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ABSTRACT

A review of recent results associated with exactly solvable -

mul tidimenS ional nonlinear systems and related Questions of direct "

and inverse scattering is given.
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In tnis lecture a review of s ;:e rec vrit 'eSu s associa e a P, -

exactly solvable multidimensionli nonlinear systems will be given.

The motivation for much of this work has Come via what is comonl h

referred to as the :nverse SCattering Transform (1.S.. as a

referenct see, for examp)e2 l). IST is a ,,thOd to solve Lertdin

nonlinear ecuations by associating thnm with appropriate compatible

linear equations, -ne of which is identified as a Scattering prooD,,

ne others(s) serves to fix the-time evolution.,f the scattering

data.

In one spatial dimension the prototype problem is the (KdV)

equation

Ut + 6uux * U1 x 30. (1)

The KdV equation is compatible with

Vx * + u(xt)v - Av (2) ' -. .... *

vt s (f-u )v - (:.2u)v (3)
tx x3.

i.e. v : v implies (1). Equation 2) is the Schrodinger
scattering problem, I the eigenvalue ( '. const. in (3)). The

solution of (1) on the line: --cx<-for initial values u(xt'O)

vanishing sufficiently rapidly at infinity is obtained by sticying t .

associated direct and inverse scattering prctiem of (2) and usir g

to fix the time evolution of the scattering data. It turns Out that

the inverse problem amounts to solving a matrix Riemann-Milbert

boundary value problem (RHBVP) whose jump discontinuity depends

explicitly on the scattering data. Calling A.-k2 v(xk)au(xk)e

te R9BVP takes the following form,

- i (x,t. <k ) V(x,t,k) on

,:1. Ik.l- ()

where

V(x,t,k) - r(k.t) e 2 ik , m(k) • -k, :-(k:kE&}, and u. are the

limiting boundary values as tmkTO= of meromorphic functions in the

upper (-) lower (-) half plane. (4) may be converted into a linear

integral equation by taking a minus projection and the potential is
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I'reconstv,uctea ',;"'dre~nt'ctd .t) a "" - i. (k~x.t.-k) V(x.t.,.)0  !S

LK

where the contour is taken above all Doles of r(k.t), of c tn,!,.'

I Sadt f"05 t 8 *': -.'1r r 1 ol ~ r -. ki z,-1-N'

scattering Oatd. -,' eflection coefficient. rtkt) evOlvtS Simolv

in time

r(kt) a r(kO) e r,

The above scn.me may be extended so as to solve d Surprisingly

large number of interesting nonlinear evolution equations. There are

two Scattering Problems of particular interest in one dimension:

(1) Scalar scattering problems:

j-z • .. . .. .-M _ u (x) dnV
dx j i dx" - %'

v(x.k), u. c C 'a

(ii) First order systems - generalized AKNS ....... ...-... .*,

v a i k j v qv

ax
v(x'k).q(x) c (NxN, d ag (J j .n

Via an apprOprIate transformation the inverse problem associate with

(i), (ii) can be expressed as a matrix RHSVP of the form (4). The

potentials u,,q can be shown to satisfy nonlinear evlution equations

by appending to (1), (ii) suitable linear time evolution equations.

One then finds that the scattering data V(x.t.k) evolves simply In

time. Well known solvable nonlinear equations include the Boussinesq.

modified KdV. sine-Gordon, nonlinear Schrodinger, and three wave in-

teraction equations. The reader may wish to consult for example

for a detailed discussion of some of this material.

It is most significant that these concepts can be generalized to

spatial plus one time dimension. Here the prototype euQation is 1

the Kadomtsev-Petviashvili (K-P) equation:

.0



6u , x , x - )3,:'u 
,'

which is the cop,patliil ity equation between the ol lowing Ilinear PrCt-

lems•

", v •u(X,y~t)v '0'

Y ,X

v 4v, , 6uv, " 3(ul,-,V W hWx') -Wv 0..

(Y • const.), we shall consider the Question Of solving (7) for

u(X.y,O) decaying sufficiently rapidly in th~e plane r
Z  • . 2 . =.

Physically Speaking, both cases c 2 . -1 (KPI) C 2 + 1 (011I) are of

interest. Whereas KPl can be related to a RHSVP of a Certain type

(nonlocal; see ref. 31 )  KPll turns out to require new ideas. Letting

v -x.y,k)e 
ikx + k2y /

O

Ca =o R + ioI  0RF. Then there exist functions u bounded for all -_ ..o-

I R ~~

x,y satisfying I as lk I - . However such a function turns out
to be nowhere analytic in k, rather it deends nontrivially on both,

the real and imaginery parts of k a (kR + ikl) . •(x,y,kR~k:)

R I.

In fact L satisfies a generalization of a RHMBVP -namely a
(DBAR) Problem where satisfies,

u" ( ,y ,&o ,k j )  4 ()t,y gkR gk , ) " i

where i -L and V has the str ctre .vng().

Ik "k ;
sgn(ko)e'' i(,,RkO

V(x,y,kR,k ) n rT(kRk I)

k I  k I k. y , . (x + 2y )(EO kR )  -2(x + y .

5,c

6- "" -kR 0 I'k R C I~

(t) wy be convertei into a lnear integral equation by employing

the generalzed Caucy formula. T(kR k I) is viewed as the ("yonphyS -

Cal data, .e. svease scattering data: i.e. invease cata) an t e

Potental is reconsaructead via
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V

ux,y) - • ' '?;. ,.

For K-P the evoluton of tme data obeys (y • 41k : (9))

;f " :k 3k2) ""

where k k k k * '--'.... ..

R -Po* .

Similar Ideas apply to higher order scalar problems

.n Mn -J a"(--") u.(x)--- * 0
-Y (A).-2J n-j

S ax ax

where: v. u C C and to first order systems

(iv) : . - Q(Xy 0

where: v,qcN ja iag(J l  N i i j with Q 0. -

Interested readers many consult reference abl for associated details.

The notion of 'C extends to higher dimensional scattering and in-

verse scattering problems. However as we shall mention, despite the

fact that the inverse scattering problem is essentially tractable

there does not appear to be any local noninear evolution equations in

dimensions greater than 2 * I associated wit, "iultidimensional aener-

alizations of (iii) or (iv). - .. ... ..

Our prototype scattering problem will be -- ,.- -

o v * av + u(xy)v - 0
y S

nn7-, x E P E (14)

Lettingk2
V .(x,y,keikx y/C

k s kR + iki, k n ,

k.x R i "

Then there exist functions u bounded for all x. y satisfying - K

1k. I -. . I .... n. when cR # 0 . turns out to be nonanalytic -m

each of the variables k, i.e. u (x,y,k .... kn k ....kin) and

S .,-,..... . ..... . . ......

• . ,, l~i I" - m,.+ 
'
"'± .' '+"" '-' '" % -. ".",. "." % ",,'%' "' '-',+. -'.-'- .- " -" " J +-" "+ " .",.-
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,d:,sfIes a problem 1lnear in i in each of the variatles k

satisfies an equation of the form,

-- 1' (. ) a J .. .nfl''

where T.(w) is an appropriate linear integral operator which depends

only on one scalar scattering function T : Tj a TjCTJ, T:T(k ,k,,)  A.- C)-S,

C being (n-1) integration parameters in the nonlocal operator Tj. The

inverse problem is redundant, i.e. we are given T(kR,k ,)(3n-1) para- " --"

meters) and we must reconstruct a local potential u(x,y)(n~l para-

meters). A serious issue is how to characterize admissible inverse

data T, i.e. data that really arises from a local potential (small

generic changes in T(kR,kI,t) cannot be expected to arise from a . , . . ..

local potential u(x,y)). Insight into this question is obtained by .5..

requiring 326/E.i a 12uA/ a (I 31 (1 The form of this '-"

constraint is given by

Z. CT) -N. .rT] (16)

where is a linear operator and N.. a nonlinear (quadratic) non-
local operator. Details can be found in a 'b - Equation (6) can teflocialquton(6 cn~

integrated and this integrated version may be used to reconstruct --

u(xy) as well as give a characterization for admissible scattering -

data: T(kR,kI,). However (16) also indicates why simple local

nonlinear evolution equationshave not been associated with equation

(8). Namely in the previous lower dimensional (2+1 and 1I1) problems

the time evolution of the scattering data obeyed a particularly simple

equation, (e.g. - a4kR.kl)T. However in this case such a simple flow;t"

will not be maintained - due to the nonlinear constraint (16).

These ideas can be generalized to first order systems:

n .%(v)yL - + Zj v- ".V

,1N N)
V, Q E NN J d~ag( J ,j

k .
3 9 k .

, ". .

%I
Ap -
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1 6a ,bJ
with similar results obtained Again the Scattering data satur-

fies a nonlinear constraint. In general, there is no comoatible local

nonlinear evolution equation associated with (v). However when cer-

tain restrictions are put on J then the Constraint equation Decomes

linear and the so-calted N wave interaction equations are compatitle

with the system (v). Nachman and Ablowitz 6a showed that at most, :re .- -

system would be 3-1 d mensional, and FokaS] Showed that indeed the

system is reducible to 21 -dimensions by a transformation of indplend-

ent variables (characteristic variables).

Beals and Coifman have given an alternative but similar formula-
7a ,b]tion in the scalar case.

There is an n-dimensionai problem which also fits within . ,

the framework of IST: The so-called generalized wave and generalized

sine-Gordon euqation (GWE and GSGE). These equations arise in the -4-

context of differential geometry and serve to extend the classical re-

suits of Bicklund for the sine-Gordon equation to n-dimensions8-

The n-dimensional B cklund tranformation is given by:

dX + XA X a A - XB,

where
n X

Wdxx, a

Aij . ei(z)aijdxj ,

8 2 dx a<j ix , _ i, < n' (11)

an a nxn
and a ({ai Erxn Equations (17-18) reduce to the Backlund trans-

formation for the generalized sine-Gordon equation (GSGE) when

(1Z) -(z2 .(26 ii- )/2z. (19)

and for the generalized wave equation (GWE) when

E- (z) .-(I-z 2 )/2z " (z). (20)

The compatibility condition required for the existence of solu-

tions to these Backlund transformations results in a system of second-.

.-
V %,
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oraer partial differential equations for an Orfnoconal n x n natr,

a ,a ., In (17) rnicn is a function of n independent variat)es .

a X(z,x.. ). The equation has the form

.3alk k'
;a 1* - i~ k - - -

- (~11 a , j, k distinct,

dX k aj ala j l a k
.

;a ;a-- a-
i (21),k a 11 x '

where c 1 1 for the GSGE and c x 0 for Zhe GWE.

We observe that when n a 2 and c I (GSGE), the orthogonal ....... ,
.3

matrix a " {ai, given by

Cos U sin 2 U

a x•t (22!
(snIu Cos

for the function u u(x,t) reduces the GSGE to the classical sine- -

Gordon equation (K -1), I

u u -Csin u O. (23)utt ux -.

On the other hand wnen n a 2 and c 0, then with (22) the GWE reduces

to the wave equation (23). when n . 3 the generalization of the

wave equations discussed here is nonlinear.

The lMcklund transformations (17) described above are in fact

matrix Riccati equations. Linearizations of such a system can be

performed in a striaghtforward manner (see for example • Intro-

ducing the transformation

X S UV (24)r

where U, V and n x n matrix functions of x1,..,xn , the following linear

6-i
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system iS deduced: ()()) (.,
dV At "

with the components of A, 8 given by (18). Compatibility ensur'es 2

the orthogonal matrix a z *ai.t satisfies the GSGE with (19) and G..

with (20). Alternatively, if we call

the following linear system of 2n o.d.e. 's are obtained:

+ ~w C .s,(26)
Ox.

where Aj, C. are 2n x 2n matrices with the block structure

ij) •i (27)

30

Here g., i are n x n matrices having the following structure:

,. C _A 1)ela. * a,,

a 2 ae

where ej ( {jik is the unit matrix

3 i e3  ik ' k3,(29)

10 otherwise,

and in component form takes the form

3i kj a E 6 k zj ia IL xL k3

In (28) a is the orthogonal matrix Rn SO(n) associated with the GwE

when 6 • and with the GSGE when 6 • (z * IlZ), A
3  (z -/ and

y. is the matrix (30): R " M (R) j -Y * 0. Eauations (21) arise
n n 3 3

as the compatibility condition associated with (26). More explicit',,"

for the GWE the scattering problem takes the form I, ' i '1,

-- A Aj, * C 4031)

n'o"

Ol~j ,-I

"S *s~ .3 ~ - ~~"'~' 'I' s..'PA,~ '* a..~.J!L ' d ~ J~ ~ 3*~ 'AF~. .,% ,
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and C, given by (27,30).

For the GSGE the scattering problem for tae (:) :aks "-e

form

- 00 /lo ).

d te 0

(z) +* Cj (33)
a((eI-e )

'(z). -(Z), C, given above, or equivalently
J€ "-". . - - -

-A z 8 C. (34)
• .2.,

where 5-

we Katu .) u diag( !. -i......-1). (35)

-n it 1s Shown how these linear problems may be v iewed as a i rec:

arc inverse scattering problem for the GWE and GSGE. Namely the

direct and inverse problem may be solved for matrix potentials, ae-

pending on the orthogonal matrix a, tending to the identity sufficient-

ly fast in certain "generic" directions. It Should be noted that

solving the n-dimensional GWE and GSGE reduces to the study of the

scattering and inverse scattering associated with a coupled system '

n one-dimensional o.d.e. 's. This is in marked contrast to other

attempts described earlier to isolate solvable (local) multidimensional

nonlinear evolution equation which are compatibility conditions of two

Lax-type operators. e.g..

L. •(36)

4t a M {37'

where L is a partial differential operator with the variable t enter-

ing only parametrically. Although as we have seen nonlinear evolution
4,I

% .
:24
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equations in three independent variaolo$ can be assocaded wl:n

Lax pairs (e.g. the K-P, Davey-Stewartson, three wave interaction

equations, etc.) little progress via this route has been made in ic-e
than tnree dimensions. As discussed earl ier one has to overcome a

serious constrain, innerent in the scattering/inverse scattering

theory for higher dimensional partial differential operators in W.

order tO be able to isolate associated solvable nonlinear equations,
i.e. the scattering data generally satisfies a nonlinear equation - . a-

(e.g. (16)). The analysis associated with the GWE and GSGE avoids

these difficulties since the GWE and GSGE problems are simply a

compatible set of nonlinear one-dimensional o.d.e.'s. The results

in [8] demonstrate that the initial value problem is posed with

given data along lines and not on (n-1) dimensional manifolds. ..

Similar ideas apply to certain n-dimensional extensions of the so-

called anti-self-dual Yang-Mills equations (SOYM). In93 it is. . . .,

Shown that these multi-dimensional nonlinear equations are associated ..--- ','..

with compatible two-dimensional linear systems. Broad classes of

solutions may be calculated by the method. Since the overall co-

patible linear systems are coupled two-dimensional equations, the

scattering data does not satisfy the nonlinear constraint discusseC
earlier. • .

Finally we remark that there is a class of nonlocal equations ... -

which can be reduced to exactly solvable equations. In the context of

multidimensional nonlinear equations perhaps the most interesting

example is

(u uxxx + -2u) u y
wnere t

(H u)(x,y~z.t) d& 29)

and {.denotes the Cauchy principal value integral. (38) is reduced

to the K-P euqation

(wt +IN - I(w )x - 3C wy "i(w xxx x yy

via the transformation

w - u-iM u.
z

DetaiIs and other examples are given in 10) .

o

. ... • ., "+:.'..,+Q~i~ld. ', 'eQ&', +.' "+'+ +."+': ++'..+':":++:'. ^..,..., .- +- +,- ." + + ' awl,
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