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Integrable Equations in Multidimensions (2+1)

are Bi-Hamiltonian Systems

by

A.S. Fokas + and P.M. Santini

1. INTRODUCTION

Ablowitz, Kaup, Newell and Segur [1], following ideas of Lax [2]

were the first to solve in the concrete case of the Dirac problem the

following question: Given a linear eigenvalue problem find all nonlinear

equations that are related to it. They found that associated with a

given eigenvalue problem there exists a hierarchy of infinitely many

equations. This hierarchy is generated by a certain linear operator.

This operator is the squared eigenfunction operator of the underlying

linear eigenvalue problem. The operator generating the KdV hierarchy

(i.e. the squared eigenfunction operator of the Schr~dinger eigenvalue

problem) was found by Lenard. For other eigenvalue problems see [3]-

[10).

4 Olver [11] established the group theoretical origin of the above hier-

archy: Finding the hierarchy associated with a given equation is

equivalent to finding the non-Lie point symmetries of the given equation.
4 He thus interpreted the squared eigenfunction operator as an operator

Lectures given by one of us (A.S.F.) at the Winter School, Tiruchirapelli
India, January 1987.
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mapping symmetries onto symmetries; this lead to a simple mathematical

characterization of the recursion operator t. Olver,

was thus the first to establish that certain integrable nonlinear equa-

tions possess infinitely many symmetries. This motivates the following

question: Is there an algorithmic way for generating equations possess-

ing infinitely many symmetries? Fuchssteiner [12] discovered such a

way: If an operator t has a certain mathematical property called

hereditary then the equations ut = 4nu n integer,

possess infinitely many symmetries. From the above discussion it

follows that both linear eigenvalue problems and hereditary operators

yield hierarchies of equations possessing infinitely many symmetries.

Actually Anderson and the author [13], following ideas of Fuch-

ssteiner, have shown that eigenvlaue problems algorithmically imply

hereditary operators.

Equations solvable by the Inverse Scattering Transform are Hamil-

tonian systems. Magri, in a pioneering paper [14], realized that

integrable Hamiltonian systems have additional structure: They are bi-

Hamiltonian systems. Actually the underlying hereditary operator can

be factorized in terms of the two associated Hamiltonian operators.

The theory of factorizable hereditary operators has been further developed

by Fuchssteiner and the author [15] and by Gel'fand and Dorfman [16].

The understanding of the central role played by factorizable

hereditary operators for equations in 1+1, motivated a search for here-

ditary operators for equations in 2+1. However, in this direction

several negative results have appeared in the literature. For example,

Zakharov and Konopelchenko [17], in an interesting paper proved that

recursion operators (of a certain type naturally motivated fron the re-

sults in 1+1) did not exist in multidimensions. A similar result has
S I
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been proven for the Benjamin-Ono (BO) equation [18]. It should be noted

that the 80 equation has more similarities [19] with the Kadomtsev-

Petviashvili (KP) equation than with the KdV equation. Fuchssteiner and

the author [18] after failing to find a recursion operator for the BO

introduced the concept of the master-symmetries T. Subsequently Oevel and

Fuchssteiner [20] found a nester-symmetry for the KP equation. The 7

theory for equations in 2+1 has been developed by Dorfman [21] and Fuch-

ssteiner [221. However, the T is not related to the underlying iso-

spectral problem and also can not be used to construct a second Hamil-

tonian operator. This is a serious drawback: several prominent invest-

igators, for example Gel'fand L23] have considered the existence

of a bi-Hamiltonian formulation as fundamental to integrability. With-

out finding a recursion operator , one cannot find the second

Hamiltonian operator. Several investigators have noticed that master-

symmetries also exist for equations in 1+1. The theory for the master-

symmetries T in 1+1 was developed by Oevel [24] (see also [25])

and is more satisfactory than the theory in 2+1: If one assumes that an

equation is invariant under scaling then there exist a one to one con-

structive relationship between T and the recursion operator €.

Recently P.M. Santini and the author [26]-[28] have found the

recursion operator and the bi-Hamiltonian formulation of a large class

of equations in 2+1. They have also established the general theory

associated with factorizable recursion operators in multidimensions.

Furthermore, both gradient and non-gradient (the 2+1 analogue of T)

master-symmetries are simply derived and their Qeneral theory is develoued.
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2. MASTER SYMMETRIES

In this section we review certain aspects of non-gradient master-

symmetries 7n 71 and gradient mastersyfmetrFes in 2+1.7 -

Definition 2.1.

A function T is a master-symmetry of the equation qt = K iff the

map

where [a,b]L a'[b] - b'[a] (2.1)

maps symmetries onto symmetries (prime denotes Frdchet derivative).

The first example of a master-symmetry was given for the Benjamin-

Ono equation

d~f(&)(4.2)
qt=Hq + 2qq, (Hf)(X) fR - J (.2

It was shown in [18] that if T x(Hq 2qq + q2 + 3 Hq and a is

a symmetry then n [ 7 ],' is also a symmetry. It was further shown

in [18] that D- is a gradient function (-'D + D-' 0).

Master-symmetries are intimately related to time-dependent non-Lie-

point symmetries [25]. Indeed, the first non-Lie-point time-dependent

symmetry is a natural candidate for a master-symmetry: Consider the

evolution equation q = K 1 and let K (2), K(  .. denote its time-

independent non-Lie-point symmetries. Let

_(2) = tK (2) + (2.3)

be a time-dependent non-Lie-point symmetry. Then

and s cand t c master-s e r

and T is a candidate for a master-symmetry.
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2.1. Master-symmetries for equations in 1+1.

Lemma 2.1.

Let

S. 0 '[Ki] [P, K'] i = 1,2. (2.4)

If 0 is hereditary, i.e. if

¢'[4v]w - ¢[v]w is symmetric w.r.t. v, w, then

n+m (,n m m m-r r-1 m n- r-1
a- [r-l K +P ( E S )K -¢m( S t)K 1  (2.5)

- r=1 r

m,n are non-negative integers.

Proof.

See Theorem 2.1 of [28].

Corollary 2.1.

Assume that T 0 is a scaling of both K and of the hereditary

operator t, i.e.

[K,-] = K, 0[T0 ] [:y05] + "  (2.6)

Then

Wi( + n6) n+i K = ,,n K, I0L '  (2.7)

i.e. : 0 is a master-symmetry for qt = K.

n+ 1

ni ( , ) n K = K , -m- 1 1L (2.8)

i.e.-m0 is a master-symmetry oformfor K. K

(iii) " (a + n)t 1 K + T 0 is a symmetry of Q t K

Proof.

(i) Apply Theorem 2.1 with
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KI = K, K2 = Tot [KK2] = aK, L 0I = 0, L2

(ii) Similar to (i).

(iii) Use the definition of a symmetry.

In the above we derive T from t. Now we obtain t from T.

Lemma 2.2.

+
Let ¢ be a hereditary operator such that (O = O , where 0 is a

constant, invertible, skew-symmetric operator. Then

(OT)' + n(r T)'+e - I  +,(T' + o(T')+O -  ) + 0- , (2.9)

where

+ + [T[ +S [ T] + [T' , ].

Proof.

See [28].

Theorem 2.1.

(i) If the hereditary oeprator € admits the scaling T0 then 0 is a

master-symmetry for the hierarchy generated by .

(ii) Assume that the hereditary operator P admits the scaling t0 and

that it also satisfies 0 = G¢ , where 0 is a constant, invert-

able, skew-symmetric operator which also admits the scaling T0'

Then

(2)+ -1+ 0(T) . (2.10)

Proof.

(i) If 1 admits a scaling and K is generated from € then K also admits

a scaling. Hence Corollary 2.1 implies (i) above.
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(ii) Since 0 admits a scaling, 0+ also admits a scaling, hence S+ is

proportional to 4'+, thus eS+ - I is proportional to (:. Furthermore,

since 0 admits the scaling TO, 60 + OT6 + = a0, thus T6 + 0%()+ 0-

equals d constant. Hence (2.9) implies (2.10).

EXAMPLE

1. 4P = 0 + q + qx D I is the hereditary operator associated with

Burgers equation. It admits the scaling q -aq, x - a- Ix, i.e.

To 
= q + xqx" Thus x(qxx + 2qqx) + q2 is a master-symmetry of Burqers

equation.

2- , -2

2. ¢ = 02 + 4q + 2q XD admits the scaling q - aq, x - a x, i.e.

To = q + 2xq . Thus T = CT0 is a master-symmetry of the KdV.

3. If To 
= q + 2xqx, then T6 + D(7O) 0 -3. Hence if T is the

master-symmetry of KdV,

- + ~+: ' + 01(T') D"I

is the recursion operator of the KdV.

2.2. Gradient master-s mmetries for equations in 2+i.

A straightforward generalization of Theorem 2.1 to equations 2+1

fails: i) could not be found, ii) th known master-symmetries

T were qradient functions, hence -1 0. It will be s

0
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in §3 that for equations in 2+1: i) Suitable generalizations of -, de-

noted by *12 can be found, ii) there exist non-gradient master-symmetries

T12 (for example for the KP T12 2 where 6 denotes the Dirac

delta function). Hence a generalization of theorem 2.1 to equations in

2+1 is given in §3.

One can still develop a theory for master-symmetries without

using the connection with the recursion operator 0: see [21], [22].

3. SYMMETRIES FOR EQUATIONS IN 2+1.

In this section we review the theory recently developed by Paolo

Santini and the author. We use the KP as an illustrative example and

quote the basic theorems when needed. We hope that this form of present-

ation will aid the non-expert reader to become familiar with the notions

and methods developed in [26]-[28]. We advise the non-expert reader to

read [15] before reading this paper since many of the results presented

here are two dimensional generalizations of results given in [15].

3.1. Derivation of Recursion Operators.

Given an isospectral eigenvalue problem there exists a simple

algorithmic way of obtaining a recursion operator. This approach in-

volves three steps: compatibility, an integral representation of a certain

differential operator, and an expansion in terms of delta functions.

Let us consider the eigenvalue equation

wxx + q(x,y)w + aw = 0, a is a constant (3.1)xx y

and for convenience of notation we suppress the t-dependence. Using

vector notation, (3.1) yields

W (0 q q*aD -, - (.-q 0
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I. Compatibility

Associated with Wx  UW we look for compatible flows Wt  VW

where

V= () A,BC,E polynomials in D .
B y

Compatibility implies the operator equation

Ut = V - [UV],

or

(0 0) QA 2C) [G 1 2
Solving in the above equation for A,B,E in terms of C we obtain the

following operator equation:

t = C + [,C]+ +[qC + + [q,D [q,C]] + Aoq,-qA0, (3.3)q Cxxx ' x x] , ( 3

where

[ , I is a commutator, [ ]+ is an anticommutator, A0

is an operator such that A0  0 and (D- I f)(x,y) = f( ,y)dE.

In what follows we take A0 = 0 (the general case is considered

in [ 27]).

2. An Integral Representation.

The crucial step is to use an integral representation for the

4 differential operator C:

(Cf)(X,y1 ) dY2T(xyl,y,)f(x,y )..

R



-10-

Let

qi q(x'yi), Di 1 D , i = 1,2, T12  # T(x,yl,Y2). (3.5)

Equation (3.4) implies similar integral representations for all quant-

ities appearing in the RHS of (3.3). For example

(qlC)f = dY2{qT 12 + a(D 0T 12 }f 2.

For

(qlC)f = JdY2 (q1 T1 2 )f, 01(Cf) = (01C)f + Cfy = JdY2T2yIf 2 '

F F
Cf = -dY 2T12f2  = - RdY2T12 yf 2 "

Thus (D C)f dy2 (T12  + T1 2  )f2"1 R 2 2Yl 12

Similarly

N lC  Cql )f dy i (q-,,T )f2
-R d~q.T

where the operators qj2 are defined by

q12  q + +(D D2)" (3.6)

Using the above integral representations in (3.3) we obtain

q T, (q T 2  + q T qD q, T2 (
12 )121 12 12 12

or

q = D., T D + + D iqI2 D+D q1 2
D - I Q. (3.7)'12q 1 12 12' 12 1-) 12 ,1 "2

t
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Let us introduce the operator 12 via

2 ++ -1 -1-i
DD + q12 + Dq 12 D2 + q12 D q12 0 (3.8)

Thus

12ql D 1 2T12 = 12DT12 . (3.9)

3. Expansions in terms of delta functions. 0

We expand T12 in the form

n 6j  T( j ) . dJ d

T2 6 1 2 T 12 2 3  (3.10)

1

it turns out that Y 12 admits a simple commutator relationship with re-

spect to h12 = h(Yl-Y2). Actually the following operator equation is

valid

[ 12, h1 = 4ahi2 ,  h12 dy h12.

Hence equation (3.7) yields

n - 2 n n+1

12qlt =O 1261212 -2 12 T12 + 12 DT12t =0jzo j=1

Thus

,(n -)  __I T(J) , (0)
n 0 ,0 T - T 1i ,) q : IT . (3.12)
122 12' 12  12

Letting T()= 1 we have the following proposition:Lettng 12

Proposition 3.1.

The isos~ectral eQuatior

S
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wxx + w = 0, q f q + ,D y a constant (3.13)

is associated with the equations

q JdY2 61 2 D ; I n I' . B d  ,n 1 D) ' I  H constant (3.14)ql =2 12 12 n .R' 2 1 ( 1
t

where

D2+q2+D- I + D I2 D " I D2 + + -1 - D-I q2D-1

1 q 12  12 12 q 1 2 ' 12 12 Dq 2 O q12  12

(3.15)

and T!2' P 12 and related via DY 12 =  012D. The operators q 2 are defined

by

q 2  
I q q*, ql q1 + cLDY I  q* # q2 . (3.16)

12 I

(The notation q* is justified, since q* is indeed the adjoint of q1, see

§3.2).

EXAMPLE.

1. Equation (3.14) with n = 0 and 0 = 1/2 imnlies ql = q1
t x

2. Equaton (3.14) with n I and 3 = 1/2 impliies the KP equation

q = ql + 6qlq 1  + 3a2D - ql (3.17)
xxx x y I YJ

Remark 3.1.

(i) The operators €12 and 4, 12 with Y2 = yl and a = 0 reduce to @ and

+respectively, where is the recursion operator of the KdV.
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(ii) The starting svmmetry (P12D) 1 is given by q, + q2  +
x

(ql-q 2 )D- (ql-q 2 ) + aD- (q1Yl - q2Y2). Thus it reduces to qlx

the starting symmetry of the KdV, when Y2 = yl"

3.2. A New Directional Derivative and a New Bilinear Form.
+

Recall that generates symmetries and + generates conserved

covariants. Similarly, it will turn out, that (P and 12 generate

extended symmetries and extended conserved covariants respectively. To

define these extended notions we need to introduce a new bilinear form

and a new directional derivative:

(i) A new bilinear form.

f dx dyldY 2trace 21 (3.18)

where f!2 and g!2 are matrix valued functions of x, yl y2, and obviously

the trace is dropped if f g12, are scalars. in association with the

above form we define L * to be the adjoint of L,2 iff12 1

<L* 2g12,f12  <g12,L12 f12>. (3.19)

We recall that the usual bilinear form and the usual adjoint are defined

by

(g,f) 2 dx dy trace gf, (L g,f) = (gLf), (3.20)

where f,g are matrix valued functions of x,y.

EXAMPLE.

1. The adjoin* of Q, s .1ven ty q -
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2. (q 2) : q 2 (q12 * = "i 3.21)

3. P*2 = T12 12

Note that the fastest way to compute the adjoint of an operator L1 2 is to

evaluate the adjoint as usually and then interchange I - 2.

Let I be a functional given by

f : R2 dx dy I  trace Pll 3 dx dyldy 2612trace 012. (3.22) 0

The extended gradient of this functional is defined by

<gradl " Id['] T R3 dx dYldy 261 2 1 2 d [ ' ]  (3.23) S

where subscript d denotes a suitable directional derivative.

It is easily seen that a function ' 12 is an extended gradient function,

i.e. it has a potential I, iff

= Y (3.24)
' 1 2 d 12d

Also

(grad I, * If[.] = dx dy of[], (3.25)

+

and y is a gradient function iff yf = Yf. 0

(ii) A new directional derivative.

Recall the crucial integral representation

(q f)(xyl) = I dY3q(xy1,y3)f(xy3).1 ~ R

Allowing f also to depend on Y2 we obtain

1 3 13 32'"R.
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The above mapping between an operator and its kernel induces a mapping

between derivatives: Let subscript d denote the new directional deriv-

ative. Then

]f :f
q'd [a121f12  fR dY3013f32"

The integral representation for q also induces, via (3.18) an integral

representation for the adjoint of q I

<g2 1,qlf 1 2 ' = JR3dydY2dx g2 1 dyq 1 3 'f3 '2 = J 4 dyIdY2dydx g2 3'g3'lf1 2

SR3 dyldy 2 dx G 21f 12, where we have used 3' <- 1, and

G2 1 : dy' q3 ', thus G12  dy~gl 3 ,q3 2 . Thus if Jd q 3 "-a
21

Furthermore, the q* mapping induces a mapping between derivatives. Thus

12 (ql1 cDl)f 12= RdY3 
1 3 f 3 2 '  f2 ! (q2-Df 12J dY3q32f13

(3.26)

hld[~~] 
d~Ya332"(f (3.27)

[ 1 2 ]f 1 2 = JR Y3 13f32 ' d 12]f12  RdY 3c3 2fl3 (

The above derivatives with respect to and q imply the following

derivatives with respect to q12, q1 2

r

q12  [ 1 2 ]f 1 2  R dy 3  1 3  3 2  c 3 2 f 1 3 ) (3,28)

Furthermore, using the chain rule and (3.28), if an operator K12 depends

only on q12, q12 its directional derivative L12 d[2i2] is well defined. 0
L 12 12d

J
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This derivative is linear, and satisfies the Leibnitz rule. Also, using

(3.28) it follows that the directional derivative in the direction of

612 reduces to the usual total Frechet derivative:

K12 [612F12] : K1 2 f[F] L K1 2 q[Fl] + K12  [F2 2], (3.29)

where the subscript f stands for a Frechet derivative and

K i[Fi ] = K (qi + Fi, qj) O i,j = 1,2, (3.30)
12 i c 12 i i j.

Operators which depend only on q are called admissible. Similarly,

a function K12 is called admissible if it can be written in the form

K1 2 = K12H1 2, where K12 is an admissible operator and H1 2 is an appro-

priate function (for the KP, H1 2 = H (yly 2 )).

EXAMPLE.

+

The function M12 12 Dq1 2512 + q1 2D q12 512 is an admissible

function since the operator M1 2 depends only on q 2 . and 612 = 6(y-y2).

It is easy to compute its directional derivative:

4i12 12)dO121 = o212 12 "12 12 + q12u C 12612'

where oi2F12  R RdY 3 ('13f32  '3 2f1 3 ). Hence (M12'1 2 )dcl,12] = 2Dc 1 2.

3.3. Isospectral problems yield hereditary operators.

Using the same methods as in 1 1, it can be shown that if the ex-

tended gradient (G )12 of the eigenvalue X of an isospectral problem

satisfies



-17-

12 (GX)12 1(2)(GA)12, (3.31)

then 12 is a hereditary operator. (One must again assume comlete-

ness, a proof of which should follow a two dimensional version of the

method developed in [ 6]).

EXAMPLE.

Consider the isospectral problem

V + (ql - X)V1  = 0. (3.32)
xx

Taking the directional derivative of the above it follows that

(02 . q - )V d[f 1 2] + ( d[fl 2] -d[f12])V 1  0.

Multiplying the above by V1, where V1 satisfies the adjoint of (3.32),

integrating with respect to dx dyI , and assuming R2 dx dyIV IV I,

we obtain

.[fl2 -gradl2 f12 >  : R2 dx dy,"",, d[ f j in'

d ~12 ~ ~g 12. 12 xR dy '.~

Using (3.26) to evaluate q d[f 1 2] it follows that
d+

(G)I 2  12 grad A V (3.33)

It is easy to show that t12 as defined by (3.7) satisfies
1 

1

4 +V2 
(3.34)12 1 L 1 2"

Hence P12 is a hereditary operator.
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Remark 3.2.

Konopelchenko and Dubrovsky [29] were the first to e'.:ataish tre

importance of working with V(x,y1 )V (xy 2 ), as opposed to 4' ',,," ,,
+

They also found a linear equation satisfied by VIVI. However, they

failed to recognize that this equation could actually yield n' rec.-

sion operator of the entire associated hierarchy of nonilnear t:4udtiur .

Indeed, they used the above equation to obtain "local" recurs)cn oper-

ators. Thus the question of studying the remarkably rich structure of

these recursion operators in particular its connection to symmetries,

conservation laws, and bi-Ham Itonian operators were not even Dosed.

3.4 Starting Symmetries.

The theory of symmetries for equations in 1+1 is based on -e
0 , I

existence of "starting" symmetries K which via . generate irfinite"Y

many symmetries. For example, for the KdV K = q X For equations 7n

2+1 we find that the starting symmetries K has the followrQ imDorta.

properties: (i) Can be written in the form H where K, is an a-IL 12, n

missible operator and H, is an appropriate function. (ii) -he s•ar-
12

-0ing operators K 2 have simple commutator properties with respect to
",0

h12  =h(Y-y2). (iii) The Lie algebra of the starting operator K,.,

acting on functions H12  is closed. (iv) Using (ii) and the 'act that

@12 also admits a simple commutator relationship with h 12, it can be
n

shown that n k ' 1 7 b t K where b are12 12 12 i=0 n,i 12 12 A2' n, a

appropriate constants; hence 6 12n12 k0  * 1 are admissible functions.
12 12 1

It is thus clear that in 1+1 one considers the Lie algebra of functions

K 0 while in 2-1 one considers the Lie alqebra of nperators K0  This
I T
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richer algebraic structure of equations in 2+1 can be exploited in a

variety of ways. For example different choices of H12 yield both time-

independent and time-dependent symmetries. Furthermore, all these

symmetries correspond to gradient functions.

We now discuss (i)-(iv) above for the concrete case of the KP:

It should be first noted that given an operator * there exists an

algorithmic way of finding its starting symmetries: One looks for

-0
operators S12 such that S12H12 = 0 but K12S12H12 H K2H12 # 0. It can

be shown that if a starting symmetry is constructed in the above way

and 412 is hereditary then 412 is a strong symmetry for this starting

symmetry.

(i) For the KP there exist two starting symmetries:

M I DqI 2 + D q 12, N 1 q 12' H 2  H(yly,) (3.35)

-12

corresponding to S1 2 = D and S = D(q1 2 )- D respectively.

(ii) The following operator equations are valid:

[M1 2, h12] 2a~h12 ' [N12 ,h1- 0. (3.36)

(iii) The Lie algebra of M1 2, N1 2 is given by

IN (H1 'N (2~H)d N - 1 H~ (3, [N HK *M HMr"(3
S12 12 d 12 12 12

M 12 HI1 M1 12 d 12N12 H 12

where

[K K I) ]

1,, 12 [ I,,:
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H (3)  H(2) ] dY (H(1 )H(2) _ H(2)H(1)) Q ( . )12 12 ' 12 1 R 3 13 32 13 32

Let uarea Za).

12 2 1 1 JR 2 dY3dy (q131H3~ 3 q3-3 13) 32
d

- H1)(q 33 H(2) _ q H(2)}13 3' 3'2 q3'2 33'

dY3dY3 {H32  q 13-a( 3H " H1 l)[q 3 "q2 a(D3+D2)]H(2)-

Hence

[q, (,q- (~2 ) Vq-q + (D 'D )4H(1 , (~2 )
12H12 '12 12 d 1- 2 1 2 12 12 1*

Remark 3.3.

The bracket (3.39) can also be traced back to the integral repre-

sentation of q1 (see [27]).

iv) Equations (3.36) and the operator equation (see (3.11))

[t12,h12] :4h 2 (3.40)

imp Y

n

n n-n-().

N I = (-4()34): ,112 12 L1 . .

n 0
n2121 - n n-C, I 1 bn  f (4.)L <-g n-i) 3

Let us indicate how the above equat'ors can be derived: introducing an

operator U, wh t h cur utes with jII a-cs itIe -: erators a,, a wh _
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has the property that

Vh 12 z h12

it follows that

n n n .

12 12 12 21 = (1212-  n 12  12

n n
( 12 N12 12

To derive equation (3.42) note that

n n n

612 1 M 12 = (12- 4)n1 2M12  1 = (112-4aV)n(M612- 2aD' 12)

n

n - 2 Y- (4 inn-Z- 2zn ' -2 (-4) 12 ( ) 12 6 12 (3.43)

The next step is to express :M in terms of € ' where j, j' are

~12D intrso112 12' weej r

integers. This can be achieved as follows: It can be shown that

1 _ I, M - 1. This equation implies
12 1

.n+ n  n•, M d

2 12 (2)j h 2 h h1 2 ( 3.44)
'12 2 j-0 '12 2 ?dy 1

For example, multiplying t12D 1 = M12  1 by h1 , it follows that

(t12 -4aD)h12 D 1 (M12-2aO)-h, or 0'2 • hi2  M1 2  h12. Similarly

12 12 12 2 12 12 imlesL

I12 D : 1 12 M12 1 implies :12 • h12 12 M12 h12 + 2oM 12 h12'

etc. Using (3.44) into (3.43) yields (3.42).
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3.5. Basic Notions and Results

We consider exactly solvable evolution equations in the form

qt = K(q), q(x,y,t), on a normed space M of vector-value functions on

R; K is a suitable C vector field on M. We assume that the space of

smooth vector fields on M is some space S of C functions on the

plane vanishing rapidly as x, y - - -. The above equation is a member

of a hierarchy generated by 4 12' hence more generally we shall study

qt = K(n)(q). Fundamental in our theory is to write these equations

in the form

n K(n) = K(n)

dy Y21 n2 12 ' d 12 12 11 '(.5

t RR 2  1

(in the matrix case, 1 is replaced by the identity matrix I), where

(n)
K 12 (ql,q 2 ) belongs to a suitably extended space S, and S* denotes the

dual of S. In the extended spaces S and S* we define the new direction-

al derivative (3.28) and the new bilinear form (3.18); the notions of the

adjoint and of a gradient are well defined with respect to (3.18) (see

(3.19), (3.23), (3.24) in analogy with definition 2.1 we have:

Definition 3.1.

() A function c 1 S is called an extended symmetry of

q = dY2 K12 KII(-.46)

't -R 2 1 12 '1

12 :, [K] - (6 2K 0 (3.47)
; 2 f 12 12 0

(ii) A function S* is called an extended conserved gradient

(i.e. it is the extended gradient of a conserved functional I)
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of (3.46) iff

aYl 2
ay 2 

+ yf[K] + (612K12) [Y 2] 0, .Y (3.48)
a 12f 121)dY2 9 Y2d=12d

Functions which satisfy (3.48a) are called extended conserved

covariants.

(iii) An operator valued function 112 " S * S, is a recursion operator

for (3.46) (or it is a strong symmetry for K12 ) iff

112 f[K] + [012' (612 K12 )dJ = 0. (3.49)

(iv) An operator valued function P12 S S, is a hereditary operator

(or Nijenhuis or regular) iff

12d [ 12v12]w12 - '12'12d[v12]w12 is symmetric w.r.t. v12, w12.

(3.50)

(v) An operator valued function 012 S*- S is a Hamiltonian operator

iff it is skew symmetric, i.e. 012 = G and it satisfies

<a 12',12d[ 12b12]12' + cyclic permutation = 0. (3.51)

(vi) Equation (3.46) is a Hamiltonian system iff it can be written in

the form

qlt R dy2612O1 2f1 2 ' (3.52)

where 012 is a Hamiltonian operator and f12 is an extended gradi-

ent function, i.e. f* = f2. Associated with (3.52) we define12 d 12 d
the following Poisson bracket

, grad 121, 12 grad 12H. (3.53!

IIIIIl liIIlai il iIIi nIl
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In the above, subscripts f and d denote total Fr~chet (see (3.29))

and directional (see (3.28)) derivatives respectively.

Remark 3.4.

(i) Equation (3.47) can also be written as

3c12

2[o, 812Kl2 ]d

since c12d (612K12] = 012f[K]. Similary 012f[K] 12d['12K12].

(ii) Some of the above notions are well defined only if (612 K12)d is

well defined. However, for equations (3.45)

(n) n 0

612 K12 :12 12 12 Z b n-12K 61

Furthermore, by construction *12 and the starting operators K 12
+ (n) d is w l

depend on the basic operators q12. Hence (6 12K12) is well

defined.

In analogy with the basic results in 1+1:

Theorem 3.1.

(i) If € 12 is a recursion operator for (3.46) then 12 maps extended

symmetries onto extended symmetries and 12 maps extended con-

served covariants onto extended conserved covariants.

(ii) If (3.46) is a Hamiltonian system them a12 = 12y12.

(iii) If 12 is a hereditary operator and a recursion operator for
0  , n K0
12 then 1 is a recursion operator for q t R dY212 12^121"

1 (1) (2)
(iv) If 1 .() (1) where C( ) + is a Hamiltonian operator12 1, 2 L L 1
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for all values of the constant v and is invertible, then

is hereditary.

(v) If 12 as in (iv) and 12 - 12 I K10 1 is an extended gradi-
,.mO

ent function then all (dIe M 12 are extended gradient functions.

EXAMPLE.

The hereditary operator I12 of the KP equation is factorizable in 0

terms of the Hamilton-ian operators D and 12D . Hence each member of the

KP hierarchy is a bi-Hamiltonian system, with respect to the following

two Poisson brackets 0

I, H. -qrad1 2  12  grad1 H>, 2

) .2) D + + q2Dq
12 ' 22 - 2? - 2 + Oq1 2 + "'

J,6. Extended Symmetries.

Lemma 3.1. S

(i) Let ¢ 12 be hereditary, then

,,n (1) m n-r (2) r-1 (1)
K  ^V K I12 d + n( : .r)Kr2 K12 1 m 2) d 1 2  1 2  1 12 1 12 12 .

m m- (1)r-1 (2 ) (

(r122 12 '12 12 (3.54)

where 0

Si) , K (2)]I + [€12 KM ] (3.55)

12 12d 1 [ 12, 12 d'

i-,,n are non-negative integers. 0

Sl
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(ii) o1() is a time-dependent extended symmetry of order r of equation
12I

(3.46) iff

(r) = r (J) )d(
12 E0 12 ' [12 . 12 2 K1 2 ] 3 ".r

EK(r) 1
12 '12 12]d = (3.56)

Proof.

See [ 28].

We propose the following constructive approach to extended sym-

metries: Given an isospectral problem construct a recursion operator

12 I) This operator must be hereditary (see §3.3). Then construct its

starting symmetries operators, say M N12 Te 12 is a

strong symmetry of M12' N 12 (see [27]). Compute the commutators of

M12 N 12 with h12 . Use the commutator relationships to derive
2n n- 12' 

112b12K 12 K12  S12  K is or N Finally
12=12 12 ni'12 2  12' 2 ? 12'

compute the Lie algebra of M,2 , Nj2 . This Lie algebra together with

(3.54)-(3.56) yield infinitely many time-independent and time-dependent

extended symmetries.

EXAMPLE.
m m^

i. 12 M12 12N12 1 are extended symmetries of the KP hierarch,

( n "
= dY2 12 12M12  I (recall KP corresponds to n = 1). MI-,Il = R 'y'1 121 •

N12 are defined in (3.35).

For.
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n n n

(612&P2M1  Im H- 2M'M-HI
2 1212 12 1 20n ' 

n b i m+n- +l
n, 12 12, 12 d 7 n 2 2'212[ 121H d

(3.57)

where we have used (3.54) (:12 is hereditary and it is also a strong

symmetry for M(1) = 0), and (3.37c). Taking H and

121'12 H12 =Ian

using

S12' 1 '

equation (3.57) implies [612 12M12  1, 12M12 i d = 0, i.e.

SrnM I is an extended symmetry of the KP hierarchy. Similarly for

-1 N 1, since
" n12

nm n "
t ~?M 1  1, N H1 3 Z b * M1 L 2.H1.

2. O 1 , 'P1 N I are extended symmetries of the hierarchy
d32 12 12 12

St J R 12 *12N12

3. The KP hierarchy admits two hierarchies of t-depencent symmetries

of order r given by (3.56) where

12 12 12 ' I2 (Y1 + r2j

( j (m+2jn+j- z 1 *)

12 = v(r,2js)N12  H 12  ji

2j-1

(m ( (23-l)n+j-I- 72s ) Is (r- :2s +1)-(2j-l) ZZ [ r, -l s M 2L I " I i

the summation Z is over s,, s29 .... sj, from zero to Pnt Pn = (n-i'2 if

n is odd, (n-2)/2 if n is even,
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and

Z(0) = (M). r
12 12 1?

2j
^(m+2jn+j - E 2s +1) -2J 1 )

S(2j) = 7v(r.2js)M12  Z "H 12 - 2 .

2j-l 2j-1

(2j-1) -(m+(2j-l)n j z 2s Z1) (r- Z 2sj+- I
12 E v(r,2j-l s)N1 2  =l H2 Z=1

Z-s:-S S s ) 
=  (- o Z 2 s(n-s)an

with j > 1, b O. L-s-5 Zl-S 4 )Z ) and

J J r!
v(r,j,s) A ( e(r - i2s b))( b 2S 1 ) - 'J_ l Z=:I Z n, 2s+

(r - Z 2s .+1)1.

For.

Equation (3.56) implies that constructing a symmetry of order r

is equivalent to finding a function (0) with the property that its
~12

(r+1) t commutator with 6 12K is zero. This can be easily achieved tv

using suitable H 's. For example, let H2 + y q,, then (3.57'
12 12

implies:

nm m+n-z+l12, 122M12(yl+Y2)d = 0 ni 2  N12 211,

since

6P12, Y 26 where 6 0 if i I or 1 if Z 1.
21 1,Z w IZ

Thus, using the fact that [6 1' = 0 it follows that
m

P12M12"(y1+y2 ) generates first order time-dependent symmetries

m m+n

12 M12 (YI+Y2) - 2b it. 2  1212 12 12 i

m (. rSimilarly, to generate r-order time-dependent symmetries use ^12M 2 "(yyj,

4 *12 12
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since the commutator of (yl+Y2) with 612 produces (yl Y2)r- and hence

the rth commutator of ( )r with i12 produces I which commutes with

12

[6 2,(y1+Y
)r]1 = (1-(-I) )D(r-s r ( )r-sS - )I9(r -s)r-s'. (Yl Y2

where O(r-s) denotes the Heaviside function.

4. The hierarchy ql J R_ N I admits two hierarchiest R 12

of t-dependent symmetries of order r given by (3.56) where

() (m) r)
* 12 12 12

'3 j

,(m+jn -  2s,+1) . H (r- 12Sz+,
"12 ' 12 12

and by

-(0) -~m r
-12 M12 12

j J
) Zv(rj s)M ( m+j n - Z22s .)H (r- Z 2s +1).

12 12=1 12 E=

where the summation Z is over s,. s 2 .... ,s from zero to

Pn' J 1, P (n-1)/2 if n is odd and (n-2)/2 if n is even. Also

nn
b (-4,) (n).n, z

The above extended symmetries, under the reduction Y2  y, yield

symmetries. This follows from the following theorem (se [27P.



-30-

Theorem 3.2.

0
Assume that the admissible operators 12' K12 9 satisfy

' 1 i2'
0

1K 12t,612J = - _-s12 12,

where 6, 8 are constants and is such that sl K'H 1 2 C. Then
L d

(i) If :12 is an extended symmetry of (3.45), c is a symmetry of

(3.45).

ii) If :12 is an extended symmetry of (3.45) then =Oq)= is an auto-

B~cklund transformation of (3.45), where q, and q2 are viewed as

two different solutions of (3.45).

(iil) If 12 is an extended conserved covariart of (3.45), Y, is a

conserved covariant of (3.45).

iv) If Y1,, is an extended gradient function then ,, is a 9radient

function.

EXAMPLE.

Consider the extended symmetry of the KP

M qx + q2  + (q -q2 )D- (ql-q 2) D-(q q

x x

Clearly (M 2q which is a symmetry of the KP. Also M,_ 1 CCle rly 12 1II Ix " ""I

is a well known auto-Backlund transform of the KP.

Remark 3.5.

(i) It is quite interesting that both svmmetr'es and Backlund trans-

formations of an equation in 2-i come 'rom the sa-P basic ent2r,,

6 A
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the extended symmetry. Indeed, when a = 0 the recursion operator

412 for the KP equation reduces to an operator that Calogero and

Degasperis have introduced [30] and which generates the auto-

Backlund transformations of the KdV equation.

(ii) Using the interpretation that Qob# qb - bq, q, b matrices, the re-

cursion operator of the KP becomes the operator generating auto-

Backlund transformations for the equations associated with the

N x N matrix Schrodinger problem in one dimension (studied by

Calogero and Degasperis [30]). This important connection is ex-

plained from the fact that certain 2+1 dimensional systems can be

viewed as reductions of certain evolution equations non-local in

y. These equdtions are directly connected to matrix evolution

equations [28], [31].

3.7. Extended Conserved Gradients.

Lemma 3.2.

Assume that -I2 is a Hamiltonian operator. Then,

[ 1212, g12d (12 grad12 <f12 , 12g12> +

';12 {(f12d 12 d 12g12] d(g )[e f1 2 f (3.58)

Proof.

See '28].

One way of proving that (* generates gradient functions is to

use Theorem 3.1, (v). However, this requires that P2 is factorizable
12

in terms of Hamiltonian operators. Alternatively, we propose the

following _c nstrut ive appraoch, which only uses one Hamiltonian ope'3tcr
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Construct the Lie algebra of the starting operators, say M-7, NJ. T en
use this algebra and (3.58) to prove that all ,mlK H, : are Qrad-

12 12 12 i
-10 "0 s o

ients, provided that K12 K12 HI12 is a gradient, where K is M2 or N".

Finally use Theorem 3.2 to show that (- 2K12H2)11 are gradients.

EXAMPLE.

Consider the operators M12, N1 2 associated with the KP. Then

1 1 2 Pn 12 3 grad- ,n MH(1), D DNH(),(.912 12 12 12 1212 12 (.

-1 n+1- (3) ,n - (1) M ̂ (3),

1N212 grad X H~' D M H (36012 12H12 12 12 12 12(

For.

it is easy to verify that D M 12 H 12 is an extended gradient.

Then (3.58) and (3.37c) imply that D -1 2N1 2 H12 is an extended gradient.

Equation (3.37b) implies

-1 ,J ( ) n 1 3

Since D t N H 1 H are extended gradients, the above equation121 ,2 122aeetnegadesteaoeeutn

-1with n : 0 and (3.58) imply that D-¢I2M12H12 is an extended gradient.
Siial -1 n 121

Similarly D I 12M12 is an extended gradient. Equation (3.6C) follows

in a similar manner using (3.37c).

Remark 3.6.

It was shown in §3.6 that time-dependent symmetries of order r are

generated via (Pm M H ¢m 2N1HI with H (yl+Y2)r The above re-
12 12 12' 12N1H 1  wi H1 2 12p 1r2

suits shows that 0 m -Im 4-d nt n~ir o12 : 21 r rdet~cirs o
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arbitrary H12. Hence the time-dependent symmetries correspond to grad-

ient functions. However, the time-dependent symmetries are closely

related to master-symmetries T (see §2). Hence the master-symmetries

T correspond to gradient functions.

3.8. Non-gradient Master-symmetries.

Lemma 3.3.

Assume that the hereditary operator P12 satisfies o 12012 012€2

where 012 is a Hamiltonian operator (if P12 is factorizable, then this

equation follows). Assume for simplicity that 012 0. Then

m
mT + mT -- mT + E .r-1 m-rs, -I

12 12 d '12(12'121d 12 12 T12 d 12 12d 12 r=1 12 -I 12 S12'1 2 '

(3.61)

where

d, ]. (3.62)
12 1i2 [T12] I2 d9 123

Proof.

See [28].

The results of Lemmas 3.1-3.3 can be used to obtain non-gradient

master-symmetries T1 2. Such master-symmetries are explicitly related

to recursion operators 0 12' Indeed given 012 one computes T1 2 and given

TI2 one computes 012. These formulae are the two dimensional analogues

of the formulae given in §2.1. The basic idea is to find a T12 such that

T12 d + 0 12T* 2d01 = 0 and S*2 = C.1, C constant.
12 12 1
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EXAMPLE.

A master-symmetry of the KP hierarchy is given by ,1 2 :ndeed12" dee

M Ef(t12* 1 6 +22) D'- I  B constant (3.63)

12 12 [n 12  n d

D-1 m+n-1 I n- m 6

or 12 M12  12' grad 12 ( 2) D 12  12 12

For.

* 112 and M12 are given by (3.8), (3.35a), O12 = D. Let T 12 = 6 12

12 1 1 12 12 = 4 (see (3.62)). Thus, equationTeT12 d  12 12 d 12 = n 12. . ,

(3.61) with m=2 implies (3.63).

To derive equation (3.64) use Lemma 5.1 with K(1) = M 1,
12 12

K(2)M
12 12' m 12 0 (since t12 is a strong symmetr of M 12-

(2) =
and S 12  12 "2 4. Thus

f

n 2 n+2 . n+ "K M *.' ) 1Il n M12 12 "12 12]d 12 [M1L 123d

n+2 1 6 np a 12 1'However, 12 [M12  12]d is proportional to 1 , hence the

above implies (3.64).

To derive equation (3.65), use Lemmas 3.1-3.3 to obtain the follow-

ing general result: If 12 is a hereditary operator such that it is a

strong symmetry for M12 and ¢12012 = (12) 2 where -1 is a constant
12 1212 1 12112

invertible Hamiltonian operator then

n-r r-1 r-1 -1 n M +n+mr m

S12r= 12 1212 2 r=1 12 S,1212 12 12 '12 L" 1 I 1 1 -

Sngrad m T t T .-1
12 12 12 12T1 - 12 (TT 1  "12 1  12 )2d L 12'

d d

04
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where

S12 * 12d[T12] [.12 'T12 d' S12 1i2 d + [T12d'd912 ] "

Using T12 = 6 2 in the above and noting that S12 = S*2 =4,
-1 n+m n+m-1 1

T12 d + 12 - -i = 0, 12 [M12'61 2]d is proportional to €nm 12 '

we obtain (3.65).
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