
OPTIMIZATION (U) COLORADO UNIV AT BOULDER DEPT OF
S AS COMPUTER SCIENCE R H BYRD ET AL 81 APR 88
UNCLASSIFIED CU-CS-396-88 ARO-21453 12-MA F/G 12/3 UI

IE IE EHiiIEE/IEEEEEEE//I
//////////II//'
Eu'.... i

-28

a1.0

.' 11 111-

I - iii- Il IIg

3-'-.

.5.

rlu

S.-
1.. . ,.-

-TIFILE U..

Zs.-

1 lUNIVERSITY OF COLORADO

Parallel Quasi -Newton Methods
For Unconstrained Optimization

-77 Richard H. Bvrd '

. Robe-t B. Sc, abel
_____ ~Gerald A. Shultz - __________

CU-CS-396-88 Apml 19SS

- -. DEPARTME TOFC- O MPUTRSCENER SCIENC-
7 -"- r ii CAMPU BsOX '4

~~-,- UNIVERSITY OF-'COLORADO, OLE
* ,t BOULDERiiCOLOR2Db -8O369JJ043

-

-,,'. Technical Report 7 7:.

:7 D 1CT Z
ELECTE12

vi. 7ft-

- -~ ~ PWAY 10 1988
. -W- I.t , _:7t ~ ~ '

I7-

DLTMTON STAT~ENTA 88 j 10 050
* Approved for public rsiKwe;

Distibutiaox Unlimited

Parallel Quasi-Newton Methods
5For Unconstrained Optimization

_ ",%.. o

5,S~ Richard H. Byrd
Robert B. Schnabel*

* ~Gerald A. Shultz ~~

CU-CS-396-88 April 1988E T C

S10 10989

-e* Department of Computer Science, Campus Box 430, University of Colorado, Boulder,
Colorado, 80309, U.S.A.

**Department of Mathematical Sciences, Metropolitan State College, Denver, Colorado,
80204, U.S.A.
and
Department of Computer Science, Campus Box 430, University of Colorado,
Boulder, Colorado, 80309, U.S.A.

Research supported by AFOSR gran AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF
grants DCR-8403483 and CCR-8702403, and NSF cooperative agreement DCR-8420944.

IDWTrI~u1oN STATLWNT A
- Rob rwd fm publ. ISslect

Distribution Unlimited

'j -

',ww m'q

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

0,°

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFI-
CIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

* -*

- 1

S''

O.

.= -V

N".

Abstract

We discuss methods for solving the unconstrained optimization problem on parallel Computers,

when the number of variables is sufficiently small that quasi-Newton methods can be used. We conccn-

trate mainly, but not exclusively, on problems where function evaluation is expensive. First we discuss

- waNs to parallelize both the function evaluation costs and the linear algebra calculations in the standard
4 ',I

sequential secant method, the BFGS method. Then wediscuss new methods that are appropriate when

there are enough processors to evaluate the function, gradient, and part but not all of the Hessian at each

itcration. We-dzvetup new algorithms that utilize this information and analyze their convergence proper-

* tics. -e present computational experiments showing that they are superior to parallelization of either the

BFGS method or Newton's method under our assumptions on the number of precessors and cost of func-

tion c\aluation. Finally we discuss ways to effectively utilize the gradient values at unsuccessful trial

p% p .:: " t arc a\ ailable in our parallel methods and also in some sequential software packages.

o.

IS~
Accsaion For

DTIC TAB C

'..'-\ sP By

.. ' ..- 7Avaj~bilitwv Codes

Dis -- Special

- -"...
..

17
1. Introduction

This paper discusses parallel quasi-Newton methods for solving the unconstrained optimization prob-

lem,

minimize f : R" - R(l)

Our main emphasis is on new methods that effectively utilize multiple processors to perform multiple func-

tion and derivative evaluations simultaneously. We predominantly use these multiple function evaluations

to calculate or approximate derivative values; this results in new methods that have different derivative

information available than in standard sequential algorithms. Both the theoretical properties and the com-

putational performance of these new methods are discussed. In addition, we consider the parallelization of

the main linear algebra costs of such methods.

The unconstrained optimization problem (1.1) arises in many applications in science, engineering,

and other areas, and is often very expensive to solve. Frequently this because the evaluation of f(x) itself

is expensive, often requiring many seconds or minutes on modern computers. Problems with expensive

function evaluations are our main concern in this paper. It is commonly the case in such problems that ana-

- lytic derivatives are not available; we concern ourselves mainly, but not exclusively with this case.

Due to the expense of many unconstrained optimization problems, there is ample incentive for trying

to solve them on parallel computers. If the leading expense is the evaluation of f(x) and its derivatives,

then one possibility is simply to parallelize each of these evaluations. The effectiveness of this approach

depends on how readily a parallel routine for f (x) (and its derivatives) is available, and how fully it paral.

- lelizes the evaluation. In any case, this approach usually is outside the domain of the optimization algo-

rithm designer. In this paper, we concentrate on the opposing case when the evaluation of f(x) is assumed

to be sequential, and parallelism is introduced in the optimization algorithm itself. This approach will be

appropriate whenever a good parallel implementation off (x) is not available, or when the remaining costs

61 of the optimization algorithm (such as linear algebra) are significant. In addition, on a massively parallel

machine our approach might effectively be combined with parallel evaluation f (x) in a multilevel parallel

scheme.

%'** -.- -, ,a .' % %-a. ,a""', ".". - •."-,e -*,., , ,. .' .,,,, %_ *- * , -. , ,- * .- -.*., ,.,¢,,, * - ,. ,,•."'*€r'a" P"-' ",

2

Since we are interested in performing multiple evaluations of an arbitrary function f (x), or its

derivatives, concurrently, our parallel methods require a MlMD computer. This is a computer which can

perform different calculations on different data at the same time. By contrast, an SIMI) computer, which

performs the same calculation on different data at the same time, will not be appropriate in general, since

each evaluation of a complex function will in general require a different sequence of arithmetic operations.

Almost any kind of MIID computer is likely to appropriate for the algorithms discussed herein.

This includes both shared memory multiprocessors, or distributed memory multiprocessors such as hyper-

cubes or networks of computers. The reason is that the granularity of the parallel operations, one or more

evaluations of f (x), will overwhelm any communication or synchronization overhead cost once f (x)

requires even a moderate number of floating point operations. This issue is discussed in more detail in Sec-

tion 2.2. When n is not very large, the parallelization of the linear algebra that we discuss may be more

appropnatc for shared-memory multiprocessor than for distributed memory multiprocessors; this is dis-

cussed further in Section 2.3.

The methods discussed in this paper are all in the general class of quasi-Newton methods. These

* - include secant methods, and finite difference Newton methods, On sequential computers, secant methods

are generally used to solve (1.1) when function evaluation is expensive, the analytic Hessian V2f(x) is

unavailable, and n is not too large. The), use an approximation to the Hessian matrix that is formed from

the gradient values of the iterates, and require n 2 storage and 0(n 2) arithmetic operations per iteration (see

e.g. Fletcher [1980], Gill, Murray, Wright [1981]. Dennis & Schnabel [1983]). They have been tradition-

allyN used for problems with up to about 100 variables, although with the greater storage and speed of paral-

eI computers, they may become useful for larger dimensional problems. The finite difference Newton's

method instead forms a finite difference approximation to the Hessian from function or gradient values, and

requires n2 (n) arithmetic operations per iteration. It is generally used when the analytic

Hessian is unavailable and function evaluation is inexpensive, for problems of up to 50 to 100 variables.

The remainder of this paper is concerned with constructing quasi-Newton methods that are appropri-

ate for parallel computers. In Section 2 we discuss the parallelization of the standard sequential secant

'. .* method for unconstrained optimization, the BFGS method. This topic could be considered some'~hat

unexciting since no new optimization algorithm is involkcd. But it lead, to effective use of parallel

-,.. ,,

S. "- "- "- " -- " " " "- " "- - . ; ; " """ "Z""' "-" '.5" ;" - " ,)
' ' -' "

,',. .,', _, :,.",i .9

3

processors, and may be all that is needed in many situations. Furthermore, it leads to the consideration of

two important techniques. The first is the speculative evaluation of function values introduced by Schnabel

[19871, which is also the basis for the new optimization algorithms discussed in Sections 3 and 4. The

second is the effective parallelization of linear algebra calculations. We compare various methods for

organizing these calculations, including the method of Han [1986] (derived in a different way) and discuss

which method is best in which MIMD environments. In this section we also summarize the results of some

simple experiments with our parallel BFGS algorithm on a Sequent shared memory multiprocessor.

The main contributions of this paper are contained in Section 3. There we further develop a class of

new methods, introduced in Byrd, Schnabel, and Shultz [1987], that evaluate the function, gradient, and

part of the finite difference Hessian at each iteration. These are appropriate in two situations, both of prac-

tical interest: when the function and analytic gradient are naturally computed together on one processor and

the number of processors, p, is between 2 and n, or when the gradient is approximated by finite differences

and 2n 1<_p<(n-+3n)/2. We extend the development of the methods presented in Byrd, Schnabel, and

Shultz [1987], and present both convergence analysis and computational results for what appears to the

best of our new methods.

The methods discussed in Section 3 fall in between the BFGS method and a finite difference

,NcA ton's method. An important aspect of these methods is that, as we explain in Section 3, they are not

generally expected to result in a speedup of p over the BFGS method on p processors. This implies that on

a sequential computer, the new methods will generally be inferior to the BFGS in terms of total function

and derivative evaluations required. For this reason, this class of methods has apparently not been con-

sidered prior to the start of our work on this subject. But in many practical situations on parallel comput-

VrO ers, the new methods will be shown to be superior, in terms of time required, to either the paraUclization of

' the BFGS discussed in Section 2 or a similar parallelization of a finite difference Newton's method. So

these new methods are relevant as long as overall speed, and not just throughput measured in problems

- solved per processor, is of interest.

In Section 4 we discuss how a different, more minor improvement can be made to the parallel BFGS

method of Section 2. It involves utilizing gradient values at failed trial points, which are available in the

parallel algorithm, to reduce the total number of iterations required by the algorithm. Computational

o%

4

results show that some savings are possible. In some sequential codes, this gradient information is also

available and the same savings are possible. Finally, Section 5 summarizes our results and discusses

interesting directions for future research.

2. Parallelizing the Standard BFGS Metbod

2.1. The Sequential BFGS Method

Perhaps the most commonly used method for solving multivariate unconstrained optimization prob-

lems is the BFGS method. It is intended for problems where the number of variables is small enough that

the cost of storing an n xn matrix, and performing 0 (n2) arithmetic operations per iteration, is acceptable;

otherwise conjugate direction methods (see e.g. Gill, Murray, and Wright [1981] or Dennis and Schnabel

(1987]) are used. Generally the largest n for which the BFGS method is applied has been around 100, but

this limit may rise with the availability of faster (sequential or parallel) computers with larger memories.

The BFGS method is most appropriate when, in addition, f (x) is expensive and second derivatives are

unavailable. Otherwise Newton's method or a finite difference Newton's method may be faster, although

the BFGS is still often used in practice.

A high level description of a BFGS algorithm is given in Algorithm 2.1. This description hides many

P. details of the method, for example the calculations in the line search. But it is sufficient to indicate the

important characteristics and costs of the method, which in turn motivate the parallel methods discussed in

the remainder of this paper. For a more detailed description of the BFGS algorithm, see for example

-.- Dennis and Schnabel [1983].

There are two main categories of expense in the BFGS algorithm : function and derivative evalua-

- tion, and linear algebra calculations. The function evaluations occur in the line search, where f is

evaluated at one or more trial points xk+kkdk (with different values of XA), culminating in a successful

. point that becomes Xk,1. Computational experience has shown that hardly more should be required of the

successful point than that it decrease the value off. In this case, the first trial point is oft uccessful, and

sucesulpoVtth Of. ae
%,%

Vo'

* 5

Algorithm 2.1 -- BFGS Method for Unconstrained Optimization

Given xo, f(xo) , go= Vf(xo) (or finite difference approximation), B0E RR"U positive definite (e.g.
B o =l)

At iteration k

(calculate search direction)
solveBkdk = -gk fordk {dk is search direction)

line search)
repeat

choose value of steplength Xk
evaluatef (xk + Xkkdk) (and possibly Vf(xk + .kdk))

until xk + X.kdk is satisfactory next iterate

Xk+1 := xk +X kdk
evaluate gk = Vf (xk + XA.dk) (or finite difference approximation) if not already evaluated during

line search
N

decide whether to stop ; if not:

update Hessian approximation
Sk := Xk+1 - Xk , Yk := gk+1 - gk

By,____
Bk+j := Bk - Bks4Bk + Yk Y[BFGS update }

sTBk Sk .syk

rarely are more than two or three needed; an average of 1.2 - 1.5 trial points per iteration is typical for

many problems. Either during or after the line search, the gradient at the successful next iterate Xk+j also is

calculated. (Very rarely, a gradient value may be calculated at an unsuccessful trial point during the line

search.)

Thus each iteration of the BFGS method generally consists of one or more function evaluations fol-

lowed by one gradient calculation at the last point where the function was evaluated. Often when f (x) is

expensive to evaluate, no procedure is available to calculate the gradient analytically. In this case, the gra-

dient at any point i is approximated by the finite difference formula6

!Vf (X-).-= g, = f (.F+vt, e,)-f (x-) (2.1)
at,

where e, is the iih unit vector and gt, usually is set to macheps I, I. This approximation requires n

evaluations of f (x) in addition to f (x-). So when finite difference gradients arc used, each iteration of the

a.

"'.

* "6

BFGS method usually requires n+1 or n+2 evaluations off (x).

Now we return to the linear algebra costs of the BFGS method. There are two main linear algebra

calculations in Algorithm 2.1, the calculation of the step direction dk, and the calculation of the new Hes-

sian approximation Bk+1. The calculation of BA+1 involves a rank two update to Bk that clearly requires a

small multiple of n2 operations. The calculation of dk appears to require the solution of a system of linear

equations, and hence 0 (n3) operations, at each iteration, but by either updating a factorization of Bk or by

directly updating the inverses of Bk, this cost can be reduced to a small multiple of n2 operations. These

techniques as well as their consequences for parallel computation are discussed in Section 2.3. It will be

seen that the entire linear algebra cost of the BFGS method can be limited to 2n 2 + 0 (n) multiplications,

and the same number of additions and subtractions, per iteration. An important feature of the BFGS

method is that each Hessian approximation Bk is symmetric and positive definite, so that each direction dk

* is guaranteed to be a descent direction.
.- J.

Since the linear algebra costs of the BFGS method are so small, it is easy for function and derivative

evaluation to be the dominant cost For example, if gradients are being approximated by finite differences

and if each function evaluation requires at least 20n multiplications and additions, then function and

derivative evaluation will account for at least 90% of the total cost of the method on a sequential computer.

(We are disregarding some other overhead costs, such as operating system costs, but for even moderate n

our estimates are accurate.) In fact many real problems we have encountered have function evaluations that

are far more expensive than this. Therefore in this paper we concentrate on parallel approaches that reduce

the cost of function and derivative evaluation by calculating multiple function or derivative values con-

currently. Section 2.2 discusses concurrent function and derivative evaluation in the context of the stan-
S

dard BFGS method, while Sections 3 and 4 discuss new optimization methods that utilize concurrent func-

tion and derivative evaluation.

It is still necessary to consider parallelization of the linear algebra calculations in the BFGS method,

5, for several reasons. First, if these calculation are performed sequentially, they may become a bottleneck on

a parallel computer. Second, there are some problems where n is rather large and function evaluation

rather cheap so that the linear algebra costs may be significant. We consider the parallclization of the

linear alLebra calculations of the BFGS method in Section 2.3. While we don't explicitly consider the

d?.:

*% S % N % % % %

i'"'; "°' f" V_ 1 . . Z' .. -"" | .. I '-

K7 -L-k

7

parallelization of the linear algebra calculations of our new methods of Sections 3 and 4, the techniques

discussed in Section 2.2 are directly applicable to these new methods as well.

2.2 Concurrent Function Evaluation in the Standard BFGS Method

In most problems where f (x) is expensive to evaluate, the gradient is not available analytically.

Instead it is calculated by the finite difference approximation (2.1). We restrict ourselves to this case in this

section. The new approaches of Section 3 will be seen to apply both to problems where Vf(x) is calcu-

lated analytically and where it is approximated by finite differences.

The most obvious source of parallelism in an algorithm that uses finite difference gradients is to per-

form the n extra evaluations of f(x) required by (2.1) concurrently. If p processors are available, this

requires Fn ip concurrent function evaluation steps, steps where each processor performs at most one

function evaluation. The drawback to this approach is that during the evaluation off (x) in the line search,

S,. the remaining p-I processors are idle. If p <<n, this is unimportant since each finite difference gradient

requires many concurrent function evaluation steps while each function evaluation requires just one or two,

so this simple approach gives good speedups for expensive f. If p=n, however, then the maximum

speedup that can be obtained on problems with expensive function evaluation from parallelizing only the

finite difference gradient calculation is about n /2, or at most half of optimal. This is because both function

and gradient evaluations require one concurrent function evaluation step, n-1 processors are idle during

• .each function evaluation, and there are at least as many function evaluations as gradient evaluations. A
'V.%

more precise analysis is given below. If p >n,p-n processors are not utilized by this approach.

Ar improvement on the above strategy was suggested by Schnabcl [19871. It simply is, while one

processor is evaluating f(xk+kkdk) during the line search, to utilize the remaining p-I processors to

evaluate max{p-ln) components of Vf(xk-4Xd). We refer to this as a speculative evaluation of (part

of) the finite difference gradient. If xk+XAdA is accepted as the next iterate, as it is most of the time, then

this gradient information is required by Algorithm 2.1 and only n +I-p function evaluations remain for the

finite differcn,e gradient, none if p ? n 1. If xA +Xk d is not accepted. then this gradient information is not

%%,
-V . . , , • , . . . - - ," • 'J '" , .. r ,'' r ",%

o- 8

used by Algorithm 2.1, but nothing has been lost in comparison to the approach described in the previous

paragraph. Furthermore we show in Section 4 how to make some good use of the gradient information at

failed trial points by changing the optimization algorithm.

If the average number of trial points per iteration in the line search is t, then the strategy of con-

current, speculative finite difference gradient evaluation requires

n + +(2.2)

concurrent function evaluation steps per iteration, as opposed to n l+ steps for the sequential method,

and

-- P + 1+8 (2.3)

for the first parallel method that parallelizes the finite difference gradient evaluation only. Thus when func-

* tion evaluation is the dominant cost, the new method will make nearly optimal utilization of n+l or fewer

processors as long as 8 << 1. (Recall that this is usually the case in practice.) The main cases which are not

addressed satisfactorily by this approach are situations when p is greater than n+l, or when the gradient is

calculated analytically. These are addressed in Section 3.

We have run experiments on a Sequent shared memory multiprocessor to show that the speedups

predicated by the above discussion are achieved in practice. We compared a parallel BFGS method utiliz-

ing speculative, concurrent finite difference gradient evaluations and the parallel linear algebra discussed in

. Section 2.3 to a sequential BFGS algorithm. We chose 4 standard test problems with n=40, the extended

versions of Rosenbrock's function, Powell's singular function, Broyden's tridiagonal function, and the

variably dimensioned function (see Mord, Garbow, and Hillstrom [1981]), with one modification : we

. introduced a meaningless loop into each function evaluation so that the total cost of the function evaluation

would be about 20n flops, meaning that function evaluation would account for about 90% of the cost of the

-' entire optimization algorithm. On the 6 processors available to us, the timed speedups ranged from 5.7 to

-S 6.0. These numbers were in close agreement to those predicted by equation (2.2), and underscore the point

that if p <n, function evaluation is expensive, and finite difference gradients are used, then it is easy to

parallelize the BFGS algorithm almost fully.

A, ..

S%.

W' '-°°~. P P A .

9

Finally, we note a different, related approach that has been suggested by several authors (Dixon

[1981], Dixon and Patel [1982], Patel [1982], Lootsma [1984], van Laarhoven [1985]) for utilizing multi-

ple processors during the line search in the BFGS (or Newton's) method. It is to utilize the additional p-I

processors that are available while f (xk +X* dk) is being evaluated to evaluate f (x) at other trial points, in

the direction dk from xk and perhaps in other directions as well. As opposed to the strategies discussed

above, this strategy changes the optimization algorithm and, hopefully, sometimes results in a better next

iterate and thus a smaller total number of iterations being needed to solve the optimization problem.

* -" An interesting question is whether this approach is superior to the approach discussed above, namely

using the extra processors to perform a speculative evaluation of part of the gradient during the line search.

Note that the cost per iteration of the "extra line search points" (ELSP) approach, assuming that finite dif-

fcrent gradients are evaluated concurrently, is given by (2.3). Thus from (2.2), we see for example that if

p Ln I and if 5 = 8 FGs > 0 for the BFGS method and 5=0 (the best case) for the ELSP approach, then the

ELSP approach is superior to the speculative gradient method if and only if it requires no more than

I -. c) 2 times as many iterations as the BFGS method. Thus, if 8BFGS is close to 0, the ELSP method

n ould have to reduce the iteration count of the BFGS by almost 50c to be superior to it. We doubt that this

reduction is likely in general, but would be interested in computational results that address this issue. We

note finally that if a method using the ELSP approach could reduce the iteration count of the BFGS by a

factor of 2 by alAay's considering n points in the line search, then this would in fact be a better sequential

alcorithrn than the standard BFGS as well.

2.3 Parallelizing the Linear Algebra Calculations in the BFGS Method

Aside from function and derivative evaluations, the dominant costs in the BFGS method are the rank

O* tv o update of Bk and the calculation of the search direction dk that are performed at each iteration. As

mentioned before, these require at least 0 (n2) arithmetic operations. All the other calculations in the algo-

rithm require at most 0 (n) operations.

INO,

l!_.... .. ". ","." .',-"- ,...' , '" "' " "'-'" "'""," "" ".". .": .'."-"" '2-"-' ":";. ""-5.' =" '" -" "" " P -" '" ',,

10

It is most convenient to think of the update and search direction calculation as being a pair performed

in that order, i.e. update Bk to BA.1, then calculate d*,+. There are several different ways to organize these

calculations. First, either the sequence of matices (Bk) or the sequence of inverses of these matrices

{Bi')I may be kept. Sequencing Bi' is reasonable because, from the Sherman-Morrison-Woodbury for-

mula, if Bt, is a rank two update of Bk, then Bi. is a rank two update of BiL An advantage of sequenc-

ing the inverses is that the calculation of the search directions dk becomes simple and cheap.

In addition, no matter whether Bi or its inverse is kept, the approximation can be kept either as the

symmetric and positive definite matrix Bk or Bi', or as a factorization of this matrix. If the factorization is

kept then it can be updated directly into the factorization of the next approximation. The general approach

of updating factorizations was introduced by Gill, Golub, Murray, and Saunders [1974], while the special

form used for the BFGS was introduced by Goldfarb [1976).

*These approaches to the linear algebra calculations of the BFGS method are summarized in Table

2.1. For each approach, Table 2.1 shows the basic operations that are involved, and their cost in multipli-

cauons. (The number of additions and subtractions is the same as the number of multiplications, or nearly

so. in each case.) The upper-left variant is the most straightforward and includes a Cholesky factorization

at each iteration; it is the only variant that requires O(n 3) operations. The upper-right variant is the

sequencing of Cholesky factorizations as derived by Goldfarb [1976]. It involves a rank one update to the

Choleskv fa tor Lk of Bk followed by a sequence of Given's rotations that reduce this updated matrix Jh.:

to a ncv, lower triangular matrix Lkj that is the Cholesky factor of Bk+i (see Dennis and Schnabel [19831

for dctail,,. A straightforward implementation requires 6n2 operations but Goldfarb showed that this can

be reduced to 2 .5n2 by storing some additional vectors.

The lower-left variant results from the application of the inverse form of the BFGS update,

.= B + (sk-BI-yk)sI + Sk (sk -B-lyk)T (s -Bi-iyk)Tyk Sk S (2.4)
Y1 Sk Ik

Iiit'. y. s.0" -,)

. followed by the multiplication of Bk-', by gk., to calculate d ,1. If the calculations are organized as fol-

lo" S

z = s -t +dk

Nil

Mt **,"P, ' ~ ~ , ,. , - * C. ' % ..

* 11

'! -'

Table 2.1 -- Four Possible Implementations of the Linear Algebra Calculations:

BA+ = B& + rank-two-matrix

solve B,+j dA+ = --gk+l for dA+j

Matrix Stored Unfactored Matrix Stored Factored

(Bk stored, updated to BA+,) (Lk lower triangular stored, for which Bk Lk LI,
updated to LA,+l lower triangular for which Bk,: Lk.: Li.:

Direct
(Bk) Bk., = Bk + rank-two Jk.l =L k + rank-one
Update Cholesky factor Bk + Jkl = Q*.1 Lk+j by Givens rotations

2 triangular solves to find dk+l 2 triangular solves to find dk, 1

n3 + 2n 2
6n2 (2.5n2)

-(B1 stored, updated to Bi-') (A stored for which Bi-' = A L A A

updated to Mk l for which Bi-+ = Afk+IMT-:

Inverse
(B,-:) B2:j = Bi- 4 rank-two MAl = M + rank-one

Update Matrix-vector multiply to find dk . 2 Matrix-vector multiples to find dA,

".'2n 24n 2

-=sy ,T* = Z Yk

z = z + Sk (2.5)

* B', = Bi-I + z s1 + S Z

y=sjg+1 =zg,+l

dj+1 = I + yz +8sk

then only one matrix vector multiplication, and a rank-two update of a symmetric matrix, are required, each

needing n 2 multiplications as long as only the lower (or upper) triangle of each Bi-I is stored.

The lower-right variant is to keep a factorization AMJ of Bi- , and update Mk by the rank-one for-

*. mula for the BFGS update of the factorization of the inverse to the Mk.: for which Mf,;M1: BA:. In

,%
%O~~q

this case there is no advantage in keeping the factors triangular since the cost of doing this would outweigh

the advantage in calculating dk+j. This implementation of the BFGS has received less attention than the

others, although it has been discussed by several authors including Brodlie, Gourlay, and Greenstadt

[19731, Davidon [1975], and Powell [1987]. Recently Han [1986] derived the same implementation of the

BFGS linear algebra from a rather different viewpoint.

- In exact arithmetic, these four variants of the BFGS method produe identical iterates, and differ

-.,.only in the number of operations required. In finite precision arithmetic, however, they may produce dif-

-ferent iterates. Optimization folklore has long held that the unfactored inverse update may be less stable

than the factored direct update. Since the inverse updates appears more attractive for parallel computation

(see bclo,), ,e decided to test this belief experimentally. We inserted each of the four variants of the

BFGS updaec described in Table 2.1 into the line search BFGS method in the I.NCMIN package of Schna-

* bcl, Koontz, and Weiss [19851, and tested each on the test set of Mord, Garbow. and Hillstrom [19811. The

differences in performance were negligible, averaging no more than 1-2% overall with little variation on

specific problems. J. Nocedal [1987, private communication] has obtained similar results on a broader set

of test problems that included some specifically designed to give the inverse variant difficulties. L. Grandi-

nctti [1978, reports similar results.

Thus we consider any of the variants in Table 2.1 as valid points of departure for the construction of

parallel BFGS methods. It is possible that the difficult), with the inverse updates may be greater for the

DFP update, where there may be a larger tendency to produce numerically indefinite inverse approxima-

tions, and that this may have been the basis of the folklore about inverse updates that was then extended to

include the BFGS. This possibility was pointed out to us by J. Mord [1987].

Now we consider the implementation of the linear algebra of the BFGS method on parallel comput-

ers. The unfactored direct method remains least attractive alternative on parallel computers because of its

high operation count, coupled with the fact that we will see that some of the cheaper methods parallelize

excellently. The factored direct method also appears to be less attractive than the two inverse methods.

This is because any straightforward implementation of this approach requires a sequence of 0 (n) vector-

vector operation, such as Given's rotations. This leads to a considerably higher amount of synchronila-

tion and communication than in the inverse methods, and also does not lead dircik to matrix-vector

%12 .NAl ,'.J1*, .. - w ,.o.
- ,

13

operations, which often lead to more efficient utilization of parallel computcrs.

On the other hand, both of the inverse approaches seem to lend themselves excellently to implemcn.

tation on either shared or lociJ memory multiprocessors. Both consist only of matrix-vector multiplications

and rank-one updates, which parallelize fully and can be implemented as block operations. On a shared

memory multiprocessor with p n processors, we would expect the unfactored direct approach to require

time proportional to 2n 2/p, and the factored inverse approach to require time proportional to4n2,p. Other

considerations, such as caching, seem similar for the two approaches. It is possible that the rank one

update of a triangular matrix, required by the unfactored inverse approach, would not parallelize quite as

wkell as the other operations in conjunction with some caching policies.

On a local memory multiprocessor, it appears that, in order to avoid excessive communication, the

unfactored inverse approach would need to store and update the full matrix BA) (partitioned by rows)

rather than just the upper or lower triangle. This raises the total cost of the method to 3n2 operations Ahich

narrows the gap between it and the factored inverse approach. Again the arithmetic operations should

"" parallelize fully for both approaches. In addition, both approaches appear to require the same amount of

information to be communicated per iteration, although the factored method seems to only require one syn-

chronization point %% hereas the unfactored method seems to require two.

From the above discussion, %e vkould expect the unfactored inverse approach to be the best way to

implement the linear algebra operations of the BFGS method on a shared memory multiprocessor. It would

also a Tni rn be the best approach for a local memory multiprocessor, but it should be tested against the

factored inverse approach. On a ,.d memory multiprocessor, the synchronization costs are small and

the parallel BFGS should be efficient for almost any au .f , and p. For the parallelization of the

-(BFGS to be efficient oi, a local memory multiprocessor, the number of floating point operauoii. ,-,"

sor per iteration, about 3n 2'p, must significantly exceed the cost of sending either one or two messages that

contain a total of about 3n floating point numbers.6.

. The parallel BFGS code mentioned at the end of Section 2.2 uses a parallel version of the unfactored

V inverse approach. To test how v, ell all the linear algebra calculations are paralleltzed, we ran this code on

a Sequcrlt sharcd memory muluproccssor on the cheapest possible objectivc function, f (x) = x 7 x. Thu,

thc linear algebra calculauons are the dominant cost, We also parallelized most of the 0 n computitions.

%-" .- ",No

14

. although inner products were left sequential. We found that the speedup on 6 processors was only about

3.7 for n = 40, and 4.3 for n = 100. These results plus our results using fewer processors indicated that

9' approximately 12c of the code remained sequential for n = 40, while approximately 8% remained sequen-

tial when n = 100. This indicates the importance of parallelizing all the 0 (n) calculations, as well as the

0 (n2) calculations, in a parallel implementation of the BFGS method.

3. Parallel Methods That Use Part or The Finite Difference Hessian

3.1 Approaches to Using Partial Hessian Information

%We nowk consider a class of methods that use parallel processors to evaluate part, but not all, of the

• finite difference Hessian matrix V2f (x) along with the function and gradient at each trial point. Our orien-

tation is towards problems where function and derivative evaluation is the dominant cost. As discussed

previously, this is the case for man) practical problems.

The approaches that we discuss fall in between the BFGS method, which uses only the function and

gradient at each trial point, and Newton's method, which uses the function, gradient, and Hessian. Implicit

I,. in this statement are two assumptions. First, that if we have enough processors to evaluate the function,

gradient, and Hessian in one concurrent function evaluation step, then we will do this and use a modem

Newton's method based algorithm (see e.g. Mort and Sorensen [1983]). Second, that if we do not have

enough processors to do this, then we will probably not want to use extra concurrent function evaluation

steps to evaluate the full Hessian at each iteration. This second assumption is motivated by considerable

computational experience (see e.g. Schnabel, Koontz, and Weiss [1985]) that shows that the iterations

saved by using a finite difference Newton's method algorithm rather than the BFGS method usually do not
offset the extra cost per iteration in function evaluauuN3. The rcslts of Section 3.3 will validate this

%d assumption.

Thus we consider the approach of partial Hessian evaluation whenever there are not enough proces-

,,r, to evaluate the function, gradient, and Hessian in one concurrent function evaluation step, but more

thin enough to c\aluate just the function and gradient. This occurs in two distinct situations, both of

',%

-"_ -V-V V, V

]15

" ' practical interest. The first is when the gradient is evaluated by finite differences and the number of proces-

sors is greater than n+l but less than (n2+3n +2)/2. In this cas, there are more than enough processors it,

evaluate the function and finite difference gradient concurrently at each trial point, but not enough to evalu-

ate the function, finite difference gradient, and full finite difference Hessian. For example, on a 64 node

hypercube, this is the ease whenever n E [10,63]. The second scenario we consider is when the analytic

-,gradient is readily computed along with the function value, so that it is most convenient to computer both

on one processor, but the analytic Hessian is not available. This is the case in a reasonable number of prac-

* tical problems, for instance many optimal control problems. In this case, if the number of processors is

between 2 and n, we again have more processors than are needed for just the function and gradient, but not

enough for the full finite difference Hessian (which requires n additional gradient values) as well.

In either of these cases, the methods of this section use the excess processors to compute as large a

• portion of the finite difference Hessian as possible at each iteration. An interesting aspect of these algo-

rithms is that while the) will be seen to be worthwhile on parallel computers whenever the partial Hessian

evaluation uses otherwise unutilized processors, or if the goal is absolute speed (rather than speed per pro-

cessor), the) are not in general the most efficient methods on sequential computers. Probably for this rea-

son, they have apparently not been considered prior to our investigations.

Byrd, Schnabel, and Shultz [1987] proposed a variety of approaches for utilizing partial Hessian

information, and examined some of their computational and theoretical properties. The general approach

.... that they found to be best is outlined in Algorithm 3.1. The remainder of Section 3.1 continues the

-i! development of this approach. In Sections 3.2 and 3.3 we present new theoretical and computational

results about this type of method.O

,,. Algorithm 3.1 differs from the standard BFGS method, Algorithm 2.1, in several ways. First, the

speculative gradient evaluation discussed in Section 2.2 is performed at each trial point in the line search.

Second, speculative evaluation of some portion of the Hessian also is performed at each trial point in the

V . line search. Third, this partial Hessian information is incorporated into the Hessian approximation at each

iteration, following the standard BFGS update. We now briefly discuss the motivation for these steps and

some of the alternatives considered in Byrd, Schnabel, and Shult. [1987]. We also introduce some nc
.4

apects of these steps.

-%. _%W24

16

Algorithm 3.1 -- Quasi-Newton Method for Unconstrained Optimization
Using Speculative Partial Hessian Evaluation

Given xo , f(xo) , go= Vf(x 0) (or finite difference approximation), B 0 e R-a positive definite (e.g.

Bo=l), q e [1,n-l)

At iteration k

calculate search direction
solve Bk dk = -gk fordk d& is search direction}

1 { line search}
choose set of q linearly independent vectors u1 , uq

repeat

choose value of steplength Xk
'-,.. evaluate f(xk + kdk), Vf(x* + .Xkd,) (or finite difference approximation), and finite
'Y difference approximation to V2f (xk + Xk d*) u, for each i E [1, q I

until xk + kdk is satisfactory next iterate

x. x. := xk + Xk dk

decide whether to stop • if not

update Hessian approximation I
sk :=xk. -X , Yk :=g.1 -g

B :B Bs sk y y
- +ks -r---BFGS update)

B.. BA - -s - +-7

Bk.: update of B,., based on the finite difference information V f(xi,1J u,, i=l, q

The partial Hessian information that is approximated in Algorithm 3.1 is Vf(x) u, i=l, . q.

Byrd, Schnabcl, and Shultz considered two choices of the vectors u, that are selected at each iteration : a

set of q unit directions, or a set of q conjugate directions. They found that using conjugate directions led

to no significant advantage in the context of Algorithm 3.1, and that it caused a considerable extra linear

" algebra cost. Therefore, we only consider the use of unit directions below. That is, at each iteraton w-e

I!., selecct "u,

,'- choose a set r* of distinct integers bet'uecn l and n

u, = et, where y, is the ill member of FI 3.1

This means that our algorithm approximates q column of Vf (x), \,ho,,c indes are given by Fk, at e.h

itcration. In our computational implementation, we choose the sequence of ,t, F, to cycle through te

",o,

% VV.% %
%-% %.

17

indices I to n.

If the function and gradient are evaluated analytically together on one processor, then column i of

the Hessian at i = xk +)kdA can be approximated by calculating Vf (i + ., e,) where iW, =

macheps '2 I-, I, and then seuing

V 2f(i)e, = h, = Vf(X+eVf() (3.2)

Thus if p E [2, n] processors are available, then q will be set to p-1 and q columns of the Hessian will be

evaluated using q additional gradient evaluations.

If the gradient is not available analytically, then the only way to approximate the gradient or Hessian
F"

is from finite differences involving function values. Let rk = {j I jE [1,2. ,n }, jqFk). A new,

a_ efficient way to approximate the gradient and q columns of the Hessian at i is to use the formulas

=) h) (3 .3 a
a'a

Vf A7) , f + (i. Ie,) -f (xT (3.3 b

for i EF k,,jeC Fk,"where , =macheps 1 I ,and , =machps 4Ij 1,

f(+ 0, e, + Pe,) -f (+ , e,)-f(+ P, e) f f(T)
V(f (f),) +a,), +,i (3.3c)

Vf (=),, (h, f(i+ P,e,)- 2f(X-)+f(i- P.e,) (3.3d)

, for i.] j VEr, i =., where ,=macheps 13I, 1,

Vf(T), h, = f(i + ,e,)-(f(i 3, e,) (3.3c)
2 P,

* for iEFk, with the same 3,. Using these formulas, we can approximate the function, gradient and q

columns of the Hessian using (n+l-(-j)) (q+l) function evaluations. Thus if p processors are available,
'pl

we will choose q to the the largest integcr for which (n *1-(- q + 1q+) !p. A side benefit of the above

formulas is that for each i E r, the i I component of the gradient is approximated by central difference.

a..' and hence is more accurate than the value given by the standard forward difference approximation (2.1), at

no additional cost in function caluauons.

4,.

4.t,
4.
%'

0

a. 'V" a s

• ",.'.' - '." -. .""*. . .,'. , '","'-%"5 ,."4-.',.f''-, ' ', ',, ".' ,,",.,,.. 'i,4,".'
"

" 4-." ,"-", ,..": ,"" :,:"

* 18

The partial Hessian information is incorporated into the new Hessian approximation after the nex%

iterate xk, is selected. At this point Algorithm 3.1 potentially has q +1 new pieces of information to incor-

porate into the Hessian approximation : the standard secant equation

BAi sk = Yk (3.4)

and the q finite difference values

B+ u, = z, =1.q (3.5)

where u, = e., and z, is the finite difference approximation to column y, of V2f (xk.1). We incorporate the

standard secant equation (3.4) first, and then the finite difference information (3.5). This order seems rea-

sonable because the standard secant equation gives, in some sense, information about the Hessian value in

between xk and x,.i, while the finite difference information is at xA,. and hence is the most current infor-

mation. Updating in this order means that the standard secant equation may not hold at the ultimate value

of Bk.:, but in Section 3.2 we show that q-superlinear convergence still is retained. Byrd, Schnabel, and

Shultz [1987] also considered omitting, or only temporarily using, the standard secant equation (3.4), but

their computational results indicated that it is preferable to include it. This is the only possibility con-

sidcrcd in this paper.

First %kc incorporate the standard secant equation (3.4) using the standard BFGS update. Then there

arc various ways to incorporate the finite difference information (3.5). Byrd, Schnabcl, and Shultz [1987]

show that using the PSB update is simply equivalent to overwriting the corresponding row and column with

the finite difference information. Hovever their computational results show that using the BFGS update

may, lead to a slightly more efficient algorithm, and it has the advantage of generating positive definite Hes-

is sian approximations. So we will use BFGS updates to incorporate the finite difference Hessian informa-

tion. Byrd, Schnabel, and Shultz [1987] only consider in detail the case q = 1; now we consider ho, to
5-.

incorporate (3.5) when q > 1.

We have considered two %kays to incorporate the partial finite difference Hessian information (3.5
S.

by BFGS updates. The first is to perform a sequence of q standard BFGS update\, i.e.

% l

.-

.55

O- S -

'0* 19

-, u, + U! Z, if u, z, > 0_ u,_ _., u, -- ,(3.6)

€ . -. / ,,o t h e r w i s e

for i=l, , where Bk+,., Bk,. and Bk,. = Bk. 14 ,.. This procedure has the advantage of simplicity

but the possible disadvantage that Bt., will, in genera], only obey the last finite difference equation of (3.5)

ex actly .

The second alternative is to use multiple secant updates (Schnabel [1983]). Let U E Rn" have as

.4. its columns u_ q, and let Z E R-q have as its columns z_, i=1.q. If UTZ = UTV 2f(xk.,.) is

positive definite, we use the multiple (rank 2q) BFGS update

6k.1 = B ,I - Bk,! Uk (UZBA,.I Uk)- UIB* 1 + Zk (.'ZA)- Zj (3.7a

This update causes Bkl to satisfy all q equations in (3.5), and to be positive definite given that Bk., is posi-

tive definite. If V. = V-f(xki)U exactly then the matrix U'Zk is symmetric. However, if we use finite

difference approximations for VA the discretization error can cause that matrix to not be symmetric. There-

" "fore. %hen using finite differences, we replace UJVk with /, (UIVA -- I'U) in (3.7a).

If UTZ is not positive definite, we use a sequence of smaller multiple secant updates to partiall\

- enforce (3.5). First 'we select the subset PD of Fk consisting of indices i for \, hich the equations of (3.5)

are consistent with positive definiteness, i.e.

PD =(i l iE[1,q]anduz,>O}.

Then vkc use a heuristLic to select a maximal subset PD of PD for which TZI is positive definite, w.here

".' has as its columns u, for all iEPD:, and ZI has as its columns z, for all iEPD 1 . Then we similarl

select a subset PD2 containing some or all of the remaining members of PD, for which UIZ2 is positiC
0 definite, Ahere U 2 and Z 2 are defined similarly. If any columns remain, we then select similar subsets

-, PD,. PD,. until each i E PD is in exactly one subset, and each UJZ is positive definite. Then we use
"@%.

"" the multiplc BFGS formula (3.7 a) to incorporate, in order, each of the equations Bk ! ., Z, for j going

from m down to 1, choosing the backvkard order so that the maximal subset is incorporated last. That is,

v\e perform the updates,

., = B. - B., U, ('7B*.:, U, -< ,Bk.8, U Z, (T/.Z: , i=m do, n to I (37b)

*.h-rc B,. = B ,.: and B.: B,. In the computauonal implementaion, v e replae the crilerio

0,?

% % % ,

%r -

20

, ufz,>0, which we have used above for simplicity of exposition, with the criterion uf:, >

r,_"Cleps"' I I u, I 2 I1 Z, 1 12.

We have tested algorithms both the first alternative (3.6) and the second alternative (3.7), and noticed

a slight advantage for the second, multiple secant approach. Therefore only this approach is considered in

- the computational results presented in Section 3.3. In performing the convergence analysis of Section 3.2,

however, it turns out that the techniques we use to prove the convergence of the method using the multiple

secant approach (3.7) build upon the convergence analysis of the sequential update approach (3.6). There-

fore in Section 3.2 superlinear convergence of both of these methods of incorporating the partial finite

difference Hessian information is proved.

~'A.2 Con% ergence Properties of Partial Hessian Methods

We noA consider the question of convergence of the new methods discussed in the previous section.

\Ve are able to show that Algorithm 3.1 has the same properties of q-supcrlinear convergence and global

convcrzcnce on uniforml) convex functions that the BFGS method has. In particular we are able to estab-

lish results similar to some of those of Powell [1976] and Dennis and Mord [1974], although we will make

use of machinery for analyzing secant methods developed by Byrd and Nocedal [1987]. The convergence

rcsulLs in this section will be proved under the following assumptions.

Assumptions 3.1.

* (1) The objective function f has a Lipschitz continuous second derivative on the level set

," 0 = (x :f (x)_f (xo)}. Denote the Lipschitz constant by L.

(2) There are positive constants. 41 and ., such that for all z cR" and all x c

. I Ia Iz 112<zTV2f(x)z 51.1211z 112.
Note that this implies thatf has a unique minimizer x. in Q.

0 The line se arch used with Algorithm 3.1 has the property that there exist p sitive constants T11 and

T such that at each iteration cithor

% %

a,

a,-'.,

r -, - * . %.'-

. ,),21

-"f (x,+kJd) f (xk)dk 2,

or

f (xi+ X dk) <f (xk)+I 2Vf (x) d (3.9)

is satisfied.

(4) The line search has the property that if II (B -V2f (x.))sk II and I xk-x. I I are sufficiently small
" I~~~~~~~ ~~~sk II adIkx Iaesfiinl ml

then the steplength = 1 will be used.

"-" (5) The Hessian information used for the extra updates is exact. That is, z, = V-f (xk+i)U, in (3.6), and

Z = V2f (x., 1)U in (3.7 a)

The line search assumption (3) is meant to be as general as possible. It can be shown that it is

satisfied for some T , I. if .* is chosen by any standard procedure such as the Wolfe conditions (3.17-18),

. the Goldstein conditions, or any reasonable backtracking strategy. This condition is discussed in more

detail b\ Byrd and Nocedal [1987]. Assumption (4) was shown to be satisfied by the Wolfe conditions by

Dennis and Mord [1976], and similar arguments show that the Goldstein conditions and backtracking also

satisfy Assumption (4).

Theorem 3.1. Consider Algorithm 3.1 with the finite difference updates made sequentially by (3.6), and

suppose that Assumptions 3.1 are satisfied. Then the sequence (xk) that is produced converges super-

linearly to the solution x..

Proof. In the sequential updating algorithm, the quasi-Newton approximation, B, is updated successively

by BFGS along step directions sk and finite difference directions u,i = 1,...,q. For the moment we will

number the sequence of quasi-Newton matrices over the entire algorithm in order of computation without

regard to the type of update made. Therefore we denote Bk by B((q.i}k) and B,.:, by B (q.:)(_).,). Like-

4 wise we denote the directions sk and u, by a sequence (r,) where sk = rc,.:)k and, at iteration k,

U, r(q+I)k.,. Each update then has the form

B ()r, r,TB , ," "~~ B B()~~B)+wwr

r,, I- U r'o, r

A, here for each update

%-%N

4,

0A ',%

N N' .

"-"'- w, G, r,.(.1/

For the finite difference based update G_ - V2f (xk+1), and for the step update

. ~V2f (xk +Tsk)sk d T.

In either case by the uniform convexity in Assumption (3.1.2)

wTr rTG~r
~(3.11)

. " r] r, r1 r1F

and

w Tw rTG 2 r
w, r, rT G r

No, by Theorem 2.1 of Byrd and Noccdal [1987], if a sequence of BFGS updates is performed Awith (3.11)

--. - and (3.12) satisfied for each update, then for any fraction p E (0,1) there exist constants [and 3: such that

for an, positive integer m the bounds

r, TB c,)I ~"" " rrB(-)r:(3.13i

anJ

rIB r, I

are satlu,,med for at least pm values ofj in [1,m]. (Note that the quantity in (3.13) is the cosine of the angic

bet\ccn r1 and Bw)r,.) Now if (3.13) is true for r, a step direction then that implies that it is a strong de-

cent direction. To ensure that many step directions are strong descent directions we take p to satisfy

• ... p>q+I

Then bV the quoted result on the BFGS, in k outer iterations (q-l)k updates are made, of Ahih

p,'q-Il)k > (q+V/)k satisfy (3.13) and (3.14). Of these at least (q+ 1)k updates, at most qk are finite

difference updates so that at least '/ of the step directions satisfy (3.13) and (3.14).

Now by Theorem 3.1 of Byrd and Nocedal [1987], if (xk) is generated by

S-Xk. = x X k- = Xk -X. B -)
1
Vf (Xk)

where, for each k, at least some fixed fraction of the directions satisfy

4*.,
Sk 7Bk Sk >r

and

o, 1-~ N 1rV

0 13

I I~~k1

and the line search satisfies Assumption 3.1.3, then (xk I converges to x. r-linearly so that

Ilxk-x. 1I (3.15)

To show that the convergence is supcrlincar, note that since the quasi-Newton matrix B is updated

q -I times at each point (3.15) implies that the matrices G, in (3.10) satisfy

I IG, -V-f (x.) 11 !5(q +l)L , mrax [llxk-i-x° 11, llxk-x. III <,.

Therefore by Theorem 3.2 of Byrd and Nocedal [1987], or alternatively by Theorem 3.4 of Dennis and

,rN i7'i it follow s that

II (B k-V 'f (x.)) 4 I 0.
I lSk I

>Frrm th, fact, superlincar convergence of the sequence fxk follows by Theorem 2.2 of Dennis and

.,:: ~1)74: and Assumption 3.1.4. E

ok e consider the multiple secant update (3.7). It turns out that doing the multiple update using an

q ." n or, U i, cquivalent to a sequence of q simple updates along a set of conjugate directions spanning

-. t~i :,,u:mn ,pace of U.

Lemma 3.1. Con~iaer a sequence of q standard BFGS updates (3.6) to the positive definite matrix Bk

L-. r ,Z ,lr"'ll: , u, that are conjugate vith respect to V 2f (xk,.). Suppose that Assumption 3.1.5 is

T. , n, the rcsultin2 matrix B,.:.q+! is the same matrix as results from a multiple update of the

1-. '.,.7:.-arc the column space of the matrix U, is equal to the span of {u,. .. uI as long as the

V .. ; U is positive definite.

"lrof. P r~t 'w note that the multiple update depends only on the column space of U. This is true since an

,,, : e the same column space as U must have the form UT, where T is a nonsingular q xq

rn.,:: I i then replace I by UT and Z by 7F in (3.7a) it is easy to see that the result is unchanged.

T,rcf,,re for the rest of the proof we assume without loss of generality that the columns of U are

.. .:.' ,, .'. ., , SinLc Z = V f x U, conjt acy wkith respc ct to f(x*-:) implies tht

S.-.

0JX--------

24

U TZ diag (u, Tz,)

so that the last term in the multiple update formula (3.7a) is

Z(UTZ)1IZT= Z Z' ,T(.6
L(3.16)

If we consider sequential updating we see that the final matrix is

Bk+1.*I Bk1,o- TB k+1 f~ zf T~

Note that the last sum is equal to the last term in (3.7a). Now consider the q BFGS updates one at a time.

For a g iven i, if k +1 uJ =Z. forj i then

u,- Bk+,uiu.TZzzru)

u, 'Bk+2"U, U,

*since by conjugacy u, , U) T u, T V2f (Xk 1)U = 0. Therefore, since each update causes

= z..., after q updates Bk+1.q.Iu, = z, for i 1..,q, so that the q secant equations are satisfied

- * just as for the multiple update.

Now consider the matrices

D Bk+ju, uT7B*k,

and

D2 Bk,.,U(UBA+lU)'U TBAk,.

We have that

D11,,' =Bk,:L' +Z(UTZ)ZT Bk, .,q.:LU

Bk. - BU + Z*-Zk = Bk,I U = D 2U.

Therefore since the matrix Bk+,U has rank q and D I and D2 are rank q macrices, it follows that both

matrices have the same range, the column space of BA+nU. Since they are symmetric they, also have the

* same null space. Together with the fact that D U = D2U this implies that D, D2. Therefore by (3.16) it

follows that the resulting matrices are equal. El

Note that for this result we~ have not used any of the Assumptions 3.1 except the last one. Although

xkc have stated this lemma for a complete multiple update of the form (3.7a), it is clear that the proof

0'%

%

'-;.?:25

applies to each of the partial multiple updates (3.7b) as long as each of the matrices UT V-f (xk,.1)r" U'Z'

in (3.7b) are positive definite. Thus the sequence of multiple updates (3.7b) is equivalent to a sequence of

single BFGS updates using conjugate directions in the same order.

Given the equivalence result of Lemma 3.1 the convergence of the multiple update version of our

algorithm follows immediately. Since the convergence analysis assumes positive definiteness of V2f (x), a

complete multiple update will alvays be possible in Algorithm 3.1, and we need only consider the form

(3.7a).

Theorem 3.2. Consider Algorithm 3.1 with the finite difference information incorporated using the multi-

ple update (3.7a) with the matrix U having full rank at each iteration, and suppose that Assumptions 3.1

are satisfied. Then the sequence txk) produced converges superlinearly to the solution x..

Proof. By Lemma 3.1, Algorithm 3.1 using a multiple update is equivalent to Algorithm 3.1 with a sequen-

% ial update along a set of directions conjugate with respect V
2

f (xko.) and spanning the column space of U.

By Theorem 3.1 that version of Algorithm generates a sequence which converges to x. superlinearly. D

We have thus shown that both versions of Algorithm preserve the convergence properties of the

BFGS method. It is interesting to note that Theorems 3.1 and 3.2 put absolutely no conditions on the

choice of U except that it have full rank at each step. Of course this is true because we are only trying to

show that the extra updates do not interfere with the good properties of the BFGS. One might hope that

there is some theoretical result showing that the finite difference updates actually improve the convergence

behavior of the algorithm in some way, but we have not been able to find one. It is interesting to note that

• Byrd, Schnabel and Shultz [1987] prove that if the step update is omitted (or removed after step computa-

tion) the resulting algorithm is -step quadratically convergent, and this result depends very strongly

on how the finite difference directions are chosen. However, as mentioned in Section 3.1 that method per-

forms more poorly in numerical experiments than the method analyzed here.

. - . . .

N

* 26

3.3 Computational Performance of Partial Finite Difference Hessian Methods

We have tested the partial Hessian Algorithm 3.1 on a variety of test problems. Byrd, Schnabel, and

Shultz [1987] report the results of tests for the case q=1 only, on a set of problems from Mord, GarboA,

and Hillstrom [1981] with small values of n. Here, we report on tests of Algorithm 3.1 for the full range q

= I to n. When q>1, we incorporate the partial finite difference Hessian information by the multiple

secant procedure (3.7). The test problems considered are a combination of problems from Mord, Garbov,,

and Hillstrom [1981] and Conn, Gould, and Toint [1986], run with the values n = 20 and n = 40. They are

listed in Table Al in the appendix. The standard starting point was used for all problems except #15,

S'. where (-0.5, 0.5,. • ,-0.5, 0.5) was used because our BFGS algorithm overflowed from the standard start

'.'."point (- 1, 1, ,- -1, 1).

The implementation of Algorithm 3.1 that we tested was obtained by modifying the BFGS, line

search algorithm in the UNCMIN unconstrained optimization software package (Schnabel, Koontz, and

Weiss [1975]) in two ways. First, at each iteration the finite difference information update (3.7j was added

after the standard BFGS step update, as explained in Section 3.1. Second, the backtracking line search in

UNCMIN, in which each iterate satisfies the condition

f (xk.1) < f (xk) + cxVf (x,)TdA (3.17,

for ct 10 < , wkas augmented so that each iterate also satisfies

Vf (xk,.)Tdk > PVf (xk)rdk (3.18

where 3v0.9 (using Algorithm A6.3.1mod in Dennis and Schnabel [1983]). With condition (3.18), a posi-

tire definite step update is al\Aays possible. The 3FGS algorithm used for comparison was the same algo-

* rithm without any finite difference information. The Newton's method algorithm used for comparison was

I O the line search, Newton's method algorithm in UNCMIN; if the Hessian is indefinite, it uses a modified

Cholesky decomposition strategy described in Dennis and Schnabel [1983] to perturb the Hessian and cal-

culate the line search direction. The standard UNCMIN stopping conditions, described in Schnabcl,

Koontz, and Weiss [1985], were used. The tests were run in double precision on a VAX 780.

We are primarily interested in the performance of this method on parallel computers when function

evaluation is expcn-ive. As discussed in Section 2.1, function evaluation does not have to be ver\ cxpn-

.'iVJ g.:.".** :-r-' :-'--'- . . *,':~J*

27

si"se before it swamps all other costs of the BFGS method on sequential computers. Even on a loa!

-*~i memory' multiprocessor, once each function e aluation requires several thousand floaung point operation,,

the cost of function e aluations is hkeI! to swkamp all costs including synchronizauon and communication

Thus wAe vill evaluate Algonthm 3.1 for each value of q by simply counting the number of trial point

function exaluauot s it requires to sole each problem, (i.e. the total number of points tried in the line

searches and all the iterations, plus the starting point). If there are enough processors to evaluate the fun,:-

i .iuon, gradient, and q columns of the finite difference Hessian in one concurrent function evaluation step.

then the number of trial point function evaluations is equivalent to the number of concurrent function

exaluauon steps and is indicative of the cost of Algorithm 3.1 on a parallel computer, for expensive fun,-

uons. The speed of Algorithm 3.1 is then compared to the speed of the parallel BFGS method, implc-

- nntcd a_ discussed in Section 2.2. This parallel BFGS method is assumued to use speculative gradient

e\aluations so that the function and gradient are evaluated in one concurrent function evaluation ste;, but

an' additional processors are unused.

The raA computational results for our method for various values of q, as wkell as for the BFGS

method and Nev, ton's method, are given in Tables A2 and A3 in the appendix for n = 20 and 40 respec,-

tk,.l\h. This data is summarized in Tables 3.1-3.3. Tables 3.1 and 3.2 give the simulated average spelup,

o\,cr the parallel BFGS method, that we obtained for each value of n and several values of q. These aver-

age speedups vere computed by taking all the problems solved correctlyv b both methods for a given value

of q and n, and dis iding the total number of trial points required by the BFGS method on all these prob-

lems by the total number of trial point.s required by the new method on all these problems. This is a rea-

sonable ineasure of speedup under the assumptions that function evaluation is expensive and there arc

enough processors to evaluate the function, gradient, and q columns of the Hessian simultaneouslh. Prob-

lems not solved successfully for one or both methods are excluded \khen computing the speedups in Table,

3.1-3.3; we noticed no significant difference in the success rates of the various methods.

If the function and gradient are evaluated together, analytically, by one processor, then Tables 3.1-

3.2 reflect the use that Algorithm 3.1 could make of from 2 to n+I processors. If the gradient is e\aluated

b\ finite differences, then the "standard" BFGS method that is used as the comparison itself rcqUirc, P -

. proke <ors, and Tables 3.1-3.2 refleot the use that Algorithm 3.1 could make of from 2n I to n ,r

Z.A

0' %

28

Table 3.1 -- Average Speedup of Algorithm 3.1 over Parallel BFGS Method, n=20

q 1 2 3 4 5 10 20

Average Speedup 1.86 2.03 2.55 2.51 2.67 3.17 3.97

Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 2 3 4 5 6 11 21
with Analytic Gradients

Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 1.95 2.86 3.71 4.52 5.29 8.38 11.00
with Finite Diff. Gradients

0I

Table 3.2--Average Speedup of Algorithm 3.1 over Parallel BFGS Method. n=40

q 1 2 3 4 5 10 20 40

Average Speedup 1.54 1.95 2.16 2.18 2.31 2.46 2.92 2.44
without problem 16 1.88 2.07 2.23 2.39 2.50 3.12 3.76 5.37

Ratio of Processors Needed
by AIg 3.1 vs. BFGS, both 2 3 4 5 6 11 21 41
with Analytic Gradicnts

Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 1.98 2.93 3.85 4.76 5.63 9.66 15.88 21.00
%kith Finite Diff. Gradients

Table 3.3 Average Speedup of Algorithm 3.1 over Parallel Ne~lon's Method

.-

q I 2 3 4 5 10 20 40

A cra e Speedup, n=20 1.98 1.52 1.42 1.43 1.55 1.23 0.87

A Average Speedup, n=40 2 27 2.03 1.70 1.87 1.55 1.018 ()Q1 0.37
* %k tltohut problcm 16 2.70 2.23 1.71 2.02 1.63 1.37 1.33 0iQ4

- -V

29

processors. The ratios of the number of processors required by Algorithm 3.1 to the number required b\

BFGS are given in Tables 3.1-3.2 for both scenarios. It should be kept in mind that in the finite differen,.e

case, the BFGS method which is the baseline is already a parallel algorithm that uses the speculative gra-

dient evaluation discussed in Section 2.2. It achieves an average speedup of 17.5 and 34.3 over the sequen-

tial, one processor BFGS algorithm in the cases n = 20 and n = 40, respectively. (This indicates that the

-.- "average number of trial points evaluated per iteration in the line search is about 1.2.) Thus Algorithm 3.1

actually achieves average speedups over the sequential BFGS method of 32.6 to 69.5 for q ranging from I

to n A hen n = 20, and 52.8 to 83.7 (64.5 to 184.2 without problem 16) for q ranging from I to n when n

=40

-"- There are tAo important conclusions from Tables 3.1-3.2. First, the new methods clearly derive a

considerable gain in speed from the extra Hessian information that the), use. Second, this gain is not usu-

all proportional to the ratio of processors (or equivalently, pieces of derivative information per iteration

that they use. HoAever, this was to be expected since we know that Newton's method, \hich uses roughl\

n '2 imes as much information (and n or n /2 times as many processors) as the BFGS method, is not usu-

a!l n 2 times as fa.t in terms of the number of trial points, or iterations, required. In fact on these test seL,,

"- inte difference) Nev, ton's method is, on the average, 4.7 and 7.1 times as fast as the BFGS method in the

cases n = 20 and n = 40, respectively. The new method does a reasonable job of obtaining an increasing

speedup as q changes from 1 to n. What is most satisfying is that the speedups are quite substantial for

small values of q before leveling off; they are at least 507c of optimal for q up to about 4.

There is one test problem, #16 (Variably Dimensioned Problem), where the performance of Algo-

* rithm 3.1 is considerably worse than in any other case, especially when n = 40. This is the only problem

where the performance of Algorithm 3.1 with q=n is substantially worse than Newton's method, and the

case q=1 has by far the worst performance of any test problem relative to the BFGS. We are continuing to

study our algorithm to attempt to understand this behavior and see if it can be avoided. Since this one

problem so strongly influences our average statistics in the case n = 40, Tables 3.2 and 3.3 also show what

the averages would be without problem 16.

Table 3.3 compares the performance of Algorithm 3.1, \ith various values of q, to the performance

of a parallel implementation of the finite difference Newton's method, under the assumption that the

O,

30

gradient is evaluated by finite differences and that there are just enough processors to evaluate the function,

finite difference gradient, and q columns of the finite difference Hessian simultaneously. This means p -

(n+-l-4) (q-'I). The parallel finite difference Newton's method is assumed to use the most efficient

parallel strategy. That is, at each trial point it computes the function, gradient, and as many elements of the

Hessian as the remaining processors allow. Then if the trial point is accepted as the next iterate, it uses

,-1 concurrent function evaluation steps to evaluate the remainder of the Hessian, %,here No =

(n 2,3n -2)'2(n+l-(q 2))--l) Thus the total number of concurrent function evaluation steps required by the

parallel finite difference Newton's method to solve a particular problem is

(N, x (1 + number of iterations) + (number of unsuccessful trial points) , (3.19)

hile for Algorithm 3.1 it is the total number of trial points for that problem. (Recall that the total number

of trial points for a problem is I + number of iterations + number of unsuccessful trial points.)

For each value of q and n, the speedup shown in Table 3.3 is the total number of concurrent function

evaluations required by Newton's method, measured by (3.19), divided by the total number of concurrent

function evaluation steps required by Algorithm 3.1, where the totals are taken over all the problems suc-

cessfully solved by both methods. Table 3.3 shows that for all values of q _ n /2, Algorithm 3.1 is more

efficient than a paralel finite difference Newton's method, under the above assumptions. (If problem 16 is

included for n = 40 then the q=n/'2 case is slightly worse than Newton's method on the average, but

without it it is considerably better.) Thus for q 5 n /2, it appears to be better to evaluate just as much of the

finite difference Hessian per iteration as the processors allow in one concurrent function evaluation step,

rather than using extra concurrent function evaluation steps to evaluate the remainder of the Hessian.

Table 3.3 also shows that when q = n, Algorithm 3.1 is slightly inferior to Newton's method. The

two methods are very similar in this case, since each computes the ful finite difference Hessian at each

iteration. The only difference is that Algorithm 3.1 does not use all this information if the approximation is

indefinite, while the finite difference Newton's method uses the entire Hessian and employs the perturbed

Cholesky decomposition given in Gill, Murray, and Wright [19811 to compute the search direction when

the Hessian is indefinite. As might be expected, often there is no difference between the two methods but

occasionally discarding some Hessian information is somcwhat detrimental to the performance of thc

'.A"

N i, A
* "1 A . A /'.(*. , A 1,,1'~A E.~ A"j' .~' ~ '.'A ' .A~W %fA

..,,,,,2..-,. +, . * . .. - * 'A A 'A- .A.U A.*. - \'A'A % 'A'AA,'A 'A

q9 " 31

Algorthm 3.1. It might be advantageous to incorporate a scheme for using indefinite finite difference Hes-

sian information (perhaps the PSB or SRI update) into Algonthm 3.1, but this would need to be done in a

way that doesn't hurt the performance of the method for small q. We consider this a topic for further

research

Finally, we also tested in detail the version of Algorithm 3.1 that uses the sequential scheme (3.6),

rather than the multiple update scheme (3.7), to incorporate the finite difference Hessian information. In

general. the muluple update approach required from 5% to 25c fewer iterations and function evaluations

to solve the same problems with the same value of q. For this reason, we recommend the multiple updat-

ing scheme.

4. Using Gradient Values at Unsuccessrul Trial Points

.In this Section we discuss a relauivcl) minor improvement that can be made to the parallel BFGS
In tsm

algorithm discussed in Section 2 as %ell as to some sequential BFGS algorithms. It is to use the gradient

values that are computed at the unsuccessful trial points in the line search to reduce the total amount of

wkork required to solve the optimization problem. If the gradient is evaluated by finite differences, then we,

assume that we are using the parallel BFGS algorithm of Section 2 with p>n+l so that the entire finite

difference gradient is evaluated at each trial poinL If the analytic gradient is a by-product of the function

evaluation on one processor, then the information we consider is available in a standard sequential BFGS

- method. It is also available in an , sequential unconstrained optimization code that requires the gradient to

be returned along with the function value; some unconstrained optimization software packages, for exam-

* ple CONMIN (Shanno and Phua [19781) and MINOS (Murtaugh and Saunders [1983]) are organized in

this way. The strategies discussed in this section are applicable to all thesc situations.

In all the above cases, even though the gradient is available at unsuccessful trial points, it is only

* used in the line search. Schnabel [1987] proposed several further uses that might be made of this informa--V-

. tion. Here we pursue the suggestion from Schnabel [19871 that we consider most promising. To facilitate

our discussion, let us use the simplified notation that the current iterate is x,, the current gradient is g,, the

0., current Hessian approximation is B, the current search direction is d, = -B,-' d,, the current trial point i'

o4/

Ilu

* x, = x , and the gradient at x, is g,. assume that x, is an unsatisfactory choice for the next iterate

S\We v ill attempt to use the gradient at the unsuccessful trial point x, to immediately update the Hic-

sian approximation and compute a new search direction, even though we have not successfully concluded

the current line search. To motivate this strategy, consider the case when f is a positive definite quadratic.

It is still possible that x, is unsatisfactory because the Hessian approximation B, is inadequate. The stan-

dard BFGS algorithm would continue the line search until it calculates a satisfactory next iterate x. =

xz)-dL , where a. ;L for some a l. Let g. be the gradient at x., and let B. be the BFGS update to Bc

using the step from x, to x,. Also consider the matrix B, that would be generated as the BFGS update to

B, using the step from x. to x,.

The first ke point is that B, = B,, that is the updates obtained from using x. and g_. or using x, and

.g, arc the same. This is because any two points along a line will generate the same secant equation, and

hcn.c t',c same update, for a quadratic function. (Algebraically, x.-x = a(x,-x,) and g.-g, -

-. *-g, 1, The other key point is that since

-- x.-B - g. = xc-B g = x,-B,'g = x,-B,-g,

.sth ti lirst and third equalities coming from the secant equation and the second from B. = B, , e do not

hj'.e to comnputc x_, or adopt x, as the newx current iterate, to undertaike the next iteration. Rather vwe can

rep~c B, v ith B, and conunue iterating from x , in the new direction -B,' gc. If a steplength of one is

used at the nev, iteration, then the same point x- will be generated as if we had iterated from either x.

using the direction -B. t g., or from x, using the direction -B,- g,.

For quadratic f, this strategy allows a BFGS algorithm to use only one trial point per update, A hile

* likel, requiring no more iterations than the standard BFGS method. If one is using the standard sequential

BFGS method, Algorithm 2.1, and the gradient is being evaluated by finite differences, then the saving is

S.' small bccause the number of function evaluations per iteration is simply reduced from a maximum of n +2

to n --1. If, however, one is in any of the parallel or sequential scenarios mentioned at the start of this sec-

tion, where the gradient is computed along with the function value at each trial point, then this strategy has

the potential to cut the cost of some iterations in half (from two function-gradient pairs to one) which is a

more significant sasings. The strategy also has the appealing proprtry that it never select an unsatisf i-

tory point x, as an iterate; rather it incorporates gradient information from x, that is equivalent to the

"- .

-A'-

33

informraton v.e would have gotten at x., and then continues iterating from x, which is the best point vc

hasc so far

When f is not quadratic. B, %ill not generally equal B, and the strategy of updating B, to B, and

replacing the search direction from x,. -B: 1 g, , with -B, -' g, may not be a good one. Ideally, replacing

B ith B, \.ould seem to be a good idea if B, is closer to V2f (x,) than B, is in the direction d, ,i.e. if

II(V 2f(x,)-B,)d, I _ I I (V 2f(x,)-B,)d, II. (4.1)

Since v~e don't know V2f (x.), however, we try to determine whether B, is a better approximation to

V2f (x,) than B, is by seeing whether the quadratic model around x, using B, predicts f (x,) better than the

quadratic m-del around x. using B, does, i.e. if

X, gd, +dTB,d, - f(x,)l < If(x)gd, +drB, d - f(x)l . (4.2)

Notc that it i not necessar to form B, to check (4.2) since we know B, d, = g,-g .) If (4.2) is satisfied,

then it sec>rn advantaceous to calculate B, and d, = -B,-! g, and change the line search direction from x,

to d;. Otherwise it seems better to continue the line search from x, in the direction d, in the nornal

*Wc have tested this approajh on the same problem set as was used in Section 3.3 (see Appendix Al).

\\e compared the normal BFGS algorithm, Alg. 2.1, to an algorithm that differs in that it updates the Hes-

sian approximation and sA itches line search directions as described above if the line search finds an unsa-

tisfator-, point x, thich fails (3.17) and satisfies (4.2). (In addition x, must satisfy (Qg,)Td, > 0 to

a,,ure that the update will retain positve definiteness.) In this case the new strategy makes one other

alteration so that a satisfactory' next iterate \xill eventually be found : rather than starting the line search in

the nes direction d, with a steplength of one, it chooses the initial steplength in the ne-. direction so that

the length of the next trial step is the same as if the line search had been continued in the old direction d,.

That is, if the next steplength in the direction d, would have been X, it chooses the initial steplength ?. in

the direction d, to be XI Id, II / lid, II. If the next iterate again fails (3.17) but satisfies (4.2) and the

positive curvature condiuon, then the Hessian and search direction is changed again with the steplength

again being reduced by this mechanism; otherwise the line search is continued with the new line search

dircction. This approach is continued until a satisfactor, next iterate is found As soon a, a satifactors

next iterate is found, the next line search starts with steplength one, as usual.

ql

* > eN %

0 34

On our test set, Ae found that this strategy reduced the average number of trial point function evalua-

-- uons needed to solve the problems by about 37 in the case n = 20, and by about 127 in the case n = 40.

This reduction is indicative of the reduction in computational cost in any situation where the gradient is

computed at each trail point, and function evaluation is the overriding cost. Recall from Section 3.3. that

for these test problems, only about 20%7 of the total iterations have unsuccessful trial points, so that at least

*for n = 40 the observed savings are fairly satisfactory. If we use the ideal (and impossible in practice) test

I (4.1) instead of (4.2) to decide hen to use our new strategy, the average saving rises to 15% in the case n

- = 20 but drops to 8% in the case n = 40. This indicates that there may be room for improvement in our

results if 'e can find a better heuristic than (4.2) to decide when to invoke our strategy of switching line

search directions.

While these savings are not dramatic, they point to a small improvement that can be made to the

BFGS algorithm whenever the gradient is available at each trial point, i.e. both in the parallel BFGS

method discussed in Section 2 and in some sequential BFGS codes. It also leads us to be interested in

some related ideas that we mention in the next section.

5. Summary and Directions for Future Research

..-- In Section 2 we have shown that it is fairly easy to efficiently utilize up to n--I processors in the

standard BFGS algorithm for unconstrained optimization, in two different situations. First, if function

evaluation is expensive and gradients are evaluated by finite differences, then by evaluating the gradi;-,

alone with the function at every trial point one can generally realize at least 70-80% efficiencies with up to

* n +I processors. Secondly, if n is large enough that the linear algebra costs of the method are significant,

"".-'. then it is also fairly easy to parallelize the linear algebra efficiently for up to n processors. This causes us

to reexamine the various implementations of the BFGS update, and to chose the unfactored update of the

*. inverse matrix which appears to be the cheapest sequential and parallel approach and to have no noticeable

finite precision difficulties in comparison to the other possible approaches.

Several variations on the approaches of Section 2 merit investigation. One is whether it \oull be

bettcr to use extra processors to evaluate multiple points simultaneously during the line search, as propN,,eJ

",,,.

oI.

35

by several authors including Dixon [1981], Dixon and Patel [1982], Patel [1982], Lootsma [1984], and van

Laarhoven [1985], rather than performing speculative finite difference gradient evaluations. A second

issue is %khether the modification of the BFGS method recently proposed by Powell [1987] has a significant

advantage in practice, and if so, how it (different) linear algebra is best implemented on a parallel com-

puter.

In Section 3 we have examined the situation when function evaluation is experc ve and there are

more processors than are needed to evaluate the function and gradient simultaneously. This occurs if the

gradient is evaluated by finite differences and the number of processors, p, is greater than n+l, or if the

gradient is evaluated analytically along with the function on one processor and p > 1. If there are enough

processors so that we can evaluate the function, gradient, and (finite difference) Hessian concurrently, then

we would use a parallel implementation of Nevon's method. If not, then we have proposed using new

*.. optimization algorithms that use the function, gradient, and q <n columns of the finite difference Hessian at

each iteration. These can be thought of as falling in between the BFGS method and Newton's method. We

have shown that the performance of these methods for different values of q varies between the perfor-

mance of the BFGS method and Newton's method as might be expected. We have also shown that if there

are just enough processors to evaluate the function, gradient, and q columns of the finite difference Hes-

sian, and our new method is more efficient than either the parallel BFGS method or a parallel implementa-

Lion of the finite difference Newton's method.

There are several interesting research questions regarding these new methods that use part of the

Hessian at each iteration. One is whether it would be better to use an update that allows indefiniteness,

such as the SRI, to incorporate the finite difference information, rather than using the BFGS as we have

done. This question is especially intriguing in light of the recent results of Conn, Gould, and Toint [1986]

that report very good computational performance for a trust region method using the SRI. A second issue

is whether some different procedure for choosing the finite difference directions (u,) that are used at each

iteration would be preferable. An example would be choosing these directions based upon the recent step

directions. Another more general issue is whether there are better ways to utilize additional processor,

than evaluating part of the Hessian, for example using the extra evaluations to form a higher order modcl

such as the tensor model introduced h Schnabcl and Frank [198.41,

,.% %

%o%

d6 it ,IL " Mr, % a% " ' . ' % % % ", " 4 '. - .- ", . ". ". % ' - " " ' ' ', % " . % - ' o % " '" % ' " ' '

V 36
In Section 4 we have considered the use of gradient information at unsuccessful trial points in th"

line search. Such information is available in our parallel methods that evaluate function and gradient infor-

mation simultaneously, and also in several well-known sequential unconstrained optimization package.,

We have shown that we can modify the BFGS algorithm to utilize this information in a way that leads to

small gains in efficiency.

This work on using derivative information from unsuccessful trial points might be extended in a

number of directions. In the parallel methods that use partial Hessian information, one could also consider

whether the Hessian information from unsuccessful trial points could be utilized. In this connection one

might want to consider evaluating the partial Hessian information at the current iterate x, rather than at die

trial point x,. We also have not yet considered the case A hen p<!n v here only part, rather than all, of tfhc

- -" finite difference gradient is evaluated at the unsuccessful trial point.

ID

,% % %

U22

S)

-- ,

0 37

6. References

K. 'W. Brodlie, A. R. Gourlay, and J. Greenstadt [1973], "Rank-one and rank-two corrections to positieN!definite matrices expressed in product form," Journal of the Institute of Mlathemnatics and its Applications

1~'R. H1. Byrd and J. Nocedal [1987), "A tool for the analysis of quasi-Newton methods with application to
unconstrainedi minimization," Technical Report ANL/MCS-TM-103, Mathematics and Computer Science
Divisicii, Argonne National Laboratory.

R. H. Byrd, R. B. Schnabecl, and G. A. Shultz [1987], "Using parallel function evaluations to improve Hes-
sian approximations for unconstrained optimization," Technical Report CU-CS-361-87, Department of
Computer Science, University of Colorado at Boulder.

A. R. Conn, N. 1. MI. Gould, and Ph. L. Toint 11986], "Testing a class of methods for solving minimization
problems %kith simple bounds on the variables,' Research Report CS-86-45, Faculty of Mathematics,

* Uni. ersit\ of Waterloo, Waterloo, Canada.

\V C Dav idon [19-75], 'Optimally conditioned optimization algorithms without line searches", Mathemna:i-
['roramJnrie9, pp. 1-30.

*, 3. ni Dni J r. and J.1J. NMor [1974], "A characterization of superlinear convergence and its application to
N ton metihods ,Mathemnatics of Comiputation 28, pp. 549-50

J Dcnni, Jr. and R. B. Schnabel [19831, Numerical Methods fo--r Nonlinear Equations and Uncon-
.''r OJ(piu~ation, Prentice-Hall, Englewood Cliffs, New Jersc%.

JI I- l)cnnt', Jr. and R. B. Schnabcl [1987], 'A view of unconstrained optimization," Technical Report CU-S CS.Y.S7, Dpartment of Computer Science, University of Colorado at Boulder, to appear in Ilandbooks
j-, Opt-raj: or Rew arch and M4anagemnent Science, Vol. 1, Optimni.ation. G. L. Nemnhauser, A. H. J. Rin-
n.Ao\ Kain. and M. J. Todd, eds., North-Holland, Amsterdam.

L. C. W. Dixon [1981], 'The place of parallel computation in numer-ical optimisation 1, the2 local problem',
I'c, hni~al Report No. 118, Numerical OptimiSation Centre, The Hatfield Polytechnic.

L C. W.K Dixon and K. D. Patel [1982], "The place of parallel computation in numerical optimisation IV',
parillel algorithms for nonlinear optimisation", Technical Report No. 125, Numerical Optimisation Centre,
The liA1.11ld Poly technic.

R. Fletcr [19SO, Practical Method of Optimization, Vol 1, Unconstrained Optimization, John Wiley and
% Sons. Nkewk York.

P. E. Gill, G, H. Golub, W. Murray, and M. A. Saunders [1974], "Methods for modifying matrix factoriici-
Lion,''7 Mathematics of Computation 28, pp. 505-535.

P. E. Gill , W. Murray, and M.0 H. Wright [1981], Practical Optimnization, Academic Press, London.

* D. G;oldfarb [1976], "Factorized variable metric methods for unconstrained optimization", Afathemaitics of

Co-,!- 1r;4auon 30, pp. 796-811.

L. Grandinetti [1978], "Factorization versus nonfactorization in quasi -Newtonian method,, for different;,-
abeopumni/ation." Re-port N5, Dipartimento di Sistemni, Universita dclla Calibria.

S. P. Han [1986], "Optimization by updated conjugate subspaces,' in Numerical Ana1' sis. Plwrmn
Research 'Notes in Mathematics Series 140, D.F. Griffiths and G.A. Watson, eds., Longmnan Scientific and
Technical, Burnt Mill, England, pp. 82-97.

F. A. Lootsma [1984], "Parallel unconstrained optimization methods," Report No. 84-30, Department of
Mathematics and lrnformatics, Technische Hogeschool Delft.

J. J. More, B. S. Garbow, and K. E. fhllstrom [19811, "Testing unconstrained uptimization software", ACMI
Transactions on Mathematical Softi~are 7, pp. 17-41.

- . J. J1. Mor and D. C. Sorensen [1983]. "Computing a trust region step', SIAMf Journal on Scientific and Sta-
* . ristical Computing 4, pp. 553-572.

'N. 'NB. A. Mlurtagh and N1. A. Saunders 119831, "MIINOS 5.0 User's Guide," Technical Report SOL 83.20.
Department of Operations Research, Stanford University.

K. D. Patel [19821, "Implementation of a parallci (SLMD, modified Newton method on the 1CL DAP.
Technic al Report No. 13 1, Numerical Optimisation Centre, The Hatfield Poly technic.

M. J. D. POAcll "19761, "Some global convergence properties of a variable metric Method Aithout exaAt
line searc-hes", in Nonlinear Programmirng. R. Cottle and C. Lemke, eds. AMS, Providence, R.I., pp. 5-~

0 72.

M. J. D. Po~,ell [19S71, "Updating conjugate directions b\ the BFGS formula," Ma:hernLuiCa! Pro rLvPi.
mig 18, pp. 29-46.

R. B. Schnabel [1981,1, 'Quasi -New ton methods using multiple secant equations.' Technic:al Report CLU-
CS-247-83, Department of Computer Science, University of Color-ado at Boulder.

R. B. Schnabel "18] Concurrent function evaluations in local and global opumizio,'Cm~:'
* . Mc:Ji,LJ in .4rpp.j'ed Mechanics anti Engineeru'.g 64, pp. 537-552.

* R. B. Schnahel and P. Frank [1984), "Tensor methods for nonlinear equations", SIAM Juurnal on uc-
ca: Anial-sv 2 1, pp. 815-843.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss [1985], 'A modular systern of algorithms of unconstraincI
minimization", ACM Transactions on Mathematical Softvt.are 11, pp. 419-44().

D. F. Shanno and K. H. Phua [1978a1, "Matrix conditioning and nonlinear optimization," Mfathema:ir.i'
Programming 14, pp. 145-160.

* P. J. M. van Laarhoven [1985], "Parallel variable metric methods for unconstrained opumnization,"
M! atherratical Pro gramming 33, pp. 68-8 1.

% %

[- 39

Table Al -- Test Problem Set

Problem Problem Source of
Number Name Problem

I Trigonometric MGH26

2 Extended Rosenbrock MGH21

3 Extended PowcU Singular MGH22

4 Chebyquad MGH35

5 Chained Singular CGT5

6 Generalized Wood CGT7

7 Chained Wood CGTS

8 Generalized Broyden Tridiagonal (a CGTIO

9 Generalized Broyden Tridiagonal (b) CGTI I

10 Generalized Broyden Banded (a) CGT12

11 Generalized Broydcn Banded (bi CGT13

12 Toint-Broyden 7 Diagonal CGTI4

13 Toint Trigonometric CGT16

14 Generalized Cragg and Levy CGT17

15 Generalized Brown CGT21

16 Variably Dimensioned NlGU25

17 Penalty Function I MiGH23

18 Penalty Function II MGH24

CGT = Conn, Gould, Toint [1986]
NIGH = Mord, Garbow, Hillstrom [1981]

'K'

' V' Nd -% N N

eX

40

Table A2 -- Test Results, n=20

Problem Iterations-""Nu mbe r Unsuccessful Trial Points;

BFGS Algorithm 3.1 Newton's
q=l q=2 q=3 g=4 q=5 q=10 q=20 Method

1 47 28 27 23 23 16 12 12 12
6 5 9 13 15 12 4 6 6

2 46 94 80 84 72 68 45 24 24
21 19 26 38 55 44 16 8 8

3 48 75 47 41 36 26 24 15 15
1 l9 1 2 4 6 0 4 0 0

4 54 49 47 -- 32 34 -.. ...
15 8 13 -- 12 19 -.. --

5 308 57 41 37 31 29 27 20 20
21 4 2 3 1 0 0 0 0

6 164 133 134 103 107 101 86 54 51
32 23 56 48 49 77 50 38 28

271 50 118 66 58 51 69 48 49
33 10 45 37 21 14 59 27 27

8 56 34 24 20 16 16 14 10 10

4 0 0 0 0 0 0 0 C
. 21 20 14 13 11 10 7 5 5

3 0 0 0 0 0 0 0 0
10 125 32 25 20 18 17 15 12 12

6 0 0 0 0 1 0 0 0
11 107 22 15 13 12 10 9 7 7

5 0 0 0 0 0 0 0 0
12 58 27 18 15 12 12 9 6 6

5 0 0 0 0 0 0 0 0
13 42 36 18 19 25 19 1 11 8

113 98 19 17 32 25 17 13 3
1 14 1 4 3 19

13 14 0
15 6 8 8 8 7 6 5 4 4

1 0 0 0 0 0 0 0 0
16 21 117 72 38 42 39 30 50 18

7 4 2 3 0 5 8 15 0
17 140 91 72 51 56 51 45 33 33

52 12 1 4 1 2 0 5 4
18 226 89 90 72 77 75 58 60 62

42 13 14 6 11 5 7 23 25

--- overfi

S..%.

.. % . ., . . ' . o . . -*' ." .-. -% ...- % .% -. .%=. ,, . , • % % *. • , = o

41

Table A3 Test Results, n=40

Problem Iterations
Number Unsuccessful Trial Points

BFGS Algorithm 3.1 Newton's
q=1 q=2 q=3 q--4 q=5 q=10 q=20 q --40 Method

1 84 46 68 62 53 48 17 17 15 --

1 12 22 36 26 13 4 18 29 --
2 47 129 102 108 90 97 83 46 24 24

22 36 39 84 77 69 70 30 8 8
3 48 95 70 56 49 45 25 24 15 15

19 0 1 3 9 37 0 2 0 0
• 4 -- 248 240 130 180 164 ...-- --

-- 34 36 31 51 40 -- -. -- --

5 300 95 56 50 39 33 32 28 20 20
22 7 0 0 0 1 5 5 0 0

6 194 217 203 155 152 140 108 122 58 --
32 55 69 99 147 120 112 86 35

7 97 146 152 42 36 77 77 51 49

23 97 93 14 11 45 53 36 32
• 8 59 48 35 28 24 22 19 14 10 10

4 0 0 0 0 0 5 0 0 0
.- 41 27 21 17 15 13 10 7 5 5

2 0 0 0 0 0 0 0 0 0
10 172 47 33 28 25 22 18 15 12 12

8 0 0 0 0 0 0 0 0 0
11 74 27 24 18 15 13 11 9 7 7

5 0 0 0 0 0 0 0 0 0
-.- 12 116 36 26 22 19 17 12 9 6 6

6 0 0 0 0 1 0 0 0 0
13 68 23 22 20 24 26 26 25 24 --

229 22 19 14 23 24 38 39 58 --
14 149 61 34 34 22 19

14 12 27 30 11 0
I5 6 8 8 9 9 9 6 5 4 4

1 0 0 0 0 0 0 0 0 0
16 27 292 170 74 101 86 130 120 259 22

7 6 1 11 9 6 74 60 287 0
17 142 144 90 70 64 69 55 46 34 36

41 3 4 6 1 5 2 0 7 7
18 419 87 49 46 45 38 33 27 23 23

21 14 7 10 13 10 5 1 1 1

= iteration limit (500), -- = overflow

0,'

.......................... :

Unclassified
a. " -: ,' , O F ' - ,S A C E

REPORT DOCUMENTATION PAGE

* IS * O* S f.%- ll" ZASS,FiCA Odrt 0 Ia IESTR CTIvI MAA .NGS

Unclassified
. l .

J
C

X
.ASS. SO 0AION . CRO ITF ' 3. OtSTllSLT1ONAVA~LAI

-
L

i T
.1 OF REPORT

Approved for public release;
. Of AS :t ,,c~oNoowF4N Go scJ4ouLE distribution unlimited

a OtOAWMNG OINGANiZAIOI REPORT N ,MGEA,5 S. MONITORING ORGANIZATION REPORT NU.MBINAISi

SCUI-CS-396-883./IS

6. -. Al P VtAOICRUaNG ';lAANZAr)ON OPP'cs SYUICI. 7&. NAME OF MONITORING OPIGANiZATiON

University of Colorado U.S. Army Research Office

6. ACOAESS C.,V Sti.. MR 7IP C *, 7 A. COESS 1C,,. Stdid @A ZIP Ca",

Computer Science Department Pos Office Box 12211
Campus Box 430 Research Triangle Park NC 27709
Boulder, CO 80309-0430

00. -*Aug 30 WN,.NO OFFICE Sv 1 1, MIt. PACCLJAEMEN? INSTRMEMNT jO9N~jiCA-;Cp4N EjMCex
O GANIZATION I ap" DO&Ip.aIa I

DAAG- 29-84-K-0140

. ADOAFSS C.1. St.l. MIa Z iP Cat 10 SOIRCE OF ' NOING ,NOS.

PROGRAM FFOjSC TASK WORK ,rN
a LA MOINT NO NO . NO.

Parallel Ouasi-Newton Methods for Unconstrained
12. PERSONA Ar-o-(si Optimization
Richard H. Bvrd. Robert B. Schnabel. Gerald A. Shultz
12. TrV0 OF REFOPiT I. 1 1:v1,r; I 0 14. DATE O EPORT ,Y'. J..n. J) . PAGE = N

_____8 8/04/01 41
16. S,.PILmENTAF N 4G'TION io~I ~

11A CCI 1&a Su6.,ECT TERM$ 'Com... sa 91 IAucwm ags SAWd41afyy aieeanb'l~~

,CU sue. s Parallel computation, unconstrained optimization,

quasi-Newton methods

1I ASUSTYACT ,Coar fus. Od oevwee ft0WWYI dad WeffY &V 690Cl afer,

We discuss methods for solving the unconstrained optimization problem on parallel computers, when the

number of variables is sufficiently small that quasi-Newton methods can be used. We concentrate mainly,

but not exclusively, on problems where function evaluation is expensive. First we discuss ways to parallel-

ize both the function evaluation costs and the linear algebra calculations in the standard sequential secant
method, the BFGS method. Then we discuss new methods that ae appropriate when there are enough pro-
cessors to evaluate the function, gradient, and part but not all of the Hessian at each iteration. We develop

new algorithms that utilize this information and analyze their convergence properties. We present compu-

tational expenments showing that they are superior to parallelization of either the BFGS method or

Newton's method under our assumptions on the number of processors and cost of function evaluation.

Finally we discuss ways to effectively utilize the gradient values at unsuccessful trial points that are avail-
able in our parallel methods and also in some sequential software packages.

20. :)STI6.1ON1AVA,tASSL.?V OR ASTRACT 21. ^"STRACT 21CUAIY C6ASIlPCATION

UNc-.,SS oIUN.,'E SAME AS T - oTc usLs Unclassified

2.2. NAMAE ') 4ESPONSl .N6,VtOfjII 12n. 22ELIPF"ONE Me "E 0014NC SN%016c .I lll4Ma l' .4~Y Cq~l od.4'
11AC1.4 -Am* CE idE

Dr. Jagdish Chandra 619/549-0641

D FORM 1473, 83 APR EITIOI OR I JAN ?3 IS OSSOL T. Unclassified

19

%%~' J& A.'.V - A

[-. -VIA.

.719-7k
A.

. °

,"cll7&

