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Davey-Stewartson I - A Quantum 2+1 Dimensional Integrable System

C. L. Schultz and M. J. Ablowitz
Y Department of Mathematics and Computer Science
Clarkson University

Potsdam, NY 13676

and

g D. Bar Yaacov
Department of Mathematics
Vassar College
Poughkeepsie, NY 12601
~
Davey-Stewartson I is a nonlinear evolution equation
originally derived in the context of multidimensional weakly
nonlinear water waves. It has recently been exactly solved by
; the classical inverse scattering method for localized
potentials, and also possesses nonlocal soliton solutions.\ we
have calculated Poisson bracket relations for elements of the
scattering matrix , as well as corresponding quantum commutation

| relations. Commutation relations are found that are a 2+1d

generalization of a Yang-Baxter algebra.
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Exactly solvable systems have played a significant role in our !
understanding of nonperturbative phenomena in physics. Many th
quantum field theories in l+l-dimensions have been found to be fﬁ
integrable, enabling the calculation of exact S-matrices and g
physical spectra. The Ising model and other exactly solvable E&A
models of 2-dimensional statistical mechanics have helped to E;
provide a basis for modern scaling theory. Moreover, some of the i”
more interesting mathematics occurring in gquantum string theories, sr
incuding loop spaces and Kac-Moody-Virasoro algebras, also appear %f
in integrable systems.‘ :’
Associated with every known integrable gquantum system in 2 ;Ei
dimensions (or equivalently 1 space + 1 time dimension) is a és
solution of the so-called Yang-Baxter(YB) equationsl'2 , and the E_
existence of a corresponding "Yang-Baxter algebra". The YB E;
equations arise in various contexts, and have come to be regarded E;
JCa

as the criterion for exact quantum integrability.

oy

2y

It is certainly of interest to extend the study of gquantum

s 8 v
P A )
)

integrability to higher dimensions. Progress was made in this

")
Ay
AN
direction when Zamolodchikov considered the scattering of !R
-
o*
v
"stralght strings" in a plane, and wrote down a 3d generalization U
J
N
of the YB equations, called the tetrahedran equations, as well as {f
M
a conjectured solution3. Baxter was able to verify this solution g 5
~
‘ g
and exactly calculate the free energy of an equivalent classical ;% tf
(9%
statistical mechanical model?. However, the physical ._.'1'- :-;
A\
interpretation of the Zamolodchikov-Baxter solution is somewhat -
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problematic, and the tetrahedran equations are so complex that

little progress has been made in finding other solutions.

An alternative approach to searching for new guantum

integrable systems in higher dimensions is to exploit our

knowledge of existing integrable classical systems. There now

> a_= 2

exist a number of nonlinear evolution equations in (2+1)d which

are solvable5 by the classical inverse scattering transform

D R

(CIST)G. According to our experience in 1+1d, each of these :

classical systems should have a corresponding gquantum analog

which is exactly integrable. In this letter we consider the

gquantum analog of such a classical system, known as

Davey-Stewartson.

The Davey-Stewertson(DS)7 equation is a nonlinear partial

differential equation in 2+1d, originally formulated as a model

KA s SR L S Y S P

5 to describe the evolution of multi-dimensional weakly nonlinear

.,

water waves. Depending on the choice of the parameters in the

5558

equation, it admits two types of soliton solutions, localized

lump-like solitons and nonlocalized straight line-like solitons.

Classically, the asymptoptlic scattering of the lump solitons is

trivial, but the line solitons experience a nontrivial phase

shift. For our purposes DS is an obvious choice because it is

XA

one of the simplist of the known higher dimensional integrable

-'//f"

classical systems. It reduces in the 1+1d limit to the

well-known nonlinear Schrodinger (NLS) system, whose gquantum

X4

version, the delta-functjion gas model8 , or gquantum NLS model9 ,
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?
is one of the best understood of the gquantum integqrable systems.

)

i We have calculated various classical Poisson bracket relations

; between elements of the scattering matrix of the underlying
linear problem for DSI, enabling us to explicitly identify the

2 classical action-angle variables. We have also calculated
certain corresponding quantum commutation relations and find them

. to be a 2+1d generalization of a Yang-Baxter algebra.
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We first discuss the classical case. We will be concerned with the

hyperbolic version of the DS equation, a non-linear partial differential

equation for a complex-valued function q = q(x,y,t),

2 2
. 3Q 1,9 3 . .
i 2= "2z pla A - ey, (1)
y
2 o3y =13, 3
where (ax ay)Al 2 (ax ¥ ay)(qr),
Dy 3y =13 _ 3
(5% * 3582 = 2l - ) ra), (2)
with r = :q* (g* denoting the complex conjugate of q).

This time evolution equation for q can be generated by a non-local
Hamiltonian (which will depend on the choice made for A1 and AZ) via the
Hamiltonian formulation of classical mechanics, where g and r are the
conjugate variables.

As is the case for all nonlinear PDE's solvable by the CIST, (1) appears
as the compatibility condition for two underlying linear equations,

2y =02y 0u (3a)

3X 3y

j
3% v = Ay +iQ —iw + iJ 2 , (3b)
0 q) ( 0 4
were 0+ (2§ 1) ®
i
A s(q, +q,)
A= ! e (5)
%% (rx_ry) Ay
and v = p(x,y,t) 1is a 2x2 solution matrix.

The first of these equations, (3a), can be viewed simply as a linear
scattering problem in which q plays the role of the potential. (3a)
for suitable choice of boundary conditions, can De rewritten as a system
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of linear integral equations,

. ) 2i(<R+x)Jjgj L L .
INCHPRIVIEE AR o [ ae dhjtemen Qe (e <),
where &y = (x+y) and £y = (x-y) with ¢ denoting the coordinate pair (51, 52),
kK = xp * ixl is a complex parameter, A is a real parameter, the indices 1,
can each take on values 1 or 2 (where we use the notation 1 z 2 and 2 = 1,)

and all integrations are over infinite space. Also, for convenience of
notation we use ¥y (&, <» A, t) = vii(E kA, t)ei(‘R+*)2Jjt and we shall
suppress the argument, t.

We choose the Greens function

L _ .
[ da 21(2$J+2)J151
= | 5re (3(£1+52) o(-d;2) - 9{-€,-8,) e(Jil)) (7)
. - R ] R A
with i T %ij + Nij’ “ij < + J].Jj(fR--cl)l and <1¥j =«
L . . .
G (¢, x) is obtained by taking the appropriate limit of the Greens function

of the more general D-bar prob1em.lo

We also will find it useful to define a solution, 7, of an adjoint linear

problem,
2iR e 2
Lo, f vy = s e KRR e oS et e a0, (506, (8 -
ik Tk ik J) g P TORNAT SR
(8)
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Of fundamental interest in both the classical and the quantum problem is
the “scattering matrix" or the "scattering data" of (6), which we define to be

221 (2R +a1)

€
Tij(n, Ay A') = Jf dge " '

Qe Be, x, Ay - (9)

For certain choices of the parameters «, » and A', T can be shown to have
a very simple time dependence, and is thus used in the CIST to "reconstruct"

the potential q(x,y,t) at arbitrary times, for appropriately given initial

conditions.,

We can calculate Poisson bracket relations between elements of T, where

we define canonical Poisscn brackets

We find, by use of the linear integral equations, (6) and (8), that

{TGB(.(’ ‘A) x')’ TYé(T’ Wy U')}
1 JJ d¢ CGG(E’ Kasn X') Vr’ae(gy Ky )‘) CYS(E’ T56, Ul) waé(ﬁ, Ty U) (11)
. 2 5 - \
The solution ¢ and its adjoint ¢ satisfy kil E Lo (B xpge 2

a’k\]({-y Ty U) = 0.
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E .
v This identity can be used to rewrite the integrand appearing in (11) !
as follows: .
; 3
\ {TQB(K’ X’ \‘ )’ T'YS(T‘ Ua H ) = ;
x
) ) A ) h
< o~ J de, J dey o(d, (g -6, )) o (e, €55 xyge A1) U (60, €3, <y ) 1
: lf-z +» o
: - RN
LYG(Ea’ 65, Taé’ L ) Waé(ia, Eav T, U) "
T o
2 4
. > 9 1 3 "
| ‘I, e, Talen g 2D Bggles 1 u) :
: Jiti T ‘
; .
b, - .- - t
: [ des t5les g5 05050 60 0) 12) 3
. IS N
[ In order to evaluate (12) it is necessary to find asymptotic expressions ;
D .n
N for v and . However, these can be found easily by using (6) and (8) and .
noting that it is possible to write GL in the two alternative forms (7b) or 3
2 (7¢). Then &
. 2i{x *r)Jd € b
- R k>k '
: LIT.Q beyles <0 ) = 8 je
. k } R -
- i, .+2)d ¢ ;
- de - k k™ k g
: [ B oy 0e M Teglen b 1) (13 3
and i
~ - -a(;kRJ*’X‘)JkEk t
. l”n C]k(E’KkJ’ A )= 51ke :
CE»:m %
R N
, “2i(e +0)d €
- g_f; - R f i kJ k k \
7 Tl el ne (13)
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‘a Inserting (13) and (14) into (12), we arrive at an expression for

: {Tae(" A, A, TYG(T’ us u')}purely in terms of T's.

f Instead of writing down the a lengthy expression, which contains terms up to

¢

‘$ quartic in T, we instead give results in two interesting limiting cases.

‘ First, letting A = A" = u = yu' = 0 and T(x, 0, 0) = TL(K), we recover the

- scattering data of the hyperbolic limit of the D-bar problem, and making

use of an identity easily derived from (6), find Poisson bracket relations
L L _ L L L L
_ (T1p0a)s Tr () = AT (e) Tho()) = (T k), Toy{0)} =0 (15a)
' (T4 (e), TE ()1 = (2m)% 8(xptrgmry-t;) 6(xy-1;) (15b)
12'°7 21 RR I I I 1
s L L ) i -R L
2 (Tt Tplelh = [—R_ #2n slegrryp) 8leprpf Trpleh, (15¢)
Ko=Tyn=i€

S | "R 12

? as well as a number of other similar relations.

; Alternatively, we can take the lTimit Ky > + o, g ” + ®,
y T(x, X, A') = T+(®, @'), where 0 = xp *+ A, o' = <o * A are kept finite.

: In this way, we recover the scattering data associated with a solution to

; , -2ied € + iOZth
- (3a), uij(i, e) = wij(g’ oe J analytic in the upper-half
> o plane, which is used in the Riemann-Hilbert approach to CIST. We find
e
v + + 1t +
-ﬁ {SGB(O, 2 ), )Y(S (¢’ ¢ )} = ESY8(¢’ C] ) Sa(s(@, ¢ ) . (JB - Ja)

’

- dO + { \ + - \

: oy u | ZTLGETT Sag'tor 010 Sjglocon )
" do + v + [
2 + S JB j' lean) SYG(Q, o' ~0) 538(6, o' +c), (16)
/
.l
o
Jﬁbit}”}k}f}2}:}:}:};}:}:;:2:};};};g;}:;:};;jﬁijdjdb;;gbgjﬁl435»;;f$"¢3:;:?;*:};“:‘;*r“:?:"f“f“a“,“»}:;f*f*.5i;:;:
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where we've defined S*(9 ,68')=2nJ §(8-68") + TV (8,0, m
Py
Similarly, the limit X; 2 -~a , Ka->+% gives us the scattering :'"
data associated with a solution analytic in the lower-half ::
P
plane.

From the Poisson bracket relations for the elements of 'I‘L ’ fﬂ
given by (15), one can see that leL (K) and TZlL (K.) are N
related to the original conjugate variables, g and r, by a i'
canonical transformation. Furthermore, TllL (K ) and T22L (K) C.
are action variables of the theory, and it can be shown by using §‘

¥,
Y.

the appropriate limit of the D-bar formalism that they can both

R

be expanded in powers of 1/kq » 9enerating two infinite sets of

]
F_oa

constants of the motion, including as members, the total momentum bﬁ
and energy-Hamiltonian of the system. Thus the nonlinear :A
Y

evolution equation, (1), (2), is exactly integrable, with proper EE
boundary conditions (D-bar). E:
The results, (16), for the Riemann-Hilbert formulation of the ft
inverse problem have a very different form and reduce in the 1+1d E:
limit to well-known classical relations of the YB type. This ?_
leads us to search for analogous quantum commutation relations. ;:
We have been able, in fact, to calculate such relations for an ésf
operator version of DSI with ordering taken to be as it appears ;E(
in (1)-(3). (Note that we do not treat the normal-ordered case.) i:
If we replace the canonical Poisson bracket relations for q and r Eﬁ
by their corresponding canonical equal-time commutation 31
"

relations, we can modify our calculation slightly, now taking

"
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care to preserve correct operator ordering throughout, and derive

+ : -
commutation relations for elements of S (or similarly for s .

o -

We find generalized Yang-Baxter commutation relations for st
+

given by (16), with {s* ,s* } replaced by (s* ,s" 1 on the

left-hand side of the equation.

In the gquantum case as well as the classical case, it is not

L PP L

obvious how to identify the generators of conserved quantities in

- terms of T' and T . However, T' and T are related to T via

integral equations, and the argument used in the D-bar approach

. L L
to show that Tll and T22

expanded in powers of l/Ka , can 2lso be made for the operator

are time-independent and can be

} version of the problem.
Quantum NLS is a 1+1d nonrelativistic theory for

. complex-scalar bosons with a four-field interaction, or
equivalently, rewritten in first-quantized form, it describes a
system of bosons interacting via a two-body delta-function
g potential. The exact energy spectrum can be calculated by use of
X Bethe's Ansatz, and this fact is intimately connected to the
existence of a corresponding YB algebrag' In a8 sense, guantum
NLS serves as a paradigm for other integrable quantum field
theories in 1+1 d, such as the Thirring model. We believe that
the same will be true for its 2+1d generalization,
E Davey-Stewartson, and that the generalized YB relations will be

useful in developing a generalization of Bethes Ansatz to extract

the physical energy spectrum of such models, and also exact

z o
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