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Considerations of the real-time self-organization of neural networks for speech recog-
nition and production have lead to a new understanding of several key issues in such
networks, most notably a definition of new processing units and functions of hierarchical
levels in the auditory system. An important function of a particular neural level in the
auditory system is to provide a partially-compressed code, mapped to the articulatory sys-
tem, to permit imitation of novel sounds. Furthermore, top-down priming signals from the
articulatory system to the auditory system help to stabilize the emerging auditory code.
These structures help explain results from the motor theory, which states that speech is
analyzed by how it would be produced. Higher stages of processing require chunking or
unitization of the emerging language code, an example of a classical grouping problem.
The partially compressed auditory codes are further compressed into item codes (e.g.,
phonemic segments), which are stored in a working memory representation whose short-
term memory pattern is its code. A masking field level receives input from this working
memory and encodes this input into list chunks, whose top-down signals organize the items
in working memory into coherent groupings with invariant properties. This total archi-
tecture sheds new light on key speech issues such as coarticulation, analysis-by-synthesis, 0
motor theory, categorical perception, invariant speech perception, word superiority, and
phonemic restoration.

1. The Learning of Language Units
During a human's early years, an exquisitely subtle and sensitive speech recognition

and production system develops. These two systems develop to be well-matched to each
other, enabling rapid and reliable broadcast and reception of linguistic information. The
development of these systems can be viewed as resulting from two fundamental processes: .

self-organization through circular reaction and through chunking or unitization. This
chapter sketches some issues concerning these processes in speech and provides a summary
of its key neural components, developed to address more general cognitive problems.

2. Low Stages of Processing: Circular Reactions and the Emerging Auditory
and Motor Codes

The concept of circular reaction (Piaget, 1963) is illustrated in Figure 1. For our
purposes, the reaction links the motor or articulatory system (mouth, tongue, velum, etc.,
and the neural structures controlling them) with the auditory system (ear and its neural
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Figure 1. Circular reaction linking the motor system to the auditory system. Such a loop
permits imitation of novel sounds from an external speaker.
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Figure 2. Neural interactions between a partially-compressed auditory code and a motor
code permits the imitation of novel heard sounds.
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perceptual mechanisms). In a developing infant, endogenously generated babbling signals
in the motor system lead to auditory feedback, thereby allowing the auditory system to
tune its evolving recognition codes. Moreover, the auditory system can compare the self-
generated sounds to those from external speakers.

Figure 2 shows in slightly greater detail relevant neural interconnections in the audi-
tory model. After processing by low-level auditory feature detectors (detecting energy in
various frequency wavebands, "sweeping" frequency signals, broad-band or burst energy
distributions) the auditory information is partially compressed and passed to a subsequent
level, where it is represented by significant activity in a smaller number of neurons.

There is a learned auditory-to-articulatory associative map at this level, important
for the following purposes. First, it permits the motor system to interpolate novel heard
sounds. That is, if a novel sound leads to an auditory code "between" those for other,
previously coded sounds, then this novel sound will be mapped to a motor code "between"
those for the sounds previously heard. Second, the associative map permits the motor
system to imitate such sounds. In this manner, a novel sound will lad to a novel, interpo-
lated motor code. When accessed, this new motor code will lead to an utterance closer to
the novel one heard. This (imitated) utterance then accesses an auditory code very similar
to the interpolated one.

The auditory code at the level for this interpolation and imitation must be only partially
compressed; a fully compressed (or unitized) code would map to a previously organized
motor code, precluding interpolation of novel sounds. Furthermore, the auditory level for
interpolation must be above stages of invariant preprocessing-only in this way can effects N
such as vocal tract normalization be explained (Lieberman, 1984, pp.219-223). It has been
argued (Lieberman, 1984, p.222) that such normalization is due to the existence of innate
mechanisms, and hence is not modifiable in the manner of the auditory-to-motor map.

3. The Vector Integration to Endpoint Model
The motor code in our network is based on the recent Vector Integration To Endpoint

(VITE) model of arm movement control (Bullock and Grossberg, 1987), due to functional
similarities between speech articulation and arm movement problems. Moreover, we agree
with Lieberman (1984) that phylogenetically the speech system appropriated the speech
articulators and their neural controlling structures from their original tasks of swallowing, Ki
chewirig, and so forth-tasks more typical of standard motor control concerns. The VITE
model posits three interacting neural levels: (1) a Target Position Command (TPC) level,
whose spatial distribution of activity codes where the limb "wants to go," (2) a Present
Position Command (PPC) level, which generates an outflow movement command, and (3)
a Difference Vector (DV) level, which compares the TPC and PPC codes. Such a structure
has been used to explain a range of motor control psychophysics and physiology results, in
particular (for our speech system) the simultaneous contraction of several muscle groups
in a synergy, even at different overall rates. The learning of a motor task, in this scheme,
involves the printing (i.e., modification of synapses for long-term memory) of the motor
code when the limb is at or near the target position. Put another way, learning occurs when
the present position and the target position form a near match (i.e., when DV < c). Hence
in our speech system the Difference Vector layer can act as a learning gate, regulating the
formation of the auditory-to-articulatory map during the near match condition, as shown
in Figure 3.

Speech articulators, however, do not all function as a single, unitized system; rather,
there are several muscle synergies or coordinative structures (Fowler, 1980) working quasi-
independently. For instance, one coordinative structure might link the jaw and front of
the tongue for bringing the top of the tongue to the hard palate in order to utter [t],
while a different coordinative structure is controlling the back of the tongue to utter a
(coarticulated) [a]. Each of the coordinative structures must have its own TPC, PPC,

* o



Learn when IDVI < e

Target Position Command where
you want

TPC to go

Difference Vector

+ I -
* Present Position Command where

PPC (= f DV) you are

Outflow movement signal

Figure 3. Basic VITE module and its learning gate, for use in encoding the TPC codes.

and DV layers, to preserve such quasi-independence. Figure 4 shows how the TPC's of
different coordinative structures are chunked into distinct motor control commands. Thus
the imitative map can associate different aspects of the partially compressed auditory
code with different coordinative structures. Figure 4 also shows the basic structure of the
circular reaction loop linking the auditory system and the motor system, incorporating the
VITE .circuit and its learning gate.

4. Self-Stabilization of Imitation via Motor-to-Auditory Priming

In a self-organized system, a key issue concerns the ability of the system to self-stabilize
its learning under natural conditions (Carpenter and Grossberg, 1987a, 1987b). During
speech the auditory code varies (in general) continuously due to its representation of a
stream of varying sounds, whereas the controlling motor code varies more discretely due to
the fact that new target position commands (TPCs) are printed by the imitative associative
map only when the motor system achieves an approximate match (Figure 3), either at an
initial TPC or a final TPC of a simple utterance (Figure 5). This raises the issue of insuring
that the emerging auditory code is consistent with the motor code so that the imitative
map can self-stabilize. Such consistency can be achieved through top-down motor priming
which associates the compressed motor codes that represent the coordinative structures
with activation patterns across the auditory feature detectors, as shown in Figure 6-an
example of active internal regulation by top-down resonant feedback.

The top-down motor expectations (or priming signals) reorganize the auditory code to
make it consistent with the evolving motor code. Such priming occurs during the activity
of any given motor code, and hence reinforces the activity patterns across auditory feature
detectors that are heard contemporaneous and consistent with such motor codes. These
motorically-modified feature activity patterns are encoded in long-term memory within
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Figure 4. Circular reaction loop linking the motor system (right) with auditory sys-
tem (left). Parallel motor channels for coordinative structures are shown, each with its
associated learning gate, which prints (modifies the synapses for long-term memory) the
imitative map between the partially-compressed auditory code and the motor code.

the auditory-to-auditory pathways to the partially compressed auditory code. Even during
passive listening, these motorically-influenced auditory codes are activated. Heard speech
is thereby analyzed by "how it would have been phonated." This is in agreement with
the motor theory of speech perception (c.f., Studdert-Kennedy, 1984) and finds support
from physiology (Ojemann, 1983). These results and the architecture of Figure 6 clarify
why the concerted attempts to find purely auditory correlates of speech segments have
not met with greater success (c.f., Zue, 1976; Cooper, 1980, 1983), and suggests how an

artificial system capable of recognizing natural speech can incorporate motor information
that human listeners employ.
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Figure 5. The dynamic pattern of the code in the auditory system is more continuous,
while that in the control structure for the motor system is more discrete. When activated,
such a motor code initiates a unitized, stereotyped synergetic action of articulators.
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". influenced auditory code is further compressed at higher stages of the auditory system.
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Figure 7. Unitization is achieved by compressing the partially compressed auditory code
to yield an item code, which includes such units as phonemic segments.
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Figure 8. Context-sensitive list codes are formed via a two-level process: (top) Items are
placed in working memory, which encodes temporal order information. Then (bottom)
a masking field uses bottom-up flow and top-down priming to yield context-sensitive list
codes.



5. Higher Stages of Processing: Context-Sensitive Chunking and Unitization
of the Emerging Auditory Speech Code

Stages of the auditory system higher than the ones described above rely on processes
other than circular reactions for stabilizing the emerging language code. Such processes
unitize, chunk, or group the emerging discrete linguistic units in a context-sensitive manner.
Such context-sensitivity is crucial if the network is to be able to classify any given phonemic
segment (say) in all its coarticulated forms.

An early stage of unitization is achieved by compressing the partially compressed
auditory code to yield an item code, as shown in Figure 7. Grouping such items into
context-sensitive chunks requires two stages, as shown in Figure 8. First, sequentially
occurring items are stored in a working memory level to encode temporal order information
over the items. Next, these items are grouped by a masking field (Cohen and Grossberg,
1986, 1987) into context-sensitive list chunks.

6. Masking Fields
In brief, a masking field neural structure possesses both bottom-up and top-down

interconnections with the item level (Figure 9). Nodes at the list level compete through
mutual inhibition. List nodes that are best predictive of longer patterns of items will
inhibit the less predictive nodes for shorter lists. Recognition of a unitized grouping of
items occurs when a bottom-up top-down context-sensitive resonance develops. In speech
networks, such a masking field can thus unitize the evolving auditory code into predictive
chunks, representing, say, phonemic segments.

Figure 10 schematizes the anatomy of a masking field. Figure 11 schematizes the two
primary types of coding sensitivity of which a masking field is capable in response to
bottom-up inputs from an item field. Figures 12 and 13 summarize computer simulations
which demonstrate this coding competence.

MY MYSELF

List, -- =-.
chun

level

Item
level%

M Y S E L F

Figure 9. A masking field architecture creates context-sensitive list codes by using both
bottom-up filtering signals and top-down priming signals from the list level. There is
competition between units in the list level. "Larger" nodes-ones that pool information
from a larger number of items-inhibit "smaller" nodes more effectively than vice versa.

For instance, if list nodes for MY, SELF, ELF, and MYSELF are encoded, the presentation
of the letters M-Y-S-E-L-F at the item level will lead to a resonance between the MYSELF
node and the six items, while nodes representing smaller, less predictive, groupings are
quickly suppressed.
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Figure 10. Masking field interactions: (a) Cells from an item field F, grow randomly
to a masking field F2 along positionally sensitive gradients. The nodes in the masking
field grow so that larger item groupings, up to some optimal size, can activate nodes
with broader and stronger inhibitory interactions. Thus the F, -- F2 connections and
the F2 -+ F2 interactions exhibit properties of self-similarity. (b) The interactions within
a masking field F2 include positive feedback from a node to itself and negative feedback
from a node to its neighbors. Long term memory (LTM) traces at the ends of F - F2

pathways (designated by hemidisks) adaptively tune the filter defined by these pathways
to amplify the F 2 reaction to item groupings which have previously succeeded in activating
their target F2 nodes.

The interactions between these levels can explain many speech properties, including
properties of temporal invariance and phonemic restoration. W'hen designed to incorporate
a "long-term memory invariance principle" (Grossberg, 1986, 1987; Grossberg and Stone,
1986a, 1986b), the spatial pattern of activation across working memory defines an invariant
code, and an attentional gain control signal to the working memory stage preserves this
spatial code under changes in overall speaking rate.

Phonemic restoration occurs when an ambiguous or missing sound is clearly heard when
presented in the proper context. The top-down priming of a masking field can complete
ambiguous elements of the item code, so long as these items can be reorganized by the
2/3 Rule properties of the prime (Carpenter and Grossberg, 1987a, 1987b). The speech
code results from a resonant wave which is controlled by feedback interactions between
the working memory and masking field levels. Although the list chunks which reorganize
the form and grouping of item codes utilize "future" information, this resonant wave can

emerge from "past" to "future" because the internal masking of unpredictive list codes
within the masking field occurs much faster than the time scale for unfolding the resonant
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Figure 11. Two types of masking field sensitivity: (a) A masking field F2 can autornati-
cally rescale its sensitivity to differentially neact as the F, activity pattern expands through
time to activate more F, cells. It hereby acts like a "multiple spatial frequency filter." (b)
A masking- field can differentially react to different F1 activity patterns which activate the
same set of F, cells. By (a) and (b), F2 acts like a spatial pattern discriminator which
can compensate for changes in overall spatial scale without losing its sensitivity to pattern

* changes at the finest spatial scale.

* wave (Figure 14.)
The overall neural architecture employing the elements described above is shown in

Figure 15.
Additional network designs are being developed for dealing with additional problems

such as factoring rhythm information from linguistic information and the coding of repet-
itive patterns. Even as it stands, however, the architecture and design considerations

*described above provide a new processing architecture for understanding such issues as
analysis-by-synthesis, the motor theory of speech perception, categorical perception, in-
variant speech perception, and phonemic restoration.
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Figure 14. (Left): The activity pattern in working memory as new items enter the system,
if the architecture had purely bottom-up connections. (Right): If the system has top-down
priming, on the other hand, crucial features in the working memory that fit into a coherent
pattern are reinforced, leading to a different distribution of neural activity. This resonant
wave constitutes the speech code.

neural pattern recognition machine. Computer Vision, Graphics, and Image Processing,
1987, 37, 54-115 (a).

Carpenter, G.A. and Grossberg, S., ART 2: Self-organization of stable category recognition
codes for analog input patterns. Applied Optics, in press, 1987 (b).

Cohen, M.A. and Grossberg, S., Neural dynamics of speech and language coding: Develop-
mental programs, perceptual grouping, and competition for short term memory. Human
Neurobiology, 1986, 5, 1-22.

Cohen, M.A. and Grossberg, S., Masking fields: A massively parallel neural architecture
for learning, recognizing, and predicting multiple groupings of patterned data. Applied
Optics, 1987, 26, 1866-1891.

Cooper, F.S., Acoustics in human communication: Evolving ideas about the nature of
speech. Journal of the Acoustical Society of America, 1980, 68, 18-21.

Cooper, F.S., Some reflections on speech research. In P.F. MacNeilage (Ed.), The pro-
duction of speech. New York: Springer-Verlag, 1983.

Fowler, C., Coarticulation and theories of extrinsic timing. Journal of Phonetics, 1980, 8,
113-133.

Grossberg, S., The adaptive self-organization of serial order in behavior: Speech, language,
and motor control. In E.C. Schwab and H.C. Nusbaum (Eds.), Pattern recognition by



Masking Field

Temporal Order]

Items

Partially ______

Compressed- W4 j W

Auditory Code

Ih

ITPCI

p IrIm

Invariant 14
Feature
Detectors PPC

* Figure 15. Global architecture for a speech recognition and synthesis system, employing
the processing described above. See text for details.



humans and machines, Vol. 1: Speech perception. New York: Academic Press,
1986.

Grossberg, S. (Ed. , The adaptive brain, II: Vision, speech, language, and motor

control. Ansterdm: Elsevier/North-Holland, 1987.
Grossberg, S. and Stone, G.O., Neural dynamics of attention switching and temporal order
information in short-term memory. Memory and Cognition, 1986, 14, 451-468 (a).

Grossberg, S. and Stone, G.O., Neural dynamics of word recognition and recall: Attentional
priming, learning, and resonance. Psychological Review, 1986, 93, 46-74 (b).

Lieberman, P., The biology and evolution of language. Cambridge, MA: Harvard
University Press, 1984.

Ojemann, G., Brain organization for language from the perspective of electrical stimulation
mapping. Behavioral and Brain Sciences, 1983, 2, 189-230.

Piaget, J., The origins of intelligence in children. New York: Norton, 1963.
Studdert-Kennedy, M., Perceptual processing links to the motor system. In M. Studdert-
Kennedy (Ed.), Psychobiology of language. Cambridge, MA: MIT Press, 1984, 29-39.

Zue, V.W., Acoustic characteristics of stop consonants: A controlled study. Ph.D. Disserta-
tion, Massachusetts Institute of Technology, Electrical Engineering and Computer Science
Department, 1976.



'

( !a

rV

- .- -1-~~
asI .5 5a ~ ~ ~ . , ~ * .


