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Abstract

: We discuss methods for solving the unconstrained optimization problem on parallel ¢omputers,
when the number of variables is sufficiently small that quasi-Newton methods can be used. We concen-

trate mainly, but not exclusively, on problems where function evaluation is expensive. First we discuss

wavs to parallelize both the function cvaluation costs and the linear algebra calculations in the standard
4 00 D
scquential secant method, the BFGS method. Then we-discuss new methods that are appropriate when

(RN . . .
LN there are enough processors to evaluate the function, gradient, and part but not all of the Hessian at cach
~TL -
N K i
LA . . . oy .. . .
Lo itcration.  We dtvrtop new algorithms that utilize this information and analyze their convergence proper-
N
‘\:—., . . .
o tics. We present computational experiments showing that they are superior to parallelization of either the
o
. e BEGS mcthod or Newton'’s method under our assumptions on the number of precessors and cost of func-
:-_,.ﬂ non cvaluation. Finully we discuss wayvs to effectively utilize the gradient values at unsuccessful trial
NN pors that are available in our parallel methods and also in some scquential sofiware packages.
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1. Introduction

This paper discusses parallel quasi-Newton methods for solving the unconstrained optimization prob-

lem,

mixnirg.izef:R"—bR . (1.1)
Our main emphasis is on new methods that effectively utilize multiple processors to perform multiple func-
tion and derivative evaluations simultaneously. We predominantly use these multiple function evaluations
to calculate or approximate derivative values; this results in new methods that have different derivative
information available than in standard sequential algorithms. Both the theoretical properties and the com-

putational performance of these new methods are discussed. In addition, we consider the parallelization of

the main linear algebra costs of such methods.

The unconstrained optimization problem (1.1) arises in many applications in science, engineering,
and other areas, and is often very expensive to solve. Frequently this because the evaluation of f (x) itself
is expensive, often requiring many seconds or minutes on modern computers. Problems with expensive
function evaluations are our main concern in this paper. It is commonly the case in such problems that ana-

lytic derivatives are not available; we concern oursclves mainly, but not exclusively with this case.

Duc to the expense of many unconstrained optimization problems, there is ample incentive for trying
10 solve them on parallel computers. If the leading expensc is the evaluation of f (x) and its derivatives,
then one possibility is simply to parallelize each of these evaluations. The effectiveness of this approach
depends on how readily a parallel routine for f (x) (and its derivatives) is available, and how fully it paral-
lelizes the evaluation. In any case, this approach usually is outside the domain of the optimization algo-
rithm designer. In this paper, we concentrate on the opposing case when the evaluation of f (x) is assumed
10 be sequential, and parallelism is introduced in the optimization algorithm itself. This approach will be
appropriaic whenever a good parallel implementation of f (x) is not available, or when the remaining costs
of the optimization algorithm (such as linear algebra) are significant. In addition, on a massively parallc!

machine our approach might effectively be combined with parallel evaluation f (x) in a multilevel parallcl

scheme.
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Since we are interested in performing multiple evaluations of an arbitrary function f (x), or its
derivatives, concurrently, our parallel methods require a MIMD computer. This is a computer which can
perform different calculations on different data at the same time. By contrast, an SIMD computer, which
performs the same calculation on different data at the same time, will not be appropriate in general, since

each evaluation of a complex function will in general require a different sequence of arithmetic operations.

Almost any kind of MIMD computer is likely to appropriate for the algorithms discussed herein.
This includes both shared memory multiprocessors, or distributed memory multiprocessors such as hyper-
cubes or networks of computers. The reason is that the granularity of the parallel operations, one or more
evalpations of f(x), will overwhelm any communication or synchronization overhead cost once f (x)
requires even a moderate number of floating point operations. This issuc is discussed in more detail in Sce-
tion 2.2. When n is not very large, the parallclization of the lincar algebra that we discuss may be more
appropniate for shared-memory multiprocessor than for distributed memory muluprocessors; this is dis-

cussed further in Section 2.3.

The methods discussed in this paper are all in the general class of quasi-Newton methods. These
include secant methods, and finite difference Newton methods. On sequential computers, secant methods
arc generally used 1o solve (1.1) when function evaluation is expensive, the analytic Hessian V2f (x) is
unavailable, and n is not oo large. They use an approximation to the Hessian matrix tha: is formed from
the gradient values of the iteratcs, and require n2 storage and O (n?) arithmelic operations per iteration (sec
e.g. Flewher (1980], Gill, Murray, Wnght [1981], Dennis & Schnabel [1983]). They have been tradition-
ally used for problems with up to about 100 variables, although with the greater storage and speed of paral-
lel computers, they may become useful for larger dimensional problems. The finite difference Newton's
method instead forms a finite difference approximation to the Hessian from function or gradient values, and
requircs n? storage and O (n?) arithmetic operations per ieration. It is generally used when the analylic

Hessian is unavailable and function evaluanon is inexpensive, for problems of up 1o SO to 100 variables.

The remainder of this paper is concermned with constructing quasi-Newton methods that are appropri-
ate for parallcl computers. In Section 2 we discuss the parallelization of the standard sequential secant
method for unconstrained optimizaton, the BFGS method. This topic could be considered somew hat

uncxciting since no new optimization algorithm is involved. But it lcads to effective use of paralic!
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N processors, and may be all that is needed in many situations. Furthermore, it leads to the consideration of

‘-.: two important techniques. The first is the speculative evaluation of function values introduced by Schnabel

5 n [1987], which is also the basis for the new optimization algorithms discussed in Sections 3 and 4. The

f second is the effective parallelization of linear algebra calculations. We compare various methods for

:: organizing these calculations, including the method of Han [1986] (derived in a different way) and discuss
:‘ | which method is best in which MIMD environments. In this section we also summarize the results of some

: EE simple experiments with our parallel BFGS algorithm on a Sequent shared memory multiprocessor.

:i The main contributions of this paper are contained in Section 3. There we further develop a class of
- new methods, introduced in Byrd, Schnabel, and Shultz [1987], that evaluate the function, gradient, and

; ::‘_':_: part of the finite difference Hessian at each itcration. These are appropriate in two situations, both of prac-

_ ::z tical interest: when the function and analytic gradient are naturally computed together on one processor and
s
;" the number of processors, p, is between 2 and n, or when the gradient is approximated by finite differences
'_:',"‘; and 2n+1<p<(n2+3n)/2. We extend the devclopment of the methods presented in Byrd, Schnabel, and

'\; Shultz [1987], and present both convergence analysis and computational results for what appears to the

"::" best of our new methods.

§ ‘j The methods discussed in Section 3 fall in between the BFGS method and a finite difference

..';; Newton's method. An important aspect of these methods is that, as we explain in Section 3, they are not

’ :2: generally expected to result in a speedup of p over the BFGS method on p processors. This implies that on
_ a sequential computer, the new methods will generally be inferior to the BFGS in terms of total function

€

: f-'\: and derivative evaluations requircd. For this reason, this class of methods has apparently not been con-

E-.:. sidered prior to the start of our work on this subject. But in many practical situations on parallel comput-
,{_- ers, the new methods will be shown to be superior, in terms of time required, to either the parallelization of
:;E the BFGS discussed in Section 2 or a similar parallelization of a finite difference Newton's method. So
:E: thesc new methods are relevant as long as overall speed, and not just throughput measured in problems
.A solved per processor, is of interest.

o)

. ’ In Section 4 we discuss how a different, more minor improvement can be made to the paralle! BFGS
:.'::‘ method of Section 2. It involves utilizing gradient values at failed trial points, which are available in the
-;: parallel algorithm, to reduce the otal number of iterations required by the algorithm. Computational
"o
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! N results show that some savings are possible. In some sequential codes, this gradient information is also
{d WY
,'\ available and the same savings are possible. Finally, Section 5 summarizes our results and discusses
{
LA interesting directions for future research,
N ,_'
§ ‘:I'-
A
¢
o 2. Parallelizing the Standard BFGS Metbod
ol
&
oy 2.1. The Sequential BEGS Method
)
N Perhaps the most commonly used method for solving multivariate unconstrained optimization prob-
o
4':-‘_. lems is the BFGS method. It is intended for problems where the number of variables is small enough that
' .';:. the cost of sloring an nxn matrix, and performing O (n?) anithmelic operations per iteration, is acceptablc;
M otherwise conjugate direction methods (see e.g. Gill, Murray, and Wright [1981] or Dennis and Schnabcl
o
*-:\ {1987]) are used. Generally the largest n for which the BFGS method is applied has been around 100, but
_,\ this limit may rise with the availability of faster (sequential or parallel) computers with larger memorics.
_ . The BFGS method is most appropriatc when, in addition, f (x) 1s expensive and second derivatives are
::,-‘:' unavailable. Otherwise Newton’s method or a finite difference Newton’s method may be faster, although
L the BFGS is still often used in practice.
A
2 A high level description of a BFGS algorithm is given in Algorithm 2.1. This description hides many
'f‘_::':: details of the method, for example the calculations in the linc scarch. But it is sufficient to indicate the
e
S
:"-' important characteristics and costs of the method, which in tum motivate the parallel methods discussed in
5 the remainder of this paper. For a more detailed description of the BFGS algorithm, sec for example
AN
-t Dennis and Schnabel [1983].
LR
L~
. ;‘-';; There are two main categories of expense in the BFGS algorithm : function and derivative evalua-
e P
-’ tion, and linear algebra calculations. The function evaluations occur in the line search, where f s
"]
':,:'; evaluated at one or more trial points x,+Ayd, (with different values of A;), culminating in a successful
e
';,-: point that becomes x;.;. Computational expericnce has shown that hardly more should be required of the
o
Lo x", successful point than that it decrease the value of f . In this casc, the first trial pointis oft  ,uccessful, and
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::::
( ' Algorithm 2.1 -- BFGS Method for Unconstrained Optimization
"
»‘ Given xo, f(x0), go= Vf(xo) (or finite difference approximation), B, € R*** positive definite (¢.g.
[~ By=1
o o=1)
1 - At iteration k :
:,‘- { calculate search direction }
\ : solve Byd, =—g. for di { di is search direction }
‘! .
K : { line search )
- repeat
choose value of steplength A,
evaluate f (xx + Ardr) (and possibly Vf (xi + Aedy))
‘ until x, + Axd, is satisfactory next iterate
)
e
‘-' Xio1 = X + Apdi
~ evaluate g = Vf (xx + Axdy) (or finite difference approximation) if not already evaluated during
L. line search
-~ decide whether to stop ; if not :
-,
K- - { update Hessian approximation )
-::f Sk IS Xkel = Xk, Ya = £hel — B
o —gn _ BesisiBe  wd
{- . Bk*l = Bk —SW + —SY)‘T [ BFGS updale }
i _’t'
j:: rarcly arc more than two or three needed; an average of 1.2 - 1.5 trial points per iteration is typical for
many problems. Either during or after the line scarch, the gradient at the successful next iterate x4 also is
‘;- calculated. (Very rarely, a gradient value may be calculated at an unsuccessful trial point during the line
L/ .ﬂ_
< search.)
-,
-
; Thus each iteration of the BFGS method generally consists of one or more function evaluations fol-
::: lowed by one gradient calculation at the last point where the function was evaluated. Often when f (x) 1s
5
:-: expensive to evaluate, no procedure is available to calculate the gradient analytically. In this case, the gra-
.l\'
A dicnt at any point X is approximated by the finite difference formula
e
s =
~: Vi) S g = f(X+u.::) f(x) @.1)
,',.. where e, is the i™ unit vector and i, usually is set o macheps* |x, |. This approximation requires n
-

evaluations of f(x) in addition 10 f (x). So when finite diffcrence gradients arc uscd, each ieration of the
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BFGS method usually requires n+1 or n+2 evaluations of f (x).

Now we return to the linear algebra costs of the BFGS method. There are two main linear algebra
calculations in Algorithm 2.1, the calculation of the step direction d;, and the calculation of the new Hes-
sian approximation B,,;. The calculation of B,,; involves a rank two update to B, that clearly requires a
small multiple of n2 operations. The calculation of d; appears to require the solution of a system of linear
equations, and hence O (n®) operations, at each iteration, but by either updating a factorization of B, or by

directly updating the inverses of By, this cost can be reduced to a small multiple of n2 operations. These

techniques as well as their consequences for parallel computation are discussed in Section 2.3. It will be

secn that the entire linear algebra cost of the BFGS method can be limited to 222 + O (n) multiplications,

.
v
R .. . R . .
T and the same number of additions and subtractions, per iteration. An imporiant feature of the BFGS
Al
]
\;‘{ method is that each Hessian approximation B, is symmetric and positive definite, so that each direction d;
b 'P\'! . . .
P is guarantecd to be a descent direction.
o n
FAE
T Since the lincar algebra costs of the BFGS method are so small, it is easy for funcuon and derivative
"_-:.:’,- evaluation to be the dominant cost. For example, if gradients are being approximated by finite differences
2
o
{ and if each functuon evaluation requires at least 20n multiplications and additions, then function and
Ni’ derivative evaluation will account for at least 90% of the total cost of the method on a sequential computer.
LA
A
"‘:::' (We are disregarding some other overhead costs, such as operating system costs, but for even moderate n
Wl . ) _

Y our estimates are accurate.) In fact many real problems we have encountered have function evaluations that
b are far more expensive than this. Therefore in this paper we concentrate on parallel approaches that reduce
:-.'f, the cost of function and derivative evaluation by calculating multiple function or derivative values con-
A
-’;.,',-: currently. Section 2.2 discusses concurrent function and derivative evaluation in the context of the stan-

5 dard BFGS method, while Sections 3 and 4 discuss new optimization methods that utilize concurrent func-
A
A
) . L .
A tion and derivative evaluation.
o
N o . . . o
.r:.f It is still necessary to consider parallelization of the lincar algebra calculations in the BFGS method,
._;': for several reasons. First, if these calculation are performed sequentially, they may become a bottlencck on
-
a parallel computer. Second, there are some problems where n is rather large and function evaluation
AN
e . L. . L
-.-;_\ rather cheap so that the lincar algebra costs may be significant. We consider the parallelization of the
o)
,‘-s lincar algebra calculations of the BFGS method in Section 2.3. While we don't explicitly consider the
"‘ ’
‘ ~$
-
o
e N
o
S
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:f- parallelization of the linear algebra calculations of our new methods of Sections 3 and 4, the techniques
o
. '-' discussed in Section 2.2 are directly applicable to these new methods as well.
a5
sy
s
\..-l
-~ 2.2 Concurrent Function Evaluation in the Standard BFGS Method
-
g Ikl
,‘\-.- In most problems where f(x) is expensive to evaluate, the gradient is not available analytically.
S
:.__': Instead it is calculated by the finite difference approximation (2.1). We restrict ourselves to this case in this
-:_‘l
W section. The new approaches of Section 3 will be seen to apply both to problems where Vf (x) is calcu-
NS lated analytcally and where it is approximated by finite differences.
T
Al The most obvious source of parallelism in an algorithm that uses finite difference gradients is to per-
SN
-:";: form the n extra evaluations of f (x) requircd by (2.1) concurrently. If p processors are available, this
K- 7. requires ['n/;ﬂ concwrrent function evaluation steps, steps where each processor performs at most one
~’_ function evaluation. The drawback to this approach is that during the evaluation of f (x) in the line search,

2
PR

. l.
[

the remaining p-1 processors are idle. If p «n, this is unimpontant since each finite difference gradicnt

Y

0
» >

! " requires many concurrent function evaluation steps while each function evaluation requires just onc or two,
L N

Ol . . . , .
s so this simple approach gives good speedups for expensive f. If p=n, however, then the maximum

speedup that can be obtained on problems with expensive function evaluation from parallelizing only the

»

o

finite difference gradient calculation is about n /2, or at most half of optimal. This is because both function

- I'
» & &
- 'l " 'C‘

and gradicnt evaluations require onc concurrent function evaluation step, n—1 processors are idle during

oS
L
s

‘-_.'; cach function evaluation, and there arc at least as many function evaluations as gradient evaluations. A
N
"' ) more precise analysis is given below. If p >n, p—n processors are not utilized by this approach.
vy
yo A~ improvement on the above strategy was suggested by Schnabel [1987]. It simply is, whilc one
o
:r'_, processor is evaluating f (xa+A,d,) during the line search, to utilize the remaining p-1 processors 0
o
.‘f evaluate max{p-1,} components of Vf (xy+Aedy). We refer to this as a speculative evaluation of (part
"" of) the finite difference gradient. If x,+A, d, is accepted as the next iterate, as it is most of the time, then
‘ ;. this gradient information is required by Algorithm 2.1 and only n+1-p function evaluations remain for the
1 --
’- . . N .
6,'-' finite difference gradient, none if p2n+1. If xy +A, dx is not accepted. then this gradient information is not
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used by Algorithm 2.1, but nothing has been lost in comparison to the approach described in the previous

paragraph. Furthermore we show in Section 4 how to make some good use of the gradient information at

failed trial points by changing the optimization algorithm.

If the average number of trial points per iteration in the line search is ¢, then the strategy of con-

current, speculative finite difference gradient evaluation requires

[_";_’] +8 (2.2)

concurrent function evaluation steps per iteration, as opposcd 10 n+1+9 steps for the sequential method,

and

{%} +1+48 (2.3
for the first parallel method that parallelizes the finite difference gradient evaluation only. Thus when func-
tion evaluation is the dominant cost, the new mcthod will make nearly optimal utilization of n+1 or fewer
processors as long as § <« 1. (Recall that this is usually the case in practice.) The main cases which are not
addressed satisfactorily by this approach are situations when p is greater than n+1, or when the gradient is

calculated analytically. These are addressed in Section 3.

We have run experiments on a Scquent shared memory multiprocessor to show that the speedups
predicated by the above discussion are achieved in practice. We compared a parallel BFGS method utiliz-
ing speculative, concurrent finite difference gradient evaluations and the parallel linear algebra discussed in
Section 2.3 to a sequential BFGS algorithm. We chose 4 standard test problems with n=40, the extcnded
versions of Rosenbrock’s function, Powell’s singular function, Broyden's tridiagonal function, and the
variably dimensioned function (see Moré, Garbow, and Hillstrom [1981]), with one modification : we
introduced a meaningless loop into each function evaluation so that the total cost of the function evaluation
would be about 20n flops, meaning that function evaluation would account for about 90% of the cost of the
entirc optimization algorithm. On the 6 processors available to us, the timed speedups ranged from 5.7 10
6.0. Thesc numbers were in close agreement to those predicted by equation (2.2), and underscore the point
that if p <n, function evaluation is expensive, and finite difference gradicnts are used, then it is easy to

parallelize the BFGS algorithm almost fully.
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Finally, we note a different, related approach that has been suggested by several authors (Dixon

[1981), Dixon and Patel [1982], Patel [1982), Lootsma [1984], van Laarhoven [1985])) for utilizing multi-
ple processors during the line search in the BFGS (or Newton's) method. It is to utilize the additional p-1
processors that are available while f (xe+Aedy ) is being evaluated to evaluate f (x) at other trial points, in
the direction dx from x;, and perhaps in other directions as well. As opposed to the strategies discussed
above, this strategy changes the optimization algorithm and, hopefully, sometimes results in a better next

iterate and thus a smaller total number of iterations being needed to solve the optimization problem.

An interesting question is whether this approach is superior to the approach discussed above, namely
using the extra processors to perform a speculative evaluation of part of the gradient during the line search.
Note that the cost per iteration of the "extra line search points” (ELSP) approach, assuming that finite dif-
ferent gradients are evaluated concurrenty, is given by (2.3). Thus from (2.2), we see for example that if
p2n~1and if & = 8zrgs 2 0 for the BFGS method and 8=0 {the best case) for the ELSP approach, then the
ELSP approach is superior o the speculative gradient method if and only if it requires no more than
i1-8srge) 2 times as many iterations as the BFGS mcthod. Thus, if 8ggs is close o 0, the ELSP method
would have to reduce the iterauon count of the BFGS by almost 50% 10 be superior to it. We doubt that this
reducuion is likely in general, but would be interested in computatonal results that address this issue. We
note finally that if a method using the ELSP approach could reduce the iteration count of the BFGS by a
factor of 2 by always considering n points in the linc search, then this would in fact be a better sequential

alyonithm than the standard BFGS as well.

2.3 Parallelizing the Linear Algebra Calculations in the BFGS Method

Aside from function and derivative evaluations, the dominant costs in the BFGS method are the rank
two update of B, and the calculation of the scarch direction d, that are performed at each iteration. As
mentoned before, these require at least O (n?) arithmetic operations. All the other calculations in the algo-

rithm require at most O (n) operations.
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It is most convenient to think of the update and search direction calculation as being a pair performed
in that order, i.e. update B, 1o B,.1, then calculate dy.1. There are several different ways to organize these
calculations. First, either the scquence of matrices {B, ) or the sequence of inverses of these matrices
{Bi') may be kept. Sequencing B! is reasonable because, from the Sherman-Morrison-Woodbury for-
mula, if B, is a rank two update of B,, then By} is a rank two update of By}, An advantage of sequenc-

ing the inverses is that the calculation of the search directions dy becomes simple and cheap.

In addition, no mauer whether B, or its inverse is kept, the approximation can be kept either as the
symmetric and positive definite matrix B, or B!, or as a factorization of this matrix. If the factorization is
kept then 1t can be updated directly into the factorization of the next approximation. The general approach
of updating factorizations was inrroduced by Gill, Golub, Murray, and Saunders {1974), while the special

form used for the BFGS was introduced by Goldfarb [1976).

These approaches 1o the linear algebra calculations of the BFGS method are summarized in Table
2.1. For each approach, Table 2.1 shows the basic operations that are involved, and their cost in multipli-
catons. (The number of additions and subtractions is the same as the number of multiplications, or nearly
so, in each casc.) The upper-left variant is the most straightforward and includes a Cholesky factorization
at cach iteration; it is the only variant that requires O (n?) operations. The upper-right variant is the
sequencing of Chaolesky factorizations as derived by Goldfarb [1976]. It involves a rank one update to the
Cholesky factor Ly of By followed by a sequence of Given’s rotations that reduce this updated matrix /..
o a new lower tnangular matrix L; ., that is the Cholesky factor of B, . (see Dennis and Schnabel [1983]
for detail). A straightforward implementation requires 6n2 operations but Goldfarb showed that this can

be reduced to 2.5a72 by storing some additional vectors.
Y £

The lower-left variant results from the application of the inverse form of the BFGS update,

_ 1o Ge=BayaysE 4 s e-By)T (=B 'y ya sasé .
1~ p-l _ 5
Bl = Bit+ )’ZJA U[St )7 (2.4

followed by the multiplication of Bty by ges) 1o calculate di,y. If the calculations are organized as fol-

lows

= Bl_o"*. B4

2 = .\'t-l+dk

S8V,
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~ N

-
'( o) Table 2.1 -- Four Possibie Implementations of the Linear Algebra Calculations :
Do
it

oy Bysy = B, + rank-two-matrix

bR solve By, dist = —gie1 fOr diss

23
‘]
! B

t . .

o Matrix Stored Unfactored Matrix Stored Factored

o

.-:::- (B stored, updated to By.1) (Ly lower triangular stored, for which B, =L, L7 .
ol updated 1o L, ,; lower triangular for which By, = L.y Li.:)
) Direct

- (By) By = B, + rank-two Jis1 =L, + rank-one
[ Update Cholesky factor By, Jes1 = Q@+t Lisy by Givens rotations

»';:-\ ; 2 triangular solves 10 find d 1 2 triangular solves 1o find d; 1

- 3

¥ %— + 2n? 6n? (2.5n9

o

s (Bi! stored, updated to Bi,) (M, stored for which By = My M{
':\. updatcd 0 Mgﬂ for which B[Jl = Ahdﬂ{[,: )
[ Inverse
( (B Bl = Byt + rank-two M., = My + rank-one

o Update Matrix-vector multiply 1o find di 4y 2 Matrix-vector multples to find d;.y

-;__.- 2n? 4n?

=

CE

e l. l.
et
W

Y=5"y  8=2Txn

LA
n".!".l".‘

z=z+%s‘ 2.5)

e

l.!

Bily =Bl + 258 + s 27

> .)',‘,l

y
f

18

Y=58gest L 8= 2T gan

dgq =!+7Y2 +5.\'¢

then only one matrix vector multiplication, and a rank-two update of a symmetric matrix, are required, each

.'-

-

nceding n? multiplications as long as only the lower (or upper) triangle of each B! is stored.

o/

The lower-right variant is 1o keep a factorization M, M7 of B;™!, and update M, by the rank-onc for-

@ 4%

mula for the BFGS update of the factorization of the inverse o the AM,.; for which M.oML, =B In

y
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~ this case there is no advantage in keeping the factors triangular since the cost of doing this would outweigh
:’ the advantage in calculating d+;. This implementation of the BFGS has received less attention than the
. others, although it has been discussed by several authors including Brodlie, Gourlay, and Greenstadt
o

:E: (1973], Davidon [1975], and Powell [1987]. Recently Han [1986] derived the same implementation of the
:;. BFGS lincar algebra from a rather different viewpoint.

_ ‘ In exact arithmetic, these four variants of the BFGS method produce identical iterates, and differ
‘ _: only in the number of operations required. In finite precision arithmetic, however, they may produce dif-
-:t: ferent iterates. Optimization folklore has long held that the unfactored inverse update may be less stable
: - than the factored direct update. Since the inverse updates appears more attractive for parallel computation
(sce below ), we decided o test this belicf experimentally. We inscrted each of the four variants of the
E- BFGS updaic described in Table 2.1 into the line scarch BFGS method in the UNCMIN package of Schna-
:: bel, Koontz, and Weiss [1985], and tested each on the test set of Moré, Garbow, and Hillstrom {1981}, The
': differences in performance were negligible, averaging no more than 1-2% overall with litle variation on
" specific problems. J. Nocedal [1987, private communication] has obtained similar results on a broader set
( of test problems that included some specifically designed to give the inverse variant difficulties. L. Grandi-

:: nctti [1978) reports similar results.

P AL
a A a s,

Thus we consider any of the variants in Table 2.1 as valid points of departure for the construction of

parallel BFGS mcthods. It is possible that the difficulty with the inverse updates may be greater for the

O RORERE:

A" N . . . . .
:_‘ DFP update, where there may be a larger tendency to produce numerically indcfinite inverse approxima-
R

" tons, and that this may have been the basis of the folklore about inverse updates that was then extended 1o
I. ,-

A include the BFGS. This possibility was pointed out 10 us by J. Moré [1987].
®
i . . . .

i Now we consider the implementation of the lincar algebra of the BFGS method on parallel comput-
s 4 .

o ers. The unfactored direct method remains least attractive altemative on parallel computers because of its
l"\-".

L high operation count, coupled with the fact that we will sce that some of the cheaper methods parallelize
9.

s excellently. The factored direct method also appears to be less attractive than the two inverse methods.
ot This is because any straightforward implementation of this approach requires a sequence of O (n) vector-

-

- vector operations, such as Given's rotations. This leads to a considerably higher arnount of synchroniza-
5 tion and communication than in the inverse methods, and also docs not lead dirccily to matrix-vector
::ff '
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operations, which often lead to more efficient utilization of parallel computers.

On the other hand, both of the inverse approaches seem to lend themselves excellently to implemen-
tation on cither shared or local memory multiprocessors. Both consist only of matrix-vector multiplications
and rank-one updates, which parallelize fully and can be implemented as block operations. On a shared
memory multiprocessor with p<n processors, we would expect the unfactored direct approach 1o require
time proportional 10 2r%/p, and the faciored inverse approach (o require time proportional 0 4n2p. Other
considerauons, such as caching, seem similar for the two approaches. It is possible that the rank one
update of a triangular matrix, required by the unfactored inverse approach, would not parallelize quite as

well as the other operations in conjunction with some caching policies.

On a local memory multiprocessor, it appears that, in order 10 avoid excessive communication, the
unfactored inverse approach would need to store and update the full matrix By (partitioned by rows)
rather than just the upper or lower triangle. This raises the total cost of the method to 3n? operations which
narrows the gap between it and the factored inverse approach. Again the arithmetic operations should
parallelize fully for both approaches. In addition, both approaches appear to require the same amount of
information to bc communicated per iteration, although the factored method seems to only require one syn-

chronization point whereas the unfactored method seems to require two.

From the above discussion, we would expect the unfactored inverse approach 1o be the best way o
implement the lincar algebra operations of the BFGS method on a shared memory multiprocessor. It would
also apjr o to be the best approach for a local memory multiprocessor, but it should be tested against the
factored inverse approach. On a slur~d memory muluprocessor, the synchronization costs are small and
the parallel BFGS should be efficient for almost any values ¢ n and p. For the parallelization of the
BFGS to be efficient oi. a local memory multiprocessor, the number of floaling point operauon.. j<r proces.
sor per iteration, about 3n2/p, must significantly exceed the cost of sending either one or two messages that

contain a total of about 3n floaung point numbers.

The paralle! BFGS code mentioned at the end of Section 2.2 uses a parallel version of the unfactored
inverse approach. To test how well all the linear algebra calculations are parallelized, we ran this code on
a Sequent shared memory muluprocessor on the cheapest possible objective function, f (x3 = x7x. Thus

the hincar algebra calculations are the dominant cost. We also parallclized most of the O in ) computations,

o
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EI although inner procucts were left sequential. We found that the speedup on 6 processors was only about
o 3.7 for n = 40, and 4.3 for n = 100. These results plus our results using fewer processors indicated that
2 "':'_’. approximately 12% of the code remained sequential for n = 40, while approximately 8% remained sequen-
i:; val when n = 100. This indicates the importance of parallelizing all the O (n) calculations, as well as the
h, S O (n?) calculations, in a parallel implementation of the BFGS method.

1
25
b
" :,'.:': 3. Parallel Methods That Use Part Of The Finite Difference Hessian
: .:.i 3.1 Approaches to Using Partial Hessian Information
i
\ ',:, We now consider a class of methods that use parallel processors to evaluate part, but not all, of the
! t, . finite difference Hessian matrix V2f (x) along with the function and gradient at each trial point. Our oricn-
v /.

,:-’,: Lation is towards problems where function and denvative evaluation is the dominant cost. As discussed
"’_.:: previously, this is the case for many practical problems.
b4
{ - The approaches that we discuss fall in between the BFGS method, which uses only the function and i
_:E gradient at each trial point, and Newton's method, which uscs the function, gradient, and Hessian. Implicit
E' in this statcment are two assumptions. First, that if we have enough processors to evaluate the function,

»

gradicnt, and Hessian in one concurrent function evaluation step, then we will do this and use a modemn

?: Newton's method based algorithm (sce e.g. Moré and Sorensen [1983]). Second, that if we do not have
E::-‘_ enough processors to do this, then we will probably not want to use extra concurrent function evaluation
;"': steps to evaluate the full Hessian at each iteration. This second assumption is motivated by considerable
‘:J,? computational experience (sec e.g. Schnabel, Koontz, and Weiss [1985]) that shows that the itcrations
o

saved by using a finite difference Newton's method algorithm rather than the BFGS method usually do not

L

offset the extra cost per iteration in function evaluations. The results of Section 3.3 will validate this

!
“al.

assumption.

-
’l{ L4

Lot

Thus we consider the approach of partial Hessian evaluation whenever there are not enough proces-

- o
Ld

[
“

sors 10 evaluate the function, gradient, and Hessian in one concurrent function evaluation step, but more

S

than enough to evaluate just the function and gradient. This occurs in two distunct situations, both of
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practical intcrest. The first is when the gradient is evaluated by finite differences and the number of proces-
sors is greater than n+1 but less than (n2+3n+2)/2. In this case, there are more than enough processors 1o
evaluate the function and finite differcnce gradient concurrently at each trial point, but not enough to evalu-
ate the function, finite difference gradient, and full finite difference Hessian. For example, on a 64 node
hypercube, this is the case whenever n € [10,63). The second scenario we consider is when the analytic
gradient is readily computed along with the function value, so that it is most convenient 1o computer both
on one processor, but the analytic Hessian is not available. This is the case in a reasonable number of prac-
tical problems, for instance many optimal control problems. In this case, if the number of processors is
between 2 and n, we again have more processors than are needed for just the function and gradient, but not

enough for the full finite difference Hessian (which requires n additional gradicnt values) as well.

In cither of these cases, the methods of this section use the excess processors 10 compute as large a
portion of the finite difference Hessian as possible at each iteration. An interesting aspect of these algo-
rithms is that while they will be seen to be worthwhile on parallel computers whenever the partial Hessian
evaluation uses otherwise unutilized processors, or if the goal is absolute speed (rather than speed per pro-
cessor), they are not in general the most efficient methods on sequential computers. Probably for this rea-

son, they have apparently not becn considered prior 10 our investigations.

Byrd, Schnabel, and Shultz [1987] proposced a variety of approaches for utilizing partial Hessian
information, and examined some of their computational and theoretical properties. The gencral approach
that they found to be best is outlined in Algorithm 3.1. The remainder of Section 3.1 continues the
development of this approach. In Scctions 3.2 and 3.3 wc present new theorctical and computational

results about this type of method.

Algorithm 3.1 differs from the standard BFGS method, Algorithm 2.1, in several ways. First, the
speculative gradient evaluation discussed in Section 2.2 is performced at cach trial point in the line search.
Second, speculative evaluation of some portion of the Hessian also is performed at each trial point in the
line scarch. Third, this partial Hessian information is incorporated into the Hessian approximation at each
iteration, following the standard BFGS updatc. We now briefly discuss the motivation for these steps and
some of the alternatives considered in Byrd, Schnabel, and Shultz [1987). We also introduce some new

aspects of these steps.
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S Algorithm 3.1 -- Quasi-Newton Method for Unconstrained Optimization
Lo Using Speculative Partial Hessian Evaluation
o
NG Given xo, f(x0), go= Vf(xo) (or finite difference approximation), B, e R*** positive definite (e.g.
,':‘_, Bo=1), g € [1,n-1]
\ : : .
P Atiteration k :
-.j": { calculate search direction }
%:‘; solve Bydy = —gi for dy [ di is search direction )
.\‘i
D { line search }
choose set of ¢ linearly independent vectors uy, - - -, 4
.'C::::: repeat
o choose value of steplength A,
N evaluate f(xy + Aedi), Vf(xe + Aedi) (or finite difference approximation), and finite
-.::-- difference approximation 1o V2f (x; + Aedi) u, foreachie(l, q)
ot until x;, + A, dy is satisfactory next iterale
y ::‘: Xeoy = X + Aadr
.-“'.:‘ . .
Nt decide whether to stop ; if not :
3
L { update Hessian approximation )
;’ Se TFXeal T Xk o Yi iT Beel T Bu )
:::- = By sy SZBk Y vi
. ear = _ . BF o
[ '-:.T“ B N Bk STBng + ST_\h [ GS Updalb }
‘ -:_,-: Bi.; ;= updaw of B, based on the finite difference information Vi (uayu,.i=l,-,q
)
".'.-;". The partial Hessian information that is approximated in Algorithm 3.1 is VIf (x) u,, i=1,--  g.
::'_:‘_: Byrd, Schnabel, and Shultz considered two choices of the vectors u, that are selected at each iteration @ a
F
% .
Q. set of ¢ unit directions, or a set of ¢ conjugate directions. They found that using conjugate dircctions led
Lty
s . . . .
N to no significant advantage in the context of Algorithm 3.1, and that it caused a considerable extra lincar
»
L
N algebra cost. Therefore, we only consider the use of unit directions below. That is, at each iteration we

EI

select [y, 1 by

.

Wy |
ok

&

[ -j choose a sct T, of distinct integers between 1 and n

b

ot u, = ey, wherey, isthe i memberof Iy RN
b .

This means that our algorithm approximates ¢ columns of V2f (x), whose indices are given by Ty Lat cach

h)
4.
e

L]
') ieration. In our computational implementation, we choose the sequence of sete T, to cycle through the
o
.
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indices 1o n.

If the function and gradient are evaluated analytically together on one processor, then column / of
the Hessian at X = xx +Aidy can be approximated by calculating Vf (X +pLe,) where y, =

macheps'?1x, |, and then setting

V2f(;)e‘ - h‘ - Vf(f+].l‘:,)—v_f(f) (32)

Thus if pe[2, n] processors are available, then ¢ will be set 1o p~1 and ¢ columns of the Hessian will be

evaluated using ¢ additional gradient evaluations.

If the gradient is not available analytically, then the only way to approximate the gradient or Hessian
is from finite differences involving function values. Let Ty = (j 1 je(1,2.-- n), jeT:). A new,

efficient way 10 approximate the gradient and ¢ columns of the Hessian at X is to use the formulas

(h,), = f(fﬂ,l‘e. +a/e1)—f(;* “tel)—f(;+a1ej)+f(f)
b =

VY (X), = T (3.3
VIE), = h = f(f+u.5.)—f(x-) (3.3b)

for ier_‘k,je Ty, where W, = macheps'?1x, | and o, = macheps'“1x, |,
\"Zj'(;)‘} = (h/), = f(X-*'B:(’, +ﬁ/ej)—f(1- +é31€,)-f(f+l3/€1)+f(f) (3.3¢)

Py
_ Capm -
VY (E) 2 (h), = LE2Be) ﬁf;(;“f(" Be) 3.3d)
fori,jeli,i=;, where B, = macheps!3Ix, 1,

Vf@E), = h = S+ B‘c‘)zBf(f_ B.e) (3.3¢)

for ieTy, with the same B,. Using these formulas, we can approximate the function, gradient and ¢

columns of the Hessian using (n+1-(%)) (g+1) function evaluations. Thus if p processors are available,

we will choose g to the the largest integer for which (n *1—(5 Wig+1) <p. A side benefit of the above

formulas is that for each i €Ty, the {* component of the gradient is approximated by central differcnces
and hence is more accurate than the value given by the standard forward difference approximation (2.1), at

no addiuonal cost in function evaluauons.
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The partial Hessian information is incorporated into the new Hessian approximation after the ncw
iterate x,.1 is selected. At this point Algorithm 3.1 potentially has g +1 new pieces of informaton to incor-
porate into the Hessian approximation : the standard secant cquation

Bl‘l Sk = )"l ] (34)
and the ¢ finite difference values

Byau, =12z,, i=1,.,9q (3.5)
where 4, = ey and z, is the finite difference approximation to column y, of V2f (x;,)). We incorporate the
standard sccant equation (3.4) first, and then the finite difference information (3.5). This order seems rea-
sonable because the standard secant equation gives, in some scnse, information about the Hessian valuc in
between x, and x,.p, while the finite difference information is at x;.; and hence is the most current infor-
mation. Updating in this order means that the standard secant equation may not hold at the ultimate value
of Bi.:, but in Section 3.2 we show that g-superlinear convergence still is retained. Byrd, Schnabel, and
Shultz [1987] also considered omitting, or only temporarily using, the standard secant equation (3.4), but

their computational results indicated that it is preferable to include it. This is the only possibility con-

sidered in this paper.

First we incorporate the standard sccant equation (3.4) using the standard BFGS update. Then there
are various ways to incorporate the finite difference information (3.5). Byrd, Schnabel, and Shulw {1987)
show that using the PSB update is simply equivalent to overwriting the corresponding row and column with
the finite difference information. However their computational results show that using the BFGS update
may lead 10 a slightly more efficicnt algorithm, and it has the advantage of generating positive definite Hes-
sian approximations. So we will use BFGS updates to incorporate the finite difference Hessian informa-
tion. Byrd, Schnabel, and Shuliz {1987] only consider in detail the case ¢ = 1; now we consider how 1o

incorporate (3.5) when g>1.

We have considered two ways to incorporate the parual finite difference Hessian information (3.5

by BFGS updates. The firstis to perform a sequence of ¢ standard BFGS updates, 1e.
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2,2
+
U Bk#l_n U,

B—lﬁl ‘-
' u'z,

if ulz, >0

— (3.6}
Byor,e =

5;,.1,, otherwise

fori=1,---.q, where B_.,“ = By, and By, = B-M‘,,. This procedure has the advantage of simplicity,
but the possible disadvantage that B, .; wili, in general, only obey the last finite difference equation of (3.5)
exactly.

The second aliemnative is to use multiple secant updates (Schnabel [1983)). Let U € R"™ have as
its columns u,, i=1,.., ¢, and let Z € R*< have as its columns z,, i=1,..,g. If UTZ = UTV3f (x4.1) is
positive definite, we use the multiple (rank 2¢) BFGS update

Biuy = Bivy = B Uy (UIBenU) Ui Byuy + Zi LT 20 ZH (3.7
This update causes B,.,; to satisfy all ¢ equations in (3.5), and to be positive definite given that EM 1 posi-
dve definite. If Vi = V°f (x3+1)0. exactly then the matrix U{Z, is symmetric. However, if we use finite
difference approximations for V' the discretization error can cause that matrix 1o not be symmetric. There-

fore, when using finite differences, we replace UV, with V2 (UEVe + VIU) in (3.7a).

If UTZ is not positive definite, we use a sequence of smaller multiple secant updates o partially
enforce (3.5). First we select the subset PD of Ty consisting of indices i for which the equations of (3.5)
are consistent with positve definiteness, i.e.

PD ={i lie[l,gland ul2, >0} .

Then we use a heuristic to sclect a maximal subset PDy of PD for which L'{Z is positive definite, where
L. has as its columns u, for all ie PD;, and Z, has as ils columns z, for all ie PD;. Then we similarly
sclect a subset PD ; containing some or all of the remaining members of PD |, for which UZZ5 is posiuve
definite, where U7 and Z; are defined similarly. If any columns remain, we then select similar subscts
PDs. ..., PD,. untl each i€ PD is in cxactly one subset, and each UJZ, is positive definite. Then we use
the multiple BFGS formula (3.7a) to incorporate, in order, each of the equations By, U, = Z,, for j going
from m down to 1, choosing the backward order so that the maximal subset is incorporated last. That is,
we perform the updates,

Beoyo = Buwiy - 51.:4 U, (U)Bya Uy £VITB_IO‘.J + 2Tz 2T L i=mdownto 1l (3.7h

where Beoom = Bieoy and By.; = By In the computatonal implementaton, we replace the cnierion
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ulz,>0, which we have used above for simplicity of exposition, with the criterion w7z, >
macheps™ Vlu, 11y 1z, s
We have tested algonthms both the first aliernative (3.6) and the second altemative (3.7), and noticed
a slight advantagc for the second, multiple secant approach. Therefore only this approach is considered in
the computational results presented in Section 3.3. In performing the convergence analysis of Section 3.2,
o however, it tums out that the techniques we use to prove the convergence of the method using the multiple
! :::~ secant approach (3.7) build upon the convergence analysis of the sequential update approach (3.6). There-
e
o.¥%) fore in Section 3.2 superlinear convergence of both of these methods of incorporating the partial finite
'-- difference Hessian information is proved.
-
.'_:./
1o
? 2.2 Convergence Properties of Partial Hessian Methods
::'.‘-j We now consider the question of convergence of the new methods discussed in the previous section.
{ We are able 10 show that Algorithm 3.1 has the same propertics of q-superlinear convergence and global
;Z}: convergence on uniformly convex functions that the BFGS method has. In particular we are able to estab-
o
e lish results similar to some of those of Powell [1976] and Dennis and Moré [1974], although we will make
128
Gl . . .
b use of machinery for analyzing sccant methods developed by Byrd and Nocedal [1987). The convergence
v results in this section will be proved under the following assumptions.
LS}
A
o
N Assumptions 3.1,
N2
e R . . . , . . .
S (1) The objecuve funcion f has a Lipschitz continuous second derivative on the level set
M
::'.t: Q = (x:f (x)Sf (x0)}. Denote the Lipschitz constant by L .
\Y
»
.
_.:'j (2)  There are positive constants W and po such thatforallz e R* andallx € Q
S
9. Wtz 112€ 2TV (x)z <pptlz 112
o ’T‘“ )
J':~ Note that this implics that f has a unique minimizer x. in Q.
2
o~ . . . .
o {3y The line scarch used with Algorithm 3.1 has the property that there eaist positive constants n: and
<
' ¢ . N- such that at each iteration cither
5 i
.1(,-- |
n'{ » 1
W
'*.\
"'n"\
"
’b
o
.r:’.'
e e L O e o e A D 2 et e e

.
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Not)

A V() dy ,
2 frshad) < f Gynil L By (3.8
{ or

l;; o>,
S ‘
e [ xe+hede) < f (e HM2Vf ()7 di 3.9)
j \" is satisfied.

"

—V2f (xe

3 _, (4)  The line search has the property that if “(Bkﬁzé(ﬁ Dse || and llx;-x. |l are sufficiently small
(AN

::‘_::: then the steplength A, = 1 will be used.

o (5) The Hessian information used for the extra updates is exact That is, z, = V2f (x;41)u, in (3.6), and
- Z = Vf (x4.))U in (3.7 a)

r\f

e The line search assumption (3) is mcant 10 be as general as possible. It can be shown that it is
:::‘: satisfied for some n;, Nz if A4 is chosen by any standard procedurc such as the Wolfe conditions (3.17-18),
_:._—_; the Goldstein conditions, or any reasonable backtracking strategy. This condiuon is discussed in more
- : detail by Byrd and Nocedal [1987). Assumption (4) was shown 1o be satisficd by the Wolfe conditions by
:::'_'i_ Dennis and Moré [1976], and similar arguments show that the Goldstein conditions and backtracking also
{ . satisfy Assumption (4).

ol

" Theorem 3.1. Consider Algorithm 3.1 with the finite difference updates made sequenually by (3.6), and

.
a

x supposc that Assumptions 3.1 are satisficd. Then the sequence {x,) that is produced converges supcr-

bk

= lincarly to the solution x..
A
oty
N
o
N Proof. In the sequential updating algorithm, the quasi-Newton approximation, B, is updated successively
=7 by BFGS along step directions s, and finite difference directions «,,i = 1,...,g. For thc moment we will
Wy . . N . . . .
S number the sequence of quasi-Newton matrices over the entire algorithm in order of computation without
',-;:: regard to the type of update made. Therefore we denote Bi by B (g+1)x) and Bia:j by B (g+1yk-13+:). Like-
o
.{‘; wisc we denote the directions s, and u, by a sequence {r,} where sy =r.n and, at iteration &,
¢
. U, = rgains . Each update then has the form
b e T
- B -B _Bwr/r, B, A
- e =B Ty
- y Euly w, n
N
¢ where for cach update
.3
LAY
7,
.):-
\' \
B \f‘
<
"-
\"'(
[ W]
5
{ -l
f
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w, =5/r/. (3.10,

For the finite difference based update 5, = V2f (xi41). and for the step update

.
.l" 2

{4
v
-

a%a

on SNy
B~ 1

LSS
SN — 2
‘.:j.' Gl = l\"' f(Xk +T8) )Sde.
-
:: In either case by the uniform convexity in Assumption (3.1.2)
&Y
\ . T T
’r;'"l W! r! =r! G!"[ ?‘u:‘ (31])
et Ty Ty
‘:\.'_'_' and
o
2 -\ A.
oty T TG2
Y wilw, _ T G7r m G12)
x wi'r, r,"G,r,
. . . .
NN Now by Theorem 2.1 of Byrd and Nocedal [1987], if a sequence of BFGS updates is performed with (3.11)
_\':\
~_:\ and (3.12) satisfied for each update, then for any fraction p € (0,1) there exist constants B and B2 such that
Lo for any positive intcger m the bounds
‘:."i-?_;n
DA 7By, .
N T B g7 T > P e .
:.,:_C and
Y
By, It . .
e it <Bs G
::-::: arc satisfied for at least pm values of j in [1,m]. (Note that the quantity in (3.13) is the cosine of the angle
Ll
.::.‘_- between r, and By, .) Now if (3.13) is truc for 7, a step dircction then that implies that it is a strong des-
:) cent direction. To ensure that many step directions are strong descent directions we take p to satisfy
.r..‘\ v,
ey +2
N pz2 g+l
P
-f.:::. Then by the quoted result on the BFGS, in & outer itcrations (¢+1)k updates are made, of which
o
.,;_. pig~1ik 2 (g+'~)k satsfy (3.13) and (3.14). Of thesc at least (¢+'2)k updates, at most gk are finite
N
3 e difference updates so that at least Y2k of the step directions satisfy (3.13) and (3.14).
A
::{,'.:- Now by Theorem 3.1 of Byrd and Nocedal [1987), if {x¢ ) is gencrated by
®.
-: Xpoy = Xp+5g = xk—llBi"Vf (xe)
7o where. for cach k, at lcast some fixed fraction of the directions satisfy
s
i I.:-'_ X(TBk Sk > q
8:. Se G5 N -
‘o 1Py ] .
y ,':& and
L} ,
sr Y
1 N*\
‘o N
A
o l
B ™ ,qr
.r::: \
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and the line search satisfies Assumption 3.1.3, then {x, } converges to x« r-lincarly so that

-~ gllxk—x. H < oo, (3.15)
'_'.;:‘ To show that the convergence is superlincar, note that since the quasi-Newton matrix B is updated
» -
& g ~1 times at each point (2.15) implies that the matrices G, in (3.10) satisfy

g g!lG_,—\_:f(x-) " S(q+1)LZ‘bmax[ Hxgoy=xe 11, Hxg—xe 11] < oo,

o Therefore by Theorem 3.2 of Byrd and Nocedal [1987), or alternatively by Theorem 3.4 of Dennis and
{

'_j.: Mord 110787 i follows that

N H(Bx=V2f (xe Mg |

NS MmO

.'. >From this fact, superlinear convergence of the sequence {x; ) follows by Theorem 2.2 of Dennis and

ANGrd 19737 and Assumption 3.1.4. 0O

Now we consider the multiple secant update (3.7). It turns out that doing the multiple update using an
ooy miarin U 1s cquivalent to a sequence of ¢ simple updates along a set of conjugate directions spanning

tic columnspacc of U

' Lemma 3.1. Consider a sequence of ¢ standard BFGS updates (3.6) to the positive definite matrix ﬁk.;
o eirg directions L uy that are conjugate with respect 0 V2f (xi.1). Suppose that Assumption 3.1.5 is
L sataticd Then the resulting matnix §,,1,,,,1 is the same matrix as results from a multiple update of the
tomn Y Taowhere the column space of the matrix U, is equal to the span of {u;. ... ,uq ) as long as the
v mary [V xeL s positive definite.

o Proof. First we note that the multiple update depends only on the column space of U. This is true since an
". n oy meins having the same column space as U must have the form UT, where T is a nonsingular ¢ xg
moarin Itwe thenreplace U by UT and Z by Z1 1in (3.7a) it is easy 1o sec that the result is unchanged.
1
o Therefore for the rest of the proof we assume without loss of generality that the columns of U are
<" R TN SO S i, Since 2= Vi (g U conjugacy with respect Lo V2 (x,.:) implics that

"

o

> AT AT RN . ) IR - N X i S e e e e e e e e
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UTZ = diag (1,7 z,)
so that the last term in the multiple update formula (3.7a) is

ZUTZY'ZT = : 22,7 (3.16)

={ u; Z,"

If we consider sequential updating we see that the final matrix is

~ = -1§u1~uuT§g.1' =) 2,2, T
Bivige1=Brao— S L+ o

T By PRER

Note that the last sum is equal o the last term in (3.7a). Now consider the ¢ BFGS updates one at a time.

Foragiveni,if Bysyu, = 2,forj <i then

B“uu.- uATz, + Z, z,'Tu,
U, TBrsr il 2T u,

BkJ*luj = Bk+1,t U~

= Bkﬂ,x u,
since by conjugacy .7z, =u,7z =uTV2f (x;.1)u, =0. Therefore, since each update causcs
Bioisu =2, afier g updates By g+1u, =2, for i = 1,...,¢, so that the ¢ secant equations are satisfied

justas for the multiple update.

Now consider the matrices

g Bisyjt T Bisyj
. D1= ———7-——-———
- = U, Bl-fl,a“x

and

D= BiUUBxUY'UTByu..
We have that
D/ =By U +ZWUTZ)ZTU = Bivi gu:U

=ByaU + Zi~Zy = BynU =D, U.
Therefore since the matrix EMU has rank ¢ and D, and D, are rank ¢ matrices, it follows that both

matrices have the same range, the column space of By, U. Since they are symmetric they also have the
same null space. Together with the fact that DU = DU this implies that D = D;,. Therefore by (3.16) it

follows that the resulting matrices are equal. O

Note that for this result we have not used any of the Assumptions 2.1 except the last one. Although

we have stated this lemma for a complete multiple update of the form (3.7a), 1t 1s clear that the proof
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\::-.:
:.» applies 10 each of the partial multiple updates (3.7b) as long as each of the matrices U7V-f (xi.)U, = U7 Z,
.\
i in (3.7b) are positive definite. Thus the sequence of multiple updates (3.7b) is equivalent to a sequence of
8 . . . o
e single BFGS updates using conjugate directions in the same order.

S

e

Given the equivalence result of Lemma 3.1 the convergence of the multiple update version of our

algorithm follows immediately. Since the convergence analysis assumes positive definiteness of V2f (x), a

: complete multiple update will always be possible in Algorithm 3.1, and we need only consider the form
P
"
N (3.7a).
I-r»‘
»
' Theorem 3.2, Consider Algorithm 3.1 with the finite difference information incorporated using the multi-
i {\: ple update (3.7a) with the matrix U having full rank at each itcration, and suppose that Assumptions 3.1
Y

-\-:::: are satisfied. Then the sequence {xx ) produced converges superlinearly to the solution x. .

N

TP Proof. By Lemma 3.1, Algorithm 3.1 using a multiple update is equivalent to Algorithm 3.1 with a sequen-
\':‘.‘

}3:'. tial update along a sct of directions conjugate with respect V2f (xx41) and spanning the column space of U.
:‘::'_:'. By Theorem 3.1 that version of Algorithm gencrates a sequence which converges to x- superlinearly. 0O
o We have thus shown that both versions of Algorithm preserve the convergence properties of the
,\:,\
AN BFGS mcthod. It is interesting to note that Theorems 3.1 and 3.2 put absolutely no conditions on the

:::::f choice of I except that it have full rank at each step. Of course this is true because we are only trying to
O show that the extra updates do not interfere with the good properties of the BFGS. Onc might hope that
-.::-'.: there 1s some theoretical result showing that the finite difference updates actually improve the convergence
SO behavior of the algorithm in some way, but we have not been able to find one. It is interesting to note that
"‘.' Byrd, Schnabel and Shultz {1987] prove that if the step update is omitted (or removed after step computa-
)

::: :: tion) the resulting algorithm is %1 -step quadratically convergent, and this result depends very strongly
' :'-:::; on how the finite difference directions are chosen. However, as mentoned in Section 3.1 that methed per-
o

:‘,J' forms more poorly in numerical experiments than the method analyzed here.
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3.3 Computational Performance of Partial Finite Difference Hessian Methods
":'\:
=
{ We have tested the partial Hessian Algorithm 3.1 on a varicty of test problems. Byrd, Schnabel, and
CAR
.'-" Shultz [1987] report the results of tests for the case ¢=1 only, on a set of problems from Moré, Garbow,
':::‘: and Hillstrom {1981] with small values of n. Here, we report on tests of Algorithm 3.1 for the full range ¢
-r:‘.f
T =110 n. When ¢>1, we incorporate the partial finite difference Hessian informaton by the multple

secant procedure (3.7). The test problems considered are a combination of problems from Moré, Garbow,

and Hillstrom [1981] and Conn, Gould, and Toint {1986], run with the values n = 20 and n = 40. They arc

listed in Table Al in the appendix. The standard starting point was used for all problems except #15,

X,

_"z: where (-0.5,0.5, - - ,-0.5, 0.5) was used because our BFGS algorithm overflowed from the standard start
A

o point (=1, 1, - =1, 1).

<’
: ;1": The implementation of Algorithm 3.1 that we tested was obtained by modifying the BFGS, line
',-.-‘:' scarch algorithm in the UNCMIN unconstrained optimization sofiware package (Schnabel, Koontz, and

)

Weiss (1975]) in two ways. Furst, at each iteration the finite difference information update (3.7) was added

A
" v
e
]
1

after the standard BFGS step update, as explained in Section 3.1. Sccond, the backtracking line scarch in

e

R UNCMIN, in which ecach iterate satisfics the condition
N
o f ) < f () + 0Vf () da (3.17)
'_'.-:: for a=107%, was augmented so that each iterate also satisfics
-

2 Vf ()T di 2BVS ()7 ds (3.18)
'_::-::'. where B=0.9 (using Algorithm A6.3.1mod in Dennis and Schnabel [1983]). With condition (3.18), a posi-
_‘f{'. tive definite step update is always possible. The BFGS algorithm used for comparison was the same algo-
r e

rithm without any finite difference information. The Newton's method algorithm used for comparison was
the line search, Newton’s method algorithm in UNCMIN; if the Hessian is indefinite, it uscs a modified
Cholesky decomposition strategy described in Dennis and Schnabel [1983) to perturb the Hessian and cal-
culate the line search direction. The standard UNCMIN stopping conditions, described in Schnabel,

Koontz, and Weiss [1985], were used. The tests were run in double precision on a VAX 780.

We are primarily interested in the performance of this method on parallel computers when function

evaluation is expensive. As discussed in Section 2.1, function evaluation docs not have to be very expen-

o s
S
o
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:'-:ﬂ' sive before it swamps all other costs of the BFGS method on sequenual computers. Even on a lovd!
.-
b.. -

memory muluprocessor, once each funcuon evaluation requires several thousand floaung poimnt operations,

the cost of funcuion evaluations 1s hikely o swamp all costs including synchronizauon and communicauon.

,:.'._ : Thus we will evaluate Algonthm 3.1 for each value of ¢ by simply counting the number of trial point
.-;::: funcuon evaluauors it requires o solve each problem, (1.e. the wotal number of points tried in the line
,-.f scarches and all the 1terations, plus the starting point). If there are enough processors to evaluate the fun.-
uon, gradient, and ¢ columns of the finite difference Hessian in one concurrent function evaluation step.
\ then the number of trial point {unction evaluations is equivalent to the number of concurrent funcuon
._ evaluauon steps and 1s indicative of the cost of Algorithm 3.1 on a parallel computer, for expensive func-
:- uons. The speed of Algorithm 3.1 is then compared o the speed of the parallel BFGS method, imple-
:: menwed as discussed o Sccuon 2.2, This parallcl BFGS mcthod 1s assumed to use speculative gradient
-.‘.‘! evaluanions so that the function and gradient are evaluated 1n one concurrent function evaluation ste;, but
any addiuonal processors are unused.

The raw computauona) results for our method for various values of ¢, as well as for the BFGS

- mcthod and Newton's method, are given in Tables A2 and A3 in the appendia for n = 20 and 40 respec-
:: uvely, This dat ts summarized in Tables 3.1-3.3. Tables 3.1 and 3.2 give the simulated average speedups,
-:: over the parallel BFGS method, that we obtained for each value of n and several values of ¢. These aver-
age speadups were computed by taking all the problems solved correcty by both methods for a given value

_‘;:~ of ¢ and n. and dividing the total number of trial points required by the BFGS method on all these prob-
\ lems by the total number of wrial points required by the new method on all these problems. This is a rea-
::'_.': sonable measure of speedup under the assumpuons that function evaluation is expensive and there are
; . enough processors to evaluate the function, gradient, and g columns of the Hessian simulancously. Prob-
b lems not solved successfully for onc or both methods are excluded when computing the speedups in Tables
_-_ 3.1-3.3; we noticed no significant diffcrence in the success rates of the various mcthods.

0.
:.:, If the function and gradient are evaluated together, analytically, by onc processor. then Tables 3.1-
; : 2 reflect the use that Algorithm 3.1 could make of from 2 to n+1 processors. If the gradient s evaluated
by finite differences, then the “standard” BFGS method that is used as the companison itself requires n+ 1
"\ processers, and Tables 3.1-3.2 reflect the use that Algorithm 2.1 could make of from 2n-110(n7-37-2: 2
.-
-'fv
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Table 3.1 -- Average Speedup of Algorithm 3.1 over Parallel BFGS Method, n=20
q 1 2 3 4 S 10 20
Average Speedup 1.86 203 2.55 2.51 2.67 317 3.97
Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 2 3 4 5 6 11 21
with Analyuc Gradients
Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 1.95 2.86 3.71 452 5.29 8.38 11.00
with Finite Diff, Gradients
Table 3.2--Average Speedup of Algorithm 3.1 over Parallel BFGS Method, n=40
q 1 2 3 4 5 10 20 40
Average Speedup 1.54 1.95 2.16 2.18 231 2.46 2962 2.4
without problem 16 1.88 2.07 223 2.39 250 312 376 5.37
Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 2 3 4 5 6 11 21 4]
with Analytic Gradients
Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 1.98 293 385 4.76 5.63 9.66 15.88 21.00
with Finite Diff. Gradients
Table 3.3 -- Average Speedup of Algorithm 3.1 over Paralle! Newton’s Method
q 1 2 3 4 S 10 20 40
Average Speedup, n=20 1.98 1.52 1.42 143 1.55 1.23 0.87
Average Speedup, n=40 227 203 1.70 1.87 1.85 1.08 Nno] 037
without problem 16 270 223 1.71 202 1.63 1.37 1.33 0.0
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processors. The rauos of the number of processors required by Algorithm 3.1 1o the number required by

BFGS are given in Tables 3.1-3.2 for both scenarios. It should be kept in mind that in the finite differcnce

:.:‘\::: case, the BFGS method which is the baseline is already a parallel algorithm that uses the speculative gra-
'. dient evaluauon discussed in Section 2.2. It achieves an average speedup of 17.5 and 34.3 over the sequen-
ual, one processor BFGS algorithm in the cases n = 20 and n = 40, respectively. (This indicates that the
:'{ average number of trial points evaluated per iteraton in the line scarch is about 1.2.) Thus Algorithm 3.1
t::: actually achieves average speedups over the sequential BFGS method of 32.6 0 69.5 for ¢ ranging from 1|
.::-':' o n whenn =20, and 52.8 10 83.7 (64.5 1o 184.2 without problem 16) for ¢ ranging from 1ton whenn
;' o = 40,

' There are two important conclusions from Tables 3.1-3.2. First, the new methods clearly derive a

i'.:-; considerable gatn in speed from the extra Hessian information that they use. Second, this gain is not usu-

. ally proporuonal to the ratio of processors (or equivalently, pieces of denivative information per iteration:

.."‘

'_j'_'.‘. that they use. However, this was to be expected since we know that Newton's method, which uses roughly
'_'_ n 2 umes as much information (and n or n/2 umcs as many processors) as the BFGS method, is not usu-
\ ally n 2 umes as fastin terms of the number of trial points, or iterations, required. In fact on these test sets,

-

(finite difference) Newton's method is, on the average, 4.7 and 7.1 umcs as fast as the BFGS method in the

cases n = 20 and n = 40, respectively. The new method docs a reasonable job of obtaining an increasing

P T R}
L .

O

speedup as ¢ changes from 1 to n. What 1s most satsfyving is that the specdups are quite substanual for

:’_:.::2 small values of ¢ before leveling off; they are at least 50% of opumal for ¢ up to about 4.

"_'_':’ There 1s one test problem, #16 (Variably Dimensioned Problem), where the performance of Algo-
;\. nithm 3.1 is considcrably worse than in any other case, especially when n = 40. This is the only problem
.;‘; where the performance of Algorithm 3.1 with g=n is substantially worse than Newton's method, and the
:, :.':; case ¢=1 has by far the worst performance of any test problem relative to the BFGS. We are continuing 10
; study our algorithm to attempt to understand this behavior and see if it can be avoided. Since this one
j:‘. problem so strongly influences our average statistics in the case n = 40, Tables 3.2 and 3.3 also show what
.':\' the averages would be without problem 16.
# _n""‘
2:' Table 3.3 compares the performance of Algornithm 3.1, with various values of ¢, to the performance
:’:g:: of a parallel implementation of the finite difference Newton's method, under the assumption that the
-~
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) '~ gradient is evaluated by finite differences and that there are just enough processors to evaluate the function,
‘ . finite difference gradient, and ¢ columns of the finite difference Hessian simultaneously. This means p =
\ (n+l—%} (g+1). The parallel finite difference Newton's method is assumed 10 use the most efficient
parallel strategy. That is, at each trial point it computes the function, gradient, and as many elements of the
. Hessian as the remaining processors allow. Then if the trial point is accepled as the next iterate, it uscs
Ng—1 concurrent funciion evaluation sicps to evaluate the remainder of the Hessian, where N, =
‘ (n:;'_zf";’:\' 2 . Thus the total number of concurrent function evaluation steps required by the
o : 420 {g+D
by parallel finite difference Newton's method 1o solve a particular problem is
“‘ (Vg X (1 + number of iterations) + (number of unsuccessful trial points) , (3.19)
‘ ':_: while for Algorithm 3.1 it is the total number of trial points for that problem. (Recall that the total number
V ‘ of trial points for a problem is 1 + number of itcrations + number of unsuccessful trial points.)
>
_; For cach value of g and n, the speedup shown in Table 3.3 is the total number of concurrent function
1 \ evaluauons required by Newton's mcthod, measured by (3.19), divided by the 1otal number of concurrent
* function evaluation steps required by Algorithm 3.1, where the totals are taken over all the problems suc- .
:\: cessfully solved by both methods. Table 3.3 shows that for all values of ¢ € n/2, Algorithm 3.1 is more
:E efficient than a parallel finite difference Newton’s method, under the above assumptions. (If problem 16 is
", included for n = 40 then the ¢g=n/2 case is slighly worsc than Newton’s method on the average, but
* ::: without it it is considerably better.) Thus for ¢ < n /2, it appears to be better to evaluate just as much of the
'_: finite difference Hessian per iteration as the processors allow in one concurrent function evaluation step,
‘ :: rather than using extra concurrent function evaluation steps to evaluate the remainder of the Hessian.
]
- Table 3.3 also shows that when ¢ = n, Algorithm 3.1 is slightly inferior to Newton’s method. The
3’_ two methods are very similar in this case, since each computes the full finite difference Hessian at cach
:.'. itcration. The only difference is that Algorithm 3.1 does not use all this information if the approximation is
«.‘ indefinite, while the finite difference Newton's method uses the entire Hessian and employs the perturbed
v,
; Cholesky decomposition given in Gill, Murray, and Wright [1981] to compute the search direction when
o

the Hessian is indefinite. As might be expected, often there is no difference between the two methods but

¢ Y

occasionally discarding some Hessian information is somewhat detrimental 1o the performance of the
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Algonthm 3.1. It might be advantageous o incorporaw a scheme for using indefinite finite difference Hes-
A

sian information (perhaps the PSB or SR1 update) into Algonthm 3.1, but this would need to be done 1n a

way that doesn’t hurt the performance of the method for small g. We consider this a topic for further

0 research.
g Finally, we also tested in detail the version of Algorithm 3.1 that uses the sequental scheme (3.6),

rather than the multiple update scheme (3.7), W incorporate the finite difference Hessian information. In

PR
y te

T

general, the muluple update approach required from 5% to 25% fewer iterations and function evaluations

Y 'l_i. 4 l; ]

L

10 solve the same problems with the same value of ¢. For this reason, we recommend the multiple updat-

_. ing scheme.

N

:-:::- 4. Using Gradient Values at Unsuccessful Trial Points

e

o In this section we discuss a relatvely minor improvement that can be made to the parallel BFGS
~T
-~ J‘ . . . . . . .
N algorithm discussed in Sectior: 2 as well as to some sequential BFGS algorithms. It is to use the gradient
-
\ -

values that are computed at the unsuccessful trial points in the line scarch to reduce the total amount of

%

i
]

work required to solve the optimization problem. If the gradient is evaluated by finite differences, then we

N

\ assume that we are using the parallel BFGS algorithm of Scection 2 with p2a+1 so that the entire finite
. : difference gradient is evaluated at each trial point. If the analytic gradient is a by-product of the functon
N evaluaton on onc processor, then the information we consider is available in a standard sequential BFGS
{: mcthod. It is also available in any sequential unconstrained optimization code that requires the gradient to
:j-: be returned along with the function value; some unconstrained optimization software packages, for exam-
:\. ple CONMIN (Shanno and Phua [1978]) and MINOS (Murtaugh and Saunders [1983]) are organized in
this way. The strategies discussed in this section are applicable to all these situations.
In all the above cascs, even though the gradicnt is available at unsuccessful trial points, it is only
A uscd in the line search. Schnabel {1987) proposed several further uses that might be made of this informa-
tion. Here we pursuc the suggestion from Schnabel [1987] that we consider most promising. To facilitate
:r\:', our discussion, let us use the simplificd notation that the current iterate is x. , the current gradient is g, ., the
3: current Hessian approximation is B, the current scarch direction is d; = -B.' d, , the current trial point is
o

- o w
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x, = x_~»d,., and the gradient at x, 1s g, We assume that x; is an unsatisfactory choice for the neaterate

We will attempt 10 use the gradient at the unsuccessful trial point x, 0 immediately update the Hes-
sian approximauon and compute a new search direcuon, even though we have not successfully concluded
the current line scarch. To motivate this strategy, consider the case when f is a positive definite quadratic.
It 1s sull possible that x, is unsatisfactory because the Hessian approximation B, is inadequate. The stan-
dard BFGS algorithm would conunue the line search until it calculates a sausfactory next iterate x, =
X;*:‘_.d[, where & = g for some g=1. Let g+ be the gradient at x,, and let B, be the BFGS update 1o B,
using the step from x, to x,. Also consider the matrix B, that would be generated as the BFGS update 10

B. using the swep from x. 0 x,.

The first key point is that B, = B,, that is the updates obtained from using x, and g., or using x, and
£o, are the same. This is because any two points along a line will generate the same secant equation, and
hence the same update, for a quadratic function. (Algebrascally, x.—x. = o(x,-x.) and g.-g. =

g g~ V.1 The other key point is that since

x.-B'g,=x-B'g =x-Blg =x-Byg
with the first and third equalitics coming from the secant equation and the second from B, = B, we do nat
have o compule x,, or adopt x, as the new current iterale, to undertake the next iteration. Rather we can
repluce B, with B, and conunue iterating from x,, in the new direction -B, ! g.. If a steplength of one is

used at the new itcrauon, then the same point x.. will be gencrated as if we had iterated from cither x,

using the direction -B ;! g, or from x, using the direction -B,7! g,.

For quadratic f, this strategy allows a BFGS algorithm to usc only one trial point per update, while

L likely requiring no more iterations than the standard BFGS method. If onc is using the standard sequential
LrSd
~.l.‘, . . . 3 . . . .
o BFGS mcthod, Algorithm 2.1, and the gradient is being evaluated by finite differences, then the saving is
o . . L ,
VU small because the number of function evaluations per iteration is simply reduced from a maximum of n+2
&
gAY - . . . .
C 1o n~1. If, however, one is in any of the parallcl or sequenual scenarios menuoned at the start of this sec-
-'f '. . . B . . . . .
.:f:- tion, where the gradient is computed along with the function value at each trial point, then this stratcgy has
AN
. . - . . . . . .
:'a:\ the potential to cut the cost of some iterations in half (from two function-gradient pairs to onc) which is i
i
S .
oAy ] . . .
'?.-" mare significant savings. The strategy also has the appealing property that it never sclects an unsatisfuc-
%
7‘ . . . . .
sr: tory point x, as an iterate; rather it incorporates gradient information from x, that is equivalent to the .
e
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informaton we would have gotten at x., and then conunues ieraung from x. which is the best point we

have so far

When £ is not quadratic, B, will not generally equal B., and the strategy of updaung B, to B, and
replacing the scarch direction from x,., ~B. ' g., with -B,~! g, may not be a good onc. Ideally, replacing
B_ with B, would seem to be a good idea if B, is closer to V3f (x.) than B, is in the direction d, , i.e. if

(VS (x )= B)d. 1T € 1W(V3f (x.)=Bc)d. Il . @D

Since we don't know V2f (x.), however, we try 1o determine whether B, is a better approximation 1o

V3f (x.) than B, 1s by seeing whether the quadratic mode! around x, using B, predicts f (x,) better than the
quadrauc model around x, using B, docs, i.e. if

i ywgld +dIBd, ~ f(x) < If (x:)=gld. +dTB. d. - fx)). (4.2

(Note that 1t 1s not necessary to form B, o check (4.2) since we know B, d. = g,—g..) If (3.2) is sausfied,

then it secems advantageous 1o calculate B, and d; = =B, g. and change the line search direction from x,

10 d.. Otherwise it scems beuer o conunue the hine scarch from x, in the direction d. in the normal

tashion,

We have tested this approach on the same problem set as was used in Section 3.3 (sce Appendix Al).
We compared the normal BFGS algorithm, Alg. 2.1, 1 an algorithm that differs in that it updates the Hes-
sian approximation and switches line scarch directions as described above if the line search finds an unsa-
usfacton point x, which fails (3.17) and satisfies (4.2). {In addition x, must satisfy (g,~g.)7d, > 0 10
assure that the update will retain positive definiteness.) In this casc the new strategy makes onc other
alteration so that a sausfactory next iterate will eventually be found : rather than starting the line search in
the new direction d; with a steplength of one, it chooses the initial steplength in the new direction so that
the length of the next trial step is the same as if the line scarch had been conunued in the old directon d, .
That is, if the next steplength in the direction d. would have been X, it chooses the initial steplength % in
the direction d, to be A Itd, 117 11d, |1, If the next iterate again fails (3.17) but sausfies (4.2) and the
positive curvature condiuon, then the Hessian and scarch direction is changed again with the steplength
again being reduced by this mechanism; otherwise the line search is continued with the new line scarch
direction. This approach is continued until a satisfactory neat iterate is found. As soon as a satisfactony

nevt iterate 1s found. the next line scarch starts with steplength one, as usual.
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On our test set, we found that this strategy reduced the average number of wial point function evalua-
uons needed 10 solve the problems by about 3% in the casc n = 20, and by about 12% in the case n = 40.
This reduction 1s indicative of the reducuon in computational cost in any situation where the gradient 1y
computed at cach trail point, and function evaluation is the overriding cost. Recall from Section 3.3. that
for these test problems, only about 20% of the total iterations have unsuccessful trial points, so that at least
for n = 40 the observed savings are fairly satsfactory. If we use the ideal (and impossible in practice) test
(3.1) instead of (3.2) to decide when 1o use our new strategy, the average saving rises to 15% in the case n
= 20 but drops to 8% in the case n = 40. This indicates that there may be room for improvement in our
results if we can find a beter heuristic than (4.2) w decide when to invoke our strategy of switching line
search directions.

While these savings are not dramatic, they point to a small improvement that can be made to the
BFGS algorithm whenever the gradient is available at cach trial point, ie. both in the parallcl BFGS
method discussed in Section 2 and in some scquential BFGS codes. It also leads us to be interested in

some related idcas that we mention in the next section.

n

. Summary and Directions for Future Research

In Section 2 we have shown that it is fairly easy to efficiently utilize up to n+1 processors in the
standard BFGS algorithm for unconstrained optimization, in two different situations. First, if function
evaluation is expensive and gradients are evaluated by finite differences, then by evaluating the gradi-~
along with the function at every trial point onc can generally realize at least 70-80% efficiencies with up to
n+1 processors. Secondly, if n is large enough that the lincar algebra costs of the method are significant,
then it is also fairly easy to parallelize the linear algebra efficienuy for up to n processors. This causes us
o recxamine the various implementations of the BFGS update, and to chose the unfactored update of the
inverse matnix which appears 1o be the cheapest sequential and parallel approach and to have no noticeable

finite precision difficultics in comparison to the other possible approaches.

Several variations on the approaches of Section 2 merit investigation. One is whether it would be

better 1o use extra processors 1o evaluate muluple points simultancously during the ine search, as proposed
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by several authors including Dixon [1981], Dixon and Patel {1982], Patel [1982], Lootsma [1984), and van
Laarhoven [1985], rather than performing speculative finite difference gradient evaluations. A second
issuc 1s whether the modification of the BFGS method recently proposed by Powell [1987] has a significant
advantage in practice, and if so, how it (different) linear algebra is best implemented on a parallel com-

puter.

In Section 3 we have examined the situation when function evaluation is expens've and there are
more processors than are needed to evaluate the function and gradient simultaneously. This occurs if the
gradient is evaluated by finite differences and the number of processors, p, is greater than n+1, or if the
gradient is evaluated analytically along with the function on onc processor and p>1. If there are enough
processors so that we can evaluate the function, gradient, and (finite difference) Hessian concurrently, then
we would use a parallel implementation of Newton's method. If not, then we have proposed using new
optumization algorithms that use the function, gradient, and g <n columns of the finite difference Hessian at
each iteration. These can be thought of as falling in between the BFGS method and Newton’s method. We
have shown that the performance of these methods for different valucs of ¢ varies between the perfor-
mance of the BFGS method and Newton's method as might be expected. We have also shown that if there
are just enough processors to evaluate the function, gradient, and ¢ columns of the finite difference Hes-
sian, and our new method is more cfficient than cither the parallel BFGS method or a parallel implementa-

uon of the finite difference Newton's method.

There are several interesting rescarch questions regarding these new methods that use part of the
Hessian at cach iteration. One is whether it would be better to use an update that allows indefiniteness,
such as the SR1, to incorporate the finite difference information, rather than using the BFGS as we have
done. This question is especially intriguing in light of the recent results of Conn, Gould, and Toint [1986]
that report very good computational performance for a trust region method using the SR1. A second issuc
is whether some different procedure for choosing the finite difference directions {4, ) that are used at cach
iteration would be preferable. An example would be choosing these directions bascd upon the recent step
directions. Another more general issuc is whether there are better ways to utilize additional processors
than cvaluating part of the Hessian. for example using the extra evaluations to form a higher order model

such as the tensor mode! introduced by Schnabel and Frank [1984],
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In Section 4 we have considered the use of gradient information at unsuccessful trial points in the
line scarch. Such information is available in our parallel methods that evaluate funcuon and gradient infor-
mation simultaneously, and also in several well-known secquental unconstrained optimization packages.
We have shown that we can modify the BFGS algorithm o utilize this information in a way that leads o

small gains in efficiency.

This work on using denvative information from unsuccessful trial points might be extended in 4
number of directions. In the paralicl methods that use partial Hessian information, onc could also consider
whether the Hessian information from unsuccessful trial points could be utilized. In this connection one
might want to consider evaluating the parual Hessian informauon at the current iterate x,. rather than at the
mal point x,. We also have not yet considered the case when p<n where only part, rather than all, ot the

finite difference gradient is evaluated at the unsuccessful rial point.
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Table A1 -- Test Problem Set

- Problem Problem Source of
n Numbcer Name Problem
1 Trigonometric MGH26
_‘ 2 Extended Rosenbrock MGH21
N 3 Extended Powell Singular MGH22
o 4 Chebyquad MGH35
%
. S Chained Singular CGTs
l\ -
o 6 Generalized Wood CGT7
N 7 Chained Wood CGTs
’- 8 Gencralized Broyden Tridiagonal (av ~ CGTI10
::::: 9 Generalized Broyden Tridiagonal (by - CGT11
'_:‘-'_‘ 10 Gencralized Broyden Banded (a) CGTI2
( 11 Generalized Broyden Banded (b CGTIR
N 12 Toint-Broyden 7 Diagonal CGT14
S 13 Toint Trigonometric CGTI6
f. 14 Genceralized Cragg and Levy CGT17
:.:: 15 Generalized Brown CGT21
- 16 Variably Dimensioncd MGH2S
ol 17 Penalty Function 1 MGH23
L
[ 18 Penalty Function II MGH24
o CGT = Conn, Gould, Toint [1986]
A MGH = Moré, Garbow, Hillstrom [1981]
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Table A2 -- Test Results, n=20

Problem lIierations
Number Unsuccessful Tnal Points
BFGS Algorithm 3.1 Newton's
g=1 g=2 ¢q=3 g=4 ¢q=5 ¢q=10 ¢=20 Method
1 47 28 27 23 23 16 12 12 12
6 5 9 13 15 12 4 6 6
2 46 94 80 84 72 68 a5 24 24
21 19 26 38 5S 44 16 8 8
3 48 75 47 41 36 26 24 15 15
19 1 2 4 6 0 4 0 0
Kl 54 49 47 - 32 34 - - -
15 8 13 - 12 19 - - -
5 308 57 41 37 31 29 27 20 20
21 4 2 3 1 0 0 0 0
6 164 133 134103 107 101 86 54 S
32 23 56 48 49 77 50 38 28
7 271 SO 118 66 58 51 69 48 49
33 10 45 37 21 14 59 27 27
8 6 X 24 20 16 16 14 10 10
4 0 0 0 0 0 0 0 ¢
9 21 20 14 13 11 10 7 5 5
3 0 0 0 0 0 0 0 0
10 125 2 25 20 18 17 15 12 12
6 0 0 0 0 1 0 0 0
11 107 22 15 13 12 10 9 7 7
s 0 0 0 0 0 0 0 0
12 58 27 18 15 12 12 9 6 6
S 0 0 0 0 0 0 ¢ 0
13 42 36 18 19 25 19 18 11 8
113 98 19 17 32 25 17 13 3
14 141 43 - -- -- -- - - 19
13 14 - - - - - - 0
- 15 6 8 8 & 7 6 S 4 4
e 1 0 0 0 0 0 0 0
SRR 16 21 117 72 38 42 39 30 50 18
7 4 2 0 5 \ 15 0
N 17 140 91 72 51 S6 51 45 33 33
R 52 12 1 1 2 0 5 4
L A 18 226 8 9 72 77 75 S8 60 62
;-:::;: 42 13 14 6 11 5 7 23 25
e
;‘ -- = overflow
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Table A3 -- Test Results, n=40

41

Problem lierations
Number Unsuccessful Trial Points
BFGS Algorithm 3.1 Newton's
g=1 g=2 g=3 g=4 g=5 ¢4=10 4=20 ¢=40 Method
1 84 46 68 62 53 48 17 17 15 --
1 12 22 36 26 13 4 18 29 --
2 47 129 102 108 90 97 83 46 24 24
22 36 39 84 77 69 70 30 8 8
3 48 95 70 56 49 45 25 24 15 15
19 0 1 3 9 37 0 2 0 0
4 -- 248 240 130 180 164 -- -- - --
-- 34 36 31 51 40 -- -- -- --
S 300 95 56 50 39 33 22 28 20 20
22 7 0 0 0 1 5 S 0 0
6 194 217 203 155 152 140 108 122 58 --
32 55 69 99 147 120 112 86 35 --
7 .= 97 146 152 42 36 77 77 s1 49
s 23 97 93 14 11 45 53 36 32
] 59 48 35 2 24 22 19 14 10 10
4 0 0 0 0 0 5 0 0 0
9 41 27 21 17 15 13 10 7 S h)
22 0 0 0 0 0 0 0 0 0
10 172 47 33 28 25 22 18 15 12 12
8 0 0 0 0 0 0 0 0 0
11 74 27 24 18 15 13 11 9 7 7
S 0 0 0 0 0 0 0 0 0
12 116 36 26 22 19 17 12 9 6 6
6 0 0 0 0 1 0 0 0 0
13 68 23 22 20 24 26 26 25 24 --
229 22 19 14 23 24 38 39 S8 --
14 149 61 -- -- 34 34 - -- 22 19
14 12 - 27 30 - - 11 0
15 6 8 8 9 9 9 6 5 4 4
1 0 0 0 0 0 0 0 0 0
16 27 292 170 74 101 86 130 120 259 22
7 6 1 11 9 6 74 60 287 0
17 142 144 90 70 64 69 55 46 34 36
41 3 4 6 1 ) 2 0 7 7
18 419 87 49 46 45 38 33 27 23 23
21 14 7 10 13 10 5 1 1 1
** = jreration limit (500), -- = overflow
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