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INTRODUCTION
In this paper [ summarize some results obtained in the period

June 1985 - July 1986. It is my pleasure to acknowledge collabora-

tion with the following colleagues: M.J. Ablowitz, P. Clarkson, M.

Kruskal, R.A. Leo, L. Martina, U. Mugan, V. Papageorgiou, P.M. Santini,

and G. Soliani.
T The results on Inverse Scattering in multidimensions and on the
algebraic properties of equations in 2+1 (i.e. two spatial and one
temporal) dimensions should be of particular interest: With respect to
algebraic properties of equations in 2+1 we-ao&e—%he§ the gquestion of
finding the recursion operator and the'ﬁf-Hamiltonian‘formulation of
these equations has remained open for a rather long time. It was even
doubted in the literature if the relevgntlre%ults in 1+] could be ex-
tended to 2+1. -2.M__Santini and-the author havs recently shown that
equations in 2+l solvable via the [nverse Scattering Irgnsform are bi-
Hamiltonian systems. Ibey—ha¥5 also given explieié+”.;he recursion
and bi-Hamiltonian operators for large classes of equations in 2+1,
including the Kadomtsev-Petviashvili (a two dimensional analogue of
the Korteweg-deVries) and the Davey-Stewartson (a8 two dimensional

analogue of the nonlinear Schrodinger) equations. ____
In this paper | emphasize the basic ideas and results. Further-
4 More an attempt s made to put these results into perspective. De-
.: tails can be found in the sited papers.
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1. AN INVERSE PROBLEM FOR N x N AKNS IN MULTIDIMENSIONS
This problem has been studied 1n1]. where | considered the in-
verse problem associated with the following system of N first-order

equations in n+]l dimensions:
n
Y. +0 L J¥ =aq¥,
Yo g=1 Xy
g=0p* ioI. 9 £0,n>1, (1.1)

where q(xo,x) is an N x N matrix-valued off-diagonal function in R"‘l.

decaying suitably fast for large Xg+Xs and the Jl are constant real
diagonal N x N matrices {we denote the diagonal entries of J2 by

1
o

...J:). Alternatively, using the transformation

¥(xgex,k) = u(xo.x,k)exp[i g kg (xp= cxo%')]. k e C", (1.2)
[ considered n e=1
Hxg +cz§1(‘]l“x1* fkldgoul) = qu. (1.3)
I assume that n < N, otherwise the entries of the J, matrices will be
linearly related and one can always reduce n by a change of coordin-
ates. An inverse problem in this case is defined as follows: Given
appropriate inverse data T, where T is an N x N matrix-valued off-
diagonal function of suitable inverse parameters, reconstruct the po-
tential q.

There is a twofold motivation for considering such an inverse
problem.

(a) If o= -1 then the above reduces to the formulation of a
physically important inverse scattering problem: Given the scattering
amplitude S{A,k), A, k¢ R", which is a function of the scattering
parameters A, k, reconstruct q.

(b) In recent years a deep connection has been discovered bet-
ween inverse scattering of linear eigenvalue problems in one spatial
dimension and the initial value problem of certain nonlinear evolution
equations in 1+1 (i.e., one spatial an¢ one temporal dimension). Re-
cently a similar connection has been used to extend the above results
to nonlinear evolution equations in 2+1 (i.e., two spatial and one
temporal dimension)2'6]. In particular the inverse scattering of (1.3)

with G = -1 and n=1 has been used to linearize the N-wave interaction

L dy-
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equations in 2+]1 (see Reff]), the Davey-Stewartson {DS) [ (see Ref.‘l) b
(a 2+1 analog of the nonlinear Schriddinger), and the modified Kadomt-
sev-Petviashvili (MKP) [ (see Ref.dl) (a 2+1 analog of the modified
KdY) equations. Furthermore the inverse problem of (1.3} with 5 = i and
n=] has been used to Iinearizes] DSI! and MKPI!. However, in spite

TR SR A

of the above success in 2+1, no physically interesting equation is
known to be related to (1.3) forn > 1 and cpt o0 [the N-wave interac-
. tion equations in n+l spatial and one tempora!l dimension7] are related
to (1.3) but with o = 0].
The novelty associated with inverse problems in greater than two

[

spatial dimensions (n > 1) stems from the fact that while the potent-
ial q(xo.x) depends onn + 1 variables, the inverse data T(k koo I'mZ'
com ), k R € R" kle R", m. o« - R, depends on 3n - 1 variables. This
has important implications:
- {(a) The inverse data must be appropriately constrained. This
“characterization" of the inverse data is conceptually analogous to
the characterization of the inverse scattering data in the multidim-

ensional Schrédinger equations'lll

(b) The existence of "redundant" scattering parameters in the . ~
: . . . DTIiC
inverse scattering of the Schrodinger equation 1S used to reconstruct
copy |
TNSPECTED [

the potential in closed form in terms of the scatter1n% amplitude
function. This is the well-known Born approx1mation12 . Can one use N\

the redundancy of the inverse parameters here to also reconstruct g

in closed form? For
In the above paper, | do the following. I'
(a) Following A. Nachman and M.J. Ablowitz, [ derive an equation

. - . : ] 3
that cnaractervzes.fnverse data.[ dré qe ;g[T](wo‘w‘lP ) 3
'3 o) # T g, ) - 2 ey coLe) o
‘R p P
e " - M/#’
re w, eR, w e R, « . C are related to k, m and N 1s a quadrat~ Lé

ic function of T. That is, T'J(k,m) is appropriate inverse data iff - e—
. 1ty Codes
the right-hand side of (1.4)1s 1ndependent of .« Hence, Eq. (1.4) serves
. 1) 21 and/or
as both characterizing T ° and defining T -. ctal

{d) 1 reduce the general problem of reconstructing an N x N po-

Ip-!
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tential q in n + 1 dimensions to one of reconstructing a 2 x 2 poten-
tial with entries qij. qji in two dimengion;z The 1nverse data needed
for this reconstruction is precisely fiJ. fJ'. This reduction makes
crucial use of the existence of redundant scattering parameters. In
this sense it is the analog of the Born approximation. However, the
crucial difference is that while in the inverse scattering of the
multidimensional Schrodinger equation one can reconstruct the potential
in closed form, here one can only reduce the general problem to one
fo:]Z x 2 matrices in two dimensions. This reduced problem was solved
Partial results about the case c = i were given in
(1.3) was also considered inld] where, although the characterization
problem was solved (an equation very similar to (1.4), the so-called "7
equation”, was first obtained inl ) the problem of an effective re-

in
13). Equation

constructon of q was left open.
The basic steps are as follows:
1.1 Bounded Eigenfunctions.
The function u(xo.X.k) defined below, solves equation (1.3), is
bounded for all complex values of k and tends to [ for large k:
s o9y exp[i8'9(xy=€ g ox £, 1K) ]
s (k) = 8 esgnpi 0 dedE 0011
0 2ni 2 0771 i
R (xl-Cl) - OJI(XO{O)

« (a8) (e o g axpm(x € 093/0 0= (x € )90/0] KDL K e € (1.8)

where Bij is defined by

. nolgd x,(ok,)
8 (xgoxp k) ¢ 1 A2 xglolky - L= kkg ik L(1.8)
t=1 I I J1 R 1
Equivalently “ij satisfies
sgn(oIJ{)

i L 2 fat(x-£,m)
u o (xgex,k) = 87+ -—?;T-——-JRH+1 ngdCLCn-IJRn-l dm“e ]

' 1.

x

3
x| -€-0dy (xg-84)

where
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-~ 2 i " %, 1
' am® * dmz...dmn. a (x,m) & ml(xz - X (1.8)
1=2
% 1.2 Departure from Holomorphicity.
e Let u'J be defined by eq. (1.5). Then
By '.‘I
! "‘\:" ﬂ(x x,k) = wri(Ji - J'j)exp[ieij(x Xy, k)]
o 0" S p p o’ 1
al 14J
P :
’
o x ¢ dmZex [iai(x m)]Tij(k M (xnsx,2 9 (k,m) )E (1.9)
:.,.: n_l Rn_l P * ] 0) ’ » ‘J s . .'
o . ) A
:‘;\" where B‘J(xo.xl,k), a'(x,m) are defined by (1.6), (1.8) respectively; :
A )
) " E‘.j is an N x N matri).(.with zeros in all its entries except the ijth. 5 Q
4 which equals 1; and A'J and T'J are given by : i
.:." Ji . ;.
‘ ij ij " 2 ij ; o
‘1 (k,m) 2 (k1 - I mo k1 ), xr (k,m)-(kr +mr.kr ); r=2,..n. =
." Y R =2 Jl I R 1 R
i
W yi éi/dﬁiJ% ls 'i
"1 K
) c e - .. . .. 2
o T cm ¢ ! .1 dE.dgexp(-i89(g,,6, k) -ia' (€,m) J(qu) Y (g,, £,k) . (1.10) =
CRS I N l 0 0 1 0 IR
o . ‘R ot
.-f-h e
AN 1.3 Characterization of T. .
N (a) Assume that au/aip is given by Eq. (1.9) and the T (k,m) ;
J' is given by (1.10). Then ;
¥
X ] P n . . . P
' LI 3 (m) = - e j MeT LT (M) mem) TH (1, m) .
rp =1 M1 g"-1 g
14%]
L) N
[ g < L] 1'_ L ' J LT IR I ij ’
0 (05950 (9-07) - (J=9p) (Jp-90] # M olTI(kom) (1.11) §
iﬁ where &
». L (] gy 2 (J:-JJr)_a, (1.12)
P PP % aEp

(b) Assume that au/aip is given by £q. (1.9) and that azu/airaip
is symmetric with respect to r,p. Then T'J(k.m) solves (1.11).

Following A. Nachman and M.J. Ablowitz I introduce appropriate
Born variables. Then equation (1.11) can be integrated. Furthermore, ;

¥ ore " T, o 1 O e S AN AISHAONOND
D - . s W Q Ol AOBODUBOSIOUT YOS IO T AN
1:'..“ t“.:'.‘l ey 'a“'tt":'t‘::": .':l!‘i‘?::.».l 080, :-:'?:."S-. !'("::'?% !‘:‘.%‘2‘: Tl ey OO K A Bttt i St bl
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we can compute the limit of T'J in the new coordinatcs as pr] - >

(see below):
ijoij _ 1 1 -
Let WoT W T eWg £=2,...,n ¢ R and Xq € C, ¢=2,...,n, be
defined by
i i) i
. n J -J . J_=J n J
vl tr ot s wd o r TE k), - Im L,
r=] 1 I r=1 o,J r=2 " J
I*1 1
. K
E 1] t.__g;_ =
W Eme Xy .JJ.-Ji, L PN | (1.13)
1™V1
Assume that

(J;-J‘Z)(J;-Jg) y (J{-J{)(J;-Jg). for all distinct i,j,r and pfl.(1.14)

For convenience of writing we usually suppress the superscripts, i,j
in LI Xx. Let k denote kl.....kn, m denote MoseeesMos X denote
Xps-owsXpy W denote wy,..,W.. Then we have the following. 4

(a) The inverse of the transformation k,m = Wy W, X is given by

. . n . .
k’l Xg(\)l Jl)'mi Wl.q' 2-..-,“, kl ,..EZ(J" JT)XT +

LT TN

(6/‘ci2)w0 * z:=1“rdi

+ - - . (1.15) .
J_ 1 .
g1-9 !
(b) In the new coordinates, Eq. (1.11) with r=1 becomes
3713 -
(wo.w,x) = Nig[T](wo,w.x), P = 2,...,N. (1.16) .

%
(c) In the new coordinates

Tij(wo.mx) : JRMI diodéem[-i(woio*wﬂ)l(qu)ij(co.E.VO.V.X).

B

n
where wf = [ we,- (1.17)
r=1
(d) Let
iy iy Co Y . .
UiJ $u J(‘oaxnwajnwhj’xl’])’ UiJ = Tim U:J- ( 1.18)

Y TN

lxpl-‘m

Then the Gfd satisfy .
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Siiu

" aij = ——
. i} (xo,x,wo.w) S9N =5 S II R2n

1 1] 2 £3 L]
) dxodx dm exp[1{(x0-x0)w0+w0+(x-x Ywl] 'J(x )i
. 0

JJ(X
L] 1 H]
Xy-x| - oJl(xo-xo)

Q%' oWgaw),

“JJ = —_ x
i (xgexowguw) = 14 —5mm——c JRzn

(1.19)
dxodx dm2 J'(xb.x')u}J(xb.x'.wo.w)

. , a§j=o, for all 1, L#i, 24j.
x=xj - 093 (xg-xg)
(e) lim T‘J(wo.w,x) = IR"*I d&odgexp[-i(w0£o+wg)] x

l)(pl*"°

« 93 e 8Xa (g g g aw) £ T (g ). (1.20)

(f) The basic characterization equation is given by
T * ’
iy i . dprdxp Nlp[ Jwgw @)
T3 (g )= (g ) -,;[RZ . .y

Xp - Xp

where xP denotes xz'....xp_l.xé.xp+1.---.xn-
1.4 Reconstruction of q.

It follows from the above that as pr|+w. the u'3's decouple.
Furthermore, the u'J ng satisfy a system of two equations depend-
‘; fng on q'J qJ1. It turns out that: a) By introducing appropriate
spatial variables &, the u:J, uJJ satisfy equations in two spatial

equations. b) The invers data needed to reconstruct u‘J. “i (and

hence qij J1) can be obtained from T 1 :
Let
J J J_4d
i 2335_3533 . 8, flf?.fjf_ =1, (1.22)
JIJZ'JIJZ JlJZ'J1J2

where for convenience of writing we have suppressed the dependence of
e @, Br on i,j. Let 50 eR, £ ¢ R".

-VII'
N

L Yol !

,;. I. ‘ ',“” |‘, N ...: :'!"'!"-‘I':‘:':‘“t‘!‘. W y

TR T s

DA L OO g
. l'!‘:t‘""".‘i‘!‘l“‘-'. ‘. 'l':‘?“’




Then
(a)

(1.23)

X, = 5[ *uiél + 8152, £=3,...,n.
we have the following.
The system (1.19) becomes

1
s . o¢d i -
1 (eg6k) = sgn 1L JRZ dgde; (£-6] - 0d)le - £9)]7

< expli8(gg-60.6) - 1,010 80,005,
= (El-gi)J;/Jl'%""’En’k)’

j
el = 1rsgn LA [ rqe [, -6 - 0dd(E,-£2)]7"
Lo & aniR2€0111 14605

>J
W

1

<ol e g.1.6, - (6600930 h6q00 080K, (1.24)

where

(c)

A1 j A
F k8. BT (xgaxy.k)

oty (ok)
2 !
1 [xgl0lk; - x,

A1 3 ~
8" (xguxy k) 4 ,. (1.25)
1

fij in the new coordinates becomes
THigm -
T (k.m) = J n+1d50d£ exp[ ‘8 EO.El'k) +
Ji
~ ) ) 2 i
*pley - ) P z Bigila o e b, (1.26)
n
m,+ I mBg.,m =m, L =3,....n (1.27)

The inverse data associated with (1.24) and the analogous problem

for u!1.u;‘ are given by 13737 (et

;
L..; R

)
s
£
1
3

|

[I4RS

-

-,
LN
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x

3
2ij i . - Y
T (k.gz-gIJZ/J1.53,....£n) H cn-lIRn-l dm exp[lmz(g2 & Ji)
1
m.£ T (k). (1.28)

r=3

P (g ¢ gl R ‘e texpl-id (e £
TR €= 8105/ 0y 8gae e nal ) 8 JRZ dgpde expl-i8 77 (64,81 .k)]

~

(@) g8, - (6-6])0)0] 06008 0K) (1.29)

2. INVERSE SCATTERING FOR THE HYPERBOLIC N x N AKNS IN MULTIDIMEN-
STONS
This problem has been studied in
(1.1) and (1.3) with g = -1. This system appears to be physically
more interesting than (1.1)-11.3): (a) Since the system is hyperbolic
one may consider the physically important question of inverse scat-

15]. where | considered equations

tering (I1S); i.e., given a scattering amplitude function S(},k) find
the potential q(xo.x). (b) A specia) case of the above system, namely
if the Jl's are cgns;raingd by

Je-99 gl

_£L2=—L£, par=l, ..., i,3,1=1,...,N, {2.1)

-3 gllyd

JY‘ r r.r

K is associated wi;hlgr]:e N-wave interaction in n+l spatial and one tem-

o poral dimensions * .

With respect to (a), (b) above the following results are obtain-

Jf" ed:

o (a) I first define S(A,k), », k € R", in terms of an eigenfunc-
tion uL(xo,l.k). S{i,k) motivates the introduction of the Born
variables wg € RI, we R", x ¢ R" 1. I then define T(A,k) in terms
of an eigenfunction u(xo,x,k). The crucial new step is that u is re-

quired to have analyticity in one of the x's, say Xpe 85 opposed to

# one of the k's. Let

f(NO") .2 1im T("o-wv'();

O D (G Ch TG b
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then T'J satisfies

% fij(vo.w) - Ti'j("(]""':')'(przrij)("'O"""')‘ (2.2)
where P denotes a (+) or (-) projection in the variable P RRRELN
2

(P* f)(x,) = ; L dipf(a5)/2ni(xy =%, ¥ 10).
2 R
The sign of certain parameters eéJ], where
301 B Ty L J 3o giygr _ gl
‘Lr .= (Jl = JI)(Jr - Jr) - (Jr Jr)(Jl Jl)‘ (2.3)

determines whether the (+) or the (-) projection is needed. Equation

(2.2) defines ?iJ, which actually depends on q‘J. and

~J3 Ly, 33
RS | ]1rléﬁ (xo,x,wo,w,x).
x2
The question whether (2.2) is sufficient for the characterization of

7' remains open. With a proper coordinate transformation, Q:J‘ ;{J.

:j‘. ;}‘ define an IS problem for a 2 x 2 potential with entries q‘J,
qJ1, in two spatial dimensions. The inverse data needed for this

problem are simply related to ?ij, ?Ji. The solution of such an IS
problem was given in4]. [t is interesting that there exists a simple
relationship between T and S. Actually if N = 3thenT = S, This is
quite remarkable since for the first time a closed-form expression
can be obtained between S and T. Furthermore, YL satisfies a Volterra
as opposed to a Fredholm equation; hence one immediately excludes the
possibility of bound states.

With a proper coordinate transformation, the N-wave interaction
equations in n + 1 spatial dimensions can always be reduced to two
spatial dimensions. Thus a genuine three-spatial-dimensional nonlin-
ear evolution equation, related to an IS problem, remains to be found.

Let uL(xo,x,k). Xy € Rl, x,k ¢ R" be the solution of (1.3) which
also solves

) . X
(3 = U
“L (xo,x,k) 5 *J-

O axjexnlik(d -99)(xgmxg)]

ciadiition
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kJ” = £ k.J mx = I mx_,c. := (271)

< Z R
and x + J'xg denotes x; + J1 0* % * Jnxo. Let @(xo,x) be the gen-

eral solution of (2.1} with o = -1 tending to f(x + xOJ) or g(x+x0J)
as Xg * = or xo - =, respectively. The scatteirng operator is de-
fined by g = Sf, and S is uniquely defined in terms of S(,k), where

Sij(x.k) = anRn+1 dxodx exp[i(k-A)x + i(ij-AJi)xo]
«(ay ) xgux, k), T £ 4, (2.5)
and n
kx := I k. x
HES

The Born variables are defined by

S YOl H S (2.6)

wo. s W PRRTLERYY R RS | I8 .
171

where, for convenience of writing, we suppress the dependence of w

v oon i,].

01

T’J(A,k) satisfies an equation similar to S]J where uEJ is re-

placed by 4?3.“The eigenfunction f:J satisfies an equation similar to
(2.8) where | O s replaced by | . This integral is either | 0
. - )lJ1 ‘- ‘-
or - j according to the following requirements: (1). If c;)’ =0
X
0 X

then choose J 0 .o(2) If egdl # 0 then (xo—xé) 5111 must have the
same sign for all ¢ (i,]j are fixed). (3) If (2) can be satisfied

X (l
with either i 0 or -! 0 , choose the first integral. To illustrate

PRS- ) i -

the above, consider N = 4. Since céJ' = aéJ‘ = 0, there exist only
two nonzero qu', if they are of the same sign choose both integrals

X X
to be 9 , if they are of opposite signs then one integral is }
and the other is -Jx . In the Born variables, Tij(NO'““) depends on

0

o

o
*

P 2 <
PN AN

b, U1 v PR ATY

ST ~-

.
VRN

ARG T P
\ . /OO S



4 . .
5 (xo,x,wo.w.x). which satisfy

. . . . n
.@J(x JK WA W, X) = 5“ + dx‘texpti[w L 5"J1x ] 1
1170 ] s i 0 0 pep 70T .
LY Gy i 3
(x0 XO)A(Qui) (xgex + 9 (xO xo).wo.w.x). (2.7)
Equation (2.7) implies the following: (1) uﬁl and hence Ti' have 1

analyticity properties with respect to X,: T1J(u%J) is a (+) or (-)
function with respect to X, (i.e., it is holomorphic in the upper or
lower X half-planes, respectively) §qcording to whether (xo-xé) 51%1
is. >0, or <0. (2} Ac ile ’,?"“ﬁj - E%J(wo,x.wo,w). where N
ﬁfJ satisfy a reduced system: Q?J =0 for all £ # 1,j, and G}J. GgJ
satisfy a system of two integral equations of the Volterra type (see

below). Hence as iy 25 - o=,

o f .
. T’J(wo,w) 1= anRnﬂ dxodx exp[1(w0x0 + wx)]
. a1l ~JJ
a “{xgaxuyT(xgax,wg,w).

Since ™ s a (+) or (-) function of Xy tending to T as Ile* @,
its (-) or (+) projection must satisfy Eq. (2.2). [We define p*(1)= %,
Pl = -3 N p
Given T]J. 737 ane can compute T’J, TJ1, which actually can be
JoLit.
y Q7

~ole—

used to reconstruct the 2 x 2 matrix potential with entries q‘
We consider the reduced system. The crucial fact is that it corre-
sponds to N = 2, and hence

ARRRIRERD: o
sy Jl*ﬁ Jz. 2=i or j,a  := _Z_L_r__Z' k := L(J—:J—)-, (2.8) .
r “rl r2 r Vad GJgd J i ;
9192912 Ji -

8, is defined as o with 21, j«— i, and again for convenience of
writing we SUpQress the ij dependence Of"r‘ 8. Since one can intro-
duce a single k, it follows that the reduced system must be transform-
able to a system in two dimensions. This is indeed the case. Let

-~ Sy g TN
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x (52-71350 + 6‘351), L =3,...,n, (2.9)

iJ .. J J Y ij .. o] i
Then the reduced system sat1sf1es

X

e ) = gt 170 gen | - Lot
biT(EgsEok) = 877+ C”J-,, d“O}RZn 45" dm em.x[k(Jl-J1 +m Jl]
n (2.10)
< (£ £, -5t iz : A o =1,
(C.O 30)4‘”“1*-]1(-,1 1) + 1r;2mr(ﬂr ) (Q» ) (sovs ’k) 1,3,
where (qﬁi)1J = q’J:%J, (qii)JJ = qJ‘:CJ. Hence :fJ satisfy two inte-

gral equations in the variables 2., 7,:
le(— c ;) = :‘J,c %0 d;'[ d€ ! dm exp(i[i(dl-dj) rm b«
“ittgr 1 - _, 0Jg2 171 1™ 1¥1
x -5 i ’L: “£') ,A J It 5
[(éo no) + ]mldl(sl ﬂl) (q».') (\0,51,52'... -,nvk)- (211)

The inverse data associated with (2.11) can be obtained from T Let

R . n oon
woEW 1= 3,...,n, Wyt W, E wrér’ v= L (xrv fr)‘r. (2.12)
r=3 r=1
Then, since
. n
= (kyd N K : W s
WoXg *owx = (le - Jl)AO + (k ),1 + r:zwrﬂr

=5 R .
™ in the new coordinates becomes

A A A ~ 3 3 ~

n
A,] = I -J_Tl; .-.‘ . .
Tk, A,w) <, )Rn+1 dﬁodiexp[l(le AJI)‘O + i(k-A)E, + i E

RS CIRREN NN

Hence, when we take the Fourier transform of T i with respect to w.
it follows that

TG ) o JRn_l dw Tk, wlexp(-iw) =
, (2.13)
—_— ; Ced iy ; IJJJ.,.; ©
<, J 2dFOd exp[1(le Jl)'O + 1( 1]q :O"l‘ Z"""n'k)

The inverse data T'J and its analog ! are precisely what is needed
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to solve the inverse problem for q’J,qJ' associated with £q. (2.11)

and its analogs for :;J, :3‘. seeal.
S'J. T'J are defined in terms of uEJ. respectively. It is poss-

ible to find a simple relationship between .,QJ. inJ which then yields

a simple relationship between S‘J. T, Actually if N = 3 then ™ =
iJ

S,

14)

It was shown in that the N-wave interactions can always be

reduced to three spatial dimensions. [t is shown inls] that they can

actually be reduced to two spatial dimensionsl7].

3 RECURSION OPERATORS AND BI-HAMILTONIAN FORMULATION OF EQUATIONS
IN 2+1
This is joint work with P.M. Santini Since it is summar-
ized in these proceedings in a separate contribution, I shall limit
myself to a few remarks.

18-20]‘

Since the discovery of an exact approach to nonlinear evolution
equations in 1+1 (i.e., one spatial and one temporal dimension)ZI],
two interrelated aspects have recieved much attention in the litera-
ture:

{i) The development of a method of solving suitable initial-value

problems. For initial data decaying at infinity such a method is the

inverse scattering transform (IST)ZZ]. This method crucially utilizes
the existence of an associated isospectral linear eigenvalue problem.

(ii) The investigation of the "algebraic" properties of the given

equation. A fundamental role with respect to the algebraic properties

is played by an integrodifferential operator, given various names in
the literature: squared eigenfunction operator23 , recursion opera-
tor24 ,» strong symmetryzs]. hereditary symmetryzs], Kahler operatorzsx
regular operator27 . This operator has the following properties:

(a) It generates the associated hierarchy.

{b) 1t generates infinitely many symmetries (in particular, if it has
a certain property which Fuchssteiner calls hereditary, it gen-
erates a set of commuting symmetries).

{(c) Its adjoint generates gradients of conserved quantities {{n part-

icular, it generates a set of involutionary constants of the

Milion s BTk, 5 oo i oW~ Y 3 L JNRY
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motion).
(d) Its multiplication bi one Hamiltonian structure generates (under
)

certain conditions28 a second Hamiltonian.

(htig s 4. L

: : (e) The eigenfunctions of its adjoint are quadratic products of the ';

i': eigenfunctiog;]of the associated isospectral problem and form a 1%

‘) complete set“’, h

e ' It should be noted that given the isospectral eigenvalue problem, )
oy there exists an algorithmic technique for obtaining the recursion <

: 1 operator (see for example30]). This is, from a unification point of )

; > view, quite satisfactory, since both the method of solution (IST) and é

N : ~ the algebraic properties (recursion operator) stem from the same en- i

" tity (isospectral eigenvalue problem). For the Korteweg-deVries (KdV) .
3 equation 9 = Qyy - 6qqx, q = g(x,t), the recursion operator ¢ is DZ- ;j
M 4q - 2q.0°1, where 0 # 5 , (0716)(x) # /% f()de. If & is the adjoint +

::ﬁ of ¢, then Asatisfies ay= 427, where y solves Vex - (a*r)y = 0. 42

':5 The above two aspects have been thoroughly investigated for a 3?

,*' number of physically important equations in 1+1. Each of these equa- g

- tions has physically significant two-spatial-dimensional analogues.

‘:i For example, the KdV is generalized to the Kadomtsev-Petviashvili (KP)

{2: equation, the modified KdV to the modified KP, the non-linear Schrod-

;i: inger to the Davey-Stewartson, etc. Furthermore, these equations are z

A also related to isospectral eigenvalue problems which are appropriate

o generalizations of the corresponding one-dimensional ones. It is

: j therefore natural to investigate aspects (i), (ii) above for two-

;i' spatial-dimensional (2+1) exactly solvable equations.

The extension of the IST to equations in 2+l has been recently
established inl~6] 31])-
recursion operators in 2+1 has remained open; actually even the exis-

, (see also However, the problem of finding
tence of such operators has been doubted in the literature. In this
respect note:

1. The IST of the Benjamin-Ono equation has all the features of an
equation in 2#132].
erator has not been found. One of the authors (A.S.F.) and B. Fuch-
SSteiner, after failing to find the recursion operator of the Benjamin-

It is thus not surprising that its recursion op-

N T T T e N ) ot T % W - o T
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33)

symmetries. This approach uses a certain function, called -; it was
39]

Ono equation, introduced an alternative approach for generating
E subsequently applied to a number of equations, including the KP
‘ However, for equations in 2+1: (a) The relationship between 7 and the
F eigenvalue problem has not been established. (b) There does not
a ex1st an algerithmic way of finding . {c) It is not known if - can
be used to obtain the second Hamiltonian. {d) ' is not hereditary.
2. The bi-Hamiltonian nature of equations in 1+l has been emphasized
‘l as the fundamental property underlying integrabi]itst]. However, the
bi-Hamiltonian nature of all equations in 2+1 as well as of the
Benjamin-0Ono has remained open. The existence of a recursion opera-
tor would directly imply the second Hamiltonian, since all these equa-
tions have one known Hamiltonian.
3. A number of important results pertinent to the algebraic proper-

' ties of equations in 2+1 have obtained in the Soviet Union36]. In

) particular Zakharov and Konopelchenko, in a very interesting paper37].
claimed that recursion operators are purely one-dimensional phenomena
(1.e., they do not exist in more than one dimensign). A careful read-
ing of their work reveals that indeed recursion operators of a certain
form do not exist in more than one dimension.

4, Several authors have noticed that mastersymmetries also exist

for equations in 1l+1; let us call such a mastersymmetry T. Actually,
T comes from a nongradient function and can be used to generate .
However, t comes from a gradient function and fails to generate a re-

cursion operator.

The extension of the inverse scattering in 2+1 necessitated the
‘ introduction of a new idea, the use of s (DBAR). The extension of the
theory of recursion operators and bi-Hamiltonian structures to equa-
ﬂ tions in 2+1 necessitated the introduction of distributions, or more
precisely the introduction of integral representations of certain

differential operators.
We note that the proper analogue of T is not v but a function de-
noted inZO] by le. This function also generates recursicn operators

d in analogy with T.

Dy
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THE KADOMTSEV-PETVIASHYIL] EQUATION PERIODIC IN ONE SPATIAL DIM-
ENSION AND DECAYING [N THE OTHER

This is joint work with V. Papageorgiou
39]

38)

We have considered four different problems:

; more details of this
work can be found in
KP1 periodic in x, KPI periodic in y, KPll periodic in x, KPIl period-
ic in y. Here I will only summarize some results for KPI periodic in
x of period 2i.

4.1. Analytic Eigenfunctions.
The x-part of the Lax pair is given by

1uy *ux ! ZYkL.! = -U.. (4.1)
Consider these solutions of (4.1) which also solve

3
L

. oy { .
u'(x,y,k) = 1+ 2—1€J d”‘ dé :_ ,9("\"(»!-5')"”)0(5.»"v)b_(i--’hk)
- ol mek+rZ
i l.:n s R .
- _E / u‘(m'k,l'i,y-‘)u(:’..“)u_(i.“'k)- (42)

where

imx-imzy (4.3)

t=oofi, s{m,x,y) = e

These eigenfunctions are @ and © with respect to the complex k-plane,
i.e. they are the boundary values of functions analytic in the upper
or lower halves of the k-complex plane.
A simple calculation shows
L 0xGy k) - LT (xy k) = T{k,m}N(x,y,m,k]), (4.4)
mek+tZ
where

r@

3
Sgn(k'm)J dﬂJ QdCU(‘:.H)U‘(f.."..k)e(k‘myinn). (4-5)

-0

T(k.m) 2—‘5

A-k, m-k are integer multiples of : and N solves the same equation as

u {x,y,k) but with the forcing replaced by 5(i-k,x,y).

4.2. A Symmetry Condition.
N, . are related by {for simplicity of writing we suppress x,y)

Tt e Ay LY, - “are
, ~,~ df& »f-"’-'*u' », \‘. ‘{-. > "\,‘-, vt



- =

" —— ;:ﬂ!ll::'!!l.:;.T

1

FOUm). T (m) 2 (m-k,x,y) 1f ok

i ma[(i'.A]
N(a k) = o ()5 -kox,y) + - .
-7 F(a,m)u (m)R{m-k,x,y) if <<k,

mt[x:t,k]
(4.6)
where  [k+71,4] = ‘k*7, k+21,...,k+n1=r}, and
Flam) = o | anl dEN(E,m, mu(e ). (a.7)
oo oy

4.3. Scattering Equation.
Using (4.4) and (4.6) it follows that

p)-0T(k) = f(kom)e(m-k,x,y)u"(m); f(k,m)=sgn(k-m)F(k,m).(4.8)
mek+1Z
Equation (4.8) can be viewed as a Riemann-Hilbert (RH) problem with a
shift for L (k). The inverse problem consists of finding .~ in terms
of the scattering data f(k,m). The time evolution of f(k,m) is given
by
f(kym,t) = f(k,m,0)edi (M -K2)t (4.9)

and f(k,m,0) can be obtained in terms of initial data using (4.7).
Remarks
i)  Localized solutions, periodic in x and decaying in y correspond

to homogeneous solutions of (4.2):. Such solutions have been
obtained indo].

ii) The above formalism also follows by proper discretization of the
results of2].

i1i) It is interesting that a symmetry condition of the type first

2] is necessary not only for KPI but also for KPII.

41]

introduced in

iv) Some of the above results were first obtained by P. Caudrey
viewing KP as a singular limit N - = of a matrix N x N one-
dimensional problem.

5.  THE INITIAL VALUE PROBLEM OF CERTAIN PAINLEVE EQUATIONS

This is joint work with U. Mugan and M.J. Ablowitzdz]; more de-
tails of this work can be found in43].

—amaa .




The mathematical and physical significance of the six Painleve
S .:_: transcendents, PI-PVI44], has been well established: Mathematically,
j) L 4 these are the only equations of the form Qe * F(qt‘q.t). where F is
rational in Q> algebraic in q and locally analytic 1n t which have

3
e~
o 1

b ‘ ... the Painleve property (i.e. their solutions are free from movable

45]

critical points). Physically, are closely related to physically

; :: significant solvable PDE's angs?géi appeared in several physical 35
I {: applications, see for example . o
;: Central in the integrability of PDE's in 1+1 and 2+1 is their re- %f

! < lation to isospectral eigenvalue problems. Similarly, central to the :

integrability of the Painlevé equations is their relation to isomono- ..

ﬁ;; ) dromic problems (see Sato et 3151]. Uenosz]. Flaschka and Newe1153] E
?:; " and Jimbo et a1°%]). v
iE:' v We have systematically considered the initial value problem of
& PII, Plv, PV. Equation PIII is contained in PV for a special choice of
f one of the parameters of PV, equation PVI has been solved by C.

‘_; . Cosgrove and Pl remains open. The besic approach is that introduced

;:: inss] although we have made certain simplifications and extensions.

;:: Here [ briefly summarize the main results using PIV as an illustrative

"

example.

S.1. The Lax Pair.
PIV equation

2
. d 1 ,dy,2 3 3 2 2 B
L= (DT 5y vyt e 2ty ¢ 0,
dt Zy ‘dt 2 y

is the compatibility of the following linear problems

1
Y (x;t) = +
L ) <§- )
@ uy(zZ‘ao)

e 1o 0 v
" Yt(x;t) = X + Y(x;t).
. . {z-95-8_) 0

-

XA@ "t O
a }J . !{‘:" 5t 'l,‘L \J

-

—..A
h]
D
<

Y{x;t),

2 e
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Indeed ¥ . =Y implies

tx
glt = a8z o 4% e 2ty LAY (5.3a)
43
g% = -uly + 2t), (5.3c)
where,
N L LI S (5.4)

Eliminating from (5.3) we cbtain PIV.

5.2. Analytic Eigenfunctions and their Relationship.

We recall that in studying the initial value problem of an equa-
tion in 1+ or in 2+1, one uses the time-independent part of the Lax
pair to define an inverse problem, in terms of certain scattering or
(more generally) inverse data. Then one uses the time dependent part
to find the time evolution of these data. Similarly, here one uses
(5.2a) to define an inverse probelm in terms of certain monodromy data;
then one uses (5.2b) to find the time evolution of these data. To de-
fine an inverse problem one needs to consider the analyticity proper-
ties of Y(x;t) in the whole complex x-plane. Since Y satisfies a
linear ODE, its analyticity properties are completely determined from
the singular points of (5.2a). Indeed, performing an analysis around
x = 0, x ==, and introducing different solutions Y. in different
sectors Sj {so that YJ's are normali;ed at =) it follows that (we
assume 0 < 90 <l,0¢c 8 <1, 90 1 7):

i) The Yj's. J=1,...,5 defined in the sectors Sj‘s, where the
Sj‘s are given below and each Sj contains the intial boundary line,
are related via

Yj*l(‘) = Yj(x)Gj' x on CJ*l' jo=1,2,3, (5.5)

Zir)é

Yl(x) = Ya(xe

n x on Cl.
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Figure 1.
where
_ (1 0 1 b (1 0 {1 d

S PO IR (. ST (I N
a‘ = Gd"m‘ Hn = dlag(ezi“;n, e-Zi"%L).
)00~ v 00 = e as ke s xin s, (5.7)
where ;n(x) is nolomorphic at x = =,

2 2
Qx) = diag[%f xt, -("7+ xt)], D = diag(s_, -3_). (5.8)
. 0y
1’1) Yo(x) Yo(x)l , as X - O, x in Sl‘ (5.9)
where Vo(x) is holomorphic at x = 0,
vy -2imeg 2i-
HO = diag(e ., @ ), Yo(xe ) = vo(x)Mo. (5.10)

Yl(x) = Y. {x)E x in Sl' det E,= 1. (5.11)

0 0’ 0
From the above it follows that Y is a sectionally holomorphic
function. [ts behavior at x = 0 and x = » is determined from the mon-

odromy matrices "0 and M ; its jumps across the Stokes lines defined

in Figure 1, are given by the Stoke's matrices Gl""'Gd' Hence 1ts
entire behavior is determined from the following data:
Monodromy data = - a.b.c.d.uo.:o.ro.so-. (5.12)

5.3. Properties of the Monodromy Data.
It turns out that all of the monodromy data can be expressed in

v A0 ; ( AN W, LU ORGSO h
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terms of two. I[n particular

4 -1
(j51 6,0, = €5 lEq, (5.13)

2iné -2ine

(1+bc)e o+ [a + (c+l)(ab+l)]e = 2cosZneo. {5.14)

Furthermore, using (5.2b) it follows that the mondromy data are time

invariant.

5.4. The Inverse Problem.

The inverse problem consists of reconstructing Y, or more pre-
cisely ¥ where ¥ = Ye'Q(x). in terms of the above monodromy data.
The inverse problem can be formulated as a Riemann-Hilbert (RH) matrix
problem along the contour c1 + C2 + C3 + Ca. This RH problem is dig;]
continuous both at the origin and at infinity. Using the method of
we separate this RH problem into a sum of two simpler RH problems,
one defined on C2 + C4 and the other on C1 + C3. Furthermore, it is
remarkable that the RH problem defined on C2 + C4 can be solved in
closed form. Hence solving the initial viaue problem of PIV is equi-
valent to solving a RH problem discontinuous at x = 0 and x == and
defined on C1 + C3. This RH problem can be mapped to a continuous
one using appropriate auxiliary functions. Hence its solution can be
obtained in terms of a Fredholm integral equation. Having obtained Y
it is straightforward to compute y, i.e. the solution of PIV.

5.5. Some Special Solutions.

For certain choices of the parameters x, 8, PIV admits one para-
meter family of solutions expressible rationally in terms of the
Weber-Hermite functions. Such solutions can also be obtained from the
inverse problem. Let 9 _= :9 o* %. nel, then (5.14), (5.13) im-
ply a=c¢c=0 and b = -d respectively. Let us consider for concrete-

ness 3_ = - 60. 0< 8_<1/2. Then one is lead to the following RH
problem:
¢ ix)=¢ (x)g,(x), on €+Cy. 9479;" on Cyi gg on C), (5.15)

v o+las x|+ =,

where

) b iahie ot
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where the contour L is given

.
AL

) 08
I'4

i ®

P ———
[

* l‘l,"‘

} 8

Note that
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S
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F(x) = - %f(t) + 0(35). f(t) = He,, _|(it), He t Weber-Hermite
X Tz

function.

5.6. Schlesinger Transformations.

BRREE S, -« 3t

These transformations change 90. 8_ to 96,8;, where

XX
£

el
S

-
« S5

96“’0:% § = g g m, one Z. (5.17)

EY ‘o

o~

To obtain these transformations let Y & R(x,t)Y correspond to 96. CI
but to the same monodromy data. Then it can be shown that R satisfies

azﬁ.g

a very simple RH problem, which can actually be sovled in closed form:

Yy

For example

yATNS

-4

(- U X

% 0 20225,
y(z-eo-én)
2(z-28() (5.18)
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6. SOLUTIONS TO A CLASS OF NONLINEAR SINGULAR INTEGRO-DIFFERENTIAL
EQUATIONS
This is joint work with M. J. Ablowitz and M.D. Kruskal
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motivated by some recent results of Constantin, Lax, and Mdjdas7];

these authors used the transformation w = u + 'Hu, where H derotes the

2

Hilbert transform, to map the equation u, = uMu to the (00t we = - %w .

Using the fact that w = u + iHu 1s Ehe boundary value of a func-
tion analytic in the lower half complex x-plane 1t follows that
Hw = -1w, and more generally Hw' = -iw", He" = -ie™ etc. This enables
us to map a large class of nonlinear singular integro-differential
equations, via explicit transformations, to either ardinary different-
14l equations or to linearizable partial differential equations. Con-
versely, given a linearizable PDE there is an algorithmic way of find-

1ng its singular integro-differential analogue. Examples include:

(a) ODE's (b) Singular Integro-Differential Equations

Wy = - % wz ug = uHu (6.1)

W Wl v, * W - 3u(Hu)2 (6.2)
oW . Hu .

w, * e u, = e sin v {(6.3)

{a) PDE's (b} Singular INtegro-Differential Equations

W, = wXX-i(wz)x up = u ot 2(uHu)x (6.4}

wpow ialul) +8(w’) =0 s x+2;x(uHu)x*e(u3-3u(Hu)2)x =0 (6.5)

X t Txx
W © je™ ™ Uy ° eMsin u (6.6)
L i(w‘x*(wz)‘)=0 u, = (Hu)xx + 2(uHu)x. (6.7)
;%(wt¢wxx‘-i(wz)x)=-3c2wyy g%(ut*uxxx¢(2uHu)x) = -302uyy . (6.8)

Equation (6.4a) is essentially Burgers equation and can be linearized
via the Cole-Hopf transformation w = -i(inf)‘. Equation (6.4b)
arises in various population ecological models and to our knowledge,
was first considered and solved via a dependent variable transforma-

tion and splitting into upper and lower functions by J. Satsumase].

In equations {6.5) a, B are real constants, and {6.5b) is an analog
of the Gardner equation (a combination of KdV and modified Kdv).
Equation (6.6b) is related to the Liouville equation (6.6a) and is

fe o




known to be linearizable.

A (3+1)-dimensional equation can also be linearized via (6.8a).
Namely let qu denote the Hilbert transform of u{x,y,2,t) with respect
to the variable z, i.e.,

qu = ;-x
Then instead of K-P: we may consider a multi-dimensional analog of
(6.8b)

3 _ 2
—3-;(ut fuyt Z(Uqu)x) = - uyy‘ (6.9)

and it is also mapped to the KP equation (6.8a), via w = u+iH u.

HODOGRAPH TRANSFORMATIONS OF LINEARIZABLE PDE'S

59]'

This is joint work with P. Clarkson and M.J. Ablowitz Since

RENRETTEN Lo S

P. Clarkson will present these results in a separate contribution of
these proceedings, I will only make a few comments.

We call two PDE's equivalent if one can be obtained from the
other by a transformation involving the dependent variables u =: {(v)
and/or the introduction of a potential variable (u = v oru = v).

X
60] that the most general semilinear equation of

It is well known
the form

t . + f(u,ux) (7.1)

which is linearizable, is either linear or the Burger's equation
(which with the above definition, is equivalent to a linear equation).
Fokas and Yort50561] have shown that the most general quasilinear equa-

tion of the form

u, = glulu, + flus) (7.2)

which is linearizable, is equivalent to the equation

up = (u'zux)x + ou'zux, 2 is an arbitrary constant. (7.3)

The above equation can be mapped to the Burger's equation via an
extended Hodograph transformation, i.e. a transformation of the form

X
£ = J ul(x',t)dx'. (7.4)

" "J'l"","'\f CTATRT R T AN an R, . VAR r W ow
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62)

[t is also well known that the Harry-0Oym equation, ¢an be mapped

to a modified Korteweg-deVries (MKdV) eguation via an extended Hogo-

63]. In that sense, the Harry-Dym equation is a quasilinear

graph

analogue of the MKdV equation.

One is naturally motivated to ask the following questions:

i) s there an algorithmic method of finding a quasilinear analogue
of any semilinear equation?

11) Is the associated quasilinear equation unique?

111) Conversely, given a quasilinear equation, is there an algorithmic
method of finding whether it can be mapped to a semilinear equa-
tion as well as finding this semilinear equation?

In the above paper we consider the above questions for semilinear
and quasilinear equations of the type

n
= + > PO
Up T UL f(u'ux""'u(n-l)x)’ n -2, up T . (7.5)
and
= . dg
uy g(u)unx*f(u,ux.“..u(n_nx), n - 2, da FN0] (7.6)

respectively. The answer to question i) above is affirmative. Also,

the associated quasilinear equation is unique, in the sense that ex-

tended and pure hodograph transformations yieid equivalent quasilinear

equations. (By pure hodograph we mean transformations of the form

- = t, £ = ulx,t)). Furthermore, we find the most general equation
of the form (7.6) which can be mapped via an extended hodograph trans-
formation to a semilinear form.

The above results are of some interest in establishing whether an
equation is a candidate for 1inearizat§on. Suppose that one is inter-
ested in investigating whether a given quasilinear equation is linear-
izable. We propose the following algorithmic procedure:

1. Put the equation into its potential canonical form

-n
vV, S V. v+ H(v‘,v

t X nx (1.1

xx""’v(n-l)x)‘

by using the transformation v, = g7 "w).

2. Apply a pure hodograph transformation to equation (7.7). If

equation (7.7) is transformable to a semilinear equation, it will
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Up Tt F(ux'”xx""'“(n-l)x)‘ (7.8)

3. Investigate whether equation(7.8) is linearizable. This is eas-
ier than investigating whether (7.6) is linearizable directly.
The reason for this is twofold. First, for at least third order
equations there is a complete classification of all linearizable
equations. Within equivalence, there exist only six such equa-
tionssd]. Hence one simply needs to study if there exists an
equivalence transformation to map equation (7.8) with n = 3, to
one of these six canonical equations. Second, for equations with
n >4 one may investigate the question of linearization via the
Painlevé test. We point out that quasilinear partial different-
ial equations do not appear suitable for applying the Painlevé
test. Ramani, Dorizzi and Grammaticos65] (see a15067] and the
references therein), introduced the notion of "weak-Painlevé" in
order to deal with equations such as the Harry-Dym equation which
are linearizable after a change of variables. However, the
higher KdV equation

although it is thought to be nonlinearizable (it has only three

independent polynomial conservation laws of a certain type66])

67] Therefore the "weak-Painlevé"

and is also "weak-Painlevé”

concept does not seem to distinguish between a linearizable and

a nonlinearizable equation.

We point out that one often finds in the literature claims of
"new” third order linearizable equations. These equations, using the
notion of equivalence can be mapped via a pure hdodograph transforma-
tion to one of the six canonical equations mentioned above.

The above algorithmic approach is usefyl provided that a given
linearizable quasilinear equation can be mapped to a semilinear form.
The above approach will fail if there exist linearizable quasilinear
equations which can not be mapped to a semilinear form. [t is shown

1n511 that such equations do not exist for at least n = 2. The ques-




tion of whether such equations exist for n > 3 remains open.

8. THE SCALING REDUCTION OF THE THREE-WAVE RESONANT SYSTEM AND THE
PAINLEVE VI EQUATION
This is joint work with R.A., Leo, L. Martina, and G. So!idni68].
It is well known that for a large class of equations, the large 1
time asymptotic limit is governed by certain similarity solutions of
the underlying PDE. If this PDE is an exactly solvable equation in
1+1 (i.e. in one spatial and in one temporal dimension) one expectsds]
that the similarity solutions satisfy an ODE of the Painlevé type.

In the above paper we considered the three-wave resonant inter- .

- |
actions in the case of explosive instabi]ity69 70]. i
- jy*uy* = i L = y 1
ujt + cjujx Tufuy v dak,i=1,2,3, JAKEL, (8.1)
‘ where uj(x.t) are the complex amplitudes of the wave parameters, cJ }

are their group relations and * denotes complex conjugate. Assuming

:' €p €€y <Cy and using invariance under x-translation, t-translation
and appropriate scaling we are lead to consider a system of three
first order nonlinear ODE's.

This system via a series of transformations, can be mapped to a

single second order ODE, which is quadratic in the second derivative.
Such equgtions are outside the class investigated by Painlevé and his
schoo]de. however the equation obtained above is a particular case of
an equation recently studied by Fokas and Yortsos75]. in their invest-
igation of exact trasnformations of Painleve VI equation:

' A fundamental role in the exact treatment of the Painlevé equa-
tions is played by certain transformations which map solutions of a
given Painlevé to solutions of the same Painlevé but with different
choice of the parameters. Such transformations for PI[-PV] were given
! in71'74] respectively. Finding such a transformation for PVI necessi-
tated the introduction of an auxiliary equation which is quadratic in
the second derivative. However, i1t was shown in75] that this equation
can be mapped to PVI.

The second order QDE obtained from the similarity reduction of

the three-wave resonant interactions is a special case of the above




v

444, 4
2L

P

2 S U =

b
-’lll‘. *

=
1 s

Pl 3
PR e |

. v
Ees
4!

Lol

o
.

«
-

, Sy

5

?

%

i SNy ]

auxiliary equation (see equation (2) of75].
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