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Integrable Equations in Multidimensions (2+1)

are Bi-Hamiltonian Systems

by

A.S. Fokas® and P.M. Santini

1.  INTRODUCTION

Ablowitz, Kaup, Newell and Segur [1], following ideas of Lax (2]
were the first to solve in the concrete case of the Dirac problem the
following question: Given a linear eigenvalue problem find all nonlinear
equations that are related to it. They found that associated with a
given eigenvalue problem there exists a hierarchy of infinitely many
equations. This hierarchy is generated by a certain linear operator.
This operator is the squared eigenfunction operator of the underlying
linear eigenvalue problem. The operator generating the KdV hierarchy
(i.e. the squared eigenfunction operator of the Schrodinger eigenvalue

problem) was found by Lenard. For other eigenvalue problems see [3]-

(10].

¢ Olver [11] established the group theoretical origin of the above hier- 2
archy: Finding the hierarchy associated with a given equation is
equivalent to finding the non-Lie point symmetries of the given equation.
e He thus interpreted the squared eigenfunction operator as an operator d
>. + . : 1 .<
Lectures given by one of us (A.S.F.) at the Winter School, Tirychirapells,
India, January 1987.
¢ )
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mapping symmetries onto symmetries; this lead to a simple mathematical
characterization of the recursion operator ¢. Olver,

was thus the first to establish that certain integrable nonlinear equa-
tions possess infinitely many symmetries. This motivates the following
question: Is there an algorithmic way for generating equations possess-
ing infinitely many symmetries? Fuchssteiner [12] discovered such a
way: If an operator ¢ has a certain mathematical property cailed
hereditary then the equations Uy = onux, n integer,

possess infinitely many symmetries. From the above discussion it
follows that both linear eigenvalue problems and hereditary operators
yield hierarchies of equations possessing infinitely many symmetries.
Actually Anderson and the author [13], following ideas of Fuch-
ssteiner, have shown that eigenvlaue problems algorithmically imply
hereditary operators.

Equations solvable by the Inverse Scattering Transform are Hamil-
tonian systems. Magri, in a pioneering paper [14], realized that
integrable Hamiltonian systems have additional structure: They are bi-
Hamiltonian systems. Actually the underlying hereditary operator can
be factorized in terms of the two associated Hamiltonian operators.

The theory of factorizable hereditary operators has been further developed

by Fuchssteiner and the author [15] and by Gel'fand and Dorfman (16].

The understanding of the central role played by factorizable
hereditary operators for equations in l+l, motivated a search for here-
ditary operators for equations in 2+1. However, in this direction
several negative results have appeared in the literature. For example,
Zakharov and konopelchenko {17], in an interesting paper proved that
recursion operators (of a certain type naturally motivated from the re-

sults in 1+1) did not exist in multidimensions. A similar result has

Ie.




been proven for the Benjamin-Ono (BO) equation [18]. It should be noted
that the BO equation has more similarities [19] with the Kadomtsev-
Petviashvili (KP) equation than with the KdV equation. Fuchssteiner anc
the author [18)] after failing to find a recursion operator for the B0
introduced the concept of the master-symmetries 1. Subsequently Oevel and
Fuchssteiner [20] found a master-symmetry for the KP equation. The -
theary for equations in 2+1 has been developed by Dorfman [21] and Fuch-
ssteiner [22]. However, the t 1is not related to the underlying iso-
spectral problem and also can not be used to construct a second Hamil-
tonian operator. This is a serious drawback: several prominent invest-
igators, for example Gel'fand [23] have considered the existence

of a bi-Hamiltonian formulation as fundamental to integrability. With-
out finding a recursion operator ¢, one cannct find the second
Hamiltonian operator. Several investigators have noticed that master-
symmetries also exist for equations in 1+1. The theory for the master-
symmetries T in 1+1 was developed by Oevel [24] (see also [25])

and 1s more satisfactory than the theory in 2+1: [f one assumes that an
equation is invariant under scaling then there exist a cne to cone con-
structive relationship between T and the recursion operator ¢.

Recently P.M. Santini and the author [26]-[28] have found the
recursion operator and the bi-Hamiltonian formulation of a large class
of equations in 2+1. They have also established the gereral theory
associated with factorizable recursion operators in multidimensions.

Furthermore, both gradient and non-gradient (the 2+l analogue of T)

master-symmetries are simply derived and their general theory 1s developed.

F.
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2. MASTER SYMMETRIES *
In this section we review certain aspects of non-gradient master-
g 3 eppumte- - I ey et R et~ @
symmetries in 1+l and gradient mastersymmetries in 2+l.
d
Definition 2.1.
A function v is a master-symmetry of the equation q, = K iff the
map 4
>
ERN where [a,b]L £ a'[b] - b'(a] (2.1)
maps symmetries onto symmetries (prime denotes Fréchet derivative). ]
»
The first example of a master-symmetry was given for the Benjamin- 1
Ono equation
- s 1 def(e
q, = Ha,, *+ 2qq,. (HF)(x) ¢ 1 jR fle), (2.2) ]
It was shown in [18] that if 1 % x{Hg_ _ *2qq ) + q2 .3 Hq. and o_ is
’ XX X 2 X n
a symmetry then o . % [cn,Y] is also a symmetry. It was further shown ’
in [18] that D'lr is a gradient function (t'D + D-'*= 0).
Master-symmetries are intimately related to time-dependent non-Lie-
point symmetries [25]. Indeed, the first non-Lie-point time-dependent )
]
symmetry is a natural candidate for a master-symmetry: Consider the
- - Y (2)  (3) : .
evolution equation q, K and let K , K ,... denote its time
independent non-Lte-point symmetries. Let >
2)
2y (2.3}
be a time-dependent ncn-Lie-point symmetry. Then )
R TR N (R
and v 1s a candidate for a master-symmetry. [
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2.1. Master-symmetries for equations in 1+1.

Lemma 2.1.

Let
1,2. (

S, % °'[Ki] + [o, K;], i

If ¢ is hereditary, i.e. if
¢'[eviw - ¢¢'[vlw is Ssymmetric w.r.t. v, w, then

m n
[o"Kl,omK,]L v o 2 @m'"sl¢r‘1)xz-om( £ ¢" s s

r=1 r=1

n+m _
o IKLK D

m,n are non-negative integers.

Proof.

See Theorem 2.1 of [28].

Corollary 2.1.

Assume that i is a scaling of both K and of the hereditary

operator ¢, i.e.

99}

[K,YO] = ak, :'[:YO] + [;,ré] = 2.

Then

(i) (2 + ne)e™ 1k = [0k, 2ol s

i.e. tvy is a master-symmetry for g, = K.

(1] («ng)s™ M= [0, 2T

i.e. :mro is a mster-symmetry of order m for 9 ° K.

. n+1 )
(o +# n8)ts K + ¢ is a symmetry of ¢, = & K.

(ii1) 1

t1
-

Proof.,

(1) Apply Thegrem 2.1 with

R d

AW

-




(ii) Similar to (i).
(111) Use the definition of a symmetry.
In the above we derive T from ¢. Now we obtain ¢ from T.

Lemma 2.2.
+
Let ¢ be a hereditary operator such that ¢0 = 0¢ , where @ is a

constant, invertible, skew-symmetric operator. Then

(0T)" + n(eT) *o™b = a(1 + (1) %07 h) + 5507

where

Proof.

See [28].

Theorem 2.1.

(i) If the hereditary oeprator ¢ admits the scaling Ty then @ty is a
master-symmetry for the hierarchy generated by ¢.

(i1) Assume that the hereditary operator ¢ admits the scaling 1, and
that it also satisfies ¢0 = G¢+, where 0 is a constant, invert-
able, skew-symmetric operator which also admits the scaling -

Then

(2.10)

Proof.
(1) [f ¢ admits a scaling and K is generated from ¢ then K also admits

a scaling. Hence Corollary 2.1 implies (1) above.
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(1) Since ¢ admits a scaling, o also admits a scaling, hence S is

. + + -1 . .
proportional to ¢ , thus S 0 ~ is proportional to ¢. Furthermore,

. . . [N l+= =
since O admits the scaling Tgs 190 * 010 a0, thus ot 0(10) 5

equals a constant. Hence (2.9) implies (2.10).

EXAMPLE

1. ¢ =D+ q+ q)(D-I s the hereditary operator associated with
Burgers equation. [t admits the scaling q » aq, x - a"lx, T.e.

g~ 9 * xq . Thus X(qxx + 2qqx) + q2 is a master-symmetry of Burgers

equation.
= -1 . : 2.0 .
2. =0 +4g + 29 0 " admits the scaling q = 2q, x » a “x, i.e.

gt 9t 2xq . Thus T = 1y s a master-svmmetry of the KdV.

3. [f 9T a* 2qu. then 76 + D(<A) D% = -3, Hence if T is the

master-symmetry of Xdv,

1S the recursion coperator of the Kdv.

2.2. Gradient master-symmetries for equations in 2+i.

A straightforward generalization of Theorem 2.1 to equations 2+!

fails: i) % could not be found, 11) the known master-symmetries

e ()7 -1 0. It will be shown

T were qradient functions, hence -

+ -1




in §3 that for equations in 2+1: 1) Suitable generalizations of 3, de-
noted by 012 can be found, 1ii) there exist non-gradient master-symmetries
le (for example for the KP le = °§26(y1'y2)' where & denotes the Dirac
delta function). Hence a generalization ofvtheorem 2.1 to equations in
2+]1 is given in §3.

One can still develop a theory for master-symmetries without

using the connection with the recursion operator ¢: see [21], [22].

3. SYMMETRIES FOR EQUATIONS IN 2+1.

In this section we review the theory recently developed by Paolo
Santini and the author. We use the KP as an illustrative example and
quote the basic theorems when needed. We hope that this form of present-
ation will aid the non-expert reader to become familiar with the notions
and methods developed in [26]-[28]. We advise the non-expert reader to
read [(15] before reading this paper since many of the results presented

here are two dimensional generalizations of results given in [15].

3.1. Derivation of Recursion Operators.

Given an isospectral eigenvalue problem there exists a simple
algorithmic way of obtaining a recursion operator. This approach in-
volves three steps: compatibility, an integral representation of a certain
differential operator, and an expansion in terms of delta functions.

Let us consider the eigenvalue equation

Wex q(x,y)w + aw = 0, a 1S a constant (3.1)

and for convenience of notation we suppress the t-dependence. Using

vector notation, (3.1) yields

&l




1. Compatibility

Associated with ux = UW we look for compatible flows Ht = VW
where
A 2C
V = , A,B,C,E polynomials in O .
B8 F Y

Compatibility implies the operator equation

U, = v, - [uvl,

or

-qt 0 X X

Solving in the above equation for A,B,E in terms of C we obtain the

following operator equation:

- + - . _1 . . R
a, = €, * [aC] + [q,cx]+ + [,07'[a,C]] + Aya,-dAg, (3.3)

where

([, ]is a comutator, [ , ]* is an anticommutator, A0

X
is an cperator such that Ay =0 and (D-lf)(X.y) = J f(e,y)de.
x -Qn
In what follows we take AO = 0 (the general case is considered
in [27]).
2. An Integral Representation.

The crucial step is to use an integral representation for the

differential operator C:

(9]
£

[ ,
(Cf)(x.yl) = dsz(X.)‘l‘)’Z)f(x'Yq)- [
JR “
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Let

q; s q(x,yi), D. ¢ Dyi, i= 1,2, T12 5 T(x,yl.yz). (3.5)

Equation (3.4) implies similar integral representations for all quant-

ities appearing in the RHS of (3.3). Ffor example

For
(qIC)f = J dyz(qlle)f, Dl(Cf) = (01C)f + ny = [ dyZT12 f2’
R 1 R ¥y
Ccf - T,,f . dy.T f
yp TPty ol Mot e
Y5 - Yo
_
Thus (D,C)f = o dy,(Ty, + T, I,
yl )’2
Similarly
(4,C = Cqp)f = jR dr,{a55T10)f5s
where the operators qiz are defined by
qiz s qp *a, ¢ a(D1 + DZ)' (3.6)
Using the above integral representations in (2.3) we obtain
- PP S Sy
%, T e, (QyoTyo) * Q71 * 9D eyt fpp F 8lyyy
XXX
or
£.q = Ov. T 'y + DZ + Q' - D-10+ D*D_lq- D'IQ’ (3.7)
12 1t 121 12 - 12 12 12 127 ’

-

¥

N

A

Nad
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Let us introduce the operator 012 via

2 -1 -1 - -1

+ + -
D¥p = 150, %15 # 07 * a5 + 0q),0 ° + a),0 "q),0 (3.8)
Thus
2%, D¥1o71p = 12075 (3.9)
3. Expansions in terms of delta functions.
We expand le in the form
n . . R . J
_ i <(3) J . d
T.n = L 83,7157, 69, 2 == 6(y -Y)- (3.10)
127 4o 1212 1273 1772

1

it turns out that Y10 admits a simple commutator relationship with re-

spect to h12 = h(y]-yz). Actually the following operator equation is

valid
(¢, h,,] = dahl;  h!, ¢ -9 (3.11)
» M2 12° 12 © dy, 12 :
Hence equation (3.7) yields
n ) n . n+l . .
: - P B G R (3) J nr(3-1)
1291, % L D¥610Th D GpB¥ Tyt da ey 0Ty
t j=0 =0 j=1
Thus
L(n) _ (j-1) _ 1 (i) - x e 7(0)
e, 7% Tz “ 3 Y2l f12%, S10%2Ty - (3.12)
Letting T§2)= 1 we have the following proposition:

Froposition 3.1,

The isospectral equation
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W o +Qqw=0, qg*q+al,; o constant (3.13)

is associated with the equations

9, = BnJ dyzélzoqul-l = BnJ dy2612®T2(®120)-1, 8 constant (3.14)
t R R
where
e nl, t -1 4 -1 - -1 - V. + -1 - -1 - -1
Y12 # 074q15*0 Tqy,0 + D Ty, Ay, @y, 2 074Gy500q0 Teqy50 Tay 0,
(3.15)
and WIZ’ 012 and related via DYIZ = @120. The operators in are defined
by
qiz : 61 - é‘i’, 611 B ay * aDyl, q‘{ 2 q, - 1Dy2. (3.16)
(The notation d{ is justified, since d{ is indeed the adjoint of dl’ see
§3.2).
EXAMPLE.
1. Equation (3.14) with n = 0 and 3, = 1/2 imnlies q, = a -
t X
2. Equaton (3.14) with n = 1 and 81 = 1/2 implies the KP equation
- 2,-1
a, =4 +6q,9, *+ 3aD 'q . (3.17)
1 1 171 1
t XXX X yljl
Remark 3.1.

(i)  The operators ¢, and ¥,, with Yo = yy and a = 0 reduce to ¢ and

+
% respectively, where ¢ is the recursion operator of the KdV,
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(ii) The starting svmmetry (0120) <1 is given by q *ta, ¢
X X
Thus i1t reduces to -
X

-1 - )

the starting symmetry of the KdV, when Yo T ¥y

3.2. A New Directional Derivative and a New Bilinear form.

Recall that ¢ generates symmetries and ot generates conserved
covariants. Similarly, it will turn out, that 012 and °f2 generate
extended symmetries and extended conserved covariants respectively. To
define these extended notions we need to introduce a new bilinear form
and a new directional derivative:

(i) A new bilinear form.

9o frp” * f 5 dx dy dy,trace g, f 5, (3.18)
‘R

where f,, and g,, are matrix valued functicns of x, y,, y,, and obviousty

the trace i1s dropped if f12, gy, are scalars. In association with the

above form we define L;Z to be the adjoint of le iff

L1p9120F127 7 <9120t 12f10 (3.19)

We recall that the usual bilinear form and the usual adjoint are defined

by

dx dy trace gf, (L*g,f) = (g,Lf), (3.20)
where f,g are matrix valued functions of x,y.

EXAMPLE.

S SN

1. The adjoin® of G, s arven by qf
) 9
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2. (QIZ)' = qIZ. (ay,)* = -qp, (3.21)

b4

2 7 Y12 -

Note that the fastest way to compute the adjoint of an operator le is to
evaluate the adjoint as usually and then interchange ] —— 2.

Let I be a functional given by

I = ij dx dy1 trace o11 ° jRB dx dyldyzélztrace 017+ (3.22)

The extended gradient of this functional is defined by

<grad;,l, > ¢ Id[-] = JRB dx dyldyzélzolzd[-], (3.23)

where subscript d denotes a suitable directional derivative.
[t is easily seen that a function Y7 is an extended gradient function,

i.e. it has a potential [, iff

Y = yY . (3.28)
12d 12d
Also
(grad 1, =) # 1.[-] = ! , ax dy o[-, (3.25)
'{R h

and y is a gradient function iff T v;.

(i1) A new directional derivative.

Recall the crucial integral representation

f

(alf)(x,yl) = JR

dY3Q(X»y1sY3)f(Xay3)

Allowing f also to depend on y, we obtain
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The above mapping between an operator and its kernel induces a mapping
between derivatives: Let subscript d denote the new directional deriv-

ative, Then

a) [og,1f; - J dy3°13f3;-
d R
The integral representation for 61 also induces, via (3.18) an integral

representation for the adjoint of él:

I8
G219 T12" 7 | 39 921JRdyéq13'f3'2 : JRadyédyzdyldx 923:93'1f12
[
")

-R3 dyldyzdx G21f12, where we have used 3' <—>1, and

.
!
|
i

Goy (Rdy3923'q3'1' thus Gpp 7 39130930 Thus qffl?:JRdy3q32f33'

J

Furthermore, the 6{ mapping induces a mapping between derivatives. Thus

{

. . (
Urg F el )fp7 i d¥aay5fape affyp # (apmap)Fip%) dvaasfys
(3.26)
[ .
q = a Ar [~ - ' .
% eredfie < [ @313Tap A leredfie 7 ety (3:27)

The above derivatives with respect to él and d{ imply the following
derivatives with respect to q;z, qizz

f
i
!

qizd[clz]flz s o dy3(:13f32 . 032f13). (3.28)

Furthermore, using the chain rule and (3.28), if an operator Ko depends

only on qu, qiz its directional derivative Lys [:12] is well defined.
“d
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This derivative is linear, and satisfies the Leibnitz rule. Also, using
(3.28) it follows that the directional derivative in the direction of

8,, reduces to the usual total Fréchet derivative:
Kip [85F 50 = Ko [F1 2 Ky [F ]+ Kp [Fpol, (3.29)
d f q q
1 2
where the subscript f stands for a Fréchet derivative and
_ 3 L
K12 [Fi1] Y Klz(qi R qj) e 1, = 1,2, (3.30)
q1 e=0 )
LI

Operators which depend only on qiz are called admissible. Similarly,

a function K 2 is called admissible if it can be written in the form

1
K12 = K12H12, where K12 is an admissible operator and le 1S an appro-

priate function (for the KP, H12 = H(yl,yz))-

EXAMPLE .,

s + - -1-
12812 ¥ 093281, * 9150 58,

function since the operator M

The function M is an admissible
12 depends only on qiz, and ¢1p ® 6(y1—y2).

[t is easy to compute its directional derivative:

- -1 -1 -
D 12812

N + - -
(M12812)gloqp] = Doypbyp + 01,0 "ay581, + qppD

Lc 2 . \ Y ~ -
where VIZFIZ : JRdy3(ol3f32 + 032f13/. Hence (M12612)d[“12] 2Dc12.

3.3. Isospectral problems yield hereditary operators.

Using the same methods as in 1+1, it can be shown that if the ex-

tended gradient (Gx) of the eigenvalue ) of an isospectral problem

12

satisfies
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¥15(6, )y, = wlA)(6, )5, (3.31)

then 012 2 YIZ is a hereditary operator. {One must again assume comlete-
ness, a proof of which should follow a two dimensional version of the

method developed in [ 6]).

EXAMPLE .

Consider the isospectral problem
v + (él - k)V1 = 0. (3.32)

Taking the directional derivative of the above 1t follows that

2

+ Q.- 0 - 1 =
(0F + a0y U]+ Loy L) - glfpdly = o

Multiplying the above by V+, where V; satisfies the adjoint of (3.32),

r

integrating with respect to dx dyl' and assuming f 5 dx GYIVIV; = 1,
‘R
we obtain

X 7 T ¢ A = \y"“ rf 1\"'..
Palfipl = cgradpe. £ 2 T ety

Using (3.26) to evaluate dl [f12] it follows that
d

+
H = \ [ ]
<Gx)12 tograd;,h = VoV, (3.33)
It is easy to show that #y, as defined by (3.7) satisfies
. + -4, + " .4
BV, = AAV V. (3.38)

Hence 012 is a hereditary operator.
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Remark 3.2.

Konopelchenko and Dubrovsky {23] were the first to estatiish tre
importance of working with v(x,yl)v’(x.yz). as opposed to Vo e d e
They also found a linear equation satisfied by vlv;. However, 'hey
failed to recognize that this equdation could actually yreid *ne recur-
sion operator of the entire associated hierarchy of nonitnedr egudtiors,
Indeed, they used the above equation to obtain “local™ recursiocn oper-
ators. Thus the question of studying the remarkably rich structure of

these recursion operators in particular 1ts connection to Symmetries,

conservation 1aws, and bi-Hamiltonian operators were not even posed.

3.4 Starting Symmetries.

The theory of symmetries for equations 1n l1+] s based on the

Y " M " J ¥
existence of “starting" symmetries ¥, which via ¢ generate 1nfinitely

many symmetries. For example, for the KdV KO C For equations :n

2+1 we find that the starting symmetries kgﬁ ras the followirg 1rportare
L L

N .
properties: (i) Can be written 1n the form r?ﬁHIZ, where K?O 1 an aq-

i

missible operator and H is an appropriate function. (11} “he start-

12
ing operators k?z have simple commutator properties with resgect to
h12 = h(yl-yz). (111) The Lie algebra of the starting operator k97

acting on functions le 1s closed. (iv) Using (11) and the fact that

012 also admits a simple commutator relationship with h17' 1t can be

n
. n .0 - L8200k
shown that v12¢12K12 1 i:O bn.i'lz K12 £i0s where bn‘i are
appropriate constants; hence 612¢?0k?2 -1 are admissible functions.
o
[t is thus clear that in 1+1 one considers the Lie algebra of functions

KO. while in 241 one considers the Lie algebra of aperators kgﬁ. This
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richer algebraic structure of equations in 2+1 can be exploited in a

variety of ways. For example different choices of Hio yield both time-

—

independent and time-dependent symmetries. Furthermore, all these
symmetries correspond to gradient functions.

We now discuss (i)-(iv) above for the concrete case of the KP:
It should be first noted that given an operator 1o there exists an
algorithmic way of finding its starting symmetries: One looks for
operators 512 such that élZHIZ = 0 but 012‘12H12 = k?ZHIZ # 0. [t can
be shown that if a starting symmetry is constructed in the above way
and 012 1S hereditary then °12 is a strong symmetry for this starting
symmetry.

(1) For the KP there exist two starting symmetries:

1

=

Mo DQIz * qp,0° £l My, F H(y L)) (3.35)

QI29

corresponding to 512 = 0 and 312 = D(qiz)-lD respectively.

(i1) The following operator equations are valid:

Mo hlz] = 2aDh12, [le.h12; = 0. (3.36)
(i11) The Lie algebra of M12‘ N12 is given by
(1) v (29 - v w03 rn W01 i3 L Ll
[N M1 N g = N g o INH T MR R0y s Moy s s

y (1) . (2)1 _ N (2)
O PP LI PAS FIL R IPLIPLIPAR




b

h a3 s D) WD s [ gy D) 200, .

H12 12 in 13 "3z 13 132
g ——— - Let wuuza): —— - - - — - e
(2) - ‘o (2) _ (2) (1)
“ qlz[qlz 12 ]“ o2 dy3dy3{(a;3.H303" - agugHy3i)Ha, 0 -

(1) (2) (2)
- M3 (ag3.H30p - a30H350))

- 2
= JRZ dy3dy3.(H32 [ql Q3-a D +0 )]H( ). H(”[q3 qz-q 03+02 ]H }.

Hence

(1) - u(2)y
d

R (2)
EP PR IPLIP 1

Lo . . (1)
-1a;-a, x(D1 02)}[H12 M5

Remark 3.3.
The bracket (3.39) can also be traced back to the integral repre-

sentation of él (see [27]).

(iv) -Equations (2.36) and the operator equation (see (3.11))

%,,,h = dah, 3.4
[#120h1p] = dahyp, (3.40)
imply
n n e, N n-«o, (
. - - VL = L -
teMp e T R N (3.41)
i1 A PR
»
n n n ;" ), n=) |
‘ 5 = T Mo £ (-40)" T 2TV .42
912M2 T T 0 o Mt O, B 0RA) T ) (3.4
=] 3-0
Let us 1ndicate how the above eqguat ons can be derived: introducing an »
: ]
naperator [, which commutes with 311 admissatle cperators r.., and which
.1
e
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has the property that

D= hyp = hyp s

it follows that

-~

n _ Ny N1 = (s ny . _
812%12M ~ 1 7 (0gp-4al) 8 N 501 = (#)5-8aD) N 5o 65
n L,ny, . n-1; £
- 151(_40) (o1, Ny - 8y, -
To derive equation { 3.42) note that
63" M 1= (6, -8xD)"5 M - 1 = (&,.-8aD)" (M-, -23D-5!.)
12°12M12 12 12M12 12 12 12
n n
- LNy n-kg, R - Lony n-go i+l
= izo(-id) (i)'lz M ‘,12 - 2‘31;0(-4)) (l)¢12 D 612 . {3.43)

The next step is to express o%zo in terms of :{2912, where j, j' are

integers. This can be achieved as follows: It can be shown that

n+l

@12 D -1+ °12M - 1. This equation 1mplies
‘n+10 . h - T (2 )J‘”'JM ) h‘j . hj L gJ_ h,,.(2.44)
12 127 = <Y e 120 127 7 1
J-O dyl

For example, multiplying ¢,,0 - 1 = MIZ - 1 by h,, it follows that

(012-4a0)h120 -1 = (MIZ-ZGD)’h, or @120 . h12 = M12 - h12' Similarly
2 = y . ] % 2 . = oo y . . -
@120 1 = 012M12 1 implies @120 h12 VIZMIZ h12 + ZuM12 h12'

etc. Using (3.44) into (3.43) yields (3.42).
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3.5. Basic Notions and Results

We consider exactly soivable evolution equations in the form
q, * K(q), q(x,y,t), on a normed space M of vector-value functions on
R, K is a suitable C vector field on M. We assume that the space of
smooth vector fields on M is some space S of C  functions on the
plane vanishing rapidly as x, y = = =. The above equation is a member
of a hierarchy generated by ¢y, hence more generally we shall study

Y

q, = q). Fundamental in our theory is to write these equations

in the form

. N0, (n) _ (n)
U, {R Wotiptrok 1 i, e T (3.45)

(in the matrix case, ! 1s replaced by the identity matrix [), where

(n)
K12

(ql,qz) belongs to a suitably extended space S, and S* denotes the
dual of S. In the extended spaces S and S* we define the new direction-

al derivative (3.28) and the new bilinear form (3.18); the notions of the

adjoint and of a gradient are well defined with respect to (3.18) (see

(3.19), (3.23), (3.28)). in analogy with definition 2.1 we have:

Definition 3.1.

(i) A function Sp € S is called an extenced symmetry of

I3

a,t 6,515 = Ky (3.46)
1ff

12 ] ;

5t “IZf[K] - (815K ) glepp) = 0. (3.47)

(ii) A function Yyp » ST s called an extended conserved gradient

(i.e. 1t 15 the extended gradient of a conserved functional 1)




(iii)
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of (3.46) iff

317
at

dt

Functions which satisfy (3.48a) are called extended conserved

covariants.

An operator valued function @12 1 S+ S, 1s a recursion operator

for (3.46) (or it is a strong symmetry for KIZ) iff

°12f[KJ v Lo, (81,K,)4) = 0. (3.49)
(iv) An operator valued function 012 : é + é, is a hereditary operator
(or Nijenhuis or reqular) iff
012d[¢12v12]w12 - ¢12¢12d[v12]w12 is symmetric w.r.t. v, ,, Wi,
(3.50)
(v)  An operator valued function CIPEE é* - é is a Hamiltonian operator
iff it is skew symmetric, i.e. @12 = °GT2’ and it satisfies
<a12,®12d[012b12]c12> + cyclic permutation = 0. (3.51)
(vi) Equation (3.46) is a Hamiltonian system iff it can be written in

the form

(O%]
[$al
F 2

q, = J dy,6,,0,,f.,, {
L, R 212712712

where 92 is a Hamiltonian operator and le 1s an extended gradt-
ent function, i.e. f*, = f . Associated with (3.52) we define
12d 12d

the following Poisson bracket

—~
-2
(W2l
tad

-

t1LHY = (gradlzl. legradle..

42




-24-

In the above, subscripts f and d denote total Fréchet (see (3.29))

and directional (see (3.28)) derivatives respectively.

Remark 3.4.

(i) Equation (3.47) can also be written as

aclz
7t " Logge 819K0dg = 0
since °12d[612K12] = alzf[K]. Similary olzf[K] = 'lZd[GIZKIZ]'

(ii) Some of the above notions are well defined only if (612K12)d is

well defined. However, for equations (3.45)

(n) _ . no0 . n n-200 (%
R b I At A P

Furthermore, by construction 2P and the starting gperators K?Z
depend on the basic operators qiz. Hence (élzkgg))d is well
defined.

In analogy with the basic results in 1+1:

Theorem 3.1.

(1) [f 0 is a recursion operator for (3.46) then ¢12 maps extended
symmetries onto extended symmetries and ¢IZ maps extended con-

served covariants onto extended conserved covariants.

(i1) If (3.46) is a Hamiltonian system them 915 = Oy
(i31) If ®12
-0

Klz-l then @12

is a hereditary operator and a recursion operator for

is a recursion operator for q, =J dy2612¢?2K?2'1-
t 'R

D —

- -
(1V) If @12 B 1

o~ P

r

) p(1)y-1 - A2y 4 _
(75,7)7", where C;57 ¢ w257 s a Hamiltonian operator
< 4 C
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for all values of the constant v and Jgé) is invertible, then ¢, .J
1s hereditary.
, A 0 , (A(1)y-1°0 . .
(v) If ), as 1n (1v) and v , ¢ (O12 ) Kjp = 1 1s an extended gradi
ent function then all (@f mY?Z are extended gradient functions. '!*
EXAMPLE.
The hereditary operator ¢12 of the KP equation is factorizable in °

terms of the Hamiltonian operators D and 0120. Hence each member of the

KP hierarchy is a bi-Hamiltonian system, with respect to the following

two Po1sson brackets [ )
, (i -
[, H -gradlzl, Olz)grad12H>, i=1,2
B O * Lo
BT PR U PR FA P .

3.6, Extended Symmetries.

Lemma 3.1. i
(1) Let 1o be hereditary, then
(1) m (2)7 L oneme (1) (2)9 L .m0 nere(2),re1y (1)
R PR P P VAL R I TR PR A FAM IR o
- 1
no, T omerc (1), r-1,,(2)
VAP PR PR A (3.54)
r=1
where 01
(1) . (1) (1)

S F 01zt ]+ [°12'K12d]' (3.55)
m,Nn dare non-negative integers. i
®
1
L--sJ-l---lll-lIllIllllllllIIllIlllllllllllllllllllllllllllllllllIlIlIIllIll---------i
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(i1) (r) is a time-dependent extended symmetry of order r of equation

%12
(3.46) iff
(r) o T30 ) . (- .
°12 § t 2:12 ' T12 J[“lz ! '12K12]d’ J la.oo,r,

J=0

(r) Iy . - ( c
(257 5y,K 0y = O 3.56)
Proof.

See [28].

We propose the following constructive approach to extended sym-
metries: Given an isospectral problem construct a recursion operator

¢ This operator must be hereditary (see §3.3). Then construct its

12°

starting symmetries operators, Say MlZ’ NIZ' The operator °12 is a

strong symmetry of MIZ’ Nio (see [27]). Compute the commutators of

MIZ’ N12' @12 with hlZ' Use the commutator relationships to derive
-0 i n-i0 :0 L : .

£ . = Lol A . £

u12¢12K12 1 c bn,i'lZ K12 fo K12 is M12 or le. Finally

=0 . .
compute the Lie algebra of M,,, N, . This Lie algebra together with

(3.54)-(3.56) yield infinitely many time-independent and time-dependent

extended symmetries.

EXAMPLE.
1. oTZ“lZ -1, ¢T2&12 - 1 are extended symmetries of the KP hierarch,
n - -
= dy,6,.,%, ,M -1 (recall KP corresponds to n = 1). M,
U, Tl ettt P )My .
&12 are defined in (3.35).
For.




(¢y,

where we have used (3.54) |

<
.
"~
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n . M N .
PP BEUPLIPEENLIPY

b

0 n, « *2

JMmEn- L*l

17[ 12° 12]d'

(3.57)

is hereditary and 1t 15 also a strong

symmetry for MIZHIZ’ thus SIZ) = 0), and (3.37¢). Taking le = 1 and
using
£
" [512’ 1]I = Oi
. m .
equation (3.57) implies [612 12M12 1, 12M12 . ] i.e.
¢?2M12 -1 is an extended symmetry of the KP hierarchy. Similarly for
sm \ . 1
VIZNtz 1, since
[5 " M L, sTN - HLT s : Mty 65, ML)
ﬁ St b M T Miede T2 Pnifl Mt Ml
Z. :T°Ml2 -1, @Tz&lz - 1 are extended symmetries of the hierarchy
) q = ; d_y £ :n {;1 -1
, 1t ‘n 3m12712712 ’
q
3. The KP hierarchy admits two hierarchies of t-dependent symmetries

of order r given by (3.56) where

0

2

<12

H0) | g L (r)

12 12

the summation I 1s over Sl' SZ""

n is odd,

_—

(n=2)/2 if n is even,

2}

. (m*23n+y- £ 2s +1)
3. Zu(r,23, s)N,‘2 x

1=1

’Sj,

from zero to Pn

: Ame(23-1)n%3-1- T 25,+1)
231 L pu(r,25-T,s M),

k4

P
n

(n"l)//z Tf

(-
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and
(0) . &(m) (r)
P PR A
2]
~(m2in+j - £ 25 +1) 2j
23 ) Rl AR (r-"% 2s,+1)
5523) = Tulr.23.5)M), 2=1 Hip el b
2j-1 5
. . J-1
. Ame(25-VIney - X 253’1). (r- £ 2s,+1)
z%gJ~]) = Tu(r.23-1s)N, 2=1 "2 ge1 ¢
with 35 1, b = 1 aTSE(TY) « (caw P 207 ane
- n.g. SSO Q-S S:O l S
PEY. J J r!
vir,j,s) ¢ LZ}%— ( ~elr - T2 +1) "lbn‘ZSjl) 3
L‘:] L:] x_—] L (r - E 251¢1)|
£=
For

Equation (3.56) implies that constructing a symmetry of order r

is equivalent to finding a function :gg) with the property that its

(r’+1)St commutator with 512K12 15 Zero. This can be easily achieved by
using suitable le's. For example, let le ST Yo then (3.57"
implies:
n . m . n m+n-i+];
$ . ' . = - 7 % T &
[512%12M12 1o ¢yaMyp (yy*yp) ] ot Mt
since
[6%2, Yy*y,]; =26, where & =0 if 1 orlif ic L.

b A

Thus, using the fact that [6%2, 8, i]I
m

®12M12(y1+y2) generates first order time-dependent symmetries

= 07t follows that

m . + ) ‘m*ff .

Similarly, to generate r-order time-dependent Symmetries use cTlez-(yl*yz, .
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since the commutator of (yl"yz)r with 6;7 produces (yl’yz)r-L and hence

the rt" commutator of (y1+y2)r with 5;2 produces ! which commutes with

(2).
612 :

S ry . Sy, r! . r-s
[512.()’1‘)'2) ]I - (1‘('1) ))(F-S)W (,Vl )’2) )
where 0(r-s) denotes the Heaviside function.

4. The hierarchy 9 = J dy3612:?2ﬁ12 - 1 admits two hierarchies
t R

of t-dependent symmetries of order r given by (3.56) where

(0) . Rjim) . (r)

iz " M2 " M2
(3) (m+) ; ) ( !
0L LmHIn- L2541 r- .25 +1),
A .J(F,J.S)N]Z e Hyo g-fki
and by
~(0) L yim) o ()
S0 M Me
j ( J
\ B . o(meine 225 .+1). r- L2s.+1),
:gé) = ;‘v(F,J,S)M( J l:ISL ) H]Z li] C )
where the summation L 1S over S s,,....sJ from zero to
P 321, P = (n-1)/2 if n is odd and (n-2)/2 if n is even. Also
= - i n
b, ¢ = (~4)"()).

The above extended symmetries, under the reduction Yo 7Yy yield

symmetries. This follows from the following theorem (see [271}.
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Theorem 3.2.

where 8§, R are constants and %,, 1S such that s,, [-]JH., = 0. Then
12 lZd 12

EXAMPLE .

. = - - - -1 - \
Ml =ap + g, *(a-a,)0 “{ay-a,) + aD "oy, -an 0.
X X 1 2
v - = ? 1 ;4 - 1 = 0
Clearly (M12 S 291, which 1s a symmetry of the kP, Alsqo ' - ! a
is a well known auto-Backlund transform of the ¥P. H
Remark 3.5.

(1)

formations of an equation in 2+1 come from the sa—e £asi1c entity,

Assume that the admissible operators Yo K?Z. satisfy

= -g&!

(120%12] 12°

-0 L
[Kypebypd = =2sppf000

[f 1s an extended symmetry of (3.45), cyp 'S @ symmetry of

12
(3.45).

If =y, 15 an extended symmetry of (3.45) then ~,7=:(q1,ql)=0 is an auto-

il

Backlund transformation of (3.45), where q, and q, are viewed as
two different solutions of (3.45).

If Yyp 15 an extended conserved covariant of (3.45), v,, 15 a

conserved covariant of (3.45).

If Y12 is an extended gradient functicn then . 1S 3 gradient

1,
la

function.

Consider the extended symmetry of the KP

It is quite interesting that both symmetr:es and Backlund trans-
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the extended symmetry. Indeed, when a = 0 the recursion operator
!' 012 for the KP equation reduces to an operator that Calogero and
Degasperis have introduced [30] and which generates the auto-

h Backlund transformations of the KdV equation.
(1) Using the interpretation that a’bt qb = bq, Q, b matrices, the re-

cursion operator of the KP becomes the operator generating auto-
. Backlund transformations for the equations associated with the

N x N matrix Schrodinger problem in one dimension (studied by
Calogero and Degasperis [30]). This important connection is ex-
plained from the fact that certain 2+] dimensional systems can be
viewed as reductions of certain evolution equations non-local 1n
y. These equations are directly connected to matrix evolutiaon

equations [ 28], [31].

3.7. Extended Conserved Gradients.

Lemma 3.2.

Assume that is a Hamiltonian operator. Then,

12

+

f C = ) < - >
[ 12f1205128120g = 912978 <F 100712912

(3.58)

o (L, -f* ) [0,.9,,] - (g,, -g%, e, f, 1.
12 12d lZd 12°12 IZd 12d 12 12

ee 28],
One way of proving that oiZ generates gradient functions 1s to
use Theorem 2.1, {v). dHowever, this requires that QIZ is factorizable

1n terms of Hamiltonian cperators. Alternatively, we propose the

following constructive appraoch, which only uses one Hamiltonian operitor:




-32-

Construct the Lie algebra of the starting operators, sdy M.,, N .. Tren

<

use this algebra and (3.58) to prove that all c;?aiék?z © Hy, are grad-
. -1.0 . . 0 ;
1ents, provided that /12K12H12 1S a gradient, where K12 1S M12 or le.
. , 1,0 <
k Finally use Theorem 3.2 to show that (JIZKIZHIZ)II are gradients.

EXAMPLE.

Consider the operators M12' N12 associated with the KP. Then

Snely (3) Lo (1) -1 o (2)
D "oy Mighip" = grad-epMioh T D Te N R s (3.59)
ey (3) L e (1)l (2))

] D 012 NIZHIZ = grad-.lelel2 , D M12H12 . (3.60)

It 15 easy to verify that D'IMIZH12 is an extended gradient.

Then (3.58) and (3.37c) imply that D_1¢17N17H12 1s an extended gradient.

Equation (3.37b) implies

\ - f
<7 - ‘n*l .‘\3)
g T e Mot

- -1 . _
12N12H12’ D M12H12 are extended gradients, the above equation
1

with n = 0 and (3.58) imply that D~ ®12&12H12 is an extended gradient.

Since D_la

Similarly D'1¢?2ﬁ12 is an extended gradient. Equation (3.6C) follows

in a similar manner using (3.37¢).

»
Remark 3.6. ‘
[t was shown in §3.6 that time-dependent symmetries of order r are
. m . m , r
= "h -
generated via ®12M12H12, @12N12H12 with le (y1+y2) . The above re ,
sults shows that D'1®T M.HL L D'I:Tﬁ,NIAH,T are qradient functieons ‘or
)

I |
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»

arbitrary H Hence the time-dependent symmetries correspond to grad-

12°
ient functions. However, the time-dependent symmetries are closely
related to master-symmetries 1 {see §2). Hence the master-symmetries

T correspond to gradient functions.

3.8. Non-gradient Master-symmetries.

Lemma 3.3.

Assume that the hereditary operator ¢, satisfies ¢

12 12%12 * 912°72°

where 912 is a Hamiltonian operator (if 012 is factorizable, then this

equation follows). Assume for simplicity that 0,, =0. Then

d
m m 1 m 1 mor-1 m-r 1
wo T b N * - + * 0! * “hew G-
Crlizla * 1201271208012 7 12t Tie, " Yi2ie P12 Tk et st
(3.61)
where
s1r ¥ 07, [T12] + [Tiz ,@12]. (3.62)
d d
Proof.
See [28].
The results of Lemmas 3.1-3.3 can be used to obtain non-gradient J

master-symmetries le. Such master-symmetries are explicitly related

to recursion operators ¢ Indeed given @12 one computes le and given

12°

le one computes ®1p- These formulae are the two dimensional analogues 1
of the formulae given in §2.1. The basic idea is to find a T12 such that

-1
led * O12T'1'2d912 =0 and S,

= C-1, Cconstant.
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EXAMPLE.

2

A master-symmetryof the KP hierarchy is given by ¢12£12. indeed

. 2 o on-1 .
*1p * e{(elzélz)d + D(¢ 12 12)dD b, B constant (3.€3)
oM 1y ‘1 =8 [¢ 1, el ] g _constant (3.64)

12 12 12 12 i 12°12°¢° n v
D-lom*n—lh C 1 = grad,<(e* )nD~1& 1 oM s (3.65)
12 12 gradyo<i®y, 1270 f12%127 02

For.

), and M,, are given by (3.8), (3.3%5a), 05 = D. Let le = 6y,

Then led + OlzTizdiié = 0 and SYZ = 4 (see (3.62)). Thus, equation

(3.61) with m=2 implies (3.63).

To derive equation (3.64) use Lemma 5.1 with Kgé) = M17 -1,

<

m= 2, SSé) = 0 (since Y10 1s a strong symmetryv of M

and S50 = :12f[612] = 4. Thus

S
12

A-n . ) ,02 = n*z & - n"l‘ L
LeyMip b #1281204 O UL
n+2cc . . AL A0 PV .
However, ®15 [M12 1, 612]d is proportional to 1o M, i, hence the

above implies (3.64).
To derive equation (3.65), use Lemmas 3.1-3.3 to obtain the follow-

ing general result: [f % 1s a hereditary operator such that 1t s a

12
strong symmetry for M12 and 012012 = 012®T2, where 12 1s & constant

invertible Hamiltonian operator then

n n
m o gn=r r-1 r-l. ,.m-r -ly.n L LNtme .
10! Y. S12%12 My, + Lo it i 210Me R My
-1 3N WM m . ve  mlyun
0129rad o C a¥ oMo #T o ¢12”12d Ceiz e et
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where

S12 ¢ °12d[T12] * [°12’T12d]' 1o ¢ °de[rlz] * [Tizd'°52]-

R - . . - * -
Using T,, = 6., in the above and noting that S, 51, = 4

e is proportional to o?;m'lMlz -1,

12 M2ef12g

-1
T + 0,,TY, 0,, =0, ¢
12, 12712 712

we obtain (3.65).
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