AD-A193 224 ADAPTIVE FINITE ELEMENT METHODS FOR SHELLSCU
RTHHESTERN UNIV EVANSTON IL DEPT OF CIVIL ENGINEERING

T BELYTSCHKO ET AL. 3@ JAN 88 AFOSR-TR-88-927
UNCLASSIFIED F4962.—95-C-0128 F G 1372




#,'

%J

000 0.0 %Y,

gy

alim

L2 l’u} ..

i
-

W

b %

B o w i

T -

ol N -

Io|
t——
——
m———
——
——

I

16

e
=

Il

14

——
e——

=1

A AL Y K

MICROCOPY RESOLUTION TEST CHARI

R TIPI

TANTARDS

)




P D T RS I

o s
AN e

8 22 Bt Bt A At
o Wy W N W, W

AD-A193 221

B GFE B S

UNCLASSIFIED

UM Ty 2.5 EICAT CN O T3 23 0E

S0 gt hab g 0" IR

REPORT DOCUMENTATION PAGE glg ZILC LUE

A)

s WEPGAT SECUMITY J aififiQaTiuN

UNCLASSIFIED

A - ’ i
F o
s SECSAITY CLASSIFICATION auTrgas T

1o, AESTRICTIVE MAAKINGS

2 SECLASSIBICATION/CQWNGAA rEOULE

1 QISTRIBUTION/AVAILAAILITY OF AEPOAT

Ap@rovodtoryubl:oroloale.

D

MAR 2 8 1988% distridution unlinitea
4 MCASCAMING QRGAMIZATION A uUmMaEAS) S. MONITQARING QAGAMIZATION REPOAT NUMBEMS)
o AFOSR-TR- 388-0277

ta Caml CB 3EARFQAMING QAACANIZATION a I88ICE SYmMaoL
. . 1 appucadia)
Naorthwestern University

Ta NAME Qf MONITORING GAGANIZATION

- USAF, AFSC
Air Fores Office of Sciantific Resaarsh

e AGORESS (City. Siate and Z1P Cada)
Department of Civil Engineering
Evanston, .IL 60208

7o, AQONESS (Cuty. State ana LIP Caaes
Building 410
Bolling AF8, 0.C. 20332-8448

la NAME GF EUNQING/SPONSQRING
SAGANIZATICN

A

an. OBEBiCE SYMmaQt,
(11 sppiicatie)

ANA

2. PAQCUAKMENT INSTAUMENT ICGENTISICATION NUMEEA

YQEQC ‘%5 C-o\2 <

Se. AGORESS (Cutv, State any ZIP Coaes

Rlclc, MO .
AL E R .. IO 6K

1Q. SQUACE Q8 FUNCING NQS.

11 TITUL (laciude Secuncy Clismiicncions ADAPTIVE

METHODS FOR _FAILURE ANALYSIS OF SHELLS

SAQGRAM PRQOIECT TASK WOAR UMIT
CLEMENT NO. NQ. NG,
LG 130 | &
-
~ -

1L FEASONAL AUTHOAS)

T. Selytschka, Wing Xam Liu, Hsiu-Guo Céna

N

134 TYPE QB AGPQAT . 13a Time COVEARD 14. QATE QK REPQAT (Yr, Mo, Deys 19 PAGE COWnNT
Final Technical smom3entot §51-ng§§ 84 1988 January 30
18, SUPPLEMENTAAY NQTATION / \
(k4 SSSATI COCES 18 SURIECT TEAMS (Continus 0n reverse i/ necemsery end idenaly 8y Neca sumoers ’ \
cevs | cmous | sue. GA. \&/; ' \
f - ; finite elements, adaptive meshes, shells &— l

An adaptive finite element procedure
nonlinear shells. The scheme {s an h-me

approximation to the shell from a Kirchho

They include both material and geometric
buckling.

In order to formulate an r-adaptive
constitutive equations, and the equation
formulated for an arbitrary Lagrangian-Eu

'Y -m.Aannu 08 reverss |/ ceceseary end iSER ify by DIOER RUMBEr)

Criteria based on incremental work and deviation of the bilinear finite element

adaprivity. The example problems show that the adaptive schemes are capable of
achieving substantial improvements in accuracy for a given computational efforc.

material nonlinearities are included in this setting

is developed for the transient analysis of
thod which employs fission and fusion.

ff-Love surface are used as criteria for

nonlinearities and local and global

method, the conservation laws, cthe !
of state for path-dependent materials are
lerian description. Both geometrical and
Q/A Petrov-Galerkin mechod is

[

éntinued on v

23 LSTMALTICNVAvAILLRILITY OF A38TRAST

[31. 483TRACT SEQUAITY CLASEIAICATION

UNC! Fr=t

e CLASSISIED/UNC M TES ms asr “ESFic usans H UNCLASSIFIZD

e vaME SF AESATNS WL NCIHAIQUAL --b “ELEPwQONE h\.unlﬂ 136 IPS.CESYWEQ.
LT IRY, X ™

/)/ . HAGE ///4(,/—{/7//%\_/

v Pl oz

pie) .’aqnd t““ 33 APR PeiT.SM I8 1 an Y

$ JdsSaeaTY,

SECLAIT CLAdSIsCATICN 28 ©

UNCLASSIFIED

-5 tade

e P

e 2, AN

A

oo rr ¥y



wWht 0 S ™A *0ed i "G 0% LSt a NSRS g "p i tia* At oA e ® e “u Bl linS iah Guf e e ® o8 00 Bl b 000 4 000 00 8", s pha 4% N

’ 19. ABSTRACT (continued) - .---

¥ developed for the stress update so that the history dependence and the resulting
convective term on the stress temsor can be treated. A collocation-weighted
residual scheme is also developed. In addition, the tangent stiffness macrix for
the equilibrium equation is derived from the principle of virtual work. Various
methods for solving the finite element equations are presented, and several
numerical examples are analyzed to examine some features of the proposed methods.
The first are some elastic-plastic wave propagation problems which serve to check
the correctness of the numerical scheme. The second is a flexural problem, the

n response of which is dominated by the formation of hinge lines. The adaptive mesh
technique enables this problem to be solved with a much coarser mesh.
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: 1. INTRODUCTION Y
]
)
The nonlinear transient analysis of structures is a particularly :
promising field for adaptive procedures, because, among the various classes ‘é?
of structural finite element applications, it is computationally the most Ry
demanding. Furthermore, it is the class of applications in which a priori iﬁ
0
selection of an appropriately refined mesh is most difficult, since the kﬂ
AN
areas of the mesh which need to be refined depend on the evolution of the Ae
<
response, which cannot be foreseen by the analyst. Thus, while expert f&ﬁ
L
systems may prove to be quite effective in guiding a user to design _
i
appropriate meshes for linear-elastic, static problems, it is doubtful that v>;
this could be done in a typical nonlinear transient problem, such as the q;.
“
simulation of a high-energy disposition on a missile nose or a front-end S
&
S,
crash of an automobile. In this type of analysis, the computational power .
must be focused on those parts of the mesh which undergo the most severe o
deformation, such as hinging and wrinkling, and the sites of such S:‘
deformations are not determinable a priori. Furthermore, it is desirable to ii?
~
start various types of simulations, such as a frontal and side crash, with 1;
=~
the same mesh and let the response dictate any refinement.
b
While nonlinear transient analysis is one of the most promising areas R::
O
for adaptive procedures, it is also the most challenging. Perusal of the
DS
reviews of the adaptive field recently written by Noor and Babuska (1987) ﬁf
v
and Oden and Demkowicz (1988) reveal that the bulk of the theoretical work %3
e
has been devoted to determining local error estimates for linear static )
problems; these estimates are used to select the elements or subdomains to EB
h"-
be refined. These error estimates have evolved into two main types: Ci
b
te
1. residual error criteria based on the magnitude of the residual o
in the governing equations; 23
¥
N
[
O I R A A R e A s T R R R R Ay A 1 T, e, 1 VA 0 41 Gty
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2. error indicators based on interpolation and extension methods.

A difficulty in applying these methods to shells is that in the most

-t
-

effective elements for shell analysis, namely bilinear quadrilateral

elements such as described in Belytschko et al (1984) and in Hallquist and

PR RS

Benson (1986), even the shape of the shell is not adequately represented.

33

In other words, while the residual for the bilinear description of the shell

o o

may indicate a small residual, the errors may be quite large due to

discrepancies between the configuration of the Kirchhoff-Love shell surface

2 -~

and the bilinear finite element representation.

However, this drawback also provides an opportunity, for in fact it is

S -

in the regions of maximal deviation between the bilinear representation and
the shell surface that the finite element mesh is most inadequate. Since an

N average normal to the shell surface can be estimated at all times, the

-

deviation of the bilinear representation and a more accurate approximation

to the shell surface can be computed and used to indicate where mesh

2 e & L

refinement will prove useful.
Another aspect of the approach taken here is that we have not
endeavored to obtain a certain level of accuracy by the refinement. This
M choice was based on two reasons: (1) it is impossible at this time, with
the available mathematical tools for error estimation, to estimate the local
error in a nonlinear transient solution; (2) in most computer systems, the
fast memory allocated to a run must be set at the beginning of the run.
Therefore, the philosophy of the adaptive process described here is to
* obtain the most accuracy for a given set of computational resources. As
will be seen in the examples, this philosophy is quite effective. By using
N an adaptive mesh, it is generally possible to obtain a solution of
comparable accuracy with half the total number of elements, and hence, half

the compu:zational resources in an explicit pregram, as with a fixed rmesh.

R B A A S A N AR S A
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2. FINITE ELEMENT FORMULATION

The shape of the midsurface is described in this finite element model

by

x; = Ny (€) %;; (2.1)

where X4 are the coordinates of node I and NI(§) are the bilinear

isoparametric shape functions. Lowercase subscripts designate Cartesian
components, and uppercase subscripts designate node numbers; repeated
indices are summed over their range, 4 for uppercase, 3 for lowercase.

The shape functions NI(§) are functions of the reference variables Ei'

i = 1,2, also written as fl-ﬁ, 62- n, and they are given by

Np = 2 (L+ £,6) (1+nm) (2.2)

where £I and n; are the coordinates of the nodes at the corners of the
reference domain defined by -1 < € < 1, -1 < 7 £ 1. Note that unless a mesh

of these elements is quite refined, they provide a rather poor model for the
curved surface of a shell. In a regular mesh on a cylindrical shell, these
elements are in fact all flat, and any interaction between flexure and
membrane response only occurs at the nodes. Furthermore, in a region of
large curvature, this model can deteriorate even more severely with very
large angles between adjacent elements. However, before discussing this
further, the basic mechanics of this finite element formulation will be

described.
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In the formulation, two types of coordinates are used in addition to ’ y

the global Cartesian coordinates:

A A A

1. for each element, an element coordinate system (x,y,z) with

base vectors ey €9 and e, is defined so that e, and e, are X

tangent to the midsurface and rotate with the element; ;

2. for each node, a triad Ei is defined so that it rotates with

the node, with 93 normal to the midsurface of the shell in the .

undeformed configuration.
Whereas in the original formulation of Belytschko et al (1984) the

original orientation of bi was arbitrary, it is used here to locate new .

nodes created in the adaptive process and therefore must initially be

approximately normal to the midsurface of the shell. *

The deformation of the element is governed by the Mindlin-Reissner s
hypothesis, which allows transverse shear but requires the normal to remain

straight, so the velocity of a generic point in the shell is given in terms

IARBONE S

of the velocity of the midsurface V? and the angular velocity wg by

A

m
vy Vi - 2 (93 X 9)1 (2.3

o

o

~ .

where z, by the definition of the element coordinates, is the distance of a N

point from the midsurface. i

The velocity field is given by ~
» 9

A

I

'l
':

.

s
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m m
vy = NI Vit (2.4)

wg = Npowyg (2.5)

The strain rates (velocity strains or stretching) are given in terms of

the nodal velocities in the element coordinate system by

LTy
.

e Y
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Since the element uses one-point quadrature, the strains are evaluated at a

single point, the origin of the reference plane which is given by £=n=0.

The velocity strains at this point are given by

axx = BxI ;xI M ; (B;I ;xI * BxI ;yI>
Ayy - B QYI ‘2 (B;I GyI Byy ;xl)
Axy - ByI ;xI M BxI ;yI
A , A , A A A
vz (ByI x1 * BxI vyI BxI “xr T ByI ny)
23){2 - BxI ;zI * 5 ;yI
2‘;yz = ByI ;zI S ;xI
where
B o e T e T T T e S
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(2.7b)

(2.7¢)

(2.74d)

(2.7e)
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and n is the normal to the shell.

The nodal forces are computed from the stresses by one-point

quadrature, which yields

%xI - A (BxI 6xx ;I Mx ByI 6xy + B;I xy)
%yI - A (ByI 6yy + B;I + B.1 6xy + B;I mxy)
%zI - A (ByI 6yz M BxI 6xz)
;xI - -A (ByI mey + B My + sy 6yz)
l:lyI - A (BxI Mex ¥ ByI mxy *sy 6xz)
where
8is 7 ?/2 ;i‘ d;
J Gy b
,;'f':zf.‘f{z_:",.:,"f.:.".',-’ e AT T T T T T N A '- ~ " N LN NN

(2.9a)

(2.9b)

(2.9¢)

(2.94d)

(2.9e)
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A ?/2 A A oA

m.,. = og.. z dz (2.9g)
ij ij

% -h/2 4
' '
!

A

l

b

and h is the thickness.

?

3 The one-point quadrature element is rank deficient, so it is associated

. with spurious singular modes, as described in Belytschko et al (1984).

. Their control is also described therein.

A The incremental work is computed in each element by

4

1 &
n {
5‘ ¥
& Aw;nt - f At (gn+8)T (gn " gn+1) qv (2.10a)

h-

" ¢
(N 4
% ¢
- where

~
F\
)"

Y

l‘

'-Z al = (d _,d,,d _,d_, d ] (2.10b)
N ~ XX’ yy' “xy' "xz’' “yz )
. y
l; o
.: aT - [0 o P o] (2.10¢c)

- ~ XX' “yy' "Xy’ "xz' “yz )

~ "
N

~ and At is the time increment; superscripts indicate the time step. This

\
3; quantity is used to check stability and as a criterion for mesh adaptation

-

y in some of the studies.
L \
N
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- 3. FUSION AND FISSION ADAPTIVITY 3
; 3
# The type of adaptivity which has been adopted here is an h-type, where
; the mesh is selectively refined in parts of the domain during the evolution ;
4 of the solution. 1In addition, the refined elements are fused when they are f
,% no longer needed, so that computational power is not wasted on those parts 5
E of the domain which no longer undergo a changing deformation pattern. The ;
t motivation for including the fusion process is that in transient nonlinear 3
N problems, certain parts of the domain in effect "freeze", so that coarse ;
; meshes can capture their behavior effectively.

n
3 The adaptive process consists of fission, in which an element is split
. into four, and fusion, in which a group of four elements is combined into
{E one. These processes are illustrated in Fig. 1. For purposes of \
D 3
" organization, any group of four elements which is created by fission is ;
A called a molecule.
; There are three aspects to the implementation of fission-fusion .
; adaptivity: )
] 1. criteria for fission and fusion; the evaluation of these
E criteria is called a judgment; 5
3 2. the initial conditions for element and nodal variables at the i
o “u
[- nodes and elements which are created by fission; *
ﬁ: 3. the initial conditions for element variables of elements Z
% created by fusion. i
B :
; Fission-Fusion Criteria ;
-: Two criteria have been adopted for making judgments on fission-Iusicr E
E 1. an incremental internal work criterion; Sj
. ~
* L
: N
3 v R
- e e e N R G

a2
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b

- 2. a discontinuity criterion based on the increase in the angle :
between two adjacent elements. ’

-

o

According to the incremental internal work criterion, the elements
which are fissioned are those which sustain the most work. Because this
variable usually has an oscillatory character in an explicit solution of a

transient problem, the judgment is made on the basis of the total

incremental work done over the last five time steps. For the purpose of

TW .

comparing elements of different sizes, the total incremental energy in a

molecule is used as the criterion. Thus, fusion is indicated whenever the i

) incremental work in a group of four elements which has been created by a ;
' previcus fission is smaller than the incremental energy in other molecules. 3
. Even with the filtering that is brought about by taking the incremental E
b, work over five steps, the incremental work criterion can lead to an N
: oscillatory pattern of fission followed by fusion in many molecules in a ;f
transient process. Therefore, a time delay has been included which prevents "

fission or fusion unless it is indicated by two consecutive judgments. This j:

type of retardation of the adaptive process appears to be needed in explicit X

treatments of nonlinear structural dynamics with adaptive meshes if ;‘

i excessive "churning" between fission and fusion is to be avoided. ,
i The second criterion we have studied is based on the change in angle &
A between two elements. The basis for this criterion is that one of the R
; largest sources of errors in this finite element procedure is the inability ;
y of the piecewise bilinear elements to capture the correct shape and moment- .
o

. curvature interaction of the shell as the deformation localizes. Severe K
> deformation in shells is usually associated with large curvatur:s: since the -
2 bilinear elemert cannot represent large curvatures directly, it is i
G associated with severe "kinking" between elements, which can be detected hv ;

' moritoring the angle between 2lements. For those elements which satisty the

o« v v o a

L
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f; angle criterion for fission, both elements on each side of the line are -
. subdivided into four elements.
? ) An advantage of the angle criterion over the incremental work criterion
St
:.\ is that it can be applied to more than one level of fission-fusion without
- need of additional parameters. The incremental work criterion, if it is to
g. be used for two levels of fission-fusion, requires the specification of a
? g ratio at which the second level of fission is initiated.
N Since it is difficult to relate any of these criteria to the ultimate
1&\ accuracy of a solution, ome technique we have frequently used is to simply
z& specify the maximum number of elements and use the criteria to select where
,;t those elements are placed. 1In this procedure, we start with a uniform mesh
L which contains a fraction of the maximum number of elements allowed. After
EE five time steps, the elements are fissioned in decreasing order of the

iu amplitudes of their error indicators until the maximum number of elements is
f. obtained.
Fissi ocess

. When a molecule is fissioned next to an unfissioned molecule, as shown
j& in Fig. 2, nodes are created adjacent to unsplit sides, so they cannot be
;i: handled by the usual equations of motion. In order to correctly handle

\
A compatibility, these nodes must be treated as "slave” nodes which are driven
‘;i by the adjacent "master" nodes. In addition, in order to introduce a good
;i representation of the shell as quickly as possible, it is useful to use the
'
:f nodal vectors Ei for an approximation of the curved Kirchhoff-Love surface

)

: on which the new nodes are placed.
;; The procedure for setting the initcial ceniizuration of the nodes is as
fu follows. The surface is approximated ov

N

~ [ |
>,
Y

:2:

2.
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y .
ta
’ 13
) - 4
Xy = Xy NI + } sJi (3.1) p
r J-l
Y )
N .
"
, .
" where :
o |
o
: Spg = (b1 Hy(8) + 859 Hy(6)) ny |ryy| (N + Ny (3.2) .
- '
1 :
LY
; where HI(E) are the Hermite interpolants, so that HI'E(fJ) - SIJ and ¢IJ is %
= the slope of the Kirchhoff surface relative to the bilinear approximation,
g which is obtained by
< b1 = ~(by - rpp/lEgl (3.3) :
’ ;
’; -
‘ The initial velocities of the nodes are obtained from the bilinear
; interpolation (2.1). The initial element variables for the elements are
taken from the parent element. The mass matrix is reassembled after
fission. Nodes which are formed at sides which are continuous sides of the o
1 adjacent elements are considered slave nodes. All other new nodes are '
L}
: master nodes. Thus, an interior node is always a master node, but if only a :
y -
': single, isolated molecule undergoes fission, all other new nodes are slave
o, nodes . L
I
Y .
-; .
YA AN G A AN TR SR ARSI AU S AR A SRS AN IR A AN S




usio ocess

In the fusion process, no new nodes are created; the velocities and

displacements at the nodes which remain are assumed to be continuous during

fusion. The number of elements is reduced from four to one; the historical
state variables (stress components and yield) are taken to be the area-
weighted average of the parent element stresses. State variables such as
the yield stress are adjusted so they remain consistent. For example, if
the majority of the elements is plastic, the yield stress is adjusted so

that the fused element is also yielding.
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4. NUMERICAL EXAMPLES

All numerical examples described in this section were performed on a
Harris 800 computer in single precision. A single-precision word consists
of 11 significant digits (base 10) on this computer.

Since closed-form solutions are not available for nonlinear transient
problems, two types of comparisons are used for the adaptive solutions:

1. numerical results obtained by finer meshes;
2. experimental results.

The first example concerns a clamped beam which is impulsively loaded
over the center portion as shown in Fig. 3. Using symmetry, half of the
beam is modelled by m X n quadrilateral plate elements, with m elements
across the 1.2 in. width and n elements over the 5 in. half-span. The x and
z components of the translations and rotations about the x and z axes were
constrained.

Figure 4 shows the midspan deflection obtained by two fixed meshes and
an 8- to l0-element adaptive mesh. As can be seen, the adaptive mesh is
quite close to the 20-element fixed mesh for the first 0.5 msec, and it
matches the maximum displacement quite well. Subsequently, it diverges
somewhat from the fine-mesh solution.

Figure 5 shows the pattern of mesh adaptivity. The first elements to
be fissioned are those beneath the impulsive load; the location of the
fissioned elements then moves back and forth between the center and the
support, like the hinge in the rigid-plastic solution, and finallv fixes
itself at the clamped wall.

The profiles of the beam obtained bv a fine fixed mesh and the adaptive

mesh are compared in Fig. 6. As can be seen, the profiles compare 7 ..:i¢
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A, well, except at the final time, 0.49 msec, when the node at the adaptive

“w mesh at x = 3.0 in. deviates markedly.
%g' This beam was resolved with a 2 x 20 fixed mesh and a l6-element

E{ adaptive mesh. The midspan deflection is shown in Fig. 7. 1In this case,

the adaptive mesh corresponds very closely with the fixed mesh, even though

-

&;E it required only 40% of the elements. The potential savings in

ff computational resources is even greater because, in the adaptive mesh, half
S of the elements could employ a time step twice as large as that used in the
v fixed mesh.
1;2 A more complex example for the adaptive mesh is provided by the
) f cylindrical panel problem shown in Fig. 8. An initial velocity of 5650

e in/sec is applied to the 3.08 in. x 10.205 area indicated in Fig. 8. The
'EE panel is simply supported at its ends and clamped at the sides. An Ilyushin
'?k plasticity model, which is expressed in terms of the resultant moments and
‘:J membrane forces, m1j and 61j' is used in the computation.

ég Two adaptive meshes were used in the computation: a 96-element mesh

5: based on a 4 x 8 mesh of molecules; a 218-element mesh based on an 8 x 16
55 mesh »f molecules. The results are compared to uniform fixed meshes with

;E 32, 96, 128, 218, and 512 elements.

:E The displacement time histories for the coarse adaptive mesh are

T. compared to three of the fixed-mesh results in Figs. 9 and 10 at points A
};2 (z = -6.28 in.) and B (z = -9.42 in.) which are indicated in Fig. 8.

i? Remarkably, the 53-element adaptive result almost coincides with the 128-

. element fixed-mesh result for the first 0.4 msec. Subsequently, the resul:s
ii >: the two meshes deviate somewhat, and the adaptive results become slightl-
i; rzugh, which is caused by excessive churning of the fission-fusion process
}g
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Note that the fixed-mesh results with fewer elements deviate substantially

from the finest fixed-mesh results.

The displacements for the fine adaptive mesh are compared to the fixed
meshes in Figs. 1l and 12 at points A and B, respectively. Here the 218-
element adaptive mesh corresponds quite closely with the 512 uniform fixed
mesh and exhibits marked improvement over a 200-element fixed mesh.

Deformed mesh plots for the finer adaptive mesh are shown at various
times in Fig. 13. Here the incremental energy was used for the fission-
fusion criterion. It can be seen that after 0.0125 msec, the crown settles
downward like a plateau and the fissioning process migrates laterally
towards the line where the curvature is maximum. During this time, the
crown moves down in a frozen plateau-like state. After that, the crown
develops a convex curvature when viewed from above, and the elements in
crown are again fissioned. The end of the simulation again exhibits
churning of fission-fusion, which is a tendency that needs to be fixed:
is probably due to the fact that incremental work is quite small in the
later stages because most of the deformation has taken place, so the
incremental work in molecules is quite uniformly distributed, allowing the
fission-fusion process to be triggered by small oscillations in the
solution.

Experimental results have been obtained for this shell by Morino et al
(1971), who reported a maximum deflection of 1.24 in. at point A. The
finest fixed and adaptive meshes yielded maximum deflections of 1.20 and
1.17 in., respectively.

The deformed profiles are shown in Figs. l4 and 15 for ~he 512-elemernt
fixed mesh and the 2.8-element adaptive mesh. The development of a “irge-
like pattern at about x = 2.0 {n. and the attendant fissinn process ar=

guite clearlv seen in Fig. la. Figure 1 shows a cross section in =re -
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! plane of symmetry. The fission process which takes place while the crown is
‘ moving like a flat plateau, followed by the fission which develops when the
W
: crown curves, is quite clearly seen.
.-I
5 The third example is a hollow, cylindrical column which is subjected to '
a compressive axial load. This problem is of interest because it exhibits ‘
N )
;: both global and local buckling, the latter resulting in buckling of the
&3 cross section. Numerical results and experimental results have been
hS
b reported for this problem by Kennedy et al (1986). The problem parameters
o are given in Table 1.
\l
- The cylinder is loaded by prescribing an upward velocity of 500 in/sec
' to the bottom nodes of the model, with the top fixed. To trigger the
- lateral buckling mode, an imperfection given by
.
0,
: inz
p ax = 0.01 sin %5
\'
N
N where £ is the length of the column and z is the coordinate along the axis
'~
N of the column, is added to the x-coordinate of all nodes. The pattern of
N adaptivity is shown in Fig. 16. 1Initially, the fission process moves up and
o down the column similar to a reflected wave. The fission process then
by
N coalesces at the nodes of the lateral buckling mode, where they remain,
- except for the fission which takes place at the compressive buckles at the b
.
- top and bottom of the column. The displacements of two points in the
? adaptive mesh are compared to corresponding points in a finer fixed mesh in
-
' Fig. 17. The results show good agreement.
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CONCLUSIONS

An adaptive procedure based on an h-scheme has been developed for the
nonlinear transient analysis of shells. This includes the development of
suitable criteria for fission and fusion and the formulation of the fission
and fusion processes. Two criteria have been found useful for the bilinear
quadrilateral elements commonly used in transient analysis by explicit time
integration:

1. the incremental intermal work criterion;

2. the relative angle criterion, which is a measure of the
deviation of the bilinear surface from the Kirchhoff-Love
surface associated with the nodal orientations.

Furthermore, to avoid excessive churning of the fission-fusion process, time
delays had to be incorporated in the judgment process. Nevertheless,

churning becomes a problem with the incremental work criterion in the later
stages of impulsively loaded problems when the work on the system decreases.

The results we have obtained show that the adaptive schemes are capable
of achieving substantial improvements in accuracy for a given computational
effort. Generally, an adaptive mesh is capable of achieving the same level
of accuracy as a fixed mesh with less than half of the computational
resources. The fission process tends to take place in the subdomains where
the maximum deformation occurs.

The h-adaptive procedure is limited in its ability to focus on the
subdomains of maximum deformation by the fact that the molecules which are
subdivided are fixed in the reference configuration. Therefore, hinge lines
which occur at small angles relative to the mesh lines are not captured
effectively. For this reason, an h-r adaptive procedure which permics

motion of the nodes is now under development. An essential ingredianz orf
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such a process is an arbitrary Eulerian-lLagrangian method, which is

described in the appendix.
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Table 1 ~
b
-
1
o
Dimensions and Material Properties of Cylindrical Column :
.h
Wall thickness 1l in.
Column diameter 13 in.
Column length 160 in. o
Young’s modulus E=2.8x 107 psi 5
Density p = 8.31 x 104 lb-secz/in4 4
Poisson’s ratio v = 0.25 i
Yield stress v = 35000 psi A
3
10 piecewise linear stress-strain curves are used to }’
approximate plastic behavior R
Plastic moduli si Plastic stresses si E
(1) 6.60 x 10° 4.75 x 10%
(2) 4.50 x 10° 5.65 x 10* 1
(3)  4.00 x 10° 6.45 x 10% R
(%)  2.75 x 10° 7.00 x 10°
(5)  2.50 x 10° 7.50 x 10 =
(6) 2.25 x 10° 7.95 x 10% e
(7)  2.20 x 10° 8.35 x 10% E
(8)  1.75 x 10° 8.70 x 10° N
(9) 1.50 x 10° 9.00 x 10* -
(10) 1.25 x 10° 1.15 x 10° 0
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- LIST OF FIGURES

1. Fusion and fission of a molecule with the node numbering convention.

2. 1Interface between a fused and a fissioned molecule with curved
geometry.

3. Impulsively loaded clamped beam. Young'’s modulus E = 10.4 X 106 psi;

density p = 2.61 x 10'4 1b-sec2/in4; Poisson’s ratio v = 0.3; yield
stress o = 41400 psi; plastic modulus E_ = 0 psi; initial velocity =
5000 in/sec; thickness = 0.125 in. P

4. Center-point deflection of the clamped beam.

5. Undeformed and deformed plots for the clamped beam with a 10-element ’
adaptive mesh. A
6. Deformed cross-sectional profile of the clamped beam with 2 x 10 mesh. by
~
7. Center-point deflection of the clamped beam with finer mesh.
\
8. Impulsively loaded cylindrical panel. Young's modulus E = Sy
10.5 x 106 psi; density p = 2.5 X 10'4 lb-secz/inh; Poisson’'s ratio v = :
0.33; yield stress o = 44000 psi; plastic modulus E_ = O psi; radius
R = 2.9375 in. P >
9. Displacement time history for node A of the cylindrical panel. o
10. Displacement time history for node B of the cylindrical panel. g
11. Displacement time history for node A of the cylindrical panel with ;
finer mesh. ?
12. Displacement time history for node B of the cylindrical panel with
finer mesh.
13. Undeformed and deformed plots for the cylindrical panel with 16 x 32 “
adaptive mesh. R
14, Deformed cross-sectional profiles of the cylindrical panel with 16 x 32 K
mesh and in an x-y plane passing through node A. :
15. Deformed cross-sectional profiles of the cylindrical panel with 16 x 32
mesh and in a y-z plane passing through nodes A and B.
16. Undeformed and deformed adaptive meshes for the cylindrical column.
5
17. Displacement time histories for two points of the cylindrical column. >
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APPENDIX

H CHAPTER 1

INTRODUCTION

The analysis of shells into the failure domain or post-buckling domain is
becoming of increasing importance in the design of certain classes of struc-
tures, particulary when the survivability or vulnerability of the structure {is
a key question. Areas of design in which fallure analysis {s important are
the design of defense structures and in the analysis of re-entry vehicles. In
both cases the loads to be sustained are extremely high or the cost of super-
fluous strength are severe, so it is necessary to be able to predict the
behavior of the shell substantially beyond the classical buckling load,
because buckling by itself does not constitute failure of the structure. Many
structures are in fact designed to buckle and the key question in the
survivability or viability of such structures is whether the final
displacements and deformations are within design limits. The prediction of
the displacements of a shell in such severe environments requires an analysis
\ of the shell structure into the post-buckling regime.

1 The analysis of shell structures in the post-buckling regime still poses

| formidable difficulties. The major source of these difficulties is the fact

! that in the post-buckling regime, high strains and large deformations are

- often localized in small regions of the shell. Unless very refined meshes are
used in the vicinity of these buckles, large errors occur in the predicted
deformation of the shell, which detracts severely from the usefulness of the
analysis.

1 This work seeks to remedy these difficulties by developing adaptive mesh
techniques for analyzing the post-buckling behavior of shells. The proposed

work consists of two major tasks:

Pl .
A f‘.r~ "-‘v v R ¥
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4 » .
Y
N
2
2 2
)
A
s
’fﬁ 1. the development of an effective technique for moving and refining the
A
D mesh so that the post-buckling response of shells can be effectively
o
N analyzed;
;ﬁ 2. the development of methods for integrating the stress tensor in time in
N
-, history~-dependent materials in meshes which move relative to the
j: material. ;
.
;: This report addresses the secound question. In particular, some novel
v methods have been developed which can effectively treat moving meshes for
3 path-dependent materials. The resolucion of this difficulty represents a
¢
~d major step toward the ultimate goal.
o
L
> These adaptive mesh techniques in transient problems are inherently by
. !
AN nature neilther Lagrangian nor Eulerian but arbitrary-Eulerian-Lagrangian (ALE) ]
ig and we will use this terminology here. This concept was first proposed in Noh
Ky [1964] under the name "Coupled Eulerian-Lagrangian.”™ Similar applications to
.ﬁ compressible flow problems are reported by Trulio [1966]. Later in Hirt et :
;ﬁ al. [1974], the ALE method is employed in conjunction with an implicit
™ formulation for the solution of two-~dimensional flows. In that paper, the
N
.:j calculations for each time step are separated into three phases. The first .
0 ‘
:: phase consists of an explicit Lagrangian calculation for the velocities and ‘
-
A specific internal energies. Secondly, a Lagranglan implicit iteration
v,
e procedure adjusts the state variables based on the predicted variables
l:( )
?; obtained in the first phase. This implicit procedure eliminates the usual |
< Courant-type numerical stability coandition. Finally, in the rezoning phase,
L2
‘ﬁ the convective fluxes for the conservation equations are computed o account
&: for the mesh motfons. An extended version of this computational technique to
N
N three-dimensional flows contained within arbitrarily shaped or moving
.:: boundaries is reported in Pracht [1975] and Stein et al. [1977]. \
A -
"
[
S
-'J
-
N~




The ALE method was introduced into the finite element method in Donea et
al. [1977) and Belytschko and Kennedy [1978] in response to the need for
nonlinear simulation techniques in nuclear safety analyses. The advantages of
the ALE method in fluid-structure interaction are apparent since the fluid
domain can be teated by the ALE formulation and the structural domain can be
handled by the usual Lagrangian description. In these articles, the effort is
primarily directed toward inviscid compressible fluids, while in Hughes et al.
(1978], a finite element procedure for viscous incompressible flows and free
surface flows i3 presented in conjunction with a general kinematical theory
for the ALE description. A similar formulation has later been reported in Liu
and Ma (1982]. The capability of ALE method to handle an expanding gas bubble
immersed in a fluid has been demonstrated ian Belytschko et al. {1982]). The
mesh motions for this problem are prescribed according to a simple control
algorithm in which the boundary nodes are considered Lagrangian and the mesh
velocities for the intermediate nodes are lineary interpolated between the
boundary velocities.

Recently, the application of the ALE concept to contact problems between
flexible structures is proposed in Haber and Abel [1983] in which the
displacement vector is separated into the lLagrangian and Eulerian parts. The
slip compatibility conditions are met by making the Lagrangian displacements
common to elements on either side of the interface. Separate Eulerian
displacements are associated with elements on one side of the interface to
model the slip conditions. This concept is extended in Haber (1984] for
quasi-static solid mechanics and Haber and Koh [1985].

The articles cited above are mainly directed toward linear path-
independent materials like Hookean solids and Newtonian fluids. The stress

states for these materials are solely determined by the displacement or
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velocity fields. When the ALE method is applied to materials with memory, the
state variables for an element are affected by the migration of material
points which may carry different stress and strain histories. This difficulty
arises because the adaptive or ALE mesh does not model the same set of
material points throughout the simulation. A similar situation is encountered
in Derbalian et al. [1978] when the Eulerian description is employed for
plastic forming analysis. In this paper, the difficulty is side-stepped by
interpolating the stress histories at each incremental step.

Obviously, a consistent treatment for the transport of the histories of
all path-dependent quantities through the mesh is necessary for the analysis
of these materials. It is therefore the purpose of the current effort to
develop a general formulation and an explicit computational procedure for
nonlinear adoptive finite element analyses. Furthermore, to provide a better
understanding of the adaptive methods in nonlinear mechanics, the
linearization procedure for the equilibrium equation is addressed in this work
to examine some features of the method.

The scope of the present investigation is arranged as follows. In
Chapter 2, the notations for material, spatial, and referential coordinates
are introduced. The relationship between the material and referential time
derivatives i3 reviewed with the definition of the relative velocity between
the materilal and mesh velocities. The balance laws, which include the
continulty equation, momentum equation and energy equation, constitutive
equations, and equation of state in the adaptive description are reviewed.

The stress—-velocity product is defined to circumvent the difficulty associated
with treating the gradient of the stresses in the constitutive equation. The
weak formulation and matrix equations are derived. Based on the principle »>f

virtual work, the linearization procedure in the adaptive description is
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performed for the Cauchy stress and velocity gradient. The resulting rate
form for the virtual internal energy has a strong resemblance to the
Lagrangian description, The tangent stiffness matrices consist of two
parts: the first one is identical to the Lagrangian description and the
second part arises when the ALE description is employed. The explicit
expressions for these two matrices are given, and the latter for the
contributions from the ALE description.

Numerical methods for the ALE equations are detailed in Chapter 3.
Techniques for nonlinear convective effects, which characterize the ALE
description, are reviewed. These include the upwind method, Petrov-Galerkin,
and Taylor-Galerkin formulations. The difficulty of treating the gradient of
stresses in the ALE description is discussed. The remedy of this issue {s
separated into two parts. The first part includes the construction of the
stress—~velocity product in conjunction with an artificial viscosity technique
to achieve the streamline upwind effect, The determination of the artificial
viscosity parameter is accomplished by recourse to the analytic solutlons for
a one~dimensional constitutive eqution. A collocation weighted residual
formulation for the constitutive equation 1is presented in the second part.
This procedure is formulated such that it can handle any number of quadrature
points for the family of displacement elements. An efficlent two-quadrature
point element suitable for nonlinear calculations 1s discussed. The usage of
this element to account for both the geometric and material nonlinearities is
described. An explicit time integration algzorithm based on the predictor-
corrector method is presented. Several numerical examples are analyzed to

demonstrate the effectiveness of the present development.
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CHAPTER 2
ARBITRARY LAGRANGIAN-EULEZRIAN FORMULATION

OF FIELD EQUATIONS

2.1 Review of Governing Equations in Arbitrary Lagrangian—Eulerian

Description

The material, spatial, and referential coordinates are denoted by

1§

» X and X» respectively. Throughout this dissertation, standard
indicial notation is adopted; lower case subscripts denote the
components of a tensor and repeated subscripts imply a summation over
the number of space dimensions (NSD). A comma followed by a subscript
designates the partial derivative with respectc to the corrasponding
spatial variable.

The superposed dot and star denote the Zizne derivative with zhe
material and referaantial coordinates fixed, respectively. The
relationship between these two derivatives are expressed here as

(Hughes et al., 1978]

() = () o)y

—
te
-
—

~

where cy is the relative velocity between the material (v.) and nesh
velocity (vi),
c' - v - ,” Al hl
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the relative motion between the material and the mesh. In particular,

¥ when ¢ is chosen to be v, i.e., X = % the familiar Eulerian time .
derivative {s obtained. -

The equations which govern the continuum in the ALE description b
s are the three conservation laws [Donea, 1977] j%
. v
: i
' * = (2.3) A
L, nass: Dt ciP § CAS TS} . f
) * y
b momentum: pvy + ocjvi,j = .'i_] yj + bl (2-4) :-'
! :

* '

energy: pe * pcye 4 = TijV(i,j) *tP3 T 4y (2.5) :
. .l

’ -~
\

’l

" The Cauchy stress may be decomposed into the deviatoric stress tensor i
, syj and the hydrostatic pressure p gj
: 2
| - fiJ = sij - ?611 (2.6) -‘:i
: X
. ~
: which are given by the rate congtitutive equation :,
) ~
) o
3

5 + c.s = C v + Syivy + Sy vy 2.7)

) 313 %$1i,x 13xeV(k,2) i {1,k] k1" {]j,k] - " ]
- and the equation of state ie
-« r‘
" * I4h) '.\
: p*cyp g p(o,e) (2.3) :::

-

-
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respectively. Ia the above, p is the density; by is the body force per
unit volume; e is the iaternal energy; 81 is the Xronecker delta;
p(p,e) 1is the function for the equation of state; V(i,3) is the velocity

strain tensor

v(i,3) T % (vi,3 % 95,0 (2.9)

and Vii,i] is the spin tensor
| .
Vi1,3]1 =5 (v 5 = v5,1) (2.10)

a is the internal heat gemeration; q; is cthe heac flux; and Cyjy, i3
the material response tensor which relates any frame-~invariant rate of
the Cauchy stress [Prager, 1961] to the velocity strain. Both
geometric and material nonlinearities are included in the setting of

Eqs- (2.3"8).

REMARK 2.1.1l: The right hand sides of Egs. (2.3-5,2.7-8) remain the

same for all descriptions [Liu, 1984].

REMARK 2.1.2: Egqs. (2.3-5,2.7-8) are referred as the "quasi-Eulerian”

descripecion in Belytschko et al. [1980] because these equations have a
strong resemblance to the EZulerian equations. In particular, the

Eulerian equations can be readily obtained by choosing ¢ = v, i.e,,

§7 X

REMARKX 2.1.3: Eq. (2.7) is equivalent to the following equations:
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$13 * Yijik,k T %k,kS13 T CejuaVic,2) T SkiVii,k] T SkiV(j,x]

(2.11)

and

yijk = sijck (2.12)

where Y1k is the stress-velocity product. In the following finite

element computation, these two equations will replace EZq. (2.7) in the

weak form; see Section 3.3 for a discussion.
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2.2 Finite Element Equations

The variational equations corresponding to the conservation
equations, Eqs. (2.3-5,2.7-8), are obtained by multiplying by the test
funetions, §&p, §vy, Se, 531j’ Gyijk and §p, over the spatial domain Ry,
and employing the divergence theorem to imbibe the traction force
vector E on the boundary pg and the amount of heat 3 transmitted

9
through Ty.

mass

[ GopdRy + | Spcyp dRy = = Sppvy sdRy (2.13)
X Rx &

opomencum

ijpavizide " Iaxpévi°ivi,de“ ) -Ixxsvi,jfidex

+ [ GugbydRy + [ SvihydTy (2.14)
Ry Tx

energz

*
[ pdeedRy * j °6e°ie,ide = f Se’iqide + Gefijv(i,j)de
Ry Ry Ry Re

+ [ sepadRy - |

Rx

§9dr,, (2.15)
nd :
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Ry Ry
(2.16)
and
fRXSyijkyijdex - [Rxsyijksijckdxx (2.17)
equation of state
/ Gp;de + [ 8pegp ydRy = [ 3pp(p,e)dRy (2.18)
§ Rx Rx

Eq. (2.13) and Eq. (2.15) represent the coatrol volume forms of
material and energy conservation, respectively. Eq. (2.14) {s a
generalization of the principle of virtual work to the control volume
form with the first integral brought in as d'Alembert forces.

In finite element methods, the domain of interest Ry is subdivided
into elements. Different sets of shape functions, g, 3°, ze’ 25,
27 and 3P, and corresponding sets of test functioms, 3, 3, 3%, 3%,
éy and §p, are introduced to interpolate the velocity, density,
internal energy, deviatoric stress, stress-velocityv product y and
hydrostatic pressure, respectively. Note that the test functions and

shape functions for deviatoric stcresses are used only in the
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..l‘
‘o constitutive equations. The matrix equations correspoanding to Egs.
Y (2.13-18) are:
Kis

ry *

A mass o+ W +rKp=0 (2.19)
A

x> *

iQ momen tum Mv+Nv+ Einc - foxt (2.20)
-
:-::

J'\ *
: energy MP%e + N%e + g = ¢ (2.21)
;

N

W *

JS constitutive gsg + QTX -Ds=2 (2.22)

A

W,

N
‘:; and
::J,
Nj
£ Wy = ¥s (2.23)
\4
1 .‘i‘ *

n equation of state MPE + NPB =y (2.24)
” < < ~

v,

/.

-’.

The superscript "T” denotes matrix transpose; M, 4P, M®, 5, ¥¥ and ¥P

ﬁ: are the generalized mass matrices for the corresponding variables ia

%

-7 Eqs. (2.19-24), respectively; N, N°, N®, NY and NP are the generalized
o+,

d convective matrices; §9 is the stiffness matrix for density; £int is

-,

o is the iaternal force vector; £®** is the external load vector; g is

-

Qj the conductance vector; r is the generalized energy source vector; E is
a9

-

"

the divergence operator matrix; D is the generalized diffusion zatrix

U’ ". l"
dhintt.

for the deviatoric stress; z and u are the generalized deviatoric

]
3
v r

stress and pressure vectors, respectively. The definicions Ior these

v .
e
) U

aatrices and vectors are given {a Appendix A.
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REMARK 2.2.1: The nonlinear convective terms, which characterize the

ALE method, inevitably pose difficulties. Recently, finite element
methods for non-self-adjoint systems (see Section 3.2 for a discussion)
have been developed which do not suffer from crosswind diffusion when
applied to the multi~dimensional convection-diffusion problems. These
methods may be applied to handle the convective terms in Egs.

(20 19-21 ,2'23-24) .

REMARK 2.2.2: All the matrices and vectors defined in Appendix A are

integrated over the spatial domain Ry which changes continuously

throughout the computation.

REMARK 2.2.3: The stress-velocity product y is stored at each node as

a vector with a dimension of (number of space dimensions)x(number of
stress compounents). The diagonal form for gy is obtained by locating

the numerical integration points at the nodes.

REMARK 2.2.4: A procedure for the stress update equations (2.22-23) is

presented in the next chapter to clarify the temporal integraticn for
path-dependent materials. All the path-dependent quantities are
updated analogous to Eqs. (2.22-23). To the author's knowledge, it is
a new approach to calculate the stress statas f{or path-dependent

materials in the ALE descriptionm.
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2.3 Finite Element Formulation bv the Principle of Virtual Work

The finite element procedure presented in the preceding section is
formulated in the spatial domain and the Cauchy stress and the velocity
strain are employed to measure the stress and strain states. In this
section, the ALE finite element for the equilibrium equation is
formulated with a recourse to the principle of virtual work in the
referential system. It should be noted that the linearization
procedures in this section are performed by keeping the referential
coordinates constant which is in contrast to the usual rate
formulations with the material coordinates held constant.

Denoting a virtual variation of displacement by §uj, the principle

of virtual work requires [Malverm, 1965]

Ikdui;jrijd&t = frhdukhkdfx + I%Sukb‘{d&( (2.25)
X X

where the integration extends over the spatial domain. This exprassion
may be transformed to the referential coordinate system as follows:

38uy IXqg
m——— E TideRx = fﬂhaukhkjsdrx + f

§uy by JAR (2.26)
Rx Xa R X

X X
In the above, JS is the scalar ratio of differential areas drx/dFK and
J is the determinant of the mapping tensor between spatial and

referential coordinates given by

iy e gty god

v ¢ ¥ ¥

"—l’ " 'l'l-1 T .
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W

X
J = det({™) (2.27)

Eq. (2.26) can be recognized as the balance of virtual internal and

external energy integrated over the referential coordinates.
Wine = Wex: (2.28)
The tangent stiffness matrix correspoanding to Eq. (2.26) can be

P obtained by considering the rate form for the virtual internal energy

with the referential configuration held constant:

) *
' * 3duy 37(1! Itm * 3xXm *
W = == 7. .J +=—1,.J]dR (2.29)
int f~ o ((5%; FARE LTI S
; As can be seen, three rate quantities reside in Eq. (2.29). The first
, rate term can be manipulated by considering the rate form for the
identity
ax
kLS e S (2.30)
3xy xXp ]

and it can be shown that

* *

3%, 3 3 X
; (my e | Xn 2R (2.31)
’ 3xXy 3Xm 3%y 3xq
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N With the substitution of mesh velocity [Hughes et al., 1978]

.

N
ANl
N ;o
~ Ve T % (2.32)

[
3:: Eq. (2.31) takes the form
J‘,‘
X
nr
*
e AXmy _ ¥Xm 3Xa avk
' 3xy/ axk axj 3Xn
™

v
»~
O 3Xm B.k

. = -——a—- (2.33)

N Ixy
Y
o

~

3 The second rate term in Eq. (2.29) involves the rate of change of the
% Cauchy stress tensor which has been shown in Eq. (2.7)

-

o

e

b

< 2 mcgutii o +C v + S,.uoVr (2.34)

- ‘13 k*ij,k 1ike (%, 2) 1ikaVix,2]

:ﬁ In this equation, Tk is the transport of the stress histories.

- ’

.:? The term Cijkzv(k,z) can be interpreted as the pure deformation part

- for the rate of change of the Cauchy stress. The fourth order

 2 generalized material response tensor Ci‘kz is 1
:1:3 ;
L~ ]

‘ c = CC, (2.35) .
., ijkl iika \
2 )
-~ 1
- «
2 '
Z ]
»

; 9
’ '
>, :
o, )
W h
A
1. ..... e e e e s
. I N e e e e e T Y T T N

LMALM_.C_J_— J&..A-P.B.A.A.‘.E_.A‘.AJ._A.‘.A.AJ.._’_.-._‘_A



‘™t \ ' 0 Wie, " T AT g e T W T Y T N VN VT N e N v Yy v T v T T T T T W W YT W T Ty
LSRG GEGE WL L RGN LU R L 0LLELELAN S LSO A AN SR ATLAE 0 2 0 A A LI S AN SRR AN AL AT AL R SN 4O AR AT L e R e o ol Bl ol

}
|
1

.
|

i ' if the Jaumann stress rate [Prager, 1961] is used, whereas

L

s

W
c =ct o+ (2.36) -2
1jke 1jke 1jk2 : !

7’7
o

if the Truesdell stress rate is employed. The fourth order tenmsor

*
C is given by

1jkg o
Cr =t 8 v e(e, 8, Fr, 5., T 8. tr.5. )  (2.37) .
ijke 137kg 2 iz ik jalix ik“j2 jkig N;

=

A

For most of the currently used materfal models, the material response

LR R
"-,"4,"5 o

tensor Cijkl possesses both major and minor symmetries. Several

(ol

o &
A,

examples for the generalized material response tensor have been

discussed in Liu [1984] which will not te repeated in the present

Y
i . . 2.34¢
study. The term sijkzv[k,zl in Eq. (2.34) is the rotational part for ]
the rate of change of Cauchy stress and the fourth order tensor sijkz :%:
is given by ;jf
L ]
== (z + -z - 2.38 o
sijkz 2 (‘izéjk szsik iksjz Tjksil) _ ( ) o
The last rate quantity in Eq. (2.29) is given by Liu [1984] R
" o
:'T\
\‘_,\.

vy

* -
J = 1%, (2.39)
L,K

b4

s

’
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£q. (2.33) and Eq. (2.39) can be subscitured intc Zq. (2.29) zo wvield

‘ CRE AR R
f N
. P

NN

QIO



q“’} Pasa s PP B AR R I o R T a TR TV VRO RY ACA AR ARSI L S DA SR L b b e R e
2y

~‘
\l
. 18
| ]
)
\
N
e A
* 38uy  dxy 3V Xy * Yo A
N W = ['.—'~T'+_1"+_T-V|v]JdR (2--"0)
::.', int f axm :’Xk axJ iJ ax.j lJ axJ 1.] L,K X
NS
N\
3 L
‘. L2
. which can be transformed back to the spatial domain as
N x G ; 41
dae = [ 8y Slriy T Tyt T iy el dRy (2.51)
K Rx
: ? In case of v = v, f.e., (') = ("), Eq. (2.41) degenerates to
. . .
K - - -
Wine = [ Sug jlrey *origvior T TiYy, Kl (2.42)
.. Ry
:;: which {s identical to the incremental expression for the virtual A
;;: internal work in the Lagrangian description [Liu, 1984]. The rate
- constitutive equation, Eq. (2.34), may be substituted into Eq. (2.41)
%
v, to yield
{l
",
Ay r* +C + S
o dine T [ Sug gleectay e T CsaVoe, 0 Y Stikaix,a)
. Ry |
- *rgghe,e T Tk, Rl dRs (2.43)
.-’
L ‘
. :
'ﬂ -~ ~~ ~ .
? when vy = vy = ¢y is substituted into the last two terms, Eq. (2.43)
.:',. can on,be written as

a
<8,
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»*
Wine = fo5“1,j[(C1jkz * Tijeg V%,

* T4y ,k = T13%,k T SkTij,K) AR (2.44)

where the components for the initial stress tensor can be shown as

c
= T
Tijkz iika

1 1 ! 1
- =7 5. += -5 -= .45
Tii%ke T T %5 T T Tyl T 7 Ty, T2 Tyl (2043
if the Jaumann stress rate is used, and
=15 = (2.46)

Y1k | tikz  Ti2lik

if the Truesdell stress rate of the Cauchy stress is emploved. 4s can
be seen from Eqs. (2.45-46), only the components of Tijkz possess majior
symmetry. Hence, the Truesdell rate for the Cauchy stress will be
employed in the subsequent finize element formulation in order to
obtain a syvmmetric geometric stiffness matrix.

Similar to the generalized consticutive aquation, the general
formulation for the rate of change of the virtual internal work can be
arranged in three parts: (l) the material response part, Dij&ka.L;

the initial scress part, T and (3) the transport pare,

1jk2"e, 2}

I -x,,¢, , =¢1,, .+ wWith these definitions,
ik i,k ij %,k < 1ii,x j
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u, D .. v dR + [ su, T . v, dR
1,7 ijke k,2 x ‘ i,j 1iky x,2 x
Ry Ry

*
Wine = [

oy
r'e

‘ )
NAFAN

* IR Sy, 1T, T T30k T ST, 9R (
b4

in which

WS

t

# 1
Cijkz for Truesdell rate

A

‘.

o

Dijkz, =- (2.48)

c *
-C
cijkz 19kz for Jaumann rate

22

-
N

and

A
I.‘l‘
«

¥

c o
Tiser ~ Tigkr ™ T5fix

]
ASSN

(2.49)

kY

Jﬁ}

ince the Truesdell stress rates has been chosen Ior the Cauchy stress

tensor. Note that the first two terms in Eq. (2.47) are identical with

, » I . ot K
. '-,' s’x{'. \"_\ < $ag

the linearized expression for the virtual internal work in the

Lagrangian description. The transport term arises when ¢; #*# 0 (i.e.,

when the ALZ description is used) and it is independent of the stress

» LS
NSRS .(

rate chosen for the Cauchy stress ctensor.

[N

Wy

Discussions on the Virtual Internal Work in ALE Description

R
»

The domain of integration for Egq. (2.47) can te zransiormed o> Ine
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naterial svscem [Liu, 1984] as
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z

* 3uy IRy AKX g 3V ha'

Wine =/ 5,5, * I oo O3 ) == drg

Ry 3X; tk je 3%, 3Xg Tpiap’ 3X, “

“J

X4 IXp d

+ Su - = 5 d “u]

fo 1,5 3X; 3% “pq j,k % e

=

3%y 3x .

- [ suy a—ia_xls w, kR 5

RX‘ ’J p q ?q ] :
- . — .) .
IRx %1,5% 15,k 35)_ X ,

A

!

~

In this expression, the secound Picla=-Kirchhoff{ stress Spq is related to ::
)
the Cauchy stress by }2
.:

1 3%y X5 ~ -

.. 2.01

Tij ] (ax) 3x, axq Soq ( ) A
et(—> ")

3X 2

:.r

The fourth order tensor CiJk is the counterpart of the material N
response tensor for the Truesdell stress rate in the material domain S;
)
Cs = det (ax 3‘{1 3X.‘ 3X-< —‘L (2.52) 1
ijkz 3x 3x~ 3IxXg pq's K

The material velocity defined by

J._-J,",-J.'n.n,-.-.-\\.\-* .\-\\.. R -~
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:-. can be expressed by using the chain rule

.
b (On

. * .

o ) = () + 2K, (2.54)

) 3Xy

»
[
‘.v as

N

N, .
£ Ve T %
N

* axk * 2.55

o~ = xk axi xi (2.55)
[~
b

s The derivative of material velocity with respect to the material

" coordinates can be written as

.’T
o

7 3 3%, 3%, 3k
.7, \'4) X X
N R R, e (2.56)
e, 3X 3xX 3X, 3X
- A A i %
&
:'.: It is noted that the second derivative of spatial coordinates with
- abae & .
respect to the material coordinates, - BT-Z)T Xy is neglected at this
X, 8%

point because only the first derivative terms are required in the

o derivation of the tangent stiffress matrix.
';':: The convective velocity, ¢ = vy = “’k’ can be similarly expressed \
-, in terms of the rate of material and spatial coordinates as
‘::' * R *
.'}.: Cx ™ (xk - m xi) = Xy :
’ 1
Ld

:?' % % (2.57)

L B s — : -ed

‘. 3%yt ]
!-': L
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in which the expressions for the material and mesh
Eq. (2.55) and Eq. (2.32), respectively, have been

derivactive of the convective velocity can be shown

Eqs. (2.56=58) can be substituted into the rate of

internal work, Eq. (2.50), to yield

* *
* 36uy Xy 344
3Xy

Wine ¥ Sij(E,x—i‘—x; )dRg

*
38up A% 3X, 3k, ax. 3%,
Xy

h. 4
ij qu Jpq(ax an 3XpJ

dou 3% ax.1
Xy 3Ky “1ij 3%;

dRyg

3xn
3% ¢

3ax
kdet(;;)de

i,i%"15,

velocities given by
used. The spatial

as

change of virtual

1dRy

It is noted that the first integral in Eq. (2.39) represents the

inicial stress effect; the second integral is the material response

parz; the third and fourth integrals arise because

of the use of ALZ
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description (ci # 0); and the last integral represents the transport of
the stress histories in the ALE description.

An alternate derivation of Eq. (2.59) 1is presented in Haber and
Abel [1983]. This formulation is subsequently improved by Haber [1984]
in which the so-called ™Mixed Eulerian-Lagrangian” description is
inspired by the work of Hughes et al. (1978]. In this paper, the
second Piola-Kirchhoff stress, the Green strain, and the virtual work
expression are linearized to obtain the tangent stiffness matrix.
Because of the choice of this conjugate pair of stress and straian, and
the linearizaton procedure, tedious algebra is involved and the
axpression for the tangent sciffnes§ matrix i{s oaly valid for linear

elastic isotropic material. For comparison purposes, the rate

counterpart of the Haber's formulaton is re-derived in Appendix B. The
differences between the present and the Haber's formulactions are
summarized in Table 2.l1. As can be seen, the transport of strass
histories is not included in Haber's formulation. This deficlency
results from the choice of the second Piola-XKirchhoff stress and the
Green strain, and the linearization procedure for the constitutive
equation. The transport of stress histories is very important for !

highly convective calculations such as the wave propagation probleams

2 . aa,

presented in the next chapter.
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Table 2.1. Comparisons between the Present and the Haber's

Formulations
Present Formulation Haber [1984]
stress Ty (Cauchy stress) Si' (second Piola=Kirchhoff
J J stress)
strain v, ; (velocity strain) Eij (Green strain)
?

* * *
constitutive ¢ = =c T +C, . v S =T E
equation ij k' ij,k ijke (k,2) ij ijke kg
sijkzv[k,z] where Cijkz = constant
*
expressions 34u 3Ix 3% 3
N I e k k zn same

S. -
for Wine Ry axj ijraXy iy qu

same, except

*
3du axk Xy 3xX,  3X a&n s
+ g (= JdRy  C7. 1s
Ry SXJ axi qu iqu‘ax axn axp ijpq
replaced by
c, .
ijpa
3 Ik,
aéle xk
S dRy same
Ry I, Xy “ij an
T N N N e e o e K
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Table 2.1 Continued.

* t

3suy IxXy X, ,

+ . dR same .
fo 3Ky axXy Tij Xy X

S 2 2

.

3Ix
- R : —_ . "
! oui’jckrij’kdec(ax)de This term is omitted.
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Computer Implementation of the ALE Tangent Stiffness Matrices
Introducing the interpolating functions Ly
’
~
$.
ug = ¢58uy, ,» a = 1, number of nodes per element (NEN) (2.60) v,
- vy iy by
v = = ¢b , b= 1, NEN (2.61) s
i Cib E‘
.
3
the matrix equation associated with the principle of virtual work reads ] "
~|
o
«
gtan 7 , gext _ cint (2.62) P4
-
N
The element tangent stiffness matrix correspondiang to the rate form of -
-
virtual internal work, Eq. (2.47), is composed of three matrices ;
Ktan o gD 4+ g6 4 gALE (2.63) -
~
In computer implementation, it is inconvenient to deal with the -:
indices of a fourth order tensor such as Dijkz' Hence, the procedure ::
given in Liu and Ma [1982] will be followed to develop the element
tangent stiffness matrices. Interested readers are suggested t> rafer :
to this work for the expressions of X° and X© which will not be X
<ALE .
repeated here. The matrix K can be shown as:
e
5
"4
L
+)

T T I T e M T S S T T S L SRRV P R \ [ ) \ A} ‘ 1] - . :
- G o o> ) J' - NS $ LAy
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R F . 8T @R _-[ B, (2.64)
~ab / ~a~1~b a~2~b ’

e . Ry Ry

o)

>, where the 9x3 matrix Bb is given by

(e ~

‘

%

Y]

N *,1 ? °

B~

i~

2 p,2 *,1 0

. 0 ¢b,2 0

- 0 0 b

:: b)3 BY

: 0 by 3 » =

”.

: B, = b, 52 L (2.65)

" ¢b"3 0 - ab)‘l Ba

L ~b

- ®y,2 %y,0 O

P 0 ;

b *y,3 ’y,1

.

ﬁ: The 3x3 matrix g,

‘S

’\

s * 0 0

- = 0 0 6)

~ 2b y 2.0

-

a 0 0 8y

.\

“u

>

' The 9x9 unsymmetric matrix jl is
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The 9x%3 22 matrix involves the spatial derivatives of the Cauchy stress
~ ,
Y '
“u
o 1,1 1,2 1,3
)
¥ T2,1 2,2 72,3
- T T <
~ 3,1 3,2 3,3
_ T,1 4,2 T4,3 '
o
N T’ T T !
5 5,1 5,2 5,3
s
T, = (2.68
g 12 6,1 6,2 Te,3 (2.68) :
[~ s
;: 0 0 0
-
S
‘ 0 0 0
~ :
~ 0 0 0 g
,
o These ALE tangent stiffness matrices may be {ncorporated into any :
existing Lagrangian finite element code without changing the maia body -
| ~
< of the program, nevertheless, the amount of computations {s scill f
- substantial. For this reason, the ALE tangent stiffness matrices are X
v .
- further rearranged as the product of several 3xJ natrices as followvs. "
ri . “
- The ALE tangent stiffness matrix corresponding to Zg. (l.47) can .

be arranged in three parts as
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The first matrix can be shown as
(1) -
K. 7= [ 144°dR
~ab bAa  x
Ry

where the components of the 3x3 t matrix are

I2}

(oS
[ SN
-
]
~
N~
N
w
~
wn

-

°s,1 ®5,1 %v,1
357 Py2 ¥y ¥y

%%.3 %p,3 ¥p,3

and the components of the 3x3 5; matrix are
Ll

°a,l 0 0
33 - J 5a,2 0
2 2 33,3
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The second matrix is given by

(2) T 3 74
fan "I B (2.7¢
and the last matrix K(3) is
(3) s
~ab * Eazbde (2.75)

Rx

where the components of the 3x3 Za matrix are

33,1 %33,2 33,3

The components of the matrix 3y have already been given by Eq. (2.66).
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CHAPTER 3

NUMERICAL PROCEDURES FOR ALE EQUATIONS

3.1 Overview

The ALE formulation for conservation laws, constitutive equations,
and equation of state have been considered and derivatioas from strong
forms to matrix equations have also been given in the previous chapter.
However, the overall effectiveness of the present effort depends to a
large degree on the numerical procedures used for the system aquations.
It i3 the purpose of this chapter to present some numerical methods for
the computations of the ALE equations which, in Zeneral, are impossible
to integrate analytically.

Among the vast amount of numerical methods, subjects relevant £2
ALZ computations include the evaluations of generalized mass matrices,
internal and extermal force vectors, nonlinear czonvection effects, and
new stress and strain states in addition to the construction of time-
stepping algorithms. Since discussions of the mass metrix and fcrce
vectors have been well-dbcumen:ed in the literature (Zienkiewicz,
1977], these treatments will not be included in this investigation.

For the on-growing area of nonlinear convective computations, a review
of various aporoaches such as upwind methecds, Petrov-Galerkin, and
Taylor-Galerkin. formulations {s orovided in the next section. The
computations of 3tress and strain scates Ior path-dependent wmaterials

are cthen presentad in Section 3.3, which includes zhe discussion of :the

.

stress-velocizy producs and a collocation weightad residual Ioraulation
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for the constitutive equations. In Section 3.4, the nonlinear
computational procedures for a two quadrature point element is
presented. An explicit algorithm for the integration of the ALE

equations 1s shown in Seccion 3.5 and the application of the present

IR AR P AR AAS

formulation to a number of problems is provided in Section 3.6.

LAY
o
e

'St

-y L
y .

.
-

[N

% Y,
[ A )
G .

L9 N Y S

MPSE SN
[ Ay

.‘f'.’v

{‘.v‘.l’./ -

.
s s 8 ¥ &

«
D)

',"- l{
c

0
A,

R
y . PRI

'
'l,','.'-

(i

‘.l .: -:

e

.4
a

, -

L

. . . “im - L U I S S T s S et
N ad S A S RS, A S R A A R



Apiarts ord

» .
1 €y

2y

o AT

"
VAASSS

-

)
A s

)

NSNS,

V Pp - ,.‘-‘ e 8 A ad w1 <y b, -“i g’y ) b =gt Sl

3.2 Finite Element Methods for Non—-Self-Adjecint Equations

The convective effect, which arises when the (Quasi-)Eulerian
description is employed, has been one of the difficult topics in the
development of numerical methods. The usual (Bubnov-~)Galerkin method
leads to a non—symhecric convective operator, and spurious spatial
oscillations are exhibited at moderate to high Peclet numbers. Though
highiy refined meshes can remove these oscillations, the advantages of
the finite element method may be diminished.

Several remedies have been devised to overcome this difficulty.
In the finite difference category, the use of upwind differencing on
the convective term is proposed in Richtmyer and Mortoam [1967] and
later detailed in Spalding [1972]. A similar idea 1s introduced into
the finite element method in Christie et al, {1976] in which the weight
functions are skewed to achieve the upwind effect. Relevant early
articles in these upwind-type finite elements include Heiarich et al.
(1977], Hughes [1978] and Belytschko and Kennedy [1978], among others.
Of particular interest in the present ALE calculatiouns is the work
presented in Brooks and Hughes [1982]. In this paper, the artificial
diffusion operator is coanstructed in a tensorial form so as to act only
in the flow direction (streamline upwind). The free parameter in this
mecthod is the amount of diffusion selected to maximize the solution
accuracy. Detailed discussion of this streamline upwiad method is
beyond the scope of the present investigation; nevertheless,

derivations of this amethod Zfor the Navier-Stokes equation in the ALZ

PRGN

e, . RSN PR T R R R L N N R U SR T DR
T O R T A IR A AE AR AN .4‘J.~ R A A A A N A A N AT AT

35

PR IR

ol o8 o8 g 4

t




A At A A ACE A A S PR R AR E L LR

36
Cl
)
! description can be found in Liu [1980), and this method will be
v employed to handle the coavective effect at the present stage.
; In addition to the above school of upwind techniques, the
:: Petrov-Galerkin method proposed in Dendy {1974] coansists of choosing
, different classes of functions for the weight and trial functions.
: Because of the potential of Petrov—-Galerkin methods for flow probleas,
) a large amount of literature has been accumulated. Among various
‘ techniques, the work presented in Hughes and Tezduy;r (1984] and Morton
3 et al. [1980] appear adapted to deal with the present ALE formulation.
: It is also worthwhile to point out that the Taylor-Galerkin
formulations given in Donea [1984] and Lohner et al. [1984] appear to
i be potential candidates to handle the convective effect encountered in
; the ALE computations.
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3.3 Stress Uodate Procedures

The stress state of a path-dependent material depends on the

CHTED TY e,

stress history of the material point. A stress-history can be readily
treated in a Lagrangian description because elements contain the same

material points regardless of the deformation of the continuum;

Celwe
P

similarly, quadrature points at which stresses are computed in

e
0

Lagrangian elements coincide with material points throughout the

Pt il

deformation. On the other hand, in an ALE description, a mesh point

P

does not necessarily coincide with a material point so that the stress

¥
=

. =
1
f_«

history needs to be convected by the relative velocity ¢, as indicated

in Eq. (2.7). XNote that the spatial derivatives of the deviatoric

o
2

.
W
)

stress are involved in the convection term.

Whea c~! functions are used to interpolate the element stresses,
the ambiguity of the stress derivatives at the element interface
renders the calculation of the spatial derivatives of stress a
difficult rask. As mentioned in REMARK 2.1.3, this is remedied by
replacing Eq. (2.7) by a set of coupled equations, Eqs. (2.11-12),

and the corresponding matrix equations have been given in Egs.

AR N

(2.22-23). It should be noted that all the path-dependent material

Xt

properties, such as yield strains, effective plastic strains, yield

T

stresses and back stresses, should be convected via this procedure with

« v
.

L
e

s replaced by each of these properties in turn, and with z

A
'y

L SN

appropriately modified.

P

In this section, anumerical mechods for the defini:tion of the
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stress-velocity product and computation of the incremental stresses
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are presented. Although the following development 1is discussed ia a

two-dimensional setting, the extension to the three-dimensional case is

straightforward.

Construction of the Stress-Velocity Product

In a nonlinear displacement finite element formulation, the
velocities are stored at nodes while the stress histories, back
stresses and yileld radii are available only at quadrature points. 1In
order to establish the nodal values for the stress-velocity product, a
weak formulation is a logical necessity. In addition, based on the
one~dimensional study presented later in this chapter, in which the
upwind procedure is used to define this intermediate variable, the
artificial viscosity technique (streamline upwind) [Brooks and Hughes,
1982) is considered here as a generalization of this upwind procedure
to multi~dimensional cases. For the sake of clarity, the free indices
1 and j denoting the component of stress tensor will be dropped
hereafter.

The relation for the stress—velocity product given in Eq. (2.12)

s aodified to accommodate the artifical viscosity teasor Ayxp

yk - sck - Akm,m (3-1)

The ingredients of the artificial viscosity tensor consist of a

tengorial coefficient multiplied by the stress:
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Aem T WipS (3.2)

where the tensorial coefficient 1is constructed to act only in the flow

direction (streamline upwind effect) [Brooks and Hughes, 1982]
g T ;ckcm/cncn (3.3)

and the scalar ; is given by

_ NSD
u=z aicihi/NSD (3.4)
i=]

Here hy 1s the element length in the i~direction, NSD designactes the
number of space dimensions, and aj 1s the artificial viscosity

parameter discussed in Appendix B given by
ad-_l. 20 3.5)
af * =%, for ey % (3.
The weak form corresponding to Eq. (3.l) can be obtained by

multiplying by the test functions for the stress-velocity product and

integrating over the spatial domain R.-.

jRXSykydex = [ 3y, sc, dRy - i GykAkm,dex (3.5)

This equation may be written as
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by applying the divergence theorem and by assuming no traction asso-

ciated with the artificial viscosity on the boundary. The expression

s XA

YA

for Aygs Eqs. (3.2-3), can be substituted into this equation to yield

-

[R 8,7, dRg = Jf;y (8y, + &y, )sc, dRy
X

‘ P ‘.’ 4‘"} [§

Y ™ 5Yk,m;‘:m/cncn

can be viewed as a modification of the Galerkin finite element method
because of the transport nature of stress-velocity product.

The shape functions for the stress-velocity product can be chosen
to be the standard C° functions. The number and position of aumerical

integration points for Eqs. (3.8-9) should be selected to be the

»J

quadrature points, since the stress histories in Eq. (3.8) are only

;.. .l.-‘ A‘. ll' :

available at these points.

v".

Remark 3.3.1l: The determination of the artificial viscosity parameter

t )
LAt

i{s accomplished with a recourse to the analytic solutions for a

»

T

one-dimensional constitutive equation. The analytic solutions are

R}
RN

obtained by emploving the Laplace Transform technique which is detailed

in Appendix C.
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Multiple Stress Collocation Point Formulation

Following the procedures given in the previous sub-section, the
stress-velocity product can be defined at each nodal point and it can
be substituted into the constitutive equation as follows to calculate

the rate of change of stresses.

Definitions for the above matrices and vectors are given in

Appendix A. Note that the interpolation functions for stresses need

to be integrated over the spatial element domain in these definitiomns.

~ .‘. .'

However, the present displacement formulation carries stresses only at

Gl
.,
-,
‘

quadrature points in contrast to the Hellinger-Reissner and Hu-Washizu

[Washizu, 1975] finite elements in which the stress interpolants are

Y]

assumed.

Furthermore, the task to select the number of quadrature points
for the displacement finite element poses another important issue. For

example, the locking phenomenon for fully integrated elements arises

when the material becomes incompressible. While selective reduced

AASSNA]

integration can overcome this difficulty, it is just as costly as full

quadraturea. To alleviate this computational hurdle, the use of one

YARNSS

point quadrature combined with hourglass control is developed in

Belytschko et al, [1984]. In addition, a nonlinear two-quadrature

atata s s

point element presented i the next section appears to be another

candidate for large scale computations because it exhibits nearly the
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same accuracy as the selective reduced integration element while with
only one-third of the cost. The elements mentioned here, as well as
others in the family of displacement elements, can be readily adopted
in the ALE computations. It is obvious that a stress transport
procedure sui:aSle for any number of quadrature points is needed.
Inspired by the equivalence proof for the mixed and displacement
elements in Belytschko et al. [1985], the displacement element is
divided into M subdomains where M denotes the number of quadrature
points. Each subdomain is designated by Ry (I = l, M), which contains
the quadrature point X and no two subdomains overlap. Associated
with RI, a stress interpolating function ¢§ is assigned and its value

is prescribed only at quadrature point X=X to be unity, or

$1(x=xp) = 1 | (3.11)
The test function in Ry is chosen to be the Dirac delta function

$1 = 8(x=xy) (3.12)

Substitutions of these functions into the constitutive equation given
by Eq. (2.16) represents a mathematical requirement that the residual
of the weak form vanishes at each collocative quadrature point.

Because the collocation point is located right at the quadrature point,
the algebraic equations resulting from Eq. (3.10) are dependent only on
she information (stress history) associated with its host points.

Since the Dirac delta function has the iamportant property that
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[ F(x)8(x-xp)dR, = F(x) (3.13)
Rx

LN

2 8

All of the matrices and vectors in Eq. (3.10) can be easily worked out

*

without numerical integration and they are given in Appendix D.

sy

Remark 3.3.2: In Appendix E, the stress update procedure is given for

-
¥

"“l"

<

a uniform one-dimensional mesh; the resulting stress convective cerms

.rs

bear a strong similarity to the donor-cell differencing [Roache, 1972].

.’-"v:d

[N
o

On the other hand, a simple averaging (or the cencral differencing) is

/3?

obtained if the upwind effect is not applied to the convective terums.
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3.4 An Efficient Nonlinear Element

In Liu et al. [1985], a "unified™” stabilization procedure for the

Laplace equation, the equation for continuum and the equation for

plates and shells in two and three dimensions is presented. The major

achievements are (1) control of the spurious singular modes for

underintegrated finite elements; (2) enhancement of the computational

efficiency wichout sacrificing the accuracy; and (3) alleviation of the

locking phenomenon for continuum elements when the material becomes

incompressible. Accurate solutions are achieved for linear isotropic

(incompressible) materials. However, when the above IPS element is

applied to plastic materials, the solution accuracy deteriorates and

the proposed element tends to be too stiff when compared to the

selective reduced integration (SRI) element.

A possible reason for this shortcoming in nonlinear calculations is

due to too few (only one) stress sampling points in each element. The

entire element must be in either a purely elastic or a purely plastic

state dectermined by evaluating the constituctive equations at the

element center. Consequencly, the onset of plastic fronts and the

plastic yielding effects cannot be accurately accounted for. On the

other hand, the SRI element permits different stress states in elements

because the constitutive equations are calculated at four (for a

two-dimensional bilinear interpolation of displacement) quadrature

points. Nevertheless, in view of the large additional cost in

compu:ing the spatial derivatives of shape functions and in evaluating
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the constitutive equations, there seems to be little benefit in using
the SRI element.

Based on these considerations, research effort nas been directed

toward the development of an accurate two stress-sampling point element

(1IPS2), which retains the efficiency of the IPS element. The basic

idea of the present approach is to adopt the approximation of the

gradient operator matrix in Liu et al. [1984] and to evaluate the

constitutive equation at two presumed quadrature points. For

illustrative purposes, details of the two-dimensional plane-strain case
are presented here.

The gradient operator matrix givenm in Liu et al. [1984] is

dev dev
By = Ba(®) + BT(@E + B0 (3.16)

~35E
where the subscript "a”

ranges from ! to the number of nodes per

dev’O) can be found in

element., Definitions of Ea(g), ES?Z(E) and Ea,n\~

Appendix F. The incremental strain is

ae(E,n) = [8,(0) + BIST(0)g + 3%V (OInlad, (3.15)

where Ad, is the incremental displacement vector. The incramental spia

tensor can similarily be approximated by

aWlg,n) = (Wy(0) + (3.16)

« L Y



where Ea(g), Za’z(g) and W

a 1(0) are given in Appendix G. The
Sy ~

{ncremental strain and spln tensors are calculated at two quadrature

points,

L

3 ’

=
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-

it

?M

) (3.17a)

1 1
or NE SR 3.17b
VN /3) ( )

.

', and the stress history, Tn(iz)’ and the back stresses, 01(51)’ at time
i ~ ~ ~tl e

step n are rotated by Q(iz) to account for the rotacional effect

- {dughes and Winget, 1980].

rn+1( £, = [Q 1, QT]Ez (3.18a)

~

where £n+1(51) and £n+1(51) are the intaermediate Cauchy stresses and

back stresses, respectively. The expression for the orthogonal matrix

(R DR R R

is

1O

where I is the identity matrix. The i{ancremental change of the stress

state due to matarial deformation at the quadrature poiat g, can be
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: ' handled by the plasticity integration procedure. An example is tne
) radial return method given in Krieg and Key [1976].
-
f - -
> 81(gg) = £:(8gs Tasls nels Kn,ore) (3.20)
‘G4
- A3(5g) = £508es Taels Tnels Ka, o) (3.21)
Ak(él) = fk(Ai’ £n+1’ §n+l’ kn,"°) (3.22)
s
N
]
; where Ak is the incremental change of the yield radius; £f_, EJ, and
3 fy, designate the plasticity integration procedure for at, ao, and ak,
N ~' S
Q regpectively. The state of stresses at step n+l is then updated by
PF - .
* Io+1lEe) = Tar1(8e) * 81(5y) (3.23) 2
- -
l-' '-:
¥ (2,) = aqei (z,) (3.24) A
o' r - 4 -+ 4 . ¢
- Zo+1(8p) = gar1(Zy) * 20(g, 2
. A
. R
" kae1(g,) = k(g0 + ak(g,) (3.25) j
: R
.
The element internal force vector is g
of b
o -
-3
b, 2
» £=f Bl 4 dRg (3.26) 5
: R‘ " 4
¥
-S The approach used in Eq. (3.14) can be applied again tc approxizate the
'*: gradient operator matrix B in Eq. (3.26). Numerical iategrationm, with
W, ~
-..
weights equal to 2 and with the Jacobian assumed to be a constant,
54
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(element area)/4, is employed to integrate the element internal force

: vector

: 2 A dev dev T

N _ £= y_il 7 [Ba(Q) + Ea'5<g>g£ + Eam(g)“z] Ta+1(Ey) (3.27)
N and A represents the area of the element.

The element internal force vector can be further arranged as

~
R '
N £=£f) * fsean (3.28)
s where the intermal force resulting from the one point quadrature {is
X
o
L
ke <{t,,2b; + <t .>by
‘ £ .% 1~ 12"~ (3.29)
- +
\ <rpp782 * <Pl
5 and the contribution from the stabilization procedure is
N
. ((Elalg + nlalw)(zfrll]-[rzzl‘[r33]) +
al R A 3(51025 + nlazn)[lel)l . .
fstab ™ @ (3.3¢
b + Y=o, 1#2(,,1-[x,,]) +
(Cgyag, * nyey, 11 22' 74733
. - - 1
: 3(.»,10.la + “laln)[‘IZ"Z
2
J In these expressions, the following definizions Rave ~tee-
' Ty TR e e
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. El ==&, oonp =, (3.31lc,d)
(eTy) (zTx)
G " " 'Z'KL P g T '%K‘“ (3.32a,b)
(nTy) (nTx)
oy, ™ ‘Z‘Zz" P ey T ’%X“" (3.33a,b)

Derivations for these expressions have been arranged in Appendix H.
Remark 3.4.1: The number of calculations for the spatial derivatives

of shape functions, the number of evaluations for the constitutive

equations, and the computer storage for rate-independent plastic
calculations for SRI, IPS and IPS2 elements are reported in Table 3.l.
Remark 3.4.2: Based on the numerical examples given later, the
displacement fields obtained by using either pair of quadrature points
are identical, and the stress fields exhibit several percent

differences in elements along the clamped boundary.
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Table 3.1 "y

Comparison of Computations and Storage for ot ¢
P

SRI, IPS and IPS2 Elements ")

2-D Spatial Derivatives Evaluation of Storage f‘
Example of Shape Functions Constitutive Requirements A
Equation ol

SRI 4 times 4 times (3C.S.+3B.S.+1Y.R.)
*4 = 28 words il

e
S

IPS 1 time 1 time 9C.S.+3B.S.+1Y.R.
= 13 words

t o
o2

.
xr

IPS2 1 time 2 times (3C.S.+3B.S.+1Y.R.)
*2 = l4 words

P

PR,

»

C.S.: Cauchy Stress; B.S.: Back Stress; Y.R.: Yield Radius

ey

::fff 4

RN | AL
AT e

Lo
«%

U

A.l.l'l.

> 7 7,
AN
Lt

vanvsle:
o

PR
,l
.'l . 1
e ¢

3
3 v
.

@I
.ﬁf i/

N
27

b Le
N{\
<+

SN WV“WWv?fﬁﬁ*ﬁﬁﬁﬁ@fP TﬁﬁV¥f_f??R??%?RRVVSF:%v.




Explicit Time Integration Algorithm

For simplicity, the coupled equations will be integrated by an

explicit scheme. Lumped mass matrices are used to enhance the

computational efficiency. If ( )y and ( ), denote the matrices at ]

times t, = 0At and t . = (n+l)at, respectively, where At is the time

increment, the explicit predictor-corrector mechod [Hughes and Liu,

1978] gives

The mass equation:

* - =(MPY=1/yP~ p~
Pavl = ~(MDTH(N o 1 * Kooner)

~ *
Rarl 7 £a * (1-adatg,

~ *
Qo+l = fn+l T A8CPnyg

The momentum equations:

-~

*
Inel * O)TICESRS - glot - Ny D) (3.37)

~ % .
Vael * Yn + (].-‘{)AtllJa (3.38) »

~ * 'd

O e " e T

Eqe (3.37) needs to he used in coanjunctioa with

' -
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gl-l

%*
1 = doey + 8222 yoy

1

to calculate the fint.

The energy equation:

,;.n'l-l = (M Nzae) = 8 - Yatoey)

~ *
en+1 ™ &q + (1 - glate,

~ *
2a+1 7 Sn+l * GAT Eny4

The constitutive equation:

Tarl = OIS

* Sy - T~ ~
sovl = (M 7l(zoe1 ~ Go¥aey * DaSaet)
~ ]

Savl = 8n * (1m0aed,

~ *
Sn+l ™ Sa+) * <AT S5y

where a, 8, v, 7 and « are the computational parameters.

*
1 = dp * Aty + (-;- - 8)atdyy

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

For explicit

calculations, the following comstraints on the parameters are used:
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a=0;8=0,vy>3;¢c=0;x=0 (3.49)

f The flowchart of the computational procedure for the class of pressure-

insensitive materials is as follows:

[}
;l
k)
N
\ (n
)
p (2)
‘ (3
!l
H
t
t
f (4)
X)
»
\

(3)
"

(6)
* n
. (8)
. (9)
o
o (10)
. (11)
:
o
y
,v
J
Y e

- -~ » - » L] -~ . L
T G e T et T

Initialization. Set n = 0, input initial conditioms.

Time stepping loop. t e [0,Ctpayl-

Integrate the mesh velocity to obtain the mesh displacement and
spatial coordinates.

Calculate incremental hydrostatic pressure by integrating Egs.
(3.45-46) with $ and z replaced by p and u, respectively.

a. The rate of pressure due to convectioan.

b. The rate of pressure due to deformation.

Calculate incremental deviatoric stresses, yield scresses and back
stresses by integrating Eqs. (3.45-46).

a. The rate of stresses due to convection.

b. The rate of stresses due to rotation.

¢. The rate of stresses due to deformation.

Compute the intermal force vector.

Compute the acceleration by the equations of motion, Eq. (3.37).
Compute the density by equation of mass conservation, Eq. (3.34).
Compute the internal energy by the equation of energy
conservation, Eq. (3.42).

Integrate acceleration to obtain velocity.

If (arl)at > tagys STOP; otherwise replace n by arl and go to (2).
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3.6 Numerical Examples

3.6.1 One-Dimensional Wave Propagation Problem

An elastic-plastic wave propagation problem is used to assess this
ALE approach in conjunction with the simple averaging and the proposed
stress update method. The problem statement, given in Fig. 3.1,
represents a one-dimensional, infinitely long, elastic-plastic
hardening rod. Constant density and isothermal conditions are assumed
to simplify the problem. It should be noted that this elastic-plastic
wave propagation problem does not require an ALE mesh and the problem
was selected because it provides a severe test of the stress update
procedure and because of the availability of an analytic solution. The
problem is solved using 400 elements which are uniformly spaced with a
mesh size of 0.l. The mesh is arranged so that no reflected wave will
occur during the time interval under consideration. Material
properties and computational parameters are also depicted in Fig. 3.l.
Four stages are involved in this problem:
(1) te {0, cll, the mesh is fixed. A square wave is generated at the
origin.
(2) ce [t tzl, the mesh is fixed and the wave travels along the
bar.
(3) te (g, t3], two cases are studied.
CASE A: The mesh is moved uniformly to the left hand side with a
constant speed -G*.

CASE B: Same as CASE A except the mesh 1Is moved to the right.
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1 D ELASTIC(-PLASTIC) WAVE PROPAGATION

p=1 E=10* E/E;=3 7,=75 T1'=-100
Ax=Ay=0.1 7°=0.25VE/p B=0.0 7=0.6

1. t€[0, t,] mesh fixed, wave generated

OO 0O 0O O 0O 0O 0O O
x=0

2. t€[t;, t,] mesh fixed, wave travelling

x=9
(@) (@) ) Q) ) [@) (@) (@) ()
x=0 N
3A. teft,, ti] CASE A : move mesh with ¥ = ¢
t,=45 t,=80 t,=160 (107°)
=0 N
) ) «E)O*@ =) et} b)) e) )
—
3B. t€[t,, t;] CASE B : move mesh with ¢ = /v\’
t,=45 t,=240 t,=320 (107°)

>

x=0
e o (5 (o 5 (v (5= (= (—
x=0

4. t= ¢, report stress vs. spatial coordinate

Fig. 1
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(4) ¢t = t3, the stress is reported as a function of spatial

S

Bl o oy s !

coordinates in Fig. 3.2 and Fig. 3.3 for CASE A and CASE B, :t‘
respectively. Eé
For both cases, the momentum and stress transport are taken into ':'
account by employing the full upwind method for elastic and N
elastic-plastic materials. The results are compared to f{
(1) cthe simple averaging runs, in which the momentum transport is ;i

handled by the full upwind method and the stress transport is

LAY

computed by the simple averaging method, and

(2) fixed mesh runs, in which the finite element mesh is fixed in

-
5
E )

space and the results are pretty close co.che analytic solutions. S:‘

The relative velocity, ¢ = v - i, in CASE A ( i < Q) is greater Es'
than CASE ﬁ (i > 9); therefore, the transport effect of the former is EF
more significant. These phenomena have been studied in Figs. 3.2-3 by ;;.
varying the time step reported in Table 3.2. The wave arrival time for i:
both the proposed method and the simple averaging method agree well ;;
with the fixed mesh runs. However, the averaging method causes severe :j
unrealistic spatial oscillations in CASE A because of the significant ;:;
transport effect. The method proposed here eliminates these SE
oscillations completely. Based on these studies, it is found that the 3;;
transport of stresses as well as yield stresses (and back stresses for 33

5

kinematic hardening) plays an important role in the ALZ computations ﬂ:
Sa

for path-dependent materials, and the proposed update procedure is .
>

quite accurate and effective. s
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' ’ Table 3.2. The step sizes and numbers of time steps for

. elastic-plastic wave propagation example

‘ Time Step

At

At Number of Time Steps

Cr

CASE A CASE B

0.040

LE" s 4

v g

0.056

0.072

0.5 400 800
0.7 286 571

0.9 222 444

N c_ = ax/(/E/p +| c|)
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3.6.2 Two-Dimensional Elastic~Plastic Wave Propagation

In addition to the preceding problem, a two-dimensional
plane-strain elastic-plastic wave propagation problem is considered
here as an another test for boch the IPS2 element and the proposed
multi-stress-point transport procedure. A l00x50 mesh is used to model
a spatial domain of size l0x5. The radial return procedure given in
Krieg and Key [1976] 1s used and isotropic hardening is assumed. The
geometric configuration, material properties and computational
parameters are given in Fig. 3.4.

The evolutiovns of thi; stress wave propagation problem using IPS2
element are illustrated in Fig. 3.4. One component of the stress
tensor t,, 1s reported at various times. The tractiom force h, = 1000
is applied on the boundary as a Heaviside function and this loading is
terminated at time t = 0.02. The Rayleigh waves [Graff, 1973] can be
observed in Fig. 3.4. Their effect decreases rapidly with depth and
their speed of propagation is smaller than that of body waves.
Immediately after t = 0.02, the finite element meshes are prescribed to
move with the veloecity v| = =0.4/E/p. At time t = 0.03, the
computations are stopped and the stress distributions along lines y =
1.5, 2.0, and 3.0 are reported in Fig. 3.5 for both the elastic and
elastic-plastic cases. Also included in this figure are the stresses
obtained by IPS2 and SRI elements without mesh motions.

The numerical results for the IPS2 and SRI elements without zesh
motion agree well for both the elastic and elastic-plastic cases. When

the mesh is moving with 40% of the elastic wave speed, the wave arrival
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“p=1 E=10* v=025 E/E=100 7,=300 isotropic hardening
B=.07=.6 At=.0005 B.={z|-5<x<5, 0<y<5) Ax=Ay=.1
hy(x=0, -5¢y<.5, <.02) =1000

t=0.02
Terminate loading,
move meshes with v,=-4./E/p

T=0.03
Report solutions
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time agrees well while several percent difference in wave amplitudes
can ce observed as compared to the fixed mesh runs. This discrepancy
is due to the convective effects in the momentum and constitutive

equations, since these convective effects are the only difference

between the fixed and moving mesh runs.
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3.6.3 Plane-Strain Elastic—~Plastic Beam

A two-dimensional plane-strain dynamic elastic-plastic deformacion
problem is used to assess the proposed IPS2 element. The problem
statement and essential and natural boundary conditions are given in
Fig. 3.6. Small deformation is assumed. The entire beam is
discretized by 25x4 elements. The following material constants are
used: density p = l; Young's modulus E = 104; plastic tangent modu;us
Ep = 0.01E; Poisson's ratio v = 0.25; uniaxial yield stress Ty, " 300.
The Krieg-Key plasticity model [Krieg and Key, 1976] is employed and
isotropic hardening is assumed.

The explicit predictor-corrector method [Hughes and Liu, 1978] is
employed with the following computational parameters: 3 = 0; vy = 0.5;
time stap size At = 0.0075; and number of time steps = 1000.

The time histories for the tip displacement (point A) and stress
e at point B are reported in Fig. 3.6. It can be seen that the
displacement history for the IPS2 element is identical with that using
the SRI element, while several percent differences are observed in the
stress history in the plastic range. The system response obtained by
the IPS element is also included in Fig. 3.6. The maximum difference
for the displacement is approximately lOZ. To test the sensitivity of
the IPS2 element to irregular element shapes, the displacement and
stress histories for a fairly skewed finite element mesh are included

in Fig. 3.6. Numerical solutions show that a small amount of stiffness

is introduced by skewing the elements.
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h It i3 also worthwhile to mention that the computer time consumed
“ by the SRI element is about 3.5 times of the proposed IPS2 elements \
: (using the expression for internal force vector given by Eq. (3.30)). 1
t
]
3y Also included in this numerical investigation are the convergence
o studies for the IPS element. Fig. 3.7 shows the convergence properties A
s for E/Ep = 100 and 10, respectively. When the mesh is refined, the
responses converge to those of the SRI element. .
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3.6.4 Two Dimensional Solid with a Circular Hole

A dynamic finite deformation/rotation problem with plastic
hardening is considered here. As shown in the proolem statement given
in Fig. 3.8, a plane strain square body with a circular hole positioned
at the center of the solid 1is subjected to a uniformly distributed

load. Due to symmetry, only a quadrant of the solid is modelled by 360

"elements. The dimensions, material properties, essential and traction

boundary conditions and computational parameters are included in the
same figure. The radial return procedure given in Krieg and Key

[1976] is employed and isotropic hardening is assumed. This problem is
solved by degenerating the ALE code to the Lagrangian description. In
other words, the mesh velocities are prescribed to be the same as
material velocities. Both the SRI and IPS2 elements have been tested
in this problem.

The dynamic responses of this system can be observed froam Fig. 3.9
in which the mesh configurations are plotted for various times. The
x-displacement for point A and the stress 159 for point B are reported
versus time in Fig. 3.10 for both the SRI and IPS2 elements. The time
interval from t = 0 to t % 0.30 can be recognized as the
elastic-plastic loading period. The displacement and stress histories
for the SRI and IPS2 elements agree very well as can be seen in Fig.
3.10. The elastic unloading occurs after t =~ 0.30, and a small amount
of phase shift appears between these elements. However, both elements

exhibit the same shapes in the displacement and stress time hiscorv

o \;,,‘-;,,\?\""i AT AT P B SR ST ..~..'-_.'-.. : ) et I.'J’,'l‘_ .r‘...- o

L1'0.2" 0. 0.0°0 g 0y

68

\l“'v \1 ." -

N

¢
!

IR

-

AR

.

Rl B0 A P

'y

A NS Y
¥

&' ‘.-

A

a8
LN

o g

; Y Th
“-";“’- 4

O - .-\)"n "".' Py .-7- »

o




2—-D ELASTIC-PLASTIC SOLID WITH A HOLE |

p=1 E=10" v=025 E/E=100 7,=1000 isotropic hardemng
B=07=6 At=0005 hy(t>0)=-200

S T

! A Y hy

(o]
v
P9

B(2.95,0.10)

: A(3.00,0.00) B [
6

—4
-
-
i

Fig. 8

Catety '5!55!’((" SR A AT IR T (g Tae al e et

» - e P T L . - . CA P L A
AN IR o -('\-l'._ AN AT P N G R ST S AN N AT AT AT WA ORISR LR RN
A A, « » . - - A » - . . 3 .\ 3 N -



B W T W e, AR ol ARS A 0y i oA AL AL R VANt AT SR A A A IO, CAICARNAE A AL Sl Sl bl S 6

}

f ‘8
dr

70

=T };' IS

NN NS S S ST
DN N O W W o
S

=
s

. i
RARAIAR !

'u\r‘-"_'u.'i'
E [ g

. v,
Fig. 9 ‘ t=1.08

R




e b $°8 4° pa B . . y ol . N A " —e .
OOV W N Y (W g B R e Ly e LA RAR AN T A M " aAnAy T R S W W ]

R, W
o

o2

v
.'

— IPS2 element
--- SRI element

o
X

hC e U e e

A
)
$

S IS

Lo
L

L
>
$

X

al

X-DISPL. AT POINT A
1

e ] TRAAARAL b

1000

500 -

.‘v'ﬂ- }' .'- ,.-:: N \:?.m’ﬁ Y*‘l‘_ }'{F' (v‘- PR S

=500 |

-~1000

STRESS T,, AT POINT B

-1600

- A ."\{'."'.'.‘.'-'-'.':

‘o %y v
FIC A AL AR

S

]
;
"

A ettt S e vamataan ’

. .f.." ‘,--.'_-~ A ,-d.-a"I - ‘)‘."‘.".ﬁ“"{‘}‘l.‘l\'(‘ﬁu'\-"-'\.'\-"-' FOTIZ AT VA SR L R .-‘_'l_‘J' v, I'..J‘A'-"v'

v



plots. After t % 0.75, the elastic loading occurs and the error
introduced in the unloading period is retained.

It can be seen from Fig. 3.10 that the IPS2 element is stiffer than
the SRI element (the same phenomenon as Example 3). The computer time
consumed by the SRI element (on Harris 800) is around nine hours while
the IPS2 element requires only 2.5 hours (based on the expression for
internal force vector given by Eq. (3.30)). The computer time ratio

between the SRI and the IPS2 elements for this example is approximately

3.5.
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3.6.5 Strain Concentration with ALE Mesh Y
A A plane strain thick beam as shown in Fig. 3.1l is considered as a 3
» ~
» -
test problem for the ALE method. The dimensions, material properties,
' .
‘g essential and natural boundary conditions, and computational parameters f
" are given in Fig. 3.1ll. Constant shear loading is applied at one end
) N
< o
; of the beam as a Heaviside function. Small deformation is assumed and ]
¢ |
f . only the upper half of the beam is modelled by the IPS2 elements '
' because of the anti-symmetry conditions in this example.
f .
" This example is analyzed by three mesh setups: (1) 20x4 fixed _ 3
/ v
b uniform mesh, (2) 10x4 fixed uniform mesh, and (3) 10x4 ALE mesh. The .
initial layout for the 10x4 ALE mexh is the same as the l0x4 uniform J
v N
‘i mesh. As the plastic yielding effects are detected, the mesh f
' velocities are programmed to move according to an ad hoc function: vy =
. v
] 0.15(X-a)?-1.4 | X-a| ,uah= 0 for 0 < X < 5, or a = 10 for 5 < X ~ 10, :
f' such that the finite element mexh i{s concentrated only in the high :
- strain (or stress) regions. When the mesh size is smaller than 0.5, 3
the mesh motions are terminated because of the restricton of critical -
. time step for ekplici: time integration. The final configuration of
L, this ALE mesh i{s shown in Fig. 3.1l. The stress distribution of :
) T along the line y = 1.75 for these mesh setups are reported in Fig. )
P4 '
; 3.12 at the instant of that maximum deflection occurs (t = 0.9). As 5
- “
- can be. seen from these results, the ALE mesh provides fairly good .
1 stress distribution as comparaed to that of the 20x4 uniform mesh.
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