umpese toFisplay the exctno the Poker program; the CoeNmsVePrormcers cAssmnst, stopicn
sdine step the pgram whfie wthigwitche Suensiche ofmucthe n trcdvrables. te aera

in cludesigpt amfoftetaer sucfa the Number ofe preor iNathe prssormet gridc in Fguthred). th

other views.Ol

4 The Cosmic Cube
The Cosmic Cube (3] provides flexible processing facilities that easily adapt to hosting the more structured
Poker abstraction. Each Cosmic Cube program is also a graph: a set of processes, with non-shared memory,
communicating through logical links mapped onto the underlying hardware [7]. However, instead of the
static graphs of the phase program found in Poker, the Cosmic Cube programs consist of a single, perhaps
dynamically changing, graph. Processes may create new communication links (edges), if the creator knows
the address' of the other process, or destroy old links in order to build the best graph for the moment. This
gives the Cosmic Cube programs more flexibility than we need. 4

This abstraction is implemented on a MIMD non-shared memory computer with a binary n-cube inter-
connection; the processors and their local memory, or "nodes", sit at the corners of the n-dimensional cube
while the edges of the a-cube wre formed from physical wires connecting the node processors. Each node may
host zero or more processe, living in separate address spaces, communicating by message-passing over tbe
physical wires connecting adjacent nodes. The operating system automatically forwards messages between
non-adjacent nodes, preserving the message order between the sending and receiving processes.

A Cosmic Cube program starts as a single process on the host machine 4 connected to one corner of the
Cosmic Cube. This host proces "spawns" the processes in the initial program graph, placing them on the-
nodes of the cube and establishing the graph edges by forwarding process addresses to the processes on the
cube. These processes may then spawn more processes of their own or create new communication links by
sending known process addresses to other processes.

Typically, process codes are written in Cosmic Cube C, a version of the C programming language [5]
extended with calls to routines in the Cosmic Cube's operating system, or one of the other extended sequential
languages supported for the Cosmic Cube.

'On the Cosmic Cube a procies addres consists of two numbers: the number of the physical node in which it residee, and
its proces number on that nods.

A typical host mnachine in Suun iaroeysems workstation.

8

% ZjI

5 The Poker to Cosmic Cube Cross-Compiler

Retargetting the Poker language and porting the run-time system to the Cosmic Cube changed nothing in
the existing Poker environment; neither the Poker programs nor the Poker environment needed modification
(process codes written in XX [2] are preprocessed into Poker C). Instead we only needed to (1) retarget the 6

crows-compiler to translate Poker C process codes into a single Cosmic Cube C program, using the information
in the database to determine the configuration of the resultant graph, and (2) extend the run-time software
on the Cosmic Cube to include a few routines interfacing to, and controlling, the Cosmic Cube program.
This Cosmic Cube C program from the translator is then treated as any other Cosmic Cube C program,
compiling, loading, and executing it using the facilities provided for the Cosmic Cube. The difference is that
the extra interface routines know about the Poker system, so that the user of Poker need not know which
underlying architecture is executing the user program - no matter which target architecture is used, the
creation and execution of the program will be the same. This retarget and run-time system port is the topic
of the remainder of this paper.

5.1 Converting Poker C to Cosmic Cube C.

The first task of the cross-compiler is to convert the Poker C process codes into a form acceptable for the
processors of the target architecture. There are at least three ways to support a sequential language on the
processors of a new architecture. One is to directly generate object code for the target machine's processor
elements. A second method is to provide a kernel that runs on the processors of the new architecture
and interprets the sequential language (or an intermediary language derived from it). This method could . -

easily support a number of interpretive languages such as LISP (8] and Prolog [9]. The third approach is
to translate the source process codes into a language already supported on the new architecture. This last
approach works best when the languages are similar in structure, as is the case with Poker C and Cosmic
Cube C.

Translating one sequential language into another, source-to-source translation, is well understood. In our
case, the only major translation problems come from tracing the variables in the trace list and from reducing
all of the Poker phase graphs into one more general and less structured Cosmic Cube graph.

Trace variables are handled by the first part of the cross-compiler which uses a Yacc [10] based C-to-C
compiler to insert calls to a run-time trace routine after every instance of a traced variable. The C-to-C
compiler does not look for aliases; instead it only inserts a trace command after each assignment whose
left-hand-side is an instance of a literal in the trace list. If aliases are a concern, Poker will, at the user's
discretion, insert a special trace call after each suspect assignment, exhaustively checking for any changes
in the traced variables. Exhaustive traces are expensive at run time but, presumably, a great benefit for
debugging.

The C-to-C compiler also replaces instances of the Poker's inter-process communication statements .

variable <- port
port <- expression

with calls to the Cosmic Cube sond() and receive() routines.
The C-to-C compiler is more complex than a simple pre-processor such as UNIX's cpp. To see why, 0

consider tracing a variable that is modified twice in a single expression. We want to trace both changes,
but to capture both values of the traced variable we have to insert trace calls into the expression. We
cannot simply append a trace call onto the expression since the value of the expression may be needed for
an assignment or conditional test. Instead, we have to store the expression value in a temporary variable,
trace the changed trace variables, and then append the temporary variable to return the expression value.

For instance, given the variables

float f;

9

% -

+ l))l Jm
+ ' +

r + + 4" +ltirl.~ i - +. mm-II. N -~ t../.~ e? 'r~ LA h '*' - , ~ **

,..

W S

and a request to trace I and j, the C-to-C compiler converts the conditional expression

((Cf +a 4.3) < 10) ?
f++ + j++, A--
f--)

into

(((.toRpLnt a ((f +- 4.3) < 10)), .Trace(f. FLOAT).
_.toapint) ? I

f++ + j++, . Traco(f, FLOAT), .TracsC(j, INT), i--
_tempfiloat a f--), .Traco(Cf. FLOAT), .tempfloat))

where -Trace is a trace routine taking a pointer to a value and a constant telling it the type of the value
and ..-tpint and .tapftloat are reserved variables declared in the enclosing routine.

In the first line, ..tempint determines which of the next two expressions to execute: the comma expression
before the colon, or the simple expression after the colon. We have to insert a trace off immediately after the
< expression, since if we waited to trace the value of f until after executing the entire conditional expression,
we would miss the first value of f.

For the same reason we needed ..tepint, the value of the expression was used outside of the expression,
we also need to use .tmpfloat to save the value of the conditional expression before tracing 's new value.

Clearly, this is not a simple textual substitution. Before we insert a temporary variable, we have to know
the type of the expression. This requires keeping a symbol table, to hold the types of the variables, and using
a parse tree to calculate the types of expressions. In other words, the C-to-C compiler is truly a compiler
even though the languages it consumes and generates are nearly identical.

The end result of the C-to-C compiler is two code segments from each of the Poker C process codes. One
segment contains information about the inter-phase variables imported to, and exported from, that process
code. This other segment contains the routines defined for that process code. These code segments are used
by the cross-compiler, as discussed in the next Section.

5.2 Compiling the Poker Database.

The second part of the cross-compiler combines the pieces of the newly translated code with the rest of the
information in the Poker program's database to create a single Cosmic Cube C program. The first problem
here is to figure out how to collapse the phases of the Poker program into one graph, while maintaining
efficient inter-phase communication s . This is easily achieved by the technique suggested in Figure 5. When
the phases are stacked as in Figure 5 the processes above one another are exactly those processes that share
inter-phase variables. Combining them into one "aggregate" process keeps the Poker processes in a single
process space. Inter-phase variables are globally declared for that process so that inter-phase communication
requires no extra computation.

Building these aggregate processes is done as follows. The cross-compiler computes the inter-phase data
space of each aggregate process from the inter-phase variables required by each of the Poker processes being
placed into the aggregate process. The main() routine of each aggregate process is simply an infinite loop
containing a call to the controlling host process asking for the number of the phase to execute, followed by
a switch statement to call the main routine of the appropriate phase (see Figure 6). Since Poker C does not
allow externally declared variables, the only potential source of name conflicts among different phases come
from the routines, typedef's, and externally defined structures and unions. Prefixing these names with a
unique phase ID eliminates any possible name conflicts. Linking the main() code with the routines from the
phases and routines supporting the calls to receive(), sendo, and the like, results in the Cosric Cube C
code for the aggregate process.

The last problem with the aggregate processes is mapping the edges of the different phases onto one
graph. Since the Cosmic Cube does not have any restriction on the degree of the vertices (processes) in its

$ Keeping efficie eint -prvece comwnicaion is a much more complex issue, diecussed in the Results.

a 10
.+V

V,

Phase 3

(1.2)

nvsh nV..

Phase 2

Phase 1 p

I

Iesie V O

(1,2)

loaf roo

mesh

er-

(2.1) (2.2

FiueAgCgregatepassotePkrpora oceaeteagrgt poess

11re raeHade

17710M

server C C P-

Figue 5 Capsn the phse of a Poker....ram tocrethgrgaepoess

a.C*C~*.,C..** %*~dC ~ ~ C ~*C.*% * N N% *%~~C~ %

VAaeregsat. Vertex Code

ephall .1. phaIsil().bo. I* phase-globm vanales *1

pots In. out: int ...M-o_ w, _ olirult
man(1 matn()

Sint 1, fe; while MTRU

impot fo ftrn bbs.rem"t~ (SPAWNER. nexPhese):1-" code or switch (neitPhe)su 1(foo);
Phas 1 : /" rest of Maimx), phst I cot "11

subl (va) brW e
inf val. case 2: I phase 2 1/
int tmp:; brea;

tt ;case EXIT: r tenmam "
r computton... "/ _EiftmProgram(:
export temv 1o e"u:

int I, foo:
dcode fa me), p10e 2." fc=(bto r 00; "

ced*
_T r-a vm.jo wn);subi (feo);

(rrest of mGh), pham Iode "1subl()

r code tor sub), phase 2 "t p
_Ol -si l(Val)

int val;

i* nt tamp;

r PcomputmgAw... .
.Ootdreiui - twp o; export "1
Sph,-(... -- -

V)

r Code for "10. Phase2 I I

Figure 6: Packaing the Poker C process codes into a Cosmic Cube C aggregate process

12

,,.

prora grph we ca prjc al of th phs grph ont onrp. aculiy eahageatrcs

getsa dffeent ogial nteconnctin mp fr eah pase Themaphols te eiht air of(proessaddess

avnaeofPkrprogram isph wecnpoetao the phase graphs onto kon ah cie tuaity, eoach agrte processr
get av eeto logicay trcon-etiomap efor eantchin phs.rh mapiholdg the eioghtm pa orocessaddress,
plotinume thatcorespodtheemnasnso.h irscnetdt teprso h poesfrta

pAe sptin poeth addres.are knownx conlde the procmee ren plaed to the Cosmic Cube Ces
thiese tle aexintale ateruins tie.d oblcdonteCsiue

This packning euthe inoxtrmely efCibet int-hase omuictionm paec.eneo
advanirtas of oke progracmsthat the asen grahs oeaeinow ayt compile timget comtht th pcsor
drocnoshes toplemendny here-tie effr consrcting sour modifyeIn the prgam grap Pokr dynhamicallye
allosciamr processes.h ieSre rvdn iesse upot h pwe ciga h otolr
afterac pittprviing oud ageaebuverpcodes, lthe s-opilersrunsethemtroghe lvo the CosicCuet

computer tge exctabevrinoed ob lcdo the Cosmic Cube.6

-. Extndiing aPkrpormot the Cosmic Cube's Ttim Syste.
The thirdn taskgat othcrs-mpiles agt themi opeangds systenfte, thagregmpterowithseiae
procesesmpeinathel featresmi b nedoesurcetlanguagein t hae ofnPernethav ethreen
such~th spciloroesesses FietSerer prlovaiding file sytem sportl, btthe Spweating as te o trlers

ad thPTaclacnle pridin doege spot.e Allmi three odes.e Spanprocesses live execthes
coptratche to the Cosmicat Cube ssadpae "pws)te nteCsi uends

" Ipni:theaner thas twoe ask ofte"grgt"pocse.AtrteSawelcsaloh

SntaligregatPe progr ono the Cosmic Cube. ThiSawerseinlds: ahagrgtroesaesg

conMaping thgegaddesfte processes to Comce oe Crenotly tedagegsoat proee are-
maped naivesely oantiCosie Cbnewthei egmapno tatentio The sintCueonecting beteen
tproessee Bddee aoain are ofthe Spossibe, butin the realizat ooesosese s

-Ctomlexg medicuss red in the Rhaest. TeSanri h atrCnrlPormta
sed Placigetolf the aggregate processes onlin them Comhieoes h pae tkso executablWen
ecodsfhh aggregate processefnshsis and plaetss (a"ns! thmensthe Coi Cbe nodwe.Th

Spwe wnitsito beg the dgee! mesaesprms of the"grgae processes befrternin the Spwerpacsalt
agreate proc s! essgo te CllomcC the Spreanerocesensec grgtroesamsae

" Flgatrer. Processes scene initsiale yter edgeug mappiing les. The osie Cueroeratingpsysnptm"
provif~d th les adressfies ansoreslute Spawerupacin tegeaties procesesaeso

daCogtrogledge euterorder ofi thle phae.TeSanri h atrCnrlPormta
sraeHndermessage toiale allote argatles proeses talen tem awhich phase to texecutsie whend

ea agregte processs finihesits phae codue, iothtrcdvlean sends atDoe!emssg to thoawer'h
Spawggnenronats Theste vDoe cmesae frmalrfteprcsesbfr sendo ttmnsta h Ccmigte inexts

afeecut ashigsen mssagaed toralofe.ageaepoess

*~i Fie Secrve:Pese s accessia oe r'st fulil ytmtruhdnln de.Te File Server kel eue, u h rhieur(tepCsmiinpute
stledgies fille itee vale fromi files and tre vals fmacie "outpusthe egse. ito iles Allomessagesin

dangicnl edges rouetigte hromuh t hFle CservCer. Wtotadtoa adaeoradfatbsc1 ein

where aub programeris bcmaiew thbonevin awpia Treace* 1ovierihinPkraTedae.adeclet

mesage frmtepoessidctN e ausfrth rcdvle n ed hmt oe'
debugin eniromen. Thse alus cme romsead) sateent tht te C-o-Ccomile inert

afte eac assgnmet t a tacedvarible
This~~~~~~~~ Ns.fous ota uteah utpeFl evrscudb sd u h rhtcueo h omcCb

5.4 he CsmicCubePoke Prorai.

In smmay, he Csmi Cue prgra coresondig t a okerproramconistsof he ggreateproess

on te Csmi Cue ndesand hre spcia prceses rnnig o th hot cmputr: he pawertheFil

pr.4a tocetthSpweteFlSevranthagrgtprcsethtunnthe Cosmic Cube.PkrPorm

ost the osmckue syoes ind tahiee snpealt proee munin onpethet copter:fli the pwnrtes:

Sevr anThe rce Haler. Thee -coprocese impsemtsal the run-time souppnsor wilePer-provide theuni
prgaing inevronmaent comrati proraign execution i hrcenler andin crossecomls thuies Pokert
program to et the Spawner themFiler Sftereadthagat process es potC thaGt runopther osic Cube

6.1 wMacine. deednis

Mosteoftenoke system is mhahiet prdeendent. Te machinemadepedenpieent falle intof reme ts

" The mappco :er. Them liCtoC scomiltercoinertis. all ys toi rothees efor entlpocy omlmnied

caentieoitr-ae oefi omnication aigahioe and exctoiotl Charngin thes cainls ruire sligh
chage t~ optherCt-Ccmplr.I the grps"ietargmleeted ocssor spotsC thet toC comrespilroud int
ntcedtany chaes. Howlevqie liftearget languae isnn C the C-ocC co mpilerth may nhsieedcajor

th Tahies R-ae ofiuale: The routnes sutinmsge*acigt the interfaebteehoknecenionmerant ndh
operatin sytmoStetret piwonyfxditroncssorsaehl machine dep at endmc ethare pitatios feenay

Thav tomm beiwaitn romh scrch.l ecniee h oia omncto tutrms empe

ont the maprfo oi. ophysical mnterconnections stutreoohaciete onlusrhse leogaster eimpciently peented

hmanging thee three part iufin to praet hoe languagest. ewacitcue

6.2 Mappringd inecon3n eteiong omcCb' rntm ytmhempigioeb
th he progmer defanarinesr alcommcationIth grohrnaPoer aefnd t isorunao the Prape(, oe aye
mgntheI otr, astigo the d apisldocatl impeetd inteoes that lgclyajenvrthae phigres prdcet Inh
Swirtch bet Viwwll be quit lobiteallymiedt the object houde ofy th machmize tisais becaue
themmuacin aresnigres The swihe routematicll accding othea interonctionan insta theua

hc alctonceatins graphved whihrwller civing othlialy comulicaton stutu mulephse mappte
oneto-he physicalndinterconnecti setreuen ofthe architecture.gOfoure pgamer mpbqute perfor
ath m asngwhe prsammalgithe araepl angag tes. r fBra adclege[lilla

ts describmaed insecution t.onh eteing he Coc Cubepe's unm sserm' sote; appiny ipdoes
the Spawnero usin n rbiutrarsnty alladocatinIte programmer efied aical cu grph he soyt
mroiht nte asftings now stand loate iht sonhacelogic adjacenthveris anre phyill iant Ioke for
geeapralte stactoreo.ooviuyttesse sol r omnnetedsac ewe

comuictig rcese. h.pobemofauoatcalyfidnganopimlaloctin nted f1ur4

7 Conclusion
We have shown that it is easy to port Poker to a new parallel architecture, the Cosmic Cube, in such a way -

as to produce object code as efficient as any written for that architecture. Furthermore, Poker can easily be
ported to any parallel computer simply by providing three basic features for the new architecture: ,.

* MIMD operation,

* message passing facilities, and

* a compiler foz the process codes.

These are very modst requirements considering that a small amount of work would then provide the new
architecture wit.' a complete, easy to use programning, debugging, and cross-compiling environment, as "

well as all of the existing Poker parallel programs. It is for this reason that we claim that Poker can be the
definition of the basic software support required by a new parallel computer.

References

(1] Lawrence Snyder. Parallel programming and the poker programming environment. Computer, 17(7):27- t
36, July 1984.

(2] Alejandro Kapausain, Ko-Yang Wang, Dennis Gannon, Janice Cuny, and Lawrence Snyder. The Pringle: ,,

an experimental system for parallel algorithm and software testing. Proceedings of the International -,

Conference on Parallel Processing, IEEE, 1-6, 1984. 'U

[3] Charles L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33, January 1985.

[4) Lawrence Snyder. Introduction to the configurable highly parallel computer. Computer, 15(l):47-56,
January 1982.

(5] Brian W. Kernighan and Dennis M. Richie. The C Programming Language. Academic Press, New York, a

1978.

[6] Lawrence Snyder. Poker (4.0) Programmer's Reference Guide. Technical Report 86-05-04, Computer
Science Department, University of Washington, May 1986. -

(71 Wen-King Su, Reese Fancette, and Chuck Seitz. C Programmer's Guide to the Cosmic Cube. Technical
Report 5203:TR:85, Computer Science Department, California Institute of Technology, September 1985.

[8] P. H. Winston and B. K. P. Horn. Lip. Addison-Wesley, 1984 (second edition).

[9] W. F. Clocksin and C. S. Meilish. Programming in Prolog. Springer-Verlag, 1984.

[101 Stephen C. Johnson. Yace - Yet Another Compiler Compiler. Technical Report Comp. Sci. Tech. Rep.
No. 32, Bell Laboratories, Murray Hill, New Jersey, July 1975.

[11] Francine Berman, Michael Goodrich, Charles Koelbel, III W. J. Robison, and Karen Showell. Prep-P:
a mapping preprocessor for CHiP architectures. Proceedings of the 1985 Internationeal Conference on
Parallel Processing, 1985.

i'

15 'S

.0.

DR72E

*mob.

7r/ C...

,TtAo

_7 I - I-IV Vw WI

