
INTEGRAILE SYSTEM(U) ALASKR AGRICULTURAL AND FORESTRY
EXPERIMENT STATION FAIRBANKS C L SCHULTZ ET AL. MAY 87

UNCLASSIFIED INS-82 N9SS4-86-K-8603 F/G 29/1I ML

III



1.0 1

III ,, , 2 .5AI ll - L .3 "-i 2
S IIII '  t:

IIIIN 7lll II 11112.

..

(4,' a t7. '.,_; '", X , .,, "; '*,"""•' ".'',",","- , 7 , :". ,. . . .. ,,.. .. 2Z ,.j



FOR
-~ ANONLINEAR

I!, 'F

-7

DTI

C

Z

\.L Sculz 4 . bowt and.

D. BarYaa*o

I_____ .... .. 1.
Potsdm, Ne York1367

Davey-S AYo 198AQanu721



Davey-Stewartson I -A Quantum 2+1 Dimensional Integrable System
U-m

C. L. Schultz and M. J. Ablowitz -

Department of Mathematics and Computer Science

Clarkson University

Potsdam, NY 13676

and

D. Bar Yaacov

Department of Mathematics

Vassar College

Poughkeepsie, NY 12601

Davey-Stewartson I is a nonlinear evolution equation

originally derived in the context of multidimensional weakly

nonlinear water waves. It has recently been exactly solved by

the classical inverse scattering method for localized

potentials, and also possesses nonlocal soliton solutions. -We,

have calculated Poisson bracket relations for elements of the

scattering matrix , as well as corresponding quantum commutation

relations. Commutation relations are found that are a 2+1d

generalization of a Yang-Baxter algebra.
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Exactly solvable systems have played a significant role in our

understanding of nonperturbative phenomena in physics. Many

quantum field theories in 1+1-dimensions have been found to be

integrable, enabling the calculation of exact S-matrices and

physical spectra. The Ising model and other exactly solvable

models of 2-dimensional statistical mechanics have helped to

provide a basis for modern scaling theory. Moreover, some of the

more interesting mathematics occurring in quantum string theories,

incuding loop spaces and Kac-Moody-Virasoro algebras, also appear

in integrable systems.

Associated with every known integrable quantum system in 2

dimensions (or equivalently 1 space + 1 time dimension) is a

solution of the so-called Yang-Baxter(YB) equations1 ' 2  and the

existence of a corresponding "Yang-Baxter algebra". The YB

equations arise in various contexts, and have come to be regarded

as the criterion for exact quantum integrability.

It is certainly of interest to extend the study of quantum

integrability to higher dimensions. Progress was made in this

direction when Zamolodchikov considered the scattering of

"straight strings" in a plane, and wrote down a 3d generalization

of the YB equations, called the tetrahedran equations, as well as

3
a conjectured solution Baxter was able to verify this solution

and exactly calculate the free energy of an equivalent classical

4statistical mechanical model However, the physical Mo

interpretation of the Zamolodchikov-Baxter solution is somewhat
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problematic, and the tetrahedran equations are so complex that

little progress has been made in finding other solutions.

An alternative approach to searching for new quantum

integrable systems in higher dimensions is to exploit our

knowledge of existing integrable classical systems. There now

exist a number of nonlinear evolution equations in (2+l)d which

5are solvable by the classical inverse scattering transform

6(CIST) According to our experience in l+ld, each of these

classical systems should have a corresponding quantum analog

which is exactly integrable. In this letter we consider the

quantum analog of such a classical system, known as

Davey-Stewartson.

7The Davey-Stewartson(DS) equation is a nonlinear partial

differential equation in 2+ld, originally formulated as a model

to describe the evolution of multi-dimensional weakly nonlinear

water waves. Depending on the choice of the parameters in the

equation, it admits two types of soliton solutions, localized

lump-like solitons and nonlocalized straight line-like solitons.

Classically, the asymptoptic scattering of the lump solitons is

trivial, but the line solitons experience a nontrivial phase

shift. For our purposes DS is an obvious choice because it is

one of the simplist of the known higher dimensional integrable

classical systems. It reduces in the .l+d limit to the

well-known nonlinear Schrodinger(NLS) system, whose quantum

version, the delta-function gas model , or quantum NLS model 9

.. % - . * * . .i . .. ... -0- %



4

is one of the best understood of the quantum integrable systems.

We have calculated various classical Poisson bracket relations

between elements of the scattering matrix of the underlying

linear problem for DSI, enabling us to explicitly identify the

classical action-angle variables. We have also calculated '4

certain corresponding quantum commutation relations and find them

to be a 2+ld generalization of a Yang-Baxter algebra.
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We first discuss the classical case. We will be concerned with the

hyperbolic version of the DS equation, a non-linear partial differential

equation for a complex-valued function q q(x,y,t),

t 2 + 2)q + iAlq - iqA2 (1)
ax ay

whr -- A = -i +a -I-( r
where ay 2 ax ay

(a + _L)A = i a a- () ( r q ) , 2)

with r = ±q (q* denoting the complex conjugate of q).

This time evolution equation for q can be generated by a non-local

Hamiltonian (which will depend on the choice made for A1 and A2) via the

Hamiltonian formulation of classical mechanics, where q and r are the

conjugate variables.

As is the case for all nonlinear PDE's solvable by the CIST, (1) appears

as the compatibility condition for two underlying linear equations,

r
a J  - 'P +  Q 4 (3a)
ax y~

- = A , + iQ Ty* + iJ , (3b)
aay 2.

where Q= ( q q) , J (1 -) (4)

2 0 (5) 1

A=(A4 r(qrx 
+ qy)AI (5A

(rx-ry A2
2 y 2

and , =(x,y,t) is a 2x2 solution matrix. "-

The first of these equations, (3a), can be viewed simply as a linear

scattering problem in which q plays the role of the potential. (3a)

for suitable choice of boundary conditions, can De rewritten as a system
'I

i '4
:- - Y ' l' ''i~ Lli : ' " ' " ' " " "" " l~i " 'i'jilil :"" ..... '"":'€'*/ '" ' " "% %:"' ; ' ; W" .4
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of linear integral equations,

e2i(< R +A)j i j + d& G L(j K, A) = 5ije f f iM X '(6)

where = (x+y) and = (x-y) with denoting the coordinate pair ( 2)'

K =KR + iKl is a complex parameter, A is a real parameter, the indices i, j

can each take on values 1 or 2 (where we use the notation T 2 and 2 - 1,)

and all integrations are over infinite space. Also, for convenience of

notation we use ij( , <, A, t) = Aij( , K, A, t)ei(KR+) 2jjt and we shall

suppress the argument, t.

We choose the Greens function

.. "- G L(,< Gi({,<i)

-R13 1 d12i<i ( (I+ 2) (_jiz) - I- 2) e(ji{)) (7)

. R -I -R K I
. with < =. + 1K K. J~(R-ll

with , j + j' lK Rj <I j Rand K = K

G L( , K) is obtained by taking the appropriate limit of the Greens function

of the more general D-bar problem.

We also will find it useful to define a solution, ¢, of an adjoint linear

problem,
-R2

-2i( kj j k Jk k +2 "-
6 - -k - ".i k( I )j ik zk k + k j G K -
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Of fundamental interest in both the classical and the quantum problem is

the "scattering matrix" or the "scattering data" of (6), which we define to be
-2(R

Ti= (Q(f d , K, X))i (9)

For certain choices of the parameters K, A and x', T can be shown to have

a very simple time dependence, and is thus used in the CIST to "reconstruct"

the potential q(x,y,t) at arbitrary times, for appropriately given initial

conditions.

We can calculate Poisson bracket relations between elements of T, where

we define canonical Poisson brackets

igl= iJJ d - 7--M - (06 qrE 6 r 6r 6q(0)

We find, by use of the linear integral equations, (6) and (8), that

{T (L60, ), T Y({r a( , x, A'), rye T, u, u )

2 JJ d& ai aa ' s~< ) ~ (,x 6  ') ~ T )(1
a=1 ff ca'Ya a6

2
The solution and its adjoint satisfy E - i 'kj' A'

k = 1 k 
,1

T, 0.

kj

-'a



This identity can be used to rewrite the integrand appearing in (11)

as follows:

(T It 'KX ) T 
U') 

a,

+ya aa daaa6a ( a6'"a'' aa(',T, )j

2

a=1 f a f a

a~a

8Y( ya a6 U

aa

In order to evaluate (12) it is necessary to find asymptotic expressions .

for and . However, these can be found easily by using (6) and (8) and ,

noting that it is possible to write GL in the two alternative forms (7b) or

(7c). Then

lim k a d', a) = ske T,.W)

d ( ) k (K, A, -) (13)

and 
'

-2i(kT X ) J(

lim Ri( ,< j k' k ik

kj( X) -2ikk "ek

ikr kj Q ~ (

anda

~~~~~~~~~~~~~~~ +a .a . a . ~ ~ a ~ '. j a ~ ~ ~ '~- . . .
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Inserting (13) and (14) into (12), we arrive at an expression for

{T (K, X, A'), T 6 (t , ')}purely in terms of T's.

Instead of writing down the a lengthy expression, which contains terms up to

quartic in T, we instead give results in two interesting limiting cases.

First, letting A = ' i= ' 0 and T(K, 0, 0) E TL (), we recover the

scattering data of the hyperbolic limit of the D-bar problem, and making

use of an identity easily derived from (6), find Poisson bracket relations

L L {L( L L{T( {TLI(c), T.21 ()} = 0 (15a)

{T 2( ), TLI(t)} = (21)j 2  (-TI )  6(K -T (15b)

L(K), TL,(T)} = + 27 6(KR- 2) e(kI-TI) T L2(T), (15c)
11 ~ ~ 12R 2 -1 1

as well as a number of other similar relations.

Alternatively, we can take the limit KI  + , KR +

T(<, x, ') - T+(O, '), where ® = KR + X, 0' = KR + X' are kept finite.

In this way, we recover the scattering data associated with a solution to
-2ieJi~. + i~j

(3a), j( ) -,ij(, e)e 1 j + analytic in the upper-half

0 plane, which is used in the Riemann-Hilbert approach to CIST. We find

(S + (0 S+ S' 1 ( , 0') + 0') ( J )
CL6Y6 2 Y8 C6® B

V,.

-5 dS + + a, ') S+ ('
aiy Oj 2Ti(a+iE) a ' (

+ f d a S+ (

+ 6 6 2iri(a+i)" yt ' ®-a) cB(® , (16)

N N
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where we've defined S+( , ' )= 2T J $( -6') + T ( e ,

Similarly, the limit X --- k - a. gives us the scattering

data associated with a solution analytic in the lower-half

plane.
L

From the Poisson bracket relations for the elements of TL

L L -'
given by (15), one can see that T ( K) and T21  (k1 z) are

related to the original conjugate variables, q and r, by a

canonical transformation. Furthermore, T1 1L ( X ) and T2 2L ( K )

are action variables of the theory, and it can be shown by using

the appropriate limit of the D-bar formalism that they can both

be expanded in powers of 1/h. , generating two infinite sets of

constants of the motion, including as members, the total momentum

and energy-Hamiltonian of the system. Thus the nonlinear

evolution equation, (1), (2), is exactly integrable, with proper

boundary conditions (D-bar).

The results, (16), for the Riemann-Hilbert formulation of the

inverse problem have a very different form and reduce in the l+ld

limit to well-known classical relations of the YB type. This

leads us to search for analogous quantum commutation relations.

We have been able, in fact, to calculate such relations for an

operator version of DSl with ordering taken to be as it appears

in (l)-(3). (Note that we do not treat the normal-ordered case.)

If we replace the canonical Poisson bracket relations for q and r

by their corresponding canonical equal-time commutation .

relations, we can modify our calculation slightly, now taking

.-.

S°



care to preserve correct operator ordering throughout, and derive

commutation relations for elements of S+ (or similarly for S ).

We find generalized Yang-Baxter commutation relations for S+'

given by (16), with IS +  + replaced by (S+ ,S+  on the

left-hand side of the equation.

In the quantum case as well as the classical case, it is not

obvious how to identify the generators of conserved quantities in

terms of T and T- However, T + and T are related to TL via

integral equations, and the argument used in the D-bar approach
L L

to show that TIL and T are time-independent and can be

expanded in powers of i/I , can Plso be made for the operator

version of the problem.

Quantum NLS is a l~id nonrelativistic theory for

complex-scalar bosons with a four-field interaction, or

equivalently, rewritten in first-quantized form, it describes a

system of bosons interacting via a two-body delta-function

potential. The exact energy spectrum can be calculated by use of

Bethe's Ansatz, and this fact is intimately connected to the

existence of a corresponding YB algebra9  In a sense, quantum

NLS serves as a paradigm for other integrable quantum field

theories in 1+1 d, such as the Thirring model. We believe that

the same will be true for its 2+ld generalization,

Davey-Stewartson, and that the generalized YB relations will be

useful in developing a generalization of Bethes Ansatz to extract

the physical energy spectrum of such models, and also exact

Za



S-matrices.
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