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An adaptive finite element procedure is developed for the transient analysis of
nonlinear shells. The scheme is an h-method which employs fission and fusion.
Criteria based on incremental work and deviation of the bilinear finite element
approximation to the shell from a Kirchhoff-Love surface are used as criteria for
adaptivity. The example problems show that the adaptive schemes are capable of
achieving substantial improvements in accuracy for a given computational effort.
They include both material and geometric nonlinearities and local and global
buckling.

In order to formulate an r-adaptive method, the conservation laws, the
constitutive equations, and the equation of state for path-dependent materials are
formulated for an arbitrary Lagrangian-Eulerian description. Both geometrical and
material nonlinearities are included in this setting A Petrov-Galerkin method ; s

K__--_ c6niue o rse)

:~C--s UNC..ASSrFP:ED
. AM $10 0/ P ',s .ma sOub r: aL9.N C..S 1S c~ J".S ~

d141SJ"V 4-d4.

i4ZN CSQ3 it -.1.e :

-- ~~~SRCA r"~: C6-.UOC r-C.,t___________



19. ABSTRACT (continued)

developed for the stress update so that the history dependence and the resulting
convective term on the stress tensor can be treated. A collocation-weighted
residual scheme is also developed. In addition, the tangent stiffness matrix for
the equilibrium equation is derived from the principle of virtual work. Various
methods for solving the finite element equations are presented, and several
numerical examples are analyzed to examine some features of the proposed methods.
The first are some elastic-plastic wave propagation problems which serve to check
the correctness of the numerical scheme. The second is a flexural problem, the
response of which is dominated by the formation of hinge lines. The adaptive mesh
technique enables this problem to be solved with a much coarser mesh.
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1. INTRODUCTION

The nonlinear transient analysis of structures is a particularly

promising field for adaptive procedures, because, among the various classes

of structural finite element applications, it is computationally the most

demanding. Furthermore, it is the class of applications in which a priori

selection of an appropriately refined mesh is most difficult, since the

areas of the mesh which need to be refined depend on the evolution of the

response, which cannot be foreseen by the analyst. Thus, while expert

systems may prove to be quite effective in guiding a user to design

appropriate meshes for linear-elastic, static problems, it is doubtful that

this could be done in a typical nonlinear transient problem, such as the

simulation of a high-energy disposition on a missile nose or a front-end

crash of an automobile. In this type of analysis, the computational power

must be focused on those parts of the mesh which undergo the most severe

deformation, such as hinging and wrinkling, and the sites of such

deformations are not determinable a priori. Furthermore, it is desirable to

start various types of simulations, such as a frontal and side crash, with

the same mesh and let the response dictate any refinement.

While nonlinear transient analysis is one of the most promising areas

for adaptive procedures, it is also the most challenging. Perusal of the

reviews of the adaptive field recently written by Noor and Babuska (1987)

and Oden and Demkowicz (1988) reveal that the bulk of the theoretical work

has been devoted to determining local error estimates for linear static

problems; these estimates are used to select the elements or subdomains to

be refined. These error estimates have evolved into two main types:

1. residual error criteria based on the magnitude of the residual

in the governing equations;

1 .
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2. error indicators based on interpolation and extension methods.

A difficulty in applying these methods to shells is that in the most

effective elements for shell analysis, namely bilinear quadrilateral

elements such as described in Belytschko et al (1984) and in Hallquist and

Benson (1986), even the shape of the shell is not adequately represented.

In other words, while the residual for the bilinear description of the shell

may indicate a small residual, the errors may be quite large due to

discrepancies between the configuration of the Kirchhoff-Love shell surface

and the bilinear finite element representation.

However, this drawback also provides an opportunity, for in fact it is

in the regions of maximal deviation between the bilinear representation and

the shell surface that the finite element mesh is most inadequate. Since an

average normal to the shell surface can be estimated at all times, the

deviation of the bilinear representation and a more accurate approximation

to the shell surface can be computed and used to indicate where mesh

refinement will prove useful.

Another aspect of the approach taken here is that we have not

endeavored to obtain a certain level of accuracy by the refinement. This

choice was based on two reasons: (1) it is impossible at this time, with

the available mathematical tools for error estimation, to estimate the local

error in a nonlinear transient solution; (2) in most computer systems, the

fast memory allocated to a run must be set at the beginning of the run.

Therefore, the philosophy of the adaptive process described here is to

obtain the most accuracy for a given set of computational resources. As

will be seen in the examples, this philosophy is quite effective. By using

an adaptive mesh, it is generally possible to obtain a solution of

comparable accuracy with half the total number of elements, and hence, lf

the computational resources in an e.:p'icit program, as with a fixed mesh.
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2. FINITE ELEMENT FORMULATION

The shape of the midsurface is described in this finite element model

by

xi - NI ( ) xii (2.1)

where xi are the coordinates of node I and N () are the bilinear

isoparametric shape functions. Lowercase subscripts designate Cartesian

components, and uppercase subscripts designate node numbers; repeated

indices are summed over their range, 4 for uppercase, 3 for lowercase.

The shape functions N1 (1) are functions of the reference variables

i - 1,2, also written as ti- , t2" q , and they are given by

N - (I + i) (1 + i (2.2)I 4 I

where and qI are the coordinates of the nodes at the corners of the

reference domain defined by -1 < 1, -1 v S I. Note that unless a mesh

of these elements is quite refined, they provide a rather poor model for the

curved surface of a shell. In a regular mesh on a cylindrical shell, these

elements are in fact all flat, and any interaction between flexure and

membrane response only occurs at the nodes. Furthermore, in a region of

large curvature, this model can deteriorate even more severely with very

large angles between adjacent elements. However, before discussing this

further, the basic mechanics of this finite element formulation will be

described.

%,
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In the formulation, two types of coordinates are used in addition to

the global Cartesian coordinates:

1. for each element, an element coordinate system (x,y,z) with

base vectors el' 22, and e3 is defined so that el and e2 are

tangent to the midsurface and rotate with the element;

2. for each node, a triad b. is defined so that it rotates with

the node, with b3 normal to the midsurface of the shell in the

undeformed configuration.

Whereas in the original formulation of Belytschko et al (1984) the

original orientation of bi was arbitrary, it is used here to locate new

nodes created in the adaptive process and therefore must initially be

approximately normal to the midsurface of the shell.

The deformation of the element is governed by the Mindlin-Reissner

hypothesis, which allows transverse shear but requires the normal to remain

straight, so the velocity of a generic point in the shell is given in terms

of the velocity of the midsurface v. and the angular velocity wi by

A

vj-v i - z (3 X W) (2.3)

where z, by the definition of the element coordinates, is the distance of a

point from the midsurface.

The velocity field is given by

%p
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v " N1  v ii (2 .4 )

Wi - N " Wi I (2.5)

The strain rates (velocity strains or stretching) are given in terms of *

the nodal velocities in the element coordinate system by

A A 

,

avm ABw
d -x A" + z -Y (2.6a)

ax ax

A vm aW
d - _ z A (2.6b)
YY ay By

A av
M  B m A ae BO2d - + -'r + z - . A x (2.6c)

xy 8 x ay ax

AM

2d - A + 9 (2.6d)xz 
aY

BA y

B vU A

2d -- - (2.6e)yz av x

%i.
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Since the element uses one-point quadrature, the strains are evaluated at a

single point, the origin of the reference plane which is given by -q-O.

The velocity strains at this point are given by

A A A 0 A A
d xx - Bx Iv XI + z (B xi Vxi + B xi Wyi) (2.7a)'I.

A A A A A

dyy -ByI vy I + z (ByI vy I - ByI Wx ) (2.7b)

A A A g A A

2dxz BxI VzI + sI (y y (2.7d)

A A A

2dyz ( BvyI V zI " I WxI (2.7e)

~where

%l%p

: , " " -" --, , < < --v .. ." ." -.-' ." -" . , .: : % 1 , ; ..: : : .-" --- .-- - -.- . -.- -. . .. .. -. . . . . , , , p
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s - N (0) (1,Iii] (2.8a)

aN1 (0) 1 . . A A

B " a 2A [Y24 ' Y 3 1 ' Y4 2 ' YI3
]  (2.8bxl x

aN1 (2) A A A

B - A -2 [x4 2 ' x1 3 ' x2 4 ' X31] (2.8c)

myI

1 - (ny, ) N IY,,17  7 y,Ui A A2A (2.8d)

.

L A A A A A A A *

C -2A (x, nyI +Y' ' yX, , y nx,) (2.8e)

.Xl- xI  x (2.8f)

Yl- l Y (2.ag)

--- "- . ""

d° " " " "
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and n is the normal to the shell.

The nodal forces are computed from the stresses by one-point

quadrature, which yields

fI- A (B, y + By, IP1y + By1 6xy + By1 mxy) (2.9a)

* I

f -A BB m +) (2.9d)
(By YI By mI +B I 6 y l x

4, A

mZ -A (B5y My +B +s (2.9e)

a..dz(2.f

h/2- ~y m ~ x 5 y~(.d
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. h/2 A A ^
i / - / z dz (2. 9 g)

and h is the thickness.

The one-point quadrature element is rank deficient, so it is associated

with spurious singular modes, as described in Belytschko et al (1984).

Their control is also described therein.

The incremental work is computed in each element by

AWin t - f At (dn+,)T ( n + )n+l dV (2.10a)

* where

.

T _ [dxx, dyy, dxy, dxz, dyzI (2.10b)

T _ [( x x , y y v x y t x z ' y z ]  ( 2 .1 0 c )

and At is the time increment; superscripts indicate the time step. This

quantity is used to check stability and as a criterion for mesh adaptation

in some of the studies.

I. %
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3. FUSION AND FISSION ADAPTIVITY

The type of adaptivity which has been adopted here is an h-type, where

the mesh is selectively refined in parts of the domain during the evolution

of the solution. In addition, the refined elements are fused when they are

no longer needed, so that computational power is not wasted on those parts

of the domain which no longer undergo a changing deformation pattern. The

motivation for including the fusion process is that in transient nonlinear

problems, certain parts of the domain in effect "freeze", so that coarse

meshes can capture their behavior effectively.

The adaptive process consists of fission, in which an element is split

into four, and fusion, in which a group of four elements is combined into

one. These processes are illustrated in Fig. 1. For purposes of

organization, any group of four elements which is created by fission is

called a molecule.

There are three aspects to the implementation of fission-fusion

adaptivity:

1. criteria for fission and fusion; the evaluation of these

criteria is called a judgment;

2. the initial conditions for element and nodal variables at the

nodes and elements which are created by fission;

3. the initial conditions for element variables of elements

created by fusion.

Fission-Fusion Criteria

Two criteria have been adopted for making judgments on fission-:'isicr

1. an incremental internal work criterion;

• ,- 0. %% %% . ,. .,_ _.%_. - .. ° .. .a. a_. % % -> 9: 'a%.. 9 aa-%.. ,_% *% % %. .% .%



2. a discontinuity criterion based on the increase in the angle

between two adjacent elements.

According to the incremental internal work criterion, the elements

which are fissioned are those which sustain the most work. Because this

variable usually has an oscillatory character in an explicit solution of a

transient problem, the judgment is made on the basis of the total

incremental work done over the last five time steps. For the purpose of

comparing elements of different sizes, the total incremental energy in a

molecule is used as the criterion. Thus, fusion is indicated whenever the

incremental work in a group of four elements which has been created by a

previous fission is smaller than the incremental energy in other molecules.

Even with the filtering that is brought about by taking the incremental

work over five steps, the incremental work criterion can lead to an

oscillatory pattern of fission followed by fusion in many molecules in a

transient process. Therefore, a time delay has been included which prevents

fission or fusion unless it is indicated by two consecutive judgments. This

type of retardation of the adaptive process appears to be needed in explicit

treatments of nonlinear structural dynamics with adaptive meshes if

excessive "churning" between fission and fusion is to be avoided.

The second criterion we have studied is based on the change in angle

between two elements. The basis for this criterion is that one of the

largest sources of errors in this finite element procedure is the inability

of the piecewise bilinear elements to capture the correct shape and moment-

curvature interaction of the shell as the deformation localizes. Severe

deformation in shells is usually associated with large curvatur's: since the

bilinear element cannot represent large curvatures directly, it is

associated with severe "kinking" between elements, which can be detected h-:

cncitorirg the angle between e lements. For those elements which sazisf. -"e

%dI
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%angle criterion for fission, both elements on each side of the line are

subdivided into four elements.

An advantage of the angle criterion over the incremental work criterion

is that it can be applied to more than one level of fission-fusion without

need of additional parameters. The incremental work criterion, if it is to

be used for two levels of fission-fusion, requires the specification of a

ratio at which the second level of fission is initiated.

Since it is difficult to relate any of these criteria to the ultimate

accuracy of a solution, one technique we have frequently used is to simply

specify the maximum number of elements and use the criteria to select where

those elements are placed. In this procedure, we start with a uniform mesh

which contains a fraction of the maximum number of elements allowed. After

five time steps, the elements are fissioned in decreasing order of the

amplitudes of their error indicators until the maximum number of elements is

obtained.

Fission Process

When a molecule is fissioned next to an unfissioned molecule, as shown

in Fig. 2, nodes are created adjacent to unsplit sides, so they cannot be

handled by the usual equations of motion. In order to correctly handle

compatibility, these nodes must be treated as "slave" nodes which are driven

by the adjacent "master" nodes. In addition, in order to introduce a good

representation of the shell as quickly as possible, it is useful to use the

nodal vectors bi for an approximation of the curved Kirchhoff-Love surface

on which the new nodes are placed.

The procedure for setting the intial cor',fig'ration of the nodes is as

follows. The surface is approximated ov
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4

xI -xI N + ) SJi (3.1)
p J-l

where

S l - (012 HI(f) + 021 H2 ( )) ni 1!ij I (N1 + N2) (3.2)

where H1 (E) are the Hermite interpolants, so that H,() - 61 and OIj is

the slope of the Kirchhoff surface relative to the bilinear approximation,

which is obtained by

OIJ (b "(3 "EIj)/IEIjI (3.3)

The initial velocities of the nodes are obtained from the bilinear

interpolation (2.1). The initial element variables for the elements are

taken from the parent element. The mass matrix is reassembled after

fission. Nodes which are formed at sides which are continuous sides of the

adjacent elements are considered slave nodes. All other new nodes are

master nodes. Thus, an interior node is always a master node, but if only a

single, isolated molecule undergoes fission, all other new nodes are slave

nodes.
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Fusion Process

In the fusion process, no new nodes are created; the velocities and

displacements at the nodes which remain are assumed to be continuous during

fusion. The number of elements is reduced from four to one; the historical

state variables (stress components and yield) are taken to be the area-

weighted average of the parent element stresses. State variables such as

the yield stress are adjusted so they remain consistent. For example, if

the majority of the elements is plastic, the yield stress is adjusted so

that the fused element is also yielding.

V..
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4. NUMERICAL EXAMPLES

All numerical examples described in this section were performed on a

Harris 800 computer in single precision. A single-precision word consists

of 11 significant digits (base 10) on this computer.

Since closed-form solutions are not available for nonlinear transient

problems, two types of comparisons are used for the adaptive solutions:

1. numerical results obtained by finer meshes;

2. experimental results.

The first example concerns a clamped beam which is impulsively loaded

over the center portion as shown in Fig. 3. Using symmetry, half of the

beam is modelled by m x n quadrilateral plate elements, with m elements

across the 1.2 in. width and n elements over the 5 in. half-span. The x and

z components of the translations and rotations about the x and z axes were

constrained.

Figure 4 shows the midspan deflection obtained by two fixed meshes and

an 8- to 10-element adaptive mesh. As can be seen, the adaptive mesh is

quite close to the 20-element fixed mesh for the first 0.5 msec, and it

matches the maximum displacement quite well. Subsequently, it diverges

somewhat from the fine-mesh solution.

Figure 5 shows the pattern of mesh adaptivity. The first elements to

be fissioned are those beneath the impulsive load; the location of the

fissioned elements then moves back and forth between the center and the

support, like the hinge in the rigid-plastic solution, and finally fixes

itself at the clamped wall.

The profiles of the beam obtained by a fine fixed mesh and -he adap't.,e

mesh are compared in Fig. 6. As can be seen, the profiles compare
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well, except at the final time, 0.49 msec, when the node at the adaptive

mesh at x - 3.0 in. deviates markedly.

This beam was resolved with a 2 x 20 fixed mesh and a 16-element

adaptive mesh. The midspan deflection is shown in Fig. 7. In this case,

the adaptive mesh corresponds very closely with the fixed mesh, even though

it required only 40% of the elements. The potential savings in

computational resources is even greater because, in the adaptive mesh, half

of the elements could employ a time step twice as large as that used in the

fixed mesh.

A more complex example for the adaptive mesh is provided by the

cylindrical panel problem shown in Fig. 8. An initial velocity of 5650

in/sec is applied to the 3.08 in. x 10.205 area indicated in Fig. 8. The

panel is simply supported at its ends and clamped at the sides. An Ilyushin

plasticity model, which is expressed in terms of the resultant moments and

membrane forces, mj and 6ij, is used in the computation.

Two adaptive meshes were used in the computation: a 96-element mesh

based on a 4 x 8 mesh of molecules; a 218-element mesh based on an 8 x 16

mesh if molecules. The results are compared to uniform fixed meshes with

32, 96, 128, 218, and 512 elements.

The displacement time histories for the coarse adaptive mesh are

compared to three of the fixed-mesh results in Figs. 9 and 10 at points A

(z - -6.28 in.) and B (z - -9.42 in.) which are indicated in Fig. 8.

Remarkably, the 53-element adaptive result almost coincides with the 128-

element fixed-mesh result for the first 0.4 msec. Subsequently, the results

the two meshes deviate somewhat, and the adaptive results become slig!'.-t:

r:ugh, which is caused by excessive churning of the fission-fusion process

5°,
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Note that the fixed-mesh results with fewer elements deviate substantially

from the finest fixed-mesh results.

The displacements for the fine adaptive mesh are compared to the fixed

meshes in Figs. 11 and 12 at points A and B, respectively. Here the 218-

element adaptive mesh corresponds quite closely with the 512 uniform fixed

*mesh and exhibits marked improvement over a 200-element fixed mesh.

* Deformed mesh plots for the finer adaptive mesh are shown at various

times in Fig. 13. Here the incremental energy was used for the fission-

fusion criterion. It can be seen that after 0.0125 msec, the crown settles

downward like a plateau and the fissioning process migrates laterally

towards the line where the curvature is maximum. During this time, the

crown moves down in a frozen plateau-like state. After that, the crown

develops a convex curvature when viewed from above, and the elements in the

crown are again fissioned. The end of the simulation again exhibits

churning of fission-fusion, which is a tendency that needs to be fixed: it

is probably due to the fact that incremental work is quite small in the

later stages because most of the deformation has taken place, so the

incremental work in molecules is quite uniformly distributed, allowing the

fission-fusion process to be triggered by small oscillations in the

solution.

Experimental results have been obtained for this shell by Morino et al

(1971), who reported a maximum deflection of 1.24 in. at point A. The

finest fixed and adaptive meshes yielded maximum deflections of 1.20 and

1.17 in., respectively.

The deformed profiles are shown in Figs. 14 and 15 for the 512-element

fixed mesh and the 218-element adaptive mesh. The development of a hive-

like pattern at about x - 2.0 in. and the attendant fissiin process ar.

u,;Ite clearly seen in 7ig. 14. Figure l shows a cress section in

-e.

'a) .~' ' % . ' -
* p * p '



plane of symmetry. The fission process which takes place while the crown is

moving like a flat plateau, followed by the fission which develops when the

crown curves, is quite clearly seen.

The third example is a hollow, cylindrical column which is subjected to

a compressive axial load. This problem is of interest because it exhibits

both global and local buckling, the latter resulting in buckling of the

cross section. Numerical results and experimental results have been

reported for this problem by Kennedy et al (1986). The problem parameters

are given in Table 1.

The cylinder is loaded by prescribing an upward velocity of 500 in/sec

to the bottom nodes of the model, with the top fixed. To trigger the

lateral buckling mode, an imperfection given by

Ax - 0.01 sin

where I is the length of the column and z is the coordinate along the axis

of the column, is added to the x-coordinate of all nodes. The pattern of

adaptivity is shown in Fig. 16. Initially, the fission process moves up and

down the column similar to a reflected wave. The fission process then

coalesces at the nodes of the lateral buckling mode, where they remain,

except for the fission which takes place at the compressive buckles at the

top and bottom of the column. The displacements of two points in the

adaptive mesh are compared to corresponding points in a finer fixed mesh in

Fig, 17. The results show good agreement.

R
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5. CONCLUSIONS

An adaptive procedure based on an h-scheme has been developed for the

nonlinear transient analysis of shells. This includes the development of

suitable criteria for fission and fusion and the formulation of the fission

and fusion processes. Two criteria have been found useful for the bilinear

quadrilateral elements commonly used in transient analysis by explicit time

integration:

1. the incremental internal work criterion;

2. the relative angle criterion, which is a measure of the

deviation of the bilinear surface from the Kirchhoff-Love

surface associated with the nodal orientations.

Furthermore, to avoid excessive churning of the fission-fusion process, time

delays had to be incorporated in the judgment process. Nevertheless,

churning becomes a problem with the incremental work criterion in the later

stages of impulsively loaded problems when the work on the system decreases.

The results we have obtained show that the adaptive schemes are capable

of achieving substantial improvements in accuracy for a given computational

effort. Generally, an adaptive mesh is capable of achieving the same level

of accuracy as a fixed mesh with less than half of the computational

resources. The fission process tends to take place in the subdomains where

the maximum deformation occurs.

The h-adaptive procedure is limited in its ability to focus on the

subdomains of maximum deformation by the fact that the molecules which are

subdivided are fixed in the reference configuration. Therefore, hinge lines

which occur at small angles relative to the mesh lines are not captured
5'-

effectively. For this reason, an h-r adaptive procedure which permits

motion of :he nodes is now under dovelopmenc An essential ingreden: o:

.*.5,'~5'*.p*
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such a process is an arbitrary Eulerian-Lagrangian method, which is

described in the appendix.
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Table 1 N

Dimensions and Material Properties of Cylindrical Column

Wall thickness 1 in.

Column diameter 13 in.

Column length 160 in.
7

Young's modulus E - 2.8 x 10 psi

Density p - 8.31 x 10 4 ib-sec2/in 4

Poisson's ratio v - 0.25

Yield stress v - 35000 psi

10 piecewise linear stress-strain curves are used to
approximate plastic behavior

Plastic moduli (psi) Plastic stresses (psi)

(1) 6.60 x 105 4.75 x 104

(2) 4.50 x 105 5.65 x 104

(3) 4.00 x 10 6.45 x l0

(4) 2.75 x 105 7.00 x 10

(5) 2.50 x 105 7.50 x 104

(6) 2.25 x 105 7.95 x 10"

(7) 2.20 x 105 8.35 x 10 4

(8) 1.75 x 105 8.70 x 104

(9) 1.50 x 105 9.00 x 104

(10) 1.25 x 105 1.15 x 106
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LIST OF FIGURES

1. Fusion and fission of a molecule with the node numbering convention.

2. Interface between a fused and a fissioned molecule with curved
geometry.

3. Impulsively loaded clamped beam. Young's modulus E - 10.4 x 106 psi;
Slbsec2  4

density p - 2.61 x 10/ ; Poisson's ratio v - 0.3; yield
stress a - 41400 psi; plastic modulus E - 0 psi; initial velocity -

5000 in/sec; thickness - 0.125 in. P

4. Center-point deflection of the clamped beam.

5. Undeformed and deformed plots for the clamped beam with a 10-element

adaptive mesh.

6. Deformed cross-sectional profile of the clamped beam with 2 x 10 mesh.

7. Center-point deflection of the clamped beam with finer mesh.

8. Impulsively loaded cylindrical panel. Young's modulus E -

10.5 x 106 psi; density p - 2.5 x 10.4 lb-sec 2/in 4; Poisson's ratio v -

0.33; yield stress a - 44000 psi; plastic modulus E - 0 psi; radius
R - 2.9375 in.

9. Displacement time history for node A of the cylindrical panel.
1ht

10. Displacement time history for node B of the cylindrical panel. "

*11. Displacement time history for node A of the cylindrical panel with "

finer mesh.

12. Displacement time history for node B of the cylindrical panel with
finer mesh.

13. Undeformed and deformed plots for the cylindrical panel with 16 x 32
adaptive mesh.

14. Deformed cross-sectional profiles of the cylindrical panel with 16 x 32
mesh and in an x-y plane passing through node A.

15. Deformed cross-sectional profiles of the cylindrical panel with 16 x 32
mesh and in a y-z plane passing through nodes A and B.

16. Undeformed and deformed adaptive meshes for the cylindrical column.

17. Displacement time histories for two points of the cylindrical column.
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APPENDIX

CHAPTER I

INTRODUCTION

The analysis of shells into the failure domain or post-buckling domain is

becoming of increasing importance in the design of certain classes of struc-

tures, particulary when the survivability or vulnerability of the structure is

a key question. Areas of design in which failure analysis is important are

the design of defense structures and in the analysis of re-entry vehicles. In

both cases the loads to be sustained are extremely high or the cost of super-

fluous strength are severe, so it is necessary to be able to predict the

behavior of the shell substantially beyond the classical buckling load,

because buckling by itself does not constitute failure of the structure. Many

structures are in fact designed to buckle and the key question in the

survivability or viability of such structures is whether the final

displacements and deformations are within design limits. The prediction of

the displacements of a shell in such severe environments requires an analysis

of the shell structure into the post-buckling regime.

The analysis of shell structures in the post-buckling regime still poses

formidable difficulties. The major source of these difficulties is the fact

that in the post-buckling regime, high strains and large deformations are

often localized in small regions of the shell. Unless very refined meshes are

used in the vicinity of these buckles, large errors occur in the predicted

deformation of the shell, which detracts severely from the usefulness of the

analysis.

This work seeks to remedy these difficulties by developing adaptive mesh

techniques for analyzing the post-buckling behavior of shells. The proposed

work consists of two major tasks:

. . .. 5 . - . ' 5..... ..
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5 1 the development of an effective technique for moving and refining the

mesh so that the post-buckling response of shells can be effectively

5analyzed;

2. the development of methods for integrating the stress tensor in time in

history-dependent materials in meshes which move relative to the

material.

This report addresses the second question. In particular, some novel

methods have been developed which can effectively treat moving meshes for

path-dependent materials. The resolution of this difficulty represents a

major step toward the ultimate goal.

These adaptive mesh techniques in transient problems are inherently by

nature neither Lagrangian nor Eulerian but arbitrary-Eulerian-Lagrangian (ALE)

and we will use this terminology here. This concept was first proposed in Noh

[19641 under the name "Coupled Eulerian-Lagrangian." Similar applications to

compressible flow problems are reported by Trulio [19661. Later in Hirt et

al. [1974], the ALE method is employed in conjunction with an implicit

formulation for the solution of two-dimensional flows. In that paper, the

calculations for each time step are separated into three phases. The first

phase consists of an explicit Lagrangian calculation for the velocities and

specific internal energies. Secondly, a Lagrangian implicit iteration

procedure adjusts the state variables based on the predicted variables

obtained in the first phase. This implicit procedure eliminates the usual

Courant-type numerical stability condition. Finally, in the rezoning phase,

the convective fluxes for the conservation equations are computed to account

for the mesh motions. An extended version of this computational technique to

three-dimensional flows contained within arbitrarily shaped or moving

boundaries is reported in Pracht [1975] and Stein et al. [19771.

-'5l '
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The ALE method was introduced into the finite element method in Donea et

al. [1977] and Belytschko and Kennedy [1978] in response to the need for

nonlinear simulation techniques in nuclear safety analyses. The advantages of

the ALE method in fluid-structure interaction are apparent since the fluid

domain can be teated by the ALE formulation and the structural domain can be

handled by the usual Lagrangian description. In these articles, the effort is

primarily directed toward inviscid compressible fluids, while in Hughes et al.

[1978], a finite element procedure for viscous incompressible flows and free

surface flows is presented in conjunction with a general kinematical theory

for the ALE description. A similar formulation has later been reported in Liu

and Ma [1982]. The capability of ALE method to handle an expanding gas bubble

immersed in a fluid has been demonstrated in Belytschko et al. [1982]. The

mesh motions for this problem are prescribed according to a simple control

algorithm in which the boundary nodes are considered Lagrangian and the mesh

velocities for the intermediate nodes are lineary interpolated between the

boundary velocities.

Recently, the application of the ALE concept to contact problems between

flexible structures is proposed in Haber and Abel [19831 in which the

displacement vector is separated into the Lagrangian and Eulerian parts. The

slip compatibility conditions are met by making the Lagrangian displacements

common to elements on either side of the interface. Separate Eulerian

displacements are associated with elements on one side of the interface to

model the slip conditions. This concept is extended in Haber [1984] for

quasi-static solid mechanics and Haber and Koh [1985].

The articles cited above are mainly directed toward linear path-

independent materials like Hookean solids and Newtonian fluids. The stress

states for these materials are solely determined by the displacement or

'*1
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velocity fields. When the ALE method is applied to materials with memory, the

state variables for an element are affected by the migration of material

points which may carry different stress and strain histories. This difficulty

arises because the adaptive or ALE mesh does not model the same set of

material points throughout the simulation. A similar situation is encountered

in Derbalian et al. [1978] when the Eulerian description is employed for

plastic forming analysis. In this paper, the difficulty is side-stepped by

interpolating the stress histories at each incremental step.

Obviously, a consistent treatment for the transport of the histories of

all path-dependent quantities through the mesh is necessary for the analysis

of these materials. It is therefore the purpose of the current effort to

develop a general formulation and an explicit computational procedure for

nonlinear adoptive finite element analyses. Furthermore, to provide a better

understanding of the adaptive methods in nonlinear mechanics, the

linearization procedure for the equilibrium equation is addressed in this work

to examine some features of the method.

The scope of the present investigation is arranged as follows. In

Chapter 2, the notations for material, spatial, and referential coordinates

are introduced. The relationship between the material and referential time

.

derivatives is reviewed with the definition of the relative velocity between

the material and mesh velocities. The balance laws, which include the

continuity equation, momentum equation and energy equation, constitutive

equations, and equation of state in the adaptive description are reviewed.

The stress-velocity product is defined to circumvent the difficulty associated

with treating the gradient of the stresses in the constitutive equation. The

weak formulation and matrix equations are derived. Based on the principle )f

virtual work, the linearization procedure in the adaptive description is
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performed for the Cauchy stress and velocity gradient. The resulting rate

form for the virtual internal energy has a strong resemblance to the

Lagrangian description. The tangent stiffness matrices consist of two

parts: the first one is identical to the Lagrangian description and the

second part arises when the ALE description is employed. The explicit

expressions for these two matrices are given, and the latter for the

contributions from the ALE description.

Numerical methods for the ALE equations are detailed in Chapter 3.

Techniques for nonlinear convective effects, which characterize the ALE

description, are reviewed. These include the upwind method, Petrov-Galerkin,

and Taylor-Galerkin formulations. The difficulty of treating the gradient of

stresses in the ALE description is discussed. The remedy of this issue is

separated into two parts. The first part includes the construction of the

stress-velocity product in conjunction with an artificial viscosity technique

to achieve the streamline upwind effect. The determination of the artificial

viscosity parameter is accomplished by recourse to the analytic solutions for

a one-dimensional constitutive eqution. A collocation weighted residual

formulation for the constitutive equation is presented in the second part.

This procedure is formulated such that it can handle any number of quadrature

points for the family of displacement elements. An efficient two-quadrature

point element suitable for nonlinear calculations is discussed. The usage of

this element to account for both the geometric and material nonlinearities is

described. An explicit time integration algorithm based on the predictor-

corrector method is presented. Several numerical examples are analyzed to

demonstrate the effectiveness of the present development.
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CHAPTER 2

ARBI TRARY LAGR.ANGIAN-EULERIAN FORMULATION

OF FIELD EQUATIONS

2.1 Review of Governing Equations in Arbitrary Lagrangian-Eulerian

Description

The material, spatial, and referential coordinates are denoted by

X x and , respectively. Throughout this dissertation, standard

indicial notation is adopted; lower case subscripts denote the

components of a tensor and repeated subscripts imply a summation over

the number of space dimensions (NSD). A comma followed by a subscript

designates the partial derivative with respect to the corresponding

spatial variable.

The superposed dot and star denote the :ime derivative with the

material and referential coordinates fixed, respectively. The

relationship between these two derivatives are expressed here as

[Hughes et al., 1978]

" ( ) "(*)+ ej( )i

where ci is the relative velocity between the material (v4) and mesh

velocity (i),

ci - vi -

The term c4" )' in . 2.) represents the convec.i.e ef:ec: cue

%1i
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the relative motion between the material and the mesh. In particular,

when c is chosen to be v, i.e., t = x, the familiar Eulerian time

derivative is obtained.

The equations which govern the continuum in the ALE description

are the three conservation laws [Donea, 1977]

mass: P + ciQi = -vi, i  (2.3)

"___ .+b.

momentum: Pvi + pcjvi, j  *ij,j 
+ bi (2.4)

energy: pe + pciei Tijv(i,j) + pa - q,i (2.5)

The Cauchy stress may be decomposed into the deviatoric stress tensor

sij and the hydrostatic pressure p

- Pdi~(2.6)
-ij = sij - Pdij( . )

which are given by the rate constitutive equation

si j CkSj, I CijkzV(k,Z) 4 SkjV~i,k ] + SkiV[j,k ]  (2.7)

and the equation of state

p cip,i p(2,e) ( .8)

,, . • ... ........ ... .. .
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respectively. In the above, p is the density; bi is the body force per

unit volume; e is the internal energy; Sij is the Kronecker delta;

P(o,e) is the function for the equation of state; v(i,j) is the velocity

strain tensor

V(i1j) + 2 i vj) (2.9)

and v(i,j] is the spin tensor

4 - vji) (2. 10)V~iJ (vij ,i

a is the internal heat generation; qi is the heat flux; and C, is

the material response tensor which relates any frame-invariant rate of

the Cauchy stress [Prager, 1961] to the velocity strain. Both

geometric and material nonlinearities are included in the setting of

Eqs. (2.3-8).

REMARK 2.1.1: The right hand sides of Eqs. (2.3-5,2.7-8) remain the

same for all descriptions [Liu, 1984].

REMARK 2.1.2: Eqs. (2.3-5,2.7-8) are referred as the "quasi-Eulerian"

description in Belytschko et al. [1980] because these equations have a

strong resemblance to the Eulerian equations. In particular, the

Eulerian equations can be readily obtained by choosing c v, i.e.,

REMARK 2.1.3: Eq. (2.7) is equivalent to the following equations:
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sij Yijk,k- ck,ksij " CijkZv(k,Z) " SkjV[i,k] + SkiV[j,k]

(2.11) "4
"4

and

Yijk Sijck (2.12)

where Yijk is the stress-velocity product. In the following finite

element computation, these two equations will replace Eq. (2.7) in the

weak form; see Section 3.3 for a discussion.

I,'

1.

, ,,Wp
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2.2 Finite Element Equations

The variational equations corresponding to the conservation

equations, Eqs. (2.3-5,2.7-8), are obtained by multiplying by the test

functions, Sp, 6vi , 6e, Ssij, Syijk and 6p, over the spatial domain R.,

and employing the divergence theorem to imbibe the traction force

hvector h on the boundary r. and the amount of heat 9 transmitted

9 S
through r..

mass

f R dd x + f d cip,idR-x .- 6pvi,idRx (2.13)

momentum

p Qv6vidP-. + f Pdvicjv ,jdR -f 6vi 'i dRx

+ f 6vjbidRx + fh Vihidrx (2.14)

energy

f 6eedRx + f 06ecie,idR4 f 6e,1 qidR% + I 6e-ijv(i,j)dR-

+ f SeoadR x - f 6eedrx (2.15)

RX x

-P.-

.. "
5/..



constitutive
J

s. .s i sijdR x + IR dsijYijkkdax - (axSiCk s i d R "'.b

= 6Sij Ci kzV(kz)dRX + I &sij~skjv[ik] SkivtajkI}dR×."

(2.16) .

and

f SyijkyijkdRx f y ikS ijck dRx (2.17)

Rx ijikR X ki '

equation of state

f SppdR + f dpcip,idRx  f pp( 0 ,e)dRx  (2.18)

Eq. (2.13) and Eq. (2.15) represent the control volume forms of

material and energy conservation, respectively. Eq. (2.14) is a

generalization of the principle of virtual work to the control volume

form with the first integral brought in as d'Alembert forces.

In finite element methods., the domain of interest RX is subdivided

into elements. Different sets of shape functions, , , e, s,

ZY and IP, and corresponding sets of test functions, i, ip, zj,

Y and 3P, are Introduced to interpolate the velocity, density,

internal energy, deviatoric stress, stress-velocity product y and

hydrostatic pressure, respectively. Note that the test functions and

3hape functions for deviatoric stresses are used only in the
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constitutive equations. The matrix equations corresponding to Eqs.

(2.13-18) are:

mass P +. Z + Ve -0 (2.19)

momentum M v + N v + fint fext (2.20)

energy M4e + Ne +~ (2.21)

constitutive Ms* + GTz - D s - z (2.22)

and

m = NYS (2.23)

equation of state P + NP+ - u (2.24)

The superscript "T" denotes matrix transpose; M, MP, \e, s, \Y and MP

are the generalized mass matrices for the corresponding variables in

Eqs. (2.19-24), respectively; N, N, Ne, NY and NP are the generalized

Jo convective matrices; KQ is the stiffness matrix for density; fint is

is the internal force vector; fext is the external load vector; is

the conductance vector; r is the generalized energy source vector; G is

the divergence operator matrix; D is the generalized diffusion matrix

for the deviatoric stress; z and u are the generalized deviatoriz

stress and pressure vectors, respectively. The defini:ions for these

matrices and vectors are given in Appendix A.

6-
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REMARK 2.2.1: The nonlinear convective terms, which characterize the

ALE method, inevitably pose difficulties. Recently, finite element

methods for non-self-adjoint systems (see Section 3.2 for a discussion)

have been developed which do not suffer from crosswind diffusion when

applied to the multi-dimensional convection-diffusion problems. These

methods may be applied to handle the convective terms in Eqs.

(2.19-21,2.23-24).

REMARK 2.2.2: All the matrices and vectors defined in Appendix A are

integrated over the spatial domain R. which changes continuously

throughout the computation.

REMARK 2.2.3: The stress-velocity product v is stored at each node as

a vector with a dimension of (number of space dimensions)x(number of

stress components). The diagonal form for MY is obtained by locating

the numerical integration points at the nodes.

REMARK 2.2.4: A procedure for the stress update equations (2.22-23) is

presented in the next chapter to clarify the temporal integration for

path-dependent materials. All the path-dependent quantities are

updated analogous to Eqs. (2.22-23). To the author's knowledge, it is

a new approach to calculate the stress states for path-dependent

materials in the ALE description.

.%1.

% %,-,' %, % % % " '.". " "."- % . %, .''; " ,% " *. % % % -%' ',% % ',' % % % % % '%L %' ' '% 1
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2.3 Finite Element Formulation by the Princiole of Virtual Work

The finite element procedure presented in the preceding section is

formulated in the spatial domain and the Cauchy stress and the velocity

strain are employed to measure the stress and strain states. In this

section, the ALE finite element for the equilibrium equation is

formulated with a recourse to the principle of virtual work in the

referential system. It should be noted that the linearization

procedures in this section are performed by keeping the referential

coordinates constant which is in contrast to the usual rate

formulations with the material coordinates held constant.

Denoting a virtual variation of displacement by 6ui, the principle

* of virtual work requires [Malvern, 1965]

f 6ui,j~ijdRx - h Ukhkdrx + I 6UkbkdRx  (2.25)

aXr aLx

where the integration extends over the spatial domain. This expression

may be transformed to the referential coordinate system as follows:

asui axm (.5
-u TX rlJdRX  hk r + ( S UkbkJdR X  (2.26)

R Xm axj x f UkhkJ drd

In the above, Js is the scalar ratio of differential areas drx'dP and

J is the determinant of the mapping tensor between spatial and

referential coordinates given by

tZ: 8%'
' ,1 f . " ,< ..,. ', ,': '," < :_. .'3, :- - .'. ,f. -: " '-, 't' " " : " '' " "f

"
: : : : "< . ..
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IA

ax
J -detj (2.27)

P

p-1

J.

Eq. (2.26) can be recognized as the balance of virtual internal and

external energy integrated over the referential coordinates.

Wint Wext (2.28)

The tangent stiffness matrix corresponding to Eq. (2.26) can be

obtained by considering the rate form for the virtual internal energy

with the referential configuration held constant:

•i*M * ux, J]dR (2.29)
Wint I ] - [ijJ +--- ! i (2

3)( a2T aj ; 2 x
RXp

As can be seen, three rate quantities reside in Eq. (2.29). The first

rate term can be manipulated by considering the rate form for the

identity

axm aXk - (2.30)

a3j aT jk

and it cap be shown that

U."

axm 3 X!, 3XS 3.

. xj TX m 
•x 

a 
. . •
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With the substitution of mesh velocity (Hughes et al., 1978]

Vk - Xk (2.32)

Eq. (2.31) takes the form

-XM axM ;Xn av'k
(aXj. 3xk axj aXn

a-xm avk (2.33)

axk ;xj

The second rate term in Eq. (2.29) involves the rate of change of the

Cauchy stress tensor which has been shown in Eq. (2.7)

i k -ckrij,k * Cijkzv(k,Z) Sijkzv[k,Zl (2.34)

In this equation, -'C zij,k is the transport of the stress histories.

The term C (k,) can be interpreted as the pure deformation part

for the rate of change of the Cauchy stress. The fourth order

generalized material response tensor C is
i~kz

r jkt

*/ ,

"-4 "- " " :4"" "" ' "".- "" " - " " "" - - "" """- - """""""""" """" ""- -4" """"- '. " :"'
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N

if the Jaumann stress rate [?rager, 1961] is used, whereas b

,, * .'. ..

ijkz ijk. Cijkz (2.36)

if the Truesdell stress rate is employed. The fourth order tensor

CikL is given by

C•jkL r 5 kZ + (r jk i i+ + 'jk5 ) (2.37) S

For most of the currently used material models, the material response
C .

tensor C possesses both major and minor symmetries. Several
ijk V~

examples for the generalized material response tensor nave been

discussed in Liu (19841 which will not be repeated in the present

study. The term Sijk V~k,v ] in Eq. (2.34) is the rotational part for

the rate of change of Cauchy stress and the fourth order tensor Sijkz

is given by -

s. T (2.38)
ijkz 2 (:itjk j Lik - rik jL i )

The last rate quantity in Eq. (2.29) is given by Liu [1984]

J -Jv,

e
Eq. (2.33) and Eq. (2.39) can be substituted into Eq. A2.29) :- yield

• ,-%b

*1°.
S. •
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RX am xk  j j axj axj . JdR (2.40)

which can be transformed back to the spatial domain as

Wint f Sui,j [T-ij 
" ijvk,k - Tikvj,k]dRx (2.41)

In case of - v, i.e., ) - (), Eq. (2.41) degenerates to

Wint - Rx Su,j[;ij + TijVk,k - Tikvj,k]dRx (2.42)

which is identical to the incremental expression for the virtual

internal work in the Lagrangian description [Liu, 1984]. The rate

constitutive equation, Eq. (2.34), may be substituted into Eq. (2.41)

to yield

Wint - Sui,j[-ckrij,k CijkZv(k, Sijkzvk]

A- + rijvk,k - -ikj ,k]dRx (2.43)

I

When vi - ci is substituted into the last two terms, Eq. (2.43)

can on,be written as

-A2
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%

int  d z uij[(Cjkz Tijkz )vkz

(ikcj,k - IijCk,k - ckrijk)]dR-x (2.44)

where the components for the initial stress tensor can be shown as

T TC
ijk 2 ijkz

S5 - T 6 (2.45)
A ij k 2 iLzjk + 2 tjZik 2 Tik'jZ - 2 rjkiz

if the Jaumann stress rate is used, and

S. T

T- it (2.46)
ijkt Z iWTi Tjz ik

if the Truesdell stress rate of the Cauchy stress is employed. As can

be seen from Eqs. (2.45-46), only the components of T'jkz possess major

symmetry. Hence, the Truesdell rate for the Cauchy stress rill be

employed in the subsequent finite element formulation in order to

obtain a symmetric geometric stiffness matrix.

Similar to the generalized constitutive equation, the general

formulation for the rate of change of the virtual internal work can be

arranged in three parts: (1) the material response part, kZv

the initial stress part, T*ijk Vk,z; and (3) the transport parz,

I c - r kck - c k . With these definitions,ik J,k ijkkjk
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4.

Wint-f Sui.D V dR + 3u. . . dR
Rx ik. k, x j'2 Vk,

+f- - CdR (2.47)

i ,j ik j,k "ijCkk ijk )dR(.

-" in which

C for Truesdell rate
ij kz

D ijk = (2.48)
Cc *

i - ijkz for Jaumann rate

and

T uTC (2.49)
Sijkz ijkL j.

since the Truesdell stress rate has been chosen "or the Cauchy stress

tensor. Note that the first two terms in Eq. (2.47) are identical with

the linearized expression for the virtual internal work in the

Lagrangian description. The transport term arises when zi 4 0 (i.e.,

when the ALE description is used) and it is indeoendent of che stress

rate chosen for the Cauchy stress tensor,

Discussions on the Virtual Internal Work in ALE Descriotion

The domain of integration for Eq. (2.47) can e:ransfored Do

material system [Liu, 19841 as
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Wint R3 X i kj2 a d xqPq 3 X

+ S axj axk Sc d
+ X f ~Sj x a pq J,k

3xi

Su a S s K K dRd
RX. J , -Kp aXq pq X

- afRxui jCk%.kdet(-)dRx  (2.50)

In this expression, the second Piola-Kirchhoff stress S is related to
pq

the Cauchy stress by

1 3xi ax-
. 1 I S (2.51)

ij 3~x X-p 3Xq Sq
det )

The fourth order tensor C5  is the counterpart of the material
ij kz

response tensor for the Truesdell stress rate in the material domain

ax aX4 aX4 aXk. 2XL Ct
C k det-3  X - C (2.52)

ijk 3 ax a q ax1 ax pqrs

The material velocity defined by

V (2.53)

k

,o
S '" .*
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can be expressed by using the chain rule

(*) - ( ) -aii (2.54)

as

vk 'k

* xk*
xk-X (2.55)

The derivative of material velocity with respect to the material

coordinates can be written as

avk  a xk  axk axi"- 3 Xk aXk *Xz  (2.56)

~X3X ax a ax

It is noted that the second derivative of spatial coordinates with

respect to the material coordinates, -X 2 X1 X, is neglected at this

point because only the first derivative terms are required in the

derivation of the tangent stiffness matrix.

The convective velocity, ck ' vk - vk, can be similarly expressed

in terms of the rate of material and spatial coordinates as

".' xX i ) - k* axk

;Xk

e." -" ""-57-
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in which the expressions for the material and mesh velocities given by

Eq. (2.55) and Eq. (2.32), respectively, have been used. The spatial

derivative of the convective velocity can be shown as

a'p.

cX. k(2.58)

k,j X i,j

Eqs. (2.56-58) can be substituted into the race of change of virtual

internal work, Eq. (2.50), to yield

W - alSuk axk ;xk ;Xn
Wint ax S 1j(3- dR

+XUk L Xk iXr s axr 3xr aXn

-ax ax x s jpq %

a6uk axk S 3X2 d - - dR ij adeX ( X pdR X (

- f u -Ck- Rraduk axk

ax~ i~~ax

S- d ct ijk~(-) dR~v (2.59) '

It is noted that the first integral in Eq. (2.59) represents the

initial stress effect; the second integral is the material response

part; the third and fourth integrals arise because of the use of ILE

5,"

-- S....
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description (c 1 0); and the last integral represents the transport of

the stress histories in the ALE description.

An alternate derivation of Eq. (2.59) is presented in Haber and

Abel [19831. This formulation is subsequently improved by Haber [19841

in which the so-called *"Xixed Eulerian-Lagrangian" description is

inspired by the work of Hughes et al. [1978]. In this paper, the

second Piola-Kirchhoff stress, the Green strain, and the virtual work

expression are linearized to obtain the tangent stiffness matrix.

Because of the choice of this conjugate pair of stress and strain, and

the linearizaton procedure, tedious algebra is involved and the

expression for the tangent stiffness matrix is only valid for linear

elastic isotropic material. For comparison purposes, the rate

counterpart of the Haber's formulaton is re-derived in Appendix B. The

differences between the present and the Haber's formulations are

summarized in Table 2.1. As can be seen, the transport of stress

histories is not included in Haber's formulation. This deficiency

results from the choice of the second Piola-Kirchhoff stress and the

Green strain, and the linearization procedure for the constitutlve

equation. The transport of stress histories is very important for

highly convective calculations such as the wave propagation problems

presented in the next chapter.

'I..

',,p .. ,.-, -.. £-..- .,,. .,..-.',,. -. -.. .,: , .-<: - . % - ,. . ,< '. -,:. ,
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Table 2.1. Comparisons between the Present and the Haber's

Formulations

Present Formulation Haber [1984]

stress T (Cauchy stress) S (second Piola-Kirchhoff
ij stress)

strain vi' j (velocity strain) E i (Green strain)
= CijkzV~k. £ ij jzk

constitutive Ta-ionk -c+ iiJ ) C . E L

equation ~ ~ik.(~) i ji 2
+ Si V where i u constant

ijk. Lk,,] ijkz

expressions 96uk 2xk axk 3,%
• r - ia- -a. i-)dR. same

for Wint Rx j

same, except

+- - -.S - - )R ' i
* xrx r Xn~d

Rx x a X ijpq'aX 3Xn ; ijpq

replaced by

C..
ij pq

a 6 Uk 3 xk dRY same
" X a Sn aRi 3ae

'r.""-p- - , , - "~ - . . - . " ," e . - , -,e " ." "," ' - " 
'

- " " 
/

: " ' " - "
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Table 2.1 Continued.

+f 3ISuk adk S ~ RKsame

Su c~ Tr de(3dRX This term is omitted.
RY i~j k iji 3
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Computer Implementation of the ALE Tangent Stiffness Matrices

Introducing the interpolating functions r

P

6ui - *aSUia , a 1 1, number of nodes per element (NEN) (2.60)

VVib
VTM  , b - 1, TEN (2.61)

ci Cib

the matrix equation associated with the principle of virtual work reads

Ktan v - fext . fint (2.62)

The element tangent stiffness matrix corresponding to the rate form of

virtual internal work, Eq. (2.47), is composed of three matrices

Ktan - KD 4 KG + KALE (2.63)

In computer implementation, it is inconvenient to deal with the

indices of a fourth order tensor such as DijkZ. Hence, the procedure

given in Liu and Ma [19821 will be followed to develop the element

tangent stiffness matrices. Interested readers are suggested to refer

to this work for the expressions of KD and KG which will not be

repeated here. The matrix KAL E can be shown as:

% %4
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ALET-_
K ab ' j BT dR x 2 bdR (2.64)

where the 9x3 matrix Bb is given by

ob,l 0 0

Ob,2 b,l 0

0 $b,2 0

0 0 4b,3 B
0 'b,3 b,2 ( 6

2 b  .. . ..b ( 2 .6 5 )

oo
b,2 -b,l 0

0 Ob,3 b,2

-$b,3 0 Sb,l

The 3x3 matrix lb is

b0 0

b 0 (2.66)

0 0 tb

The 9x9 unsyzmetric matrix T is

'I-1
". . ' "'a"", , . , ' " , . , , , • % _ . . . , , . : , , - ' ' ' ' ' ' . - , - ' % , . " .' ." " - ." . ' . -- " - ", " -. . . . ." - "- ' , ." ." - ' ."

a. , " ," ," . ," - " . , - t " 4 " ," , , " 'P " -. , " " -. " " . . ," ," ," " , : " " ' " ,
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0 2 1 1 06 2'2 0 a6
-1

Tr2 1+-t3) -24r2  "r2  4'6 4"5 T ' 3.6

3 a 2 23 75 0" T2 2

0 0 10-- 1
4 4  25 2 1'5 2 6

ti -3+" 4 t('4 ) -24' W6 T5 s 4 73 "2 16 -4 3 4,2

-1 1 -l 1 (r1 ) 1 -1 1. =

4'5 6 T6 42 tT T4 5 - 4

!1 0 1~ 3 4'6T2 'l3 22 7-6 75 4 1 3 '6 45

-1 -1 1 1 1 -1 1
'(T3') t(3746T ' T 3 4 42 4'6 4<3"4 42

1 1 -1 -I 1 1 1 -

" 6 4'5 "6 "2 4 4- 7 5  4'2 I4

(2.67)

#,
5I"

-,
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The 9x3 T2 matrix involves the spatial derivatives of the Cauchy stress

"-2

1,l 1,2 1,3

. 2,1 T2,2 r2,3

T3,1 T3,2 =3,3

T4,1 4,2 T 4,3

5.,1  5,2 T5,3

Z2 T 6,1  6,2 T6,3 (2.68)

0 0 0.4

0 0 0

.4

0 0 0

These ALE tangent stiffness matrices may be incorporated into any

existing Lagrangian finite element code without changing the main body

of the program, nevertheless, the amount of computations is still

substantial. For this reason, the ALE tangent stiffness matrices are

further rearranged as the product of several 3x3 matrices as o.'lows.

The ALE tangent stiffness matrix corresponding to Zq. ( c.7 zan

be arranged in three parts as

-V I[
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I

KALE- K( ) - K(2 ) 
- K( 3 )  (2.69) "5

The first matrix can be shown as

Kd -(2.70)
~ab Z -"bla x

where the components of the 3x3 r matrix are

2 6

T {T T T (2.71)S"{ij) " 2 r3 r5 (.1

ii"

6 T5 4

the components of the 3x3 lb matrix are given by

b,l b,l 4b,l

b b,2 *b,2 Ob,2 (2.72)

Ob,3 b,3 4b,3

and the components of the 3x3 ' matrix are
-a

a,1 0

a 0 a,2 (2.73)

a,3
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The second matrix is given by

S(2)

K -'dR (2.74)ab " albx

and the last matrix K( 3 ) is

K(3 )  r dR (2.75)-ab -aT'b x

where the components of the 3x3 t' matrix are
-a

I~j,l 'lj,2 -1j,3

-a aj 2j,. '2j, 2  2j,3

31'l T3j,2 T3j,3

The components of the matrix tb have already been given by Eq. (2.66).

.'
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CHAPTER 3

.WMERICAL PROCEDURES FOR ALE EQUATIONS

3.1 Overview

The ALE formulation for conservation laws, constitutive equations,

and equation of state have been considered and derivations from strong

forms to matrix equations have also been given in the previous chapter.

However, the overall effectiveness of the present effort depends to a

large degree on the numerical procedures used for the system equations.

It is the purpose of this chapter to present some numerical methods for

the computations of the A.LE equations which, in general, are impossible

to integrate analytically.

Among the vast amount of numerical methods, subjects relevant to

ALE computations include the evaluations of generalized mass matrices,

internal and external force vectors, nonlinear convection effects, and

new stress and strain states in addition to the construction of time-

stepping algorithms. Since discussions of the mass matrix and force

vectors have been well-documented in the literature [Zienkiewicz,

1977], these treatments will not be included in :his investigation.

For the on-growing area of nonlinear convective computations, a review

of various approaches such as upwind methods, Pec7rov-Caierkin, and

Taylor-Galerkin formulations is orovided in the next section. The

computations of 3tress and strain states for path-dependent eaterials

are then presented in Section 3.3, which inciudes :he discussion )f tie

stress-velocity product and a collocatlon weighted residual formulatlon

-..-. - -. . . . . . . . . .
.- S . . * * .. -
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for the constitutive equations. In Section 3.4, the nonlinear

computational procedures for a two quadrature point element is ",

presented. An explicit algorithm for the integration of the ALE

equations is shown in Section 3.5 and the application of the present

formulation to a number of problems is provided in Section 3.6.
1°

J-

%
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3.2 Finite Element Methods for Non-Self-Adjoint Equations

The convective effect, which arises when the (Quasi-)Eulerian

description is employed, has been one of the difficult topics in the

development of numerical methods. The usual (Bubnov-)Galerkin method

leads to a non-symmetric convective operator, and spurious spatial

oscillations are exhibited at moderate to high Peclet numbers. Though

highiy refined meshes can remove these oscillations, the advantages of

the finite element method may be diminished.

Several remedies have been devised to overcome this difficulty.

In the finite difference category, the use of upwind differencing on

the convective term is proposed in Richtmyer and Morton [1967] and

later detailed in Spalding [1972]. A similar idea is introduced into

the finite element method in Christie et al. [1976] in which the weight

functions are skewed to achieve the upwind effect. Relevant early

articles in these upwind-type finite elements include Heinrich et al.

(1977], Hughes [19781 and Belytschko and Kennedy [1978], among others.

Of particular interest in the present ALE calculations is the work

presented in Brooks and Hughes [1982]. In this paper, the artificial

diffusion operator is constructed in a tensorial form so as to act only

in the flow direction (streamline upwind). The free parameter in this

method is the amount of diffusion selected to maximize the solution

accuracy. Detailed discussion of this streamline upwind method is

beyond the scope of the present investigation; nevertheless,

derivations of this method for the Navier-Stokes equation in the ALE

*. .. . . .. - . .



36

description can be found in Liu [1980], and this method will be

employed to handle the convective effect at the present stage.

In addition to the above school of upwind techniques, the

Petrov-Galerkin method proposed in Dendy [1974] consists of choosing

different classes of functions for the weight and trial functions.

Because of the potential of Petrov-Galerkin methods for flow problems,

a large amount of literature has been accumulated. Among various

techniques, the work presented in Rughes and Tezduyar [1984] and Morton

et al. (1980] appear adapted to deal with the present ALE formulation.

It is also w;orthwhile to point out that the Taylor-Galerkia

formulations given in Donea [19841 and Lohner ec al. [19841 appear to

be potential candidates to handle the convective effect encountered in

the ALE computations.

.
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3.3 Stress Uodate Procedures

The stress state of a path-dependent material depends on the

stress history of the material point. A stress-history can be readily

treated in a Lagrangian description because elements contain the same

material points regardless of the deformation of the continuum;

similarly, quadrature points at which stresses are computed in

Lagrangian elements coincide with material points throughout the ,

deformation. On the other hand, in an ALE description, a mesh point

does not necessarily coincide with a material point so that the stress

history needs to be convected by the relative velocity c, as indicated

in Eq. (2.7). Note that the spatial derivatives of the deviatoric

stress are involved in the convection term.

When C-1 functions are used to interpolate the element stresses,

the ambiguity of the stress derivatives at the element interface

renders the calculation of the spatial derivatives of stress a
difficult task. As mentioned in REMARK 2.1.3, this is remedied by

replacing Eq. (2.7) by a set of coupled equations, Eqs. (2.11-12),

and the corresponding matrix equations have been given in Eqs.

(2.22-23). It should be noted that all the path-dependent material

properties, such as yield strains, effective plastic strains, yield

stresses and back stresses, should be convected via this procedure with

s replaced by each of these properties in turn, and with z

appropriately modified.

In this section, numerical methods for che defini:ion of the

stress-velocity product and computation of the incremental stresses

r

% V% Fr. S
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are presented. Although the following developmenc is discussed in a

two-dimensional setting, the extension co the three-dimensional case is

straightforward.

Construction of the Stress-Velocity Product

In a nonlinear displacement finite element formulation, the

velocities are stored at nodes while the stress histories, back

stresses and yield radii are available only at quadrature points. In

order to establish the nodal values for the stress-velocity product, a

weak formulation is a logical necessity. In addition, based on the

one-dimensional study presented later in this chapter, in which the

upwind procedure is used to define this intermediate variable, the

artificial viscosity technique (streamline upwind) [Brooks and Hughes,

19821 is considered here as a generalization of this upwind procedure

to multi-dimensional cases. For the sake of clarity, the free indices

i and j denoting the component of stress tensor will be dropped

hereafter.

The relation for the stress-velocity product given in Eq. (2.12)

is modified to accommodate the artifical viscosity tensor Akm

Yk - sck - Ak,m (3.1)

The ingredients of the artificial viscosity tensor consist of a

tensorial coefficient multiplied by the stress:

% . "-."- " -..-A.
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Akm UkmS (3.2)

where the tensorial coefficient is constructed to act only in the flow

direction (streamline upwind effect) [Brooks and Hughes, 1982]

= ckcm/cc (3.3)

and the scalar U is given by

NSD

I M, cjhj/NSD (3.4)

Here hi is the element length in the i-direction, NSD designates the

number of space dimensions, and mi is the artificial viscosity

parameter discussed in Appendix B given by

ai - , for ci 0 (3.5)

The weak form corresponding to Eq. (3.1) can be obtained by

multiplying by the test functions for the stress-velocity product and

integrating over the spatial domain Rx.

Sf kyyk, k kf K Sy sc dR~A 6- f 1 SkV, dR.., (3.6)

This equation may be written as

U",

2 ? , U'U.' .*U . * * ~ ~ -
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Syydx f 6y sc.IcdRx + f 6y AkdR-.( (3.7)

by applying the divergence theorem and by assuming no traction asso-

ciated with the artificial viscosity on the boundary. The expression

for Akin, Eqs. (3.2-3), can be substituted into this equation to yield

SYkYkdp f (Sy k +6k)sC dRx (3.8)

where

Syk = 6yk,~ c m/ c n c% (3.9)

can be viewed as a modification of the Galerkin finite element method

because of the transport nature of stress-velocity product.

The shape functions for the stress-velocity product can be chosen

to be the standard Co functions. The number and position of numerical

integration points for Eqs. (3.8-9) should be selected to be the

quadrature points, since the stress histories in Eq. (3.8) are only

available at these points.

Remark 3.3.1: The determination of the artificial viscosity parameter

is accomplished with a recourse to the analytic solutions for a

one-dimensional constitutive equation. The analytic solutions are

obtained by employing the Laplace Transform technique which is detailed

in Appendix C.

,r
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Multiple Stress Collocation Point Formulation

Following the procedures given in the previous sub-section, the

stress-velocity product can be defined at each nodal point and it can

be substituted into the constitutive equation as follows to calculate

the rate of change of stresses.

- _ Z + D s (3.10)

Definitions for the above matrices and vectors are given in

Appendix A. Note that the interpolation functions for stresses need

to be integrated over the spatial element domain in these definitions.

However, the present displacement formulation carries stresses only at

quadrature points in contrast to the Hellinger-Reissner and Hu-Washizu

[Washizu, 19751 finite elements in which the stress interpolants are

assumed.

Furthermore, the task to select the number of quadrature points

for the displacement finite element poses another important issue. For

example, the locking phenomenon for fully integrated elements arises

when the material becomes incompressible. While selective reduced

integration can overcome this difficulty, it is just as costly as full

quadrature. To alleviate this computational hurdle, the use of one

point quadrature combined with hourglass control is developed in

Belytschko et al. [1984]. In addition, a nonlinear two-quadrature

point element presented in the next section appears to be another

candidate for large scale computations because it exhibits nearly the

% %
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same accuracy as the selective reduced integration element while with

only one-third of the cost. The elements mentioned here, as well as

others in the family of displacement elements, can be readily adopted

in the ALE computations. It is obvious that a stress transport

procedure suitable for any number of quadrature points is needed.

Inspired by the equivalence proof for the mixed and displacement

elements in Belytschko et al. [1985], the displacement element is

divided into M subdomains where M denotes the number of quadrature

p points. Each subdomain is designated by R, (I - 1, M), which contains

the quadrature point x,, and no two subdomains overlap. Associated

with Ri, a stress interpolating function 0is assigned and its value
5.

is prescribed only at quadrature point x x. to be unity, or

- 1 (3.11).5

S.S

4The test function in RI is chosen to be the Dirac delta function

s (-i~ (3.12)

Substitutions of these functions into the constitutive equation given

by Eq. (2.16) represents a mathematical requirement that the residual

of the weak form vanishes at each collocative quadrature point.

Because the collocation point is located right at the quadrature point,

the algebraic equations resulting from Eq. (3.10) are dependent only on

the information (stress history) associated with its host points.

Since the Dirac delta function has the important property that
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f' F(x)6(x- )dRX F(x 1 ) (3.13)
ax

.1*.

All of the matrices and vectors in Eq. (3.10) can be easily worked out %

without numerical integration and they are given in Appendix D.

Remark 3.3.2: In Appendix E, the stress update procedure is given for

a uniform one-dimensional mesh; the resulting stress convective terms

bear a strong similarity to the donor-cell differencing [Roache, 1972]. 7,

On the other hand, a simple averaging (or the central differencing) is

obtained if the upwind effect is not applied to the convective terms.

79S

.ye-.
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3.4 An Efficient Nonlinear Element

In Liu et al. [1985], a "unified" stabilization procedure for the

Laplace equation, the equation for continuum and the equation for

plates and shells in two and three dimensions is presented. The major

achievements are (1) control of the spurious singular modes for

underintegrated finite elements; (2) enhancement of the computational

efficiency without sacrificing the accuracy; and (3) alleviation of the

locking phenomenon for continuum elements when the material becomes

incompressible. Accurate solutions are achieved for linear isotropic

(incompressible) materials. However, when the above IPS element is

applied to plastic materials, the solution accuracy deteriorates and

the proposed element tends to be too stiff when compared to the

selective reduced integration (SRI) element.

A possible reason for this shortcoming in nonlinear calculations is

due to too few (only one) stress sampling points in each element. The

entire element must be in either a purely elastic or a purely plastic

state determined by evaluating the constitutive equations at the

element center. Consequently, the onset of plastic fronts and the

plastic yielding effects cannot be accurately accounted for. On the

other hand, the SRI element permits different stress states in elements

because the constitutive equations are calculated at four (for a

two-dimensional bilinear interpolation of displacement) quadrature

points. Nevertheless, in view of the large additional cost in

compu:ing the spatial derivatives of shape functions and in evaluating

V-

AL
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Ul

the constitutive equations, there seems to be little benefit in using

the SRI element.

Based on these considerations, research effort has been directed

toward the development of an accurate two stress-sampling point element

(IPS2), which retains the efficiency of the IPS element. The basic

idea of the present approach is to adopt the approximation of the

gradient operator matrix in Liu et al. [19841 and to evaluate the

constitutive equation at two presumed quadrature points. For

illustrative purposes, details of the two-dimensional plane-strain case

are presented here.

The gradient operator matrix given in Liu et al. [1984] is

(0) +, BdeV.0 M + B dev (O)n (3.14)

where the subscript "a" ranges from I to the number of nodes per
dev dev,

element. Definitions of B (0), (0) and B O) can be found in

Appendix F. The incremental strain is

_dev, 0. ^ BdeV(Oh

(,) ( [Ba(+) +  .) + a,v(O)n],da (3.15)

where Ada is the incremental displacement vector. The incremental spin

tensor can similarily be approximated by

AW(-,n) [Wa(0) + + a,< Wa,r()]da (3.16)

~ I

|'
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where.W(0), Wa (0) and W (0) are given in Appendix G. Thewhere ~ Wa a..-a,j, -

incremental strain and spin tensors are calculated at two quadrature

points,

V3 . _ (3.1i7a)

or + - , (3.17b)

, and the stress history, Tn(£), and the back stresses, an (), at time

step n are rotated by Q(r) to account for the rotational effect

[Hughes and Winget, 19801.

T [Q .= QT] (3.18a)

IQ Qn (3.13b)

where ( and an+t(&) are the intermediate Cauchy stresses and

back stresses, respectively. The expression for the orthogonal matrix

Q is

0 1-r + (- )- (3.19)
2.

where I is the identity matrix. The incremental change of the stress

state due to material deformation at the quadrature point 7 can be
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.15

handled by the plasticity integration procedure. An example is the

radial return method given in Krieg and Key [1976].

f , ni' Zn~' k,...) (3.20)

Ak( £) - fk(I-C ' Zn+1' Zn 1' "n,"') (3.22)

where Ak is the incremental change of the yield radius; f., f, and

fk designate the plasticity integration procedure for 1T, a, and ak,

respectivel7. The state of stresses at step ni-I is'then updated by

nn+l(+]) n~l(- ) + t(£) (3.23)

a an+I(jZ) + Aa( z) (3.24)

,%n+I(&) - kn(£j) + Ak(£) (3.25)

The element internal force vector is

.1~ ff 3T s. dR. (3.26) "
- - - -

The approach used in Eq. (3.14) can be applied again to approximate the

gradient operator matrix B in Eq. (3.26). Numerical integration, with

weights equal to 2 and with the Jacobian assumed to be a constant,

.5.,
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(element area)/ 4 , is employed to integrate the element internal force

vector

2 A (Q) + dev (0) + dev T, ~~ f -[aO)+B.() +B (0)n ] T I(j)(3.27)

and A represents the area of the element.

The element internal force vector can be further arranged as

f -" + f stab (3.28)

where the internal force resulting from the one point quadrature is

- A <T 1> l + <t 1 2>b2  (3.29)
2 <'22>b2 + <T 2>

and the contribution from the stabilization procedure is

+ qnlal )(2( r ]-[r 22 ]-[ 3 3 ') +

- A 3( la2  + T'1c 2rj)[T 2 1-f (3.Cfstab 6 " [-F.1)

il~~3( n(l2 a )l2)'rl [2- r3] 1
1(,I Ir IIn 122 33

In these expressions, the following defini'.ions '-ave .

<ij > = ij( ) _J( ) ;[
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91 "E2 ; _n2 (3.31c,d)

(&Tz (-Tx)
CA I 4A (3.32a,b)i 4 A CL2g 4A

- (n TY) - - Tx)
CL1  4A _ -_ (3.33a,b)In 4A 2n A,

Derivations for these expressions have been arranged in Appendix H.

Remark 3.4.1: The number of calculations for the spatial derivatives

of shape functions, the number of evaluations for the constitutive

equations, and the computer storage for rate-independent plastic

calculations for SRI, IPS and IPS2 elements are reported in Table 3.1.

Remark 3.4.2: Based on the numerical examples given later, the

displacement fields obtained by using either pair of quadrature points

are identical, and the stress fields exhibit several percent I

differences in elements along the clamped boundary.

"

.40

- .14
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Table 3.1

Comparison of Computations and Storage for

SRI, IPS and IPS2 Elements

2-D Spatial Derivatives Evaluation of Storage
Example of Shape Functions Constitutive Requirements

Equation

SRI 4 times 4 times (3C.S.+3B.S.+LY.R.)
*4 -28 words

IPS 1 time I time 9C.S.+3B.S.+IY.R.
-13 wiords

IPS2 I time 2 times (3C.S.+3B.S.+1Y.R.)
*2 - 14 words

C.S.: Cauchy Stress; B.S.: Back Stress; Y.R.: Yield Radius

%,

Ile.

1!v.
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3.5 Explicit Time Integration Algorithm

For simplicity, the coupled equations will be integrated by an

explicit scheme. Lumped mass matrices are used to enhance the

computational efficiency. If ( )n and ( )n.l denote the matrices at

times tn = nt and tn., - (n+l)&t, respectively, where at is the time

increment, the explicit predictor-corrector method [Hughes and Liu,

19781 gives

The mass equation:

- )- -n-+ + Ka ) (3.34)

,I n + (1-a)at - (3.35)

-n+l " n.l + :a:t .l (3.36)

The momentum equations:

- (,)(fext - N v (3.37)

Zn+1 - + (L-)AtZa (3.38)

n~l" n~l + ya , +I.(3.39)
Zz1mZ+ + Y~t Za+

Eq. (3.37) needs to be used in conjunction wi:h

I- .
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"n+' - Z.a + atXa + (- )A 2v

,,-+I + . n+12 (3.41)

to calculate the fInt.
-ai

-p

The energy equation:

(r Ne ~f4j (3.42)

!n + (1 - C),t:n (3.43)

,-:.

&+I1 + cat !n+i (3.44)

The constitutive equation:

- (3.45)

ST;~n~ ()L(zni. + -nni- n'ni (3.46)

*n+1 "n + (1-KiAt)*n (3.47)

- * i (3.48)

where a, , y, ; and K are the computational parameters. For explicit

calculations, the following constraints on the parameters are used:

,-a
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a - 0 ; a0, y 1 ; - 0 ; 0c - 0 (3.49)

2p

The flowchart of the computational procedure for the class of pressure-

insensitive materials is as follows:

(1) Initialization. Set a 0, input initial conditions.

(2) Time stepping loop. t [0,tax].

(3) Integrate the mesh velocity to obtain the mesh displacement and

spatial coordinates.

(4) Calculate incremental hydrostatic pressure by integrating Eqs.

(3.45-46) wuith s and z replaced by p and u, respectively.

a. The rate of pressure due to convection. P,

b. The rate of pressure due to deformation.

(5) Calculate incremental deviatoric stresses, yield stresses and back

stresses by integrating Eqs. (3.45-46).

a. The rate of stresses due to convection.

b. The rate of stresses due to rotation.

c. The rate of stresses due to deformation.

(6) Compute the internal force vector.

(7) Compute the acceleration by the equations of motion, Eq. (3.37).

(8) Compute the density by equation of mass conservation, Eq. (3.34).

(9) Compute the internal energy by the equation of energy

conservation, Eq. (3.42).

(10) Integrate acceleration to obtain velocity.

(L) If (n1) t > max, stop; other-ise replace n by a-- and go to (2).

I,
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3.6 Numerical Examples

3.6.1 One-Dimensional Wave Propagation Problem

An elastic-plastic wave propagation problem is used to assess this

ALE approach in conjunction with the simple averaging and the proposed

stress update method. The problem statement, given in Fig. 3.1,

represents a one-dimensional, infinitely long, elastic-plastic

hardening rod. Constant density and isothermal conditions are assumed

to simplify the problem. It should be noted that this elastic-plastic

wave propagation problem does not require an ALE mesh and the problem

was selected because it provides a severe test of the stress update

procedure and because of the availability of an analytic solution. The

problem is solved using 400 elements which are uniformly spaced with a

mesh size of 0.1. The mesh is arranged so that no reflected wave will

occur during the time interval under consideration. Material

properties and computational parameters are also depicted in Fig. 3.1.

Four stages are involved in this problem:

(1) t e (0, t1 ], the mesh is fixed. A square wave is generated at the

origin.

(2) t C [tl, t21, the mesh is fixed and the wave travels along the

bar.

(3) t e (t 2 , t31, two cases are studied.

CASE A: The mesh is moved uniformly to the left hand side with a

constant speed -v .

CASE 3: Same as CASE A except the mesh is moved to the right.
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1 D ELASTIC (-PLASTIC) WAVE PROPAGATION

p=I E=10' E/ET=3 i-Y=75 r 0=-100
Ax=Ax=O.l v =0.25vrE7/ P3=0.0 -y=0.6

1. tE[0, t1] mesh fixed, wave generated

X=0

2. tE [tj, t2] mesh fixed, wave travelling

X=0
A A,

3A. tE~t2,, ta] CASE A: move mesh with v = -V
t1=45 t2=80 t3=160 (10-3)

A A.
3B. tE* 2, t,3] CASE B : move mesh with v =+v

t1=45 t2=240 t3=320 (10o3)

=0
7- C-)- - ( = - C- P(-

X=0
4. t =report stress vs. spatial coordinate

Fig. I.



56

(4) t - t3, the stress is reported as a function of spatial

coordinates in Fig. 3.2 and Fig. 3.3 for CASE A and CASE 3,

respectively.

For both cases, the momentum and stress transport are taken into

account by employing the full upwind method for elastic and

elastic-plastic materials. The results are compared to

(I) the simple averaging runs, in which the momentum transport is

handled by the full upwind method and the stress transport is

computed by the simple averaging method, and

(2) fixed mesh runs, in which the finite element mesh is fixed in

space and the results are pretty close to the analytic solutions.

The relative velocity, c-v - , in CASE AC < 0) is greater

than CASE B ( > 0); therefore, the transport effect of the former is

more significant. These phenomena have been studied in Figs. 3.2-3 by

varying the time step reported in Table 3.2. The wave arrival time for

both the proposed method and the simple averaging method agree well

with the fixed mesh runs. However, the averaging method causes severe

unrealistic spatial oscillations in CASE A because of the significant

transport effect. The method proposed here eliminates these

oscillations completely. Based on these studies, it is found that the S

transport of stresses as well as yield stresses (and back stresses for

kinematic hardening) plays an important role in the ALE computations

for path-dependent materials, and the proposed update procedure is I

quite accurate and effective.

'V,

.- ,- . -. .-. .- -. -j-I- ', .• - . - ...p. .. .. .. ... ' ".'. . w "J
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CASE A
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CASE B h
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Table 3.2. The step sizes and numbers of time steps for

elastic-plastic wave propagation example

Time Step Number of Time Steps

tCr CASE A CASE B

0.040 0.5 400 800

0.056 0.7 286 571

0.072 0.9 222 444

C Ax/CE/P +Icir I "l

-'',V

V, . . .. . . .,.. . . .,-_.-. _. . ... -. - -.- -.-- ; ... ,.--.-, .-. _- - -..-. v ,- --- ,,- -,-,-, .-

• -" "- V - - ',' ''" ,"- . ,',.
'

''- - ' - .. '' ' - "°, ' - -' ' ,, " " r' % " " % "
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3.6.2 Two-Dimensional Elastic-Plastic Wave Propagation

In addition to the preceding problem, a two-dimensional

plane-strain elastic-plastic wave propagation problem is considered

here as an another test for both the IPS2 element and the proposed

multi-stress-point transport procedure. A 100x50 mesh is used to model

a spatial domain of size 10x5. The radial return procedure given in

Krieg and Key [1976] is used and isotropic hardening is assumed. The

geometric configuration, material properties and computational

parameters are given in Fig. 3.4.

The evolutions of this stress wave propagation problem using IPS2

element are illustrated in Fig. 3.4. One component of the stress

. tensor is reported at various times. The traction force h - 1000
'22

is applied on the boundary as a Heaviside function and this loading is

terminated at time t - 0.02. The Rayleigh waves [Graff, 1975] can be

observed in Fig. 3.4. Their effect decreases rapidly with depth'and

their speed of propagation is smaller than that of body waves.

Immediately after t - 0.02, the finite element meshes are prescribed to

move with the velocity vj - -0.4VE/p. At time t - 0.03, the

computations are stopped and the stress distributions along lines y

1.5, 2.0, and 3.0 are reported in Fig. 3.5 for both the elastic and

5, elastic-plastic cases. Also included in this figure are the stresses

obtained by IPS2 and SRI elements without mesh motions.

The numerical results for the IPS2 and SRI elements without mesh

motion agree well for both the elastic and elastic-plastic cases. When N

the mesh is moving with 40% of the elastic wave speed, the wave arrival

5 %
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TWO-DIMIENSIONAL ELASTIC-PLASTIC WAVE

p=1 E=10 v=0.25 E/ET=100 7=300 isotropic hardening

9=.O T=.6 At=.OOO5 RxIx-5<x<5, O<y<51 Ax=tAy=.I h

hy(x=O, -.5<y<. 5, tK02) =4000

t=0.01

t=0.02
Terminate loading,
move meshes with vj=-.4 '/E71p

4 
F.



62

ELASTIC 50. ELASTIC-PLASTIC
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time agrees weil while several percent difference in wave amplitudes

can oe observed as compared to the fixed mesh runs. This discrepancy

is due to the convective effects in the momentum and constitutive

equations, since these convective effects are the only difference

between the fixed and moving mesh runs.P

.r..F.4p

%!%
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3.6.3 Plane-Strain Elastic-Plastic Beam

A two-dimensional plane-strain dynamic elastic-plastic deformation

problem is used to assess the proposed IPS2 element. The problem

statement and essential and natural boundary conditions are given in

Fig. 3.6. Small deformation is assumed. The entire beam is

discretized by 25x 4 elements. The following material constants are

used: density p - 1; Young's modulus E - 104; plastic tangent modulus

ET - O.01E; Poisson's ratio v - 0.25; uniaxial yield stress Ty - 300.

The Krieg-Key plasticity model [Krieg and Key, 1976] is employed and

isotropic hardening is assumed.

The explicit predictor-corrector method [Hughes and Liu, 19781 is

employed with the following computational parameters: a - 0; y - 0.5;

time step size at - 0.0075; and number of time steps - 1000.

The time histories for the tip displacement (point A) and stress

at point B are reported in Fig. 3.6. It can be seen that the

displacement history for the IPS2 element is identical with that using

the SRI element, while several percent differences are observed in the

stress history in the plastic range. The system response obtained by

the IPS element is also included in Fig. 3.6. The maximum difference

for the displacement is approximately 10%. To test the sensitivity of

the IPS2 element to irregular element shapes, the displacement and

stress histories for a fairly skewed finite element mesh are included

in Fig. 3.6. Numerical solutions show that a small amount of stiffness

is introduced by skewing the elements.

916 IM r. V11
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4..

PLANE STRAIN ELASTIC-PLASTIC BEAM

YT regular mesh A(25,2)

I pl E=0O v=0.25

c(12',o) E/ET=IO0 ry=300B(.5,-.5) C(12,o)

irregular mesh isotropic hardening

_=.0 7=. 5 At=.0075
c1(13, 5) "-

- (1) rs2 (reg.) 00
~~S2

- (i)IPS2 (ireg.) o

~ 2- E (3)SRI (reg.) o

- (4)IPS (reg.)

Fig. 6
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It is also worthwhile to mention that the computer time consumed

by the SRI element is about 3.5 times of the proposed I?S2 elements

(using the expression for internal force vector given by Eq. (3.30)).

Also included in this numerical investigation are the convergence

* studies for the IPS element. Fig. 3.7 shows the convergence properties

* for E/ET -100 and 10, respectively. When the mesh is refined, the

responses converge to those of the SRI element.

-N p
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10' 
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3.6.4 Two Dimensional Solid with a Circular Hole

A dynamic finite deformation/rotation problem with plastic

hardening is considered here. As shown in the problem statement given

in Fig. 3.8, a plane strain square body with a circular hole positioned

at the center of the solid is subjected to a uniformly distributed

load. Due to symmetry, only a quadrant of the solid is modelled by 360

*elements. The dimensions, material properties, essential and traction

boundary conditions and computational parameters are included in the

same figure. The radial return procedure given in Krieg and Key

[19761 is employed and isotropic hardening is assumed. This problem is

solved by degenerating the ALE code to the Lagrangian description. In

other words, the mesh velocities are prescribed to be the same as

material velocities. Both the SRI and IPS2 elements have been tested

in this problem.

The dynamic responses of this system can be observed from Fig. 3.9

in which the mesh configurations are plotted for various times. The

x-displacement for point A and the stress "22 for point B are reported

versus time in Fig. 3.10 for both the SRI and IPS2 elements. The time

interval from t - 0 to t Z 0.30 can be recognized as the

elastic-plastic loading period. The displacement and stress histories

for the SRI and IPS2 elements agree very well as can be seen in Fig.

3.10. The elastic unloading occurs after t - 0.30, and a small amount

of phase shift appears between these elements. However, both elements

exhibit the same shapes in the displacement and stress time history
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2-D ELASTIC-PLASTIC SOLID WITH A HOLE

p=l E=10 4 v=0.25 E/ET=I00 r=1000 isotropic hardening

PI.O 7=.6 At=.0005 h7(t>O)=-200

6

A(3.00,0.00) B A
B(2.95,0.10)-

6 ;

-j-
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plots. After t Z 0.75, the elastic loading occurs and the error

introduced in the unloading period is retained.

It can be seen from Fig. 3.10 that the IPS2 element is stiffer than

the SRI element (the same phenomenon as Example 3). The computer time

consumed by the SRI element (on Harris 800) is around nine hours while

the IPS2 element requires only 2.5 hours (based on the expression for

internal force vector given by Eq. (3.30)). The computer time ratio

between the SRI and the IPS2 elements for this example is approximately

3.5.
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3.6.5 Strain Concentration with ALE Mesh

A plane strain thick beam as shown in Fig. 3.11 is considered as a

test problem for the ALE method. The dimensions, material properties,

essential and natural boundary conditions, and computational parameters

are given in Fig. 3.11. Constant shear loading is applied at one end

of the beam as a Heaviside function. Small deformation is assumed and

only the upper half of the beam is modelled by the IPS2 elements

because of the anti-symmetry conditions in this example.

This example is analyzed by three mesh setups: (1) 20x4 fixed

uniform mesh, (2) LOx 4 fixed uniform mesh, and (3) lOx 4 ALE mesh. The

initial layout for the 10x 4 ALE mexh is the same as the lOx 4 uniform

mesh. As the plastic yielding effects are detected, the mesh

velocities are programmed to move according to an ad hoc function: v 1

0.15(X-a)2-1.4I X-a[ ,uah- 0 for 0 4 X 4 5, or a = 10 for 5 < X - 10,

such that the finite element mexh is concentrated only in the high

strain (or stress) regions. When the mesh size is smaller than 0.5,

the mesh motions are terminated because of the restricton of critical

time step for e'xplicit time integration. The final configuration of

this ALE mesh is shown in Fig. 3.11. The stress distribution of

v.1 along the line y - 1.75 for these mesh setups are reported in Fig.

3.12 at the instant of that maximum deflection occurs (t - 0.9). As

can be. seen from these results, the ALE mesh provides fairly good

stress distribution as compared to that of the 20x 4 uniform mesh.
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