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ASPECTS OF INTEGRABILITY IN OmE AND SEVERAL DIMENSIONS

A. S. Fokas
Department of Mathematics and Computer Science and

Institute for Nonlinear Studies
Clarkson University

Potsdam, New York 13676

INTRODUCTION

In this paper I summarize some results obtained in the period

June 1985 - July 1986. It is my pleasure to acknowledge collabora-

tion with the following colleagues: M.J. Ablowitz, P. Clarkson, M.

Kruskal, R.A. Leo, L. Martina, U. Mugan, V. Papageorgiou, P.M. Santini,

and G. Soliani.

The results on Inverse Scattering in multidimensions and on the

algebraic properties of equations in 2+1 (i.e. two spatial and one

temporal) dimensions should be of particular interest: With respect to

algebraic properties of equations in 2+1 we -ot-e-he4§ the question of

finding the recursion operator and the t'-Hamiltonian formulation of

these equations has remained open for a rather long time. It was even

doubted in the literature if the relevant results in 1+1 could be ex-

tended to 2+1. P, -azt-ini and-the author have recently shown that

equations in 2+1 solvable via the Inverse Scattering Transform ire bi-

Hamiltonian systems. Tt-*-"v also given eLplir-" the recursion

and bi-Hamiltonian operators for large classes of equations in 2+1.

including the Kadomtsev-Petviashvili (a two dimensional analogue of

the Korteweg-deVries) and the Davey-Stewartson (a two dimensional

analogue of the nonlinear Schr6dinger) equations.

In this paper I emphasize the basic ideas and results. Further- ;

more an attempt )s made to put these results into perspective. De-

tails can be found in the sited papers.

Approved for public rI-cxae-3 I. Dimtributon Unlirilted
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1. AN INVERSE PROBLEM FOR N x N AKNS IN MULTIDIMENSIONS

This problem has been studied in , where I considered the in-

verse problem associated with the following system of N first-order

equations in n+1 dimensions:
n

IFx +0 E x = q',
0 Z=1 I.I:
0 :R + ia I , aI # 0, n >, (.1)

where q(xox) is an N x N matrix-valued off-diagonal function in Rn+1 ,

decaying suitably fast for large xox, and the J9 are constant real

diagonal N x N matrices (we denote the diagonal entries of J, by

ill .... J). Alternatively, using the transformation
n

T(xoX,k) = u(xo.x,k)exp[i E k9.(x- aox9 )], k . Cn, (1.2)

I considered n Z =(
1j Xo +0 LJ xz+ iki[Jt,u]) = quj. (1,3)

I assume that n < N, otherwise the entries of the J matrices will be
linearly related and one can always reduce n by a change of coordin-

ates. An inverse problem in this case is defined as follows: Given

appropriate inverse data T, where T is an N x N matrix-valued off-

diagonal function of suitable inverse parameters, reconstruct the po-

tential q.

There is a twofold motivation for considering such an inverse
problem.

(a) If a = -1 then the above reduces to the formulation of a

physically important inverse scattering problem: Given the scattering

amplitude S(X,k), A, k E Rn which is a function of the scattering

parameters X, k, reconstruct q.

(b) In recent years a deep connection has been discovered bet-

ween inverse scattering of linear eigenvalue problems in one spatial

dimension and the initial value problem of certain nonlinear evolution

equations in 1+1 (i.e., one spatial and one temporal dimension). Re-

cently a similar connection has been used to extend the above results

to nonlinear evolution equations in 2+1 (i.e., two spatial and one

temporal dimension)26. In particular the inverse scattering of (1.3)

with o = -1 and nzl has been used to linearize the N-wave interaction
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equations in 2+1 (see RefPl), the Davey-Stewartson (DS) I (see Ref.4 ] )

(a 2+1 analog of the nonlinear Schrdinger), and the modified Kadomt-

sev-Petviashvili (MKP) I (see Ref.4j) (a 2+1 analog of the modified

X. KdV) equations. Furthermore the inverse problem of (1.3) with 7 = i and

n-I has been used to linearize' ] DS11 and MKPII. However, in spite j
of the above success in 2+1, no physically interesting equation is

known to be related to (1.3) for n > 1 and cI $ 0 [the N-wave interac-
7]

tion equations in n+1 spatial and one temporal dimension are related

to (1.3) but with = 01.

The novelty associated with inverse problems in greater than two

spatial dimensions (n > 1) stems from the fact that while the potent-

ial q(xo.x) depends on n + 1 variables, the inverse data T(kR,ki,m2 , 

.... n), kR E Rn, k c Rn, m. R, depends on 3n - 1 variables. This

has important implications:

(a) The inverse data must be appropriately constrained. This

characterization" of the inverse data is conceptually analogous to

the characterization of the inverse scattering data in the multidim-

ensional Schrddinger equation8 -11  A
(b) The existence of "redundant" scattering parameters in the - TiC

inverse scattering of the Schrddinger equation is used to reconstruct "

the potential in closed form in terms of the scatterin amplitude UOSPECTE r

function. This is the well-known Born approximation Can one use

the redundancy of the inverse parameters here to also reconstruct q

in closed form? For

In the above paper, I do the following. I

(a) Following A. Nachman and M.J. Ablowitz, I derive an equation El
that characterizes inverse data: , d .ij, P ' W El

o w T1 (w0 .- w2, (14).... 'P , ' -- __

where w0 FR. w C Rn, (Cn- are related to k. m and N is a quadrat-
ic function of T. That is, TlJ(k,m) is appropriate inverse data iff

Ity Codeg
the right-hand side of (1.4) is independent of . Hence, Eq. (1.4) serves ard/or
as both characterizing T and defining T J

(b) I reduce the general problem of reconstructing an N x N po-

ifE

... ..... ...
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tential q in n + I dimensions to one of reconstructing a 2 x 2 poten-

tial with entries qi3 , q3 i in two dimensions. The inverse data needed

for this reconstruction is precisely V
i , i. This reduction makes

crucial use of the existence of redundant scattering parameters. In

this sense it is the analog of the Born approximation. However, the

crucial difference is that while in the inverse scattering of the

multidimensional Schrbdinger equation one can reconstruct the potential

in closed form, here one can only reduce the general problem to one

for 2 x 2 matrices in two dimensions. This reduced problem was solved
in4 ]"

Partial results about the case a - i were given inI3). Equation

(1.3) was also considered in14 ] where, although the characterization

problem was solved (an equation very similar to (1.4), the so-called "T

equation", was first obtained in 14]) the problem of an effective re-

constructon of q was left open.

The basic steps are as follows:

1.1 Bounded Eigenfunctions.

The function L(x0,x,k) defined below, solves equation (1.3), is

bounded for all complex values of k and tends to I for large k:
(0 i1) exp iB 6Ij (x0. 0,l _ I k

o - °JR 2 dod (xl-(l) - oJI(xO -O)

(q,.)i oi , x2-ixi-)J2/ji . .Xn-(xi-{l)Jn/Jl.k), k . C , (1.5)

where Bij is defined by
ijn J,'-JJi 2 X I ~ l(a k)l

6iJ(xoSxl9k) # E - Xo0 a I, k{=k R+ik I '{1.6)

J11 I

Equivalently u satisfies

•(" )sgn(oiJi) Tn+1 di 0 dtCn ijnl dmCe i Li (x ' {.m) ]
W lj(x0' x ' k ) . 6ij+ 1 2ddm Ci(-.~

exp[isiJ (x0- O,xi-El,k)](qu)iJ ( 0 , r.k)

w r eI(7)
where



?2 n "il

2- x 1 - n)
N"d .c n # (1.8)

1.2 Departure from Holomorphicity.

Let u be defined by eq. (1.5). Then

-(x O x 'k) = Z yi(j1 - j)exp[iBiJ(xo8 xlk)]

p

Cn -1 dm2exp(iai(x,m)]T J(k,m)(xo,x,AiJ(km))Eij, (1.9).'. n-I L

where B (x0 ,X1,k), a (x,m) are defined by (1.6), (1.8) respectively;
E ij is an N x N matrix with zeros in all its entries except the ijth

which equals 1; and Ai and Tij are given by

n J'
$ n J kII), .km)krR+mr,krl -2".kliJ(k'm) # (k' Z m-- }  ;-, k '~ ~)( +m ; r=2,..n. ,

1 I.=2 Z' I
I

ZZ'""~ TJ (k'm) d ';n ' d~odexp[-igiJ( o, l,k)-ioLi(&.m)](q,.,)iJ( o, ,k).(1.lO) ,

:.'.-- 1.3 Characterization of T. .-

(a) Assume that u/ak is given by Eq. (1.9) and the T j(k,m)

is given by (1.10). Then

LtrT'J(k,m) - n nk,M),m-M)T' j (k,m)

rp .I n-IfR n-1

NJLjj)(JlJ')- (Jr-Jj)(Jp-Jp)] N1 '(T](k,m). (1.11)
p p r r r r p p rp

where
.L. , (J " ( Jr (1-12)r LJ (J - J3 ) r - r

rpk p r r ) rj(.2
(b) Assume that )L/akp is given by Eq. (1.9) and that 2 la~ p

is symmetric with respect to rp. Then T'J(k,m) solves (1.11).

Following A. Nachman and M.J. Ablowitz I introduce appropriate

Born variables. Then equation (1.11) can be integrated. Furthermore,

.4

I-.



so

we can compute the limit of T1J in the new coordinates as Ix p

(see below):
ii i

Let w0 ,wI ,wz, z= 2,...,n £ R and E (C, . 2,...,n, be

defined by
n In-J -i n Jr-Jjr  n ji

wj] . r r.2 w . -E k " [ m r0 r' 1 1 r kI r i'r=1 'I 1 r1la r 2 1
k

w, mv, xl j i . . n. ( .3

Assume that

(Jr.Jjl)(jijj) , (Ji"Jj)(Jr -j j ) for all distinct i,j,r and p~l.(l.14)
1 1 p p 1 1 p p

For convenience of writing we usually suppress the superscripts, i,j

in wowl, x. Let k denote k....kn, m denote m2 .... ,mn, x denote

x2 ..... Xn , w denote w,. ,wn. Then we have the following.

(a) The inverse of the transformation k,m wow,x is given by
n n 

'J
k~ )Z(J-')'m~wj=-.. ,n, k z (j r l~

+ " i l(1.15)
Jj - J,

(b) In the new coordinates, Eq. (1.11) with r-1 becomes

alT-(wo,wx) = N13 [T](wO,w,x), p - 2,..., n. (1.16)

(c) In the new coordinates

TiJ(wowx) & dod~exp[-i(w &o+w&)](qw) i(&oW X)JRn + 1l

n
where w& z Z wr (1.17)

r=1 rr

(d) Let

t~j iu j, ij ij ^j{$ j X(W01x,w , xi), i  = lim (1.18)

Then the satisfy
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",," • - o(o 1 J ) n 1 -

_7 = sgn T n-If R2 n

dx6dxdm2exp(i ((xo-x6)wo+wo+(x-x,)w l ....
x q o (x6,x' )4j(x6,xWoW),

A I- X1 - - OJ'(x 0-x6)

sgn(aijJ)"O: ,J( x o ' X w o 'w ) + 1 1 C 2S0i ni fR2n

dx'dx'dm2 qj (x ' x ')iJ(x6}x w0 w)f .i (1.19)
., J= 0, for all L, t.fi, E~fj..4

x1-xi - oJj(xo-x6) 1

(e) lim T iJ(w0,w,x) d 0d~exp[-i(wo0+w)] xe IrX p= JRn+1 0

Ix I
x qi(&O&)J0I&i ',w 0 ,w) I TiJ(w0 ,w). (1.20)

(f) The basic characterization equation is given bydX'p~~~d ,NJ[T3(w0,w'x p '.3"(w0,w)=TiJ(w,wx) - 1IfR 2  d% xp -Xp';(I.21) ;

where xp  denotes X2 .... *-p1p ,p+ ... Xn.

1.4 Reconstruction of q. J

- It follows from the above that as Ixpl ®, the w s decouple.

Furthermore, the j uJ satisfy a system of two equations depend-
ing on q1j, qJl. It turns out that: a) By introducing appropriate

spatial variables E, the 0, a satisfy equations in two spatial

equations. b) The invers data needed to reconstruct ui ,j (and

hence qi3 , qji) can be obtained from ij

Let

2r r 2Z' I___ r_
r l j..jjl r " .i j . i r i,...,n, (1.22)

1 2 1 2 I 2 12

where for convenience of writing we have suppressed the dependence of

t. ar ron i,j. Let 0 R, E Pn,

rr

1%

NP0 r



Xo =O" l= 'x2 =2'(1.23) "

Ki 
=  + 4I1 + B 42' 3.... n.

Then we have the following.

(a) The system (1.19) becomes

Ig 2T R2  1

,~~~ exp[i&i3(%-%,K 1 - ,)qJJ

: 1+sgn I-4 d d i[ 1- q -

2 1- )J/ (1.24)

where

n JJ2-J2 gij~x
k Z Z (kr + k I (r ,Xlwi)

r=1 r l

0 1 j(x1 J E x, ]. (1.25)

(b) ij in the new coordinates becomes

4 Ti3(k J) R n+idFd&'exp[-i8'i({,Bi,k) +

+ &j + n (

+r rJl, r=3 .

where 1.
M n

m2 m2 + mrBr , m m, 3,...,n. (1.27)

r=3

(c) The inverse data associated with (1.24) and the analogous problem

for are given by Ti j, V1i. Let

AI
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K

I ... ci d; exp~im(-& rVj~k 2 2J 1Si &3 n n-l1  2 2- i

n -
+ E r irJ]T~ , ) (1.28)

r=3

Then

i,(q 'J'l

(qlJ1J)(QO'i'&2 - I_..J2 k)* (1.29)

2. INVERSE SCATTERING FOR THE HYPERBOLIC N x N AKNS IN MULTIDIMEN-

I~iThis problem has been studied in15 ] , where I considered equations

(1.1) and (1.3) with T -- -1. This system appears to be physically

nmore interesting than {1.1)-(1.3): (a) Since the system is hyperbolic

one may consider the physically important question of inverse scat-

tering (IS); i.e., given a scattering amplitude function S(A,k) find

the potential q(xOx). (b) A special case of the above system, namely

if the J s are constrained by

k) ' . . p,r-1,....n, i j ,i=1 . . N, (2. 1);

r r r r

Is associated with the N-wave interaction in n+1 spatial and one tem-
7 16]

*.. poral dimensions

_ With respect to (a), (b) above the following results are obtain-

*O red:

(a) I first define S(A ,k), , k E Rn, in terms of an eigenfunc-

tion U1(xOxk). S(X,k) motivates the introduction of the Born
uL~xO I n,.E n1

variables w0 E R , w E Rn
, E 

. I then define T(A,k) in terms

of an elgenfunction u(xox,k). The crucial new step is that u is re-

quired to have analyticity in one of the X's, say x2 , as opposed to

one of the k's. Let

'(wow) lim T(woWX);i~ ~ x ×21®

&%-7
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then T1 j satisfies

1 (ww) =Ti)(w,w ) (2.2)

where P denotes a (+) or (-) projection in the variable k2' i.e.,
2

(p: f)(. 2) 1 df(xi)/2-i(x -2 1O).

The sign of certain parameters t , where

r 1 1 r r r r

determines whether the (+) or the (-) projection is needed. Equation

(2.2) defines Tj, which actually depends on q j and

urn 9im' (x0 ,x ,w0,w1X).
X2

a The question whether (2.2) is sufficient for the characterization of

T remains open. With a proper coordinate transformation, . i i
'j i ^ Iii m mi

_3 ,j define an IS problem for a 2 x 2 potential with entries q

ji
q , in two spatial dimensions. The inverse data needed for this

problem are simply related to T 
1  The solution of such an IS

41problem was given in . It is interesting that there exists a simple

relationship between T and S. Actually if N= 3then T =S. This is

quite remarkable since for the first time a closed-form expression

can be obtained between S and T. Furthermore, ;L satisfies a Volterra

as opposed to a Fredholm equation; hence one immediately excludes the

possibility of bound states.

With a proper coordinate transformation, the N-wave interaction

equations in n + I spatial dimensions can always be reduced to two

spatial dimensions. Thus a genuine three-spatial-dimensional nonlin-

ear evolution equation, related to an IS problem, remains to be found.

Let wL (xox,k), x0 E R , x,k E R be the solution of (1.3) which

also solves

ZJ (xo,x,k) = 6 j + dxexp[ik(J -JJ)(xO-x
6 )]
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(q L)tJ(x ,x + J(xo-x ),k), (2.4)

* where - nn

k krJr'  mx = E mrX c (2' 
rz r=1

and x + J x0 denotes x1 + JjX0 ... xn + J xO . Let t(xo,x) be the gen-

eral solution of (2.1) with 7 = -1 tending to f(x + xoJ) or g(x+x0J) i
-'.. as x0 - or x ®, respectively. The scatteirng operator is de-

fined by g = Sf, and S is uniquely defined in terms of S(I,k), where

siJ( ,k) :cnjRn+1 dx0dx exp[i(k-A)x + i(kJJ-AJi)xo]...
mm .. x(q.AL)'J(Xo,x,k), i #j, (2.5)

and n

kx 7 k x..
rv,. L=Z ' " -

The Born variables are defined by

w0  := kJj  - j , w, := k - , := - , Z : 2,...,n, (2.6)~J.-Ji

where, for convenience of writing, we suppress the dependence of wO ,

Son i,j.

TiJ(.,k) satisfies an equation similar to Si where ;Zj is re-

placed by .i ",xThe eigenfunction 'J satisfies an equation similar to
''I

(2.4) where -0 is replaced by x This integral is either 0(22). Z =; ji . i _o

or - according to the following requirements: (1). If Z = 0

then choose . (2) If E # 0 then (xo-XO) £ must have the

same sign for all Z (ij are fixed). (3) If (2) can be satisfied

with either 0 or - , choose the first integral. To illustrate
' i - '; ji ji

the above, consider N = 4. Since Z2 = E 0, there exist only
2 2

two nonzero , if they are of the same sign choose both integrals

to be . , if they are of opposite signs then one integral is

and the other is -" In the Born variables, Ti(woW,t) depends onando

0*JX

gx 0i ii

% '
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-i (X'XWolW'X), which satisfy

n
ZJ(x ox'W W, + dx expii[w-WJ + Z 1 .

;ji r=2 r r

x (X_-X6)}(qwi) (x,x + J'(x0-x6 ),woWj). (2.7)

Equation (2.7) implies the following: (1) Li and hence Tij have

analyticity properties with respect to X2: TiJ( ,J) is a (+) or (-)

function with respect to X2 (i.e., it is holomorphic in the upper or

lower X2 half-planes, respectively) according to whether (xo-x6) E 
i ji

is >0, or <0. (2) As 2 i* w 2
I I(w0,x'ww,wher-ii -ujj

^LJ satisfy a reduced system: u j  0 for all .0 l,j, and ui ' i

satisfy a system of two integral equations of the Volterra type (see

below). Hence as ;x 2!2

Tij_ iJ(woW ) := c nfRn+1 dx0dx exp[i'w 0x0 + wx)]IR

I- q13(x0,x)o) 3(xo'x'wo'w)

Since T'J is a (+) or (-) function of X2 tending to as .
its (-) or (+) projection must satisfy Eq. (2.2). [We define p () ,

p1-. 
] 11

Given T'j , Tji one can compute Tj 'i, which actually can be

used to reconstruct the 2 x 2 matrix potential with entries q. q,

We consider the reduced system. The crucial fact is that it corre-

4 sponds to N = 2, and hence
Jr-J2 k(JJ-Ji)r a r 2 .=i or j, r : " 'r~r ; i' := k( - ; (2.8)

Br is defined as ar with 2-1, j.- i, and again for convenience of

writing we suppress the ij dependence of ar, 3r Since one can intro-

duce a single k, it follows that the reduced system must be transform-

able to a system in two dimensions. This is indeed the case. Let

xo x x I  x2+ i1 1 x +O ++Bz
4 0 0' 1'1'2= 2'1 Y Z1,~
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S(2" o + 6 az), i = 3. . (2.9)

where y I (JiJ _ JiJ2)/(J - (J " J3 )/(Jl -
J )"

Then the reduced system satisfies

"C
6'J + ,k) d:-J c d.O "'dm expii[k(JK-j)J;' i * 0d n 'O <'1 11 1

n (2.10)

","r=2rrr

where (q : ) q ' , (q - )JJ q 1 J . Hence satisfy two inte-

gral equations in the variables -O' i:*

rx0
ic d;' dc'dm expti[k(j -J ) + m_ -- O011R2 , 1

--.-,[1-) + imiJ ( - qi j , , . .I I, k). (2.11)

The inverse data associated with (2.11) can be obtained from Tij: Let

w "w:Z, 4: 3 n, w2w 2 + nwr: r k (r+ 2 r (2.12)

w"w.-r:3 r =

Then, since

. x + wx (kJ - + (k- + w

r 2
1.1.j in the new coordinates becomes

T(k,,w) c njn+l d od~expci(kJ 1 1) 0 + i(k--) E ir z

r=2

' Wrr]q lj j  r  ,k).w "

Hence, when we take the Fourier transform of TJ with respect to w,

it follows that

i- _ "i  " I (,;, .. .....% : ] . dw T' (,,', )p, (-,w .)

.- 0. (2.13)

, The inverse data l j and its analog l are precisely what is needed

.. _d TiP
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to solve the inverse problem for qa, qa associated with Eq. (2.11)
SI j ^I .I 4]

and its analogs for ,j , see

S'. T13 are defined in terms o J respectively. It is poss-
nL Z JJe whchthnyields

ible to find a simple relationship between L i which then

a simple relationship between S
ij , Tij . Actually if N z 3 then T

ij

siJ

It was shown in 14] that the N-wave interactions can always be

reduced to three spatial dimensions. It is shown in 15  that they can

actually be reduced to two spatial dimensions 17]

3 RECURSION OPERATORS AND BI-HAMILTONIAN FORMULATION OF EQUATIONS

IN 2+1

This is joint work with P.M. Santini "  
. Since it is summar-

ized in these proceedings in a separate contribution, I shall limit

myself to a few remarks.

Since the discovery of an exact approach to nonlinear evolution
21]equations in 1+1 (i.e., one spatial and one temporal dimension)

two interrelated aspects have recieved much attention in the litera-

ture:

(i) The development of a method of solving suitable initial-value

problems. For initial data decaying at infinity such a method is the

inverse scattering transform (IST) 22] . This method crucially utilizes 4
the existence of an associated isospectral linear eigenvalue problem.

(ii) The investigation of the "algebraic" properties of the given

equation. A fundamental role with respect to the algebraic properties

is played by an integrodifferential operator, given various names in

the literature: squared eigenfunction operator23], recursion opera
24] 25] sywer25], ahe oea 2163tor2 , strong symmetry hereditary symmetry Kahler operator

regular operator27]. This operator has the following properties:

(a) It generates the associated hierarchy.

(b) It generates infinitely many symmetries (in particular, if it has

a certain property which Fuchssteiner calls hereditary, it gen-

erates a set of commuting symmetries).

(c) Its adjoint generates gradients of conserved quantities (in part-

icular, it generates a set of involutionary constants of the



motion).
(d) Its multiplication bi one Hamiltonian structure generates (under

certain conditions28 ) a second Hamiltonian.
(e) The eigenfunctions of its adjoint are quadratic products of the

eigenfunctions of the associated isospectral problem and form a

complete set 29].

It should be noted that given the isospectral eigenvalue problem,

there exists an algorithmic technique for obtaining the recursion

operator (see for exampleJ3]). This is, from a unification point of

view, quite satisfactory, since both the method of solution (IST) and

the algebraic properties (recursion operator) stem from the same en-

tity (isospectral eigenvalue problem). For the Korteweg-deVries (KdV)

equation qt = qxxx - 6qq x q = q(x,t), the recursion operator I is D

4q - 2q Dl. where 0 3x' (D1 f)(x) f/xf( )dE. If 6 is the adjoint
of , then A sati;fies 2 4X IV where , solves -" = 0.

The above two aspects have been thoroughly investigated for a

number of physically important equations in 1+1. Each of these equa-

tions has physically significant two-spatial-dimensional analogues.

For example, the KdV is generalized to the Kadomtsev-Petviashvili (KP)

equation, the modified KdV to the modified KP, the non-linear Schr6d-

inger to the Davey-Stewartson, etc. Furthermore, these equations are

also related to isospectral eigenvalue problems which are appropriate

generalizations of the corresponding one-dimensional ones. It is

therefore natural to investigate aspects (i), (ii) above for two-

Spatial-dimensional (2+1) exactly solvable equations.

The extension of the IST to equations in 2+1 has been recently

established in2"6 , (see also31]). However, the problem of finding
recursion operators in 2+1 has remained open; actually even the exis-

tence of such operators has been doubted in the literature. In this

respect note:

1. The IST of the Benjamin-Ono equation has all the features of an

equation in 2+1 . It is thus not surprising that its recursion op-

erator has not been found. One of the authors (A.S.F.) and B. Fuch-

Ssteiner, after failing to find the recursion operator of the Benjamin-
00.

J
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Ono equation, introduced an alternative approach 331 for generatinglI symmetries. This approach uses a certain function, called -; it was

Isubsequently applied to a number of equations, including the KP39].

However, for equations in 2+1: (a) The relationship between T and the

eigenvalue problem has not been established. (b) There does not

exist an algorithmic way of finding . (c) It is not known if - can

be used to obtain the second Hamiltonian. (d) , is not hereditary.

2. The bi-Hamiltonian nature of equations in 1+1 has been emphasized

as the fundamental property underlying integrability 35]. However, the

bi-Hamiltonian nature of all equations in 2+1 as well as of the

Benjamin-Ono has remained open. The existence of a recursion opera-

tor would directly imply the second Hamiltonian, since all these equa-

tions have one known Hamiltonian.

3. A number of important results pertinent to the algebraic proper-

ties of equations in 2+1 have obtained in the Soviet Union 36 ]. In

particular Zakharov and Konopelchenko, in a very interesting paper

claimed that recursion operators are purely one-dimensional phenomena

(i.e., they do not exist in more than one dimension). A careful read-

ing of their work reveals that indeed recursion operators of a certain

form do not exist in more than one dimension.

4. Several authors have noticed that mastersymmetries also exist

for equations in 1+1; let us call such a mastersymnetry T. Actually,

T comes from a nongradient function and can be used to generate *.

However, 7 comes from a gradient function and fails to generate a re-

cursion operator.

The extension of the inverse scattering in 2+1 necessitated the

introduction of a new idea, the use of C (DBAR). The extension of the

theory of recursion operators and bi-Hamiltonian structures to equa-

tions in 2+1 necessitated the introduction of distributions, or more

precisely the introduction of integral representations of certain

differential operators.

We note that the proper analogue of T is not 7 but a function de-

noted in 20 by T12. This function also generates recursion operators

in analogy with T.

i
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4. THE KADOMTSEV-PETVIASHVILI EQUATION PERIODIC IN ONE SPATIAL DIM-

, ENSION AND DECAYING IN THE OTHER +

2.This is joint work with V. Papageorgi ou 
38 ) ; more details of this

.'.work can be found in3 . We have considered four different problems:F' - PI periodic in x, KPI periodic in y, KPII periodic in x, KPII period--

~ic in y. Here I will only summarize some results for KPI periodic in "

4.1. Analytic Eigenfunctions.

ii The x-part of the Lax pair is given by

iu y + W xx +2iki = -u,. (4.1) -

! Consider these solutions of (4.1) which also solve

0!
N.

[,," :-. J- mck;r2l j

. ' dr,)_  dE. E + (m- k, x-- ,y--) u(. , ) : ( ,n,k), (4.2) .

" y mzk- :2Z0  ,

..- where 2•"
• " imx-im y 4)

,,+: I7 --(m,x,y) = e(4 3

S -

+" These eigenfunctions are G and ,3 with respect to the complex k-plane,

~i.e. they are the boundary values of functions analytic in the upper

or lower halves of the k-complex plane.his

ok A simple calculation shows

u + (x,y,k) x'(x,y,k) o Z T(k,m)N(xy,m,k), (4.4)

lime k+TZ/fwhere .

'T(k,m) t sgn(k-m) L dn) du(t1,n)u ( ,-,k)6(k-m.,,)), (4.5)

, ,"- : -k, m-k are integer multiples of -, and N solves the same equation as 4i

u'-(x,y,k) but with the forcing replaced by 9(X-k,x,y).4.2. A Symmetry Condition.

hN, xare related by (for simplicity of writing we suppress x,y)

y........ -11 . ( 4 .1 )
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Z ~ F(. .m)-'(M)-(m-k,xoy) if - k

N( ,J ) = ' -)( -k,x,y) F(A,m) (m), -(m-kx,y) if -'k,

(4.6)

where [k+T,A] -k7, k+2T . k+nr=A , and

F(A,m) = r dIN(E,n, ,m)u(, (4.7)

4.3. Scattering Equation.

Using (4.4) and (4.6) it follows that

w {k)-w-(k) Z f(k.m)@(m-k,x,y)u'(m); f(km)=sgn(k-m)F(k,m).(4.8)
mck+TZ

Equation (4.8) can be viewed as a Riemann-Hilbert (RH) problem with a

shift for u-(k). The inverse problem consists of finding -" in terms

of the scattering data f(k,m). The time evolution of f(k,m) is given

by

" f(k,m,t) = f(km,O)e4i(m- k3)t (4.g)

and f(k,m,O) can be obtained in terms of initial data using (4.7).

Remarks

i) Localized solutions, periodic in x and decaying in y correspond

to homogeneous solutions of (4.2)1. Such solutions have been

J obtained in

ii) The above formalism also follows by proper discretization of the

results of2 ].

iii) It is interesting that a symmetry condition of the type first

introduced in2 ] is necessary not only for KPI but also for KPII.

iv) Some of the above results were first obtained by P. Caudrey41]

viewing KP as a singular limit N -= of a matrix N x N one-

dimensional problem.

5. THE INITIAL VALUE PROBLEM OF CERTAIN PAINLEVE EQUATIONS

This is joint work with U. Mugan and M.J. Ablowitz 42)', more de-

tails of this work can be found in
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The mathematical and physical significance of the six Painleve

transcendents, Pl-PVI443, has been well established: Mathematically,

. ... these are the only equations of the form qt - F(qt'q't)' where F is

rational in qt, algebraic in q and locally analytic in t which have

the Painleve property (i.e. their solutions are free from movable

critical points). Physically, are closely related 45] to physically

significant solvable PDE's and have appeared in several physical*" xampl 4 6 "5 0 3

.-. ". applications, see for example .

Central in the integrability of PDE's in 1+1 and 2+1 is their re-

lation to isospectral eigenvalue problems. Similarly, central to the

integrability of the Painleve equations is their relation to isomono- .

dromic problems (see Sato et a151], Ueno52 ]  Flaschka and Newell

and Jimbo et al54])

- We have systematically considered the initial value problem of

Pl1 PIV, PV. Equation Pill is contained in PV for a special choice of

one of the parameters of PV, equation PVI has been solved by C.

Cosgrove and PI remains open. The basic approach is that introduced

in55] although we have made certain simplifications and extensions.

Here I briefly summarize the main results using PIV as an illustrative

example.

5.1. The Lax Pair.

PIV equation
d 2  1 y(d ) 3 y3 + t2 + 2t2)y YBy'+ (5.1)

dt1) + y + 4ty + 2(t +c)y+-(.1

is the compatibility of the following linear problems

1 0 't ux \ o (zeO, -
x(x;t) = )x +2 - ) t +

/+( - Y I Y(X;t). (5.2a)
II,\ (z.2,°  (90o.Z) /\ (o o%) (I A

.. (x;t) = x + u) Y(x;t). (5.2b)
t 1) (ze 0 9. 0-- (-.o

-. 4 " .. ' bdI-.;.%A. -.. %



Indeed Y.t = Ytx implies

dt = -4z y2 + 2ty + 4-0  (5.3a)dt

dz 2 2 + (40 - y z+(
du

dut u(y 2t), (5.3c)

where,
: - 1, - 2 (5.4)

0

Eliminating from (5.3) we cbtain PIV.

5.2. Analytic Eigenfunctions and their Relationship.

We recall that in studying the initial value problem of an equa-

tion in 1+1 or in 2+1, one uses the time-independent part of the Lax

pair to define an inverse problem, in terms of certain scattering or

(more generally) inverse data. Then one uses the time dependent part

to find the time evolution of these data. Similarly, here one uses

(5.2a) to define an inverse probelm in terms of certain monodromy data;

then one uses (5.2b) to fina the time evolution of these data. To de-

fine an inverse problem one needs to consider the analyticity proper-

ties of Y(x;t) in the whole complex x-plane. Since Y satisfies a
linear ODE, its analyticity properties are completely determined from

the singular points of (5.2a). Indeed, performing an analysis around

x = 0, x =, and introducing different solutions Y. in different

sectors S (so that YV's are normalized at-) it follows that (we

assume 0 <e 0 < 1, 0 < < 1, 1 0 1):

i) The Yis, j 1,....5 defined in the sectors Si's, where the

Sj's are given below and each S. contains the intial boundary line,

are related via

Yj+I(x) = Yj(x)Gj, x on Cj+ 1 ,  j = 1,2,3, (5.5)

YI(x) Y Y4(xe 2ir)G 4, x on C1.
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where
1G oN (1 , (i : , G0 d , (5.6)

G4 =G 4M M, M. diag(e2 i  e"2i  )

''''" = (x~ Q (x) !xi S

ii) Y )(x) Y(x) = x) /x), as x- ,, x in S, (5.7)

where Y(x) is nolomorphic at x
2 2W Z Q ( x ) = d i a 9 [ )'-2 x t , -( x-2 x t ) ] , D _o = d i a g ( ; , - )( 5 .8 ) ._

iii) Yo(x) Yo0(X)x 0, as x - 0, x in Si, (5.9)

where Y0(x) is holomorphic at x = 0,

' 0  diag(e 0 , e 2i- 0), Y0(xe
2 -) = Y0 (x)Mo. (5.10)

iv) The connection matrix Eois defined by

% 0  0) YI(x) = Yo(x)Eo, x in S1, det EO= 1. (5.11)
w '.  \ Y0 0 '

_ From the above it follows that Y is a sectionally holomorphic

function. Its behavior at x = 0 and x " is determined from the mon-
odromy matrices M0 and M ; its jumps across the Stokes lines defined 'r,

in Figure 1. are given by the Stoke's matrices Gi,..... G4. Hence its

entire behavior is determined from the following data:

Monodromy data = a,b,c,d,ao. 0 ,10 ,  . (5.12)

5.3. Properties of the Monodromy Data.

It turns out that all of the monodromy data can be expressed in

",,,

.% % " 1 W " , . . .



terms of two. In particular

4 Gj)m = EoMo ' (5.13)

(1+bc)e 2i" @ + [a + (c+l)(ab+l)]e - 2i  
= 2cos2Tre O. (5.14)

Furthermore, using (5.2b) it follows that the mondromy data are time

invariant.

5.4. The Inverse Problem.

The inverse problem consists of reconstructing Y, or more pre-

cisely T where I = Ye"Q(x), in terms of the above monodromy data.

The inverse problem can be formulated as a Riemann-Hilbert (RH) matrix

problem along the contour C1 + C2 + C3 + C4. This RH problem is dis-

continuous both at the origin and at infinity. Using the method of 55

we separate this RH problem into a sum of two simpler RH problems,

one defined on C2 + C4 and the other on C1 + C3. Furthermore, it is

remarkable that the RH problem defined on C2 + C4 can be solved in

closed form. Hence solving the initial vlaue problem of PIV is equi-

valent to solving a RH problem discontinuous at x = 0 and x and

defined on C1 + C3. This RH problem can be mapped to a continuous

one using appropriate auxiliary functions. Hence its solution can be

obtained in terms of a Fredholm integral equation. Having obtained Y

it is straightforward to compute y, i.e. the solution of PIV.

5.5. Some Special Solutions.

For certain choices of the parameters at, B, PIV admits one para- I
meter family of solutions expressible rationally in terms of the

Weber-Hermite functions. Such solutions can also be obtained from then

inverse problem. Let 9 t 9 0 + n, n E Z, then (5.14), (5.13) im-

ply a * c * 0 and b = -d respectively. Let us consider for concrete-

ness 90 - O, 0 < 9_ < 1/2. Then one is lead to the following RH

problem:

*+(x)=-(x)g,,(x), on CI+C 3, gg 2 I on C3 ; g4 on C1 , (5.15)

Ias ix'- ®,

where
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g eQXG e0 (x) Q(x)6 e0Q(x).
92 e 2 e 94 e 4

S., This RH problem can be solved in closed form:

Lx-x

where the contour L is given

Rex

L

Note that

F(x) - f( t) + O(-l), f(t) He, 1(it), He Weber-Hermite

- . function.

5.6. Schlesinger Transformations.

These transformations change 90~, 9_ to '~'~ ,where
= m *n nc .

9 90! 1,7 , , n Z.(5.17)

To obtain these transformations let Y t R(x~t)Y correspond to e6, a,
but to the same monodromy data. Then it can be shown that R satisfies

Ne & very simple RH problem, which can actually be sovied in closed form:

%a For example

a- ~O0 ( 0
1 R iJ +

9'= + 0-0

u 2(z-2%) (518
0 (518

6. SOLUTIONS TO A CLASS OF NONLINEAR SINGULAR INTEGRO-DIFFERENTIAL

EQUATIONS
This is joint work with M.J. Ablowitz and M.D. Kruskdl 56]an ws
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motivated by some recent results of Constantin, Lax, and Majda 57],

* these authors used the transformation w = u + iHu, where H denotes the12

Hilbert transform, to map the equation ut 
= uHu to the ODE w - 1 2.

Using the fact that w = u + iHu is the boundary value of a func-

tion analytic in the lower half complex x-plane it follows that
n n w wHw z -iw, and more generally Hw -iw , Hew = -iew etc. This enables

us to map a large class of nonlinear singular integro-differential

equations, via explicit transformations, to either ordinary different-

i ual equations or to linearizable partial differential equations. Con-

versely, given a linearizable POE there is an algorithmic way of find-
ing its singular integro-differential analogue. Examples include:

(a) ODE's (b) Singular Integro-Differential Equations

wt = - w 2  ut = uHu (6.1)

wt = w3  ut  u - 3u(Hu) 2  (6.2)

wt  = ie 
iw  ut  = e Husin u. (6.3)

1- (a) POE's (b) Singular INtecro-Oifferential Equations

wt = - (w2)x u= Uxx + 2(uHu)x (6.4)

wtW xxx-ixl(W 2 )x+S(w 3)X=O Ut+U xxx+2a(uHu)x+ (u3"3u(Hu) 2 x = 0 (6.5)

wxt = ieiw uxt e HUsin u (6.6)

wt + i(wxx+(W 2)x)=O ut Z (Hu) xx + 2(uHu) X. (6.7)

4 -2 (wt+wx -i(w2) )=-3c 2Wyy r (ut+xu +(2uHu) ) = -3o2u (6.8)
x t x yy dx xxx x yy

Equation (6.4a) is essentially Burgers equation and can be linearized

via the Cole-Hopf transformation w = -i(inf) X .  Equation (6.4b)

arises in various population ecological models and to our knowledge,

was first considered and solved via a dependent variable transforma-

tion and splitting into upper and lower functions by J. Satsuma58].

In equations (6.5) a, 6 are real constants, and (6.5b) is an analog

of the Gardner equation (a combination of KdV and modified KdV).

Equation (6.6b) is related to the Liouville equation (6.6a) and is
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known to be linearizable.

A (3+1)-dimensional equation can also be linearized via (6.8a).

. Namely let Hz u denote the Hilbert transform of u(x.y,zt) with respect

to the variable z, i.e.,

H u- u(x,y. ',t) d;.

Then instead of K-P: we may consider a multi-dimensional analog of

.5.',(6.8b)

(u + u 2(uH zU) -3c2 u (6.9).X -(u Uxx x  z - Uyy,

and it is also mapped to the KP equation (6.8a), via w = u+iHu.

411% 7. HODOGRAPH TRANSFORMATIONS OF LINEARIZABLE POES 4

.59]

This is joint work with P. Clarkson and M.J. Ablowitz 59]. Since
P. Clarkson will present these results in a separate contribution of

these proceedings, I will only make a few comments.

We call two PDE's equivalent if one can be obtained from the

other by a transformation involving the dependent variables u = (v)

and/or the introduction of a potential variable (u = v. or ux = v).

It is well known 60] that the most general semilinear equation of

the form

u + f(u,ux) (7.1)

-. 5. which is linearizable, is either linear or the Burger's equation

(which with the above definition, is equivalent to a linear equation).

Fokas and Yortsos6 1] have shown that the most general quasilinear equa-

tion of the form

ut = g(u)uxx + f(uux) (7.2)

0which is linearizable, is equivalent to the equation

ut u )x +cLu u, -, is an arbitrary constant. (7.3)

The above equation can be mapped to the Burger's equation via an

Xextended Hodograph transformation, i.e. a transformation of the form
T t, x = x u(x',t)dx'. (7.4)

% . .. . . .
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It is also well known that the Harry-Dym6 2  equation, can be mapped

to a modified Korteweg-deVries (MKdV) equation via an extended Hogo-

graph 6 3 . In that sense, the Harry-Dym equation is a quasilinear

analogue of the MKdV equation.

One is naturally motivated to ask the following questions:

i) Is there an algorithmic method of finding a quasilinear analogue

of any semilinear equation?

ii) Is the associated quasilinear equation unique?

iii) Conversely, given a quasilinear equation, is there an algorithmic

method of finding whether it can be mapped to a semilinear equa-

tion as well as finding this semilinear equation?

In the above paper we consider the above questions for semilinear

and quasilinear equations of the type
nT

ut ~Un u . u(. Uf) n -2, u . u (7.5)
nx ''x n-I)x - nx .n

and

ut g(u)unX+f(u,u. ... ,un)), n 2, u 1 0 (7.6)
n X n-)x du

respectively. The answer to question i) above is affirmative. Also,

the associated quasilinear equation is unique, in the sense that ex-

tended and pure hodograph transformations yield equivalent quasilinear

equations. (By pure hodograph we mean transformations of the form -

- t, I" = u(x,t)). Furthermore, we find the most general equation

of the form (7.6) which can be mapped via an extended hodograph trans-

formation to a semilinear form.

The above results are of some interest in establishing whether an j
equation is a candidate for linearization. Suppose that one is inter-

ested in investigating whether a given quasilinear equation is linear-

izable. We propose the following algorithmic procedure:

1. Put the equation into its potential canonical form

vt Vx nx Vxx -V (n-I)x (7.7)

by using the transformation vX = (u).

2. Apply a pure hodograph transformation to equation (7.7). If

equation (7.7) is transformable to a semilinear equation, it will

II
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become
Ut "U + F(u ,u1)x )

. (7.8)

3. Investigate whether equation(7.8) is linearizable. This is eas-

ier than investigating whether (7.6) is linearizable directly.

The reason for this is twofold. First, for at least third order

equations there is a complete classification of all linearizable '-

equations. Within equivalence, there exist only six such equa-
43.

tions 64J. Hence one simply needs to study if there exists an

equivalence transformation to map equation (7.8) with n = 3, to

one of these six canonical equations. Second, for equations with

?- n > 4 one may investigate the question of linearization via the

PainlevY test. We point out that quasilinear partial different-

ial equations do not appear suitable for applying the Painlev.
65] 7

test. Ramani, Dorizzi and Grannaticos (see also6 and the

references therein), introduced the notion of "weak-Painlev6" in

order to deal with equations such as the Harry-Dym equation which

are linearizable after a change of variables. However, the

higher KdV equation
+ 3

Ut U xxx u u A

although it is thought to be nonlinearizable (it has only three

independent polynomial conservation laws of a certain type66])

and is also ,weakPainlev,67l. Therefore the "weak-Painlev"

concept does not seem to distinguish between a linearizable and

a nonlinearizable equation.

6 We point out that one often finds in the literature claims of

new" third order linearizable equations. These equations, using the

notion of equivalence can be mapped via a pure hodograph transforma-Li tion to one of the six canonical equations mentioned above.

The above algorithmic approach is useful provided that a given

linearizable quasilinear equation can be mapped to a semilinear form.

The above approach will fail if there exist linearizable quasilinear

equations which can not be mapped to a semilinear form. It is shown

in that such equations do not exist for at )east n 2. The ques-

,, .1 " *

' %' %
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tion of whether such equations exist for n 3 remains open.

8. THE SCALING REDUCTION OF THE THREE-WAVE RESONANT SYSTEM AND THE

PAINLEVE VI EQUATION

This is joint work with R.A. Leo, L. Martina, and G. Soliani68]

It is well known that for a large class of equations, the large

time asymptotic limit is governed by certain similarity solutions of

the underlying PDE. If this PDE is an exactly solvable equation in

1+1 (i.e. in one spatial and in one temporal dimension) one expects
45]

that the similarity solutions satisfy an ODE of the Painlevt type.

In the above paper we considered the three-wave resonant inter-

actions in the case of explosive instability69 "70]

u + cju u*u* = 0 ,k, = 1,2,3, j, (8.1)
3t Zj Zk

where u.(x,t) are the complex amplitudes of the wave parameters, cj

are their group relations and * denotes complex conjugate. Assuming
c I < c2 < c 3 and using invariance under x-translation, t-translation

and appropriate scaling we are )ead to consider a system of three

first order nonlinear ODE's.

This system via a series of transformations, can be mapped to a

single second order ODE, which is quadratic in the second derivative.

Such equations are outside the class investigated by Painlev6 and his

school44 J, however the equation obtained above is a particular case of

an equation recently studied by Fokas and Yortsos' ], in their invest-

igation of exact trasnformations of Painleve VI equation:

A fundamental role in the exact treatment of the Painlevs equa-

tions is played by certain transformations which map solutions of a

given Painlev6 to solutions of the same Painlev6 but with different

choice of the parameters. Such transformations for PII-PVI were given

in 71-74] respectively. Finding such a transformation for PVI necessi-

tated the introduction of an auxiliary equation which is quadratic in

the second derivative. However, it was shown in75] that this equation

can be mapped to PVI.

The second order ODE obtained from the similarity reduction of

the three-wave resonant interactions is a special case of the above



S auxiliary equation (see equation (2) of7 . .i
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