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ABSTRACT

We analyze further the algebraic properties of bi-Hamiltonian systems in

two spatial and one temporal dimensions. By utilizing the Lie algebra of

certain basic (starting) symmetry operators we show that these equations

possess infinitely many time dependent symmetries and constants of motion.

The master symmetries T for these equations are simply derived within our

formalism. Furthermore, certain new functions T12 are introduced, which

algorithmically imply recursion operators P12. Finally the theory presented

here and in a previous paper is both motivated and verified by regarding

multidimensional equations as certain sngular limits of equations in one

spatial dimension.
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Recursion Operators and Bi-Hamiltonian

Structures in Multidimensions II

by

A.S. Fokas and P.M. Santini

I. INTRODUCTION

This paper investigates certain algebraic aspects of exactly solv-

able evolution equations in 2+1 (i.e. in two spatial and in one temporal 0

dimensions). It is a continuation of [l], although it can be read in-

dependently.

We consider evolution equations in the form

qt K(q), (1.1)

where q(x,y,t) is an element of a suitable space S of func-

tions vanishing rapidly for large x,y. Let K be a differentiable map on

this space and assume that it does not depend explicitly on x,y,t. If

equation (1.1) is integrable then it belongs to some hierarchy (generated

by a recursion operator o12), hence in association with (1.1) we shall

study qt = K(n)(q). Fundamental in our theory is to write these equations

in the form

q 1 dy 2 61 2 12 ^ 2 .l j fdY26 1 2 2K) (1.2)

where 612 ' 6(y1 -y2 ) denotes the Dirac delta function qi q(xyit), .

i - 1,2, K() (ql,q 2 ) belong to a suitably extended space S, $12 K12 are operator

valued functions in S. If q is a matrix function then I is replaced by the

identity matrix.
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Throughout this paper m and n are non-negative integers.

The following results were obtained in (l]:

i) There is an algorithmic approach for obtaining the recursion

operator P12 from the associated isospectral eigenvalue problem. ii)

This operator is hereditary. iii) Each member of the hierarchy
m ~ ~~( 2 2 " 0 ) 1 °K

~i 1) 1 1f dy261 2 m,2 1(02.1 where K 1 1 is a starting symmnetry, is a Symmifetry
(1.2). For example the Kadomtsev-Petviashvili (KP) equation and the

Davey-Stewartson (DS) equation admit two such hierarchies of commuting

symmetries. iv) If the hereditary operator admits a factorization in

terms of two Hamiltonian operators, then hierarchies of commuting sym-

metries give rise to hierarchies of constants of motion in involution

with respect to two different Poisson brackets. For example, the KP

and the OS equations admit two such hierarchies of conserved quantities.

The above results extend the theory of [2] - [4] to equations in

2+1. Novel aspects of the theory in 2+1 include: i) The role of the

Frechdt derivative is now played by a certain directional derivative.

If subscripts f and d denote these derivatives then there is a simple

relationship between directional and total Frech~t derivatives:

K12 d[612 F1 2 2] = 12 fF] K12 q[FI] + K1 2q2 [F22 ], (.3a)

where K12 is an arbitrary function in S, and K12 q. denotes the Frechit de-

rivative of K 2 with respect to qi, i.e.

Kl [ Fi ] j - - Kl2(qi + eFiiq ) I 0 ij - 1,Z. i j. (I.3b)

Operators on which directional derivatives are defined are called admiss-
ible El (applications of the d-derivative in explicit examples can be found

in Appendix A, see also Appendix C of [i]).
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i i) The starting syinmetry K0 can be written as K 0  .1, where K02 is an

admissible operator. Essential to our theory is that the operators V0  acting12' ctn
on suitable functions H1 2, form a Lie algebra.

1. For the equations associated with the KP equation,

=12 0 o 2  q2 D +q 2o q12 OD qt2 . q, ± q24(o 1 ; 02), (1.4)

where 0 The starting operators K 2 are given by

+ 1

Nl2  q121 M12 O ql2 + q120'lq 12,

and H12 is an arbitrary function independent of x, i.e.

H12 - Hl2(yY) (16)

The Lie algebra of q 2 is given by

(2 (3) H(3)
rNH()  .2)d Nl H 3  HN1 l), H(Z)]d "l 12I( "12"12 12 1 2H12 ' M12 1 2 Id 12

(MIH 12, M H(2 )d -412'12 3H (1.7)

1 I'"12"12 " 2121

where

CK!I),K( 2 ) - K(1)rK( 2 ) ] - K(2)rC(1, (1.8)
12 12)]d 12 d 12 12 d 1

H (3) C H~),H (2)]j~ dy3(H()H (2 - 13 (2 ).(1.9)

2. For the equations associated with the DS equation

Q -+ F1 I QI t F1

12= ,(P 1 2 - QI2 P2QI 2 ) ' Ql2 F12  1 F 2 Q2
'

(1 .10)

P IF2 F12  - JF12  - F12  J,
1 x 12 Y 2

where J a ac, adiag(1,-1), Q is a 2 x 2 off-diagonal matrix containing the

potentials ql(x,y)., q2 (x,y) and 01, is defined on off-diaqonal matrices. The

starting operators K 12 are given by:
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N Q 2 M
N12  1 2 ' M12  Ql Q 27(111

and HI2 is an arbitrary matrix function satisfying the following properties:

H12 diagonal matrix, P12H12= 0. (1.12)

Also
NH ( 1 ) . H(2) (3) N) (3)1 212 = 12
12 

2 12 
,dN 

12 12 
' 

12 12 
1 

I 

12

11 d = H(2) (1.13)

121' 122d 12 12

iii) The recursion operator *12 is admissible and enjoys a simple commuta ,i

operator relation with h 12 2 h(Yl-y2):,

Th s 12 h 12 o -e ahi2 ' 2 i a i b a i

(n n ^ 0 n _zn, n',EL -0which implies that 6 12 K 12 = 12 12 . E - TO 12 ai o12 K "l*, where

The starting operator K 2 is also admissible and its commutator rel

tion with h12 implies that 6 K( ) can be written in the form

(n) 1n 0 n -n-bO z121 .K = K b .t K?;
1212 12 (7KI212 12"

for suitable constants bn,l -

1. For the two classes of evolution equations associated with the KP

equation we have that

3 = -4a, N 12,hl2 ] : 0 EM h] - ;Ohi2, -2,1

and

for K12 = N12  . -
b3n. Z-s~sfn-s, for 0 ."

zO 3 'Z-s 2 M1 2

2. For the two classes of evolution equations associated with the DS



equation we have that

2 2a , £N12 ,h 12] = [r 1 2 ,h1 2J = 0 (1.18)

and

bn,. ( . (1.19)

In [1] we assume knowledge of the underlying isospectral problem.

This problem implies: a) a hereditary operator 1 2 ; b) suitable starting

operators, say M12 and N12 , and functions H12 ; c) two skew symmetric oper-

ators such that 12 12 Furthermore, it can be shown that 0atr uhta 12 12 122

is a strong symmetry for the starting synetries. One then needs to: a)

Find 8 and b n, appearing in equations (1.14), (1.15). b) Compute the Lie

algebras of M12' N12 on function H12 (i.e. obtain equations analogous to (1.7), (1.13). c)

Verify that the starting symmetries correspond to extended gradients, i.e.

verify that ( 1 )_Kl2")d' 2 " 12 or N12, is synnetric with respect

to the bilinear form

f 13 dx dyldy2  trace 921 f12 •  (1.20)

d) Verify that 02 are compatible Hamiltonian operators.

In this paper the following results are presented.

i) In §2 we investigate further the Lie algebra of the starting symmetries

K02H1 2 . In Cl1 we only used a subclass of solutions of (1.6) and (1.12),

given by H12='12='h(y 1 Y2) and H12 h12 (aI + ba), a, b, const-

ants, respectively. This gave rise to time-independent commuting

synmetries. We now choose H12 to be a more general solution of the

above equations; this gives rise to time dependent symmetries.

ii) In §3, using the Lie algebra of K 2,H 2 and an isomorpism between
n A0. o repn

Lie and Poisson brackets we prove directly that correspond
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to conserved quantities. This derivation, which capitalizes on the

arbitrariness of H1 2 , has the advantage that does not use the bi-

Hamiltonian factorization of €12" In other words, for the theory

developed in this paper one needs only to verify a)-c) above.

We recall that Fuchssteiner and one of the authors (ASF) introduced

an alternative way for generating symmetries, the so called master-symmetry

approach. A master-symmetry is a function T which has the property that

its Lie commutator with a symmetry is also a symmetry. The T functions for the

Benjamin-Ono and the KP equations were given in (5] and [6-7] respectively. Several a

ors (E.g. (8]-[12]) have noticed that master-symmetries also exist for equations in I

as well as for finite dimensional systems [13]. Let T and T denote mastery-symmet-

ries for equations in 2+1 and 1+1 respectively. If 0 is the recursion operator and

Z tK + T0 is the scaling symmetry of an equation in 1+1, qt = K, then

T = PT0 is a master symmetry. However, there exists a fundamental difference

between T and T. The function 0-IT (o is a Hamiltonian operator) is not

a gradient function; this can be used to constructively obtain P from T. But

is a gradient and hence the above construction of ¢ from T fails.

In this paper we show that T is not the proper analogue of T. Let
n

us consider the KP for concreteness. As it was mentioned earlier, 12R12.1 generate
n ^

time-independent symmetries; it will be shown here that 4 12K12 (Y1 +Y2 )m generates time

dependent symmetries. It turns out that T =(0 2Kl2(Y1 + y2))l (see §ID). But
-1 n ^ -

012012K12H12 is an extended gradient for all H12 , hence Z 7 is a gradient

function. In §4 we show that the proper analogue of T for the KP is T 4 21

2.1~~~1 fo th12V) ctaly,-
(it corresponds to o2.1 for the KdV). Actually, 0-1T is not an extended

gradient and it can be used to constructively obtain 12.

In §5 we show that exactly solvable 2+1 dimensional equations are

exact reductions of nonlocal evolution equations generated via nonlocal iso-
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spectral elgenvalue problems. This result both motivates the basic ideas and

concepts introduced in [l and in this paper, as well as verifies several

results presented in the above papers.

II. A LIE-ALGEBRA FOR EQUATIONS IN 2+1

In developing a theory for time-dependent symmetries in 2+1 it is useful

first to: i) characterize the commutator properties of these symmetries, ii)

study the action of $ on the Lie commutator [a,b)L, where

*a,bJL # aLib] - bL~l] ,  (2.1)

and aL denotes an appropriate derivative. This derivative is

linear and satisfies the Leibnitz rule. For equations in 1+1 one only needs

Ca,blf, while for equations in 2+1 one also needs Ca12,blZld (see (1.3)).

Lemma 2.1

a(r) is a time dependent symmetry of order r of the equation

q = K, i.e.

aa(r)

+ [(r),KQ = 0, (2.2)atL

iff

(r) j(j) -(1) I -l) j=,...r, [K, (r)1 [-O K J K L ' IL = "'

(2.3)

The above result follows from the definition of a symmetry and the

assumption that z(j ) is time independent. It implies that constructing a

symmetry of order Z is equivalent to finding a function Z (0) with the pro-

perty that its(j+1) st commutator with K is zero.

I S
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The action of a hereditary operator (P on a Lie commutator is given

by:

Theorem 2.1

Let

S t L[KJ E$,KL] . (2.4)

Then

a,) Dn[KI,K 2 L =KI,,nKz]L + ( On'rS r-l)K (2.5)
r-l1

If 0 is hereditary, i.e. if

DL[Ov]w - 44L[v]W is symmetric w.r.t. v,w (2.6)

then the following are true

a2 ) 0LlnK] + [,,(,nl)LK) ns, (2.7)
m crInr-

a3 ) n+m [x,K 2 ]L = [nKIImK2 ]L +,n( r OmrS rl)K2 _ mra( n-rr )K1
r=l r=l

(2.8) 5

(m,n are non-negative integers).

Proof.

To prove (2.5) use induction: (2.5) 0 is an identity. Applying oon

(2.5) we obtain

D l[ ,K ]L ,L ,[K + 0 n 0 )K 2.'
r=l

Equation (2.5) n+l follows from the above and the following identity

,lK1, M]L 2 [KI ,"M]L + SIM.

Equation (2.7) also follows from induction. To prove (2.8) first note that
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(2.5) implies

m- -rlc.4,m[KI'K2L r-1 0r )Kr 1 [K, K (2.9)

21L l 2 23L

Equation (2.5) also implies

E~~n n n-ri -
n CKI, ,2)L - nKI, 2 ]L - ( 2 )KI.

Let 2 m K 2 then (2.6) implies 2 = m S2 , and the above equation becomes

n[K l m K2 ]L  , nK,, m K2  - n *n'rcms r-1)K .0 19 3L 22L r Z1 PV

Applying *n on (2.9) and using the above we obtain (2.8).

Corollary 2.1

Let the hereditary operator o be a strong symmetry for both KI and K2, i.e.

S1 = S2 a 0. Then

*n+m[KIK2]L = [nKl,mK2 ]L. (2.10)

In the rest of this section we characterize extended symmetries a1 2 .

The following theorem, proven in [13, maps extended symmetries "012 to

symmetries a11 .

Theorem 2.2

Assume that the commutor of D12 with h12 is given by (1.14) and that

the starting operator K12  are such that (1.15) is valid. If c12 is an

extended symmetry of (1.2), i.e. if

a02 +[ I  ,61n -02- + 1112 121K 2  "1]d = 0, (2.11)

then all is a symmetry of (1.2), i.e.

l + K (n) 2 0. (2.12)

at- 11
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In the above

[a K(n = all[ () - K (n) L~l ~(2.13)

andq

and
[012 '6 12 €1 2K 1 2 "ld : ' b 1=Z,12 K 12l2 d .

fo (2.14)

It i neessry t rerit 12n  12O 1

It is necessary to rewrite 6 12 ) 2 K12 * in the form appearing in (2.T4)

since the directional derivative is defined only for functions of the form

L12 H12' where L 2 is an admissible operator.

Using Lemma 2.1, Corollary 2.1 and the Lie algebra of K12H12 (with

appropriate H12 ) we obtain extended symmetries, which then via Theorem 2.2

give rise to symmetries.

Proposition 2.1

Assume that the hereditary operator (l2 is a stronq symmetry for the admissit

starting operators M1 2 ,N 12 , and that (1.14), (1.15) hold. Further assume that M 12'

N12 form a Lie algebra (analogous to (1.7), (1.13)). Consider the following hierarch

q, JdY2612 ' 2 1 2 *1 = dy2 612N12 N 11

qYt -n f M(n) M(n)
1dY261*12 M 12 .I11 '(2.15b)

Then:
m^  m ^

a) (12M12 . (1 2 N1 2 .)i, are symmetries of equations (2.15).
m (r), " m ( )

b) Appropriate linear combinations of A H , k . for
12 12 12 '11' 12 12 12 11

suitable functions H,, generate time dependent symmetries for

equations (2.15).

Rather than proving the above proposition in general, we use for

concreteness, the Lie algebra (1.6) to sketch how the above results can be

derived. Details are given in II.A, II.B.
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Let

(n) n12, 12 l2 (2.16)

Then, using corollary 2.1, equations (1.7) imply

[ m)(I n-&)(2 I  (m+n-&)u(3), rm)- (n-- (2 '-m+n-' )(3)
N12 12d -N )H(3) 12 12 12 ' 12 12 d 12 12

12 (12 12 12 12M 1

(2.17)

M.(m)H(l) &(n- )(2) (m+n-1) (3) r (m)H() ^(n-i)H( 2  _ ;(m+n+l-) (3)FZ(m)H(1 ), )- l) M(2 )]d  )

12 12'12 12)d 12 12' "12 12 '12 12)]d 12  12

Part a) of the proposition is a direct consequence of equations (2.17) and

(2.14). For example

E (M). , ;n). 1 d n b (m+n-L,) ;M .0
1 1212 Id ZE0bn,LN 12

since ~ 162I 0; thus N^m* are extended symmnetries of (2.15a).

Consider part b) of Proposition 2.1. Let us first consider symmetries

of order one in t. Then

- tB(;(m+n-1) .
4Im?(Y, + Y2 ) t21(2)N+2

(2.18)

* ~'~Y~+ 2)- t28 (n)-m+n1) .1

are first order time dependent extended symmetries of (2.15a). Similarly

12) (yl + Y2 ) nt2 b 12

(My)  y 2)- t2( n,)N ( "+n) .1, (2.19b)

1
are extended symmetries of (2.15b) with bni (-4a) s 2 .

To derive the above we use Lemma 2.1 and equations (2.17). For example,

to derive (2.18) we look for a function 12such that its commutator with

2(n)., co'mutes with (12N') (0) = -(m)(y + Y2) or
612N 12 cmuewih612 12 Clearly E12 - 1121 ~ o



-12-

(Y + y2) For, (2.17a) implies

12 1Nn 21 8'

since, H2 , l2I = -26 , where 61 = 0 if 1 1 or 1 if z = l

In a similar manner/

R (mn- n 2-(m+2n2 1

N2(Yl + Y2 )2- t4B(l)- 1 )(Y+Y 2) " t2482(2 "1 2)"

A -2? - t48 (n?)(m+n-1)(Y1 +Y2) + t2 2(n)2-m+ 2n2).l (2.20)M12)Yj + 12" tBl 12 4Y+2 1 t242)

are second order time dependent extended symmetries of (2.15b). Similarly

(m) .(Y Y2)
2 _ t4bn lA(m+n -l) "(yI Y2

) + t24bI j(m+2n-l).l (2.21a)
{) (Yl + Y2) " tn,l m n  "(Y Y2) +  t "nl".,•

b - (-4<z)(n + 1). (2.21b)
n,1-

are extended symmetries of (2.15b). Indeed
S

48 ( ~n)^(m~n-1)
, 2) 2,(Yl + Y 1 2 )d 1 4 )l+y 2 )-

since, [(yl+y 2) 2 6 L + Y2)61 , Also

[ Im+n-l)  ^ (n).l] -- 28 n)(m+2n-2).l
12 (I+y2) 12 N12  I "l2

The extension of the above results to any order in time is straight-

fowad:Togeerte (r) (0) 2 ^(m)(~y)r 12 Y1  r. h
fowad:Togee atea12  consider E 2 2 or M(m, 2. h

commutator of (y+Y)r with 612 produces +  r-l

Thus the rth commutator of (y1+y2 )r with 612 produces 1 which commutes with

6(t) ry+2 2th
12 ; hence Lemma 2.1 guarantees the existence of an r order symmetry.

w i • • mm m • m m
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II.A. Tim Dependent Symmetries for the Equations Associated with the

KP Equation.

Following the construction and the argument sketched above, extended

symetries of order r in time

r 1 t 12 - (2.22)

are generated through Proposition 2.1, starting with Z12 1 12

or M^m r where H~) is defined
12 1221

by

H ((r) y2)r; (2.23)

more generally, any homogeneous polynomial of degree r in yl and Y2 could be

used as well (note Hr2 solves (1.6)). Using

[H (r) 6s -(1 - (-1)S)(r-s .. r H(rs) (.4

1, a > 0,
e(a) = a (2.25)

0, a < O,

we can show that

i) The class of evolution equations (2.15a) with N12 " q12 admits t-

dependent symmetries of order r given by

12 12

12 = :v(r,jos)N- +jn1 Z +2s+) +1, (r-{ s+1), (2.26b)12 12 'a ' "12

and by

12 12 12

a IZW .Z'~~~^(m+jn- E 2s t1).N Cr - ~ Z(2s +b)
12 ta 12 L-1 (2.27b)~

-mhere th.-S..,marn ia nmm S-- f ...... $, zero to P
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where j > 1, Pn (n-i)/2 if n is odd and (n-2)/ 2 if n is even. Alo

(~js) (-2 (- +)( nT b (2.28)

u~ &l =(r - Z 2s, +1)!

and b (- 4 )'(').

ii) The KP class (2.15b) with D + 2 + q120
' q 2  admits t-dependent

symmetries of order r given by

(0) .im) . r)(2. *,.
12 12  12

2j

((m+2jn~j- E 2s 1) 2J L(2 b)
,(2j). E,(r,2jS)N 2  12 Lai

12 12

.(+2-l)n+j-l- Z: 2sL+).(r.2 2st~l)
(2j -l) S2 r('2'')MT2J L12 1--

(2 1:

and by

50) = M(m) H(r) K,

12 12 12
2j

((m+2Jn+j - r 2s +I). (r 2j 2s +1) (2.30b)

z (2j ) v(r,2js)MI 2  L 12 t. L '
.12 

2j 12 -2j -1 j-

~.(m+(2j-)nj - Z Zs (r) 2s 1
(2j-1) = S v(r.2j - I s)N1 2  . 12 a(- i

(2.30c)

s( n-s .-s sn-s) 2 . ) - (.
with j i and b n, = l- s ( S-

s:A S=O
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11.B. Time Dependent Symmetries for the Equations Associated with the

Oavey-Stewartson Equation.

The construction of t-dependent symmetries for the equations

associated with the DS equation is similar. Extended symmetries of order r

in tim are generated through Lemn 2.1, starting with120) 12m Mrr H(r) i
(0) ~(m H(r) or A(m)H(r , where the solution H12 i12 12 121

defined by,

H(r) & .
1 @diag( 'r &z 1 Y, + Y2 t 2cx H. a12&12 -12 -12

H(r) satisfies the same formula (2.24), obviously replacing CH (r), aS by12I Iz JI by

CH(r),S2I], .- Then, using Corollary 2.1 and equations (1.13), one can show

that

i) The class of evolution equations (2.15a) with N12 * Q,2 admits t-

dependent symmetries of order r given by equations (2.26) and (2.21),

where b n, =(<) . (2a)L(n) and j .

ii) The class of evolution equations (2.15b) with Ml2 = Q12a admits t-

dependent symmietries of order r given by equations 
(2.29-30).

replacing: N(')- " in equation (2.29b), M ° (-j 1) in

equation (2.29c), N'' M'"' in equation (2.30b), N('. N("J)

in equation (2.30c) and using bn, z (2 )

Ii.C. Connection with Known Results.

Before the discovery C14] of the recursion operator of the KP equation,

a different approach, the so-called master-symmetries approach, was used to

generate an infinite sequence of commuting symmetries [6], as well as t-

dependent symmetries C71, [II], of the KP equation (see also [181, [19]).

The existence of a hereditary operator in 2+1 dimensions, together with

the Lie algebra of the starting symmetries allows a simple and elegant characl-



erization of the 2+1 dimensional (gradient) master-symmetries introduced in

the above papers. Here we briefly consider the KP example.

In Proposition 2.1 and in §ll.B. we have shown that the functions

(m,r) , *m K0 H(r) (2.32)
12 12K12"12 '

(where H 12  is defined in (2.23), but it could be any homogeneous polynomial

of degree r in y1, Y2, and 'KO2 isN or '12) have the property that their

(r+l)st commutator with 512K12(n) is zero, namely

. . (mr) 6 K(n) . . . 0. (2.33)
12 ' 112I d

r+1 times r1. times

Then Theorem 4.1 of [1] implies that

C .. CTrmr) . Kf()]f . . . Of a, (2.34)

r+1 times r+1 times
(re,r)

namely T are the so-called master-symmetries of degree r of KP [11]. Equa-

tion (2.33) essentially follows from the fact that a single commutator of

(m,r) with 612 K12(n) generates a linear combination of lower degree master-

symmetries; in fact, choosing for concreteness T =r),2 N1 2 1 Y r and

(n M(n)
K12 - 12 , we have

IT (,r)', 1M ()] " Z b Amn[(y1+Y )r, Z ]I12 612 12 3d Z.0 n,Z 12 L'Y 2  12

n (men,r- 1)

= e(r--)ty-r bn,. 12 (2.35)

which implies
n r' .(m~n,r-L;) (2.36)

r(mr) M(n)]f n b r)(-n--j- bn 4

'11 11 Z -ZT -( .6

For r - I equation (2.36) becomes

E.(ml) (n)) (2.37)

11 , ]f1 bn 1l1

master-symetries of degree 1 generate equations which belong to the given hierarchN,
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III. LIE AND POISSON BRACKETS FOR EQUATIONS IN 2+1

In this section we first derive an isomorphism between Lie and

Poisson brackets. Then, using this isomorphism and the Lie algebra of the

operators K12 , we prove that ( 0  H2 are extended gradients. This implies
thtal xtne1s2'ere 12 11

that all extended symmetries of the previous section give rise to conserved

quantities.

Theorem 3.1

Let [a,b]L = aL[b] - bLCa] be a Lie commutator and <f,g> be an

appropriate symmetric bi-linear form. Let grad I be the gradient of a func-

tional I, defined by IL[V] -<grad I,v>; then y is a gradient function iff

aYL " Y where M* denotes the adjoint of the operator M with respect to the S

above bi-linear form, i.e. <M'f,g> 2 <f,Mg>. Then if the operator 0 is a

Hamiltonian operator, i.e. if

0* - -0, <a.eL[b]c> + cyclic permut - O, (3.)

then

[zf,=g]L 2 3 grad<f,og> + o{(fL-ft)EJQ] - (gLg!)C3f]}. (3.2)

Proof.

grad<f,Zg>[v] <fLvJw3g> fGLvg <f,gv>

= <f*[(glg -g![9]>

z <f*[[g] + Mf - g*[0,g], v>,

where <foLEvlg> <fMg [v]> and M denotes a linear operator depending on g.

Hence

[0 fg]L - Ograd<f, g> 3zL[g]f + L[S - -

-g ( -- L- )

U eC§eglf -. of 19 -0- M*9f + (D{(fL-fL*)Cog] - (g~[(f1
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But the sum of the first three terms of the above equals zero because of

(3.1). Hence (3.2) follows.

In the above aL denotes an appropriate directional derivative. For equations in

1+1: [a,b]L - [a,b]f, ,f,g> f dx trace gf. (3.3)

For equation in 2+1

[al2'bl2]L a [al 2,bl 2 1d' <f1 'gll> = 2 dx dy trace g,,f 11,

<f12,912' = JR2 dx dyldy 2 trace g21f12  (3.4)

(if f and g are scalars, then delete trace), where C If' C ]d are defined in

(2.13), (2.4). Furthermore the following double representation of the func-

tional I

= 2 dx dyltrace Oi f R3dx dyldy 26 ,trace P12  (3.5)

allows to define the extended gradient grad 121 and the gradient grad I of the

functional I by

EId[V12J = JR3 d ddY12re 12>12] grad 1 2 I, v1 2 ), (.a

I C dx dy~d - 1 trace ,vga ,v> (3.6a)

1f 11J - f 2 dx dyltrace 1I 11 ! : <grad I,V, 1 >. (3.6b)

The following theorem, proven in [1], maps extended gradients y12 to

gradients '11:

Theorem 3.2.

a) " 12 and v11 are extended gradients and grdients respectively iff

Y * 3 Y and y*f X Y ft with respect to the bilinear forms
1d 12d 1f

(3.4c) and (3.4b) respectively.

b) If Y12 is an extended gradient, then y,, is a gradient corresponding

to the same potential, namely if grad 1 2 , then Y1 1 
= grad I.

Y1
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Proposition 3.1

Assume that the hereditary operator 12 is a stroni Sy'imetry for

the starting symmetries M12H12 and N12H12. Further assame

that M, N12 form a Lie algebra (analogous to (1.7) and (1.13))and that 2is a

Hamilton-ian operator whose inverse exists. Then

a 1 2 01 2KIH 2 1 K12 2 M12 or N12  (3.7)

are extended gradients, provided that G12Kl2H12 are extended gradient.

Proof

For concreteness we proof the above proposition for the recursion

operator and starting symmetries associated with the two dimensional Schrddinger

and 2 x 2 AKNS problems.

ILIA. Conserved Quantities for Equations Related to KP Equations

Corollary 3.1

Let

+ zD I  'y "y -(nY ' )  n=
12z q12' ;12 "q 12l + q 12 0- qI1H1 i1 'M 1 i 12M 1'

-(n) nn
a12 1 12N12' 112 D (3.8)

where '12 is the recursion operator associated with the KP and is defined by

(1.4). Then

0- IA(n )H(3 )  . grad<M (n)Hl2
), 0 ' I )H(2 )12 12 12 (3.9

{}I~+)Hl grad<M^n)H(' ) , 0"IM4HI >
H12  =rdM H12  12

Proof

We first note that the assumptions of Proposition 3.1 are fulfilled.

Namely 012 is hereditary and is a strong symmetry of M11 H,2 , NH,2 (see Lemma

4.2 and Appendix C.la of [1]). The operator D-i is obviously a Hamiltonian
., A
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Since 0 1M1 2H12 Is an extended gradient, Theorem 3.1 and (1.7c) imply that

D 2N 1H is an extended gradient. Then Theorem 3.1 and CM(n)H(1),4(l)H(2)
12 12 12 ' 12 ~d

2-M(n+l) H(3) imply by induction (3.ga). Finally Theorem 3.1 and
12

A(n),(1) , ] "(n+l) (3)
.... 12 -MH12 d N H1 imply by induction (3.gb).

A consequence of the above result is that all symmetries derived in
§11.8. give rise to consderved quantities. For example, the following t-dependent

extended symmetries (see (2.19b and (2.21a))

7 12 12 (yI + Y2) + t',(m+).1,

(2 1 + ,i
12 12 (Y1  + Y 2)(12 12

of the KP equation q1t X M 1 ) 2(q, + 6qlql + 320" q1  ) correspond to
t- ) xxx x yy

extended gradient functions u a -12 ; then they give rise to the
12 an 10a2  te hygv iet h

following t-dependent conserved quantities (see equations (4.15))

(1). t 3 (--m2I()  R2d d(2(2m+3)( m12 (Y1 + y2))11 + M-+D "1 11

( 2 )  -1~X d~(_ (-(m~l)(y 2) )  tl2a, -im(m+l)I2dx dy (0 2---11 "2 12 (YIy2))1

+ (O2m*3 nyN(m 2) l) )

_m2 2 t1212

III.B. Conserved Quantities for Equations Related to OS Equations.

Corollary 3.2

Let

H diagonal and such that P H 0, M~n n 12 ()1212 1'12 12 12' 12 12l2'12

(3.10)

where t12 is the recursion operator associated with the OS equation and is

defined by (1.9). Then

1(n2l)H(3) 1( grad<M2H N(H3>)12 12 '12 ( - 1
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Proof

The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2 and

Aooendix C.2a of rpl). The ooeratora is obviously Hamiltonian in a 'Pr of off-

diagonal matrices. Furthermore, M12 12, O 12N1 H12 are extended gradients (see

Appendix A).
ftn)~l N( (2),d M(n+I)H(3) implies

Since the above are gradients, N ' H12 " 12 mi

(3. ) Then CM(n)H(I) MH(2 )]  _ (n)2(3) implies (3.11).• • L 12 ' 12 12"

The above implies that the symmetries derived in §II.C. give rise to

conserved quantities. For example, the 1st and 2nd order t-dependent

symmetries

(1) . A(m)H(1) - 8,t R(m)

a12  M12  12 12
(2) . ^(m)H(2) _ +t(m) (1) t2 2 )  I

12 N12  12 M12  1 2  
2

of the DS euqation Q _ M(2 )  -2a(Qlxx + a2 lyy) - Q1Aj + A1Q1j, (D-JDI)A I

2 1t  11 1y
-2(D+JD 1 )aQ1 , obtained from equations (2.29-30), correspond to the extended

gradients 2(1) (2) ; then they give rise to the following t-dependent0312 . 1a2'folwn
conserved quantities (see equations (4.24)):

f dx dy trace a[Q1 2-1 (D'M+ )H(l)) t4 N(m*l)

R 1'2(m+1) 12 12 11 m+1 12 I

1 (2 dx yltrcec(l,1 (D-lIR(m+1)H( 2) ) -t01~+)()(2) 2 R2dx dY2tracez Q,2 D1 12 12 11 " M '  )12 12 )11

+ t232 2  1 (D 3) . 1

IV. ON A NON-GRADIENT MASTER-SYMMETRY.

In this section we make extensive use of the isomorphism between

Lie and Poisson brackets. Hence it is useful to investigate the properties

of

Gg" ) TL + @T* "I ; T tg,9L3 O. (4.1)
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Lemm 4.1: Let

S L CT] + C,,T L1,  (4.2)

with its adjoint

S" • *CT] + CT*, 0*]. (4.3)

a) If € is hereditary then

P*en T] +(¢nT)*e -e(,nT)* - S*$* n  (44)

b) If is factorizable in terms of compatible Hamiltonian operators,

i.e. if t a QG 1" , where fz + vGD is a Hamiltonian operator, Gis

invertible and v is an arbitrary constant, then

(T) L +(T) = (TL + G)T* "o) + GS' " , (4.5)

where we have assumed for simplicity that GL = o.

C) n T n n 1 n r-1 ,-r*

c) (*nT)L + ( = n(T * 0T " ) ( ( r OTnrs*GI (4.6)
r1l

Proof

Equation (4.4) is the adjoint of (2.7) for K = T. Equation (4.5) is

derived in Appendix B, and (4.6) follows from (4.5) by induction.

Theorem 4.1

Assume that o is factorizable in terms of compatible Hamiltonian

operators and that oL 0 0. Further assume that 9'lnM is a gradient Function

and that 4 is a strong symmetry for M. Then
n m

1 -- lI n in., r-l ,.m-ri -1,n rP r t M grad<)"ltnM, i> - z M

r-l r:l

.m(T +0T l ) n .4 J3n~mCMT" (4.7)

Proof

Using the fact that D- 1nM is a gradient, equation (3.2) becomes

OnM, OmT]L - Ograd<G1linM. - (GmT) + 0( mT)- "I }nM. (4.8)

L 

L 
L 

I I
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Since M is a strong symmetry oft, Theorem 2.1 implies
(n

n+mM + m( n-r )M (4.9)

Using the above and (4.6) in (4.8) we obtain (4.7).

Equations (4.6) and (4.9) are useful ir-f-f'nding non-gradient master-

symmetries for equations in 2+.1 Furthermore, Theorem 4.1 is useful for

deriving the potentials of various gradients. Formulae (4.6), (4.9) and

(4.7) take a particularly simple form if the function T12 is such that:

i) s2 -* s2 -cl, (4.10a)

where I is the identity operator and c is an arbitrary constant, and

r + 0. r* 0 0.(41b
12d -12  (4 lob)

In the following two examples the non-gradient master-symmetries are generated

through functions T12 that satisfy equations (4.10).

IVA. Equations Associated with the KP Equations

Corollary 4.1

a) CD2 12 is a non-gradient master-symmetry for the KP and the equations

related to KP:

[ 12 12 12' 12 "2]d b n 12 12 12' (4.11)

2 ' 2 6 ) +2 5 * -
12 1 2 d 1 .12 12d(124.12)

bn and H12 are given by

b 4n, H s H(y,y) arbitrary, if K2 N (
n 12 12 (4.13a)

and by

bn x 2(2n 1), H12 - (yl+y2)r r 0,1, if 12 2 M12 (4.13b)
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b) Let

n, Goi (4.14)
Y12  2' 2 L 12 12.

Then

yn)H12  grad 1 2 I, (4.15a)

I n n.L..<~ 12 12' 12 n=*~: xd~y 1

1 (n~ )Hn~) ) xd~ 6 i)

bn '2 dx dy1  1IH2)1I1 (4.15b)

where bn and H12 are given in (4.13).

Proof.

If

TI2 6 ,12' (4.16)

equation (4.10b) is trivially satisfied and equation (4.10a) holds for c a 4,

since 112d[E123 = '12d [612
] = 4. Equation (4.12) is a simple consequence of (4.6)

for n = 2; using the following results

n (41a

12[N12H 12,612]d = (4.17a)

n ^r, n-l) r
I12[M12(YI+Y2 512]d 2R12(yI+Y2

(see Appendix A) in equations (4.9) and (4.7) (with M ,0 H and H12 as in
12 12 12~f

(4.13)), we obtain

n -0 m . n+m- 1K-0
4~~~~~ H' t; j: 4  KH(.8[ 12K12H1 2 1 2 12 d = bn 12 12 .12

(that reduces to (4.11) for m=2), and

n tm-I 1 0 (nO
bn 12 K 12 1H2 2 12grad 12  Y12 H)12' 12 12' (4.19)

n : n

where we have used 012012 12€i 2  Equation (4.19) reduces to (4.15) if

one uses the definition of <f1 2 ,g1 2' given by (1.20) and (3.4c).
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Remark 4.1

i) T .21 is a non-gradient master-symmetry for the KdV equation. Given

T one recovers € from Tf + OT;0 "I . Equation (4.12) is the two-

dimensional analogue of this well known formula [8]-[O].

ii) Theorem 3.2 implies that equations (4.15) with m-1, H12I reduce to the

following formula [6)
2(n) 1 1 grad (dx dyly n +l) (4.20)f n I R2 11

An analogous formula, for the KdV equation is well known

(n) (n+l)Y 27n -+-1$ g ra d fR2 d-

iii) We observe that equation (4.18) for H12  1 cannot be projected into

equation (2.37).

IVB. Equations Associated with the OS Equation

Corollary 4.2.

a) 1P2 T T12  Q+ I = diag(1,1), is a non-gradient master-
12 12' 12 2 1212'

symmetry for the DS and the equations related to DS:

[ n k0 H ,2 T2d n¢ H2 ,n+2R

WI H (4.21)12 12 12"' 2 =2d 121 2

2 1 (€ 2 T2)d + 012 2 T 1,(422
212 12 ) 1 1 2(4$1T 12 d12' 1 7, (4.22)

where K0 H is defined in (1.11-12).
12 12

b) Let
( n ) = , o ^ 0 7 - 1 K O )( 4 2 3 )
12 =12Y12' 12 : 12 K12

' '12 (23

Then

-(n)-H grad I (4.24a)

"12 12 12 n'

£I <( (n+l)H12 > 1 1 d trace 6 I I)HIn n+1 12 12' 12 27n; R3 dx dydY2 612Q Y12  12

I dx r 1 ,Q 2(nl I) (4.24b)
_2F _+1 jI R 2 11'
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Proof:

If

T taol 2 612 1  (4.25)

equation (4.10b) is satisfied and equation (4.10a) holds for c I (see

Appendix A). Then the derivation of equations (4.21), (4.22) and (4.24) is

analogous to the one of Corollary 4.1 (see Appendix A).

v. 2+1 DIMENSIONAL EQUATIONS AS REDUCTIONS OF NON-LOCAL SYSTEMS.

In £1] and [14] the classes of evolution equations

q = dY2 621 2 n1A2 .1, (5.1)

where t12 and K 2 are defined in (1.4-5), were algorithmically derived from

the spectral problem

w + q(x,y)w + awy = 0. (5.2)xxy

In this section we show that equations (5.1) are exact reductions

of equations non-local in y, generated by the following non-local analogue

of (5.2)

w + W w, (5.3)

where

(0f)(x,y) dy 2  q( xyY2)f(x'Y2)" (5.4)

Hereafter the symbols 6 and u12 indicate the integral operator defined by

(Uf)(X.Y) ( dy2u(x,y,y2 )f(xY 2 ) (5.5)

and its kernel u12 @ u(x,yl,y 2 ), respectively.

The algorithmic derivation of the classes of evolution equations

associated with (5.3) is standard; its main steps are:
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i) Compatibility.

A compatibility between equation (5.3), written in the more conven-

ient form (ww)x 1) (w), and the linear evolution equation

a x X4-Dy 0 x

(W) t V(w ), yields the following operator equationtX x

t ! C + 4 + oy I) + D,,x ] + (4 + caDyD'l[(4 +

t xxx y x y x y

+ aoyZ]j + (-4ZX + o - + t(4 + a) - ( + aDy)A o ,  (5.6)

where the scalar integral operator 22 is the 1,2 component of the x2 matrix integra

operator VA 0  E and and + are the usual commmutator and anti-

commutator. x x

i) Equation for the kernel.

The operator equation (5.6), together with the definition (5.5),

implies the following equation for the kernels ql2, C12, A1 2 and E1 2 :

2-1 + - 1 +
q 12t D121I2 + i(112 - 412 )A 1 2  i(41l2 + 41-2 )E 12 + X(-4c 12 x+ A 12 - E 1 2 ).

(5.7)

where

D 2 + D-I + D - 1 D -12 + 12 + 4 + 1 20q 2 , (5.8a)

12f12 IR (q 1 3f 3 2 + f 13g32 )dY 3 + a(O l  02 )f 1 2  (5.8b)

iii) Expansion in powers of x.

Let us first assume that

n iWJ El 2 Al2  0, (5.9)C12 0 X C 12 '12 z 212

equating the coefficients of XJ(o < j < n) to zero we obtain:

(n) .H(n). I + (j-l) < =C1 2  12' 12 01'2 12 H1 2 ~ l 2C 2jn;() hr
HCi) - (J)
H12 * (yly2).
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nThen C (0) z 4 s-ny 's.(n 's) andS12 "ao 12 12

n nL s-n-Ifn-s+1 (n-s) Z4Snns1Hns

q 12 S= 4 D012 H12 - - 4snns*1 12
s0 2 12 0 (5.10)

where

12 12' 0 4. q12 + 2D1 "  q120'1 2  
"  (5.11)

If we assume that

n • n.
C 2 2 AC E1 = A1  -4 Z R~ja- 12 9 2 A12 0 12 ' 12 12'

then C (n . -H(); Clj) . 1 (j) + O'1jj H~)+4J-1)(1 j n);2 12 12  T H 2 12 12 12 -

q 2 l c(O)* -_(O) where H(j ) ( (y ) The choice H(j) a 0 for
112 12 12 12 '12 • ()(Yl'Y2 " 12

0< < n yields s-nn-s.-- (n-s+l) and12 4 12 0 q12 H12S - 2 0s12

n2 s-on-+0 gj(n-s+l1). n+ 1s-n~n-s+14- g~(n-se.l)q12 t-sO 4 12 112 12 4s 12 q12  1 (5.12)
ta Sao

Thus the isaspectral problem (5.3) generates the classes of evolution equa-

tions (5.10) and (5.12)

It turns out that the transformation ql2 S 12ql, quq(xyl ) , is an exact re

tion of equations (5.10-11) if, at the same time, 4 s"nH(n-s).. 4Sn_(n+S)
12 ' 12

s(n + 1) s In this case 2 qt 2 -12 and

s t 120

n+I

Proceeding exactly in the same way it is possible to show that the

nonlocal eigenvalue problem

Wx a JWy + QW + XJW, (5.14)

generates the following class of evolution equations
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Q12t , an,t 12'012 H ' Q(xyly 2)

where
e - F

1+P 1 2Q)F 12, F12 I F(x,y19y2) off-diagonal (5.16a)'12 12 1 (P2 " 12 1Ql F2 ' I x

1212 * f dy3(Q13F32 ± F13Q32), 
(5.16b)

a • diag(l,-l) and H(j) is defined by12

P H(j)  3 0, H(j) diagonal. (516c)212 ' 2 (51c

Also in this case the transformation Q12 -- 612Q, is a reduction of (5.15)

if anz () (8 = 2a) and H(2  6Z I or 6L2 In fact, .* .4 Q 2

12 6 012" Thus one obtains the following classes of equations

6 Q n a. 1n ,n-1. - 6 1X n -_I(51a
12Qlit JO0 L &)12 012 121 =(12012 121 51

or

2 2lit JO 2n-212c 2 612 12Q1 , (5.17b)

associated with the eigenvalue problem

W = JW + WQ + XJW.S y

The above results clearly imply that all the notions introduced in

CI to characterize the algebraic properties of equations in 2+1 dimensions

can be justified and interpreted in terms of the algebraic structure of the

corresponding non-local versions. For example:

i) The above derivations both motivate and explain the derivation of the

recursion operators introduced in Cll and C14]. in particular the crucial

role played by the integral representation of differential operators is

clarified.

ii) The directional derivative introduced in [1], which is the main tool
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needed tO investigate the algebraic properties of equations in 2+1 dimensions,

can be derived from the usual Frech.t derivative in the space of non-local

operators. For example, the Frech.t derivative of 4 2gl2 in a direction

f12 is

12Ef12]g12 * f12g12' (. ia)

2 J12 dY3(f13932 t g13f32), Cs 18b)

which is exactly the direction derivative q(2 d[f12]g12 introduced in E1].

iii) The definition of an admissible function and of its derivative follows

from the fact that reduced functions admit a double representation; 
for

example (5.13b) implies

Z 8 (n)12 q 2612  612012q12 *. (5.19)

But the directional derivative is defined only on the admissible representa-

tion given by the left hand side of (5.19), which is the form of 
the function

n n. . (g,)

before the reduction: Z an 2 12M

In Appendix A we investigate (equations (A.3)) the algebra of the

nonlocal operators a'2 defined in (5.18b). Here we remark that this algebra

can also be interpreted as an algebra of matrices in which i indicates the

oeprations of anticommutator and commutator respectively, namely atb = ab b- a.

(See also Appendix C of [1].) This is not a coincidence and the following

important observations, here illustrated on the recursion operator )12 of the

KP class, can be made.

0
i) Integral operators:

q dy3(q1 3f32 I f13q32 ), (5.20a)

12 1
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q12  612ql + a61i2' (5.20b)

is equivalent to the introduction of the integral operator q2 Then

becomes the nonlocal recursion operator $12' defined in (5.11) and associated

with the nonlocal eigenvalue problem (5.3).

ii) Matrix operators:

q f # qf t fq; q,f matrices, (5.21)

reduces 012 to the well-known matric recursion operator
2 + + 1

€& D + q + Dq D" + qD'lq'D, (5.22)

associated with the N x N matrix Schroedinger eigenvalue problem in one

dimension [15].

The directional derivative q 2 d[f12]gl2 of qj2:
12d~flz3912 12

q - fi2g12 , (5.23)

) is exactly the usual FrLchet derivative 4±2[f12] 12 of "

ii) Corresponds to the usual Fr~chet derivative q±[f]g of q±:

q- [fig = f±g = fg ± gf. (5.24)

Since the t operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy

the same algebraic identities (A.3), then important algebraic properties of

the recursion operator *12 of the KP equation (like hereditariness) are equi-

valent to the corresponding properties of the nonlocal recursion operator 012

(5.11) and, even more remarkable, of the matrix recursion operator 012 (5.22).

In order to make this connection with the matrix formalism more clear,

we observe that the nonlocal problem (5.3) can be obtained taking the N

limit of the N x N matrix one dimensional Schroedinger problem

W + q W =X W, (5.25)-xx -- --

where the coefficients of the matrix q are chosen in the form
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( )ij q i (xt) + a(6 6 (5.26aij j+1 ij-1 (.5

with the obvious prescriptions

qij(x,t) - q(x,t,yl,y 2); a(6i,, - 63.) - ( )

- The connection between equations in 2+1 and N x N matrix equations in

1+1 was first used by P. Caudrey. He introduced in [16] a NxN spectral problem

(similar to (5.25)) which reduces to (5.2) in the limit N--. Then he showed

that the NxN Riemann-Hilbert formalism associated with it becomes, in the

limit N- -, the nonlocal Riemann-Hilbert and the Y formalisms of (5.2) [17).

The connection established in this section between the spectral prob-

lems (5.25), (5.3) and (5.2) implies that the well established theory of

recursion operators and their connection to the bi-Hamiltonian formalism in

1+1 dimensions, once applied to the matrix problem (5.25), gives rise, in the

limit N .-, to the corresponding theory developed in [1] and in this paper

for 2+1 dimensional systems.

It is remarkable that both algebraic properties and methods of solution

for integrable systems in 2+1 dimensions can be justified and obtained from

the corresponding properties of 1+1 dimensional systems.
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APPENDIX A.

In this Appendix we present some of the explicit calculations necessary

to apply the results presented in this paper to the classes of evolution equa-

tions associated with the KP and the DS equations. In order to make this

paper self-contained, we first present some results contained in Appendices

5, C of (1].

The directional derivatives of the basic operators q!2 and Q12 de-

fined in (1.4b) and (1.10b) respectively, are

q 2 d(f12]g1 2 " f!2912 1 f12' 912scalars, (A.la)

d

Qi2 [f12)g12 I f12g12
'  f12 off-diagonal matrix, (A.lb)

1

where f12 are defined by

f12g12  J dY3(f13932 ! g13f32 ). (A.2)

The integral operators f12 have the following algebraic properties

a 12b 1 2 ± b 2a12 , (A.3a)

(at b 2 - b ± a ±)c 1  (a- b12)_c 12  a 12 ~b 12 ' (A.3b)

(a12b12  b12a12 12  a12 b12 )c 12 = c 2a 2b12

aj2 t *. a (A.3d)

Moreover the integral representations

q12f12 J dY3 (ql3f32 ! f13q32 ), q12 * =12ql + ai2
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Q12 f 12  f dy3(Q1 3f32 t f13Q32)'  Q12 2 612Ql9

imply that the operators q 2 and Q12 satisfy equations (A.3) as well. Equations

(A.3) are conveniently used to show that:

a) The recursion operators 012 (1.4) and (1.10) are strong symmetries

of the starting symmetries K12H12 (1.5-6) and (1.11-12) respectively.

For example, if R12 • QI2 and H is given by (1.12)

(12d EQi2H1 2]f12 - (Qi2H12)dE1 2f12 ] + 012(Q12H12)dlf12J "
- -ln+ . -1- 4.-

z -((QrH + -IQ + Q+ P1(Q- H )J+f (a(QQ)fZ)-H2 +12 12 12 12 12 12 12 12 12 - (O(P12-Q12P212 12
+ 1 +-4-

+ a(P12 - Q12P 12Q12)f12H12 ' 0, since the terms without Q12 give

-a(P12f12)VH12 +o'P12f 2H12  0 0, and the terms with QQ2 give +

+ P-1 H + f + 1 Q f)H --Q +
1 + - .

"OQ12 12012 12 12 + (GQ12P12Q12f12 12 Q12P12Q12f12H12

"-(((Q12H1 2) + H 2 1 f + QI2Pi2(fI2Q12Hi2 + QI2fi 2H12)) f

12P 12 = 0.

b) The Lie algebra of the starting symmetries is given by equations (1.7)

and (1.13). For example

i) if K 2 H1 2 are given by (1.5-6):

[ A w() 2H(2)]d ((Dq + + q 2Dlq 2)H(2))H
(l) - D(q 2H(1))+H 

(3 )

12 12 12 12 12 12 12 12 12 12 12

q 12  2 D12 (-(H~ 1 2)q H(2 )'+( H (2)) _-q H2 ()
122 12 12 12  12 12 12 12'

12if R 12 are given by (1.11-12)
H~l) A (2 jH(2) )-H(1 )  ( _H(1))':H (2 )

1212'2 1212 Id 1 (Q12H12 12 12 12

2 + ((H( 2)))Q 1) _. H (3)
12 12 12 12 12 12 12 12

c) The functions T12 given by (4.16) and (4.25) satisfy equations (4.10);
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for examples

i) T ' A then
12 12'

12f12 2 12d[ 612]f12 - (26 + '12D  12 q 2D 
1O 2 )f12  12'

since 61 0 and 61f2 2f2 6f 0.

12 d012112 22  12 12

ii) If T x Q12612I, then equations (4.10) are satisfied using the

following results:

T212 Efl2] z 12 -f 1 21 = f12'

f t f J0 Q12f12  f12  off-diagonal

12 12 - x(0 1 f 1 2  f 12 Q2 ) Q  f  f diagonal[Q2f1 f1 diagonal

12 12' 12

For instance:

Sf CT+ P-1QI Q +P1T+ f -+ ( + P_-1 + )xof1
$12f12 1 12 12 2  1 1 2  c(P12-Q1212Q12 12

x(P12 - Q 12PjQ 2 )f12  12'

d) 12  2H 2,r12
] = , if k2 H12 and T are given by (1.11-12) and

(4.25) respectively, or by q12'12' H12  H(y1 ,y2 ), and 0 12" For

example

i) n Eq12H n - H 0.
12ii212,121d 2 12 12 12

ii) n = H n (T_2 .H

1 2 EQ12 H12 T12 1d 212H 12 (T2d[Q212)
: n  " Q H :0.

12 I2 - xcQ1 2 ) H12

e) Equation (4.17b) holds. It follows from M12d  12
]

D672 + 6120-1 q 2 + q 2 'l 2 1 20, which implies

12 12 1 2 1



-36-

n n l ] -2Z Aa
412[M12 H12l 6 1 2 1 12- (A.4)

Different choices of H12 = H(y,,y 2 ) give different results. As it

was shown in Appendix 8 of (1]
n £.-.() H ZH(y -Y2)

n D - H (2a) H12l. H (L) 3z " A512 H1 2  1 Y12  12 12

an analogous, although more tedious derivation, gives
V

Pn~l^ H n n 2* •(a2 ~ 2 Z * &(2 (A) a

12 12 12 M12 H12 + 2 2 12 H (A.6a)

H( )  , a Vn  d (A.Sb)
H( Z)# zH(yl+y2) a i {'(n-l)12, d
12 aY z z ' n /n even

I

(4)and the coefficients C are obtained through the following recursive

construction:

C(in) . C (rn-i) + 2C(rn-I) + C(rn1), (A.7)z z Z-1 z-I(G ) .1
0

where C (a) . 0 if b < 0 and b > a. Equations (A.4) and (A.6) imply

equation (4.17b).

f) 11 2K12H12 are extended gradients; for example if

-0
i)K 2 = N12  qi2' H12 = H(y1,y2)' G12 0 D and n 0:

0 1,=" )ig0] :< 2 ,H 2 g1 2

12 2 12 12 2  f2y' 1  2 
>  :a0

•D f

'f.,D-1 M H 2) 4  O 1 g2-qH 0 D-l 2-g .1 12 d 2 9 1 2 ,g 2 f12  1 "1 2 12 2
AI a M Hy 1'' D(1  an n1 c( ( 0 :

1f 2 ,(H1 2 - D 2H12) q 12  H 2 ))g2  12

+ 1H2Dq+2)D'
1)f12 ,g12  < (H 2-DI)((D-qI 2H12 ) *H+2D' ))l2,

12 2 1) 10 211 1
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iii) K12 • M12 # Q12 z H12 defined in (1.12) and n 2 0:

<f12, (Ml 2H12)g 1 2
> " 2 <f12 ' "H12g12 > 1 12f 12 '

iv) K 2 = N 12 # Q12' H12 defined in (1.12) and-n-l:

<f,2 ' <f1 2 ,( (P -Q + Q- H)+ - PH +
12' 1212 d92 1 2 Q12 12 12 12  12 2

12H12 12 Q1 2 )g12  P <(I(pl2Q12Q12 H12 )  - P2H12 12 12Q12)f2g12.

g) Equation (4.24b) holds, since

J3 + t(n+l)H

3dx dYdY2 612trace Q1 2 ai 2  12.

APPENDIX B.

IN this Appendix we show that if s is factorizable in terms of compat-

ible Hamiltonian operators 2 and 0 in the form SI 2 
"1 , and if 0 is inv:'..i; ,

and SL 0 0, then equation (4.5) holds.

We first show that

(¢T)t =~ + Tt$*, b  @L[b]T ,  (8.1)

(L0 V]T + OL2O)Iv , T]b. (B.2)

(8.1) simply follows from the definition of the adjoint:

<(tT)* a,b >= <a, L[b]T + TL b]> - <2L* + T*')a,b>,

while (8.2) requires the use of all the hypothesis of this Lemma.:

¢L~T T L V1 1T, > + <-1 I  .' I T >

<t Cv]r +G3L*O'1v,a> 2 v)- 1,~<L~~ ,~~
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<a ,L[T10Iv >= <a , L[T]v>

Then, using (8.1-2) and (4.4) for n 0, we obtain equation (4.5):

((tT)L + O(VT)LO )v - (TL[v] + OT*& 1 v) + L[v]T +

+L* 0 1v + -(T*"* ) 'Iv * =
T L L

= t(TL[v] + OT*O 1v) + OSm-v.
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