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ABSTRACT

We analyze further the algebraic properties of bi-Hamiltonian systems in
two spatial and one temporal dimensions. By utilizing the Lie algebra of
certain basic (starting) symmetry operators we show that these equations
possess infinitely many time dependent symmetries and constants of motion.
The master symmetries t for these equations are simply derived within our
formalism. Furthermore, certain new functions le are introduced, which
algorithmically imply recursion operators @12. Finally the theory presented
here and in a previous paper is both motivated and verified by regarding
multidimensional equations as certain sngular limits of equations in one

spatial dimension.
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Recursion Operators and Bi-Hamiltonian

Structures in Multidimensions [}

by

A.S. Fokas and P.M, Santini

I. INTRODUCTION

This paper investigates certain algebraic aspects of exactly solv-
able evolution equations in 2+1 (i.e. in two spatial and in one temporal
dimensions). It is a continuation of [1], although it can be read in-
dependently.

We consider evolution equations in the form

q, = K(q), (1.1)

where q(x,y,t) is an element of a suitable space S of func-

tions vanishing rapidly for large x,y. Let K be a differentiable map on
this space and assume that it does not depend explicitly on x,y,t. If
equation (1.1) is integrable then it belongs to some hierarchy (generated
by a recursion operator ¢12), hence in association with (1.1) we shall
study qq = K(")(q). Fundamental in our tneory is to write these equations

in the form

- n-0 (n) _ (n)
Y, fRdeélz“’lz"u 1 ¢ L{’yz%z"xa Kip s (1.2)

where §,, = §(y;-y,) denotes the Dirac delta function q; ¢ q(x,y.t),
(n) ~0

1=1,2, K, (q],qz) belong to a suitably extended space S, 65, K|, are operator

valued functions in S. If q is a matrix function then 1 is replaced by the

identity matrix.




Throughout this paper m and n are non-negative integers.
The following results were obtained in [1]:
i) There is an algorithmic approach for obtaining the recursion

—

operator ¢,, from the associa§9d<isospectral eigenvalue problem. i)

This operator is hereditqf}j _iii) Each member of the hierarchy

(oTzigz-l)llé LR dyZGIZOTZR?z'l' where K?gjl is a starting symmetry, is a symmetry
(1.2). For example the Kadomtsev-Petviashvili (KP) eguation and the
Davey-Stewartson (DS) equation admit two such hierarchies of commuting
symmetries. iv) [f the hereditary operator admits a factorization in

terms of two Hamiltonian operators, then hierarchies of commuting sym-

metries give rise to hierarchies of constants of motion in involution

with respect to two different Poisson brackets. For example, the kP

and the DS equatibns admit two such hierarchies of conserved quantities.

The above results extend the theory of [2] - [4] to equations in
2+1. Novel aspects of the theory in 2+l include: i) The role of the
Frechét derivative is now played by a certain directional derivative.
If subscripts f and d denote these derivatives then there is a simple -~

relationship between directional and total Frechét derivatives:

(Fyq1 + Kyo [Fyols (1.3a)
1 -
where K, is an arbitrary function in S, and Ky, denotes the Frechét de-
q

Kys [895F,5] = Ky, [F] % K
S 1e4t12n12Y T Mz, 12,

rivative of sz with respect to Qi i.e. !

1 s i
K«lz [F11J T = K]z(q. + EF,Q.)

i om N . 1.
q JE 1 11 J €=O| 1,.} 1.2. 1 f J.( 3b)

i
Cperators on which directional derivatives are defined are called admiss-
ible (1] (applications of the d-derivative in explicit examples can be found

in Appendix A, see also Appendix C of [1]).
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. ~0 0 .
i) The starting symmetry k;; can be written as K;, -1, where K?Z is an
admissible operator. Essential to our theory is that the operators K?z, acting

on suyitable functions H]Z' form a Lie algebra.

1. For the equations associated with the KP equation,

2.+ -1 -1 t : \
%12 = D°4ay+0a;,0" +q12°’ 20 s 9y 4 £ a0y * D), (1.4)

3 <0 .
where 0, # 3;; . The starting operators K12 are given by

. . .
Mz # 910 Mip 2 04y, + a7,0 ), (1.5)

and H]Z is an arbitrary function independent of x, i.e.

Hig = Hialypeyy)- (1.6)
The Lie algebra of 2?2 is given by
s (2 ~ (3 1 (3)
(RIS T T P LN )12 SRR
" 1) & 2 ~ . (3)
4183, g2 ]y = =0 M 13 (r.7)
where )
2 ol J,, o8 A »

2. For the equations associated with the 0S equation

-1 + ),

£,
012 = 0(Prp - Q1PT015) s QoFia F QF 1, £ Frolys

(1.10)
- Fpy J
12 ’
N 72
where J = ag, g=diag(l,-1), Q is a 2 x 2 off-diagonal matrix containing the

PioFy2 ¢ F12x - Iy,

potentials q,(x,y), qz(x.y) and ¢, is defined on off-diaqonal matrices. The

starting operators E?z are given by:

.4




£Z)>

2 ¥ Q0 Myp #Qpp0, (1.11)

and H]Z is an arbitrary matrix function satisfying the following properties:

H]Z diagonal matrix, P]ZHTZ = ?:_‘ (1.12)
Also e
SO TN €A EPAP N € ) BER TS B IR € RN )
[Ny2Hy"s Nighip Ty = -MigHia’s [NGoHy oMM o7 1y = M2 s

NSO IPIC NPT (1.13)
CRTIEICEY 1M

1ii) The recursion operator 91, is admissible and enjoys a simple commuts i -

operator relation with h12 = h(yl-yz):

3hy 2 -
(o202 = '3“12' M2 * 3;;‘ ' (a.n
which implies that & K = K 2 )0" 15t Ko 1, where
1242° = 821252 - 12 81252 1

0
S12 #3802y,
The starting operator K?Z is also admissible and its commutator re’
tion with h12 implies that 612K$S) can be written in the form

n

c {n) . 0 “0 pN=220 1 ;‘\

(242" 7 g2k T Dt R e (s
for suitable constants bn R
1. For the two classes of evolution equations associated with the KP
equation we have that

3 = -4a, [~12,n]2] = 0, [M12,h12] = - 80hy,, 3= 32, (1.16)
and
i,n ~0 o
; . i (l)’ for Kyp = Nyo .
b )L atIEIS), for K3, <,
=0 12 12

2. For the two classes of evolution equations associated with the DS




equation we have that
8= 20, [Nyl = [Mpuhy ] =0 (1.18)

and _

L QN
by, B (1.19)
/

In [1] we assume knowledge of the underlying isospectral problem.
This problem implies: a) a hereditary operator ¢ ,; b) suitable starting
operators, say 312 and §12' and functions le; c¢) two skew symmetric oper-
ators such that 9 = @%2)(041))']. Furthermore, it can be shown that ¢,,
is a strong symmetry for the starting symmetries. One then needs to: a)

Find 8 and b2 appearing in equations (1.14), (1.15). b) Compyte the Lie

algebras of ﬁ12. ﬁ12 on function le (i.e. obtain equations amalogous to (1.7), (1.13). c)

Verify that the starting symmetries correspond to extended gradients, i.e.
verify that ((@(‘) °1K?2 ”u9d' K?z 12 or ﬂ12, is symmetric with respect

to the bilinear form

<912.f]2> %‘[R3 dx dy,dy, trace 921f12' (1.20)

d) Verify that @gé), O§§) are compatible Hamiltonian operators.

In this paper the following results are presented.

i) In 52 we investigate further the Lie algebra of the starting symmetries

232“12- In (1] we only used a subclass of solutions of (1.6) and (1.12),
given by H12=h12=h(y1-y2) and H12=h12(a1 + bc), a, b, const-

Aants. respectively. This gave rise to time-independent commuting
symmetries. We now choose le to be a more general solution of the

above equations; this gives rise to time dependent symmetries.
ii) In §3, using the Lie algebra of 2?2.H12 and an isomorphism between

Lie and Poisson brackets we prave directly that °?2K?2H12 correspond

A

LA™



to conserved quantities. This derivation, which capitalizes on the
arbitrariness of H12. has the advantage that does not use the bi-
Hamiltonian factorization of @12. In other words, for the theory

developed in this paper one needs only to verify a)-c) above.

We recall that Fuchssteiner and one of the authors (ASF) introduced
an alternative way for generating symmetries, the so called master-symmetry
approach. A master-symmetry is a function t which has the property that
its Lie commutator with a symmetry is also a symmetry. The t functions for the
Benjamin-Ono and the KP equations were given in [5] and [6-7] respectively. Several a
ors (E.g. [8]-[12]) have noticed that master-symmetries also exist for equations in I
as well as for finite dimensional systems [13]. Let T and T denote mastery-symmet-
ries for equations in 2+1 and 1+l respectively. If ¢ is the recursion operator and
£ =tK+ TO is the scaling symmetry of an equation in 1+1, qy = K, then
T = @To is a master symmetry. However, there exists a fundamental difference
between t and T. The function o7'T (0 1is a Hamiltonian operator) is not
a gradient function; this can be used to constructively obtain ¢ from 7. But

Jlris a gradient and hence the above construction of ¢ from ¢ fails.

In this paper we show that t is not the proper analogue of T. Let

us consider the KP for concreteness. As it was mentioned earlier, @?2R12-1 generate

time-independent symmetries; it will be shown here that ¢?2R12(y1+y2)m generates time

dependent symmetries. It turns out that < =(0$2R12(y] + yz))11 (see §1ID). But
-1.n ~ , : - .
01287 2K oH o TS an extended gradient for all HIZ' hence & - is a qradient |
function. In §4 we show that the proper analogue of T for the KP is T12 : ¢$2612
(it corresponds to @2-1 for the KdV). Actually, G;éT]z is not an extended
gradient and it can be used to constructively obtain ¢,,.

In §5 we show that exactly solvable 2+1 dimensional equations are

exact reductions of nonlocal evolution equations generated via nonlocal iso-




~

spectral eigenvalue problems. This result both motivates the basic ideas ang
concepts introduced in [1] and in this paper, as well as verifies several

results presented in the above papers.

Il. A LIE-ALGEBRA FOR EQUATIONS IN 2+1

In developing a theory for time-dependent symmetries in 2+1 it is usefy)
first to: i) characterize the commutator properties of these symmetries, ii)

study the action of ¢ on the Lie commutator [a.b]L, where

and aL denotes an appropriate derivative. This derivative is
linear and satisfies the Leibnitz rule. For equations in 1+1 one only needs

[a.b]f, while for equations in 2+1 one also needs [°12'b12]d (see (1.3)).

Lemma 2.1
o(r) is a time dependent symmetry of order r of the equation
9y = K, i.e.
30(r)
ot

T CARNS HEE S (2.2)

iff
r . . . .
c(r) = T th(J)’ E(J) - }'[Z(J-]),K] R j’],...l", {K.Z(r)] = 0,
. J L L
j=0
(2.3)
The above result follows from the definition of a symmetry and the
assumption that z(J) is time independent. [t implies that constructing a

symmetry of order ¢ is equivalent to finding a function 2(0) with the pro-

)St commutator with K 1s zero.

perty that its (2+1




"

The action of a hereditary operator ¢ on a Lie commutator is given

by:
Theorem 2.1 —

Let o

S 4 o [K]+ [oK ] . (2.4)
Then
n

n = n n-r -1

) KK D = (K LeTKy ], ¢+ (1 5107 )K,. (2.5)

If ¢ is hereditary, i.e. if

oL[¢v]w - ¢¢L[v]w is symmetric w.r.t. v,w (2.6)
then the following are true
3,) o [e"K] + [o,(0"k) ] = s, (2.7)

m-r. ,r-l m
o Syd  )K, - ¢ (
1 1 2 r=]

W3

N+me, - n m n

(m,n are non-negative integers).

Proof.

To prove (2.5) use induction: (2.5)O is an identity. Applying ¢ on
(2.5)n we obtain

n
L @"'“s]o
r=1

Y‘-] )K

n+l - n

Equation (2.5) follows from the above and the following identity

n+l
o[K], M]L = [K],QM]L + SM.

Equation (2.7) also follows from induction. To prove (2.8) first note that

n
n-r r-1
E ¢ 52® )K] .

9.




(2.5) implies

m M mere . r-l m

$ [K].Kz]L - (r§]° S1¢ Ky = [K1.¢ Kz]L. (2.9)
Equation (2.5) also implies

-~ -~ n - -
oMKy Ky = [0"Kp KD - (£ " TMS,e )

K, .
r=] !

Let K, = 0"y, then (2.6) implies 3, = 6"S,, and the above equation becomes
n
n m . r.n m n-r me . r-1
o (Koo K0 = [Tk K], - (rilo osp K-

Applying o" on (2.9) and using the above we obtain (2.8).

Corollary 2.1

Let the hereditary operator ¢ be a strong symmetry for both K, and Kz, i.e.
S1 = S2 = 0. Then
n+m . N m
) [Kl'KZ]L = ¢ Kysd Kz]L. (2.10)

[n the rest of this section we characterize extended symmetries SIPE
The following theorem, proven in [1], maps extended symmetries'o12 to

symmetries INy-

Theorem 2.2
Assume that the commutor of A with h12 is given by (1.14) and that
the starting operator E?z are such that (1.15) is valid. If 2 is an

extended symmetry of (1.2), i.e. if

do
12 N0 i .
St * Loz g = 0 (2.11)

then g,, is a symmetry of (1.2), i.e.
N

Lo}
11 (n)y .
—aT + [O]]oK]] ]f 0. (2.]2)
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In the above

n n

9 9
and
n
n 20 _ N=-220 L 94— et g™ =~ —
(oy2:612%2K2 g = rLEO"n.z["Iz"’m Ki281234 (2.14)

~

It is necessary to rewrite 6]2¢?2K?2 .1 in the form appearing in (2.14)
since the directional derivative is defined only for functions of the form
L12H]2. where L]2 is an admissible operacor.

Using Lemma 2.1, Corollary 2.1 and the Lie algebra of K?2H12 (with
appropriate H12) we obtain extended symmetries, which then via Theorem 2.2

give rise to symmetries.

Proposition 2.1

Assume that the hereditary operator %2 is a stronq symmetry for the admissit
starting operators ﬂ12’ﬂ12’ and that (1.14), (1.15) hold. Further assume that RIZ’

ﬁlz form a Lie algebra (analogous to (1.7), (1.13)). Consider the following hierarch

= | NNl o1 = (n) _ ,(n) -
RM J dd12%12Me 1 - J dya61oM2" = My (2.154]
t IR R
= N = (n) . uim)
M dey26‘2°12M12 ! JRdy2512“1z M (2.15b)

Then:

Y

a) (°?2M12 -I)]], (®T2ﬁ12 -1)]1, are symmetries of equations (2.15).
. 4 s ma . (r) Lmo ()
M s ; )

b) Appropriate linear combinations of 9, TzH12 11 ‘912N12H12 ‘1 for
suitable functions Hgg) generate time dependent symmetries for
equations (2.15).

Rather than proving the above proposition in general, we use for

concreteness, the Lie algebra (1.6) to sketch how the above results can be

derived. Details are given in I1.A, I1.B.
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Let
A(n) s na A(n) s na
Njg" 2 @ N Mppt 2 0T My, (2.16)

Then, using corollary 2.1, equations (1.7) imply

P N L P

PR
[ﬁ](g)H'fé)’ (ﬂ‘l)H(Z)] N(m-l-n-!.) 1(3). [N(m)H](;).Mgg 9’) (2)‘ = M(m+" 1)H§2 ,

(2.17)

A(mH(1) -0y (2)

() A2, « RO, MY MDD, « g

12 -

Part a) of the proposition is a direct consequence of equations (2.17) and

(2.14). For example
a(m) " ~(men-g) | R(2) .
(R{D Vo651 = - £ b, A Hiz" = 0
1 0
since ﬁ(z) = 62 J; = 0; thus ﬁ(m)-l are extended tries of (2.15a)
12 291241 ’ 12 ended Symme s O .10a).
Consider part b) of Proposition 2.1. Let us first consider symmetries

of order one in t. Then

ﬂ?g(y1 +y,) - t28(, )N(m+" Do
(2.18)

K00y, + ¥,) - tes(DA{TN-1)

are first order time dependent extended symmetries of (2.15a). Similarly

ﬁgg) Ay ryp) - t2b ﬁﬁg*”“’ -1, (2.19)
g§g> - (yy *y) - (s, N nmn) g, (2.19b)

1
are extended symmetries of (2.15b) with by 1 * (-4a) £ 273 (g :
! s=0
(2.

To derive the above we use Lemma 2.1 and eguations 17). For example,

(0)

to derive (2.18) we look for a function L2 such that its commutator with

612ﬁ§g)~1, commutes with 5]2"{5)'] . Clearly £§2) = “12(’1 +y,) or
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ﬁ?g(y] + yz). For, (2.17a) implies

A

- nys(m+n-1),
12 g = B8N L

[N (y1 + ¥5)e 8y

—_—
—

: =(2) . 2 . . . . . -1
since, H12 [y]+y2. 51211 -/’59111._qhere 6]’2 0 ifLAglorl ifg=1.

In a similar manner/

?g(y] + y2)2_ t4g( )N1m+n 1)(y1+y2) . t?482(n) N(m+2n.2)

. (2.20
Ay, + v, P - an( (MALTN=1)(y 4y,) + t2ag?(D)ZR{T*2-2),4 )

are second order time dependent extended symmetries of (2.15b). Similarly

12 almen=1) 2402 N(™20-1) 4 (2. 21a)

alm
N( ) . (y] + yz - t4bn,] y]+y2) + t°4b 01

slmn) 2

q(m) 2 2 (m2n-1)
M {yy *yp)%- tab N ab. (M 1,

(y]*.YZ) +t W1

by 1= (~da)(n + 1), (2.210)

are extended symmetries of (2.15b). Indeed

since, [(y,+y,)%,6%,] = -4(y; + y,)6, .. Also
172 12 1 2'°1,1

[N(m+n -1) 23( )N(m+2n 2)1 )

N
(y1+92)s 8ypMyp 11 =

The extension of the above results to any order in time is straight-
forward: To generate cgg) consider ng) = ﬁqg(yryz)r or ﬁ??(y]+y2)r. The

commutator of (quz)" with 5%’2 produces  (y, + yz)"'1

Thus the r'" commutator of (y1+yz)r with 6%2 produces 1 which commutes with

th

L .
6( ), hence Lemma 2.1 guarantees the existence of an r~ order symmetry.

1

. s
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I1.A. Time Dependent Symmetries for the Equations Associated with the

KP_Equation.

Following the construction and the argument sketched above, extended

symmetries of order r in time

o{r) - go tiz (g)/‘/, (2.22)
are generated through Proposition 2.1, starting with Zgg) = ﬁ§g) . H{E)
or Mgz f;’. where Hfg), is defined
by

mE ety )T (2.23)

more generally, any homogeneous polynomial of degree r in " and ¥a could be

used as well (note H{z solves (1.6)). Using

r-s
["45): 652]1 = -(1 - (- 1) ‘o(r-s)F_S_)_' §.2 )» (2.24)
1, a >0,
g(a) = (2.25)
0, ac<ao,
we can show that
i) The class of evolution equations (2.15a) with ﬁ12 = q{z admits t- g
dependent symmetries of order r given by
(0) . gfm) . o(r)
2 N12 H12 (2.26a)
o J h|
Z%%) = ru(r.d, s)“(m+1n- Efsl+1)_312(r-l§fgl+1L ‘2.26b)
and by
£{0) 4 glm) | y(r) )
i M7 MG (2.272)
( ! ). ( % ) |
(i) . S(m+ejn. £ 25 +1 r-32 +1 .
{
!
where the summarion £ i from ¢.._ ... .. s, zero to P . {

&

Pod

Nd
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where j > 1, P = (n-1)/2 if n is odd and (n-2)/2 if n is even. Al«o

L——?——. ( 38(r - fLEIZJ +1)X an %, G (@2

usl (r - L 25.+1)!
g=1 ©

i

V(T,j,S)

—
S

and b (-4u)2(2)-

n,

. . ~ + - =1 - .
i) The KP class (2.15b) with My, = Oay, * q120 912 admits t-dependent

symmetries of order r given by

(0) , gim)  p(r) ..
' T M2 M (2.2
23 2
' (me2ineg- T 2sg*l) o (pS3 25041) 2 29h)
£8) « po(r,28090), =1 Hy, TR (22
(me(2§-1) 4y )
; - 2j-1)n+j-1- L 2s,+1 2j-1
(23-1) , m’ 27 (r-"p 28 +1)
512 Du(r.2d-1,s1M, £*] 1z it
(2 27
and by
( ) - (m) (r) [l >-,‘.~‘,‘
I Mt Mt "
23
: S(m¥2in+] - L 2s5,+1) 23 2.30b)
2 S ST (S5 2sel) (2.
21(23) = zulr,23.s)My, 2= Hyp' ik
2j-1 2
j-1
(me(2g-tmed -z 2sgl) (e g )
z%zJ -1) 2 g ou(r.23- s)N12 =1 "o gl
(2.30c)
e . f =555/ N=Sy o (gt ~ 2°8(N"S
with j > land D . = S..=03 () (-41) S._20.2 (gl

e

——— 4



-15-

[1.8. Time Dependent Symmetries for the Equations Associated with the

Davey-Stewartson Equation.

The construction of t-dependent symmetries for the equations
associated with the DS equation is similar. _ﬁ5;ended symmetries of order r
in time are generated through Lemma,z.l. starting with

(0) = N(m) H(r) or M(m) g;), where the solution Hgg) is
defined by,

WD) & diaglel T ). by vy, 2a (2.1

12 127712 Tt 2
(r) satisfies the same formyla (2.24), obviously replacing [le 8 ZJI by

[Hgg), I]I Then, using Corollary 2.1 and equations (1.13), one can show

that

i) The class of evolution equations (2,153) with §12 2 q;z admits t-
dependent symmetries of order r given by equations (2.26) and (2.2/),
where b = 8 o ) = (23)2(2) and j > 1.

ii) The class of evolution equatians (2.15b) with ﬁlz = Q{zc admits t-
dependent symmetries of order r given by equations (2.29-30),
replacing: ﬁ(') « #1073) in equation (2.290), M{) = gl-=3*1) 4,
equation (2.29¢c), M( ). M( =) in equation (2.30b), N ( ). &('-J)
in equation (2.30c) and using b, , = (2247

[I.C. Connection with Known Results.

Before the discovery [14] of the recursion operator of the KP equation,
a different approach, the so-called master-symmetries approach, was used to
generate an infinite sequence of commuting symmetries (6], as well as t-
dependent symmetries [7], [11], of the XP equation (see also [18], [19]).

The existence of a hereditary operator in 2+l dimensions, tagether with

cr-

the Lie algebra of the starting symmetries allows a simple and elegant chara

@,
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erization of the 2+1 dimensional (gradient) master-symmetries introduced in

the above papers. Here we briefly consider the KP exampie.

In Proposition 2.1 and in §I1.B. we have shown that the functions

(m,r) m 0 (r)
VIS PISTL P (2.32)

—

(where Hgs) is defined in (2.23), but it could 5; any homogeneous polynomial

of degree r iny,, y,, and R?zlﬁ§'ﬁié or ﬁlz) have the property that their

(r*l)gtcommutator with 512K§g) is zero, namely
(- [r('" ), os k(M L] = 0. (2.33)
——— 12 12 d d
r+l times r+1 times
Then Theorem 4.1 of [1] implies that
m,r) (n) 1 s
(- [H S SE PEEIRS PR (2.34)

r+l times r+l times

namely r&T 7 are the so-called master-symmetries of degree r of KP [11]. Equa-

tion (2.33) essentially follows from the fact that a single commutator of

ng,r) with 612K§g) generates a linear combination of lower degree master-
symmetries; in fact, choosing for concreteness ng )'¢12 1Z(y1 + yz) and
Kgg) = Mgg), we have

() s WD ez ATy ey )T 5D s

12 12712 120 ™ i 12 1 2 'or1ell

. T «(r-.) r! b _(m#n)r- l-) (2 35)
Lo T Pyl 12 ' ‘

which implies

. (n) . n r! (men,r-2)

[ M e L=1 Ar-Am7 Ol . (2.36)

For r = 1 equation (2.36) becomes

[_(m 1) ( )]f : b M(m*")- (2.37)

" n,1'11 7

master-symmetries of degree 1 generate equations which belong to the given hierarchv
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(X}

III. LIE AND POISSON BRACKETS FOR EQUATIONS [N 2+

In this section we first derive an isomorphism between Lie and
Poisson brackets. Then, using this isomorphism and the Lie algebra of the
operators R?Z' we prove that e;;i$2H12 are extended gradients. This implies
that all extended symmetries of the previous section give rise to conserved
quantities.
Theorem 3.1

Let [a.b]L = aL[b] - bL[a] be a Lie commutator and <f,g> be an
appropriate symmetric bi-linear form. Let grad ! be the gradient of a func-
tional [, defined by IL[v] = <grad [,v>; then y is a gradient function iff
Y * YE. where M* denotes the adjoint of the operator M with respect to the
above bi-linear form, i.e. <M*f,g> = <f,Mg>. Then if the operator ¢ is a

Hamiltonian operator, i.e. if

% = -0, <a.eL[@b]c> + cyclic permut = 0, (3.1)
then
[Jf,ug]l_ = 5 grad<f,og> + 2(( f -fr) Y(2q] - gL-gt)[af]}. (3.2}

grad<f,3g>[v] = <f (vlpg> + <f,0 (vigp + <f,39, (v]>

<ftleg] - grlofl>

<frleg) + M3f - gflagl, v>,

‘where <f.@L[v]g> = <f,Mg[v]> and Mg denotes a linear operator depending on g.

Hence
(ef.0g] - agrad<f,ag> = 3 [2g]f + of [39] - 3 [oflg - 29 [af]
-oftal + cgplog] - Myf

* o (eg]f - g (of]g - oMzf + o((f -fy){og] - (9 -9f)(ofl}.

e —



W | W e

-18-

8ut the sum of the first three terms of the above equals 2ero becayse of

(3.1). Hence (3.2) follows.

-

[n the above aL denotes an appropriate directional derivative. Fgr equations in

1+1:
[a,b}L = [a.b]f, <f,g> = f dx trace gf. (3.3)
R

For equation in 2+ _

[212:0120 = [ay:0y500 <Frpogyy> = fnz dx dy trace g fyq.

<f12,g12> = I’RZ dx dy]dyz trace 921f12 (3.4)

.

(if f and g are scalars, then delete trace), where [ ]f. C ]d are defined in

(2.13), (2.4). Furthermore the following double representation of the func-

tional I

[ = [RZ dx dy,trace o, = Jn3dx dy,dy,$,,trace o), (3.5)

allows to define the extended gradient gradlzl and the gradient grad I of the

functional I by

= i’ Iy + A A
L4lvyp] jR3dx dy,dy,d ,trace o ,[v,,] ¢ <gradi,l, vi,>, (3.62)

If[VIIJ s ( ,dx dy,trace ollf[VIIJ & <grad I,v11>. (3.6b)

‘R

The following theaorem, proven in [1], maps extended gradients Y12 to
gradients ARk
Thegrem 3.2.
a) ¥1p and v, are extended gradients and grdients respectively iff

. 3 - , N ¢

Y lzd led and (llf 2 Yllf' with respect to the bilinear forms

(3.4c) and (3.4b) respectively.
b) [f Y12 is an extended gradient, then vyp 'S a gradient corresponding

to the same potential, namely if Vi ® gradTZE. then vy, = grad .
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Proposition 3.1

Assume that the hereditary operator by, is a strong symmetry for

the starting symmetries M12H12 and NIZHIZ' Further assame
that ﬁ]Z' le form a Lie algebra (analogous to (1.7) and (1.13)) and that 312 1s a

Hamiltonian operator whose inverse exists. Then

1m0 0 | -
91291251220 Ky * Mg or Nya (3.7)

are extended gradients, provided that 9;é£?2H12 are extended gradient.

Proof
For concreteness we proof the above proposition for the recursion

operator and starting symmetries associated with the two dimensional Schrédinger

and 2 x 2 AKNS praoblems.

IIIA.  Conserved Quantities for Equations Related to KP Equations

Corollary 3.1
Let
N - " + - ‘1 - " A(n) a n .
Ny2 ¥ 91 My # 0ayp + a0 Tag,. Hyp # Hlypuy,)s M50 2 905M,,
ﬁ(“) = ¢" Q 0 = 0 (3.8)
120 * 12N 29270, :

where ®12 is the recursion operator associated with the KP and is defined by

(1.4). Then

=15(n+1)(3) | a(n) (1)
DM le grad<M H12 , 12 > .

IUASIIELE grag< Mul)) o7 Tw{2), .

Proof
We first note that the assumptions of Proposition 3.1 are fyulfilled.
Namely o‘z is hereditary and is a strong symmetry of M12H}2. ﬁle (see Lemma

4.2 and Appendix C.la of [(1]). The operator D'l is obviously a Hamiltonian

-1a . . .. Y
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Since D']§]2H12 1s an extended gradient, Theorem 3.1 and (1.7c) imply that

0° N%é)le is an extended gradient. Then Theorem 3.1 and [M(" (2).N(]) (2 )]

. .p(n+l) (3) imply by induction (3.9a). Finally Theorem 3.1 and

My I;)' ”ng)]d"'a(n+1)ﬂ§g) imply by induction (3.9b).

A consequence of the above resuylt is that all symmetries derived in

ce— T

§11.8. give rise to consderved quantities. For example, the following t-dependent

extended symmetries (see (2.19@)‘;hd (2.21a))

S glm) q(m+l)
92 "1 (y1 + yz) + tla:le 1,
o(2) . f(m) 2 (m) (m+1)
912" TNy *yp)o e 24aM; 57 (y 4y,) + t?1440 - 1,
of the KP equation q1 = Mgi) 2 2(ql + sqlq1 + 3a.ZD°1q1 ) correspond to

11
extended gradient functions 0 10(;) and 0° cgg), then they give rise to the

following t-dependent conserved quantities (see equations (4.15))

t
(2) _f 1 -la(mel), L2 tid q-lg(mel), | .
028 o ey (0T R e h) - BTy,
2ag 2
. 5360, 1x(me2) |
i e ULV, by -

[11.8. Conserved Quantities for Equations Related to 0S Equations.

Corollary 3.2

Let -

-~

; ()‘n‘ o(n)_.n 3o s
H12 diagonal and such that PIZHIZ 0, M]Z E 3]2M]2,N12 °12N12' 12 ° %

(3.10)
where @12 is the recursion operator associated with the 0S equation and is

defined by (1.9). Then

M) o gragan™) Hy) ot uid), (3.11)

ca(n)(3) . .-.a,u\") (M a:nu(”)

-,

LW,

.4

N4
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Proof

The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2 ang

Appendix C.2a of [1]1). The coerator o is obviouslv Hamiltonian in a <space of off-

~

diagonal matrices. Furthermore, 0"12H12‘ MIZNI.‘.’HIZ are extended gradients (see

Appendix A).

Since the above are gradients, ‘[M(")H%), (”H](g)]da-ﬁ("ﬂ)H](g) implies
(3. ). Then [M(") %;), MH%%’] = -A(n)H§g) implies (3.11).

The above implies that the symmetries derived in §II.C. give rise to

conserved quantities. For example, the 1“‘t and Z"d order t-dependent

symmetries

(1) . ( ) (1) )
aip’ = Mg Hyy' - 8at "gg

0@ M) - ei(@ul) o ZoaZilm?) .

of the 05 euaation Q) = “(2) L O 0201 ) - QuA; + AQ,], (0-00))8,
4t

s -2(D+JD )le, obtained from equations (2 29-30), correspond to the extended

gradients ccg), ocig); then they give rise to the following t-dependent

conserved quantities (see equations (4.24)):

(1) , | 1 o-la(mel) (1), _ téa o(mel) |
[ andx dy tracec[Ql.m(D MIZ H1s )11 = V2 1],

15(m*1),(2) Iy(mel), (1)

(2) ,
2452
73227 o-1g(me3)
f ey (0N T D)
IV. ON A NON-GRADIENT MASTER-SYMMETRY.

In this section we make extensive use of the isomorphism between
Lie and Poisson brackets. Hence it is useful to investigate the praperties

of

Hg, - gp) = T+ oty Trag,9 = 0. (a.1)

P




Lerma 4.1: Llet

s#e (1] + (0.7 ], (4.2)
with its adjoint
s« = op(T] + (Tf, o*]. (4.3)
a) If ¢ is hereditary then -
otlo"T] +(0"T)re* ~ow(a"T)x = smpe" (4.4)
b) If ¢ is factorizable in terms of compatible Hamiltonian operators,
i.e. if ¢ = Q@°1, where Q + v0Q is a Hamiltonian operator, Gis
invertible and v is an arbitrary constant, then
(6T, + @(¢T)E9" = o(T + eTfe“) + 05771, (4.5)
where we have assumed for simplicity that eL = Q.
n - -
c) (@"T)L +@(¢nT)‘|'_6-1 = @"(TL + eTte']) vz e Toe" Tsegl. (4.6)
' r=l

Proof

Equation (4.4) is the adjoint of (2.7) for X = T. Equation (4.5) is

derived in Appendix B, and (4.6) follows from (4.5) by induction.

Theorem 4.1

Assume that ¢ is factorizable in terms of compatible Hamiltonian

operators and that GL = (0. Further assume that e']¢nM is a gradient function

and that ¢ is a strong symmetry for M. Then

1

M 2™

m " o ner.,r-l -1.n
8™z o "se" M = zgradad” IM, P> -
r=1

-s™(T

Tl 2 ™ Seg

W3

r=1

. +<3T[9“)o”3 - M, T (4.7)

Proof
Using the fact that 37]¢"M is a gradient, equation (3.2) becomes

[o™,a™]_ = agrada™ o™, o™T> - ((6"T) + a("T)7e”

T1o™. (4.8)

d
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Since M is a strong symmetry of ¢, Theorem 2.1 implies

) n
[o™, d™] = ™M, 7] + o™ z]o"'r%"'1)ﬁ. (4.9)
r=

Using the above and (45 ) in (4.8) we obtain (4.7).
Equations (4.6 ) and (4.9) are useful in-finding non-gradient master-
symmetries for equations in 2+1, Furthermore, Theorem 4.1 is useful for
/

deriving the potentials of various gradients. Formulae (4.6), (4.9) and

(4.7) take a particularly simple form if the function le is such that

i) S12 = S7p = cl, (4.10a)
where 1 is the identity operator and ¢ is an arbitrary constant, and

.. -1,

i1) led + GIZTYZJOIZ Q. (4.100)

In the following two examples the non-gradient master-symmetries are generated

through functions T12 thaf satisfy equations (4.10).

IVA. Equations Associated with the KP Equations

Corollary 4.1
a) @%25]2 is a non-gradient master-symmetry for the KP and the equations

related to KP:

n -0 2 - n+1-~0
S PLIPEIPE P PIL AL IO PLIPY (4.11)

. (42 o w2 -1

where bn and le are given by

= = i } Ao :A
b, = 4n, Hip ”‘Yl'yz) arbitrary, if K2 * Npp (4.13a)
and by
O =, (4.13b)

= = r = \ 3
by = 2(2nel)y Hpp = (yyoyp)'s =001, HF K, 2 M,

R

-
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b) Let
s(n) 4 Ny ;0 304 07150
iz’ 21 Y2t C2ie (4.14)
Then
My o grad, .l (4.152)
Y12 Mo = 9radypla, .
1 (n+1) ! f ~(n+1) _
[ 4 — Hygy8y,p> = oo dx dy,dy,&,,Y Hyp =
n bn+1 Y12 M20%12 brey JR3 192% 22 "12
- 5 J 2 a4 G5 im0y (4.15b)
n+l ‘R
where bn and le are given in (4.13).
Proof.
If
Tip = §yp0 (4.16)

equation (4.10b) is trivially satisfied and equation (4.10a) holds for c = 4,
since @12d[612] = ¢Y2d[512] = 4. Equation (4.12) is a simple consequence of (4.6)

for n = 2, using the following results

n N -
’12[N12”12'612]d =0, (4.17a)

2[”12 y1+y2 12] 12 z(YI*Yz) » r =01, (4.17b)

(see Appendix A) in equations (4.9) and (4.7) (with M = R?ZHIZ and le as in

(4.13)), we obtain

n ~0 m . n+m-1-0 \
(21K %212 3209 = 8%l K122 (4.18)

(that reduces to (4.11) for m=2), and

n+m-lﬂ0 , ~(n) m
P Kigha = S1p9madyp < v 1292 (4.19)

where we have used ¢?2®12 =‘3]2¢;g. Equation (4.19) reduces to (4.15) if

one uses the definition of <f12’912> given by (1.20) and (3.4c).

-4
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] Remark 4.1
i) T$ ¢21 is a non-gradient master-symmetry for the KdV equation. Given
T one recovers ¢ from Tf + @1’;9-1 Ecuation (4.12) is the two-
%I dimensional analogue of this well known formula [8]-[10].
ii) Theorem 3.2 implies that equations (4.15) with m=1l, H12=1 reduce to the
following formula [6]
(n) . 1 I (n+1)
Y grad dx dy,y (4.20)
P N7 b i 1"
An analogous formula, for the KdV equation is well known
(n) , j (n+1)
° mgr&d dxy .
i) We observe that equation (4.18) for le = 1 cannot be projected into
equation (2.37).
IVB. Equations Associated with the DS Equation
Corollary 4.2.
2 L X + = As . _ : -
a) ¢12T12, le t 3 lezélzl, I = diag(l,1), is a non-gradient master
symmetry for the DS and the equations related to DS:
2 __.n+l=0 .
EISPUIPI P gvy PR CIOGSPUIS (4.21)
°
20, = (82T ), +0. 05T )l 9. =5 (4.22)
} 12 12'12°d 12V 1212 d 12 12 ' ’
where XJ,H,, is defined in (1.11-12).
® b) Let
~(n) _ .00 0 | 1-1~0 s .-
T2 7 oM 2 T M e T (4.23)
Then
® - 2 (n) =
Y12 M) gradlzln, (4.24a)
1 olnel)y ) L An+l) .
T P12 M2hi? T ey dy\dy,traces 01,375
~ +1
o a ?T%ITY {Rde dyltrace 0[01.(Y§2 )le)ll]' (4.24b)

4
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Proof:
If

T (4.25)

. X +
12 F 790280
equation (4.10b) is satisfied and equation (4.10a) holds for ¢ = 1 (see
Appendix A). Then the derivation of equations (4.21), (4.22) and (4.24) is

analogous to the one of Corollary 4.1 (see Appendix A).

V. 2+1 DIMENSIONAL EQUATIONS AS REDUCTIONS OF NON-LOCAL SYSTEMS.

In [1] and [14] the classes of evolution equations

n 20
Y, fRdyzélz"n"n T (5.1)

where ¢,, and R?Z are defined in (1.4-5), were algorithmically derived from

the spectral problem

W, *alxylw + ow, = 0. (5.2)

In this section we show that equations (5.1) are exact reductions
of equations non-local in y, generated by the following non-local analogue
of (5.2)
Wy ¥ gw + oW, = AW, (5.3)
where
() (x,y) ¢ JRdyz a(x,y,y5)fx.y,). (5.4)

Hereafter the symbols u and gy indicate the integral operator defined by

@) # [ drgularasg) o) (5.5)

and its kernel Uiy H u(x,yl,yz), respectively.

The algorithmic derivation of the classes of evolution equations

associated with (5.3) is standard; its main steps are:
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i) Compatibility.

A compatibility between equation (5.3), written in the more conven-

0 1

ient form ( w)x 2 (A-é- 0 0) (ww). and the linear evolution equation
yt

" X

X

(w"')t = Q(ww). yields the following operator equation
X X

By * Ep * (3 +00,20) + (3 +aD,8, 1" + (2 + 0,07 (3 +

+ uDy.E]] + A(-48, + 50 - Eo) + Eo(d + aDy) - (3 + “Dy)AO' (5.6)

where the scalar integral operator 2€ is the 1,2 component of the 2x2 matrix integra |

operator V. RO = Eo =0and [, Jand [ , ]’ are the usual commmutator and anti-
commutator. * X
ii) Equation for the kernel.

The operator equation (5.6), together with the definition (5.5),

implies the following equation for the kernels CIPPRHPY A12 and EIZ:

. 1t e 1,4 -
Y2, * Wbz * A - Qolhyp - 28, + Qe ¢ *('4°12x M PIRR PP
(5.7)
where
byt 08+ 3y, + 07'a},0 + 07'a],074) . (5.8a)
4. :
1212 .[n (a13F3p & F13932)dy3 * a0y * 05)fy;, (5.85)
iii) Expansion in powers of .
Let us first assume that
n N N
- J-(3) - -
Cy2 i Ci2%s B2 = Ay = 0, (5.9)

equating the coefficients of AJ(O < J < n) to zero we obtain:

cig) = W3 e = ey 30 g e Ng,” By C1g + where

Hg%) b H(j)(y'l 'yZ)'




I I A

—_—— - —

B aamen
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(0) N senzn-s (n-s)
Then C12 Z 4 le le and
s3(
n n
s=n.=n-s+l (n-s)_ . 's-nzn-s+l  (n-s)
q = 7 4 084 H = 7 4 ? -H ' (510)
12, (I 12 12 <=0 12 12
where
. 5 nlan? . st S e .
P1p B 00 T 2 0T e ap ¢ DapD T v qyp0 Tagl (5.11)
If we assume that
n . . n+*l . ,. . .
2 Je(d) - . (3) g(3) L g3l
Qo * 20707’y Brp = Ay =4 RRY 2 By yg),
j=0 j=0
(n) o plag= .glml),(n). (§=1) . 1= ~(3) 4 g1z .ald) ald=1) ,
then Cyp" = D 'qy,°Hyp; THHTs G 1282 * 0 Gt (1 cd <n)g

= oo (0) a5~ 7(0) (J) . (3) (J) .
qlzt lezc]z +4§12H12 , where H12 H (’1"2)' The choice le 0 for

0 <3 <nyields C§g) 2 2045‘"¢2550'1612-ﬁ§g‘5*1) and
s=
n+l n+l
s g 4S-Mpgtostlp-les pin-s+l), Senzn-s+l - =(n-s+l)
REAPEASR L ¢ IV e (512)

Thus the isospectral problem (5.3) generates the classes of evolution egqua-

tions (5.10) and (5.12)
It turns out that the transformation q12 -~ 612q1. ql-q(x,yl). is an exact re
4s-nH(n-s)._4s-nﬁ(n+l-s)
! 12

tion of equations (5.10-11) if, at the same time, 12
s 35N+ 1) s s st st .
8%( s 81, In this case Gy = @yps $y ~ 99, and
5 =“E‘ef<"+1) M6t 2 5 0™0e1 25 0" R -1 (5.13a)
12917, 58 Ve g Doy 7 S8y 12%12 M2t '
n+l
, n+ly n-g+l - 1 n _- - n &
2%, lfosl‘ 2 192 928t Sttt T Sty Mgt (51130)

Proceeding exactly in the same way it is possible to show that the

nonlocal eigenvalue problem
Wy = JW, + QW+ AW, (5.14)

generates the following class of evoluytion equations

|
|
i

i
i
|




L s

where
-] +

M12F12 * 9Py - UP1a01)F e F

12 ¢ F(x.y‘.yz) off-diagonal (5.16a)

%2F12 jnd’3(°nF3z R0 (3.160)
g = diag(1,-1) and Hgg) is defiﬁed by
P H3) =0, #3) giagonal. (5.16¢)

Also in this case the transformation Qy, - 61,0, is a reduction of (5.15)

. L,.n . (2 L '} -
if an.z -8 (1) (8 = 2a) and H]Z) - 6]21 or 6]20. In fact, Q]Z 012.

512 + 9;,- Thus one obtains the following classes of equations
n -
S120, - 1503 H(2912 T80 = 6120022 (5.172)
or
n N
120 7 L8 513001212812 * 5129120129 (3.170)

associated with the eigenvalue problem

Hx = JHy + WQ + AJW.

The above results clearly imply that all the notions introduced in
(1] to characterize the algebraic properties of equations in 2+1 dimensions
can be justified and interpreted in terms of the algebraic structure of the
corresponding non-local versions. For example:
i) The above derivations both motivate and explain the derivation of the
recursion operators introduced in (1] and [14]. In particular the crucial
role played by the integral representation of differential operators is

clarified.

ii) The directional derivative introduced in [1], which is the main tool
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needed to investigate the algebraic properties of equations in 2+1 dimensions,
can be derived from the usual Frechét derivative in the space of non-local
operators. For example, the Frechét derivative of dfzglz in a direction

f12 is i

aplf121912 = fiz912e (5.182)
fizglz ¥ JR dY3(f13932 b 913f32)- (5.18b)
which is exactly the direction derivative qiz [flz]g12 introduced in [1].
d

fit) The definition of an admissible function and of its derivative follows

from the fact that reduced functions admit a double representation; for

example (5.13b) implies
n

L.n, n-2 - L _ n - . 5.19
e ey ity T Szt T (5.19)

But the directional derivative is defined only on the admissible representa-

tion given by the left hand side of (5.19), which is the form of the function
before the reduction: z 3Nty u{t)
efore the reduction: o a,.2%12 d12t2

In Appendix A we investigate (equations (A.3)) the algebra of the

nonlocal operators aiz defined in (5.18b). Here we remark that this algebra

can also be interpreted as an algebra of matrices in which = indicates the
oeprations of anticommutator and commutator respectively, namely a’b = ab = ba.
(See also Appendix C of [1].) This is not a coincidence and the following
important observations, here illustrated on the recursion operator °12 of the

KP class, can be made.

i) Integral operators:

(5.20a)

. [
a2f12 ® g dyy(ay4f3p = 1393200




9, * Glqu + ady,, (5.200)

is equivalent to the introduction of the integral operator éiz. Then @12
becomes the nonlocal recursion operator 512, defined in (5.11) and associated

with the nonlocal eigenvalue problem (5.3).

ii) Matrix operators:
q"f ¢ qf + fq; q.f matrices, (5.21)
reduces 012 to the well-known matric recursion operator

o402 +q" +0q'07! « g0 1qD7L, (5.22)
associated with the N x N matrix Schroedinger eigenvalue problem in one
dimension [15].

The directional derivative q-., [f lg,, of ;.-
1247 127712 12

U, [F121912 = 12912 - (5.23)
i) is exactly the usual Fréchet derivative af}[f123912 of diz.
ii) Corresponds to the usual Fréchet derivative qz[f]g of q::

q" [flg = f°g = fg = gf. (5.24)

Since the + operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy
the same algebraic identities (A.3), then important algebraic properties of
the recursion operator 012 of the KP equation (like hereditariness) are equi-
valent to the corresponding properties of the nonlocal recursion operator 512
(5.11) and, even more remarkable, of the matrix recursion operator %, (5.22).

In order to make this connection with the matrix formalism more clear,
we observe that the nonlocal problem (5.3) can be obtained taking the N - =
limit of the N x N matrix one dimensional Schroedinger problem

!xx + g W =AW, (5.25)

where the coefficients of the matrix q are chosen in the form

2@
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(@5 = ay500t) v alsy oy - 6 5oq)s (5.26)
with the obvious prescriptions
3
Q. (x,t) = alx,t,y,,y,); alé, ... -6 . ) = a=. (5.27)
1] Moo 1'72 el - T -1y (o T3y
-~ The connection between equations in 2+1 and N x N matrix equations in

l1+1 was first used by P. Caudrey. He introduced in [16] a NxN spectral problem
(similar to (5.25)) which reduces to (5.2) in the limit N= = Then he showed
that the NxN Riemann-Filbert formalism associated with it becomes, in the
limit N» =, the nonlocal Riemann-Hilbert and the 3 formalisms of (5.2) [17].
The connection established in this section between the spectral prob-
Tems (5.25), (5.3) and (5.2) implies that the well established theory of
recursion operators and their connection to the bi-Hamiltonian formalism in
1+]1 dimensions, once applied to the matrix problem (5.25), gives rise, in the
limit N +=, to the corresponding theory developed in [1] and in this paper
for 2+1 dimensional systems.
[t is remarkable that both algebraic properties and methods of solution
for integrable systems in 2+1 dimensions can be justified and obtained from

the corresponding properties of l1+1 dimensional systems.

ACKNOWL EDGEMENTS

It is a pleasure to acknowledge useful discussions with M.J., Ablowitz.
One of the authors (P.M.S.) wishes to acknowledge the warm hospitality of
the Mathematics Department of the University of Paderborn, where the last part of
this paper was completed. He also acknowledges interesting discussions with 8.
Fuchssteiner and W. Oevel. Particular thanks go to W. Oevel for generously
computing some of the functions ¢TZR?2H§£) discussed in this paper, using the

system of algebraic manipulation MAXIMA. This work was supported by the




-33-

National Science Foundation under grant number DMS 8501325 and the Office of

Naval Research under grant number N00014-76-C-0867.

APPENDIX A.

In this Appendix we present some of the explicit calculations necessary
to apply the results presented in this paper to the classes of evolution equa-
tions associated with the KP and the DS equations. In order to make this
paper self-contained, we first present some results contained in Appendices
8, C of [1].

The directional derivatives of the basic operators qiz and °§2' de-

fined in (1.4b) and (1.10b) respectively, are
q;zd[flzlglz - fizglzn f12’ 912 scalars, (A,la)

Oizd[flz]g12 = 129100 12 off-diagonal matrix, (A.1b)

b4

where f12 are defined by

f12912 *,IR dy3(f1393, = 913F3;)- (A.2)

*

The integral operators f12 have the following algebraic properties

aizblz - bi2°12' (A.3a)

(ay,b15 = b1o375)¢ 5 = (315015) €15 = =C1aa 5D 50 (A.3b)
+ - -+ e ¥ * + %

L L R A PR VLIPLIPE (A.3c)
+ ¥ -
T s (A.3d)

Moreover the integral representations

AN2f12 * In dy3(ay3f3p = F1393) Qpp = 6100 * 2dy,s
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02f12 - Jn dy3(Q13f3p = F13l32) Qg = 450

imply that the operators qiz and Qiz satisfy equations (A.3) as well. Equatigns
(A.3) are conveniently used to show that:

a) The recursion operators ¢,, (1.4) and (1.10) are strong symmetries

of the starting symmetries Q?ZHIZ (1.5-6) and (1.11-12) respectively.

o 20 -
For example, if KIZ 012 and H,, is given by (1.12)

°12d[°Iz“1z]f12 - QM) gl 2] * 02(Qp M) 4l 0] =

+-1+

= ~ol(QH),) P30T, + Q1 PT5(01 M) T8y, = (0P ,=Q1,P7207,)F;) Hy, +

+ g(P12 - le 12le)f12 12 = 0, since the terms without Qiz give
-1.+

-c(Plz 12) H1 +<3P12f12H12 0, and the terms with Qiz give -o(QIZHIZ) PIZQIZ 12

p-lo*

+ 1,4 + a=lat - .
-001,P 1507 5M,2) 1 + (0Q1,PT1201,F 1) Hy, = 0Q1,P 120151542

+ - + -
= ol ((Q1M5) " * H1,01,0P13015F 1, + Q1 oP12(F1 000 M5 + Q1oF M) =
H NN * o =
-0y, 12(”12012 12+ F12%2%2 * Qafit) = 0
b) The Lie algebra of the starting symmetries is given by equations (1.7)

and (1.13). For example

i) if RO H are given by (1.5-6):

12M12
(1) (2)y ., + - a1 - (2) (1) ( )+, (3)
[Ny i1y #1201 = ((0ay, + 07,07 ap M2 mE5) - ocap,ui) wi)) -
( ) (2) - acl o L (1)4-(2) . + o ()y=-0(2)
-(a1H1p" )07 ] M 5] = ap,07 ey ) HY S = -0, (Hyp ) TH)S
o (1) (2) ( Jy- (1) . (3).
Q107 (= (K13 ) Ta M  + (Hig) el ) = -3
1) if R12”12 are given by (1.11-12)
(1) (2) ( ) ( ) (1)y-_,(2) .
["12"12 » AMp 1y - (012 120 Mg - Q") Mg
D) (@), (42 (1) EEY
-(H12")701,5H)5 P PR I PLIPA
c) The functions le given by (4.16) and (4.25) satisfy equations (4.10);




4 e |
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I for examples
. . s
i) if le 120 then
| S, f o= 0. (6.1, = (267, + 57,0 Lo v qID7 Y1), = af
1212 12d 12412 12 12 12 12 12712 12°
. + - =
since 612d = 0 and 612f12 2 2f12, 612f12 0.
' ii) If le = %<70;26121. then equations (4.10) are satisfied using the :
following results:
X ot . )
led[f12] 7 7Ftpt F 9 fp
« .
, + [ ]
Q,,f34, f off-diagonal
te . . . 12'12 12
Tiafi = *0Qfyp = £19Q) = xo¢ -
QIZfIZ' flz diagonal
I For instance: )
s - p-l .
S15f12 * ~9(T1P T30, * Q1pP1aT12)F1p * o(P1o=0y P 120500, -
! - x(Pyp - O1P1300R) 1 < i )
d) [K ] =0, if 9K and T,, are given by (1.11-12) and
12 12 120 12 1212 12 )
« (4.25) respectively, or by q12 120 Mo * H(yl,yz). and §,,. For ,
example
: n . - N - .
i) oy la1H90812]g = 21282~ M2 = O
‘ i) 3" [QTH, . T, ), = 80 (TR, - T, [Q7,H,,]) = ’
SV PN FALS VAL TR VARS FAS VARNRD Y S ¥ 124
= a0 ~0° . - . =
= 21p(x3Qyp - xcQpp) - Hyp = 0.
‘ .
’ e) Equation (4.17b) holds. It follows from M, [512] z
d

-1 -

~1.-

06 12 + 6120 q12 + quD 512 2D, which implies

v, -
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n M 2 n .
O1glMy - Hygr 8121 2 2950 - Hpp (.4)

Different choices of le = H(yl.yz) give different results. As it

was shown in Appendix 8 of (1]

n
- l n'i . . (2) (1) i ——my —p—*
1:0(2a) @12 le le . H}g— 439 h v (A.5)

n+l
%120 - Hyp®

an analogous, although more tedious derivation, gives

-

V)

n+l, NG : g 2025 . o4l20)
@12 0 le = 312.‘112 . H12 + 251 QI(ZG) "12 ”12 le ’ (A.Ga)
(1) 3y +yy) 1)/2, n odd
le % _———_2:——’ al % Céi)) \)n # (n- ) ' ° (A'Gb)
3y, n/2, n even
and the coefficients Cgl) are obtained through the following recursive
construction:
m) , elm-1) (m-1) , o(m-1)
¢, *2, 1 G (A.7)

where Céa) =0 if b< 0 and b > a. Equations (A.4) and (A.6) imply

equation (4.17b).
~=1,n ~0
S12%12% 212

% 0 = N < » = =2 = M
KlZ = le P Hio H(yl.yz), ®7 D and n = O:

are extended gradients; for example if

-1~ _ -1 - . -1 . .

= -HD7lf > = <0 MRG0

12 "12°912 1272912
0 .a . - -1 - . o o
Kip * Mpp # 00y, * 9,07 Qy, My = Hlypayy)e 3 =0 andn 2 0

-1g . Sl el - B S
a0 MR gl10]> = <F10adpafin * 0 190 Aty v D el et
’ > -1 -1 - - - .=l .- . + ) -1 - - .
Flas (Hig=07 (07 apH )T+ 4107 Hyp) 1y, = <D Tay )

1

* R

-1 - -l s it aclone

P |
P PR L IP L DA PR IPie
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R TR - . o .
ii1) KIZ le 2 QIZ" H12 defined in (1.12) and n = O:

f (oM, H,,) > = <f Hy > = <-Hf >
<T12e 922’ ¢%12 12° “M2%2 12712°912 -

R B - o al:
iv) K{2 le 4 012. le defined in (1.12) and n=l:

<1+

&(1) a / - + -
<FlaelaM] ) 491> = < Tae (P00 M) - Prtie

1.+

+ = aelat L a1l A+ A= Y - +,-
* QpoH1aP150 2917 = <(=(P12Q1,Q 5 )" = Pafip * QMR 0,

g) Equation (4.24b) holds, since

~(n+1) + . + _A(n+l) -
g Mpge x0Qpp8),1> = ~<xQua¥y Hipe Syl

. + _An+l)
JR3 dx dyldyzélztrace 0120*12 le.

APPENDIX B.

1120912+

IN this Appendix we show that if ¢ is factorizable in terms of compat-

ible Hamiltonian operators Q2 and O in the form ¢ = g0t

and q * 0, then equation (4.5) holds.

We first show that
(T)p = p +# TRo™, Iob# @L[b]T.
-1:
¢L[v]T + OLJO v @L[T]b.

(B.1) simply follows from the definition of the adjoint:

<(0T)E a,b>= <a.bL[b]T + @TL[b]> = <(L§ + Tt@')a.b>.

while (B.2) requires the use of all the hypothesis of this Lemma.:

<o, [vIT + 00307 v, = <2 (207 1071, a0+ <2 (2] ST,

-1

7> =

, and if 9 is inveyrtib

-t -

-

e o s o s o el _

. e ——————

[,
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<a.QL[T}3'1v >= <a,o [Tlv> .

Then, using (B.1-2) and (4.4) for n = 0, we obtain equation (4.5):

1

(o), + O(@T)EO'I)V = o(T (vl +0Tralv) +o (VIT +

+oreg!

sy o(Trer - ®*TE)®'1v .

= ¢(TL[V) + OTEG.IV) + os*o 1y,
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