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Measuring Dispersion Effects Of Factors In Factorial Experiments

Subir Ghosh* and Eric S. Lagergren
University of California
Riverside, CA 92521

Summar

This paper is an attempt to understand and measure dispersion
effects of factors in factorial experiments. The simplest setting 1is
considered in order to develop better couprehension and insight. The
properties of the proposed descriptive measures are examined. A method
of "adjusting" residuals and its use in measuring dispersion effects are
discussed. Illustrative examples are also given. The problem considered
in this paper arises in quality control studies and the methodologles are

applicable to industrial experiments.

Key Words: Adjusted residuals, Design, Dispersion effects, Error,

Factorial experiments, Linear models, Quality control.

*The work of the first author is sponsored by the Air Force Office Of
Scientific Research under Grant AFOSR-87-0048.
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Ly 1. Introduction

An important problem in quality control studies is to find an
Kk optimum combination of levels of control factors in achieving stability
' against noise factors (see Taguchi and Wu 1985). Both "location" and

"dispersion" effects of factors are pertinent to measure from the data in

‘ﬂ resolving this problem. This article considers the problem of measuring
& dispersion effects of factors in both replicated and unreplicatéd

\ factorial experiments. The concept of dispersion effects in factorial

W

$ experiments was considered in the work of G. Taguchi (see Taguchi and Wu
§ 1985) for replicated factorial experiments and in the work of G.E.P. Box
: (see Box and Meyer (1986)) for unreplicated factorial experiments.

? Factorial experiments may be complete or fractional factorial under

)

E; completely randomized designs. Although for clarity we consider 2"

4 factorial experiments in this article, the ideas presented can easily be
2 generalized to any symmetric or asymmetric factorial experiments. Kackar
\ (1985), Phadke et. al. (1983) and Nair (1986) made pioneering coatribu-
f tions to this area of research. Ghosh (1986) used the search linear

p models (see Srivastava 1975) to explain dispersion effects in factor

§ screening experiments.

N We first assume that for the fitted model to the data there is no

i; significant lack of fit. We then propose three sets of measures of dis-
j persion effects of m factors. All three of them are relevant in repli-
: cated factorial experiments and two of them are applicable to unrepli-

1

‘“ cated factorial experiments. The dispersion effect of a factor depends

on the dispersion at level 1 and the dispersion at level 0 of the

factor. The dispersions at levels | and 0 based on the least squares

L] - . . - - - " . . - . . . | v .
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residuals are correlated in most situations. We introduce a method of
adjusting residuals and then calculate the dispersions at levels 1 and O
based on these adjusted residuals. The dispersion based on adjusted
residuals at a particular level of the factor is uncorrelated with the
dispersions based on residuals and adjusted residuals at the other level
of the factor.

The use of the proposed measures of dispersion effects in a
factorial experiment will give a combination of levels of control factors
which is optimum in view of reducing the process variability due to noise
in the experiment. The reduction of the process variability due to noise

factors is an important aspect in quality control studies.

2. Dispersion Effects

We consider a 2™ factorial experiment under a completely randomized
design. Let T(nxm) be the design. The columns of T denote factors that
are controllable at their lower and upper levels. The rows of T denote
runs or treatment combinations. Runs are level combinations of control
factors that are actually used in the experiment to collect observations
or data. The design T is called an inner array for m control factors.
The inner array T chosen for the experiment will play an important role
in subsequent discussions. An important objective in quality control
studies is to evaluate the sensitivity of the manufacturing process to
noise. A list of noise factors likely to affect the process is first
made. Various level combinations of noise factors that provide a good
representation of noise are then considered. The matrix representation

of the level combinations of noise factors is called an outer array (see

)

"\'..\,--.I 1'-}'-*

[ Y



o Taguchi and Wu 1985). Suppose that there are r (> 1) level combinations

of noise factors in the experiment. For every run in the inner array T,

.?. " we collect r observations corresponding to r level combinations of the
W)

1

1e s :

d‘ outer array. The r observations for a run in T are called r replicated

observations. The variability in r replicated observations for a ruan in
T is attributable to process variability due to noise in the experiment.

The case r = 1 is called the unreplicated experiment and the case r > 1

L5
is called the replicated experiment. Again, for simplicity equal repli-
X
¥
}: cation is considered for the replicated experiment and the idea is easily
0
:. extendable to unequal replications.
iKY
A Let yij be the jth observation for the ith run, ;i be the mean of
o~
tQ all observations for the run i, i=l,«..,n and j=l,...r, and N (= nr)
:E be the total number of observations. The standard linear model for the
[ ¢
experiment is
e E(y) = X8, (D
: V(y) = %I, (2)
!
Rank X = p, (3)
~
l: where y(Nx1) is the vector of observations and y = (yll,...,ylr;...;
(- ynl""’ynr)" B(pxl) is the vector of factorial effects considered in
the experiment, X(Nxp) is a known matrix that depends on the inner array
N -1
- T and 02 is an unknown constant. We denote H = X(X'X) X' and R =
. (I-H). The vectors y = Hy and y - y = Ry are the vector of least squares
fitted values and the vector of residuals, respectively. The fitted
A,
{: values for all observations corresponding to the ith run are identical
iy
. -
™ and is denoted by Yi» i=l,...,n. Supponse that for the fitted model to
D »,
e
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A
\
|
l_' Y
-l
n 7
o T

et AT AT AT AT AR e te T A N e %N N T, - B
T A T A T A N T I AT AN s TN f.r-'*d'" NN S TR ORT T Ty

SNy




the data there is no significant lack of fit. The sum of squares of

n r R
error is SSE = § ¢ (yi,—y.)z, the mean square of error is MSE =
i=1 j=1 3 %
n r _
(SSE/(N-p)), the sum of squares of pure error is SSPE = I £ (yij-yi)2
i=1 j=1

and the mean square of pure error is MSPE = (SSPE/n(r-1)). Note that
both MSE and MSPE are measures of error variance 02. We now take MSE and
MSPE as descriptive measures of noise. We then express MSPE as the
weighted average of (MSPE)I and (MSPE)O, where (MSPE)u is called the con-
tribution of the level u (u = 0,1) of the factor to MSPE. Formal expres-—
sions of (MSPE)u, u = 0,1 are given in the next section. We do the sanme
for MSE. Different levels of a factor may contribute differently to MSE
and MSPE. 1In general the contributions of levels of a factor to noise
(measured by MSPE or MSE) are called the dispersions at levels of the
factor. The dispersion effect of a factor is the ratio of the dispersion
at level 1 and the dispersion at level 0 of the factor (see Box and Meyer
1986). 1If the dispersion effect is greater than 1 then the dispersion at
level 1 is more than the dispersion at level 0. We then prefer level 0
over level 1 in terms of smaller dispersion. Similarly if the dispersion
effect is less than 1 we prefer level 1 over level 0. Although we use
the definition of dispersion effect presented in Box and Meyer (1986),
one may also take the logarithm of the proposed ratio or the difference
between dispersions at level | and level 0 of the factor. The use of any
of these definitions will give the same conclusion since each of them
conmpares the dispersions at level 1 and level 0. The main theme of this

paper is to investigate the possible ways of measuring dispersion effects
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of all factors. We would like to make it clear that the proposed
measures in this paper are all descriptive.

3. Measuring Dispersion Effects

We take a single factor out of m factors and develop the methods of
measuring the dispersion effect of the chosen factor. For simplicity of
the presentation, we do not introduce any notation for the chosen
factor. The chosen factor appears at levels 1 and O in the n runs of the
inner array T. We now introduce an indicator variable to identify the
runs at which the factor appears at level 1 and level 0, respectively.
Distinguishing between the level ! and the level 0 runs for the factor
will enable us to measure dispersions at level 1 and level 0 of the
factor. We define for i=l,...n,

1 if the level of the factor in the ith run is 1,

o T 0 if the level ;f the factor in the ith run is 0.

3.1. First Measure

We have
‘ n r , _ )2 n r -
) SSPE = L I S (y, .-y + ¢ (1-8 )(y,i-y.)
=1 j=1 1A =1 j=1 27374
' Notice that ¢ (yij—yi) is the total (corrected) sum of squares of r
[ j=1
P observations for the ith run with the degrees of freedom (r-1!). The
iy
;; first component in SSPE corresponds to level 1 of the factor and has
ot n
A degrees of freedom ( I Gi)(r—l]. The second component corresponds to
A i=1
n

- level 0 of the factor and has degrees of freedom ( z (l—Gi)}(r—l). The
>~ i=1

$ set of measures of dispersions at levels | and O of the factor are
i~

Y

Y
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n r
tor o8y, v)°
_ - iMij i
s2(1y = i j=1 ’
1 n
, (£ &) (e-1)
) 1=1
p
p n r - 2
. RN Gt 7Y
s2(1) = ] , (4)
0 n
(z ( )) (r-1)
i=1

respectively. The first measure of the dispersion effect of the chosen
2
factor is therefore Sf(l)/SO(l). Notice that this measure is possible

only for a replicated experiment.

3.2. Second Measure

' Ly )t £ 8 (16 )y, )
SSE = y oy )2+ £ 1 (1-6, -y. )2,
’ i=] j=1 + 1371 i=1 j=1 1374

] Note that (yij-yi] is the residual for the jth observation on the ith run

r -~
s 2, . .
2 and I (yij-yi) is the residual sum of squares for r observations on the
j=1

ith run. The first component in SSE corresponds to level ! of the factor
and has V] degrees of freedom (d.f.). The second component corresponds
to level 0 of the factor and has Vg degrees of freedom (d.f.) The set of

measures of dispersions at levels 1 and 0 of the factor are

n r ~

It _ 2
. Sl(z) = >
v
1
[ n r -
ot {16y, -y, )2
2 i=1 j=1 b "W
; s2(2) = , (5)
0 v
! 0
[)
\
y ~
Y -
T R e O A P S R R A AR A S AT
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: respectively. The second measure of the dispersion effect of the chosen ’
. 2 2

factor is 81(2)/50(2). ,

We now denote y  as the vector of observations corresponding to the ;;

1

)

runs with the chosen factor at level u, u = 1,0. Note that y consists of )

bA) and Yo° Let Xu be the submatrix of X corresponding to bATI A be the Ky

A least squares fitted values for zu. The elements zu and Xu-zu’ u = 1,0,

‘e ¥ 4

-y,

are linear functions of the elenments in y. It can be seen that Xu

A —1 ' = -A = = =
) xu(x X) X'y, u 1,0. We denote Yo ¥, r Y, u 1,0. Then Vu Rank

y %

r and V SZ(Z) =y'r'r y, u=1,0, Thus V 32(2) is the sum of squares of
u uu = u u- uu

the elements inr y, u = 1,0.
u=

L e e o o o8

The second measure of the dispersion effect was in fact proposed in

-

2
Box and Meyer (1986) for unreplicated experiments. We observe that Sl(2)

LT -

2
and SO(Z) are correlated under the model {1-3). In the following sub-

) section we present a method of adjusting the above dispersion measures

to make them uncorrelated. Ef

3.3. Adjusted Residuals iv

E Two vectors of residuals rlz'and ry at levels 1 and O of the factor ;
are generally correlated under the model (1—3). We now present a vector 3_

of "adjusted residuals” at level 0 of the factor, adjusted w.tr.t r;y so :-

that it is uncorrelated with rye Let rll(VIXN] be a submatrix of r, so E

-,

that Rank r, =V,. We write 3
e

r. =rc (1-r' (¢ ¢ ]—1r ) = - e, . r }—1r . (6) :

Oa 0 I 1111 11 00 1711 11 R

1 ) = D= 0. -
t can be seen that Cov rlly, ran 0 and hence Cov rly, rOa’ 0 <

o)

'l

-y

..".-'\J - }’I,‘,l. l,)\.; .’-.

N

P e e e T e A

~

Ld L Ld L4 » - -~
AT N AP \;unvh}&

L.c‘
v

Sl
A_mf.ki‘n.h .&..&A:‘J_" Lx‘_i. I:. I:'i: e




-9-

PR RS

In other words, Yy and Togd are uncorrelated. We call Ty the vector

of "adjusted residuals" at level 0 of the factor, adjusted w.r.t. the

residuals at level 1 of the factor. It can be checked that Rank rg, =

Dol g LA

- W A

((N—p)-Vl) = Voa(say). Let Lol be a (VOXN) submatrix of r, with Rank

fop = VO' We write

-1

K -1 \
K = - [} = - ' ' .
i T = F (T (rgyrg ) egy) = ey g (rgy g ) T egy 7
b
Again, Cov(rox,rlax) = 0. In other words rod and r| Y are uncorrelated. >
; We call r, y the vector of "adjusted residuals'" at level 1 of the factor, 3
i L3
: adjusted w.r.t. the residuals at level 0 of the factor. We have Rank F
t3
, v
Cla = (\N—p]—vo) = Vla(say). We have o~

LA

-1
= -! \J ]
foal = TolIri lryyryy) ey Jrgyg
= P '-1 ]
£y = oIy (e e ) ey ey (8)
} The proof is given in Theorem 7 in the Appendix. Thus for u = 1,0, riay
: depends on y only through Y and, moreover, Cov[roal,rl&zl =0, i.e.,

they are uncorrelated under [1-3). We now present an illustrative

[ Jn S DO TS I 0 5

LA A LA

exanple.

'y

, Example 1

; We consider the example from Box and Meyer (1986), page 20, and
Taguchi and Wu (1985), page 68. Daniel's normal probability plot in-
dicates that, over the ranges studied, only factors B and C affect
tensile location by amounts not readily attributed to noise (see Box and

J Meyer 1986). We now fit the following standard linear model to the data

: Efy'xl,xz)) = p o+ alB + oa, C, where X; = 0,1, a; = (2xi—1), p is the

AR

R A AT

.'-’(f
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general mean, B and C are the main effects of the factors. We can write

the above model in the form [1-3). Notice that N = 16, n = 4, p = 3,
n n

(z §.) = (£ (1-8,)) = 2 for both factors B and C. The F value for the
i=1 i=1

lack of fit test under the assumption of normality is .1971 (( 1] and we

therefore conclude that there is no significant lack of fit. The inner

array T is given by

Let us now choose the factor B. Recall that the vector of

observations y consists of level 1 observations y) and level O

observations yg of the factor B. We have in y) 4 observations on each of

the runs (1,1) and (1,0) and thus ¥ (42,4, 42.4, 42,4, 42,5, 44,7,

45.9, 45.5, 46.5). We also have in yg 4 observations on each of runs

(0,0) and (0,1) and thus yi = (43.7, 42.2, 43.6, 44.0, 40.2, 40.6, 40.6,

40.2]. We now present the matrices
(1 1 1] [ o 4
1 1 1 1 -1 -1
1 1 l 1 -1 -1
Xl - l 1 1 , XO - 1 -1 -1 .
l L -1 1 -1 1
1 1 -1 1 -1 1
L 1 -1 1 -1 1
1 1 -1 1 -1 1
L - . -
We write y' = [ HE y'] X' = [X"X'] . = X (X'x)-IX'v ;o=
L 7 Wyt Yol 1'% L 1 L» Jp
{ ' —l t = —A = —A
XOLX X] X'y, ry =¥,y and oy = ¥57¥g° It can be checked that
X'X = 1613 and the matrices rl(8XI6) and rO(SXIb] are given by

e S e e T e i R N B L A I O T T N T T L Y S o ]

LIPS U T - A MR Nm A e [ -
S o e A i S it

g

LR Ve T% TG IO I A RN
e o o o B L

B AR P N P
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NN YN Ly
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r, = [1:0] - x ()7
- -1 Lo L
= [1 = X Xp: l_6) xlxc')],
r, = [0:1] - xo(x'x)' X'
T 1
= ([ Té) XXy: 1 = xoxo].
We now obtain
I 1
r-¥ -4 2o
c = 16 16 16 16 |,
! C e oMy, J
16 16 = 16 16
r 7
AU RO A
r = 16 16 16 16 |,
0 (2 Sl 3yl
16 16 16 16

where J is a (4x4) matrix with all its elements unity. It can be checked

that V, = Rank r, = 7 and V5, = Rank ry = 7. Thus vOa =V = 6. The

1 1 0 la

matrix rll is obtained from ) by deleting the last row. The calcula-

tions of 04 from (6) and the vector of adjusted residuals Tpal 3re
straightforward. The calculations of la and the vector of adjusted
residuals rlal are similar.

3.4 Third Set of Measures

\ e . , -
Let Chal be a (VuaxN) submatrix of Tia with rank Lhal Vua’

u = 1,0, We now have the sum of squares of the sets of linear

functions r,1y and rualz_[see Scheffe 1959] as

-1
SS(‘ull) = l"&l[rufﬁl]

It
pall °

= y'p! [ '
Ss(ruall) L rual‘rualrual

with d.f. v, and V, respectively (u = 1,0).
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We present the measures of dispersion and adjusted dispersion at level u,

u = 1,0, of the factor

s2(3) = [ss(r y)/v, ],
Sﬁa(3) = [Ss(ruallj/vua] s (10)

. 2 2 2 2 2
respectively. We note that SO(B) and Sla(3)’ 51(3) and Soa(3), Soa(3)
and S?a(3) are uncorrelated, 88(3) and 85(3) are generally correlated.

The third set of measures of the dispersion effect of the chosen factor

is therefore si(3)/sé(3), 51(3)/536(3), sia(3)/sg(3) and sfa(3)/séa(3).

Example 1 (continued)

- r
We present in Table 1 ;i’ yi and I (yi,
j=1 M

and 4% which are used in calculating the first and the second measures

- Ji)z/(r-l), i=1,2,3

of dispersion effects. We write for the factor B

= (42.4875,42.4875,42.4875,42.4875; 45.5875,45.5875,45.5875,45.5875),

h<
I

<
o
]

(43.4375,43.4375,43.4375,43.4375; 40.3375,40.3375,40.3375,40.3375).
Both Tlal and Tga1 a0 be obtained from Tla and T0a by deleting the last
row in the respective matrices. We find that 8%3(3) = Sf(l) and 353(3)
Sé(l). This in fact follows from a result in Theorem 2 given in the

Appendix. 1In Tables 2 and 3 we display numerical values of various

measures of dispersion and dispersion effects for both factors B and C.
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Table 1
- ~ r - 2
Numerical values of y.,y., and £ (y.. -y.) e=1), 1 = 1,2,3,4.
i*’i j=1 ij i
L (y,, -5, )
. - - Z ly,, =y, )/ (e=-1)
i Run Yy Yy j=1 ij i
1 11 42.425 42.4875 .0025 "
2 10 45.650 45.5875 . 5700
3 00 43.375 43.4375 «6425
4 01 40.400 40.3375 .0533
Table 2

Numerical Values of Measures Of Dispersion

For Factors B and C

Numerical Values of Measures Of Dispersion Effects For Factors B and C

2 2 7 Y vy 7 2 )
Factor Sl(l) = Sla(3) So(l) = Soa(3) 51(2) 50(2) 81(3) 50(3)
B 2863 «3479 2498 3027 <2543 3071
C .0279 .6063 .02834 5241 .0329 . 5286
Table 3

2 2 2 2 2 2
Sl(l) SI(Z) 51(3) 51(3) Sla(3) 513(3)
Factor 5 5 > 5 > 5
2
So(l) SO(:-) 50(3) 303(3) 50(3) 803(3)
B .8229 .8252 .8281 L7310 .9323 .8229
C 0460 0542 .0622 .0543 .0528 «0460
N T T e PN ‘v AP RN AR R T AP ATAT A TR

S TG 6 T
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4. Interpretation and Application of the Measures ;‘
We now discuss the rationale for the proposed measures of dispersion :r
‘l
o
effects and how they can be used in determining the optimum level of each ;’
control factor in view of reducing the process variability. We have
n n N
- * o
oy 2 iil(l “ 2 ¥
= + . “-'-
MSPE —_— Sl(l) SO(I) i
e
Thus S%(l) and Sé(l) are regarded as (HSPE)l and (MSPE]O in the notation
-
. . . . 2 1ol 8
of Section 2. If the first measure of the dispersion effect Sl(l),SO(l) g
|.‘.
is greater than l. We then say that level 0 of the factor has less ;;
o
contribution to MSPE and therefore would be preferred to level 1l in
view of stability against noise factors. If Sf(l)/SS(l) is less than Q:'
&f
1, level 1 would be preferred to level 0. We observe Q;
\Y v i
MSE = LY os2ay +| —2 ) s%. e
-py) 1 (N-p) | 0 N
If the second measure of the dispersion effect 51(2)/50(2) is larger than 5:3
r\
1, we then conclude that level 0 of the factor has less contribution to ;i
MSE and therefore would be preferred to level 1 in view of reducing :j
S
2 2 -~
process variability due to noise factors. If 81(2)/80(2) is smaller than ,\i
n:'{
1, level 1 would be preferred to level O. R
‘ L]
We notice that t::
o\-
-\'-'
v v v v =
wse =f——}s23 + {2 }s? (3] - 1 )s2 o o+ (2 )[s%m, -;.:-
(N-p) \ (N-p) Na (N-p) la (N-p) 0 T
o
<
oa
- = = “~
(N=p) = Vi * Vg =V * Ve N
-
N,
s;
2
Y
e
N
oR
s
L4
LS
o P e o T e e BN Y T o S SR APVl S A A A P T R PN PR AN o
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The third set of measures of the dispersion effect consists of 4 peasures
of the dispersion effect. As before, the numerical value of a measure
greater than 1 indicates a preference of level 0 over level 1 and the
numerical value less than | indicates a preference of level 1 over level
0 in terms of smaller dispersion. If the numerical values of all pro-
posed measures are near l, then both levels 1 and O are equally prefer-

able in terms of dispersion.

Example 1 (continued)

We find from Table 3 that numerical values of all measures of dis-
persion effects are less than | for both factors B and C. We rhus prefer
level 1 over level 0 for both factors. The best choice for level combi-
nation of control factors B and C is therefore (1,1) in view of stability
against noise. Notice that the numerical values of all measures are not
only greater but also closer to 1 for the factor B than.the factor C.

The next best choice for level combination of B and C is therefore (0,1)
in view of stabiliity against noise. Our choices for the best and the
next best level combinations are also supported by the numerical values

r

of I (yij - ;i]z/(r-l) in Table 1. This is of course very natural
j=1

because the inner array T in this example consists of all runs of a 2

factorial experiment. In practice we would have a fractional factorial

instead of a complete factorial as the inner array in most situations.
r

We would then not be able to calculate £ [y
j=1

- ;i)z/(r—l] for all runs

i
but only for those ~uns in the fractional factorial inner array. The

best choice of level combination using the methods described in this

paper may or may not be present in the inner array.
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el 5. Inner Array Influence
;‘ We now discuss the influence of the inner array on the proposed
WS

;R measures of dispersion effects. We first consider the situation where

Y
0
) the number of runs in the inner array equals the number of parameters in
Y ; B of (1), or, in other words n = p. The inner array is then a saturated
e -

Co
“f: design. The class of designs with n = p includes the known Plackett and
. Burman designs (see Plackett and Burman 1947). It can be seen that for

2

f;* an inner array with n = p, we have Su(l) = 55(2), u=1,0. A general

o™~

S . 2 2

ra characterization of an inner array for which Su(l) = Su(Z)’ u= 1,0, and
3

S
A n may or may not be equal to p, is available in Theorem 1l in Appendix.
- We observe that for an inner array with n = p, the first two measures of
Ki dispersion effects are identical.
5
bl We next study the measures in two extreme situations: (l) Two vec-
;x: tors of residuals y; - y) = r1y and yg - yp = roy at levels [ and 0 of
LW - - - -

)

;} the factor are uncorrelated, i.e., rlrb =0, (2) 4 and Ty are com-

o
&5 pletely correlated, i.e., rg; = Ary| for some matrix A. In situation
o (1), we have $2(3) = $2(2) = $2.(3), u = 1,0. This in turn implies that
- u u ua

~

-~ all measures of dispersion effects in the third set are identical and

A

“n
A identical to the second measure. The proof is available in Theorem 3 in
NCe
[ the Appendix. We thus see that in situation | there is no need for the
o
Cu v
W adjustnent of residuals nor for the third set of measures of dispersion
\'

~° .

" n : : . = = s Y =

- effects. In situation (2), we have f0a 0, Voa 0 and SS Thall 0.
i: The proof is given in Theorem % in the Appendix. We thus notice in
e

:ﬁ situation (2) that level 1 of the factor makes all countribution to SSE
0

£4 and level 0 does not make any additional contribution to SSE. In case
LA
‘"

Y}

¢

o
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VY
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v =V

0a = 0, we have V0 = V1 = (N-p), rg, = A 11 and A is nonsingular.

la

This is a situation where levels 0 and | have equal dispersions. This is

n
purely due to the inner array influence. We have V, > ( £ & )(r-1) and

2= e
n n
VOa 2> ( L (1-61)](r-1) for all inner arrays. If Vla = (£ 6iJ(r—1) then
131 i:l
2 2 n 2 2
S1,(3) = 8)(1) and Vg, = (151(1-511)@-1) then Sy (3) = Sy(1). The proof

is given in Theorem 2 in Appendix. We note that VOa and Vla are both
nonzero for r > 1. (We assume naturally that there is at least one

§; = 1 and at least one (l-éi) = l.] For the case r = 1, at least one of
VOa and Vla could be zero or both of them could be nonzero.

We now present an example of an inner array for which Sf(Z) and
85(2) are uncorrelated for one factor but Sf(l) and S;(Z) are correlated
for all other factors. This example is remarkable in displaying
contrasting influence of the inner array in measuring Sj(Z), u = 1,0, and
in the need for adjustment of residuals for different factours.

Zxample 2.

5 .
We consider a 27 factorial experiment, {.e., m = S. We thus have 5

controlled factors each at 2 levels. Let the inner array T (8x5) be

’O 0 N 0 QT
1 1 0 0 0
0 0 ) l l
1 1 0 1 1

T =

() { l l 0
\ 0 1 l 0
0 l 1 0 l

L 1 ] 1 0 1
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*
r: We consider a situation where the model for a main effect plan fits the
[)
. data adequately, i.e., there is no significant lack of fit. Therefore
r'.
;” n =8 and p = 6. The first column of X has all entries unity. The
{
)
:r distinct rows of the remaining columns of X are obtained from T replacing
Lt
" 0 by (-1) and each distinct row is replicated r times. We denote an
’I
: (rxr) matrix with all elements unity by J and
[~y
R’ 6J 2J 2J -2J
. 2J 6J =-2J 2J
G = .
- 2J -2J 6J 2]
B
y =-2J 2J 2J 6J
)
™
) It can be easily seen that
; -1 1 G|O
S Ho= X(X'X)"'X' = = ,
\ 8r 0|G
AN -
> . | 8rI4r G 0
- 8r o [8r1, -G
- c
f It now follows that rlré = 0 for the factor 3 but rlré # 0 for factors
b "
’ 1,2,4 and 5. Thus Si(Z) and Sé(Z) are uncorrelated for the factor 3 and
:: are correlated for factors 1,2,4 and 5.
2
. 6. Properties
LY
. We now state sone properties of the descriptive measures uander the
iy 2
- nodel (1-3). We first observe that the measures of dispersion Sl(l) and
b "« Z
% So(l) do not depend on the fitted model and all other measures of dis-
- 2 2
persion depend on the fitted model. The measures Sl(l) and Sﬂ(l) are
/ 2
N always uncorrelated under the model (1-3). The measures 51(2) and 50(2)
k
[ "
‘.
-
»
1!
. -\- - "N ..q-..v~\ A T AT AT T T T e e T T v, '.‘-f._d' O R
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may however be correlated. They are uncorrelated if and only if
r,rg = 0. Similarly Si(3) and 33(3) are generally correlated and they
are uncorrelated if and only if rllrbl = 0, or, equivalently rrj, = 0.

The dispersion measures S (3) and S (3), la and 83(3), Sfa(B) and

Soa(3) are all uncorrelated under (1-3). Under the assumption that

y ~ N(xg, GZI], the measures of the dispersion effect Sf(l)/SS(l),

A

82(3)/52 (3), 52 (3)/52(3) and §° (3)/S (3) have the central F distri-

1 Oa la 0 la
bution with appropriate degrees of freedom. The measures S (2)/50(2) and
S (3)/8 (3) have the central F distribution if and only if rlro = 0., Ve

question the use of measures of the dispersion effect S (7)/8 (2) and

S (3)/5 (3) unless rlro = ). We of course realize that the condition

rlrb = 0 is too stringent to satisfy even for one out of m factors.

We know that the sum of least squares residuals is equal to zero.
We observe here that the sums of the residuals at levels 1 and 0 for the
chosen factor are zero. Moreover the sums of the adjusted residuals at
levels | (adjusted for level 0) and O (adjusted for level 1) are also
zero. The proof is given in Theorem 6 in Appendix. These obsecvations

are useful in calculating the degrees of freedon.
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» 7. Conclusions.
, ~o0rc us1008
™
In industrial experiments for quality improvement, dispersion
5
;“ effects of factors play an important role. They are instrumental in the
]
Al choice of an optinum combination of levels of control factors. This
article presents the descriptive methods of measuring dispersions and
Ve
:; dispersion effects at the preliminary stage of investigation. The
»n
i; outcome of such comparisons will suggest more appropriate complex models
s
for further investigation. We however believe that the implementation of
)
)
b the methods discussed in this article will result in highly informative
f
>, conclusions. Although in this paper we find the measures of dispersion
t
g at levels of a factor using one factor at a time, the same approvach can
-,
P .
', be used to find the measures of dispersion at level combinations of
;.
L factors using many factors at a time. Unless the number of observations
is sufficiently large in every cell, the reliability of the measures
: using many factors will be questionable.
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2 APPENDIX
h We now present the proofs of many statements that we have made in
W
$ the main body of the paper. We also present some valuable technical
N
u results in the investigation.
.i Let Dj(NxN) be a diagonal matrix with n sets of diagonal elements
y and the elements in the ith (i = 1,...n) set are equal to di. We define
v Dg = I - Dj. It can be seen that DDy = 0 and both D, and Dy are
idempotent matrices. We have R = DR + DyR. The matrices r| and rj
i
fﬁ defined in Section 3 are in fact non-null row vectors of D|R and DgR,
N
. 2
? respectively. It can be seen that RDUR = r&ru, Vu Su(Z) = lfRDuRz, and
-
'; SSE = y'Ry = y'RD|Ry + y'RDoRy, u = 1,0.
g
v We now investigate the situation where Si(l) = 33(2), u=1,0, In
5 other words, we characterize the inner arrays for which Sz(l) = 82(2), '
u u
¢
: u =1,0. Ue denote the row of the matrix X corresponding to the run i by
i .
o éi(IXp). Note that for each i, i = 1,...,n, the row 5{ is repeated ¢ y
times in X. Let X*(nxp) be a matrix whose ith row is 5{. Notice that
3 rows of X* are in fact distinct rows of X. We have X'X = r{X*'X*), .
. 2 2 ) . -1 .
. Theorem l. We have Su(l) = Su(Z), u = 1,0 if and only if X*(X*'X*) K
. /
\ ! =
X In'
F - -
- Proof. Note that Sj(l) = Sj(Z), u = 1,0, hold if and only if Yy =Yoo
- 21002
> - -
: i=1¢ee,n. The condition Yo =Yoo i =1,.ee,n, holds if and only if
0
! for i, = 1
" k' x0) kr 2 4T L2 >
X —11 —12 . .
s 0 for i) * ip; iy, i2ell,.vu,nl. b
Q. '
f
4 .
4
] 5
" X
!‘ -
Q‘ w
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The above condition may be expressed as X*()('X)_-l X*! %

In, or,
equivalently, X*()(*'X’*‘)-1 Xx' = In. This completes the proof.
-1

X*' =1 .

When n = p, X*(nxn) satisfies the condition X*(X*'X*) a

Therefore, for n = p, we get 52(1) = SZ(Z).
u u
We now present results showing the influence of the inner array on

. . 2 2 2 2 =
the measures of dispersion Su(3)’ Sua(3), SU(Z) and Su(l), u = 1,0.

Theorem 2.

n n
> L 8, 0=, Voo > 1T (=8 ) (-1,

i. Vla
i=1 i=1
n
fi. V. 82 (3) > [ £ 68 )(r-1)8%(1)
IR CRe E R R S
2 n 2
/ - Y(r—
VOaSOa(B) 2 \izl(l 51))(f 1)50(1) ,

n
iti. 16 vy, = { T 6 )(r-1) then S7,(3) = si(1) ,

2

iv. 1fV (1-6,))(c-1) then s§a<3) - shn.

0
TN
e 3

Oa
‘ v ) = (33 =y
Proof. It can be checked that Cov\yij, Yy yu) Cov\yi, Y, yu] and
therefore Cov(yij-;., y -y ) = 0, Moreover, Cov(yij—;., y -y ) = 0,
i # u. 1t now follows that any contrast of (yij—yiw, j = lyees,r for
a fixed 1 with Si = 1, is orthogonal to any contrast of (yuw—yu},
W =1l,see,r for a fixed u with (1-6u\ = l. Furthermore, any contrast of
(= _o09 C - . ; , . )
Yy yi] for all 1 with Gi 1 is orthogonal to any contrast of (yuw Yyl

W= l,cea,r, for a fixed u with (1—6u) = 1. The results (i-iv) follow
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immediately from the above facts, the relationship between the rank and
;_ the number of orthogonal contrasts, and the fact that the sum of squares
B
":: is equal to the sum of sums of squares of orthogonal contrasts. We now
I‘
+,
= study the measures in two extreme situations: (i) ry and roy are un-
\..; correlated, i.e., rlr(') = 0, (ii) ry and r,y are completely correlated,
_:: i.e., Toy = Ar11 for .some matrix A.
b _.n P
W Theorem 3. Consider the situation rlr' = 0. Then 85(3) = 55(2) =
..
;2 sia(a), u = 1,0.
8
o
'_,iz Proof. We first show that Si(B) = S"i(Z), or, in other words, SS(r“l] =
[}
A
a y'rir,y. We observe that
N PRI P ]‘1[_ y
:.: = 11 11711 11 =
SAS
e -1
P 0 1
b =y ! (rllrll) ° r,y
>3 A L
* ! 0 0 !
o =z"'r, y, where r,r1 z =r,y
A 1f1 = 1
. = ' ] - ' * J
o =z' ryry z = (rlrl E) frlr1 5)
= ] = '
(rll) (rll] yryryy-
o . . 2, 2
~ It follows from the representations of MSE in terms of (SI(Z), SO(Z)] and
’H
. (5%(3) and S2_(3)) that v, S (3) = v, 52(2). The condition r rf = 0
v, 1 Na 0a~0a 079 170
R - 2 - Q2 r e aimi
4 implies that vOa \O. Thus 503(3) SO(Z). The rest is similar. This
’:‘.Af completes the proof.
"-. = b 3 = -
- Theorem 4. If o1 Ar“ then we have 0a 0, VOa 0 and
3 ssfry 17) = 0.
__: Proof. We write Iy = AOrll for a matrix AO whose independent rows ar:
s
“~
-_" . . . N ' v = v
‘-:. rows of A. This implies that Tof 11 A()rllrll and thus
N
5 4
W
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AO rOrll(rllrll) Hence from (6) we get £0a 0. The rest i

clear. This completes the proof.

We now present some results which are useful in establishing

properties of the proposed measures in the paper.

2
Theorem 5. Suppose y N(Xg,o I). A necessary and sufficient condition

that
SALRLSPA 2
(1) 5 ~ central y° with d.f. = Trace rirl,
a
l'réroz ) .
. - '
(2) —_T;T—_ ~ central y~ with d.f. Trace I4fge

(3) and furthermore, (1) and (2) are statistically independent, is that
rlrb = 0.
It can be seen (see Rao 1973) that a necessary and sufficient condition

of (1), (2) and (3) to be true is that rirlrbro = 0. The condition is

equivalent to PR 0.
Theoren 6.
a. i'ru = 0 and i'rua =0, u=1,0, where j' is a vector with all

elements unity,
b. 1f rlré = 0, then for u = 1,0,

b.l. rur& is an idempotent matrix,

- = '
b-2. (ZU —Y—U) r Ul(l’
be3s X' r ' =0,
u uu
n r A( ~ n r A( -~
4. z L é - = ¥ T - - = 0.
bede T I8y (y, y) = (1= )y Vi y.) =0
i=1 j=1 i=1 j=1
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Proof. The result (a) follows by considering the columns of X for the
general mean and the factor chosen and from the fact that X'R = 0. The

results b.l and b.2 follow directly from the structure of R and the fact

that R is an idempotent matrix. The result b.3 follows from X'R = O.

-~

From b.3, we get B'X'r r'y =0, i.e., y'r r'y = 0. The result b.2
= "u u vtru Za u uwt

implies the i&[zﬂ - iu) = 0 and hence the result b.4 is true. This
conpletes the proof.

Theorem 7. For L0a and Ty, in (6) and (7), the equation (8) holds.
Proof. We prove the equation (8) for r

A The proof for £, 2 is

similar. The fact RX = 0 implies that Toy = 0, Ty = 0 and hence

-

= . i - = t = = '
ol 0 Since y - ¥ Ry and R R, we have y y + Ty +

' . .
rOZO' The independent rows of rl are in r,, and the other rows of rl

can be written as erl for some matrix Q. The fact

' . . -1 .
(I - rll(rllr ' = 0 implies (I - ril(rllri1] rll)rl = 0 and

) - T -
hence roar1 LT This completes the proof.
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