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I. Introduction

In the three year project preceding the present one, we theoretically studied the liquidus

phase diagram of Hg-Te, Cd-Te, and then the ternary phase diagram of Hg-Cd-Te1 . All of

these are equilibrium systems and the pair approximation of the cluster variation method

(CVM) 2 was used for formulation. Based on this background, in the present three year project,

we have studied time-dependent processes ocurring in the Hgo.gCdo. 2Te system. For this

purpose we have used the path probability method (PPM) 3 which is an extension of the CVM

to time-dependent regime.

Examination of the HgCdTe lattice structure in Section 2 suggests the possible mechanisms

of atomic migration: the vacancy mechanism, the interstitial mechanism, and a combination

of the two. Based on these mechanisms, Section 3 develops the diffusion theory. Assuming

that the Te diffusion is slow, the self diffusion coefficients of Hg and Cd are derived in terms

of unit atomic jump probabilities.

The information thus obtained about atomic migration is then used in the theory of

relaxation of the CdTe-HgCdTe junction. We summarize the relaxation theory in Section 4.
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2. Structure of HgCdTe lattice

The HgCdTe crystal has the zincblende structure as shown in Fig. 1. It is made of two
fcc sublattices, to be called I and II, as marked by white and black spheres. The Hg and Cd
preferentially occupy I, and Te preferentially 11. The centers of the cube edges in Fig. I will
be called II. This is surrounded by six neighboring I sites and hence is an octahedral
interstitial site of the I fcc lattice. The corresponding octahedral interstitial sites of the II
sublattice will be called IV. Note that a corner cube in Fig. I marked by broken lines contains
four I and four III sites. The center of the I-and-Ill cube is alternatively a 1I or IV site.
Inversely, the center of a i1-and-IV cube is .alternatively a I or III site. These four cubes are
illustrated in Fig. 2. A III site is surrounded by four Ii sites tetrahedrally as is seen in Fig.
2(d), and thus can be interpreted as a tetrahedral interstitial site of the II fcc lattice, as well
as an octahedral interstitial site of the I fcc sublattice, as was observed above.

We see in Fig. 2(c) and (d) that the nearest neighbor arrangement of a I site and a III

site are the same (except the directional nature of the covalent bonding between atoms on I
and If positions), and are different from the neighbor arrangement around a 11 or a IV site.
Based on this observation, we reason that when Cd or Hg is excited to an interstitial site, it
will be to a iIf site rather than to a IV, although both are interstitial sites.

In this project, we are concerned about the diffusion of ltg and Cd species. Therefore,
in order to avoid the treatment becoming unduly complex, we disregard migration of Te atoms
whose diffusion is known to be slower than Ilg or Cd. Then we can summarize the problem
as follows. Hg and Cd atoms are preferentially on the sublattice I, and some of them are
excited to the interstitial positions on the sublattice Ill. They migrate on these two sublattices
(I and I11). These migrations occur within the simple cubic lattice formed by I and III
sublattices, since the Te lattice, II, is not involved in our formulation. There are three
migration schemes: I to I, Ill to 111, and the exchange between I and III sites. Inside the
s.c. lattice, the first two are second neighbor jumps while the I - Ill jumps are the firtst
neighbor jumps.
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Figure 1(a). The zincblende structure of the Hg-Cd-Te
crystal. It is made of two fcc sublattices, I (white
sphere) and II (black sphere).
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Figure 1(b). Geometry of the I sublattice and the
interstitial III sites.
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3. Diffusion of Hg and Cd

3.1 Basics of the diffusion theory

Diffusion of Hg and Cd is formulated using the path probability method (PPM)3 for
irreversible statistical mechanics, which is an extension of the cluster variation method (CVMN) 2

in equilibrium statistical mechanics. The CVM is known as the most efficient formulation for
cooperative phenomena in crystalline systems. Applications of it to calculations of phase
diagrams of solid state phases have been increasing to include complex phases and complex
effects. The PPM is the time-dependent version of the CVM, and has been successful in
deriving diffusion, and phase transition kinetics including nucleation kinetics.

The basic concept of the PPM is that change of state occurs in such a direction that the
probability of change is a maximum. The basic mathematics of the formulation consists of
three steps: (1) The First is to define variables which specify a state of the system, and also
those which specify a direction of the change of a state in a short time interval. (2) The

second is to to formulate the probability of change in terms of these variables. This is an
important step and is done using the entropy formulation of the CVM. (3) The third is to
maximize the path probability function with respect to the variables, thus to find the most
probable path, and then derive a set of differential equations to describe change of state.

3.2 Choice of the basic cluster

'C The first step in defining the basic variables to formulate the state and the diffusion is

done by choosing the basic cluster. Since the formulation is done in the s.c. lattice involving
the first and second neighbor pairs, the following alternatives arc considered. (A) A choice
which is satisfactory from the entropy point of view is to use a surface square of a s.c. unit
cube. This choice is, however, mathematically complex at the present time, since it has four
lattice points in the basic cluster. (B) The second acceptable choice is to use two basic
clusters, the first neighbor pair and the second neighbor pair, simultaneously. (C) The third
choice is to use a point as the basic cluster. This is not as satisfactory as the above two from
the correlation point of view, but is mathematically the simplest and is considered sufficient to
give qualitative information as an heuristic approach.
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We made two formulations based on (B) and (C). The (B) formulation uses the first

neighbor pair (I-Ill) and the second neighbor pairs (I-I and Ill-Ill) as the basic clusters. ThiL
formulation was the first time that two pairs were used in the PPM. However, the formulation

took longer than expected, and thus it was d Jed to go to (C) before we come back to (B).

Due to the time limitation, we could not finish (B), and the arrangement has been made that

the unfinished work of (B) will be transferred to a project at Purdue University to complete.
Diffusion formulation using a point as the basic cluster was also done by Ishikawa, Zhu and

4Sato recently .

3.3 Equilibrium state for (C)

The first task which was finished and led to valuable information was (C). A paper is
now being finished and will be published shortly. The formulation and the results are
summarized here. Before going into the diffusion formulation, we review the equilibrium state
and list key equations. As we discussed above, the system is made of two sublattices, I and
Ill. On each lattice point one of the three species is found: a vacancy (i=0), a Cd atom

(i = I) or a Hg atom (i = 2). The probability of finding the i species on I is written as P and
that on III as qi. The interaction potential energy between i and j species is written as FO for

the first neighbor (I-Ill) pair, and as uli for the second-neighbor (I-I or Ill-ll1) pair. We
assume that a vacancy does not contribute to a pair so that we require EO = 0'and uij= 0
when i or j = 0.

In order to estimate the energy constants, let us consider the CdTe system. In this case
the sublattice I is preferentially occupied by Cd atoms and the sublattice Ill is almost vacant.

We interpret this structure to mean that the I and Ill sublattices are in the ordered state of a
binary system made of Cd atoms and vacancies. This can be realized when

E + E00- 2E10 E= Ell > 0.

On the other hand, the sublattice I does not split into further sublattices, so that we require

Ujj + u00 - 2u10 = Ul < 0.

At this point we write the energy expression in the point approximation, which is also
called the Bragg-Williams approximation or the mean field approximation. The nature of

6



the approximation is that the probability of finding a I-Ill pair, i on I and j on Ill, is
approximated as pqi, and the probability for an i-j pair on a I-1 bond (on a 1Il-Ill bond) as
PiPj (as qjqi). Since each I point has six III points in its nearest neighbors, and twelve I
points in its second neighbors, the energy which an i atom on I feels, Ej(p), and that on Ill
feels, Ei(q), are

2

E; (p) a Y (6C#qj + 12*u, pj),
J.1

Ej(q) - (6&.p + 12ujq).
J-I

When we write N for the number of points in a I sublattice, the energy for the system is
written as

E +Ej(q)].

The factor 1/2 appears to avoid double counting of each pair. The entropy in the point
approximation is written as

S = - kN(pilnp + qIlnq1).

When the free energy E-TS is minimized with respect to p,'s and qi's, we arrive at

Pi/Pt-- expIp 1 - O /.(p)1 > > 1,

q1/q0 = exp[Opi - 1E-(q)J < < I,

where Ai is the chemical potential of the i species (a = 0). These relations are for i = I and
2, and the inequality signs are based on our requirement that vacancies on the I sublattice are
few and the III sublattice is almost empty. We will use these relations in the discussions of
diffusion in the following section.
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3.4 Diffusion formulation based on (C)

The basic principle of the PPM, the time-dependent version of the CVM, is that the change
of state occurs to such a direction that maximizes the probability of change (in a short time
interval At), to be called the "path probability." This maximization process corresponds to
the minimization of the free energy in the equilibrium theory.

In order to implement the maximization, we use the following steps: (1) We first define
the "path variables" to describe change of state in At starting from a given state at t. These
path variables are extension of the state variables p, and qi in Section 3.3. (2) Secondly the
"path probability function" is written in terms of the path variables. The method of writing
this function is the key of the PPM and uses the combinatorial formulation which is an
extension of the CVM, taking into account the time axis as the additional dimension. (3) The
next step is the maximization of the "path variable function" with respect to the path variables,
keeping the state at t fixed: this leads to the most probable path within At. A set of differential
equations to describe the change of system in time At can be derived. (4) Lastly to derive the
differential equations, we apply chemical potential gradients d(Opi) / dn of the species I and 2
along the (11l) direction of Fig. 1, and let atoms flow from one end of the system to the other.
Figure 3 is a projection perpendicular to the (11) direction, and shows how lattice planes are
numbered. We examine the stationary state in which the state variables do not change. The
atom fluxes Ji are then proportional to the gradient d(1pi) / dn , and the proportionality coef-
ficient is the diffusion coefficient in the broad sense. (In the derivative, n indicates the position
of the pattice plane.)

In this summary report, we do not go through the details of these four steps, but write
the key results. The net flux toward the increasing n direction, Ji(n), at the nth lattice plane is
written in terms of jump probabilities, X's, of i atoms (which are path probabilities) as

J1n)(t)At : (t,t+ At)- X!n) (t,t+ At),

where X, is the probability of finding such lattice points (on the nt plane) on which a
vacancy at t is replaced by an i atom at t + At which has come from the left.

Corresponding to the three migration schemes mentioned at the end of Section 2, the three
components of J's are Ji(I-l), Ji(IIl-lIl), and Ji(l-ill). The most probable path condition
mentioned in step (3) leads to
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P 4- - ... * -p.

SJ( -I ) -) - (41 exp-)),

dd

where O's are the basic jump probabilities including the activation energies near the saddle
points. It is gratifying from the point of view of irreversible thermodynamics that our fluxes
are proportional to the gradient of Op's, because the latter are the driving forces conjugate to
atomic fluxes in the entropy production expression, We may also comment that when we write
the flux relations in these forms, they are the same as those derived from a more accurate pair
approximation (using a pair of lattice points as the basic cluste rather than a point in the
present case). The difference in the point and the pair treatments lies in the chemical potential
formulas.

In order to see the nature of the fluxes more explicitly, we need the P expressions. In
the point approximation of the present case, the equilibrium CVM leads to the p,/ P0 and qi / qo
equations in Section 3.3. In these expressions, F(p) and F(q) are the energies per i species

in I and III sublattices, respectively. We use these relations and rewrite J's as

a~
a ' id(Op)

Ji(ill-lll) = - 0(111-Ill) qiqexp[PE(q)) d

J( 1 -111) - ( -111) pq~expfPE(p) an

where Ei(p) for E.(q)] is defined in Section 3.3 and represents the energy of bonds to be broken
when an i atom jumps away from a I for 1111 site. To be more accurate, however, this energy
estimate Ei(p) should be modified with the term - Yujjpj to eliminate the overcounting of the
bond which does not exist because of the vacant site into which the atom is going to jump.
Such overcounting is the nature of the PPM point approximation. Because of this inaccuracy
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of overcounting, the point approximation has been usually avoided in the PPM. This inac-
curacy is corrected in the pair approximation of the PPM which is now being formulated.

3.5 Comparison with experiments

Figures 4(a) through (d) show experimental results of J. Chen5 on Hg and Cd diffusion in
HgCdTe by changing Hg vapor pressure, Pits. Note that Dtg decreases with PHg in the low
Ptts region, and increases in the high P1g region. This behavior is understood from the last
two equations.

The Ji(l-l) flux is proportional to p0, the probability of vacancies in the I sublattice. In
the low Pug region, a relatively large number of vacancies exist in the Hg-Cd (i.e. I) sublattice.
As the Hg vapor pressure increases, most of the added Hg comes into the I lattice, resulting
in less available vacancies, i.e. less po, and hence in smaller value of JFg(I-I). Thus we can
interpret J20I-1) as the vacancy mechanism of Hg diffusion occurring in the low PHg region.

In the high PH5 region, the I sublattice is filled with Hg and Cd atoms, and hence as Pug
increases Hg atoms go into the interstitial sublattice, Ill. The lig flux -12(11-ll) on IIl is
proportional to the number of q2, the probability of Hg in interstitial positions, which increases
with PHg. The probability of vacancies on the interstitial sublattice Ill is almost unity even
when Pt, increases. Thus we can interpret 1(l11-Il) as the interstitial mechanism of Hg
diffusion which increases with Pt 3 in the high Pu13 region. We thus identify 12(1-1) + J2(11-Ill)
as the fast component flux. The parameters used in this expression are then determined to
fit experimental data. The resulting theoretical diffusion coeflient is then written as

14[0Pex-0.VkT) + IOSqHgep(-O.18ev/kT)] cm 2 / sec.

DH = 6 xl1 [l13P ep( 73'k7

Note that pO and qt 5 are theoretically calculated from the Hg vapor pressure Ptg, which is
uniquely deterined by pHg. When this is done the theoretical curve becomes as shown in Fig.
5. The interatomic energies and kinetic coefficirts ued in the computations are

Vg( - + E-g(p) 0.73eV.

-~ vn(11 - 111 + EKg (q) = 0-.s eV.
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Where the E terms are the energies as defined in Section 3.3, and the V terms are the activation
energies (excluding the bond-breaking energies) for atomic jumps in the I and Ill sublattices,
respectively. We also identify the atempt frequencies (which are the vibrationsl frequencies)
for the two sublattice positions as

y O~(f= 1013 and O9 11(i) = 10.

In the J(J) expression we combined the 0 factor and the V contribution as

@Hg(l - I) = el) x exp[- VHS(l- I)/k T.

It is understandable that the vibrational frequency on the interstitial position, 9(111), is much
smaller than that for the substitional I position, 0(1).

As is seen in Fig. 4(b), the slow diffusion component of Hg in independent of PHg.
Different from Chen, we propose to identify it as the I -- IlI and I .-- III jumps, because the

Ji(I-III) expression in Section 3.4 is proportional to pjqo which is independent of PHg. Using
the same valaue e H(/) - 1013 of the fast component, the Ji1 (I-Ill) expression leads to

DHgslow = 0.3 exp(- 1.5eV/kT) cm2 /sec.

The activation energy 1.5* V is taken from Chen's data. The preexponential factor 0.3 comes
from our estimate ofOu (/) - 1013 , and is acceptable compared with Chen's experimentall value.

Chen's expereiments show that Cd diffusion has the fast and slow components and both
of them do not depend on PHg. Based on our interpretation, we identify Cd diffusion
mechanism as the I -. III -+ I jumps. Using our Ji(I-1l1) expression, and using Chen's

estimate of the activation energy 1.5"v , we can write

Dcd = 0.3 exp(- 1.55eV/kT) cm 2 /sec.

Chen distinguishes the fast and slow components of Cd diffusion, although the difference is
not very large. We cannot say definitely what is the cause of the two components, except a
suggestion that neutral and charged Cd could be the reason.

.|1
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4. Relaxation of CdTe-HgCdTe boundary

In semiconductor systems, the interest in layer structures is increasing explosively, both in
basic studies and in practical applications, as evidenced by the proliferation of MBE machines.
The present study is aimed at the question of the stability of the layer structure. We work
on the CdTe-HgCdTe boundary and calculate how Hg diffuses into the CdTe crystal. The
basis of the analysis is our knowledge of the migration kinetics of Hg and Cd atoms which
was obtained by our diffusion studies summarized in Section 3.

We start with the same mathematical formulation as was used in the diffusion studies.
The difference is that now we do not look at the stationary state, but work on the transient
process to describe how the boundary changes in time.

When Hg atoms want to go into CdTe, since Hg diffusion via the interstitial mechanics
is fast, it may seem that the boundary profile may change rapidly as Hg atoms diffuse. This
argument does not hold, however, because Hg atoms in the interstitital sites in CdTe have to
settle down to the substitutional Cd sites in order to complete the migration. This means Hg
atoms have to wait for Cd atoms to be excited from their lattice sites and provide vacancies
for Hg to drop into. Therefore, the excitation of Cd from I to I1, which is slower than the
interstitial Hg diffusion, is the rate controlling process.

The PPM formulation leads to the following set of differential equations to describe the
change of Cd densities at each I lattice plane 2m:

_____) (2M - -) 2m+
-= 3 JX, 2 - 2X, 2

This set of differential equations for different values of m's was to be solved numerically. Since
the initial condition is that the boundary is sharp and the profiles of Cd and Hg atoms are
step functions, we need to take special care in integration. We used the DGEAR subroutine
in the IMSL library subroutine. Even with this subroutine, integration in the initial state was
a difficult process.

In the above equation and in subsequent display of our results in Figs. 6 through 9, the
lattice plane position is designated by m. The I lattice position is even, so that the index is
2m. The Ill lattice is odd, and the index is 2m + 1. The position of an atomic jump is indicated

12



by the center of the bond on which the jump occurs. Foe example in the above equation,
the first J term is from a III lattice plane 2m-l to a I plane at 2m, so that this J is designatedl
by 2m - .

As time proceeds, the profile rounds off, We calculated for three temperatures, 400°C,
500°C, and 550°C. Profiles for these temperatures for different times are shown in Fig. 6.
The abscissa numbers, 1, 2, 3, etc., are the m values and indicate the position of the I sublattice.
The three sets of curves in (a), (b), and (c) look similar, but the difference of the time scale is
to be noted. The most gradual curves are for t =26 sec, 2 sec, and 0.2 sec, respectively, for
the three temperatures.

The three sets of curves in Fig. 7 plot the time evolution of p ) for different lattice
positions. We observe that except in the very initial regions, the curves show trends of
converging exponentially. Based on this behavior, we estimate relaxation times (I's) for each
temperature at each m position. Figure 8 summarizes the results. From these plots, in turn,
we can estimate activation energies for the diffusion process for lattice positions m. The values
are plotted in Fig. 9. Since the junction region goes through drastic change, and may take
long time to settle, we examine the activation energy for large Iml regions. It is converging
to 1.55 eV, the value for the Cd diffusion process, as we expected. This agreement shows the
consistency of our calculation and the interpretation of the mutual diffusion.

Based on this study, we see that the relaxation time T for the junction relaxation obeys
the relation

In- 17333 21.6,

where T is in Kelvin. Using this relation, the r's for low temperatures are 1.6 hrs, 40 days,
and 2000 years for 300*C, 200*C and 100°C, respectively.

4.
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5. Summary and Conclusion

In semiconductor physics, study of kinetics of atomic migration is of great value in diver-

gent applications. It will help understand crystal growth, material preparations, phase stability,

radiation damage, and others. The present project is the first application of the path probability

method (PPM) in this field. What we have done in the current contract period is naturally

limited, but demonstrates possibility of future developments.

Main accomplishments are the following.

(i) The Hg and Cd diffusion in HgCdTe was formulated in terms of unit atomic jump

mechanisms. Note that the PPM technique derives Fick's law from the microscopic atomic

jump information.

(2) Based on his experiments on Hg vapor pressure (P11 ) dependence of diffusion, Chen
concluded that the fast diffusion of Hg is made of the vacancy mechanism branch and the

interstitial mechanism branch. We confirmed this identification in our formulation.

(3) For the slow component of Hg diffusion, however, our interpretation is different from

Chen's and is close to that of Tang and Stevenson6. We propose the I--. Ill-'I jump mechanism
for the slow diffusion, where I is the Hg-Cd sublattice and [it is the interstitial sublattice

(octahedral interstitial site with respect to the I sublattice). This diffusion mode is independent

of P1s.

(4) We propose the similar I -. I I1-. I mechanism for Cd diffusion. We cannot distinguish

the slow and fast components, which were distinguished by Cheng.

(5) We used the Hg and Cd migration mechanism to calculate relaxation of the CdTe-

HgCdTe junction. The rate controlling mechanism is the Cd migration which is slower than

fig. The relaxation of the boundary was computed.

(6) Based on the mechanism of (5), we estimated the relaxation time for the boundary
relaxation is 1.6 hrs, 40 days and 2000 yrs for 300°C, 200°C and 100°C, respectively.

14
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Thus the technique of irreversible statistical mechanics (PPM) used in formulating
diffusion from atomic jump mechanism works well and leads to useful information. However,
the technique needs improvements in several respects.

(A) The approximation of the project used the point as the basic cluster. It is desirable
to use pairs to obtain more accurate results.

(B) The ionic nature of migrating species is to be taken into account more carefully.

(C) The method is promissing in yielding useful information for studying diffusion amd
migration in many other compound semiconductors.
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Figure Captions
Figure I(a) The zincblende structure of the Hg-Cd-Te crystal. It is made of two fcc sublattices, I

(white sphere) and II (black sphere).

Figure I(b) Geometry of the I sublattice and the interstitial III sites.

Figure 2 Relations between two main sublattices (I and 1i), and two interstitial sublattices (111
* ,' and IV).

Figure 3 The [1111 projection of I and III sublattices, and the direction of the chemical potential
gradient.

Figure 4 (a) to (d) Experimental data of Hg and Cd diffusion after 1. Chens.

Figure 5 Theoretical results of Hg diffusion (fast component) derived by the present work.

Figure 6(a) P(Cd) profile at the boundary of Hg-Cd-Te/Cd-Te at 400C.

Figure 6(b) P(Cd) profile at the boundary of Hg-Cd-Te/Cd-Te at 5000C.

Figure 6(c) P(Cd) profile at the boundary of Hg-Cd-Te/Cd-Te at 550"C.

Figure 7(a) P(Cd) at the lattice plane 2m versus time at 400C.
Figure 7(b) P(Cd) at the lattice plane 2m versus time at '"C.

Figure 7(c) P(Cd) at the lattice plane 2m versus time at 550C.

Figure 3 Relaxation times (r) calculated from Figure 7 for different lattice plane positions.

Figure 9 Activation energies for lattice plane positions
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