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Measuring Dispersion Effects Of Factors In Factorial Experiments

Subir Ghosh* and Eric S. Lagergren

University of California

Riverside, CA 92521

Summary

This paper is an attempt to Lnderstand and measure dispersion

effects of factors in factorial experiments. The simplest setting is

considered in order to develop better comprehension and insight. The

properties of the proposed descriptive measures are examined. A method

of "adjusting" residuals and its use in measuring dispersion effects are

discussed. Illustrative examples are also given. The problem considered

in this paper arises in quality control studies and the methodologies are

applicable to industrial experiments.

Key Words: Adjusted residuals, Design, Dispersion effects, Error,

Factorial experiments, Linear models, Quality control.
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1. Introduction

An important problem in quality control studies is to find an

optimum combination of levels of control factors in achieving stability

against noise factors (see Taguchi and Wu 1985). Both "location" and

"dispersion" effects of factor. are pertinent to measure from the data in

resolving this problem. This article considers the problem of measuring

dispersion effects of factors in both replicated and unreplicated

factorial experiments. The concept of dispersion effects in factorial

experiments was considered in the work of G. Taguchi (see Taguchi and Wu

1985) for replicated factorial experiments and in the work of G.E.P. Box

(see Box and Meyer (1986)) for unreplicated factorial experiments.

Factorial experiments may be complete or fractional factorial under

completely randomized designs. Although for clarity we consider 2m

factorial experiments in this article, the ideas presented can easily be

generalized to any symmetric or asymmetric factorial experiments. Kackar

(1985), Phadke et. al. (1983) and Nair (1986) made pioneering contribu-

tions to this area of research. Ghosh (1986) used the search linear

models (see Srivastava 1975) to explain dispersion effects in factor

screening experiments.

We first assume that for the fitted model to the data there is no

significant lack of fit. We then propose three sets of measures of dis-

persion effects of m factors. All three of them are relevant in repli-

cated factorial experiments and two of them are applicable to unrepli-

cated factorial experiments. The dispersion effect of a factor depends

on the dispersion at level I and the dispersion at level 0 of the

factor. The dispersions at levels I and 0 based on the least squares

'. v ,' . *'.' '" ', ... .,' ' " -'0,f/.* . ,
8a"8 O '' * a " ' "
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residuals are correlated in most situations. We introduce a method of

adjusting residuals and then calculate the dispersions at levels I and 0

based on these adjusted residuals. The dispersion based on adjusted

residuals at a particular level of the factor is uncorrelated with the

dispersions based on residuals and adjusted residuals at the other level

of the factor.

The use of the proposed measures of dispersion effects in a

factorial experiment will give a combination of levels of control factors

which is optimum in view of reducing the process variability due to noise

in the experiment. The reduction of the process variability due to noise

factors is an important aspect in quality control studies.

2. Dispersion Effects

We consider a 2m factorial experiment under a completely randomized

design. Let T(nxm) be the design. The columns of T denote factors that

are controllable at their lower and upper levels. The rows of T denote

runs or treatment combinations. Runs are level combinations of control

factors that are actually used in the experiment to collect observations

or data. The design T is called an inner array for m control factors.

The inner array T chosen for the experiment will play an important role

*, in subsequent discussions. An important objective in quality control

studies is to evaluate the sensitivity of the manufacturing process to

noise. A list of noise factors likely to affect the process is first

made. Various level combinations of noise factors that provide a good

representation of noise are then considered. The matrix representation

of the level combinations of noise factors is called an outer array (see

! ' I
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Taguchi and Wu 1985). Suppose that there are r (> 1) level combinations

of noise factors in the experiment. For every run in the inner array T,

we collect r observations corresponding to r level combinations of the

outer array. The r observations for a run in T are called r replicated

observations. The variability in r replicated observations for a run in

T is attributable to process variability due to noise in the experiment.

The case r = 1 is called the unreplicated experiment and the case r > I

is called the replicated experiment. Again, for simplicity equal repli-

cation is considered for the replicated experiment and the idea is easily

extendable to unequal replications.

Let yij be the jth observation for the ith run, yi be the mean of

all observations for the run i, i=l,...,n and j=l,...r, and N (= nr)

be the total number of observations. The standard linear model for the

experiment is

E(y) - X6, (1)

V(Z) = 21, (2)

Rank X = p, (3)

where y(N4x) is the vector of observations and y = (Yll...,yr;...

Ynl,..'ynr)', B(pxl) is the vector of factorial effects considered in

the experiment, X(Nxp) is a known matrix that depends on the inner array

2 -
T and a is an unknown constant. We denote H - X(X'X) X' and R =

(I-H). The vectors y = Hy and y - y = Ry are the vector of least squares

fitted values and the vector of residuals, respectively. The fitted

values for all observations corresponding to the ith run are identical

and is denoted by yi, i=1,...,n. Suppose that for the fitted nodel to
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the data there is no significant lack of fit. The sum of squares of

n r
error is SSE E (yij -y i2, the mean square of error is MSE =i=l j=1 i

n r

(SSE/(N-p)), the sum of squares of pure error is SSPE = Z E Y
i=1 j=1

and the mean square of pure error is MSPE - (SSPE/n(r-1)). Note that

both MSE and MSPE are measures of error variance a 2 We now take MSE and

MSPE as descriptive measures of noise. We then express MSPE as the

weighted average of (MSPE), and (MSPE)0 , where (MSPE)u is called the con-

tribution of the level u (u = 0,1) of the factor to 'SPE. Formal expres-

sions of (MSPE)u, u = 0,1 are given in the next section. We do the same

for MSE. Different levels of a factor may contribute differently to MSE

and MSPE. In general the contributions of levels of a factor to noise

(measured by MSPE or MSE) are called the dispersions at levels of the

factor. The dispersion effect of a factor is the ratio of the dispersion

at level I and the dispersion at level 0 of the factor (see Box and Meyer

1986). If the dispersion effect is greater than I then the dispersion at

level I is more than the dispersion at level 0. We then prefer level 0

over level I in terms of smaller dispersion. Similarly if the dispersion

effect is less than I we prefer level 1 over level 0. Although we use

the definition of dispersion effect presented in Box and Meyer (1986),

one may also take the logarithm of the proposed ratio or the difference

between dispersions at level 1 and level 0 of the factor. The use of any

of these definitions will give the same conclusion since each of them

compares the dispersions at level I and level 0. The main theme of this

paper is to investigate the possible ways of measuring dispersion effects

lv
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of all factors. We would like to make it clear that the proposed

measures in this paper are all descriptive.

3. Measuring Dispersion Effects

We take a single factor out of m factors and develop the methods of

measuring the dispersion effect of the chosen factor. For simplicity of

the presentation, we do not introduce any notation for the chosen

factor. The chosen factor appears at levels I and 0 in the n runs of the

inner array T. We now introduce an indicator variable to identify the

runs at which the factor appears at level I and level 0, respectively.

Distinguishing between the level I and the level 0 runs for the factor

will enable us to measure dispersions at level I and level 0 of the

factor. We define for i=l,...n,

I if the level of the factor in the ith run is 1,

0 if the level of the factor in the ith run is 0.

3.1. First Measure

We have

n r n r
SSPE = 1 Is it -yi) 2 + E r (1-8 )(yjj li-l j=l (iYjj +i= j=l l - i ) y  - i  2

r
Notice that E (y ij-i)2 is the total (corrected) sum of squares of r

j=l
observations for the ith run with the degrees of freedom (r-1). The

first component in SSPE corresponds to level I of the factor and has

n
degrees of freedom ( E 6i)(r-I). The second component corresponds to

i=l

n
level 0 of the factor and has degrees of freedom ( E (1-6 i )r-l). The

i=l

set of measures of dispersions at levels I and 0 of the factor are
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n r
E E 61( )-Yi 2

S 21 ( ) -i= 
J=l

( r 6i) (r-l)

1=1

E E (i_6 i ) ( y i j y i )2r

0n .

1=i=l -'

respectively. The first measure of the dispersion effect of the chosen

factor is therefore S2(1)/S2(1). Notice that this measure is possible

only for a replicated experiment.

3.2. Second Measure

n r n r

SSE = -- E 6.(y.j )2 + E E (Yij .y.2 2
i=1 j=l i=1 j= i )1YiJ-Yi

Note that (yij-y ) is the residual for the jth observation on the ith run
r 2 1

and E (Yij-Yi )2 is the residual sum of squares for r observations on the
j=1

ith run. The first component in SSE corresponds to level I of the factor

and has VI degrees of freedom (d.f.). The second component corresponds

to level 0 of the factor and has V0 degrees of freedom (d.f.) The set of

measures of dispersions at levels I and 0 of the factor are

n r
E %,g ijY i )2

$2(2) = i=1 j=1

VI I

n r
( 1 - 6 i j Y i ) 2 " °

S 2(2) =11j=11J 2

0 V0
0

. ~mevv~ .'Ii
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respectively. The second measure of the dispersion effect of the chosen P

factor is S2 (2)/S 2 (2).
1 0

We now denote Yu as the vector of observations corresponding to the

runs with the chosen factor at level u, u = 1,0. Note that y consists of

-l and y. Let X be the submatrix of X corresponding to y, be the

least squares fitted values for y . The elements and Y-Y- u = 1,0,

are linear functions of the elements in y. It can be seen that y=
X (X)- X
u--YX)1  ' u = 1,0. We denote Y,-Y = rY, u = 1,0. Then Vu = Rank

r and V S 2(2) -y'r'r y, u=1,O. Thus V $2(2) is the sum of squares of
u U U - U- u u

the elements in ruby, u = 1,0.

The second measure of the dispersion effect was in fact proposed in

Box and Meyer (1986) for unreplicated experiments. We observe that SI(2)

and S2(2) are correlated under the model (1-3). In the following sub-

section we present a method of adjusting the above dispersion measures

to make them uncorrelated.

3.3. Adjusted Residuals

Two vectors of residuals rly and rO at levels I and 0 of the factor

are generally correlated under the model (1-3). We now present a vector

of "adjusted residuals" at level 0 of the factor, adjusted w.r.t rfy so

that it is uncorrelated with rY. Let rllVlxN] be a submatrix of r so

that Rank r -V. We write

r r1-r1 r(r 1 r' 17 = r -r rir r r', (6)
Oa 0 11 1 11 0 0 1 1 11*

It can be seen that Covyr 1 y, r0 Y = 0 and hence Cov'rL, r 0 a 0.

it- Oa

N , N %

%r
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In other words, rly and roaY are uncorrelated. We call rOaY the vector

of "adjusted residuals" at level 0 of the factor, adjusted w.r.t. the

residuals at level I of the factor. It can be checked that Rank ra Oa

((N-p)-V ) = V oa(say). Let r01  be a (V 0 xN ) submatrix of r0 with Rank

r., = VO. We write

na = ri(l-r (rolr61)-Ir 0 l = r1-rlrl(rOlr'l)- rOl. (7)

Again, Cov(ro,rla) = 0. In other words r0y and raY are uncorrelated.

We call nlaY the vector of "adjusted residuals" at level I of the factor,

adjusted w.r.t. the residuals at level 0 of the factor. We have Rank

ra = ((N-ps-Vo) = V1 a(Say ) . We have

la= 0(l-r'(rr rV_

Oaz 0k111/10~~'

r 1 y = (1 (8-r)i~r 0r~Si)- i 0r Yr (8)

The proof is given in Theorem 7 in the Appendix. Thus for u = 1,0, ruaY

depends on y only through Y and, moreover, Cov(roaY,rla yL = 0, i.e.,

they are uncorrelated under 1-3). We now present an illustrative

example.

Example I

We consider the example from Box and Meyer (1986), page 20, and

Taguchi and Wu (1985), page 68. Daniel's normal probability plot in-

dicates that, over the ranges studied, only factors B and C affect

tensile location by amounts not readily attributed to noise (see Box and

Meyer 1986). We now fit the following standard linear model to the data

E(y x 1 ,x2) ) = v + aL B + x2 C, where x i = 0,1, a. = .2xi-I, i is the

1 ) "2

-,..

i,;.v* -;.- :-:K>Y *.- ..-. - -. V -p*ln..-
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general mean, B and C are the main effects of the factors. We can write

the above model in the form (1-3). Notice that N = 16, n = 4, p = 3,
n n ."
E 6i) = (l-6i)) = 2 for both factors B and C. The F value for the

i=1 i=I 1

lack of fit test under the assumption of normality is .1971 (< I) and we

therefore conclude that there is no significant lack of fit. The inner

array T is given by

0 01

Let us now choose the factor B. Recall that the vector of

observations y consists of level 1 observations Yj and level 0

observations yo of the factor B. We have in yj 4 observations on each of

the runs (1,1) and (I,0) and thus y, = (42.4, 42.4, 42.4, 42.5, 44.7, 'P

45.9, 45.5, 46.5). We also have in Yo 4 observations on each of runs

(0,0) and (0,I) and thus = (43.7, 42.2, 43.6, 44.0, 40.2, 40.6, 40.6,

40.2). We now present the matrices

1 I 1 1 -1 -1

1 1 1 1 -1 -1
L 1 1 1 -1 -L

WewieY ly' Y I X, [x -iX(~)-xv

X1= 1 1 0  1=1 -
1 1 -1 1 -1 1

1 1 -1 1 -1 1

-1 1-0 1 -0 1

-1 -1

x= x1(x'xMyxr and r
We write y' = y:y] '=X: L X ( ' ) I ' ' Y

Xo(X'X)-X'y, rLY ; y- a rY ; y-y O. It can be checked that

X'X = 1613 and the matrices r,(8×16) and ro(8×16) are given by



rl = [1:0] - xl( 1'x -lx '

r0= [0:I]- X0(X X) - x  "",
6 X - 01 x. .J: I - X 0 -.

-6 1 16

We now obtain ,

r 16 16 16 16

I']I

J3J J .

16 16 16 16,

LI

J : I - :x1

r 1 76 16 16

00

_J) J J) 3J .,

: xx' : (- :x x -_.

1616 16 16

16 16 16 ..

.

where J is a (4x4) matrix with all its elements unity. It can be checked

that V1 = Rank r1 = 7 and V0 = Rank r0 = 7. Thus VOa = Via = 6. The

matrix r is obtained from r1 by deleting the last row. The calcula-

tions of r0  from (6) and the vector of adjusted residuals r0a are

straightforward. The calculations of r la and the vector of adjusted

residuals r y are similar.

3.4 Third Set of Measures

Let rual be a (Vua×N submatrix of r ua with rank r ual = uaVua,

u = 1,0. We now have the sum of squares of the sets of linear

functions ru1Y and rualy [see Scheffe 19591 as

SS(ruY) : y'r'i[rulr u r-u

SS(ruY) = y'r' r r' rua I ual y

with d.f. Vu and Vua , respectively (u = 1,0).

%-.



-12-

We present the measures of dispersion and adjusted dispersion at level u,

u = 1,0, of the factor

s2(3) = [sSr u )/V

S2 (3) = [SS(ruy)/VIa (10)
ua ua

22 3)S2()n 2 S),2

respectively. We note that S0(3) and Sla(3), 1 (3) and SOa (3), (3)

and Sla(3) are uncorrelated, S (3) and S (3) are generally correlated.

The third set of measures of the dispersion effect of the chosen factor

is therefore S2(3)/S (3), S2 (3)/S 2 (3) S2(3)/S2(3) and (3)/S 2 (3).
1 a ' la nd0 Sla Oa

Example 1 (continued)

r
We present in Table 1 Yip yi and E (yij - i)2/(r-1), i = 1,2,3

j=1

and 4 which are used in calculating the first and the second measures

" of dispersion effects. We write for the factor B

yl = (42.4875,42.4875,42.4875,42.4875; 45.5875,45.5875,45.5875,45.5875),

yo = (43.4375,43.4375,43.4375,43.4375; 40.3375,40.3375,40.3375,40.3375).

Both r la and r al can be obtained from rla and rOa by deleting the last

row in the respective matrices. We find that Sa(3) = S2(1) and S =

S (1). This in fact follows from a result in Theorem 2 given in the
0

Appendix. In Tables 2 and 3 we display numerical values of various

measures of dispersion and dispersion effects for both factors B and C.

I-

€-

€I

r
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Table I

r 2
Numerical values of yi,yi and Z (Yij -yi) /(r-1), i = 1,2,3,4.

j--

r (Yi - y )21/(r-1)

Run Yi Yi j=l

1 11 42.425 42.4875 .0025'

2 1.0 45.650 45.5875 .5700

3 o0 43.375 43.4375 .6425

4 01 40.400 40.3375 .0533

Table 2

Numerical Values of Measures Of Dispersion For Factors B and C

2() S 2l 2 S2 ~ 2 2Factor S() Sla(3) 0 ) Sa(3) S1 (2) S0 (2) S 1 (3) S0 (3)

B .2863 .3479 .2498 .3027 .2543 .3071

C .0279 .6063 .0284 .5241 .0329 .5286

Table 3

Numerical Values of Measures Of Dispersion Effects For Factors B and C

S2(1) S 2 1( 2 )  $2(3) S 2 (3) S2a(3) S 2 (3)
Factor _

S 2(1) S2(2) 52( 3) $2a(3) S 2(3) S'0 a ( 3 )

00 0 Oa0O

B .8229 .8252 .8281 .7310 .9323 .8229

C .0460 .0542 .0622 .0543 .0528 .0460

f %"

.

- . - % % , % % . . . ,= . - % % . . ,o-.o , . , . , - -, .) - -. % " % % - . = % % - -. -, ) • ° , 9-

p '€' " d~
s

,° ' '. ' , ." ," " ." .', ' .° ." " ." -" " o ,P • . -' ' ° , .' ." ," . '," ' , ,) " .° " " , ," ,= " " ," ', P *" %
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4. Interpretation and Application of the Measures

We now discuss the rationale for the proposed measures of dispersion

effects and how they can be used in determining the optimum level of each

control factor in view of reducing the process variability. We have

a MSPE = (n

TShu S (a) are regarded as (MS- and (MSPE)0 in the 

of Section 2. If the first measure of the dispersion effect S2( 1),/S ( ) -

is greater than I. We then say that level 0 of the factor has less

contribution to MSPE and therefore would be preferred to level 1 in

view of stability against noise factors. If S (l)!S (1) is less than

1, level I would be preferred to level 0. We observe V

MSE $2 (2) + $2(2).

f measure ( I)) 52(I +(VoN-p() 0

If the second measure of the dispersion effect S2(2)/S 2 (2) is larger than

1, we then conclude that level 0 of the factor has less contribution to

'4SE and therefore would be preferred to level 1 in view of reducing

process variability due to noise factors. If S (2)/S(2) is smaller than
1 0

1, level I would be preferred to level 0. -.

We notice that

v1 2 O 2  13 a= + v 2 " "
SE =  2(3) + ( S (3 [ (3) + S (3)',INp \( N-p)/ Oa \(N-p)/ Ia (Np 0 ':

(N-p) V " VO V + V

la + I oa,

%
NV
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The third set of measures of the dispersion effect consists of 4 measures

of the dispersion effect. As before, the numerical value of a measure

greater than I indicates a preference of level 0 over level I and the

numerical value less than I indicates a preference of level 1 over level

0 in terms of smaller dispersion. If the numerical values of all pro-

posed measures are near 1, then both levels I and 0 are equally prefer-

able in terms of dispersion.

Example 1 (continued)

We find from Table 3 that numerical values of all measures of dis-

persion effects are less than I for both factors B and C. We thus prefer

level 1 over level 0 for both factors. The best choice for level combi-

nation of control factors B and C is therefore (1,1) in view of stability

against noise. Notice that the numerical values of all measures are not

only greater but also closer to I for the factor B than.the factor C.

The next best choice for level combination of B and C is therefore (0,1)

in view of stability against noise. Our choices for the best and the

next best level combinations are also supported by the numerical values

r
of y - j2 /(r-1, in Table 1. This is of course very natural

j=l Lj

because the inner array T in this example consists of all runs of a 22

factorial experiment. In practice we would have a fractional factorial

instead of a complete factorial as the inner array in most situations.
r

We would then not be able to calculate E !yij - yi) , r-11 for all runs
j=l'11 '

but only for those -uns in the fractional factorial inner array. The

best choice of level combination using the methods described in this

paper may or may not be present in the inner array.

U
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5. Inner Array Influence

We now discuss the influence of the inner array on the proposed

measures of dispersion effects. We first consider the situation where

the number of runs in the inner array equals the number of parameters in

6 of (1), or, in other words n = p. The inner array is then a saturated

design. The class of designs with n = p includes the known Plackett and

Burman designs (see Plackett and Burman 1947). It can be seen that for

an inner array with n = p, we have S 2() = S2 (2), u 1,0. A generalu u

characterization of an inner array for which S 2() S (2), u = 1,0, and
u u

n may or may not be equal to p, is available in Theorem I in Appendix.

We observe that for an inner array with n = p, the first two measures of

dispersion effects are identical.

We next study the measures in two extreme situations: (I) Two vec-

tors of residuals Yi - y, - rly and y - y= roy at levels I and 0 of

the factor are uncorrelated, i.e., r r6 0, (2) r1y and r are com-

pletely correlated, i.e., r01 = Aril for some matrix A. In situation

(1), we have S 2(3) = Su2 (2) = S2 (3), u = 1,0. This in turn implies that

all measures of dispersion effects in the third set are identical and

identical to the second measure. The proof is available in Theorem 3 in

the Appendix. We thus see that in situation I there is no need for the

adjustment of residuals nor for the third set of measures of dispersion

S'S.
effects. In situation (2), we have rOa = 0, V0a = 0 and SS :r OalY = 0.

The proof is given in Theorem 4 in the Appendix. We thus notice in

d
situation (2) that level I of the factor makes all contribution to SSE

and level 0 does not make any additional contribution to SSE. In case

'vp. ,,.,. .; ;.,. -';.'i / ,-"- ." ['.. . , ,,.."",.", .o ?,. . . . . " -...- < .,.7-- , -7
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VOa = Vla = 0, we have V0 = V 1 I (N-p), r0 l = A 11 and A is nonsingular.

This is a situation where levels 0 and I have equal dispersions. This is

n
purely due to the inner array influence. We have Va> E 6. (r-l) and

la i=

n n
V0  > ( r (1-6 1 ))(r-l) for all inner arrays. If Via = 1 6i)(r-1) then

n
2 S2( 2S2

1 a(3)  1 S1) and V0a = ( (l-6i))(r-1) then S20 a( 3) = S0(1). The proof

is given in Theorem 2 in Appendix. We note that VOa and Vt. are both

nonzero for r > 1. (We assume naturally that there is at least one

6i = 1 and at least one (1-6i) = 1.) For the case r = 1, at least one of

V and Via could be zero or both of them could be nonzero.
Oa I

We now present an example of an inner array for which S2(2) and

S2(2) are uncorrelated for one factor but S 2(2) and S2(2) are correlated

for all other factors. This example is remarkable in displaying

contrasting influence of the inner array in measuring S (2), u = 1,0, and
U

in the need for adjustment of residuals for different factors.

Example 2.

We consider a 2 factorial experiment, i.e., m = 5. We thus have 5

controlled factors each at 2 levels. Let the inner array T (8x5) be
Pe

V0
w0 () 0) 0 0 0

1 1 0 0 0

0 ) ) 1

1 0 1

%T %

1 0 1 1 0

l) 1 1 0 1

I I) 1 0 l
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We consider a situation where the model for a main effect plan fits the

data adequately, i.e., there is no significant lack of fit. Therefore

n - 8 and p = 6. The first column of X has all entries unity. The

distinct rows of the remaining columns of X are obtained from T replacing

0 by (-1) and each distinct row is replicated r times. We denote an

(rxr) matrix with all elements unity by J and

6J 2J 2J -2J

2J 6J -2J 2J

2J -2J 6J 2J

( -2J 2J 2J 6J

It can be easily seen that

R= 8r

8r ( 8rI4r-G)

It now follows that r r' - 0 for the factor 3 but r r6 * 0 for factors

1,2,4 and 5. Thus S2(2) and S 2(2) are uncorrelated for the factor 3 and

.. are correlated for factors 1,2,4 and 5.

6. Properties

We now state sone properties of the descriptive measures andor the

model (1-3). We first observe that the measures of dispersion S (1) and

. S (1) do not depend on the fitted model and all other measures of dis-
0

persion depend on the fitted model. The measures S (1) and S(1) ire

always uncorrelated uinder the model (1-3). The measures S 1(2) and S'(2)

%A.6 ' L
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may however be correlated. They are uncorrelated if and only if "."

r r' = 0. Similarly S'(3) and S2 (3) are generally correlated and they
10 1 0

are uncorrelated if and only if r11 r~l = 0, or, equivalently rlr' = 0.

The dispersion measures S 2(3) and S 2a(3), S2 and S 2(3), S2 (3) and
1 Oa la 0 lIa

S 2a(3) are all uncorrelated under (1-3). Under the assumption that
Oa

N_ a aN ), the measures of the dispersion effect S(1S2(I)"

bution with appropriate degrees of freedom. The measures S2 (2)/S 2(2) and
1 0

S 2(3)/$2(3) have the central F distribution if and only if r r' = 0. Wie1 00 I~~ 0

question the use of measures of the dispersion effect S2 (2)/S2 (2) and

S2(3)/S (3) unless r r = 0. We of course realize that the condition

r r5 - 0 is too stringent to satisfy even for one out of m factors.

We know that the sum of least squares residuals is equal to zero.

We observe here that the sums of the residuals at levels I and 0 for the

chosen factor are zero. Moreover the sums of the adjusted residuals at

levels I (adjusted for level 0) and 0 (adjusted for level 1) are also

zero. The proof is given in Theorem 6 in Appendix. These observations

art useful in calculating the degrees of freedom.

N

'N

S.'
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7. Conclusions.

In industrial experiments for quality improvement, dispersion

effects of factors play an important role. They are instrumental in the

choice of an optimum combination of levels of control factors. This

article presents the descriptive methods of measuring dispersions and

dispersion effects at the preliminary stage of investigation. The

outcome of such comparisons will suggest more appropriate complex models

for further investigation. We however believe that the implementation of

the methods discussed in this article will result in highly informative

conclusions. Although in this paper we find the measures of dispersion

at levels of a factor using one factor at a time, the same approach can

be used to find the measures of dispersion at level combinations of

factors using many factors at a time. Unless the number of observations

is sufficiently large in every cell, the reliability of the measures

using many factors will be questionable.
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APPENDIX

We now present the proofs of many statements that we have made in

the main body of the paper. We also present some valuable technical

results in the investigation.

Let Dl(NxN) be a diagonal matrix with n sets of diagonal elements

and the elements in the ith (i = l,...n) set are equal to &.. We define

Do = I - D1 . It can be seen that D1D O = 0 and both D I and Do are

idempotent matrices. We have R = DIR + DoR. The matrices r, and ro

defined in Section 3 are in fact non-null row vectors of DIR and D0R,

respectively. It can be seen that RD R = ruru, Vu S (2) = y'RDuRV, and

SSE = y'Ry = y'RD1 Ry + y'RDORy, u = 1,0.

We now investigate the situation where S 2() = 2 (2), u = 1,0. In
u U

other words, we characterize the inner arrays for which 2 (1) S (2),
U u

u = 1,0. We denote the row of the matrix X corresponding to the run i by

x'(lxp). Note that for each i, i = 1,...,n, the row x! is repeated r

times in X. Let X*(nxp) be a matrix whose ith row is x!. Notice that

rows of X* are in fact distinct rows of X. We have X'X = r(X*'X*).

Theorem 1. We have S 2 (1) = S2 (2), u = 1,0 if and only if X*(X*'X*)
*u u

*" X*' --1.
n

Proof. Note that $2(1) = S2(2), u = 1,0, hold if and only if Y, = Yi

u u

i = 1,...,n. The condition y, = yi i = 1,...,n, holds if and only if

x XI-for i = i

0 for iI * i2; il, 12Ef1,...,nj .
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The above condition may be expressed as X*(X'X)-1 X 1 In, or,

equivalently, X*(X*'X*)- I X*' = I • This completes the proof.n

When n = p, X*(nxn) satisfies the condition X*(X*'X*) X*' = I n~n

Therefore, for n = p, we get S2(1) = S2(2).
U U

We now present results showing the influence of the inner array on
the measures of dispersion S2(3) S2 (3), S2(2) and S2 (l), u = 1,0.

U ( ua ' u

Theorem 2.

n n
i Vi > E 6% )(r-1), V0  > ( (I-6 ))(r-1)

• la -

ii. V~S 2 (3) > (r-l)S'?( 1),ii. V a la( ) _ I I
i=l

V0 S a(3) > (1-6 ))(r-l)S2()
O 0i=0

n 2 2
iii. If Via = ( i6(r-1) then Sla =

i=l

n
iv. If V0  = 5(-))(r-1) then S a(3) = S2(1).

i=l

Proof. It can be checked that Cov'y, yy = Cov(Yi, yy and

therefore Cov'y.j-v., y-y = 0. Moreover, CovlyjYiYw = 0,

i * t. It now follows that any contrast of (Yij-yi , j = 1,...,r for

a fixed i with .i = i, is orthogonal to any contrast of (y uw-Yu ,

w 1,...,r for a fixed u with Il- 1- = 1. Furthernore, any contrast of
U

£yi-yi for all i with 6. = I is orthogonal to any contrast of lw-Yu

w = I,...,r, for a fixed u with (1-6 = . The results (i-iv) follow
U
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immediately from the above facts, the relationship between the rank and

the number of orthogonal contrasts, and the fact that the sum of squares

is equal to the sum of sums of squares of orthogonal contrasts. We now

study the measures in two extreme situations: (i) ry - and r0, are un-

correlated, i.e., r r = 0, (ii) ry and roL are completely correlate-d,

i.e., r0  = Ar for .some matrix A.

Theorem 3. Consider the situation r r 0 = 0. Then S2(3) = S2(2)

10u u
S2 (3), u = 1,0.
ua
Proof. We first show that S 2(3) = S2(2), or, in other words, SSfr y =

y'r r Y. We observe that

y1 r1 I

r r l
0 0

zr y, where rr Ir z =rlY
=z' r r' z r (rtrj ' Frlrj )

= (rly)' (r1y) = y'rjr. -

It follows from the representations of MSE in terms of (S'(2), S'(2)) and

(S2 (3) and S2(3)) that VaS a(3) = VS 2(2). The condition r r6 = 0
1 Oa Oa Oa 0 0 10

implies that Voa -V 0. Thus (3) S2(2). The rest is similar. This

completes the proof.

Theorem 4. If r0 1 = Ar 1i then we have r0a =0, V0a =0 and

SSrroalY = 0.

Proof. We write r0 = A r11 for a matrix A whose independent rows are

rows of A. This implies that r 0r, = A0 r lr , and thus
01
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A0 = rri(rlrjl. Hence from (6) we get r0a = 0. The rest is

clear. This completes the proof.

4We now present some results which are useful in establishing

properties of the proposed measures in the paper.

Theorem 5. Suppose y N(X,2) . A necessary and sufficient condition

that

(1) central X with d.f. = Trace rrl,

2a

(2) L fcentral X with d.f.*- Trace r0r0 .
a

(3) and furthermore, (1) and (2) are statistically independent, is that

r r6 =0.

It can be seen (see Rao 1973) that a necessary and sufficient condition

of (1), (2) and (3) to be true is that rjr 1 r6r0 = 0. The condition is

equivalent to r r' = 0.
.110

rheorem 6.

a. j'ru = 0 and J'rua = 0 , u 1,0, where f' is a vector with all

elements unity,

b. If rlr6 = 0, then for u 1,0,

b.1. r r' is an idempotent matrix,
u u

b.2. (y - y = r r' y

b.3. X' r r' = 0
U u U

n r -^ n r

"d .I
6W* , .ld

'1 - . . , . . " %' .. , , , ,-, . ..-. -. . .. -. . . . . .....
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Proof. The result (a) follows by considering the columns of X for the

general mean and the factor chosen and from the fact that X'R = 0. The

results b.1 and b.2 follow directly from the structure of R and the fact

that R is an idempotent matrix. The result b.3 follows from X'R = 0.

* From b.3, we get 'X'r r'y = 0, i.e., yrur - 0. The result b.2

- u u t-yU -

implies the (Y-- - = 0 and hence the result b.4 is true. This

completes the proof.

Theorem 7. For r0a and rla in (6) and (7), the equation (8) holds.

Proof. We prove the equation (8) for r0ay. The proof for raY is

similar. The fact RX = 0 implies that r0 = 0, r 1Y = 0 and hence

r0aY = 0. Since y - y = Ry and R' = R, we have y = y + R'y = y + rj.yL +

r0 o. The independent rows of r are in r and the other rows of rI

can be written as Qr11 for some matrix Q. The fact

(-rj 1 i(r11  -r~1J )rM r = 0 implies (I - r'l(r1 lr'l)-lrl,)r, = 0 and

hence rar' = 0. Hence r0ay = r0 r . This completes the proof.
Oa 1a64

'a

a-"
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