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BASIC DATABASE OPERATIONS ON THE BUTTERFLY PARALLEL

PROCESSOR: EXPERIMENT RESULTS

1. Introduction

With the development of highly parallel machines such as the Butterfly parallel processor

[3,4,5,91 and the Connection Machine [8,10], the time has come for the database researchers to look at

ways to utilize these machines. Since some databases are extremely large, the time to process a query

even with a large uniprocessor mainframe can reach unreasonable limits. Parallel machines offer sub-

stantial opportunities for performing these queries much faster than is possible with just a single pro-

cessor. A uniprocessor must access the disk sequentially which can consume a significant amount of

time. With the falling cost of main memory, uniprocessors and parallel processors are being created

with very large amounts of RAM, some on the order of 16 to 512 Mbytes, with a Gigabyte not far off

into the future. A multi-processor that allocates individual memory segments with each processor has

the potential to store complete files in main memory by scattering them across the distinct memories

of all the processors. The Butterfly computer allows you to load complete files into main memory by

using the RAMFile system. File size should not be a problem since the available main memory can

approach 1 Gigabyte (with 256 processors each with 4 Megabytes of memory).

Ideally, by utilizing p concurrent processors to perform a task one should be able to speed up its

performance by a factor of p. However, there are many difficulties--hardware related as well as algo-

rithmic in nature-which inhibit this improvement in computation speed. The usefulness of a parallel

machine depends on the amount of parallelism inherent in a problem and how well this parallelism fits

the architecture of the parallel machine [2,10. Some serial algorithms do not have a suitable parallel

analog since they contain some inherent timing constraints by depending on the results of previous cal-

culations. Moreover, some parallel machine architectures are better suited for implementing certain

parallel algorithms than others [101. Hardware related issues include processor synchronization,

memory access contention, and the design of the parallel machine (i.e., the number of processors, the

way they are interconnected, whether or not they share a common memory, and so on).

The use of computers with large amounts of main memory will have a beneficial effect on data-

base operations by allowing several files to be kept resident in memory while different queries progress.

Manuscript approved December 15, 1988.
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Instead of having to keep swapping in and out different portions of a file from a external disk you can

access the file immediately from RAM. This will save on disk accesses and if there is enough main

memory you can even simulate a disk drive on each processor. Files will be stored in memory on the

Butterfly computer by using the RAMFile system [5]. This method will not only store the file in main

memory but will distribute the file across the different processors memory.

In this paper, we discuss the implementation of the basic database operations (select, project,

natural join, and scalar aggregates) on a Butterfly parallel processor which is a shared-memory multi-

ple instruction stream, multiple data stream (MIMD) computer. Some problems associated with get-

ting maximum parallelization are improper data division and "hot spots." Improper data division

* '~ results when the number of tasks does not divide evenly among the processors. Hot spots or conten-

tions occur due to locking if accesses are made to the same segment of a RAMFile and also if attempts

are made to to get data from the same remote processor at the same time. The results of our experi-

ments are described in detail.
"V

2. The RAMFIle System

The RAMFile system is a utility that allows files to be loaded into main memory and accessed

as a UNIX* file. The size of the file is constrained by the amount of main memory available, which

can approach I Gigabyte, depending on the configuration. This is an upper limit because the operat-

ing system and other application programs will have to be resident in the same memory also. To load

a file into and out of the Butterfly's main memory the application program must call a routine that

* will transfer the file from or to the host computer over the network using the streams-server. This

can be slow serial process depending on the size of the file being loaded. This method appears to be a

temporary solution until the butterfly can handle disk drives attached directly to it. The file will be

distributed across the memory of all available processors in a round robin fashion, allocating blocks of

the file to the next available processor with enough memory to hold that size block. It will continue

"dealing" equal size segments of the file until the complete file has been dispursed. Each segment of a

* UNIX is a trademark ot Bell Laboratoies.
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file can range in size from 256 bytes to 64 Kbytes in increments of powers of 2.

Access methods are very similar to UNIX system calls except that the prefix "RF_" is inserted

in front of all system calls (for example, RF-create, RF..open, RF-seek, RFread, RFwrite, RF-close

and so on). These calls are used exactly like their UNIX counterparts except for possible parameter

differences. These primitives allow individual processes to access the RAMFile without worrying about

contention and other related problems. The ability to address specific locations within a file comes

from the use of the RF-seek command (similar to the Iseek command). Upon opening a file via

RF.open, all processes that must access the file can do so with all locking and mapping being hidden

from the user.

The RAMFile system causes contention by locking a file on a segment basis. This means that if

two processors try to access two different (or the same) memory locations that happen to lie within the

same segment, only one processor will be able to proceed while the other will have to wait until the

first unlocks the particular segment in the segment lock table. However, as we shall see, it is possible

to reduce, sometimes even eliminate, such contention by choosing judiciously the size of the individual

segments. A similar hardware related contention problem is that if two processors are trying to get

data from the same remote processor through the Butterfly switch at the same time, one will have to

wait for the first data transmission to complete.

BBN has included a systematic method for parallel programming, called the Uniform System

Approach [4]. This approach has several methods for calling new processes and passing data between

them. It simplifies the amount of work that the programmer has to do by allowing the programmer

not to have to worry about actual task generation, segment allocation registers and other miscellane-

ous overhead. Its use has greatly simplified the development of these algorithms.

3. Hardware Description

The Butterfly Parallel Processor [3] is a IMD machine with a shared memory. It can be

configured with I to 256 processors, each of which is a Motorola MC68000. Each node contains I pro-

cessor capable of 500,000 instructions per second. So a Butterfly with 256 Processors can compute at
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128 MIPS. The main memory at each node is expandable from 1 to 4 Megabytes, so the maximum

total memory on a 256 processor Butterfly is I Gigabyte. All nodes can be considered identical except

for possible additional floating point processors which will enhance the performance of those processors

and the existence of a king node which will contain the network software and other system mainte-

nance software.

The configuration that was available to us during this experiment was a 32 processor Butterfly

with 4 Mbytes of memory at each node, and all processors have been upgraded to Motorola MC68020

chips. This should double the processor speed to 1 MIPS per processor, giving a combined speed of 32

MIPS on our configuration. In order to measure the performance of our parallel algorithms, we chose

to use a database similar to the one described in the Wisconsin Benchmark 16]. The database con-

sisted of three relations containing 100, 1,000 and 10,000 tuples respectively. All attributes will have a

predefined range of values that can occur in a specific field, and that range will have an even distribu-

tion of occurrences. For example, the hundred field will contain only the values 0 - 99 with an even

distribution of values throughout the relation. If there are 1,000 tuples in a relation, then for each

specific value of the hundred field there will be exactly 10 occurrences throughout the relation. Each

relation will contain at least two unique integer fields that act as keys, depending on the field and the

number of tuples in a relation there may be more. Also there will be three character string fields each

with a length of 50 characters. The size of each tuple was 190 bytes long.

4. The Projection Operation

The projection operation will be broken down into three parts: file division, projection of attri-

butes and the removal of duplicates. The file will be first scattered across the memory of the Butterfly

and be accessed through the use of the RAMFIle system (5] that is provided by BBN. Then the actual

process of projection will take place followed by the removal of all duplicates.

4.1. File Division

When a file is loaded or created on the Butterfly computer, it is distributed across all the shared

memories in equal sized segments. The file can be manipulated without knowledge of any RAMFile

4



parameters (segment size, file size, number of segments or what processor a particular segment lies);

however, by using some a priori knowledge of the record sizes and other related processing decisions, it

will be possible to adjust the RAMFile distribution parameters which will optimize access and execu-

tion times. This will be explained below.

Assuming the file can be thought of as a continuous block of memory with concurrent access,

the first question is how to divide the file up among the tasks. Some definitions before continuing: let

p be the number of processors, X be the number of tasks to be operated on by the p processors, r be

the number of tuples in a relation, 0 be the tuple size in bytes and 6 be the number of tuples to be

worked on by each task. Initially the process of projection will be done by breaking the file to be

operated on down into p sections which will be worked on by p concurrent processes, so that X = p.

Since the file has been distributed among the p processors, and every tuples is accessible to every pro-

cessor, a good initial value for 6 would be:

6 = Fr/Xl = I,1/

This will allow every processor to work on at most [r/X] of the tuples. The ceiling function is neces-

sary for the case when r is not a multiple of X. Without the ceiling function, the remainder of r^

would go into task number X + 1, causing p - I processors to wait while 1 processor finishes task

number X + 1. This can be very wasteful as can be seen in Figs. la and lb, without and with the ceil-

ing function. These figures were generated by first using an event logger that is available on the

Butterfly and then viewing the events using the "gist" program.

One of the tools available on the Butterfly is an event logger. The event logger is useful for

time stamping when certain events occur within the execution of an application. Before certain events

can be logged they must be defined and a catalog must be declared to store the events on each proces-

sor. The overhead involved with logging events is quite minimal so they should not alter the perfor-

'V mance of an application. This capability is extremely useful in detecting where and when different

processes halt and where they are spending too much time. After the execution of the program and

all events have been logged, the event log file must be down-loaded to the host computer. The next

step is to view the events using the "gist" program. It will display the events on a two dimensional

* 5
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Figure Ia: I1,000 tuple relation, 24 processors, without the ceiling function.
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graph with time on the horizontal axis and each processor's event history on the vertical axis.

Without the ceiling function all processors must wait for one processor to finish its extra task in Fig.

la, whereas with the ceiling function they all finish at about the same time (Fig. 1b). Some of the

attractions of the ceiling function are that it is simple to compute and efficient in that there are no

unnecessary task startups. One problem associated with this simple technique is that all tasks are not

guaranteed to start at precisely the same time and therefore may not finish at the same time. Even

those that do start at the same time are not guaranteed to finish together. This makes some nodes sit

around idle waiting for the other nodes to finish their computations. If the size of a task becomes too

long, there can be a considerable gap between when the first task finishes and when the last one

finishes. There should be ways to keep all processors as active as possible without keeping any waiting

around for others to finish. One way of keeping the waiting period to a minimum is to keep the size

of the tasks to a "reasonable" length. One problem here is that if the size of the tasks gets to be too

short then the overhead necessary to run and start each task can become greater than the actual run

time of the task.

4.2. Projection of Attributes

The actual projection of this file will be done in X separate tasks. Each task will operate on its

own block of the file, with size 6. It will simply loop through its own block of the file, reading a tuple

and then writing out only the attributes that are to be projected. The placement of the projected

tuple within the output RAMFile will have a substantial effect on the performance of this algorithm.

In the current implementation of the Butterfly RAMFile system, a file must have a predeclared

static length upon creation. This means that the output file must be large enough to hold the output

of a query in the worst case. For a projection this is fine because there will be r tuples in the initial

output file before removal of duplicates. Now, a simple way to write tuples to the output file would

be to just create a file and then keep appending them to the end of the file. This can be simulated

with a predeclared length file by creating a EOF pointer that will point to the record that is currently

at the end of the file. It must be a shared variable because all processors must be able to access it, and

also it must be able to be atomically incremented. For something to be atomically operated on means

a 7



to have complete control of it without having to worry about concurrency problems. It turns out that

this is a poor idea since it creates contention for both the EOF counter variable as well the current

last segment in the output file. The latter contention occurs when a segment is large enough to hold

more than one tuple. As an example, if a segment could hold 4.5 tuples, then the 5 or 6 processors

that have tuples that must be placed in that particular segment must serially write to that segment.

The 6 processors comes from the fact that the 4.5 tuples could be laid out in this manner: 0.25, 1, 1, 1,

1, 0.25. Since the output file must be predeclared, these contentions can be avoided by placing each

output tuple in the same position as in the input file. Tuple ti where i is the position of the tuple in

the file, 0 < i < r will be placed in the ith position in the output file. By removing the contention for

the EOF allows tuple placement to proceed much faster as can be seen in Figs. 2a, 2b and 2c.

4.3. Projection Results

By varying several parameters and the number of processors working on a task, the Butterfly

Parallel Processor was able to give impressive speedups in two ways. One direction of speedup was

going from one processor to several four configuration went up to 30 processors available to the user).

The other direction resulted from fine tuning the program's parameters. What will follow here will be

a progression of parametric tuning that will increase the efficiency of the application. The initial

parameters are: input file segment sizes are 256 bytes for the 1,000 and 100 tuple files and 512 bytes

for the 10,000 tuple file, output file segment size is 256 bytes, the ceiling function will NOT be used

and the EOF pointer WILL be incorporated. Duplicates have not been been removed, this will be

covered later.

4.3.1. EOF Pointer Variable

As discussed in section 3.2, ideally it would seem logical to just keep appending tuples to the end

of the output file. This would allow all processes to place all tupes into just one file without any

worry about where to insert the next one. On a single processor computer there is a file header that

contains information about the file such as: size, location and the current position within the file. As

tuples are appended the current position pointer is increased by the size of the write or read. On the

8



Figure 2a: 10,000 Tuples
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Butterfly each processor has its own copy of the file descriptor which includes it own current position

pointer. This creates three different problems, two of which are contention related and the third is an

extra unnecessary computation.

Table I Table 2
10,000 Tu le Projection with EOF Pointer 10,000 Tup Projection without EOF Pointer
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency
1 29.28 1.0 1.0000 1 27.54 1.0 1.0000
2 21.15 1.3 0.6921 2 13.86 1.9 0.9930
3 18.16 1.6 0.5372 3 9.29 2.9 0.9876

" 4 15.23 1.9 0.4805 4 7.01 3.9 0.9818
5 12.89 2.2 0.4541 5 5.65 4.8 0.9740
6 11.24 2.6 0.4341 6 4.74 5.8 0.9679
7 9.99 2.9 0.4186 7 4.08 6.7 0.9634
8 8.90 3.2 0.4112 8 3.59 7.6 0.9572
9 8.02 3.6 0.4053 9 3.21 8.5 0.9529
10 7.33 3.9 0.3991 10 2.91 9.4 0.9453
11 6.72 4.3 0.3957 11 2.66 10.3 0.9380
12 6.21 4.7 0.3928 12 2.45 11.2 0.9364
13 5.77 5.0 0.3897 13 2.27 12.0 0.9299
14 5.43 5.3 0.3850 14 2.12 12.9 0.9248
15 5.02 5.8 0.3884 15 2.00 13.7 0.9180
16 4.75 6.1 0.3845 16 1.89 14.5 0.9104
17 4.56 6.4 0.3776 17 1.77 15.4 0.9102
18 4.29 6.8 0.3784 18 1.70 16.1 0.8960
19 4.14 7.0 0.3719 19 1.61 17.0 0.8955
20 4.00 7.3 0.3658 20 1.54 17.8 0.8925

"- 21 3.76 7.7 0.3702 21 1.48 18.5 0.8817
22 3.61 8.0 0.3681 22 1.42 19.3 0.8798
23 3.44 8.5 0.3700 23 1.36 20.1 0.8757
24 3.29 8.8 0.3697 24 1.31 20.8 0.8706

% 25 3.22 9.0 0.3635 25 1.26 21.7 0.8681
% 26 3.09 9.4 0.3642 26 1.22 22.4 0.8630

27 2.98 9.8 0.3631 27 1.18 23.1 0.8574
28 2.90 10.0 0.3603 28 1.15 23.8 0.8500

% 29 2.81 10.4 0.3587 29 1.13 24.3 0.8396
30 2.71 10.7 0.3593 30 11.10 24.9 0.8332

The two contention problems are very related with one being overshadowed by the other. All

RA MFiles have in their master file descriptor a segment lock table. Since RAMFiles are spread across

all the processors' memory in equal sized segments, there must be a method to maintain file con-

sistency. File accesses are kept consistent by locking the file on a segment basis. A read or write that

is local to just one segment will first lock that segment, read/write and then unlock the segment. If

the read or write operation will overlap segments then it will lock, read/write and then unlock, seg-

10

W gM 911,%§ 10"l! lu 'S K 1!~kt 6'



a Table 3 Table 4
1 ,000 Tule Projection with EOF Pointer 1,000 Tuple Projection without EOF Pointer
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency
1 3.59 1.0 1.0000 1 3.43 1.0 1.0000
2 2.30 1.5 0.7791 2 1.74 1.9 0.9852
3 1.96 1.8 0.6115 3 1.16 2.9 0.98024 1.69 2.1 0.5319 4 0.88 3.9 0.9766

5 1.42 2.5 0.5057 5 0.70 4.8 0.9757
6 1.23 2.9 0.4873 6 0.58 5.8 0.9777

7 1.09 3.2 0.4687 7 0.51 6.7 0.9572
8 0.98 3.6 0.4578 8 0.45 7.5 0.9391
9 0.87 4.0 0.4549 9 0.40 8.4 0.9392
10 0.80 4.4 0.4488 10 0.36 9.4 0.9435
11 0.73 4.8 0.4427 11 0.34 9.8 0.8958
12 0.67 5.3 0.4450 12 0.30 11.2 0.9397
13 0.64 5.5 0.4297 13 0.30 11.2 0.8654
14 0.57 6.2 0.4447 14 0.26 12.8 0.9199
15 0.56 6.3 0.4217 15 0.26 12.8 0.8578
16 0.52 6.8 0.4284 16 0.24 13.8 0.868
17 0.51 6.9 0.4084 17 0.26 13.0 0.7698
18 0.49 7.2 0.4034 18 0.23 14.9 0.8304
19 0.45 7.9 0.4189 19 0.22 15.2 0.8017
20 0.43 8.2 0.4118 20 0.19 17.5 0.8761
21 0.43 8.3 0.3980 21 0.21 16.2 0.7740
22 0.40 8.9 0.4066 22 0.19 17.4 0.7914
23 0.38 9.2 0.4014 23 0.19 17.7 0.7717
24 0.37 9.5 0.3969 24 0.20 16.9 0.7067
25 0.36 9.9 0.3967 25 0.16 21.1 0.8472
26 0.36 9.9 0.3825 26 0.19 17.5 0.6735
27 0.33 10.7 0.3975 27 0.14 23.0 0.8534
28 0.36 9.8 0.3516 28 0.19 17.5 0.6278
29 0.33 10.7 0.3702 29 0.17 19.8 0.6847
30 0.31 11.4 0.3830 30 0.16 21.3 0.7109

ment by segment. Using just one current position pointer for all processors to maintain the current

EOF will cause all write requests to be localized around the EOF pointer. This will cause a backlog of

requests for the EOF pointer, the segment lock table and the actual transfer of data to and from the

file. The first two operations must be completed atomically and the actual transfer of data will be

atomic on a segment by segment basis. All of these atomic requests for global memory will be

overshadowed by the fact that all memory requests that are resident in one processor's memory must

proceed atomically. This is independent of the fact that the locations requested are different. The

Butterfly switch hardware dictates that at any particular processor, only one processor may access

that processor's memory at a time.

11



Table 5 Table 6
100 Tuple Projection with EOF Pointer 100 Tuple Projection without EOF Pointer

No. of Effective No. of Effective
Processors Time Processors Efficiency Processors Time Processors Efficiency

1 0.36 1.0 1.0000 1 0.34 1.0 1.0000
2 0.23 1.5 0.7689 2 0.17 1.9 0.9599
3 0.20 1.7 0.5875 3 0.12 2.8 0.9346
4 0.17 2.0 0.5104 4 0.09 3.7 0.9320
5 0.15 2.3 0.4734 5 0.07 4.5 0.9120
6 0.13 2.7 0.4558 6 0.07 4.4 0.7392
7 0.12 2.8 0.4084 7 0.06 5.5 0.7962
8 0.11 3.0 0.3773 8 0.06 5.5 0.6925
9 0.10 3.5 0.3951 9 0.05 6.0 0.6678
10 0.09 3.8 0.3842 10 0.04 7.4 0.7446
11 0.09 4.0 0.3642 11 0.04 8.0 0.7323
12 0.08 4.1 0.3496 12 0.05 6.7 0.5662
13 0.07 4.5 0.3509 13 0.05 6.2 0.4796
14 0.07 5.0 0.3574 14 0.03 8.9 0.6419
15 0.07 4.5 0.3044 15 0.04 6.9 0.4604
16 0.06 5.3 0.3338 16 0.03 9.0 0.5662
17 0.07 4.8 0.2859 17 0.04 7.6 0.4470
18 0.07 5.0 0.2789 18 0.04 8.3 0.4644
19 0.06 5.3 0.2803 19 0.04 8.3 0.4387
20 0.05 6.0 0.3021 20 0.02 12.0 0.6010
21 0.06 5.3 0.2564 21 0.03 9.3 0.4468
22 0.05 6.3 0.2885 22 0.03 8.6 0.3943
23 0.05 6.3 0.2775 23 0.03 9.1 0.3958
24 0.05 6.4 0.2698 24 0.03 9.1 0.3806
25 0.06 5.8 0.2337 25 0.02 14.3 0.5732
26 0.05 6.1 0.2379 26 0.03 9.5 0.3690
27 0.05 6.8 0.2534 27 0.03 10.6 0.3930
28 0.05 6.7 0.2424 28 0.03 11.0 0.3957
29 0.06 5.9 0.2062 29 0.03 9.6 0.3314
30 0.04 7.7 0.2576 30 0.03 10.7 0.3592

The third problem is caused by the fact that every processor will have its own copy of the file

descriptor with its own current position pointer. If all current position pointers are equal and then one

process writes to the end of the file, all of the other current position pointers will not be pointing to

the end of the file. This can be overcome by having a global EOF pointer. Here all processes must

atomically read and increment the pointer and then reseek to the new EOF. It would be nice if all

RA.MFie reads or writes would be independent of any other read or write by not trying to access the

same segment (or region) at the same time. This simulated end of file is unnecessary because of the

fact that a blank file has already been created to a predefined size and each processor has its own

current position pointer. By scattering the locations to be read or written throughout the RAMFile

we should be able to minimize the contention for the same segment (or region). Since every task will
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be assigned an equal sized continuous block of tuples (except possibly the last block which may be

smaller but still continuous), a solution would be to treat all blocks as ordered and all tuples within a

block as ordered also and then simply place each task's projected tuple into its respective position

within its respective block. All tasks' output blocks would also be in the same order as their input

blocks. Once a task starts it will compute the index of the first tuple in its block to be projected. It

can do this since it will know what block number it is assigned, the size of each block and the total file

size. Then it will seek to this tuple's position in the input file and to its respective position in the out-

put file. Instead of placing each tuple at the end of file, it will place the projected tuple into its

respective position. Since each processors' file position pointer is incremented after each read/write by

the size of the buffer being read/written, only one seek address must be computed and positioned to,

the first position in each block, compared to every new global EOF position each time there is a read

or write performed by any processor. This will save on computations and unnecessary seek opera-

tions. If we look at the execution times (Tables I through 6) for doing projections of 10,000, 1,000 and

100 tuples with and without the global EOF pointer on I through 30 processors we will see that the

a global EOF pointer is very inefficient.

Assuming all tasks start at the same time and progress at the same rate, then they will be read-

ing and writing to positions that are on the average 6 tuples apart. If 6 is large enough then by the

time one task is reaching the end of its block (and approaching the beginning of the next) the taskV
working on that approaching block should have progressed towards the end of its block also thus keep-

ing a reasonable distance between task's read and write positions.

4.3.2. Input File Segment Size

The next step in making the projection operation on the Butterfly more efficient will involve

variations of the RAMFile parameters. These changes will improve overall execution times. That is,

the speed up in the performance is not through parallelization; the execution times will improve

greatly for runs with only one processor also.

Since RAMFiles are distributed across all memories in predeclared equal sized segments, each

segment will not be guaranteed to contain integral tuples. Depending on the size of the tuple and the
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Table 7
10,000 Tuple Projection With Different Input File Sexment Sizes

Input File
Segment Size: 512 Bytes 1.024 ytes 2,048 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 27.54 1.0 24.15 1.0 22.71 1.0
2 13.86 1.9 12.16 1.9 11.46 1.9
3 9.29 2.9 8.16 2.9 7.71 2.9
4 7.01 3.9 6.15 3.9 5.81 3.9
5 5.65 4.8 4.96 4.8 4.69 4.8
6 4.74 5.8 4.15 5.8 3.91 5.8
7 4.08 6.7 3.59 6.7 3.39 6.6
8 3.59 7.6 3.16 7.6 2.98 7.6
9 3.21 8.5 2.83 8.5 2.67 8.4
10 2.91 9.4 2.55 9.4 2.40 9.4
11 2.66 10.3 2.34 10.3 2.21 10.2
12 2.45 11.2 2.15 11.1 2.04 11.1
13 2.27 12.0 2.00 12.0 1.90 11.9
14 2.12 12.9 1.87 12.8 1.77 12.8
15 2.00 13.7 1.76 13.7 1.66 13.6
16 1.89 14.5 1.66 14.4 1.56 14.5
17 1.77 15.4 1.57 15.3 1.49 15.2
18 1.70 16.1 1.48 16.2 1.41 16.1
19 1.61 17.0 1.45 16.6 1.34 16.8
20 1.54 17.8 1.35 17.8 1.28 17.6
21 1.48 18.5 1.30 18.4 1.25 18.0
22 1.42 19.3 1.25 19.3 1.18 19.1
23 1.36 20.1 1.20 20.0 1.14 19.8
24 1.31 20.8 1.16 20.7 1.09 20.7
25 1.26 21.7 1.12 21.4 1.06 21.2
26 1.22 22.4 1.08 22.3 1.02 22.1
27 1.18 23.1 1.05 22.8 0.99 22.7
28 1.15 23.8 1.02 23.5 0.97 23.3

- 29 1.13 24.3 0.98 24.5 0.94 24.0
1 30 1.10 24.9 0.96 24.9 0.91 24.9

file segment size, tuples will overlap segment boundaries causing delays because a processor will have

to lock a segment, read it, and then unlock it, once for each segment in which the tuple lies. The size

of the tuples that are used in this paper are 190 bytes, and if the input file segment size is 256 bytes

then there will be one or possibly two partial tuples residing in each segment. This is very inefficient

because approximately two out of every three tuples will have to be read in two parts. It would be

more efficient to increase the size of the segment so that it would hold more tuples. As the number of
"d

tuples that can reside in a segment increases, there will be fewer read operations that will have to be

completed in several sections. Caution must be used in deciding on the right segment size, since the

factors that must be taken into account are the number of tuples in a file, the tuple size and the
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VI  Table 8
10,000 Tuple Projection With Different Input File Se ment Sizes

Input File
Segment Size: 4,096 Bytes 8,192 Bytes 16,384 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 22.33 1.0 22.18 1.0 21.96 1.0
2 11.23 1.9 11.17 1.9 11.05 1.9
3 7.56 2.9 7.49 2.9 7.43 2.9
4 5.70 3.9 5.66 3.9 5.60 3.9
5 4.59 4.8 4.55 4.8 4.50 4.8
6 3.84 5.8 3.81 5.8 3.78 5.7
7 3.32 6.7 3.29 6.7 3.25 6.7
8 2.92 7.6 2.90 7.6 2.88 7.6
9 2.61 8.5 2.59 8.5 2.57 8.5
10 2.37 9.4 2.36 9.3 2.33 9.4
11 2.16 10.2 2.16 10.2 2.13 10.2
12 1.99 11.1 1.98 11.1 1.95 11.2
13 1.86 11.9 1.84 11.9 1.83 11.9
14 1.73 12.8 1.71 12.9 1.70 12.9
15 1.62 13.7 1.62 13.6 1.60 13.7
16 1.53 14.5 1.53 14.4 1.51 14.4
17 1.46 15.2 1.44 15.3 1.43 15.3
18 1.39 15.9 1.39 15.9 1.36 16.0
19 1.31 16.9 1.30 16.9 1.29 17.0
20 1.27 17.5 1.25 17.6 1.24 17.7
21 1.21 18.3 1.22 18.1 1.21 18.0
22 1.15 19.2 1.16 19.0 1.14 19.2

V 23 1.13 19.7 1.11 19.8 1.09 19.9
24 1.07 20.7 1.07 20.7 1.06 20.6

"V 25 1.04 21.4 1.03 21.3 1.02 21.4
26 1.01 22.0 1.00 22.1 0.99 22.1
27 0.97 22.8 0.98 22.5 0.95 22.9
28 0.94 23.5 0.94 23.4 0.93 23.6
29 0.91 24.3 0.91 24.1 0.90 24.3

1 30 0.89 24.8 0.90 24.6 0.88 24.8

number of processors.

If the segment size gets too large then the number of segments will decrease causing a possible

unbalanced distribution of the file between the different processors. This will happen when the number

of segments approaches the number of processors. In this case some processors will receive a larger

percentage of the file than others, causing possible contention problems. As this happens the segment

size will approach the size of the block of tuples that each task will work on: 60. When this happens

two processors may start to operate on the same segment creating contention problems. As the input

file segment size increases in Tables 7 through 10 notice that all of the times are decreasing but the
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Table 9
1,000 Tuple Projection With Different Input File Segment Sizes

Input File
Segment Size: 256 Bytes 512 Bytes 1.024 Bytes 21048 Bytes

No. of IEffective Effective Effective Effective
Processors Time Processors Time Processors Time Processors Time Processors

1 3.43 1.0 2.74 1.0 2.40 1.0 2.24 1.0
2 1.74 1.9 1.39 1.9 1.21 1.9 1.13 1.9
3 1.16 2.9 0.92 2.9 0.81 2.9 0.76 2.9
4 0.88 3.9 0.70 3.9 0.62 3.8 0.57 3.8
5 0.70 4.8 0.57 4.8 0.50 4.7 0.47 4.6
6 0.58 5.8 0.47 5.7 0.41 5.7 0.39 5.7
7 0.51 6.7 0.41 6.6 0.35 6.7 0.33 6.6
8 0.45 7.5 0.36 7.5 0.31 7.6 0.29 7.4
9 0.40 8.4 0.32 8.4 0.28 8.4 0.27 8.2
10 0.36 9.4 0.29 9.3 0.25 9.4 0.24 9.1
11 0.34 9.8 0.28 9.6 0.24 9.7 0.22 9.8
12 0.30 11.2 0.24 11.0 0.22 10.9 0.20 10.8
13 0.30 11.2 0.24 10.9 0.21 11.0 0.20 10.8
14 0.26 12.8 0.22 12.3 0.19 12.3 0.18 12.2
15 0.26 12.8 0.22 12.3 0.19 12.6 0.18 12.4
16 0.24 13.8 0.20 13.6 0.17 13.7 0.16 13.6
17 0.26 13.0 0.20 13.2 0.18 13.2 0.16 13.3
18 0.23 14.9 0.18 14.4 0.16 14.3 0.14 15.2
19 0.22 15.2 0.18 14.7 0.16 14.8 0.15 14.7
20 0.19 17.5 0.15 17.3 0.14 16.9 0.12 17.2
21 0.21 16.2 0.17 15.6 0.16 14.3 0.14 15.4
22 0.19 17.4 0.16 17.0 0.14 16.9 0.13 17.1
23 0.19 17.7 0.17 15.6 0.13 17.1 0.13 16.8

*' 24 0.20 16.9 0.16 16.6 0.14 16.5 0.13 16.8

25 0.16 21.1 0.12 21.3 0.11 20.7 0.11 19.6
26 0.19 17.5 0.15 18.1 0.13 18.2 0.12 18.1
27 0.14 23.0 0.11 23.1 0.10 21.9 0.10 22.3
28 0.19 17.5 0.16 16.6 0.14 16.6 0.13 16.6
29 0.17 19.8 0.14 19.0 0.12 19.1 0.13 16.7
30 0.16 21.3 0.12 21.4 0.11 21.1 0.10 20.6

number of effective processors are staying about the same for runs with equal numbers of processors.

*By varying this parameter will make the algorithm run faster but not increase significantly the

amount of concurrency being performed. An optimal segment size will be one that is approximately

equal to no more than 6/2 in order to minimize the number of tuples residing on the border of two

segments. To prevent contention, a segment should not contain any more than 6/2 tuples. This is

because as two adjacent tasks progress, there will be a buffer of at least one segment between them.

Although 6/2 should be taken as an upper limit of the segment size, the number of tuples stored on

each processor should not differ by any more than approximately fifty percent. We have chosen fifty

percent since we want all data to be distributed across all processors as evenly as possible.
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Table 10
100 Tuple Projection With Different In ut File Segment Sizes

Input File
Segment Size: 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes

No. of Effective Effective Effective Effective
Processors Time Processors Time Processors Time Processors Time Processors

1 0.34 1.0 0.27 1.0 0.24 1.0 0.22 1.0
2 0.17 1.9 0.16 1.7 0.12 1.9 0.11 1.9
3 0.12 2.8 0.09 2.8 0.08 2.8 0.08 2.7
4 0.09 3.7 0.07 3.7 0.06 3.7 0.06 3.5
5 0.07 4.5 0.06 4.0 0.05 4.4 0.05 4.2
6 0.07 4.4 0.06 4.4 0.05 4.4 0.05 4.4
7 0.06 5.5 0.06 4.0 0.06 3.7 0.04 5.2
8 0.06 5.5 0.05 5.0 0.04 5.3 0.04 5.2
9 0.05 6.0 0.04 6.3 0.03 6.7 0.03 5.9
10 0.04 7.4 0.03 7.5 0.03 7.3 0.04 5.4
11 0.04 8.0 0.03 7.2 0.03 7.6 0.03 6.8
12 0.05 6.7 0.03 6.9 0.03 6.5 0.03 5.9
13 0.05 6.2 0.05 5.3 0.04 5.5 0.04 4.9
14 ' 03 8.9 0.03 8.0 0.03 7.8 0.03 6.8
15 0.04 6.9 0.04 6.6 0.03 6.4 0.03 5.6
16 0.03 9.0 0.03 7.7 0.03 7.2 0.03 7.0
17 0.04 7.6 0.03 7.5 0.03 7.2 0.03 5.9
18 0.04 8.3 0.03 7.7 0.03 7.1 0.03 6.2
19 0.04 8.3 0.03 7.7 0.03 7.8 0.03 6.6
20 0.02 12.0 0.02 11.2 0.02 10.4 0.02 8.0
21 0.03 9.3 0.04 6.6 0.03 7.7 0.03 5.8
22 0.03 8.6 0.03 8.6 0.03 7.8 0.03 5.6
23 0.03 9.1 0.03 8.5 0.03 7.3 0.03 7.2
24 0.03 9.1 0.03 7.4 0.02 8.2 0.03 6.9
25 0.02. 14.3 0.02 11.8 0.02 10.1 0.02 8.2
26 0.03 9.5 0.03 9.1 0.03 7.3 0.03 6.3
27 0.03 10.6 0.03 9.0 0.02 8.1 0.03 5.9
28 0.03 11.0 0.04 6.1 0.03 7.5 0.03 6.2
29 0.03 9.6 0.02 9.5 0.0 8.6 0.03 6.0
30 0.03 10.7 0.03 9.0 0.02 8.1 0.03 6.8

Tables 7 - 10 show that as the input file segment size approaches its optimal size, the execution

times for the 10,000 and 1,000 tuple projections decrease. For the 100 tuple relation the smallest possi-

ble segment size (256 bytes) was optimal so as we vary the segment size from 256, 512, 1024 and 2048

bytes, the execution times for runs with a single processor decrease while runs with maximum proces-

sors increases or become more sporadic.

4.3.3. Output File Segment Size

The reasons for varying the size of the output file segment size are the same as for the input file

except for the fact that the output file may be the input file for the next step in the query. An
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example of this is that this file may be just an intermediate file to be used as the input to the removal

of duplicates algorithm. If the number of processors working on different portions of a query will vary

then what may be optimal for one set of processors may not be optimal for another. See tables 11

through 14. The input file segment sizes will be 16,384 bytes for 10,000 tuple relation, 2,048 bytes for

1,000 tuple relation and 256 bytes for 100 tuple relation.

Table 11
10,000 Tuple Projection With Different Output File Segment Sizes

Output File
Segment Size: 256 Bytes 512 Bytes 1024 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 21.96 1.0 18.80 1.0 17.15 1.0
2 11.05 1.9 9.47 1.9 8.63 1.9
3 7.43 2.9 6.35 2.9 5.80 2.9
4 5.60 3.9 4.80 3.9 4.38 3.9
5 4.50 4.8 3.87 4.8 3.53 4.8
6 3.78 5.7 3.24 5.7 2.97 5.7
7 3.25 6.7 2.80 6.7 2.56 6.6
8 2.88 7.6 2.47 7.6 2.26 7.5
9 2.57 8.5 2.21 8.5 2.03 8.4
10 2.33 9.4 2.00 9.3 1.83 9.3

11 2.13 10.2 1.83 10.2 1.68 10.1
12 1.95 11.2 1.69 11.1 1.55 11.0
13 1.83 11.9 1.56 11.9 1.44 11.8
14 1.70 12.9 1.47 12.7 1.34 12.7
15 1.60 13.7 1.38 13.6 1.26 13.5
16 1.51 14.4 1.30 14.3 1.20 14.2
17 1.43 15.3 1.23 15.1 1.13 15.0
18 1.36 16.0 1.17 16.0 1.07 15.8
19 1.29 17.0 1.12 16.6 1.03 16.5

' 20 1.24 17.7 1.08 17.3 0.98 17.3
21 1.21 18.0 1.02 18.3 0.94 18.2

22 1.14 19.2 0.98 18.9 0.90 18.9
23 1.09 19.9 0.95 19.6 0.87 19.5

a 24 1.06 20.6 0.91 20.5 0.84 20.2

25 1.02 21.4 0.88 21.3 0.81 21.0

26 0.99 22.1 0.86 21.7 0.78 21.8
27 0.95 22.9 0.84 22.3 0.77 22.2

28 0.93 23.6 0.80 23.3 0.74 23.0
29 0.90 24.3 0.78 23.9 0.71 23.8
30 0.88 24.8 0.77 24.3 0.70 24.4

4.3.4. Ceiling Function

The problems associated with the ceiling function were discussed in section 3.1. See tables 15

through 20. The size or the last extra task (without the ceiling function) will be equal to:
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A Table 12
10,000 Tuple Projection With Different Output File Segment Sizes

Output File
Segment Size: 2048 Bytes 4096 Bytes 8192 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 16.29 1.0 15.97 1.0 15.80 1.0
2 8.21 1.9 8.06 1.9 8.00 1.9
3 5.51 2.9 5.41 2.9 5.36 2.9
4 4.19 3.8 4.09 3.9 4.04 3.9
5 3.37 4.8 3.30 4.8 3.26 4.8
6 2.83 5.7 2.78 5.7 2.73 5.7
7 2.44 6.6 2.39 6.6 2.37 6.6
8 2.15 7.5 2.11 7.5 2.09 7.5
9 1.93 8.4 1.89 8.4 1.87 8.4
10 1.76 9.2 1.71 9.3 1.69 9.3
11 1.60 10.1 1.56 10.1 1.55 10.1
12 1.47 11.0 1.45 10.9 1.43 11.0

% 13 1.38 11.7 1.34 11.8 1.33 11.8

14 1.28 12.6 1.26 12.6 1.25 12.6
15 1.21 13.4 1.18 13.4 1.17 13.4
16 1.15 14.0 1.12 14.2 1.10 14.2
17 1.08 14.9 1.06 14.9 1.05 15.0
18 1.03 15.7 1.01 15.7 1.00 15.7
19 0.99 16.4 0.96 16.5 0.95 16.5
20 0.94 17.2 0.92 17.2 0.91 17.3
21 0.90 18.0 0.88 18.0 0.87 18.0
22 0.87 18.6 0.85 18.6 0.84 18.6

* 23 0.83 19.4 0.81 19.5 0.81 19.4
24 0.80 20.2 0.79 20.1 0.78 20.1
25 0.78 20.8 0.76 20.7 0.77 20.4
26 0.75 21.4 0.74 21.3 0.74 21.3
27 0.73 22.2 0.72 22.0 0.71 22.0
28 0.71 22.6 0.69 22.8 0.69 22.8
29 0.69 23.4 0.69 23.0 0.67 23.3
30 0.67 24.1 0.66 23.9 0.65 24.0

6f+, p

Since the maximum value of ,+, will be: 6,+, < p, it may be very small compared to the actual value

of 6. As can be seen with the projections of 100 and 1,000 tuples, there is a noticeable increase in

efficiency. Not so with the 10,000 tuple projection, the value of 60+1 will be very small compared to

the computed value of delta. With our current configuration (I < p 5 30) thus (333 < 6 < 10,000).

Ve shall see later that there is another reason why the 10,000 tuple projection was prevented from

showing the benefit from the ceiling function.
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Table 13
1,000 Tuple Projection With Different Output File Sexment Sizes

Output File
Segment Size: 256 Bytes 512 Bytes 1 024 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Timu Processors

1 2.24 1.0 1.96 1.0 1.82 1.0
2 1.13 1.9 0.99 1.9 0.92 1.9
3 0.76 2.9 0.66 2.9 0.64 2.8
4 0.57 3.8 0.50 3.8 0.47 3.8
5 0.47 4.6 0.40 4.8 0.38 4.7
6 0.39 5.7 0.34 5.6 0.31 5.7

* "- 7 0.33 6.6 0.29 6.5 0.27 6.6
,' V 8 0.29 7.4 0.26 7.4 0.24 7.4

V 9 0.27 8.2 0.23 8.3 0.22 8.2
10 0.24 9.1 0.21 9.1 0.19 9.1
11 0.22 9.8 0.20 9.6 0.19 9.5
12 0.20 10.8 0.18 10.8 0.17 10.7
13 0.20 10.8 0.18 10.6 0.17 10.5
14 0.18 12.2 0.15 12.3 0.14 12.2
15 0.18 12.4 0.15 12.5 0.15 12.0
16 0.16 13.6 0.14 13.5 0.13 13.4
17 0.16 13.3 0.14 13.2 0.14 12.9
18 0.14 15.2 0.13 14.5 0.12 14.0

V 19 0.15 14.7 0.14 13.6 0.12 14.2
20 0.12 17.2 0.11 16.8 0.10 16.8
21 0.14 15.4 0.12 15.6 0.11 15.2
22 0.13 17.1 0.11 16.8 0.11 15.9
23 0.13 16.8 0.11 17.0 0.11 16.4
24 0.13 16.8 0.12 16.1 0.11 15.7
25 0.11 19.6 0.10 19.6 0.08 20.4
26 0.12 18.1 0.10 18.0 0.10 17.4
27 0.10 22.3 0.09 21.8 0.08 21.7
28 0.13 16.6 0.11 16.6 0.11 16.4
29 0.13 16.7 0.10 18.8 0.10 18.1
30 1 0.10 20.6 0.09 21.3 0.09 19.9

4.3.5. One Procemor Running Slower

After making many improvements to the projection algorithm, the event logger was employed

to see if there was any other places where improvements could be made. It was here that it was

noticed that one processor (the parent processor) was running substantially slower than the rest of the

processors. This problem was experienced when projecting the larger relation (10,000 tuples) and was

only noticed occasionally with the 1,000 tuple relation. The event log for projecting a 10,000 tuples

relation running on 30 processors is shown in Fig. 3.

Processor execution times may vary for several reasons. There may be other processes running
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Table 14
100 Tu ple Projection With Different Output File Segment Sizes

Output File
Segment Size: 256 Bytes 512 Bytes 1,024 Bytes

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 0.24 1.0 0.21 1.0 0.20 1.0
2 0.12 1.9 0.11 1.8 0.12 1.6
3 0.08 2.8 0.07 2.8 0.08 2.4
4 0.06 3.7 0.06 3.5 0.05 3.5
5 0.05 4.4 0.05 3.7 0.04 4.3
6 0.05 4.4 0.05 4.3 0.05 4.0
7 0.06 3.7 0.04 4.9 0.04 4.1
8 0.04 5.3 0.04 4.9 0.04 4.7
9 0.03 6.7 0.03 5.9 0.03 5.9
10 0.03 7.3 0.03 6.9 0.03 5.6
11 0.03 7.6 0.03 7.0 0.03 5.9
12 0.03 6.5 0.03 6.1 0.03 5.6
13 0.04 5.5 0.04 5.2 0.04 4.8
14 0.03 7.8 0.03 6.7 0.03 5.4
15 0.03 6.4 0.03 5.8 0.03 5.3
16 0.03 7.2 0.03 6.7 0.03 6.1
17 0.03 7.2 0.04 4.5 0.04 4.5
18 0.03 7.1 0.03 6.1 0.03 5.1
19 0.03 7.8 0.02 7.2 0.04 4.2
20 0.02 10.4 0.03 6.2 0.03 6.4
21 0.03 7.7 0.03 6.3 0.04 4.8
22 0.03 7.8 0.03 6.6 0.05 3.5
23 0.03 7.3 0.02 7.5 0.03 5.5
24 0.02 8.2 0.04 5.1 0.03 6.6
25 0.02 10.1 0.02 8.4 0.03 6.2
26 0.03 7.3 0.03 6.6 0.04 4.7
27 0.02 8.1 0.03 6.5 0.03 5.2
28 0.03 7.5 0.03 6.6 0.03 5.4
29 0.02 8.6 0.03 6.2 0.03 5.8
30 0.02 8.1 0.02. 7.2 0.03 6.3

on a subset of the processors that are not a product of the current application, such as the window

* manager or other operating systems processes. Other reasons for a certain processor running at a

slower speed could be contention. Contention can occur since only one processor can access a particu-

lar memory module at a time. If heavily used shared variables are all stored on one processor's

memory, there will develop a backlog of access requests for those particular locations residing in one

processor's memory.

With varying processor execution speeds it may be advantageous to give the faster processors

slightly more tuples and consequently the slower processors slightly less tuples. Since only one proces-
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- Table 15 Table 16
10,000 Tuple Projection 10,000 Tuple Projection

"V Without Ceiling Function With Ceiling Function
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency

1 15.80 1.0 1.0000 1 15.81 1.0 1.0000
2 8.00 1.9 0.9871 2 7.99 1.9 0.9889
3 5.36 2.9 0.9814 3 5.35 2.9 0.9839
4 4.04 3.9 0.9766 4 4.05 3.9 0.9755
5 3.26 4.8 0.9691 5 3.26 4.8 0.9687
6 2.73 5.7 0.9629 6 2.74 5.7 0.9618
7 2.37 6.6 0.9519 7 2.36 6.6 0.9543
8 2.09 7.5 0.9452 8 2.09 7.5 0.94-13
9 1.87 8.4 0.9376 9 1.87 8.4 0.9349
10 1.69 9.3 0.9313 10 1.69 9.3 0.9321
11 1.55 10.1 0.9240 11 1.56 10.1 0.9203
12 1.43 11.0 0.9202 12 1.43 11.0 0.9173
13 1.33 11.8 0.9098 13 1.33 11.8 0.9084
14 1.25 12.6 0.9016 14 1.25 12.5 0.8995
15 1.17 13.4 0.8966 15 1.17 13.4 0.8976
16 1.10 14.2 0.8904 16 1.11 14.2 0.8895
17 1.05 15.0 0.8845 17 1.05 15.0 0.8841
18 1.00 15.7 0.8757 18 1.00 15.7 0.8745
19 0.95 16.5 0.8686 19 0.96 16.4 0.866.1
20 0.91 17.3 0.8657 20 0.92 17.1 0.8559
21 0.87 18.0 0.8574 21 0.87 18.0 0.8591
22 0.84 18.6 0.8495 22 0.84 18.6 0.8.491
23 0.81 19.4 0.8449 23 0.82 19.2 0.8368
24 0.78 20.1 0.8409 24 0.78 20.0 0.8368
25 0.77 20.4 0.8183 25 0.75 20.8 0.8352
26 0.74 21.3 0.8214 26 0.73 21.4 0.8238
27 0.71 22.0 0.8163 27 0.71 22.0 0.8185
28 0.69 22.8 0.8163 28 0.69 22.8 0.8166
29 0.67 23.3 0.8045 29 0.67 23.4 0.8078
30 0.65 24.0 0.8012 30 0.66 23.8 0.7960

sor is running slower, we would like to distribute the slower processor's extra tuples that are remain-

ing to be processed after all the other processors have finished their blocks, among the rest of the pro-

cessors. Comparing the execution times for the faster and the slower processors will give us a ratio of

their speeds, 0:

=faster proessor8 tinte

slower processor8 time

< 1.0
This ratio of the processors' speed will give us the percentage 46 of 6, the number of tuples opera-ted

on by one processor, that will have been completed by the slower processor when tile rest of the pro-

cessors have completed their 6 tuples. The task division should be arranged so that. the slower
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Table 17 Table 18
1,000 Tuple Projection 1,000 Tuple Projection

Without Ceiling Function With Ceiling Function
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency
1 1.82 1.0 1.0000 1 1.84 1.0 1.0000
2 0.92 1.9 0.9891 2 0.92 1.9 0.9951:
3 0.64 2.8 0.9463 3 0.64 2.8 0.95241
4 0.47 3.8 0.9701 4 0.48 3.7 0.9476
5 0.38 4.7 0.9571 5 0.38 4.7 0.9544
6 0.31 5.7 0.9550 6 0.32 5.6 0.9443
7 0.27 6.6 0.9428 7 0.29 6.2 0.8929
8 0.24 7.4 0.9319 8 0.24 7.5 0.9414
9 0.22 8.2 0.9204 9 0.22 8.2 0.9134
10 0.19 9.1 0.9196 10 0.20 9.0 0.9082
11 0.19 9.5 0.8657 11 0.18 10.1 0.9248
12 0.17 10.7 0.8924 12 0.17 10.6 0.8903
13 0.17 10.5 0.8142 13 0.15 11.6 0.8946
14 0.14 12.2 0.8756 14 0.14 12.5 0.8986
15 0.15 12.0 0.8057 15 0.14 13.1 0.8768
16 0.13 13.4 0.8413 16 0.13 13.3 0.8369
17 0.14 12.9 0.7644 17 0.12 14.3 0.8435
18 0.12 14.0 0.7832 18 0.12 14.9 0.8304
19 0.12 14.2 0.7521 19 0.11 15.7 0.8291
20 0.10 16.8 0.8441 20 0.11 15.9 0.7996
21 0.11 15.2 0.7275 21 0.11 16.3 0.7801
22 0.11 15.9 0.7243 22 0.10 17.7 0.8077
23 0.11 16.4 0.7170 23 0.09 18.4 0.8041
24 0.11 15.7 0.6543 24 0.09 19.3 0.8069
25 0.08 20.4 0.8175 25 0.08 20.6 0.8249
26 0.10 17.4 0.6702 26 0.08 20.6 0.7937
27 0.08 21.7 0.8047 27 0.08 20.9 0.7774
28 0.11 16.4 0.5873 28 0.08 22.3 0.7978
29 0.10 18.1 0.6271 29 0.08 22.7 0.7833
30 0.09 19.9 0.6658 30 0.07 23.6 0.7881

processor will only process at most 0 of the tuples. Depending on the integer value of 6, this will

leave at least (r - 0) for the (p - 1) fast processors. These remaining tuples will be divided among

the (p - 1) processors as before. Thus the formula for computing the new block size with a speed

ratio of 0 is:

P- I
Which processor gets which block of tuples can be specified by first allocating the (p - 1) full-sized

blocks in parallel and then calling the last smaller sized block of tuples on the slower processor.
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Table 19 Table 20
100 Tuple Projection 100 Tuple Projection

Without Ceiling Function With Ceiling Function

No. of Effective No. of Effective
Processors Time Processors Efficiency Processors Time Processors Efficiency

1 0.34 1.0 1.0000 1 0.34 1.0 1.0000
2 0.17 1.9 0.9599 2 0.19 1.7 0.8958
3 0.12 2.8 0.9346 3 0.12 2.8 0.9595
4 0.09 3.7 0.9320 4 0.09 3.7 0.9461
5 0.07 4.5 0.9120 5 0.07 4.5 0.9115
6 0.07 4.4 0.7392 6 0.06 5.0 0.8429
7 0.06 5.5 0.7962 7 0.05 5.8 0.8426
8 0.06 5.5 0.6925 8 0.05 6.1 0.7684
9 0.05 6.0 0.6678 9 0.04 6.9 0.776?
10 0.04 7.4 0.7446 10 0.04 7.7 0.7727
11 0.04 8.0 0.7323 11 0.04 7.5 0.6862
12 0.05 6.7 0.5662 12 0.04 7.6 0.6359
13 0.05 6.2 0.4796 13 0.03 9.1 0.7046
14 0.03 8.9 0.6419 14 0.03 8.7 0.6283
15 0.04 6.9 0.4604 15 0.03 9.3 0.6209
16 0.03 9.0 0.5662 16 0.03 10.7 0.6688
17 0.04 7.6 0.4470 17 0.04 7.7 0.4552
18 0.04 8.3 0.4644 18 0.03 10.2 0.5702
19 0.04 8.3 0.4387 19 0.03 10.5 0.5557
20 0.02 12.0 0.6010 20 0.03 10.4 0.5239
21 0.03 9.3 0.4468 21 0.02 13.0 0.6199
22 0.03 8.6 0.3943 22 0.02 11.7 0.5362

23 0.03 9.1 0.3958 23 0.02 12.6 0.5492
24 0.03 9.1 0.3806 24 0.03 10.6 0.4442
25 0.02 14.3 0.5732 25 0.02 12.9 0.5195
26 0.03 9.5 0.3690 26 0.02 14.5 0.5600
27 0.03 10.6 0.3930 27 0.02 14.4 0.5336
28 0.03 11.0 0.3957 28 0.02 12.7 0.4563
29 0.03 9.6 0.3314 29 0.02 14.0 0.4854
30 0.03 10.7 0.3592 30 0.02 14.3 0.4790

The speed ratio of our slow processor to an average faster one in a 30 processor run was approx-

imately 0.85 during a 10,000 tuple projection. Thus the slower processor will only have to project at

most 285 tuples compared to 335 for the faster processors. Looking at the new event log (Fig. 4) for

(ie next modification, you will see that all processors are finishing closer together minimizing idle

time. Comparing the times (Tables 21 and 22) for the previous best run and the adaptation for a

slower processor run we will see an drop of .10 seconds in execution time for a 30 processor run. This

corresponds to an increase in the effective processors of 4.0. The ratio 0.85 was used for all runs with

2 through 30 processors thus accounting for a slight speed drop in the 2 through 4 processor runs.

This can be fixed by computing a distinct speed ratio for runs with different processor counts.
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Table 21 Table 22
10,000 Tuple Projection 10,000 Tuple Projection
With Initial Block Size Modified Block Size, Speed Ratio: 0.85

No. of Effective No. of Effective
Processors Time Processors Efficiency Processors Time Processors Efficiency

1 15.81 1.0 1.0000 1 15.84 1.0 1.0000
2 7.99 1.9 0.9889 2 8.88 1.7 0.8913
3 5.35 2.9 0.9839 3 5.56 2.8 0.9486
4 4.05 3.9 0.9755 4 4.08 3.8 0.9701
5 3.26 4.8 0.9687 5 3.24 4.8 0.9773
6 2.74 5.7 0.9618 6 2.69 5.8 0.9812

r. 7 2.36 6.6 0.9543 7 2.30 6.8 0.9823
8 2.09 7.5 0.9443 8 2.01 7.8 0.9827

. -.. 9 1.87 8.4 0.9349 9 1.78 8.8 0.9837

10 1.69 9.3 0.9321 10 1.61 9.8 0.9805

11 1.56 10.1 0.9203 11 1.46 10.7 0.9811
12 1.43 11.0 0.9173 12 1.35 11.6 0.9741

* 13 1.33 11.8 0.9084 13 1.25 12.6 0.9741
14 1.25 12.5 0.8995 14 1.16 13.6 0.9725
15 1.17 13.4 0.8976 15 1.09 14.4 0.9663
16 1.11 14.2 0.8895 16 1.02 15.5 0.9699

* 17 1.05 15.0 0.8841 17 0.96 16.4 0.9671
18 1.00 15.7 0.8745 18 0.92 17.0 0.9479
19 0.96 16.4 0.8664 19 0.88 17.9 0.9458
20 0.92 17.1 0.8559 20 0.82 19.1 0.9595
21 0.87 18.0 0.8591 21 0.78 20.1 0.9573
22 0.84 18.6 0.8491 22 0.75 21.0 0.9550
23 0.82 19.2 0.8368 23 0.72 21.8 0.9510
24 0.78 20.0 0.8368 24 0.70 22.6 0.9420

25 0.75 20.8 0.8352 25 0.67 23.5 0.9411

26 0.73 21.4 0.8238 26 0.64 24.4 0.9407

A 27 0.71 22.0 0.8185 27 0.62 25.1 0.9329

28 0.69 22.8 0.8166 28 0.60 26.0 0.9294

29 0.67 23.4 0.8078 29 0.58 26.9 0.9284

30 0.66 23.8 0.7960 30 0.56 27.8 0.9277

5. Removal of Duplicates

I When new tuples are created by projecting nonkey attributes there is always the potential for

duplication of tuples. The option of whether to allow duplication of tuples or not will be up the user.

If the user allows duplicates then there is nothing extra to do. If duplicates are not desired then a

method to remove them must be implemented. There are several different methods available for

removing duplicates. Some of these included traversing the file r times and excluding any duplicates,

first sorting the file and then removing any duplicates, and using a chain-linked hash table to enter

tupies and then discard any duplicates that happen to follow. The hashing method was decided upon

because its execution time would be linear with respect to file size. There are three main parts in the

26

Am



removal of duplicates by hashing algorithm: hashing the tuples into the chain-linked hash table, deter-

mining the size of and allocating the output file without duplicates and lastly, unloading the hash table

into the output file in parallel.

5.1. Hashing the Tuples

Duplicates will be removed by placing the first occurrence of every tuple into a chained bucket

hash table and discarding all subsequent duplicates. A hash table must be allocated and its size should

be a function of the number of tuples in the initial file.

If the hash table and all of its buckets had to be allocated on one processor's memory then

several problems would develop. As the file size increases, the amount of memory on one processor

may not be able to hold all of the tuples, severely restricting the maximum size of a file. Secondly by

storing all of the tuples in one processor's memory will cause contention because only one processor

can access another processor's memory at a time and seriously degrade performance. It would be nice

, '~-if we could distribute the rows of the hash table across all of the memories and allow chains of buckets

to run from processor to processor. The Butterfly has a mechanism for distributing rows of an array
*-, .-

across all the memories of the machine: This mechanism is called a scatter matrix and it will distri-

bute anNI X N array by allocating the M rows to different processor's memory. Each row will be a

vector of size N and can be accessed using standard C syntax (A[i][j]). This will reduce contention for

each row by a factor of p, the number of processors. Also this will increase the maximum size of the

file to be operated on by allowing the file to occupy all of the processors' memory. This scatter matrix

is maintained by a vector of M pointers each of which points to the next row in the array. This vector

is stored on one processor's memory thus causing a secondary place of contention, however, this con-

tention can be removed by making a local copy of this vector at each processor that will be accessing

the scatter matrix.

The three fields that make up each slot of the hash table are a pointer to the first bucket (ini-

tialized to NULL), a counter field to keep track of the number of tuples in this chain and a lock field

(both initialized to 0). The lock field will allow only one processor to manipulate a particular row at a

time. Since each row of the hash table has its own lock, only those processors with tuples that have

27



hashed to that row will have to wait. By choosing a large enough hash table, the number of requests

for the same row will be kept to a minimum. Only the code involved with chains will be locked. This

is kept to a minimum to prevent processor wait.

%. Since each new tuple must be compared against those already in the hash table, we would like

to keep the length of the chains to a minimum. A simple starting size for the hash table that would
A

F',. keep the chain length very short would be r, the number of tuples in the file. Not knowing the per-

centage of duplicates that would be deleted will give only an upper limit on the number of tuples that

will be inserted into the hash table. If there are a lot of duplicates that will be removed then most of

the rows will be empty. This can be very wasteful if the file size is very large ( > 10,000 tuples).

Assuming we do not know if any set of the attributes will form a key then we can put an upper limit

on the average number of tuples in each row. If we would like an average of at most o' tuples to be

inserted into each row then the number of rows M should be M - r/o'. Some rows may exceed a,
* .

tuples but the average will always be less than or equal to or. The tuples within a chain will be sorted
*..,

so that on the average only one-half of the chain will have to be searched to see if it has already been

inserted.

The hash function used here is to add up the value of every group of 16 bits in a tuple and

return the remainder of this value divided by the table size. This function may be altered if neces-

sary.

%". 5.2. Allocating a New File

0 Here a new file that is large enough to accommodate the remaining distinct tuples must be

created. Each row of the hash table has a count field with the number of tuples in that row. By

adding up this count fields will give us the number of tuples in the new file. Now a new file can be

statically predeclared with the correct size. Depending on the size of the hash table, the adding up of

the count fields can progress in parallel. This step was done serially in this implementation since for

small hash tables the overhead needed to start several processors to traverse the table will not save

very much time if any at all.
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-" The RAMFiIe parameters (segment size and the number of segments) will be chosen based upon

our experience with the projection operation: the segment size should be no more than 06/2

5.3. Unloading the Hash Table

The task of unloading the hash table into the newly created file will be done by partitioning the

hash table into p sections. Each of the p sections will consist of at most [M/pl rows of the hash table.

Every task will add up the total amount of tuples in its block of rows, then it will atomically retrieve

and increment a EOF pointer by the number of tuples in its block. This atomic operation will return

the current EOF position in the new file and increment it by the number of tuples in its range thus

reserving enough space to accommodate all of its tuples. Finally the task will loop through its set of

rows and write each tuple into the new file releasing each bucket in turn.

5.4. Removal of Duplicates Results

The removal of duplicates algorithm was implemented and timed using 1 through 30 equivalent

processors on the Butterfly and the relations with 10,000, 1,000 and 100 tuples. For each distinct rela-

P.tion size, we selected 3 unique relations containing 100o, 50% and 10%7 distinct tuples, respectively.

Thus for each distinct relation there will be a 007, 50% and 90% reduction in the size of the output

relation. Input and output relations will have RAMile parameters as developed in the projection sec-

tion. The results of performing the removal of duplicates algorithm can be seen in Tables 23 - 25.

' Removing duplicates from the larger relations was the most efficient, with efficiency decreasing

as the number of distinct tuples decreases. There are several important reasons for this observation.

The main reason for the drop in efficiency as the size of the input relation decreases is because there is

less work for each processor to do and the overhead necessary to initialize and start several smaller

tasks becomes a larger percentage of the actual execution time. Another problem occurs when work-

ing on smaller relations. Suppose we divide 100 tuples into blocks of 5 tuples. This will create 20

tasks that can be operated on by 20 different processors. Using 21, 22, 23 or 24 processors will not

allow any more parallelization since all 20 tasks will have been allocated. Not until we use 25 proces-

sors will the task size will be reduced to 4 tuples. From here (25 tasks) no additional tasks are created
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Table 23
10,000 Tuple Removal of Duplicates

10,000 5,000 1,000
Distinct Distinct Distinct

No. of Effective Effective Effective
Processors TimeI Processors Time Processors Time Processors

1 87.28 1.0 60.63 1.0 27.78 1.0
2 49.32 1.7 33.55 1.8 17.76 1.5
3 37.93 2.3 23.33 2,5 13.17 2.1
4 31.09 2.8 17.38 3.4 10.50 2.6
5 26.52 3.2 13.24 4.5 8.75 3.1
6 21.37 4.0 11.03 5.4 7.67 3.6
7 17.82 4.8 9.49 6.3 6.87 4.0
8 14.08 6.1 8.28 7.3 6.42 4.3
9 12.56 6.9 7.44 8.1 5.73 4.8
10 10.96 7.9 6.99 8.6 5.36 5.1
11 9.47 9.2 6.19 9.7 5.09 5.4
12 8.56 10.1 5.82 10.4 4.80 5.7
13 7.99 10.9 5.35 11.3 4.54 6.1
14 7.23 12.0 5.01 12.1 4.34 6.3
15 6.64 13.1 4.76 12.7 4.23 6.5
16 6.31 13.8 4.68 12.9 4.01 6.9
17 5.91 14.7 4.48 13.5 4.01 6.9
18 5.61 15.5 4.31 14.0 3.80 7.3
19 5.29 16.4 4.09 14.7 3.78 7.3
20 5.11 17.0 4.10 14.7 3.66 7.5
21 4.97 17.5 3.95 15.3 3.58 7.7
22 4.69 18.5 3.84 15.7 3.49 7.9
23 4.53 19.2 3.81 15.8 3.47 8.0
24 4.38 19.9 3.76 16.1 3.41 8.1

'. 25 4.32 20.1 3.66 16.5 3.36 8.2
26 4.13 21.1 3.61 16.7 3.32 8.3
27 4.05 21.5 3.52 17.1 3.27 8.4
28 3.98 21.9 3.50 17.3 3.26 8.5
29 3.94 22.1 3.48 17.3 3.21 8.6
30 3.85 22.6 3.40 17.7 3.18 8.7

until we use 34 processors, giving us a block size of 3 tuples. This particular problem is only relevant

when the number of tuples approaches the number of processors.

The second major problem concerns the RAMFile allocation and creation stage. As pointed out

previously, RAIMFile creation is a serial operation that must know ahead of time how much memory

to reserve for the new file. Since the file must be allocated in several segments, the time necessary to

allocate each segment becomes a major contributor to the execution time as the number of processors

increases. We have placed an lower limit of 2 segments per processor to allow a buffer of one segment

between two consecutive tasks. (A more detailed formula which allows the computation of the correct
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Table 24
1,000 Tuple emoval of Duplicates

1,000 500 100
Distinct Distinct Distinct

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 4.66 1.0 4.14 1.0 3.76 1.0
2 3.21 1.4 2.82 1.4 2.56 1.4
3 2.44 1.9 2.18 1.8 2.03 1.8
4 2.05 2.2 1.87 2.2 1.77 2.1
5 1.82 2.5 1.71 2.4 1.56 2.4
6 1.67 2.7 1.58 2.6 1.48 2.5
7 1.59 2.9 1.54 2.6 1.45 2.5
8 1.51 3.0 1.47 2.8 1.36 2.7
9 1.49 3.1 1.43 2.8 1.33 2.8
10 1.43 3.2 1.40 2.9 1.32 2.8
11 1.40 3.3 1.39 2.9 1.29 2.9

12 1.37 3.3 1.40 2.9 1.29 2.f#
13 1.38 3.3 1.37 3.0 1.27 2.9
14 1.41 3.3 1.38 2.9 1.26 2.9

0-. 15 1.39 3.3 1.38 2.9 1.26 2.9
16 1.38 3.3 1.37 3.0 1.23 3.0
17 1.37 3.3 1.37 3.0 1.23 3.0
18 1.37 3.3 1.35 3.0 1.22 3.0
19 1.37 3.3 1.37 3.0 1.20 3.1
20 1.34 3.4 1.36 3.0 1.24 3.0
21 1.34 3.4 1.34 3.0 1.24 3.0
22 1.33 3.4 1.35 3.0 1.23 3.0
23 1.35 3.4 1.36 3.0 1.22 3.0
24 1.32 3.5 1.37 3.0 1.22 3.0
25 1.31 3.5 1.38 3.0 1.24 3.0
26 1.36 3.4 1.34 3.0 1.26 2.9
27 1.38 3.3 1.38 2.9 1.26 2.9
28 1.40 3.3 1.37 3.0 1.29 2.9
29 1.39 3.3 1.41 2.9 1.28 2.9
30 1.41 3.3 1.41 2.9 1.26 2.9

% segment size will be developed below.)

0 Although the time necessary to allocate a RAMFile may only be a small percentage of the exe-

cution time when only one processor is being utilized, this is not so when several processors are

involved. For each timing of the algorithm using varying relation sizes and number of processors,

intermediate times were measured to observe how long it was taking to allocate the new RAMFiles

serially. From these intermediate times it was verified that the time to allocate a RAMFile was a con-

stant that did not vary with the number of processors. To demonstrate the effect of not having to

predeclare the size of the new RAMvFile we deducted in Table 26 the time necessary to allocate the file
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Table 25
100 Tuple Removal of Duplicates

100 50 10
Distinct Distinct Distinct

No. of Effective Effective Effective
Processors Time Processors Time Processors Time Processors

1 1.22 1.0 0.86 1.0 0.59 1.0
2 0.98 1.2 0.71 1.2 0.45 1.2
3 0.90 1.3 0.60 1.4 0.37 1.5
4 0.86 1.4 0.58 1.4 0.35 1.6
5 0.83 1.4 0.56 1.5 0.33 1.7
6 0.84 1.4 0.55 1.5 0.32 1.8
7 0.88 1.3 0.58 1.4 0.34 1.7
8 0.88 1.3 0.60 1.4 0.36 1.6
9 0.89 1.3 0.62 1.3 0.37 1.5
10 0.91 1.3 0.61 1.4 0.36 1.5
11 0.96 1.2 0.65 1.3 0.38 1.5

.J. 12 0.94 1.3 0.64 1.3 0.38 1.5
% 13 0.94 1.2 0.65 1.3 0.38 1.5

14 0.98 1.2 0.67 1.2 0.41 1.4
15 0.97 1.2 0.66 1.2 0.40 1.4
16 1.00 1.2 0.68 1.2 0.41 1.4

, 17 0.98 1.2 0.70 1.2 0.42 1.4
18 1.02 1.2 0.71 1.2 0.42 1.3
19 1.04 1.1 0.67 1.2 0.45 1.2
20 1.00 1.2 0.71 1.2 0.44 1.3
21 1.02 1.1 0.72 1.1 0.46 1.2
22 1.03 1.1 0.73 1.1 0.49 1.1
23 1.08 1.1 0.77 1.1 0.50 1.1
24 1.06 1.1 0.77 1.1 0.47 1.2
25 1.05 1.1 0.75 1.1 0.57 1.0
26 1.08 1.1 0.78 1.1 0.53 1.1
27 1.06 1.1 0.79 1.0 0.56 1.0
28 1.10 1.1 0.81 1.0 0.57 1.0
29 1.08 1.1 0.82 1.0 0.56 1.0
30 1.09 1.1 0.79 1.0 0.58 1.0

from the execution times for a relation that contains 10,000 distinct tuples and recalculated the

effective speedup, placing the additional results in the last two columns. As can be seen the difference

between effective processors increases as the number of processors increases because the file creation

time becomes a larger percentage of the total execution time. If there were some way to reduce the

time it takes to allocate the new RAMFile it would greatly improve the execution times for all sets of

execution parameters especially those with the smaller relation sizes.
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Table 26
p.-. 10,000 Tuple Removal of Duplicates

10,000 Distinct Tuples
,___ With RAMFile Creation Time Without RAMFile Creation Time: 0.91 sec

No. of Effective Effective
-Processors Time Processors Time Processors

1 87.28 1.0 86.37 1.0
2 49.32 1.7 48.41 1.8
3 37.93 2.3 37.02. 2.3
4 31.09 2.8 30.18 2.9
5 26.52 3.2 25.61 3.4

N 6 21.37 4.0 20.46 4.2
7 17.82 4.8 16.91 5.1

,8 14.08 6.1 13.17 6.6

9 12.56 6.9 11.65 7.4
10 10.96 7.9 10.05 8.6
11 9.47 9.2 8.56 10.1
12 8.56 10.1 7.65 11.3
13 7.99 10.9 7.08 12.2
14 7.23 12.0 6.32 13.7
15 6.64 13.1 5.73 15.1
16 6.31 13.8 5.40 16.0
17 5.91 14.7 5.00 17.3
18 5.61 15.5 4.70 18.4
19 5.29 16.4 4.38 19.7
9" 20 5.11 17.0 4.20 20.6
21 4.97 17.5 4.06 21.3
22 4.69 18.5 3.78 22.8
23 4.53 19.2 3.62 23.9
24 4.38 19.9 3.47 24.9
25 4.32 20.1 3.41 25.3
26 4.13 21.1 3.22 26.8
27 4.05 21.5 3.14 27.5
28 3.98 21.9 3.07 28.1
29 3.9.1 22.1 3.03 28.5
30 3.85 22.6 2.94 29.4

6. The Selection Operation

Two methods for performing the selection operation will be demonstrated below and analyzed.

Similar to the projection operation, the selection algorithm will entail file division, selection of tuples

and reunion of output. Since the output file must be statically predeclared to the proper size, we will

require an extra step of computing the number of tuples being selected and allocating a large enough

output file so that they can be inserted into it. We will look at two ways to accomplish this, either by

saving all of the selected tuples in a table (memory permitting) or just keeping a list of the positions of

the selected tuples.
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in performing the selection operation, there are several things that can be incorporated from the

project operation. These will include the methods of file division and RAMFiIe distribution parame-

ters. From the removal of duplicates algorithm will be the use of a hash table scattered across all of

. the processors' memories. Also borrowed from the removal of duplicates algorithm will be the method

of computing the output file size and output file creation.

6.1. File Division

The relation will be divided up among all of the available processors in equal sized blocks as

with the projection operation. Initially we will assume that all processors are executing at approxi-

mately the same speed, so for the initial block size 6 we will start with 6 = Fr/p1

8.2. Selection of Tuples

6.2.1. Selected Address Table Method
-..

Depending on the amount of main memory or the number of processors available will determine

which of the following two algorithms will be used. The first algorithm will not store the actual tuples

after selecting them, rather it will just remember the position of the tuple within the input file and

increment a tuple counter. Each task will scan its block of tuples and remember the positions of the

tuples that are selected in a global array of integers. Each successive newly selected tuple will be

placed in the next adjacent slot in the table. The end of the table will be remembered by a global

EOT (end of table) pointer. The incrementing of this EOT pointer will have to be an atomic opera-

tion.

With the projection operation the EOF pointer was unsatisfactory since it serialized the actual

write operations to the output file and because several tuples resided in one segment this caused a

backlog of writes, severely degrading performance. With the EOT pointer, however, the only serial

code is the actual atomic incrementing of the pointer. This operation takes approximately 50 micro-

seconds and the only transfer of data will be just an integer transfer which is only four bytes in length.

The major drawback with using a selected address table is that all tuples that were selected will
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have to be reread back into memory again so that they can be written back out to the output file. It

takes approximately 7.9 seconds to read in 10,000 tuples on one processor, so if the number of selected

tuples approaches the number of tuples in the relation you could be adding approximately 33% to the

1/0 time of the selection.

6.2.2. Hash Table Method

In order to avoid reading selected tuples into memory twice, we would like to be able to save all

*of the selected tuples in main memory while the new output file was being sized and created. Also we

would like to keep this very dynamic so that only enough main memory to hold the selected tuples

will be allocated. Using dynamic memory allocation in conjunction with several linked lists will allow

us to only allocated only the memory that we need and an easy way to retrieve it. Each task will

have its own linked list to prevent contention for the root pointer. All of the linked lists will be stored

together in a global scatter matrix to prevent contention also. Associated with each linked list will be

a counter variable to account for the number of tuples in each linked list.

Each task will read in its tuples and if it fulfills the selection requirements will be inserted into

the front of its linked list. Next the counter associated with this list will be atomically incremented to

account for the new tuple. A possible problem here is the fact that each linked list will not be the

same size as any of the others. This will be discussed later.

6.3. Reunion of Output

6.3.1. Selected Address Table Method

Before any tuples can be placed into the output file, the file's size must first be determined and

then allocated. This step is a problem because file creation is a serial operation and its execution time

is relative to the size of the new file. Since the global EOT pointer contains the index into the table of

* the last tuple to be selected we know how many tuples have been selected. Some file creation times

are shown in Table 27 with their sizes and RAWile parameters.

As is evident from Table 27 the file creation time is mostly dependent on the number of segments in

the file as compared to total file size. Taking this into consideration we would like to minimize the

35



Table 27
Time to Create RA1Files

No. of Segment File Size Time
Segments Size (Bytes) (Secs)

" 50 256 12800 0.388
50 512 25600 0.387
50 1024 51200 0.379
50 2048 102400 0.396
50 4096 204800 0.383
100 256 25600 0.737
100 512 51200 0.731
100 1024 102400 0.740
100 2048 204800 0.737
100 4096 409600 0.758
150 256 38400 1.119
150 512 76800 1.082
150 1024 153600 1.098
150 2048 307200 1.106
150 4006 614400 1.100
200 256 51200 1.444
200 512 102400 1.464
200 1024 204800 1.459200 2048 409600 1.470

200 4096 819200 1.459
250 256 64000 1.810
250 512 128000 1.807
250 1024 256000 1.798
250 2048 512000 1.816
250 4096 1024000 1.822
300 256 76800 2.161
300 512 153600 2.145
300 1024 307200 2.150
300 2048 614400 2.151
300 4096 1228800 2.169
350 256 89600 2.523
350 512 179200 2.511
350 1024 358400 2.519
350 2048 716800 2.512
350 4096 1433600 2.540
400 256 102400 2.887
400 512 204800 2.893
400 1024 409600 2.885
400 2048 819200 2.859
400 4096 1638400 2.916
450 256 115200 3.256
450 512 230400 3.243
450 1024 460800 3.237
450 2048 921600 3.208
450 4096 1843200 3.252
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number of segments in the newly created file. The problem with this is if there are too few segments

to distribute the file between contention will occur. One idea would be to try to keep output from

each task localized so that it would be scattered over as few segments as possible. Optimally then we

J- would like to allocate as many segments as there are processors. Usually this can be attained although

the RANFile has certain limitations such as the maximum segment size is 64 Kbytes and that seg-

ments can only be a power of two in length. So if the file size is greater than p x 64 Kbytes long,

then you will have to allocate more segments. Another problem is that if ro/p is not a power of two

then each task's block of tuples will overlap onto another processor's segment possible causing conten-

tion. To prevent block overlap we would like each task's block to be distributed across at least 2 or 3

segments. This is so that for any two contiguous blocks there should always be a buffer of at least 1 or

2 segments between them. Let a represent the number of segments in a RAMFile and # the segment

size (remember beta is equal to 2"'(8 < x < 16) then a formula for the segment size would now be:

.- 2,

8 2

with the number of segments being:

Once the file has been created the tuples that were remembered in the selection address table

must be read back into memory and then placed into the newly created output file. To achieve max-

imum parallelization we will distribute the selected tuple addresses evenly between all processors. We

0 will assume all processors are executing at similar speeds, thus each task will be given
~Ino. selected tuples

n I tuples to get and write. If any speed differences are noticed the equations used

Sir. to compute new block sizes from the projection routine will be used. Since each task will know how

big each block size is and which block it is it will be possible for each task to place all of its selected

V, tuples in one continuous block in the output file.

.
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6.3.2. Hash Table Method

The only difference for the file creation stage between the two algorithms is that for the hash

table method the total tuple count must be performed. This is a relatively simple task of adding up

"p. all of the linked list count variables. Depending on how many variables and linked list there are you

may want to tally these in parallel. For our purposes since there are only 30 processors it will be done

serially.

v As was noted above each linked list may have an arbitrary number of tuples stored in it. Hence

it will not be as easy to compute where each task's block of tuples will be placed in the output file.

What we will do is initialize a EOF pointer to the beginning of the file and have each task read this

value and then increment it by the number of tuples in its linked list. The read and increment must

be performed atomically so a lock must be placed around this section of the code. This will retrieve

the start of the task's output block and reserve it enough space to hold all of its selected tuples. The

only thing remaining to be performed is to unload the linked list into its own block of the output file,

freeing the tuples dynamic memory as they are written out.

6.4. Selection Results

Since most of the development of the RAMFile parameters was done for the projection opera-

tion we will start off where the project operation left off. This means that the input relations will

have segment sizes 16 kbytes, 2 kbytes and 256 bytes for the 10,000, 1,000 and the 100 tuple relations,

respectively. For each relation the number of tuples being selected will be: 100%, 50%, 10% and 1.

First the tables showing the results of the selected address table method (Tables 28 - 30) will be

displayed followed by the hash table method (Tables 31 - 33).

The results of both algorithms were very comparable in execution time for most of the test

6.v cases, the only variations being that the hash table method was slightly faster than the selected

address method when run on only a few (1 - 5) processors and when the size of the input and output

• " -relations was very large (10,000 tuples in and 10,000 and 5,000 tuples out). Only for the larger rela-

.4 tions was the difference significant. Since most of the times were very close between matching param-
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Table 28
10,000 Tuple Selection

Selected Address Table Method
Selected 10,000 5,000 1,000 1
Tuples Tuples Tuples Tuples Tuple
No. of Effective Effective Effective Effective

Processors Time Processors Time Processors Time Processors Time Processors
1 27.38 1.0 18.13 1.0 10.55 1.0 7.70 1.0
2 14.42 1.8 9.66 1.8 5.70 1.8 3.93 1.9
3 10.15 2.6 6.92 2.6 4.15 2.5 2.68 2.8
4 10.36 2.6 6.09 2.9 3.39 3.1 2.06 3.7
5 9.61 2.8 5.45 3.3 2.94 3.5 1.70 4.5
6 8.35 3.2 4.98 3.6 2.62 4.0 1.44 5.3
7 7.48 3.6 4.56 3.9 2.41 4.3 1.28 6.0
8 6.76 4.0 4.18 4.3 2.23 4.7 1.15 6.6
9 6.25 4.3 3.94 4.5 2.10 5.0 1.08 7.1
10 5.87 4.6 3.73 4.8 1.98 5.3 0.99 7.7
11 5.53 4.9 3.51 5.1 1.90 5.5 0.93 8.2
12 5.22 5.2 3.35 5.4 1.85 5.6 0.89 8.5
13 5.00 5.4 3.21 5.6 1.78 5.9 0.83 9.1
14 4.77 5.7 3.10 5.8 1.75 6.0 0.81 9.4
15 4.66 5.8 3.02 6.0 1.69 6.2 0.78 9.7
16 4.49 6.0 2.90 6.2 1.68 6.2 0.77 9.9
17 4.41 6.1 2.86 6.3 1.63 6.4 0.74 10.3
18 4.33 6.3 2.80 6.4 1.61 6.5 0.74 10.3
19 4.19 6.5 2.77 6.5 1.59 6.6 0.71 10.8
20 4.21 6.4 2.71 6.6 1.56 6.7 0.70 10.8
21 4.20 6.5 2.66 6.8 1.58 6.6 0.68 11.1
22 4.14 6.6 2.67 6.7 1.59 6.6 0.71 10.7
23 4.21 6.4 2.66 6.8 1.58 6.6 0.74 10.4
24 4.29 6.3 2.63 6.8 1.53 6.8 0.70 10.9
25 4.38 6.2 2.66 6.8 1.55 6.7 0.71 10.7
26 4.48 6.1 2.70 6.7 1.52 6.9 0.72 10.5
27 4.50 6.0 2.71 6.6 1.52 6.9 0.71 10.7
28 4.68 5.8 2.71 6.6 1.55 6.7 0.73 10.5
29 4.85 5.6 2.84 6.3 1.55 6.7 0.72 10.5
30 4.99 5.4 2.85 6.3 1.53 6.8 0.71 10.7

eters (except for the cases noted above) it may allow us to make some rough assumptions about the

time it takes to allocate and free dynamic memory and RAMFile I/O time.

Both algorithms were very similar except that the selected address method must read in all

tuples once and all selected tuples twice, compared to only once for all tuples in the hash table
method. What makes the hash table method different is that for every selected tuple remc.cy large

enough to hold each selected tuple must be dynamically allocated when it is read in and freed up

when it is written out to the output relation. This means that every selected tuple must be read in an

extra time in the selected address method compared to having to allocate and free up dynamic
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Table 29
1,000 Tuple Selection

_ _ Selected Address Table Method
Selected 1,000 500 100 1

' Tuples uples Tulea Tuples Tuple
No. of Effective Effective Effective Effective

Processors Time Processors Time Processors Time Processors Time Processors
1 3.86 1.0 2.92 1.0 1.97 1.0 0.99 1.0
2 2.35 1.6 1.87 1.5 1.30 1.5 0.55 1.7
3 1.91 2.0 1.53 1.8 1.09 1.7 0.41 2.3
4 1.81 2.1 1.40 2.0 1.01 1.9 0.32 3.0
5 1.69 2.2 1.34 2.1 0.92 2.1 0.29 3.3
6 1.59 2.4 1.26 2.3 0.91 2.1 0.28 3.5
7 1.49 2.5 1.23 2.3 0.90 2.1 0.24 4.0
8 1.44 2.6 1.19 2.4 0.90 2.1 0.24 4.0
9 1.40 2.7 1.16 2.5 0.88 2.2 0.24 4.0
10 1.34 2.8 1.15 2.5 0.87 2.2 0.24 4.0
11 1.33 2.9 1.13 2.5 0.90 2.1 0.23 4.1
12 1.31 2.9 1.13 2.5 0.88 2.2 0.24 4.0
13 1.28 3.0 1.16 2.5 0.89 2.2 0.24 3.9
14 1.27 3.0 1.12 2.5 0.90 2.1 0.26 3.7

. 15 1.26 3.0 1.10 2.6 0.90 2.1 0.28 3.4
16 1.27 3.0 1.10 2.6 0.89 2.1 0.28 3.4
17 1.28 3.0 1.11 2.6 0.90 2.1 0.28 3.5
18 1.28 3.0 1.10 2.6 0.91 2.1 0.30 3.2
19 1.26 3.0 1.11 2.6 0.93 2.1 0.32 3.0
20 1.26 3.0 1.13 2.5 0.90 2.1 0.32 3.0
21 1.27 3.0 1.15 2.5 0.94 2.0 0.32 3.0
22 1.29 2.9 1.14 2.5 0.98 1.9 0.31 3.1
23 1.30 2.9 1.18 2.4 0.96 2.0 0.35 2.7
24 1.34 2.8 1.16 2.5 0.97 2.0 0.34 2.9
25 1.30 2.9 1.18 2.4 0.99 1.9 0.39 2.5
26 1.37 2.8 1.18 2.4 1.01 1.9 0.38 2.5
27 1.33 2.9 1.17 2.4 1.00 1.9 0.40 2.4
28 1.37 2.8 1.20 2.4 1.04 1.8 0.43 2.2
29 1.40 2.7 1.24 2.3 1.03 1.8 0.43 2.2

1 030 1.41 2.7 1.23 2.3 1.05 1.8 0.42 2.3

memory to store it in the hash table method. Since most execution times were very close leads us to

assume that RAMile retrieval times may be very close if not slightly longer than the time necessary

for dynamic memory allocation and releasing.

Another reoccurring problem is the serial RAMFile creation time. This was first noticed in the

removal of duplicates section and seems to be a necessary delay until the RAMFile system software

can be updated and improved. One such improvement could include a more dynamic memory alloca-

tion routine during file creation. This would allow memory to be allocated for a segment in a RAM-

File when and only if the segment was about to be written to, otherwise that segment would not exist
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Table 30
100 Tuple Selection

Selected Address Table Method

Selected 100 50 10 1
4 Tuples Tuples Tuples Tuples Tuple

No. of Efective Effective Effective Effective
Processors Time Processors Time Processors Time Processors Time Processors

1 1.30 1.0 0.81 1.0 0.40 1.0 0.28 1.0
2 0.99 1.3 0.61 1.3 0.27 1.4 0.19 1.4
3 0.90 1.4 0.52 1.5 0.22 1.7 0.17 1.6

. 4 0.85 1.5 0.50 1.6 0.22 1.8 0.14 1.9
5 0.83 1.5 0.49 1.6 0.21 1.8 0.16 1.7
6 0.82 1.5 0.51 1.6 0.22 1.7 0.16 1.6
7 0.82 1.5 0.50 1.6 0.25 1.5 0.20 1.4
8 0.81 1.5 0.53 1.5 0.25 1.5 0.18 1.5
9 0.83 1.5 0.51 1.5 0.27 1.4 0.17 1.5

1 10 0.82 1.5 0.52 1.5 0.28 1.4 0.21 1.3
11 0.87 1.4 0.53 1.5 0.26 1.5 0.20 1.4
12 0.84 1.5 0.54 1.5 0.30 1.3 0.21 1.2
13 0.84 1.5 0.54 1.5 0.32 1.2 0.22 1.2

1 14 0.87 1.4 0.56 1.4 0.29 1.3 0.21 1.2
* 15 0.89 1.4 0.57 1.4 0.31 1.3 0.24 1.1
":''-,16 0.90 1.4 0.59 1.3 0.31 1.2 0,23 1.2

00.26
i.. 18 0.88 1.4 0.57 1.4 0.34 1.1 0.26 1.0

19 0.92 1.4 0.59 1.3 0.33 1.2 0.28 0.9

20 0.91 1.4 0.61 1.3 0.35 1.1 0.28 0.9
21 0.94 1.3 0.63 1.2 0.34 1.1 0.27 1.0
22 0.94 1.3 0.61 1.3 0.39 1.0 0.32 0.8
23 0.97 1.3 0.66 1.2 0.39 1.0 0.30 0.9
24 0.96 1.3 0.67 1.2 0.40 0.9 0.34 0.8
25 1.00 1.2 0.67 1.2 0.40 0.9 0.32 0.8
26 0.98 1.3 0.71 1.1 0.45 0.8 0.35 0.7
27 0.98 1.3 0.71 1.1 0.43 0.9 0.32 0.8
28 1.00 1.2 0.75 1.0 0.44 0.9 0.39 0.7
29 1.04 1.2 0.73 1.1 0.47 0.8 0.42 0.6
30 1.02 1.2 0.74 1.1 0.44 0.9 0.41 0.6,-.

in main memory and would return zero values for any read operations that may occur before any

• write took place. By postponing the memory allocation until it was needed would reduce the initial

RAMFile creation time. For each run of the algorithm intermediate times were taken to time crucial

portions of the code such as when the new RAMFile was created. The intermediate times to create

the RAMFiles were very similar to those in the removal of duplicates for corresponding file sizes.

V, These times are directly proportional to the number of segments in the new file and not related to the

V size of the segment at all. Thus times may be reduced by decreasing the number of segments by

increasing the size of each segment. This seems like a good idea until we realize that we may be
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Table 31
10,000 Tuple Selection

_Hash Table Method

Selected 10,000 5,000 1,000 1
Tuples Tuples Tuples Tuples Tuple

No. of Effective Effective Effective Effective
Processors Time Processors Time Processors Time Processors Time Processors

1 26.51 1.0 17.37 1.0 10.09 1.0 7.65 1.0
2 14.04 1.8 9.54 1.8 5.60 1.8 3.90 1.9
3 10.06 2.6 6.71 2.5 4.03 2.5 2.67 2.8
4 7.84 3.3 5.30 3.2 3.21 3.1 2.05 3.7
5 6.37 4.1 4.48 3.8 2.78 3.6 1.67 4.5
6 5.53 4.7 3.98 4.3 2.47 4.0 1.43 5.3
7 4.92 5.3 3.59 4.8 2.27 4.4 1.28 5.9
8 4.45 5.9 3.29 5.2 2.12 4.7 1.14 6.6

% 9 4.10 6.4 3.07 5.6 2.01 5.0 1.06 7.1
10 3.85 6.8 2.86 6.0 1.88 5.3 0.98 7.7
11 3.59 7.3 2.73 6.3 1.82 5.5 0.91 8.3
12 3.42 7.7 2.60 6.6 1.75 5.7 0.88 8.6
13 3.27 8.0 2.49 6.9 1.72 5.8 0.83 9.1
14 3.12 8.4 2.42 7.1 1.66 6.0 0.80 9.5
15 3.03 8.7 2.37 7.3 1.65 6.1 0.78 9.7
16 2.95 8.9 2.30 7.5 1.61 6.2 0.77 9.8
17 2.87 9.2 2.23 7.7 1.60 6.2 0.74 10.2
18 2.76 9.5 2.23 7.7 1.55 6.4 0.71 10.6
19 2.73 9.6 2.17 7.9 1.56 6.4 0.72 10.6
20 2.67 9.8 2.12 8.1 1.52 6.6 0.72 10.5
21 2.63 10.0 2.10 8.2 1.51 6.6 0.71 10.6
22 2.62 10.1 2.08 8.3 1.54 6.5 0.69 10.9
23 2.57 10.2 2.06 8.4 1.51 6.6 0.71 10.6
24 2.53 10.4 2.05 8.4 1.50 6.7 0.71 10.6
25 2.50 10.5 2.05 8.4 1.47 6.8 0.71 10.7
26 2.49 10.6 2.01 8.6 1.48 6.8 0.68 11.1
27 2.42 10.9 2.02 8.5 1.49 6.7 0.71 10.6
28 2.46 10.7 2.00 8.6 1.50 6.7 0.69 11.0
29 2.46 10.7 2.01 8.6 1.49 6.7 0.73 10.4
30 2.43 10.8 1.98 8.7 1.49 6.7 0.72 10.5

creating contention problems by squeezing too may tasks' tuples into one segment.

7. The Scalar Aggregate Operations

The calculation of the scalar aggregate operation will be very similar to the first part of the pro-

jection operation. Here again the file will be divided into smaller blocks, then each task will pass

through its block performing the designated operation (maximum, minimum, average or count) on its

block of data only. At the end, each task will assimilate its local answer into a global response.
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Table 32
1,000 Tuple Selection

_ _iHash Table Method
Selected 1,000 500 100 1

% Tuples Tuples Tuples Tuples Tuple
No. of Effective Effective Effective Effective

Processors Time Processors Time Processors Time Processors Time Processors
1 3.46 1.0 2.63 1.0 1.85 1.0 1.00 1.0
2 2.20 1.5 1.75 1.5 1.25 1.4 0.53 1.8
3 1.73 1.9 1.45 1.8 1.08 1.7 0.39 2.5
4 1.51 2.2 1.28 2.0 0.98 1.8 0.32 3.0
5 1.37 2.5 1.18 2.2 0.95 1.9 0.28 3.5
6 1.32 2.6 1.15 2.2 0.91 2.0 0.25 3.8
7 1.27 2.7 1.12 2.3 0.90 2.0 0.25 3.9
8 1.23 2.8 1.11 2.3 0.91 2.0 0.24 4.0
9 1.20 2.8 1.11 2.3 0.93 1.9 0.24 4.1
10 1.19 2.8 1.11 2.3 0.93 1.9 0.24 4.1
11 1.18 2.9 1.12 2.3 0.93 1.9 0.25 3.9
12 1.18 2.9 1.12 2.3 0.94 1.9 0.25 3.9
13 1.17 2.9 1.13 2.3 0.95 1.9 0.24 4.0
14 1.17 2.9 1.14 2.3 0.94 1.9 0.25 3.9
15 1.17 2.9 1.11 2.3 0.97 1.8 0.24 4.1
16 1.19 2.8 1.14 2.2 0.97 1.8 0.27 3.6
17 1.18 2.9 1.14 2.3 0.95 1.9 0.28 3.5
18 1.19 2.8 1.13 2.3 0.96 1.9 0.29 3.3
19 1.18 2.9 1.13 2.3 0.97 1.9 0.30 3.2
20 1.17 2.9 1.15 2.2 0.96 1.9 0.29 3.4
21 1.16 2.9 1.15 2.2 0.97 1.9 0.33 2.9
22 1.18 2.9 1.13 2.3 0.96 1.9 0.33 2.9
23 1.20 2.8 1.17 2.2 1.02 1.8 0.34 2.9
24 1.21 2.8 1.16 2.2 0.98 1.8 0.32 3.1
25 1.21 2.8 1.14 2.2 0.99 1.8 0.34 2.8
26 1.23 2.8 1.18 2.2 1.00 1.8 0.33 2.9
27 1.22 2.8 1.20 2.1 1.01 1.8 0.39 2.5
28 1.22 2.8 1.19 2.2 1.02 1.8 0.36 2.7
29 1.22 2.8 1.21 2.1 1.06 1.7 0.42 2.3
30 1.28 2.7 1.21 2.1 1.04 1.7 0.42 2.3

7.1. File Division0

As improvements have developed they have been incorporated into successive operations. Thus

the same algorithm used to compute the optimal block size developed in the projection routine and

used in the selection routine will be incorporated here. Initially we will use a b of:

,. '- w ith = 1 .0
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, Table 33
100 Tuple Selection

... _ _Hash Table Method
Selected 100 50 10 1
Tuples Tuples Tuples Tuples Tuple

-No. of Effective Effective Effective Effective
- Processors Time Processors Time Processors Time Processors Time Processors
%,, 1 1.15 1.0 0.71 1.0 0.37 1.0 0.29 1.0

2 0.90 1.2 0.54 1.3 0.29 1.2 0.18 1.6
3 0.83 1.3 0.47 1.4 0.23 1.5 0.17 1.7
4 0.81 1.4 0.46 1.5 0.23 1.5 0.15 1.8
5 0.79 1.4 0.46 1.5 0.21 1.7 0.17 1.7

' 6 0.79 1.4 0.46 1.5 0.21 1.7 0.15 1.9
7 0.81 1.4 0.50 1.4 0.26 1.4 0.19 1.4
8 0.80 1.4 0.52 1.3 0.26 1.4 0.15 1.8
9 0.82 1.4 0.54 1.3 0.26 1.4 0.20 1.4
10 0.82 1.3 0.54 1.3 0.25 1.4 0.17 1.6
11 0.88 1.3 0.57 1.2 0.24 1.5 0.18 1.6
12 0.88 1.3 0.56 1.2 0.27 1.3 0.20 1.4
13 0.90 1.2 0.55 1.2 0.30 1.2 0.20 1.4
14 0.89 1.2 0.59 1.1 0.31 1.1 0.21 1.4

* 15 0.92 1.2 0.61 1.1 0.29 1.2 0.22 1.3
16 0.93 1.2 0.62 1.1 0.32 1.1 0.22 1.3
17 0.92 1.2 0.58 1.2 0.32 1.1 0.24 1.2
18 0.97 1.1 0.60 1.1 0.31 1.2 0.25 1.1
19 0.97 1.1 0.62 1.1 0.32 1.1 0.24 1.2
20 0.93 1.2 0.65 1.0 0.36 1.0 0.26 1.1
21 0.91 1.2 0.68 1.0 0.34 1.0 0.27 1.0
22 1.00 1.1 0.64 1.1 0.34 1.0 0.30 0.9
23 0.98 1.1 0.70 1.0 0.41 0.9 0.28 1.0
24 0.99 1.1 0.71 1.0 0.38 0.9 0.34 0.8

'-. 25 0.96 1.2 0.70 1.0 0.42 0.8 0.30 0.9
26 0.99 1.1 0.70 1.0 0.43 0.8 0.34 0.8
27 1.03 1.1 0.69 1.0 0.37 0.9 0.33 0.8
28 1.02 1.1 0.76 0.9 0.47 0.7 0.36 0.8
29 1.04 1.1 0.72 0.9 0.46 0.8 0.33 0.9
30 1.08 1.0 0.75 0.9 0.45 0.8 0.40 0.7

for our starting block size. As the results progress we will incorporate the same speed ratio

modification as used before if necessary.

A way to pass several parameters to the tasks and a method for the tasks to incorporate their

results with the global result must be included. This is because all processes will need several parame-

* ters to allow them to know the dynamic variables such as input file name, input file size, scalar aggre-

gate operation and a place for the results.

Here we will create a data object that will hold the parameters for the child processes and also

space to return their results in. The initialization of this data object will be done serially by the
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parent process and then the object identification (OI)) number of the data object must be passed to

the child processes. Each process that wants to access this data object must first map that object into

memory it can access. From this point on, the data object can be accessed and altered by all processes

that have mapped in its O11). Since all processes will be accessing the data object, possible incon-

sistencies may occur.

The only place where there will be opportunity for inconsistency problems is when the children

try to incorporate their individual results with the global result. There will not be any other con-

sistency problems spots, because when the parent process is initializing the data object there will be no

other processes to contend with and when the child processes are unpacking the parameters, they will

only be reading from the data object. Inconsistency will be prevented by placing a lock around the

code that will access the global result. Lastly, when a process is done accessing a particular data

object, it must unmap the object from its memory because it is consuming a segment attribute register

(SAR). SARs are system registers that maintain the location of a data object in memory. In the

current system each processor has 512 SARs.

7.2. Aggregation of Tuples

After each child has unpacked its parameters from the data object, they will perform the scalar

aggregate function on their own block of tuples. The child's local result will be stored in a private

copy of the result. The global result has been initialized to a value that will be replaced immediately

with real values (i.e. for a maximum operation an initial value of -9,999,999,999). Thus giving the

* •child task something to compare against initially.

7.3. Reunion of Output

When each child process has completed computing the scalar aggregate function on its own

block of tuples, it will have to incorporate its local result into the global result. Each child process

will have mapped in the data object that contains the global result so that it will atomically access the

global result and either replace it with its result (i.e. if its maximum is greater that the global max-

imum or add its tuple count and sum for an average to the global sums). A lock around this portion
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of the code will prevent data inconsistencies.

7.4. Scalar Aggregate Results

Following the examples of the above operations the execution of the scalar aggregate function

will be performed for relations with sizes 100, 1,000 and 10,000 tuples. Input file segment sizes will be

set to those values that were computed to be optimal for the projection and selection operations (256

bytes for 100 tuples relation, 2,048 bytes for the 1,000 tuple relation and 16,384 bytes for the 10,000

tuples relation). Tables 34 through 36 show the execution times for all 3 runs.

Table 34 Table 35
1000 Tuple Scalar Aggregate 1,000 Tuple Scalar Aggre ate

No. of Effective No. of Effective
Processors Time Processors Efficiency Processors Time Processors Efficiency

1 7.53 1.0 1.0000 1 0.92 1.0 1.0000
* 2 3.81 1.9 0.9882 2 0.49 1.8 0.9424

3 2.55 2.9 0.9842 3 0.33 2.7 0.9147
4 1.96 3.8 0.9613 4 0.26 3.4 0.8720
5 1.59 4.7 0.9458 5 0.22 4.1 0.8346
6 1.33 5.6 0.9410 6 0.18 5.0 0.8349
7 1.15 6.5 0.9315 7 0.15 5.9 0.8461
8 1.02 7.3 0.9226 8 0.16 5.7 0.7208
9 0.92 8.1 0.9069 9 0.13 6.9 0.7775
10 0.83 8.9 0.8996 10 0.12 7.6 0.7665

., . 11 0.78 9.6 0.8769 11 0.12 7.5 0.6904
12 0.70 10.6 0.8886 12 0.11 8.3 0.6955

* 13 0.67 11.1 0.8597 13 0.11 8.3 0.6399
14 0.61 12.3 0.8817 14 0.10 8.8 0.6351
15 0.59 12.6 0.8465 15 0.09 9.2 0.6194
16 0.58 12.8 0.8032 16 0.08 10.3 0.6449

... 17 0.51 14.6 0.8614 17 0.09 10.2 0.6028
18 0.51 14.6 0.8147 18 0.08 10.5 0.5863

*, 19 0.48 15.6 0.8220 19 0.06 13.3 0.7002
20 0.45 16.5 0.8290 20 0.08 10.7 0.5383
21 0.45 16.4 0.7815 21 0.08 10.9 0.5229

A,22 0.43 17.3 0.7871 22 0.08 10.9 0.4962
23 0.41 17.9 0.7822 23 0.06 13.5 0.5906
24 0.40 18.6 0.7781 24 0.06 15.1 0.6300
25 0.39 18.9 0.7569 25 0.05 15.6 0.6245
26 0.38 19.5 0.7528 26 0.06 15.4 0.5936
27 0.35 21.1 0.7830 27 0.05 16.0 0.5951
28 0.34 21.5 0.7711 28 0.06 14.5 0.5209
29 0.36 20.9 0.7207 29 0.05 17.5 0.6038
30 0.32 23.2 0.7757 30 0.05 17.3 0.5775

Looking at the tables shows a maximum speedup of approximately 23.3 during the 10,000 tuples

run, that figure falls off sharply as the number of tuples in the relation decreases. It is down to 9.9
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Table 36
100 Tuple Scalar Aggregate

No. of Effective
Processors Time Processors Efficiency

1 0.25 1.0 1.0000
2 2 0.12 2.0 1.0055
3 0.10 2.5 0.8391
4 0.08 3.0 0.7565
5 0.07 3.4 0.6828
6 0.06 3.9 0.6557
7 0.04 5.2 0.7527
8 0.04 5.4 0.6848
9 0.04 6.0 0.6700
10 0.05 4.7 0.4715
11 0.03 6.6 0.6086
12 0.04 6.3 0.5288
13 0.03 7.2 0.5555
14 0.04 5.4 0.3903
15 0.03 7.4 0.4935
16 0.03 7.2 0.4545
17 0.02 8.7 0.5126
18 0.04 6.1 0.3394
19 0.03 7.5 0.3989
20 0.04 5.5 0.2787
21 0.03 8.0 0.3827
22 0.04 5.3 0.2422
23 0.02 9.1 0.3973
24 0.02 9.0 0.3774
25 0.04 5.9 0.2391
26 0.02 8.7 0.3351
27 0.02 9.8 0.3651
28 0.05 5.1 0.1841
29 0.02 9.9 0.3424
30 0.02 9.9 0.3310

times speedup with 30 processors for a 100 tuple scalar aggregate operation. At this point we included

the event logger so that the execution of the 100 and 1,000 tuple runs could be monitored. Figs. 5 and

6 show when all of the children finish and when the operation is actually over. As is noticed, the time

necessary to retrieve and print the global result is a major component of the total time for this opera-

tion thus reducing the effective speedup for the smaller runs.

8. The Natural Join Operation

The Natural Join operation is very similar to a #-join with 0 set to "=", otherwise known as an

equijoin. The only difference is the fact that all attributes that name an equivalent field in both input

relations must be equal. After this only one occurrence of each duplicated attribute will be included in
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Figure 5: Scalar aggregate for 100 tuple relation.
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the output relation. Since the natural join is very similar to the selection operation, the chained-

linked hashing method was extended and incorporated into this algorithm. The natural join algorithm

will consist of five different sections. These sections will be, hashing the first (smaller) relation on the

duplicated fields. Hashing the second (larger) relation on the duplicated fields and comparing each

hashed tuple from the second relation against all of those in the chain-link corresponding to that par-

ticular hash table entry. In the third step we will release all the memory that was occupied by the

hash table for the first relation. The fourth step will consist of counting the output tuples and the

allocation of the exact amount of memory for the output file. Lastly, we will unload the output hash

table into the newly created output file.

8.1. Hashing the First (Smaller) Relation

O This first section will consist of distributing the smaller relation throughout a chain-linked hash

table by hashing each tuple on the attributes that are common. Initially a test will have to be per-

formed on the two relations to determine which one is smaller. There are several criteria that need to

be taken into consideration when deciding which file is the smallest and should be hashed first. Since

: .. the file will be hashed and stored in main memory, the actual size of the file, r X 0, is an important

"* '. factor that must taken into consideration. Another crucial factor is the actual number of tuples in

each relation. This is because all of the tuples in the second relation must be compared against all of

the tuples in the first hash table. The fewer tuples there are in the first hash table will reduce the

:.r" average number of tuples in each linked list.

*The first consideration should be actual relation size, r x 0 bytes. This is because main memory

will have to be dynamically allocated to hold all of the hashed tuples while each tuple in the second

relation is hashed to the first hash table. When relations get very large (i.e. > 10,000 tuples and/or

tuple length gets very large), the cumulative amount of memory needed can demand a lot from a sys-

tem. Our Butterfly's current configuration contains 128 Mbytes of main memory, which was more

than enough to hold several 10,000 tuple relations (in RAMFile form) and the two hash tables each

* containing all of the tuples being joined in each.
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The second consideration is the actual number of tuples in each relation. This is because the

4. time needed to allocate and process each tuple into the first hash table will be a major portion of the

the execution time for this algorithm. It will be much faster to allocate and hash 1,000 tuples with

size 500 bytes than it will to allocate and hash 5,000 tuples with size 100 bytes. Another reason for

hashing the relation with the smaller number of tuples is that the fewer the number of tuples to be

hashed the shorter the average length of the linked list at each hash index. This second fact will play
'/.

an important role in the second step when each tuple in the second relation will have to be compared

against every tuple in the linked list to which it has been hashed.

8.2. Hashing and Matching Second Relation

Hashing and matching the second relation with the first relation will be the most complicated

step in the natural join algorithm. During this step we will divide the second relation among the p

processors, with each processor getting b tuples (using the same 6 as above). For every tuple in its

block, a task will compute the hash value of the attributes in the second relation's tuple that both

relations have in common so that tuples from both relations that match all common attributes will

hash to the same index in the first hash table. This will give us the index to the only chain of tuples

from the first relation that the tupie from the second relation can possibly be joined with. Hashing

the relation with the lesser amount of tuples first will keep the average length of this chain to a

minimum thereby minimizing the number of tuples that must be compared against the tuple from the

second relation. The complete chain of tuples must be tested for a possible match in case there are

N multiple matches. For every match that does occur, a new tuple large enough to contain all of the

attributes from both relations must be allocated from dynamic memory. Next, all necessary data

fields must be copied into the output tuple. Lastly, this tuple must be stored somewhere until the

actual number of joined tuples can be accounted for and a RAMFile can be allocated in main0.'

memory.

We decided to rehash this new output tuple on all the attributes and with a different hash table

size. This was done to try to redistribute the new tuples throughout memory so that they will be

easily divided among all of the processors when it becomes necessary to output the joined tuples into
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*4" the newly created output relation. The second hash table has a different size than the first table to

help redistribute the tuples throughout the table. After the hash index for the output tuple has been

computed into the second hash table, the operation of inserting the new tuple into the linked list at

that particular index must be performed atomically to prevent any consistency problems from occur-

ring and then a counter field must be incremented.

8.3. Releasing Tuples From the First Hash Table

Now that the two relations have been joined and their combined tuples have been stored in a

different hash table, the first hash table and all of its linked lists will not be needed any more. The

.,- .amount of memory used to store the first relation in the first hash table may be quite large and it

would be very wasteful (if not perilous to the system) to just abandon it. Using the same 6 as above,

.we will divide all of the hash table's linked lists between all of the processors and then have each task

traverse each linked list releasing each tuple in turn. This step will be combined with the following

and will be discussed below.

8.4. Counting Output Tuples and Allocating Correct Memory

As mentioned above, each index in the second hash table also contains a counter field that will-i

maintain a count of the number of tuples that are in that particular linked list. From this field we

will be able to count the number of tuples that have been joined and must have space allocated for

them. The operation of how we went about counting the tuples and creating the new RAllF'ile has

been discussed in the previous algorithms. A common serial problem in many of the above algorithms

0 has been when the algorithms have been performed for the smaller sized relations, the time necessary

to create a new RAAIFile does not decrease when more processors are added and becomes a major

contributor to the execution time for the query.
*.,

,./. 8.5. Unloading the Second Hash Table into the Output File
S..,

In this final step we will unload the second hash table into the newly created output file in paral-

* lel. Each task will be given a block of entries from the second hash table from which to unload tuples.

The number of entries, 6, will be determined using the formula given above, but instead of dividing
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tuples we will be dividing hash table entries. For each entry that a task has to operate on, it will

traverse the linked list outputting each tuple and releasing the memory that was associated with it.

To determine where each task will be piecing its block of tuples, a task will first sum up all of

the count fields within its block of entries. This will give it the number of tuples for which to reserve

space. Then it will reserve space by atomically retrieving and incrementing a global EOF pointer. It

will increment the EOF pointer by the number of tuples in its block causing the next task to start at

,S., the position after the previous task's last tuple.

8.6. Natural Join Results

The natural join algorithm has been run with the following sets of input and output relation

sizes in number of tuples: 10,000 x 10,000 giving 10,000, 10,000 X 1,000 giving 1,000, 1,000 X 1,000

* giving 1,000, 1,000 X 100 giving 100 and 100 X 100 giving 100. These results can be seen in Table 37

through 41.

The results for the natural join again suffer from the serial RAMFile creation time. This was

partially alleviated by combining the RAMFile creation with the releasing tuples from the first hash

table stage. Both of these stages are independent of each other and may be performed concurrently.

Since the RAMFile creation must be performed by only one processor all other remaining idle proces-

sors can be put to work releasing tuples from the hash table. In the case when only one processor is

being utilized these two operations must proceed one at a time. This will place a lower limit on the

time it takes to perform both operations of the time it takes to create the RAMFile. By looking at the

0 •intermediate times, we see that this increases the efficiency of the algorithm and significantly reduces

the execution times of the larger test cases. It does not greatly improve the times for the smaller

joined relations because the time necessary to create the new RAMFile is still significantly greater

tihan the time saved by placing the freeing up memory routine in the background running in parallel.

,, ,9. Future Work

In this paper we discussed the implementation of basic database operations on the Butterfly

p parallel processor. Although there has been some consideration given to this problem for cube-
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Table 37 Table 38
10,000 X 10,000 Tuple Natural Join 10,000 X 1,000 Tuple Natural Join

Resulting Relation Contains: 10)000 Tuples Resulting Relation Contains: 1,00 Tuples
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency
1 118.89 1.0 1.0000 1 24.03 1.0 1.0000
2 60.48 1.9 0.9828 2 11.85 2.0 1.0135
3 41.50 2.8 0.9547 3 7.49 3.2 1.0688
4 31.80 3.7 0.9344 4 5.87 4.0 1.0225
5 24.73 4.8 0.9613 5 4.89 4.9 0.9819
6 21.55 5.5 0.9193 6 4.28 5.6 0.9349
7 17.54 6.7 0.9683 7 3.82 6.2 0.8984
8 17.16 6.9 0.8655 8 3.47 6.9 0.8637
9 15.72 7.5 0.8402 9 3.23 7.4 0.8262
10 13.93 8.5 0.8533 10 3.02 7.9 0.7941
11 12.48 9.5 0.8658 11 2.84 8.4 0.7676
12 11.40 10.4 0.8688 12 2.73 8.7 0.7331
13 10.49 11.3 0.8715 13 2.60 9.2 0.7087
14 9.68 12.2 0.8765 14 2.53 9.4 0.6775
15 9.04 13.1 0.8766 15 2.43 9.8 0.6592

6 A 16 8.33 14.2 0.8911 16 2.36 10.1 0.6345
17 8.01 14.8 0.8729 17 2.29 10.4 0.6169
18 7.51 15.8 0.8792 18 2.25 10.6 0.5913
19 7.19 16.5 0.8695 19 2.18 10.9 0.5781
20 6.88 17.2 0.8639 20 2.16 11.0 0.5538
21 6.63 17.9 0.8536 21 2.13 11.2 0.5358
22 6.34 18.7 0.8517 22 2.11 11.3 0.5159
23 6.21 19.1 0.8312 23 2.07 11.5 0.5029
24 5.94 19.9 0.8328 24 2.08 11.5 0.4794
25 5.83 20.3 0.8156 25 2.02 11.8 0.4740
26 5.64 21.0 0.8103 26 2.03 11.8 0.4546
27 5.46 21.7 0.8051 27 2.02 11.8 0.4403
28 5.40 22.0 0.7858 28 2.01 11.9 0.4257
29 5.28 22.5 0.7760 29 1.96 12.2 0.4221
30 5.17 22.9 0.7662 30 1.98 12.1 0.4037

connected computers [2,7], this work to our knowledge represents the first attempt to implement these

operations on an existing general-purpose parallel machine. We are continuing to examine the parallel

algorithms used to implement the database operations, and it is likely that a more efficient implemen-
-',J

tation will emerge in the future.

It is also important to realize that the results of our experiments are based on version 3.0 of the

Chrysalis operating system which provides support for applications programs on the Butterfly. BBN

expects to be coming out with a new version of Chrysalis in the near future which may affect the

Pimplementation decisions that were made in this paper. However, it is our belief that much of our

analysis in this paper dealing with the problems of improper data division and hot spots will remain
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Table 39 Table 40
1,000 X 1,000 Tuple Natural Join 1,000 X 100 Tuple Natural Join

Resulting Relation Contains: 1000 Tuples Resulting Relation Contains: 100 Tuples
No. of Effective No. of Effective

Processors Time Processors Efficiency Processors Time Processors Efficiency
1 7.33 1.0 1.0000 1 3.16 1.0 1.0000
2) 4.47 1.6 0.8201 2 2.07 1.5 0.7626
3 3.28 2.2 0.7450 3 1.76 1.7 0.5985
4 2.60 2.8 0.7041 4 1.54 2.0 0.5102
5 2.25 3.2 0.6500 5 1.47 2.1 0.4281
6 2.03 3.6 0.6016 6 1.44 2.1 0.3642
7 1.87 3.9 0.5574 7 1.40 2.2 0.3208
8 1.75 4.1 0.5223 8 1.36 2.3 0.2889
9 1.69 4.3 0.4812 9 1.38 2.2 0.2546
10 1.64 4.4 0.4459 10 1.33 2.3 0.2364
11 1.57 4.6 0.4243 11 1.35 2.3 0.2124
12 1.55 4.7 0.3936 12 1.40 2.2 0.1873
13 1.50 4.8 0.3738 13 1.41 2.2 0.1725
14 1.50 4.8 0.3486 14 1.35 2.3 0.1670
15 1.46 4.9 0.3329 15 1.35 2.3 0.1550
16 1.42 5.1 0.3219 16 1.38 2.2 0.1431
17 1.41 5.1 0.3053 17 1.36 2.3 0.1365
18 1.44 5.0 0.2817 18 1.40 2.2 0.1252
19 1.43 5.1 0.2690 19 1.45 2.1 0.1146
20 1.37 5.3 0.2665 20 1.41 2.2 0.1119
21 1.34 5.4 0.2599 21 1.41 2.2 0.1067
22 1.37 5.3 0.2424 22 1.40 2.2 0.1022
23 1.37 5.3 0.2318 23 1.49 2.1 0.0918
24 1.33 5.4 0.2287 24 1.48 2.1 0.0888
25 1.42 5.1 0.2057 25 1.49 2.1 0.0844
26 1.36 5.3 0.2061 26 1.49 2.1 0.0812
27 1.43 5.1 0.1891 27 1.47 2.1 0.0794
28 1.37 5.3 0.1899 28 1.52 2.0 0.0742
29 1.35 5.4 0.1864 29 1.53 2.0 0.0709
30 1.37 5.3 0.1772 30 1.54 2.0 0.0682

Vvalid even with the new Chrysalis release.
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Table 41
100 X 100 Tuple Natural Join

Resulting Relation Contains: 100 Tuples

No. of Effective
Processors Time Processors Efficiency

1 1.85 1.0 1.0000
2 1.45 1.2 0.6378
3 1.28 1.4 0.4814
4 1.25 1.4 0.3710
5 1.18 1.5 0.3147
6 1.15 1.6 0.2678
7 1.20 1.5 0.2199
8 1.22 1.5 0.1898
9 1.30 1.4 0.1581
10 1.28 1.4 0.1444
11 1.30 1.4 0.1295
12 1.32 1.4 0.1167
13 1.34 1.3 0.1064
14 1.35 1.3 0.0982
15 1.33 1.3 0.0926
16 1.33 1.3 0.0868
17 1.30 1.4 0.0839
18 1.35 1.3 0.0760
19 1.35 1.3 0.0719
20 1.34 1.3 0.0692
21 1.35 1.3 0.0650
22 1.36 1.3 0.0620
23 1.45 1.2 0.0553
24 1.46 1.2 0.0528
25 1.40 1.3 0.0527
26 1.40 1.3 0.0509
27 1.44 1.2 0.0475
28 1.48 1.2 0.0447
29 1.45 1.2 0.0440
30 1.44 1.2 0.0427
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