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g The wanual for the C-HEMP stress wave propagation code consists of
1
gk two volumes. The first volume contains the descriptions and derivations
L/
v of the code. The second contains brief descriptions of each subroutine
ay and the listing of the code.
i
i . The C~HEMP code was written under the sponsorship of Dr. Gerald Moss
b' of Ballistic Research Laboratory. He, and his coworker Dr Michael
L
Scheidler, have contributed significantly to the development of the code
;5 and the manual by exercising the code and reviewing the manual. They
:;ﬂ have provided SRI with a large list of needed clarifications in the
.ga waanual to aid the beginning user.
After the completion of the contract to write this manual, an SRI-
‘gt
;2 sponsaored project was undertaken to study rotation problems in two
+
}g dimensinns. The internal report that resulted from this effort is
%N iacluded as Appendix D because of its relevance to the C-HEMP code.
L)
vy Several other researchers at SRI have contributed to the manual and
'\l
g? code effort. Jim Kenpf has used the code and has written the auxiliary
Tg? programs for plotting the C-UEMP output. Bounita Lew helped with making
A C-HEMP calculations and in expanding the layout capabilities.
%3 Dr. Donald R. Curran has provided overall guidance and aided in policy
A
4 decisions.
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I INTRODUCTION

C-HEMP is a two-dimensional finite-difference computer program for
treating stress wave propagation, in either planar or axisymmetric flow,
caused by impacts or explosive detonations. It was designed, imple-.
mented, and tested at SRI International under a three-year contract for
the U. S. Army Ballistic Research Laboratory to develop a computational

model for armor penetration [Refs. 1-5].

A. Background

C-HEMP (the "C” is short for "Composite”) is a synthesis of several
two-dimensional finite-difference codes, including HEMP ([Ref. 6], TOODY
[Refs. 7-8], STEALTH [Ref. 9], TROTT [Ref. 10}, and SWE2D [Ref. 11]}.
Various features of C-HEMP were adapted from each of these other codes
(e.g., the input from HEMP, the rezoner from STEALTH, the slide lines
from TOODY and SWE2D, the storage and model provisions from TROTT).
These features were then augmented and combined with new features to
form a computer code that could handle many of the complex wave propaga-
tion and failure problems associated with armor penetration. The
versatility of C-HEMP makes it suitable for a wide variety of other wave
propagation problems, including those involving unusual geometries,

multiple impacts, and large shear deformations.

Like most other finite-difference codes, C-HEMP uses the Lagrangian
form of the equations of motions, so that the coordinates move with the
materials, and uses artificial viscosity to spread wave fronts over
several cells. 1Its special features include finite-element node number-
ing, free-field input, advanced slide-line logic, and an automatic
rezoner. Several complex material models are included, in addition to
the standard Mie-Gruneisen equation of state, and the code is designed

so that new models can be readily inserted.
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:gé‘ It should be noted that C-HEMP is not a polished program product,
;“ 7 but rather a research tool actively undergoing refinement and extension
g :\ to make it applicable to an increasingly wider class of problems.
: q& Nevertheless, we have made extensive tests of the code and are confident
%42 that the core of the code is working as intended. The user should

'3 exercise discretion in interpreting the results of calculations made
:’Qf with C-HEMP (or any other code of this type), if only because particular
it applications may extend into physical behavior not anticipated by the
R authors. Special caution is called for in the use of complex material
el models.

e

jbﬁ B. Review of Other Wave Propagation Codes |
”Qﬁ A review was made of many codes that have been used for penetration

calculations. The review was limited to general-purpose wave propaga-
tion codes written for large-deformation problems in solids treated by
complex material models. Here only some of the special advantages or

features of these codes are described.

The Eulerian codes HELP [Ref. 12] and HULL [Ref. 13) are able to
treat large distortion problems, although this advantage leads to
difficulties in treating sharply defined boundaries and slide lines.
Also there tends to be smearing of cell properties such as the fracture

quantities.

The Lagrangian finite element code EPIC [Ref. 14] has both two- and
three-dimensional versions and thus is particularly suited to oblique
impacts. The triangular cells resist large distortions, but falsify the
stresses computed from pressure-sensitive stress-strain relations. A

simple, frictionless slide~line treatment is available in the code.

STEALTH [Ref. 9] is also Lagrangian and has two- and three-dimen-
sional versions. It features automatic rezoning and slide-line capabil-

ities.

The Lagrangian code TOODY [Ref. 7] has been used in many penetra-

tion calculations. It has a discrete rezoner: wave propagation

|
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*;i calculations are halted, the entire mesh is reconfigured, and then the
f f calculation continues. The slide line treatment is particularly
{.v accurate. The cells on each side of the slide line are accounted for in
i:ﬁg detail so that, if no slip occurs, the presence of the line should be
‘:%: undetected. Stick or frictionless conditions and Coulomb friction
ff: properties are provided on the slide line. The slide line 1is tied to
:fl — the usual row-and-column scheme. The number of variables per cell can
;)3 be readily increased, but all cells are assigned the same number of
y J".:'.: ) variables.
B
WAVEL [Ref. 15]) is a Lagrangian code with advanced slide line and
ﬁi;, continuous or automatic rezoning. It has been developed for penetration
".ﬁ problems and extended to a quasi-three-dimensional form for oblique
:.‘: impacts.
F& HEMP [Ref. 6} is the forerunner of many two- and three-dimensional,
}i;j finite-difference Lagrangian codes used in penetration calculations. It
{:i has a discrete rezoner, as TOODY has, and a slide line capability that
i{iﬂ is tied to the row-and-column cell numbering. A recent version is
4l7' HEMPDS {Ref. 16], which has a double slide line (intersecting slide
’i; line) capability, but no rezoner. The double slide provision required a
.'i% major restructuring of HEMP, so it is not a minor addition nor an
Q_E:; element that can be readily transferred to another code. The HEMP code
;)- has many versions, each with different capabilities. The version
o availahle at AMMRC has an input provision termed a NAMELIST READ
:Eg statement. This provision permits all numerical quantities to be
:X§ identified by name and all data to occur in a free~field format (no
(] fixed positions on an input line). This greatly simplified input
:s:: provision speeds the laying out of new problems and minimizes errors.
;E% DYNA2D [Ref. 17} is a large finite-element code that has been used
oy for simulating self-forging fragments and penetrations. It has a
.:Eé capability for a slide line that can extend both horizontally and
.{:. vertically at the same time. Elements of higher order than the constant
.Hﬁ: strain elements in HEMP are available for use on elastic or other small-
z:i distortion problems. There i{s also a DYNA3D [Ref. 18] for three-
{x
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dimensional problems. Both codes are equipped with preprocessors for
laying out the finite-difference mesh and postprocessors for examining

and plotting the results.

The small two-dimensional Lagrangian code TROTT [Ref. 10], which we
have used in many of our applications, has the advantage of simplicity
in adding new material models with large numbers of variables. The new
model is added by the insertion of one or two call statements. Extra
variables for the cells treated by special material models are
available, and the number of extra variables is designated in the
input. The number of variables per cell varies from cell to cell so
that relatively inactive cells can have a minimum number of variables,
while cells in the region of fracturing, for example, can have 50 or 100
extra variables. TROTT aiso has automatic rezoning, like that in WAVEL
and STﬁALTH. A simple frictionless slide line treatment is available.

The review of available codes indicated to us that there are many
good candidates. Although no one code has all the desired features, all
the desired features are available. Therefore, a synthesis from

existing codes seemed desirable.

C. Features for a General Code for Penetration

The basic problem considered is the penetration of a long-rod
missile into one or a series of armor plates. The target may be
defeated by formation of a plug, excessive plastic flow allowing
perforation, rear-surface spall, or a combination of these effects. The
rod may be defeated by excessive plastic flow, shear banding and
fracture near the tip, or by fracture along its length. The initial
problem we are considering is two-dimensional: either a normal impact
of an axisymmetric missile onto a plate or an oblique impact of a slab
onto a slab. Eventually, simulations of oblique impacts of symmetric
missiles (a three-dimensional problem) will be investigated.

Our attempts and those of others to simulate the penetration

encounter have led us to outline several basic requirements for a

computer program for the simulation:
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¥
» ] Slide Lines
{. ] Rezoning
\ﬁ 1] Material model for fracture damage.

W
Ei The slide lines permit materials to slip past each other or to impact
"f i and separate. The penetrator nose and sides must be able to slide along
3;; the upper surface of the target and on the sides of the crater as it
*ﬁ forms. 1In addition, the target may be severed to form a plug: the
ﬁ% interface hetween the plug and the remainder of the target requires a
' slide line if the relative motion is significant. The length and
.. direction of the severing line is determined during the penetration, so
‘E; the slide lines must be able to unzip gradually and to wander through
:s the finite difference or finite element grid.

¥ The comhination of these slide line features introduces require-

- ments not yet available in any of the present codes. The provision of a
; E; wandering slide line may have been attempted in some codes, but is not a
\'ﬁ standard feature. The capability for allowing one object to interact
4 (slide on) several other objects is available in a rudimentary way in
.?: HEMPNDS, and is present in a smeared manner in Eulerian codes such as
jé; HELP.

Lo

b The large distortions experienced by both penetrator and target

.{i during a simulation indicate a capability to rezone or reconfigure the
,‘:, computational grid at intervals during the calculation. We have used
3§ automatic rezoning in which each node is permitted to move to an optimum
*é location every five time steps. This rezoning provision is still not

!' adequate for some of the more severe distortions that occur around the

-~
=

e

lip of a crater and in the adjacent projectile material. Some addition-

Qp al rezoning features which may aid in representing the material in such

)

f; cases are: free Lagrange reconnections, deletion of nodes, addition of

1 4 nodes, and removal of distorted material. The free Lagrange method is

%i used only with pairs of triangular cells which form a quadrilateral with

:; nodes A, B, C, N: if the common side BD between the triangles becomes
r.
o excessively elongated, the triangles can be reformed by dfsconnecting
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nodes B and D, and connecting A and C. The free Lagrange procedure

permits large shear flows and assists in maintaining compact cells for
an accurate calculation. Deletion of material is an extreme measure,
but has been done regularly in codes for penetration. It has the
disadvantage of losing both mass and momentum conservation. It may be
justified when the distorted material i{s a small fraction of the entire
material of interest, and that material is not governing the main

processes of interest.

The material property model is essential for determining the
ballistic limit and for predicting the fragment spray at the end of the
event. Because such a model requires many variables, the penetration
code must be configured to permit large data arrays for cells in which

the material is undergoing damage.

Besides these basic requirements, there are a number of nominal

requirements that make a computer program readily usable:

L] Input in a free-field format, like the AMMRC version of HEMP
. Finite element numbering, as in EPIC
] Usable on available computers

[ Documentation.

. Extensive provisions for plotting and examining the results.

The convenience of a simple input form is important because it may
greatly reduce the time required to lay out a new problem and it makes

the problem definition more apparent to other users.

The finite element numbering method allows the cells to be con-
figured in a more general way than in rows and columns. This numbering
is convenient for discretizing nonrectangular or multiply connected
bodies. It seems essential for providing slide lines that extend in
both x and y directions, as along the nose of a projectile and then
along the side. The computational logic of a self-directed slide limne
seems more straight-forward with finite element numbering because new
nodes can be readily added and the relationship between these nodes and

the cells can be easily updated.
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;E&: D. Scope of this Manual
2 This manual is intended as both an introduction for a new user to
:;k C-HEMP and as a complete reference for an experienced user. Chapter I1
::§ derives the logic for many of the basic computational features of C-
;:ﬁ HEMP, including the solution procedure for the wave propagation equa-
- tions, the finite-element numbering scheme, the time-step control and
:ég' stability conditions, the rezoner, and the slide line routinés.

)
E&? Chapter 111 is an introduction to constitutive models for
3&5 materials. First some of the standard models for pressure and deviator
PR stress are introduced. Then more complex models for composites, explo-
r ; sives, and porous materials are outlined. A series of micromechanical
;?: fracture models are introduced: these are especially important for
¢C~ penetration and other large distortion calculations.
.’; Chapter IV describes in detail the input parameters and format
:;? required for C-HEMP, while Chapter V describes the various printed and
:”{ plotted output obtained during a calculation. Chapter VI presents five
gy sample problems that have been run on C-HEMP, with emphasis on the input
B format and the layout logic. A new user to C-HEMP should begin with
Eﬁo chapter TV to gain familiarity with the order of specifying input
1 o parameters and the input format, and then continue with Chapter VI to
%}' sec examples of input specifications.
‘f;' Following the main text are five appendices. Appendix A contains a
;2" brief description of the program flow and a 1list of all the subroutines
:43 and COMMON blocks in C-HEMP. Appendix B describes the procedure for
" inserting new equation-of-state subroutines into C-HEMP. Appendix C is
ﬁf a glossary of all the input and output parameters, and other key
§§ variables in the code. Appendix D describes the cell rotation
$Q provisions and the last Appendix gives the storage locations for cell
’ . - and coordinate variabhles in the main array.
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I1 PROPAGATION CALCULATIONS

A. Introduction

The motion and stresses throughout the material are determined as a
function of time in the code. The solution is obtained by solving the
mass, momentum, and energy conservation relations together with
constitutive relations for the material. This section presents the
conservation relations and their solution by finite difference
procedures. The layout of the finite difference mesh (division of the
material into cells) is treated in Section IV and the constitutive
relations are left to Section III. Included in the current section are
the determination of the strain and material rotation from the boundary
motions of the cells. The artificial viscous stress, which eliminates
shock discontinuities, is described. The stability requirements and
time step control are outlined. Both rezoning procedures and the slide

line treatment are in this section.

B. Solution Procedure for Wave Propagation

The wave propagation calculations in C-HEMP are based on the
solution of the Lagrangian equations governing motion of a continuous
medium. The solution technique is called the method of artificial
viscosity because of the introduction of viscous forces to permit a
continuous-flow computation in regions of high stress gradients. Such
regions are interpreted as locations of shock fronts, although no
discontinuities occur in the computed flow field. With this artificial
viscosity method, the equations of continuous flow can be used every-
where and no special equations are required at shock fronts. C-HEMP
uses the leapfrog method of von Neumann and Richtmyer [Ref. 19] to
integrate the flow equations. This method provides second-order

precision in time and space without the use of second differences.
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::"v, In the following paragraphs we first introduce the Lagrangian set
)
o of partial differential equations governing one-dimensional planar flow.
;.;;;, These are then changed to integral and numerical form, and those
::;i: requiring it are extended to multidimensional form. Then the solution
L%\
1’,‘;1 procedure is outlined.
:y."!f
v ) The Lagrangian partial differential equations to be solved for one-
';:::: dimensional planar flow are
e
$e
1:::
Peh X
(O—E)h = U (velocity) (1)
e
P
oy oty _ _ 1 (oT
: iy (at)h o (ah)t (momentum) (2)
e o ov
: Gon = - TGP (energy) (3)
\ ?'
> e
\‘1\.‘ (o]
4 3y . o
s GWe = 5 (sase) ®
b2
T=P+o'+0=1£(%, p, ...) (constitutive relations) (5)
B
M
N
e
;:,:t‘ where X = Eulerian or current position
Y.
!). t = time
"o
c:::'c: h = Lagrangian or initial position
b
’o'::: U = particle velocity
WY
:::0" Py Py ™ current and original density
o874
[ T, 6' = total mechanical stress and deviator stress
;",:.; in the direction of propagation
[
'::::, V =1/p, specific volume
‘::::n P, Q = pressure and artificial viscous stress
Yy
X E = internal energy.
"\
k=
"
’0': These equations relate velocity to coordinate motion; provide for
%‘ conservation of momentum, energy, and mass; and give the stress-strain
“,'& or constitutive relations.
.

OO0 t 0 1 T ORI Vb b B By W Fy Vo Ty Ty TR T
SN e b S e e e by L St e e e e e e N R ST

LIS PR
,F“'l".ﬂ



o
0

&

:}2 In the leapfrog scheme of von Neumann and Richtmyer [Ref. 19], the
ﬁ five fundamental equations are not solved simultaneously, but in a
NN prescribed order. This order is suggested in the diagram in Figure 1.
5
BT First there are the cell calculations at the time t" and mid-node
NS,

% positions j - 1/2 and j + 1/2:
[}
7.

{ )
hﬁ?' pn, en, En, on, ™.
g
W )
4 These are followed by the node point calculations:

A

+

TNy Un 1/2 , x“+1
pa 3 3

%

r#; These steps are undertaken for each cell and node. Then the time is
i' incremented and the process is repeated. In C-HEMP, these calculations
’* are performed in two separate loops: one over all cells and one over

» .
:.’ A all nodes.
)
R,
:% ’ Now each of these five equations is examined, extended to two or
[
three dimensions, and put intc numerical form. The velocity relation,
ol
;5?7 Eq. (1), is expanded to a vector form
2l
n,
i 0%y
] B =
‘g:: (Gen = Yy (6
J
qu where i runs over the three coordinate directions and h refers to all
3;3' three directions. 1In numerical form the integral of Eq. (6) is simply
W)
A
n.‘n
oty n+l n n+1/2 n+l/2
= 7
(w xij x1j + Uij At €))
‘I‘:;:
"‘L»
:ﬁ: Here n and n+l refer to times t™ and t“+1 and j refers to the node
) ,i_‘
;Q{i number. Velocity U and time increment At are labeled to indicate that
X
e they are centered midway between t" and e, :
i i
(1"’ 1 !
'-, The momentum equation (2) takes the following three-dimensional '
4
4 .
‘xﬁ form:
™
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) 3t 'h p_ dh oh oh
x o X y z
!,- Here i again takes the values x, y, and z, and hx’ hy, hz are Lagrangian
2& coordinates. The leapfrog method makes a centering of this equation
I
3"' possible. The acceleration 3U/dt is represented by
KX
! ’ -
e Ut;+1/2 _ U; 1/2
""' a_U ~
.ﬁ : ot A"
2L which is centered at (j,n). Similarly, the gradient 3T/dh is
o approximated bv
5
*:i ™ - "
fb} 1 93T j+1/2 j=1/2
- 1/2 (M
‘N Po ® 72 M2 ¥ My01y9)
.
(-
:. where M1+1/? is the mass of the cell between nodes j and j+l. This
A ’
.mj gradient is also cantered at the point (j,n); therefore, we can expect
& the results of the leapfrog treatment of Equation 8 to be numerically
e stable and accurate.
of"
‘}ﬁ Several strategies, such as those in HEMP, TOODY, and STEALTH, are
bi‘ available in the literature for putting Equation (8) into suitable
‘j numerical form. Instead of using any of these, we return to a simple
Kk integral form of (8):
!
o
o dt ‘h M
@
tf? which is clearly F = Ma. The mass M is the sum of the partial masses of
:Jﬁ the cells surrounding the node j as indicated in Figure 2. (Equations
R
:2: for M are derived in subsection C.) The partial masses are defined in
- . different ways for the planar and axisymmetric geometries. For the
bresd
w planar case, the partial mass is taken as one-fourth of the mass of the
{A whole cell. The geometry of the partial mass is only partly defined:
's its coordinates are the node j in Figure 1, midpoints along the sides jk
0~.
- and j1, and a central point n which is not defined. To determine the
J‘
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forces acting on this partial mass it is not necessary to prescribe the
actual location of the point n, so no location is specified. For the
axisymmetric geometry, the partial mass is fully defined. The
coordinates are node j, the midpoints along jk and jl, and the central
node which is the average of the coordinates at j, k, 1, and m. (For
very badly distorted cells, this location of the node n may tend to
augment the distortion.) With the given node positions for the
axisvmmetric case, a detailed calculation of the mass of the ring-shaped

partial cell is made.

To provide for exact momentum conservation, the masses associated
with each node are calculated only on the first cycle, and remain
constant thereafter, except under rezoning. To examine how the
constancy of the masses affects the momentum conservation, let us
consider the two major steps. First the nodal forces are applied to the
nodal masses. Because the forces are applied equally to both sides of

every surface they act upon, there is an exact momentum balance.

In the next step the nodes move. 1f we then recomputed the new
cell center and assigned areas and masses to the surrounding nodes, the
nodal masses would change. However, if the mass associated with each
node is not constant, then some mass is transferred from one node to
another. But the nodal velocities are not altered in this transfer
operation; hence, some amount of mass has changed its velocity.
Therefore, momentum is not conserved during the motion. To avoid this

loss of momentum, we need to hold the masses around each node constant.

When we choose to hold the masses around each node constant, we
must either determine the exact location of the boundaries of this mass,
or approximate the boundaries and hence the forces that act on these
areas. We are approximating the boundaries and thus approximating the
velocity calculation. Because we use the same forces along the
boundaries in both directions, the momentum balance is exact. These
momentum balance considerations are of importance for the axisymmetric

case only, because the planar masses always retain just one-fourth of

the adjacent cell masses.
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The summation over F in. Equation 9 is constructed from the i-th

A

components of the products of the stresses in each cell times the area

=

(of the mass M) on which they act. These i-th components of the forces

-
~ )

can be written as a stress times a projected area AA

% S
%

77

..n -
) Fi = Tndh (10
"
L)
j; Equations for the area AA are derived in subsection C. Hence we have
:: effectively found a discretization for the derivatives in Equation (8)
1 9Ty Tudhy
o - E W (11)
:l::‘ Po hk
W
Wby
:ﬁh; Hence in the indicial notation of Equation (7), Equation (8) becomes
\
L
9 n
a+l/2 . n-1/2 At
A2 Uiy = Uiy r 12,1( TorabAax (12)
o
o
$§: Here the subscript L refers to the four cells (in two dimensions)
- surrounding the j-th node. 1In planar two-dimensional flow, the sum will
OO contain eight terms for each direction i. The time increment at” is
-
oy n n+l/2 n-1/2 Atn+1/2 +“Atn-1/2
) At =t -t = 2 (13)
e
J
‘iﬂi Although (12) is obtained from a finite element viewpoint, it agrees
){a' exactlv with the results of finite-difference derivations for planar
\
}f' two-dimensional flow. Differences arise only in axisymmetric flow.
J
The energy equation (3) is rewritten in tensor form as
'v‘.
Y BE = Ofqk
: st~V L Tu ¢ a4
e 1,k
i.‘.‘
v where €k is the strain tensor. For each cell this expression takes the
ﬁﬁf, numerical form
‘ﬁg 1 1/2
v ="+ VY T‘i‘k Ae;‘k (15)
’” i,k
. ?
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‘_:, Here the barred quantities are averages

<
A A
! o v o+ n-1 ] . ™ 4+ Tn-—l
A 2 an 2
-:’

:i The sum in Eq. (15) runs over four terms in two dimensions.
L)
i

l' The expression for the conservation of mass (4) takes the simple
': form
!

4;' n AVo M 16

2 PP T a (16)
A v
o, where V"' {s the cell volume at time t"

’

-

'j-: The constitutive relation (5) is expanded to
Z
o

=P +
», Tik P o + Q a7

-

:f' where P and 0 remain scalar pressures.

i
. C. Numerical Calculations of Area, Volume, and Momentum
-'\.

-\j For several of the numerical integrations presented in the
"

‘-'é preceding section, it is necessary to evaluate the areas and volumes of
w the appropriate finite difference cells. These quantities are derived
KK fn this subsection. Then the momentum equation is exhibited in the form
~: used {in the code.

\l
;: Two types of quadrilateral cells are defined for the wave propaga-
; tion calculation. Both are shown in Figure 3, which contains a grid of
':':' coordinate points. Cell A is a standard cell surrounded by four

2
‘ coordinate points. This is the cell for which the strains and stresses,
:c. which are homogeneous throughout each cell, are computed. The momentum
computation determines the velocity of the coordinate points. For these
calculations cell B, containing the mass around a coordinate point, is
)

) used. The calculations are broken into four portions corresponding to
o,

" the parts lying in each of the surrounding stress cells. One typical
N

portion is shown in Figure 4 with the nomenclature and sign conventions
Y 16

.l
-
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A Tl FIGURE 3 TYPES OF CELLS FOR STRESS AND MOMENTUM COMPUTATIONS
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that are used in the derivation of momentum conservation or velocity
change at point 3. (Stress is positive in tension.) Note that the
standard axisymmetric shell is a ring or doughnut, whereas the planar

cell is quadrilateral with indefinite thickness in the Z direction.

The configuration of the shaded element in Figure 4 is defined in
such a wav that the x and y coordinates of the point O are averages of
the coordinates at the four corners of the stress cell. End.views are
shown in Figure 4 as a reminder of the three-dimensional character of
the elements. For an axisymmetric cell, the areas of the shaded element

on which stresses act in the x and y directions are:

Axx = %@ (y2 - yA) (ZZ;;_Zi + y3) (18)
Ay\ %§A'(y2 : {2 + yo) (XO _ X, : X3) _ (y3 : Ya + yo) (xo - fé“téféfo]
(19)

Far planar cells the areas in the x and y directions are:
A =12y, -y, (20)
Ay, = VAx, - x)) (21)

For the axisvmmetric case, the area in the x-y plane on which the stress
acts is broken into two portions Ay and A4 as shown in Figure 4. These

portions and the total are:

AO =1/8 [(2)(0 - x3)()’2 = ylt) + xz(y3 + Y4 - ZYO)

+ x4(2y0 T Yy T Y3)] (22)
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A, =1/8 - + - + -

] 3 = VElx(yy = vyl + xyly, = y)) + xylys - 3,)] (23)
l'|

» ‘h\

oo
i SN A = +
A A0 A3 (24)
p_.l

W
4%
9
;{»‘ Equations (22) and (23) are derived by simplifying the usual general
&t" relations for the area A of a triangle with nodes i, j and k:
1

Y 2A = x3 (y3 = y) * x5 4y - ¥g) +xy (vg - ¥y)
R " .
b5 |
: . The sign of the area is positive if the nodes are listed in counter-
R clockwise order.

v »
o The forces in the x and y directions applied to the small mass
‘JQ' represented by the shaded area in Figure 4 are determined by multiplying

\l

In the stresses shown in Figure 4 times the areas in Eqs. (18) - (21) and
[}
’ (24). The expressions for the forces are:
™
A F =T A _+T A (26)
:I x xy yy XX XX
e

an

) d
*
h F =T A +T A -T A d¢ (axisymmetric)
oY y yy vy Xy Xx 2z Xy
oy (27)
¥ =T A +T A lanar

1] yy vy Xy Xx (p )
s
10N
:#% For the axisymmetric case, each force term contains the angle d8, which
g is taken as 2x. When force is divided by mass to obtain the velocity
1, change, d8 is removed. The sign convention for the area computations is
!I.‘-
.sf such that the product of stress and area is positive in the increasing x
e
ﬂgo and y directions. Because each cell is written with point 3 as the one
;ﬁ. for which velocity 1s to be determined, the preceding forces and areas

[ D%

». are valid for all quadrilateral cells around the point.
o
)
A:':' 20
R
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The mass of the small element is determined by multiplying the
, s average density, p, of the cell shown in Figure 4 times the volume of
‘. the element. The axisymmetric cell mass is obtained from Pappus' Rule:
Y ,..
28

SN
Ay 2n Yo ¥ ¥4, Yo * Y, 8
g M= oft [Aglvg + vy + )+ Ay (Fop—+ 2yy)] (28)
Y .
A
\-'_': For the planar cells the mass is simply
M5
Nl
e M= oA (29)
‘: : Newton's second law (Eq. 9) is applied to obtain the change in
§ velocity at the coordinate point 3, considering force and mass contri-
)
__ butions from four quadrilateral elements around the point. (The index {
! 'k runs over these elements.)
. »
W
P o™
?%\é 4
e (z F Jat
: =1 xi n

] = - E ———

A AU =TV t172 ~ Va-1/2 4 (30
i I M

R g=1. 1
Ko
!
,. where AU is the change in velocity in the x direction over the time
Pl
,;..) increment Atn. A similar relation 1is used for AV. The spatial and
?JV temporal relationships between the cell variables are shown in Figure 1.
.’ »

o ‘
x D. Strain and Rotation Calculations

LS
}}: The strain computations in the two-dimensional wave propagation

LS
’."}; program are based on the assumption that the strains are uniform
g ¥
b:% throughout each quadrilateral cell of type A shown in Figure 3. The

"-:i. required strains are true strain increments. The strain computations
?"2" are constructed to meet the following compatibility requirements:
e
Wb
S AA
'y Asx + Aey -3 (31)
e
‘:':.: ,
W 21 |
".7'. 1
Q.. [y !
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sl i ol =

e L

Ae + Ae + Ae = — (32)
X y z .

where

Aex, Aev, Aez changes in the strain that occur during a time

increment
AA = change in the cell area A in the x-y plane
AV = change in the volume V of the cell.

To ensure that compatibility of strains is enforced, we assume a
velocity field (which is unique), rather than a strain field. Strains
that are uniform throughout a cell are produced by the following
lineariy varyving velocity field.

u=u, + u_x + uyy (33)

0

v=yv,+ v X + vyy (34)

0

where u, v = particle velocity in the x, y directions, respectively.

The strain rates corresponding to these velocities are:

. du
€ " 3% = % (35)
. ov
y "oy Ty 36
e =12 (X + 2172 (v +u) (37)
Xy ox 0y x y
= dv _ duy -
Wey = 1/2 (ax by) 1/2 (vx uy) (38)
22
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where

€, - tensot shear strain rate

wey = rotation rate in the xy plane, positive counterclockwise.
The velocity fields of Equations (33) and (34) can be determined for any
triangle if the velocities at the coordinate points are known. Consider
for example the triangle in Figure 5 with coordinates 1, 2, and 3 and
velocities in the x direction of Ups Uy, and ug. The velocity field
parameters ug,, U, and uy can then be determined from the following

three equations:

u1 = uo + uxx1 + uyy1
u, = u, + u X, + uyy2 (39)
= + +
Ug = uy +ou xg uyy3
where the X;y; are coordinates of the ith point at a common time.
Solution of Equations (39) gives the following results for u, and uy:
. =(_‘ig_i_“2)(y1 - vy) = (= ug)(yy = v)) (40)
X 2A
(uy = w)(x, = %) = (uy = ug)(x, = x,)
u = 1 2 1 3 1 3V 71 2 (41)

y 2A
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where A, the area of the triangle 123 shown in Figure 5, is

o 28 = {x) = x,)(yy = yg) = (%) = x3)(3y - ¥)) (42)

= - + - + -
W (¥, = ¥9) + %y (33 9)) + x5 (5, - v))
) Similarly the strain in the y direction can be determined.

(vy = vo)(yy = vq) = (vy = v3)(yy - v,)
- v = P! 2171 3 1 3/\71 2 (43)

. v = - - (44)

X AN The next step is to specify X5, ¥y in Equations (40) through (44)
o in such a way that Equation (31) is satisfied. This calculation {s

e performed in two steps: first, the requirements are satisfied for each
. of the two triangles shown in Figure 5 and then the computation is made
for the whole quadrilateral. To meet the requirement for triangle 123,
iy the area A of Fquation (42) is taken as the average of the areas at the
;nj- beginning and end of the time increment, that is,
0 1)

i A=1/2(A" + A (45)

¢ ) A compatible form for the strain rate in the x direction is given by

Ry T T (46)

25
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1‘.~
J'.
h
)
S
8
N\ where values with a superscript 0 are computed with initial values of x
I
; and y, and values with a superscript 1 are evaluated with final values
‘h of x and v. These final values of coordinates are
)
: 1 = 0 + At
o 3 THTY
" (47) .
! 1 0
> y1 = yi + viAt
€8
‘o
4
: Next we test the compatibility in Equation (31) by substituting A from
- Equation (45) (replacing the coordinates in Al with their values from
vl Equation 47), the strains from Equation (46), and a comparable relation
‘Q for Ey’ and letting AA = A1 - Ao. Then Equation (31) is satisfied
,: exactlv, indicating that the expression for strain in Equation (46)
W
\ meets the first compatibility requirement.
L
e For use in the computer program, Equation (46) takes the form
) m m
s < "12%13 T Y1312
€, = 5 1 (48)
. A"+ A
)
& and
2 VyaXon = Vo aXT
. . 13712 12713
Ey = 0 1 (49)
. A"+ A
§
W
i for a triangle with nodes 1, 2, 3, and where the doubly subscripted
3
velocities and coordinates have the following meaning
t"
R}
R}
;i
; u,, =u, -~ u (50)
) ij i j
¥
-: m
" Xyg =% "Xy * 1/2(u, - uj)At (51)
8
‘l.
b 26
)
W
d
"
il
'\

L O O OO AN SRR Y 0 S 0 W (g 2O Mo e 3 SOOI M O ¢ SO O P o A A AN RTINS
fe“.:“.c"t-’i’{"lft"e"""’ N *‘.n'\.h'*‘.z'i..i A".s.l.\'i,l“,:‘f-" ¥ “..,ﬂ'\..«'..'l'l‘I'O,u.‘f:‘:ﬂ.a!"~t .~':‘~'l \'l.,-'i." ."l. ’.‘AP"H'. , -\.!'l ,ﬂ’h hebeg Y‘ 4 h"h‘?‘r"' .‘.;..':."o“‘

CC S s

LX)



The above result is extended to the full quadrilateral by using the

following definition of the strain rate

0 11
2% A2 2x
1
2

0
+
o s (52)
A2 + A

where subscript 1 refers to the triangle 123 and subscript 2 to triangle
134 in Figure 5. For satisfying Eq. (31) the area A is taken as one-
half the denominator in Eq. (39), that is, the average of the areas at

the beginning and end of the time increment.

For use in the computer program, Eq. (52) is recast into the
following form with the aid of Egs. (40) - (44), (50) and (51):

m - m
U13Y24 T Y24¥13

: . (53)
x AO + A1
Similarly
v Xm -V xm
y A" + A
u K2 - L m
.« taeT13 T M13%as T V13724 T Yau'13 (55)
Xy Z(AO + Al)
u xm - xm + v no. v m
: 13%24 7 Y24%13 13724 24713 (56)
Xy 2(a% + ah

The requirement given by Eq. (32) is met somewhat more readily in

the computer program. The values of Ex and éy are first determined from

27
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- Fgs. (53) and (54), and the specific volume change is determined from
o calculations of the volume before and after a time step. The volume
- change {s from a density calculation, which is in turn based on the mass

o conservation relations. The mass of an axisymmetric cell is computed

'b* from

T 2n
2 s ‘0 3 1 %1573

LA Iy (57)
\ ” 1 j 1

i
g 1

Ny where A; is the area of the ith triangle in the xy plane and y1j are the
Cd
radial positions of the vertices. For the planar cells, the mass is

. simply

.¢ i
> M =oAL (58)

Then during strain calculations, the density is determined by

. M
= p = K—- (59)

) xy

\ for example, using Eq. (58). The relative volume change required in Eq.

j\ (32) is then

-— (60)
St 01t ey

) av ey~ 0y
A
ol where N and Py are densities before and after the current time incre-

Ve ment. With Ex’ Ey’ and AV/V known, Ez is obtained from Eq. (32), and

" the volume constraint is satisfied exactly.

e The rotation quantities, ;xy in Eqs. 38 and 56, represent the
3 average of the instantaneous rotation rates of lines in the x and y
™ directions. These quantities are used in the code to compute several

Wi rotation factors:

(] Average rotation of the cell material, 6

el 28
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° Transformation of the stress tensor to account for the material
motion during each time interval.

] Rotation of specific material planes occurring in the fracture
models BFRACT and SHEAR and in the composite model REBAR.

These rotation calculations are derived in Appendix D.

F. Energv Computation in the Code

The internal energy 1is computed from the conservation of energy
equation at two points in the program. First, an estimate of the energy
is made just preceding the stress calculation; then a refined value is
obtained following the stress calculation. This approximation procedure
is required because energy depends on stresses, yet the stresses depend
on the energyv. However, for general constitutive relations, stress and
energyv cannot be readily computed simultaneously. For the usual
calculation in which energy varies slowly, this energy apﬁroximation

gives satisfactory accuracy.

The estimate of energy at the time t™ is made by approximating the
strain energy that is generated during the time step. In C-HEMP the
first internal energy calculation immediately follows the determination
of density and strain, but the only stresses available are T:;l, those
from the previous time t""l. The first estimate then is

2T Ae

-1/ , - - - - - -
n-1/2 L_(Tn 1 Aen,1/2 + " 1/2 Ael 1/2 + 27" 1, n 1/2) (61)
Cxx TUxx yy yy Xy Coxy

o
»
lad
N

where E7, En—1/2 = internal energies at the times t" and tn—l/Z’ V=

:jl, Ae n-1/2 = gtress and strain increment tensor

elements. Equation 61 1s the form for the planar problem. The sign

specific volume,

convention in Eq. 61 reflects the fact that both stresses and strains

are positive in tension.
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Following the stress computation, the energy computation is
repeated, but the calculation is made at time t“+1/2, and modified to
ensure exact energy conservation. We require that the external energy
increments - external work on the boundaries and chemical energy
additions for explosives - equal the changes in kinetic and internal

energies. The external energy increment is

+ -
Un 1/2 + Un 1/2

n n n
) F At + AE (62)
io i add

where T? are tractions on the ith nodes along the boundary. The kinetic
enerav change is simply
n

AF:kin

1/2 [(Ur'ﬁ-l/z)?. _ (Un-1/2)2]

my i 1

e N2

U

;+1/2 _ U:-1/2)(Un+1/2 + Un—1/2)

1/2 1 1

m, (U

e M

+U

n+1/2 n—1/2)
i i

U
el
~
N
™~

FT At (U
1

e

boﬁnd L L

u
—
~
~

n+l/2 + Un-l/Z)] (63)

+ 3 Fy ot (U] .

internal

Now we form the energy balance.

AEpor = ABin * AEinen1 (64)

and write the internal energy change as

n n n
AE er1 = 8Epor T 8B4y
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I

'I‘

g

o
{
- | _ n n+l/2 n-1/2

‘ BE 49 = V2 y Fy At (Ui + U ) (65)
e internal

Seo)

B

QQ: Here we note that the sum over the boundary nodes in Eq. 63 is just the
\

mﬁ external work term in Eq. 62, so these terms cancel in Eq. 65. The

.4

:ak internal energy that is stored in the main arrays for the jth cell is

1 Vol
&;' computed as

g

+1/ -
‘ el 1/2 g 1/2 + AE" " add " 1/2 ) Fi At® (Un+1/2 + U: 1/2) (66)
v J ] 3 jth cell
A‘
;Ni The estimated energy E:st is computed in CYCLE before the stress
et calculations. AEj 2dd is derived during the stress calculations.
’

e\ CFORCE calculates the cell forces F? within each cell in preparation for
T

oy the nodal motions in CYCLE. Then, following the motion calculations in
hx.--
T CYCLE, E?+1/2 is computed.

L J
‘$< F. Artificial Viscous Stress
A%

ﬁ$ An artificial viscous stress is required in finite-difference wave
i{% propazation calculations to smooth out shock waves so that the entire
) flow field can be treated by the conservation equations of continuous
;sﬁz flow. 1In multidimensional calculations, a triangular artificial viscous
:#¥ stress Is also required to combat certain types of cell distortion.
o Yere we describe first the standard artificial viscosity and its

)

® implementation in the code.

)

%" The artificial viscous stress (Q) is added to the thermodynamic

(o

4§ equilibrium stress (o) from the constitutive relations to produce the

LA !

;ﬁ. nonequilibrium mechanical stress (T). The mechanical stress 1is

A 4 therefore the total stress acting between masses and is the appropriate
§

". stress for the momentum calculations exhibited earlier. The artificial
‘N viscous stress represents real stresses occurring in the nonequilibrium
W states of a shock front, but the basis for computing Q is artificial
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S
h\:-‘
A :::\ because it devends on the computational cell size and on viscosity
' - coefficients that are not derived from physical processes.
:‘_‘.: In C-HEMP the usual linear and quadratic forms of artificial :
"x; viscosity are provided. Both are related to the rate of compression of
'-.‘__n '
:-_"., the material and are zero while the material is extending. For one- '
N i
) dimensional calculations the linear and quadratic stresses are:
MU
..-:".;‘ Q@ =cc ax 2 (67)
e L “L’s "7 at
o, |
) »
A 2 AX 3p,2
= ki 68
:-{,‘-
~
";’: for dp/3t > 0. 1In these equations C, and CQ are coefficients of the
by
‘:: linear &nd quadratic artificial viscosities, and Cs is the local sound
' )
8 speed. 1If 3p/3t is negative, then QL and QQ are zero. It is common to
-T replace one derivative 3p/dt in the quadratic expression with an
\'.\
:.-: equivalent expression from the Eulerian form of mass conservation in one
: i:-;: dimension:
A' " l Q& = - a_U ‘
e p 3t 83X (6% l
-.':'» :
vy :
;: Then the combined expression for 0O, obtained by summing Eqs. 67 and 68,
‘) and accounting for Ea. 69, is
Yo
)
o ) 2 op
o = op op
o 0 =ax g2 [cc + G, [av]] FE >0 (70)
*h‘
A
\)) .
® and we have approximated dU/3X as AU/AX.
\‘
:::: For two-dimensional problems we use YA in place of AX, the cell
'k »
"; dimension, and recast Eqs. 67 and 68 in difference form:
_'. ;
i'; Q =C.cC /A _be (71)
L L's Xy At
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g
- Q= C2 f!!.(éﬁaz (72)

) Q~ Q@ p ‘At
o

~_:§ for Ap > 0. The artificial stress Q is the sum of the linear and
:Eg quadratic contributions from Eqs. 71 and 72.

‘(\. The nominal values of the artificial viscosity coefficients are

E':i CL = 0.15, and Cs = 4.0. These values are appropriate for most

;:;: problens. If sharper definition of shock fronts is required, CL could

j"jx be reduced to as low as 0.05. For more rapid smoothing of wave fronts |
o for quasi-static problems, CL could be increased up to 0.5. 1

6\?3 The triangular artificial viscous stress is used to minimize a type

::&: of cell distortion termed hour-glassing (shown in Figure 6). Hour-

ttkﬂ elassing is a parasitic behavior that is not corrected by the normal
.. momentum, strain, and constitutive relations previously outlined. The
‘éi% mot ion shown in Figure 6 gives rise to zero values of Aexx, Aeyy’ and |

,i;: Lsxv Hence, no stresses caused by these strains arise to correct the

i *Q hour-glassing motion. Also, any of the usual cell-centered stresses

{ acting on the coordinates would be applied equally to all four
55: coordinates and could not simultaneously pull inward on points 1 and 2,

Eiz and push out on 3 and 4 to correct the behavior.

33 The hour-glassing motion in quadrilateral cells represents two

‘Eif additional degrees of freedom that arise because of the averaging
'.3} process used in calculating the strains (Section 1I-D). A triangular
';ﬁ cell does not exhibit hour-glassing because the three coordinate points
;Qf have just six degrees of freedom that can be represented by two rigid
lf%; body translations, one rotation (wxy) and three strains. The quad-

ﬁ}j rilateral cell has eight degrees of freedom, but only the same six
iif motions and strains as for the triangular cell are accounted for in the
:’; equations that provide the resistance to the motions. The triangular
éaf . artificial vis?osity provides resistance to the hour-glassing motion
; ; that arises hecause of the extra degrees of freedomn.

*: The anti-hour-glassing forces are computed to be proportional to

kf’ the hour-glassing velocities, and directed in the opposite sense. The
:‘:

::: kX ]
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(a) A Quadrilateral with Coordinate Velocities
that Lead to Hour-Glassing

(b) Orientation of Hour-Glassing Forces
for the X-direction

MA-6802-18A

FIGURE 6 APPEARANCE OF A QUADRILATERAL UNDERGOING
HOUR-GLASS DISTORTION, PLUS THE RESTORING
FORCES PROVIDED BY THE CODE
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e

o~

SN general form of these restoring forces was given by Steven Hancock [Ref.
) A 20]. The hour-glassing velocities UH and VH are given by the X and Y

}“f velocities of the four nodes as follows:

e
o2 U, =U -U +U, -0 73)

e S B TS T (

B v.

‘ ) -

'i::

%, =V -V +V, - 74

e V=V "Vt Y, (74)

-

N

s Then the hourglassing forces are

b |
T . ‘
‘N T 2z EX°U |
) H H

2 Fux = =2 . =2 (75) '
e 4(AX" + AY At i
g l
209 .

S and a similar expression for Fyy. Ty is a dimensionless coefficient, Z

%;; is the node mass, AX and AY are representative cell dimensions, and At

o

R is the time step. The forces applied on the four nodes are

\P

a ® = F

[Sat] Hlx HX

S

e

; F = - F

H2X HX

J

"

A =

‘ Fuax = Fuy

::',‘

P Fuax = = Fux

IS

i‘ as indicated in Figure 6b. With this pattern of forces, there is force

. equilibrium and no change of momentum. These forces are simply added to

X the other nodal forces caused by the strains or boundary conditions.

:,: The coefficient Ty should be a small fraction to appropriately

'52 correct hour-glassing. Hancock [Ref. 20] recommends using a Ty value of

o,

:ﬁ 0.05. With this value, there are small restoring forces on each cycle

i to eliminate the hour-glassing motion. An initialized hour-glass

b,

? 35

)

[ ]

v.

Lt (OO0
sttt



gg;v
LNt
\
0]
St
5
o
N velocity pattern would be eliminated in about 30 time steps. This small
RS
‘\*' coefficient will minimize hour-glassing but not overly impede this
' o) motion (which occurs naturally in regions of high shear strains and high
: a)
Q}. shear strain gradients) when it is required by the conditions of the
~n
1:;: problem. The factor TH is TSR(M) in the code.
\
l' -y
'ﬁf G. Time Step Control and Stability Conditions
AL
)
r*u The time step used in the integration of the wave propagation
L)
{b¢ equations is determined within the code based on stability conditions.
Two time step calculations are made, and the minimum of the two provides
b the time increment actually used. Here we present first the time step
3*3 based on the Courant condition and later the one based on the stability
2 A considerations for the artificial viscosity.
L)
e The Courant condition requires that the computational time step not
'y
% exceed the time for stress waves to cross a cell. Thus the time step 1is
Al
~
; X
Tat at < &% (76)
[
kY
b
»
'ﬂ: where AX 1s the cell dimension and C is the sound speed. This ccndition
—13 is required for stability of wave propagation calculations in which an
42 explicit solution method is used, as in HEMP.
1
)
:hf The time step control procedure is derived below, including
b
fﬁ' ] Expansion of the Courant stability condition to allow treatment
y of general, time-dependent stress-strain relations and the
artificial viscous stress.
fo ¥
o
T ° Addition of a convective term, which is especially important in
o regions of large distortion and wherever particle velocity is
Il comparable to sound speed.
[ *
:f' ° Extension of the Courant condition and convective correction
o from the usual one-dimensional form to a two-dimensional form.
“ Y
s j ® An alternate stability condition based on growth of
b‘; disturbances by the artificial viscosity.
{
o
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Nﬁ: Courant Stability Condition. For one-dimensional hydrodynamic
W calculations, a fairly full investigation of the Courant condition has
!
tﬁ' been undertaken by Richtmyer and Morton21 and by Herrmann et al.22
-r However, a further development is required for a situation in which more
»,
-‘,.:} general, time-dependent, stress—-strain relations are included in one- or
's't' two-dimensional calculations.
‘ ,
L7 Here a new concept for stability is developed based on the
"
j\ hypothesis that all forms of stability depend simply on an effective
"
::: sound speed. The addition of artificial viscosity or other types of
' viscosity tend to require shorter time steps in the calculations because
\,‘- they increase the effective sound speed. This effective sound speed is
::: related to an effective modulus for the material as follows:
~
o
P
SI8 '
-2 v = AP+ 2Q 2/3 Aoy a7
e e _ AV Ay .
- v €1 T3V
e where
:5 AP = the change in pressure at a given cell during the
::j current time increment
D = the artificial viscous stress
LA AV
> T o= the relative change in volume
g
:-:f Ac; = the change in deviator stress
[, ¢
>,
P ey = the strain in the 1" direction.
P
Vo8
’:t' The factor 2 with Q is used because the Q is computed at At/2, providing
‘:". twice the stiffness that would occur if MQ were averaged over the time
[ )8
3 interval.
Y,
:.
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S
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Loy First a calculation is made for the one-dimensional ﬁroblem to
g& ! compare the results from the hypothesis above with that of the more
"ws usual approach followed by Herrmann, et al [Ref. 22]. Referring back to
N Eqs. 67 and 68 for Q, we can define a modulus as in Eq. 74; that is,

\ = ZQ = ZQ = " 2 2
. ). Mo = TEUT T Bolp T 2 [c.c, /Axy p/at + Cy Ay ap/(at) <] (78)

S Then the effective sound speed that will govern stability of the
calculations is from Eqs. (77) and (78)

T
Jﬁﬁq?,

2/3 Aoi

AV
p(ci - W)

(79a)

= S';x

|
|
Dlmx
1
d
<5
+
4 o
< O
+

 AXS

M
+ p—Q+ -"—;i& (79b)

"
o R

oL 2 2 AX
) =c + z(cQ |au| + ¢, c) At (79¢)

A,
i

) where
Qﬁ\ K = bulk modulus
e p = shear modulus
C = the usual sound speed based on these moduli.

Now let us examine whether Eq. 79 will determine a stable time step by

gl comparing this result with those of Herrmann, et al [Ref. 22]. For

5“5 stable calculations, the Courant-Friedrichs-Lewy condition (Eq. 76) is
* used to determine the time increment permitted. The sound speed C used

s in Eq. 76 is taken here as the effective sound speed from Eq. 79.

3, Insertion of Eq. (79) into relation (76) gives
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R % ae? ¢4 - 5 ~4X = (80) |
- c c® + (cq lav] +c.0) z
N
g*ﬂ When this quadratic is solved for the maximum time increment, the
N criterion is found to be
-
Qﬂ'
b AX 2 AU 2 (AU 2
*;: ae <o [- (cQ |-C—| + ) +/(cQ |-c—| +c)"+ 1] (81)
O This expression is identical to that found on page 73 of Reference 22.
;*: Hence the new concept does appear to give the correct stability
O criterion for one-dimensional flow.
o
For multidimensional problems, the last term in Eq. (79a) is taken
o as the maximum of the values in the three principal directions. An
d;k alternate, and simpler, course is to use the last term from Eq. (79b),
)
Fﬁﬂ with u equal to the largest shear modulus. Then the effective sound
L i speed is
s
O
5 4y
[ c2 4220, = (82)
t.:" - p V_
L
)
P
: This criterion is sufficiently general for stress relaxation and other
,§ ) time-dependent stress-strain relations.
K/
L)
J Particle Velocity (Convective) Effective in One Dimension. In the
gﬂ; time step algorithm used he.e, we introduce a convective term to account
[}
%2: for the fact that AX changes size during the time step. In small-
igﬁ disortion problems, this correction is unnecessarily meticulous, but it
3 .'
W is vital in preventing the cell tangling that occurs in large-distortion
¢ - problems. Cell tangling occurs when any node of a quadrilateral moves
)
..yi through an opposite side. Such motion can have no physical meaning in a
»
v
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'
:‘:: continuum, so the physical relevance of the calculation ceases at that
Ly
i time.
[ .
’ The convection calculation begins with the Courant condition (Eq.
e 76). Here AX is rewritten as the average cell dimension during the time
¢
» step. That is,
Rt
: 1
Wy Xr1+1 + xn _ xn+1 _ xn
e At =G = 5 )
(% :
The cell extends from X, to X,. The superscripts n and n+l refer to
" 1 2
N time increments such that t®'! - ¢® = At. The locations at the n+l time
k)
‘, are replaced bv using the velocity relation:
0
‘ +
s o g e g2 (84)
.
[
o
"’\ "
N
Ho where U"1/2 4o the particle velocity at t™ + At/2. Then Eq. (83)
X becomes
N
.‘_’.‘ Xn _ xn +1/2 (UI‘H’I/Z _ Un+1/2)At
Yo At = 2 1 2 1
o C
My
M
?" Combining the At terms, we obtain
D)
g 5+ N
' ot = nt1/2 _ n¥l/2 (85)
. U -U
! 2 1
R ot - 2C )
" '
:;é In the denominator this expression for At contains the convective
p correction AU/C, which characterizes the cell compressfon during the 4
[
N time interval.
o
)
a
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Crossing Time and Convective Effect in Two Dimensions. A two-

dimensional geometry is examined here to determine the effective cell
dimension AX for Egqs. (76) or (85) and the convective correction AU/C.
For a quadrilateral cell, the minimum distances for waves to travel are
from a node to an opposite side. The eight possible minimum paths for a
general quadrilateral are shown in Figure 7. Some perpendiculars from
the nodes to the sides, such as a and b, lie outside the cell; in this
case the minimum path is the side 1-2. If the interior angle at a node
such as 1 is greater than 90°, then perpendiculars from adjacent nodes
(2 and 4) to sides intersecting at 1 will lie outside the cell (perpen-
diculars b and h). The paths are therefore computed by calculating the
interior angle for each node and then the two paths pertaining to that
node. After the paths are determined, the relative velocity along each

path is found. Then the time step is computed from Eq. (85).

The computation of the minimum crossing distance AX and the convec-

tive corraction AU/C requires calculation of the following quantities:
] The lengths of the sides of the quadrilateral.

. The angles between the sides of the quadrilateral at each
joint.

] The relative velocity in the direction of a side.
] The perpendicular distance from a node to a line.

] The relative velocity along the perpendicular distance between
a node and a line.

The derivations, which are not included here, are all readily performed
by treating the quadrilateral sides and other lines as vectors and using

dot or cross products.

Time Step Criterion Based on Artificial Viscosity. The second

stability criterion is based on maintaining a time step that does not
cause growth of the particle velocity. Let a change in velocity
associated with Q be AU'. Then the momentum equation gives the

foliowing:

41
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NS AUt = 200t (86)

.‘.a

2

7’

And 0 is computed as usual from the following relation to velocities:

".
P4

).
v

[)
' W

= % , o2 (4% 2p:
Q = € CAX =5+ Cy o > bt) ‘ (87)

et
T Replace Ap/3t as follows:

(88)

O |
g
I
!
oo
><|C‘.

@ The~ the expression for O becomes:
“~

2 2
0=CccCp |au] + Cop (av) (89)

Now consider a small change in velocity to AU + ¢. Then Q will be

2(AU + 5)2] (90)

) Q, = p[chs (lau} +€) + X

-; Now presume that the change in velocity is dependent only on the force

My Q. Then compute the alteration in AU associated with Qe.

AUY = At

BE

2 2
[chs (jau| +€) + CQ(AU +¢e)] (91)

‘)a'.
L}

2
jaul (chs *+ ¢ |au])

2 2
Q‘]

2tp .2 2
o + = [cQ laul  + CC, €+ 2cQ AUl € + C

::'\:o 43
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L =AU' +¢'
r
£
s 9
*-y" If we neglect terms in ¢ , then €' is
&Y
li.)
)
,‘1:;: y  2te 2 92
_ € X (chs + 2C, jaul) (92)
1
4
For stability, we require that €' be less than €. That is,
T
LD
g Ax |
k- At = 5 (93)
’
L 2¢c,C_ + l.cQ lav|
pre
SO This equation for At is used as an alternate stability criterion to that
“.\J
S?‘: in Eq. 85.
Lo
%,
e H. Rezoning of the Mesh Configuration
5
0
:'.-‘C One frequently encounters problems with large mesh distortions in
‘:.. Lagrangian finite difference calculations. In the penetrator problem
shown in Figure 8, the cells in the target immediately below the
; penetrator get progressively thinner in the direction of impact because
~
f-“- thev expand laterally. These cell distortions cause two problems in the
i)
‘. i code calculation:
1
. (1) The minimum crossing time for the cell leads to a small
,::::l stable computational time step.
M
K
" .:: (2) Non-square cells give an inaccurate description of the
o material behavior.
.'n'
.. One remedy to the cell distortion is to rearrange or rezone the
L]
B
,,.:, mesh as shown in Figure 9. The computational mesh has been moved so
':: that it describes the material better. We note that the new cell B now
.h -
-Pb contains some of the material that before the rearrangement was
\ a contained in cells A, B, E, and F. A second means of minimizing the
o
" A
l" >
Q".
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distortion is to restrict the relative motion of some nodes. Both
methds are used in C-HEMP. The second method is outlined briefly at the

end of this subsection.

Rezoning or rearrangement of the mesh in Lagrangian codes may be
either discrete or continuous. For a discrete rezoner, the wave propa-
gation calculation is halted at a predetermined time or when some
rezoning criterion has been reached. Then the o0ld mesh is overlaid with
a completely new one. The rezoning is handled by a separate computer
program. This rezoning program writes a restart file based on the new

mesh and the wave propagation simulation is restarted from that file.

In penetration calculations, the mesh distortion may progress very
fast and discrete rezoning like that mentioned above can grow intoler-
ably time consuming. We have therefore developed an automatic rezoner
that rearranges the mesh as a part of the wave propagation calculation
and does not require user intervention during the computation. An
automatic rezoner has to limit its rezoning considerations to local
conditions to give a tractable problem. It therefore usually gives less
improvement than overlaying the old mesh with a completely new one. It
makes small changes in some of the coordinate locations at regular
intervals, rather than moving all coordinate locations at a few discrete
times during a wave propagation problem. From our review of rezoners
used with STEALTH, TOODY, and HEMP, the continuous rezoner was selected
as being more reliable, requiring less programmer intervention in
running a problem, and being easler to write. (The disadvantage of the
continuous rezoner is that it tends to smear properties more than a

discrete rezoner does.)

The basic principle of the rezoning algorithm is f{llustrated in
Figure 10. We have a node 1 with eight neighbors, nbl-8. Several of
the cells around the node have a small time step that can be enlarged by
relocating the node to a more central position like the configuration to
the right. The rezoner examines the cell configuration around node 1
and tests to see whether a shift of the node position will improve the
time step. 1If so, the node is shifted. Then the properties of the new
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ES{S cells are computed from the properties of the old cells. Described
Pl below are the sequence for testing each nodal position, tests for
t\;‘ examining the cell configuration, the procedure for allocating stresses
A:f and other properties to the newly configured cells, and the system for
_g;i computing velocities so that momentum is conserved.

‘2%. The sequence for scanning the nodes for possible rezoning occurs
;:i: over four standard computational cycles. Following the first cycle, all
;:;: odd-numbered nodes are scanned. After the second cycle, even-numbered
::@; nodes are scanned. After the third and fourth cycles, odd- and even-
e numbered nodes, respectively, are scanned starting with the last node
i}ﬁ and proceeding toward the first. The frequency of this four-cycle scan
EE% of all the nodes is controlled by an input parameter NFREQ.

‘52: When each interior node (such as node 1 in Figure 10) is scanned, a
- new nodal position 1' is computed at the centroid of the polygon formed
f’:j by the eight neighbors nbl-nb8. (An algorithm that computes the posi-
£€ tion of 1' from the mean rather than the centroid gives a considerably
";} worse result in certain difficult cases.) If the time step of the new
! configuration is smaller than for the old one, we will iteratively try
::Ej positions nearer to the old node position a certain number of times. If
’ESE it is not possible to find a position with a better time step, no
,i{j operation is done and the node is left as it is. The test for an

increase in the natural time step is essential to avoid situations in

\’ﬁé whicl: the move toward the centroid would actually produce a smaller time
ig& step. For example, if the neighbor polygon is half-moon shaped, the
2 centroid may actually lie outside the polygon; then moving the node to
‘ ;: the centroid would produce cell inversions. This algorithm for calcu-
'#35 lating the new node position has been implemented in the program and
;Y{: tested to verify that it does improve the mesh configuration. This

Q,:' simple iterative procedure was used because we could not derive an

.g analytical expression for the optimum position in a mesh of arbitrary
‘:?E shape.

f_'_a

::: For a boundary node, we relocate the node to the mean of the

i& positions of its two neighbors along the boundary. That is, 1if nbd in

3
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Figure 10 were the boundary node to be rezoned, the node would be moved

along a line parallel to nb3-nb5 and passing through nb4. This motion
conserves the area on each side of the boundary. As for interior nodes,
the node motion is tested to ensure that it produces an increase in the

time step.

Having determined the new nodal position, we go on to calculate the
new cell and node data. We take the view that we move the logical mesh,
but the physical material stays in the same place. This means that a
new cell will represent the properties of portions of several old cells,
generallv. We solve this problem by letting the old cells that are
covered by the new cell contribute to the new cell properties in a mass-

weighted fashion.

The area of the cell A' in Figure 10c is composed of the partial
areas A_, A, AC, Ags where A is the intersection of new cell A' and
old cell A and so on. The volume corresponding to the partial area Aa

is V__, iy is Vab’ and so on. 1In plane symmetry Vaa = A

aa in cylin-

a’
drical svmmetry Vaa is the volume of a toroid with cross-sectional area

Aa. The new mass M; of cell A' is

M_=1D_ V + D +D V + D

a a 'aa b Vab ¢ ac d vad (94)

where Da is the density of the old cell A. The other cell variables are
computed by mass weighting. For instance, the new pressure of cell A'
is

'
aa Pa + Mab Pb + Mac Pc + Mad Pd)/Ma (95)

where My, = Da Vaa’ Mab = Db vab’ Pa is the pressure of old cell A, Pb
is the pressure of old cell B, and so on. Doing this for each of the
new cells A', B', C', D', we obtain the properties of the new cells. We

note that the internal energy is conserved exactly by this treatment.
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IS The node quantities we need to calculate are the node mass and
{ velocity. The node mass is calculated the same way it was calculated
g} when the mesh was originally generated: each cell contributes a

d fraction of its mass to each of the four nodes that define it. The

,¢ velocities of the eight neighbors are simply left as they are and the
?‘ new velocity of the center node is calculated from momentum conserva- .
‘*Q tion. This procedure usually does not conserve the kinetic energy. To
:: partially account for this energy change, the kinetic energy change

:; (usually a loss) is computed and added in a mass-weighted way to the

* internal energy of the cells A', B', C', D',

;: Relocating a boundary node poses some special geometric problems.
;2; However, we use the same basic method of mass weighting and calculating
:E the new node velocity from momentum conservation as for interior nodes.
.. The motion-restricting procedure for minimizing cell distortion is
:}: illustrated in Figure 11. Node 3 has almost collapsed onto side 1-4.

i To prevent further cell distortion or even penetration of the side, the
f; motion of node 3 is restricted. In the controlled condition, node 3
; cannot move closer to side 1-4 than the control line which is parallel
‘Es to the side. Hence the motion of node 3 tends to follow the motions of
o nodes 1 and 4. For this collapsed cell, the distance between node 3 and
i.i side 1-4 is not used in the time step calculation. This collapsed-cell
. feature certainly introduces a non-physical rigidity into the material
;; motions. But when these collapsed cells appear far from the region of
u% main interest, they have little effect on the computed results. This
fﬁ provision does allow the calculation to continue with a reasonable time
e

step, instead of halting because of excessive cell distortion.

P
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1. Slide Line Treatment

o
-

|

A slide line is provided to permit relative shearing and relative

X normal motion between two objects or between two parts of an object. As
‘: an example of the use of a slide, Figure 12 shows two materials in
N
A contact undergoing a relative shearing motion. After some deformation
v :
] with no slip along the interface as in Figure 12(b), there are severe
98
[\ 50
"I
-
B
. L]
(]
W
e
1
W™ - . .\ - 5 -t - -y " oy W PRACPRA LAY
'*-. .,“t, X () l * M ’* Lk ) X 20 .') q‘ L He .o‘l.o LN o: 'l Ml ‘M!‘l.! o, X [N , ' ..*’ e '?.




:0::11 ““"""""“mm'm'mmwmmwm

Cortro’ Line

g JA-314532-150

b~
AN FIGURE 11 QUADRILATERAL IN WHICH ONE NODE HAS ALMOST
ey COLLAPSED ONTO AN OPPOSITE SIDE




1 Initia!
1t} Velocity

! b

Material 1

Initial
Velocity
- Materia} 2 ———

5.

N eyt . .
it (a) Initial Configuration
8

0

‘ol

2

AR

[

3 - Non-sliding
o Interface
b
- 1LV
o>

" {b) Deformation with no Slide Line

o

R

-~
-
-

A

O Sliding Interface

ER0 / with Friction

a".~; -

o {c) Deformation with a Slide Line that has a
Frictional Coefficient

VN JA-6423-1A
w

:: FIGURE 12 TWO TREATMENTS OF AN INTERFACE BETWEEN TWO
s MATERIALS UNDERGOING RELATIVE SHEAR DISTORTION

$ St 52

e
o
¢

‘l

b - - . - g} " h Y 3 (M u i B (] ) ! U .
1 Ay, e b
‘nl!‘:“.':'..n‘ ." 5‘!\‘-,‘0'.‘(‘0#‘ A A m W -‘a’».‘;.:‘l L P SN BONY NG




il el Aall Aol Aol A e e e Rl dile o il Ak Al ek ol Yok 4Ll 3o o8 B A S R a db Al aVE Rth adl LA oBe abe aPA - ol oRet Nt B 4t e

distortions of both materials near the interface. Figure 12(c) shows
the deformation at some later time when there is a slide line with
friction between the two materials. Inclusion of the slide line permits

a more physically accurate treatment of the motion in this case. ™~

Relative normal motion across a slide line is illustrated by the
impact problem in Figure 13. The round object is not initially in
contact with the flat surface, but as the simulation proceeds a contact
line develops between them. The configuration of the objects makes it
impossible to describe the materials with one single mesh. Sliding as

well as normal motion may be permitted along the slide line.

The present slide line treatment allows thc interaction of one
master and one slave line of nodes. There is no provision for the
simultaneous interaction of three objects, and thus, three lines of
nodes. Also, the slide line is predesignated by the user: it cannot be
allowed to develop gradually (to unzip). We believe that the present
slide line development readily allows for the inclusion of these

advanced sliding features.

The slide line method permits shearing resistance to the sliding,
based on Coulomb friction and viscous drag. The Coulomb model provides

a shearing resistance of the form:

T = C0 + on Tan(¢) (96)

where Cg is the cohesion, o is the normal stress, and ¢ is the internal
friction angle. The viscous drag force is computed only when there is
relative slip occurring between the two sides of the slide line. This

viscous shear stress is

o ')"}"A ’.. !

T = nAU (97)

o
L 4

A
o ES

where n is the coefficient of viscosity and aU is the relative velocity.

2 53




e
vy

.
-

-
.

o o ..%0."'." -
FEL I

(c) Configuration of Nodes after Penetration is Removed

JA-6423-38

FIGURE 13 SLIDE LINE INTERACTION FOR A CASE OF PENETRATION

34




MR e R TR Tl e el R il A S Ah o S g%l aFA ach o¥i ofh o Aar ol obl oBA Ne ol SRR AA- e Jhn- b B ma.obet iac Sy ane gas aa o gn |

The Method. The equations described here allow opening and closing
of the slide line, sliding with viscous drag or friction, or sliding
with free slip.

The basic idea behind the slide 1line algorithms is that the slide
line nodes are first treated as if they were free surface nodes. Then
we check whether the two sides of the slide line overlap, and if that is
the case we displace the nodes so that the overlap disappears. This
method does not require any special algorithms for void opening, making

it easy to handle opening and closing of the slide line.

The first operation is to search for overlaps. We systematically
examine for each node whether it is behind a line segment of the other
side of the slide line, like in Figure 14. This is done for both sides
of the-slide line.

Having found that node 1 is behind the line segment defined by
nodes 2 and 3 in Figure 14, we have to calculate the slide line inter-
action between the three nodes. For this calculation, we restrict our
attention to the penetration of node 1 through the line 2-3, and dis-
regard that nodes 2 and 3 may have penetrated into material 1, or that
our corrections to remove the penetration at 1 will cause penetrations
elsewhere. We will here assume that this interaction between node 1 and
line-23 can be separated into one component normal to the slide line
that cancels the overlap and another component parallel to the slide
line that involves the frictional or viscous forces. We will further
assume that the normal direction is perpendicular to the line 2-3. We

make these assumptions because they are simple and straightforward and

are physically reasonable. In a more rigorous slide line model, the
overlap could be cancelled, taking into account how the nodes are
moving, possibly also the interface conditions, maybe even the constitu-
tive models for the materials that border the slide line, but we feel
that such a calculation i{s too complicated to be practical. The assump-
tions above give us a manageable problem. We will first treat the

displacements normal to the slide line and then go on to calculate the
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changes in the motion parallel to the slide caused by any frictional or

>
..

viscous interface model.

With these assumptions, node 1 will be moved to a point 1' on the
line 2'-3' when the overlap is cancelled. P is the projection of 1 down
on the line 2-3. Having assumed that all three nodes displace normal to

the line 2-3 we need three equations to calculate the displacements. -

‘

These are:
(1) Cancellation of the overlap
(2) Conservation of linear momentum
(3) Conservation of angular momentum.

If D, is the displacement of 1 to point 1' and Dp the displacement of P
to 1', then the condition that the overlap D, between points 1 and P

should cancel gives us

D, ~D_=0D (98)

1 P o

where the minus sign is used because D1 and D_ are in opposite

P
directions.

Geometric requirements allow us to relate the displacement at P to

the displacements D2 and D3 at points 2 and 30

where Xp is the length of the line 2-P relative to the 1line 2-3.
Combining Eqs. (98) and (99) to eliminate Dp’ we obtain

Dy - (1 - X)) Dy - X, D3 =D, (100)

The forces, Fi’ on the nodes that cause the displacements have to

fulfill linear momentum conservation:
Fi + Fp + F3 =0 (101)
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The third equation represents the conservation of angular momentum

around node 2:
Xp F, + Fy = 0 (102)
This gives us
Fq = - Xp F1 . (103)
Eliminating F3 by combining (101) and (102) gives us
Fy = = (1 - Xp) F1 . (104)
A displacement Di corresponds to a velocity change Vi = Di/At, where
At is the time step. A change V1 in velocity requires a force
2
Fy =M Vi/At = My Di/(At) (105)

where M; is the node mass. Combining Eqs. (105) with (103) and (104),

we write expressions for the displacements in terms of Fl'

) 2

D, = F, (at) ™y (106a)

D, = F, (at)2/M, = - (1~ X ) F, (at)i/m (106b)
2 = Fa l i) P 1 2

D, = F, (At)2/M, = - X_F, (At)2/m (106¢)
3 = Fy LAt) /My p F1 LAt) /My

Inserting relations (106) into (100) gives an equation for Fy:
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A With the additional relations (103) and (104) for F, and F,, we have

g

q-_';: complete specifications—-—-for the changes in velocity and position of the
Wty

, three nodes——-that cancel the overlap.

e The displacements parallel to the slide line may be controlled by
-_’.::}' viscous or frictional forces or may be allowed to slip freely. If the
(s
‘.-.:4 user has specified free slip, the parallel motion calculations are
‘\, complete at this point. For frictional resistance to sliding the

N frictional force is computed:
-
‘.'_‘.' .
h-:-\ Fe =C, Ly + Fy Tan(¢ ) (109)
N\ -

o where Co is a user-specified cohesion, Ls is the distance between nodes
:::;;: 2 and 3, Fn = MAX (Fl’ 0) is the normal force, and Tan(¢) is a user-
SN

- specified coefficient of friction. We calculate the velocity difference
A

parallel to the boundary, {.e., parallel to the line 2-3:
g
) g = - -~

et vy (1 Xp) sz + Xp Vp3 Vpl (110)
l’)

2
"2 where Vpi are the velocities parallel to the boundary. We calculate the
AN forces it takes to cancel out \FE

)

D _ v 2 2
i Fqp = Vg/P /(1M + (1 xp) M, + xp/ua] (111)

I -
e Fgp = - (1 xp) F (112)
.
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F.=-X F (113)

These relations can be derived analogously to relations (108), (103),
and (104). If the frictional resistance Ff is greater than abs]Fdll,
the friction is strong enough to cancel the velocity difference and

equations (111-113) stand as they are. If the friction force is less

than absIFdlf and the user has not specified a viscous model,

Fdl = Ff sign (Vd) (114)

and L and ng are calculated from Eqs. (112) and (113). 1If the user

has specified a viscous model, we calculate a viscous force:

F, = A, L. |V4l (115)

where Av is a user-specified coefficient of viscosity. Similarly to the
friction force above, we investigate whether abs[Fdl! is greater or less
than Fv. These friction and viscous forces are then added vectorially

to the normal forces in (108), (103), and (112).

Because we correct the overlap immediately when we have found it as
we search through the nodes, there 1s an order dependence in the
algorithm. Therefore, we alternatingly search one side of the slide
line first on one time step and the other side first on the next time
step. We also search in one direction along the slide line on one time
step and in the other direction on the next time step. To minimize the
searching time for each node on the slide line, we store the number of
the nearest node on the other side of the slide 1line at each time step.
On the next time step, we start the search from that node proceeding in

both directions along the slide line.
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After the slide line calcylations, the new node velocities and

positions are calculated. This means the positions and velocities above
were trial values using only the cell forces. The slide line forces are
stored among the node data and then used in the final node calculation.

For instance, for node 1 the X velocity and position are calculated as:

U =U_+(F_+F

Xn X0 Xc xb) At/M (116)

X =X +U At (117)
n (o] Xxn

xo 1S the old velocity, Fre is the sum

of the cell forces around node 1, Fxb is the sum of the slide line and

where an is the new velocity, U

other boundary forces on node 1, At is time step, and M is the node

mass.

We note that the slide line calculations above are constructed such
that the final positions do not give any overlap along the slide line in
the ideal case. Because of interference between the various slide line
calculations, this might not work our perfectly. Node number 1, for
instance, may be involved in further slide line interactions that modify
the force calculations we have already made. To obtain a perfect
cancellation of the overlaps, one would have to solve all the slide line
interactions simultaneously. Our experience has indicated that the

present sequential algorithms are satisfactory in practical computation.

J. Finite-Element Numbering of Nodes and Cells

The storage of node, cell, and material information is handled in a
manner which is unusual for finite-difference wave propagation codes.
These unique features are briefly outlined here and provided in more
detail in Appendix E.

All cell and node information is stored in a large one-dimensional
array called COMl. Each cell has at least 18 storage locations assigned
to it for storing mass, density, area, stresses, and indicators. Addi-

tional storage locations are provided in the same group by requesting
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them in the input lines. For each node 24 storage locations are
provided for node location, velocity, and indicators. A 1list of these
quantities and their positions in the COM1l array are given in Tableé E.l
and F.2 in Appendix E. The starting locations for cell and node storage
are present in the LC and LN arrays. For example, information for the

ith cell begins at location LC(1) in the COMl array.

Similarly, all the material data available in the main arrays is in
the COM2 array. This array contains the moduli, yield strength,
density, material name, fracture quantities, and indicators for the
model to be used. A list of these quantities and their positions in the
COM2 array are given in Table 1. The starting location in the COM2
array for data for the mth material is LE(m), where LE is the locator
array. The ESC array is equivalent to the constitutive property portion
of the‘COYZ array, as shown. Usually these properties are passed to

material models by providing the ESC array.

61

'\-J." 'I‘:'."t"'l LIRS 2T "‘((V‘ P (AR P ' ” \ " \ " ’
! g .A.~.s -l! ey ,u'z.,c.'.o ..- ,:.t,o'if. X I ‘:‘0‘."0.:'& ) l!‘l"t‘lf:f%o "0?‘.‘!.,:':.. .“l‘f‘t !‘!‘!‘:“':.“:."‘o‘:




Table 1

VARIABLES IN COM2 ARRAY FOR EACH MATERIAL

Number Location Location
in COM1 in ESC Name Description
1 CoM2(L) - WCMP(L). Indicator for composite model
2 COM2(L+1) - WFR(L) Indicator for fracture model
3 COM2(L+2) - WPOR(L) Indicator for porous model
4 COM2(L+3) - WDS(L) Indicator for deviator stress
model
5 COM2(L+4) - WPR(L) Indicator for pressure model
6 COM2(L+5) - WVAR(L) Number of extra cell
variables needed
7 COM2(L+6) - WTRI(L) Indicator for triangular
cells, unused
8 COM2(L+7) - WYAM(L) Indicator for thermal
strength, unused
9 COM2(L+8) - WEQS(L) Number of ESC parameters
allotted to material L
10 COM2(L+9) ESC(L) ESC(L) Array for equation of state
variables
10 COM2(L49) ESC(L) RHO(L) Initial density, g/cm’
11 CoM2(L+10) ESC(L+1) EQSTC(L) Bulk m adulus at zero pressure,
dyn/cm
12 COM2(L+11) ESC(L+2) EQSTD(L) 2nd term in series for bulk
modulus, dyn/cm
13 COM2(L+12) ESC(L+3) EQSTS(L) 3rd term 1In serjies for bulk
modulus, dyn/cm
14 COM2(L+13)  ESC(L+4) MU(L) Shear modulus, dyn/cm?
15 COM2(L+14) ESC(L+5) YAD(L) Work hirdening modulus,
dyn/em
62
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16 COM2(L+15) ESC(L+6)
17 COM2(L+16) ESC(L+7)
18 COM2(L+17) ESC(L+8)
19 COM2(L+18) ESC(L+9)
21 COM2(L+20) ESC(L+11)
22 COM2(L+21) ESC(L+12)
23 COM2(L+22) ESC(L+13)
24 COM2{L+23) ESC(L+14)
25 COM2(L+24) ESC{L+15)
2h COM2 (L+25) ESC(L+16)
27 COM2(L+26) ESC(L+17)
28 COM2(L+27) ESC(L+18)
29 COM2(L+28) ESC(L+19)
30 COM2(L+29) ESC(L+20)
31 COM2(1+30) ESC(L+21)
36 COM2(L+35) ESC(L+26)
Note: L = LE(m) for the m—th material.

Table 1

RHOS(L)
AMAT(L)

EQSTG(L)

YC(L)
EQSTE(L)

EQSTH(L)

EQSTN(L)

EMELT(L)

EQSTA(L)

EQSTV(L)

SP(L)
G2(L)
PMIN(L)

TSR(L)

BFR(L)

63

(Concluded)

Initial solid density, g/cm3
Name for the material
Grueneisen ratio

Coulomb friction coefficient
Initial yield strength, dyn/cm2
Sublimation energy, erg/g

Grueneisen ratio for expanded
states

Exponent in equation for expanded

states, EQSTC/(EQSTG * EQSTE *
RHOS)

Melt energy, erg/g

Coefficient of the 2nd term in the
series for the Grueneisen ratio

Exponent for determining the
Grueneisen ratio in expanded stat-

Sound speed, cm/s
2MU(L), dyn/cm?
2

Tensile pressure limit, dyn/cm

Material parameters for hour
glassing viscosity

Array containing fracture
parameters

The LE array provides the starting locatio]
for material data in the COM2 array.
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A finite-element numbering procedure is used for the nodes and

cells to allow for flexible relationships between the cells and nodes.

With finite-element numbering, each cell and node is numbered
independently of its position in the grid. This contrasts with the
i, j-numbering common to most finite difference codes in which a fixed
numbering relationship exists between each node or cell and 1ts'ne1gh-
bors. This finite-element numbering allows a somewhat more flexible
layout of cells in problems with complex shapes. It is essential for
problems in which new cells or nodes are created as by wandering slide
lines or by general rezoning (grid reconfiguration). The disadvantage
is that the nodes around each cell and cells around each node must be
individually designated because there is no automatic node-cell rela-
tionship as in the i, j-numbering system. Here we describe the indicator
arrays required to show these relationships and then exhibit some cell

layouts that are possible with the finite-element numbering.

At present the finite-element numbering procedure has been
developed only for the case of quadrilateral cells. It is expected that
triangular cells will be added later.

Adjacency Arrays. During layout, the nodes and cells are numbered

in the order in which they are constructed. A partial node and cell
numhering for a quadrilateral is shown in Figure 14. During layout
three special arrays are constructed to provide the needed adjacency
relationships. The WNOD array of four integers designates the nodes
surrounding each cell. For cell 10 in Figure 14, the WNOD array is 12,

13, 8, and 7. The nodes are provided in counterclockwise order.

The neighboring nodes for each node and the cells around each node
must be available to the rezoner; this information is stored in the
WNDND and WCELL arrays. As an example, consider node 7 in Figure 14.
The neighboring nodes are WNDND = 2, 6, 12, and 8. WCELL stores the
cell-variable location coordinate (LC value) for the cells 1, 9, 10, and
2. These sets of cell and node numbers are both in counter-clockwise
order. Also the nodes given by WNDND(i) and WNDND(i+1l) are on either
side of the cell indicated by WCELL(1i).
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Both WCELL and WNDND have: five storage locations. The extra space
beyond the four normally required provides for some special layouts in
which five cells may surround a node. The counter for WCELL is the
quantity SCELL: the negative of the number of cells around the node.
Hence, for an internal cell, SCELL is usually equal to -4. External
nodes require fewer WCELL values. For example, for node 6 in Figure 14,
the WCELL array is LC(9), LC(l), 0, 0, 0, where LC(1) means the location
coordinate of the ith cell. For this same node the WNDND array 1is 11,
7, 1, 0, and O.

l.r;... u c c ‘ _C:;E U(L(L(l

In BLOCK these two arrays are filled with cell and node numbers in
ascending order. Then ORDER is called by GENR to rearrange the elements

of each array to produce the special relationships referred to above.

Grids Using Finite-Element Numbering. The finite-element numbering

provides some added flexibility in laying out the grid or in changing it
during a calculation. Here we describe three situations--a prodlem
where a varying grid size is required, a computation with a nonrectan-

gular object, and a calculation with a moving slide line.

Often it is of interest to provide small cells in one region of a
problem and large cells elsewhere. For accuracy, the cells should vary
gradually from small to large and should remain nearly square. 1In
general, these requirements cannot be met with an i, j-numbering proce-
dure without introducing slide-line discontinuities in the grid. Even
then the slide line is restricted to one direction (i or j, not both) so
the cell size can be varied in only one direction. Figure 15 shows four
cell configurations that permit gradual changes in cell sizes in one or
two directions in a finite-element number scheme. Because of the
irregular adjacency relations, these schemes cannot be used with i, j-

numbering procedures. They all show regions in which the cell size

varies 10% to 50%. This variation may be too rapid for wave propagation
problems, but it is satisfactory for intermediate rate problems such as

projectile penetrations. The patterns in Figures 15¢ and 15d are

i
&

constructed using BLCAS3, a subroutine used in cell layout.
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Odd-shaped objects such as projectiles and spheres are difficult to

construct with nearly square cells with an i, j-numbering technique.
Figure 16 shows a sphere (modeling a human head) with a finite-element
numbering technique. Note that all cells are approximately equal in
area and have aspect ratios near one. Figure 17 shows a sample of the
layout obtained with the BLCIRC subroutine called by BLOCK. A solid
cylinder of explosive was contained within a series of steel cylinders.
This figure shows that nearly uniform sized cells can be obtained
automatically for circles and arches. Node locations of successive

arches can be made to match or not as desired.

A third feature of codes that shows the need for finite-element
numbering is the slide line, especially a slide line that could propa-
gate during a calculation along an irregular and unpredetermined direc-
tion. Such A general slide line is illustrated in Figure 18 (but is not
vet available in C-HEMP). As the slide line would move through the
grid, we presume that it might move to any adjacent node along its
general direction of travel. 1In some moves it would merely separate
cells. Then one node such as A would be divided into two nodes to
permit separate motions of the adjacent cells. However, if the slide
line divided a quadrilateral (as along BC) into two triangles, addition-
al nodes would be required at B, C, D, and E. The nodes at D and E are
needed to turn the new triangles back into quadrilaterals. Following
the construction of a new node, the WNOD, WCELL, and WNDND arrays of
ad jacent nodes and cells would be revised to account for the new node
and new cell (if any). The new node (or cell) is merely added to the
node (or cell) list and provided with the usual properties. None of
these steps Is trivial, but they can be accomplished without modifying
the basic computational algorithm; the only changes are those required

at the point in the code where the new cell or node is created.

68

« ! ” ") 8 w, o W,
'a Wy | 9% .Q..‘l’..:. QA. ] .n: o oty l‘u‘::"‘::.l'!'::%‘.".\ 1,000, %,



|

Pe Applied Pressure :
with Cosine 5
Spatia!
Distribution

[

AL

P
g -

Skuli
Brain

Cerebrospinal
Fluid

3’
N GA-314582-168

] FIGURE 16 GEOMETRY OF HUMAN HEAD FOR STUDY OF IMPACT AND CONCUSSION
:' SHOWING FINITE-ELEMENT LAYOUT FOR CIRCULAR OBJECT




—_—mry s Y A ot o ol b M alis A b RS oFE R o RN SIS _JNE G o oTR ST SERESUEY
Wﬂ A Sk & A & 48 8 b a i da 2 ) R B gl ate gl ate giih pud i St pus oig uiid ol b ohacadl and od
- -
S
Yo
Ak
L. )
g &
-
£
-
o
r~’l
w4
" - ’ !
N Yo
N
.\~. '
N ™ Shide Lines
5.3 ) |
! \ Y
. e
o M*\w
) S
‘r .
ﬂ‘\ ,__._‘ —
L AN VAN
A W
\ A W
)\

Steel Rings
input for Layo.:
BLOCK 1 CInZLE = c.0 7.62 180. ) )
YA= 0. 0. } Semicircie of Explosive
NCi2=3 AMAT=TIG_DEX]
-~ - . 2 4
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Ci12=4 AMAT=ST4340

FIGURE 17 SAMPLE LAYOUT OF A SEMICIRCLE COMPOSED OF FIVE MATERIALS
WITH SLIDE LINE DISCONTINUITIES BETWEEN MATERIALS

Com~puted by BLCIRC
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SLIDE LINE REPRESENTING A GROWING CRACK OR SHEAR BAND
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IIT STRESS COMPUTATIONS

A. 1Introduction

The constitutive relations provide the stress as a function of
density, strains, internal energy, and other quantities. This section
describes the common constitutive relations and outlines the
constitutive models available in C-HEMP. Models for pressure only, for

deviator stress, and for total stress are given.

In the standard constitutive relations, the stress tensor is
separated into a pressure and a stress deviator tensor. The pressure is

the average stress

P=1/3 2011 (118)
i
and the stress deviator elements are
' = - 19
oij oij Péij (119)

where Uij are stress tensor elements and oij is the Kronecker delta.
The standard pressure and deviator models are presented in the following
sections. Later sectlons describe more complex models available in

C-HEMP. Procedures for adding more models are given in Appendix B.

B. Mie-Gruenelisen Pressure Model

The pressure is computed from a simplified form of an equation of
state, the locus of all possible thermodynamic equilibrium states for a
substance. Each state Is a set of values of the following thermodynamic
quantities: stress tensor, specific volume, entropy, specific internal
energy and temperature. In the simplified equation of state used in

most wave propagation codes, the only variables considered are pressure
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55_' (the deviator components of stress are treated separately), specific
R volume (V) or density (p = 1/V), and internal energy (E). The equation
? 5 of state is then
R
!\sz P = P(E, V) (120)
sf)* which defines a surface or locus of points In energy-pressure-volume
Y ): space.
S .
.5:} An equation of state represents equilibrium states. As a material
undergoes gradual change, such as heating or compression, the successive
‘ j% states describe a path on the equation-of-state surface. If the
: E& material 1s compressed by passing through a steady-state shock front,
:jhs the initial and final states lie on the P-V-E sgurface. These initial
] and final states are connected by a straight line, the Rayleigh line,
;5? which does not lie on the surface, but above the P-V-E surface. The
:;i states of transition within a shock front are not states of thermo-
:ij dynamic equilibrium. A complete equation of state describes the
’ material behavior in solid, liquid, and gaseous phases. The standard
::;: pressure model present here in the subroutine CYCLE gives a physically
.;iz reasonahle treatment of the solid behavior only.
‘?J: First, we examine the paths taken on the equation-of-state surface
4 by material under shock loading. Shock experiments lead to the
,{5 determination of a Hugoniot or Rankine-Hugoniot equation of state that
:&:E is represented by one curve on the equation-of-state surface. This line
;::3 is the locus of final states that can be obtained by a steady-state
A ~ shock transition from a given initial state. The pressure-volume path
}k taken by the material during the shock and a subsequent unloading is
3?* shown in Figure 19. The shock path follows a Rayleigh line to a point
ﬁeﬁ on the equation-of-state surface. Pressures on the Rayleigh line can be
A .7 considered to be decomposed into an equilibrium pressure represented by
5 v, a point on the equation-of-state surface plus a nonequilibrium pressure
5:3 component. 1In code calculations the equilibrium pressure is computed
T~ from the equation of state, and the nonequilibrium component is computed
o
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rnig as the artificial viscous stress. Figure 20 shows the Rayleigh line and
™
Y unloading isentrope on the equation-of-state surface with a Hugoniot
{
curve. During the shock loading the internal energy increases, as
&P indicated in this figure. Less internal energy is used in the elastic
ﬁg recovery on unloading down the isentrope; hence the unloading does not
o
>, coincide with loading, and the final, unloaded state is warmer than the
e initial state and at a larger specific volume (for materials that expand
e
o, during heating).
;f Several other lines of interest are shown in Figure 20. The
‘ [
adiabatic compression path is followed by a rapid but nonshock loading
e in which n» heat conduction occurs. The unloading isentrope is a
)
::ﬁ similar, equilibrium process without heat conduction. The zero pressure
;_: line i< the locus of points obtained by simply heating the material
i.' without external mechanical confinement. Heating increases the internal
*:, en:rzv, and thermal expansion occurs. For small increases in internal
P
(I: en=rgv, the zero pressure curve describes the usual expression for
o
Y
Ny voluartri- thermal expansion
o
'-.,'s
S V=V (14 ahke) (121)
», -\
~
e
St
where V) = the initial specific volume
.y
o a = the volumetric thermal expansion coefficient
Ao nv = the change in temperature.
L»’. -.
:F The spall path is showan only to indicate the direction taken in tension.
\j Spall, or fracture, is a rate-dependent process that generally depends
.
v
:w on the stress tensor (not simply the pressure) and on the internal
N
;: energy.
'c’
<3 Having outlined some properties of the equation of state, we now
1
e introduce the analytical forms used in the standard pressure model. The
et
Qf equation which is generally used to describe compression is the Mie-
" ..
't Gruneisen equation:
>,
r
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P-PH=£‘(,—V—)(E—EHJ (122)

o
.

&L

where

Py and Ey = a point on some reference curve at the same
specific volume V

™ "

‘ii I' = the Gr;neisen ratio.

o

L Equation (122) was derived by assuming that ' is a function of V
;f only. Equation (122) provides a means for extending the information of
o a known P-V relation (such as the Hugoniot) to other values of internal
:E energy. Because the Hugoniot is the P-V relation that is most likely to
Y be known, the computations are constructed so that the Hugoniot is the
:} reference curve used. The Hugoniot P-V equation is presumed to be in
! the form

- 2 3

o PH =Cu + Du” + Su (123)
I\'
- where

\J

i P Vo

_,\j U = -1-= V— -1

"-4‘ (o]
‘{? C = zero-pressure bulk modulus
7 D,S = coefficlents with the units of moduli.
4

»

The internal energy along the Hugoniot is

. e

P
H
E =5—(v -V

- o H) (124)

Equation (124) assumes that the initial internal energy is zero and that .

the Hugoniot is concave upward throughout. In general, the latter

VEEEZLEL

assumption excludes consideration of changes of state. Although these

t?; relations are strictly true only for the stress Hugoniot, not the pres-
L) " .

:} sure Hugoniot, little inaccuracy is introduced by this approximation for
:; stress states well above yielding. With the aid of Eq. (123) and (124),
™ the Mie-Gruneisen equation takes the following form in the program
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D ::-f
i 2 3 Ly
( P=Cu+ D" +s7)(1 - 5 ) + I'pE (125)
33 |
.K:n.‘ ‘
:}: When material is held at a particular volume and heated (internal |
L SAN
| energy is added), it goes through states that are straight lines on the
N
.'t' equation-of-state surface. this indicates that, for constant volume Vis
,}3 the analytical equations for the surface have the form
“:l
Y
o E = A(Vl) + P (126)
s
W™
P
o
ﬁ? where A(Vl) = a function of V1 only. The equation-of-state surface is
. .
O constructed simply by translating the Hugoniot curve parallel to itself
-}j to higher energy states.
4
;; Many of the equation-of-state parameters are available in standard
= handbooks. For example, C is the 1sentropic bulk modulus at low pres-
¢
{g* sures. According to Rice, McQueen, and Walsh, [Ref. 23] D in Eq. (123)
o
iy may he estimated from D = FOC. The sublimation energy, Es’ is the
‘ij difference between the internal energy of the fully expanded vapor at a
19 temperature of absolute zero. This quantity is referred to as AR:O in

the JANAF tables [Ref. 24] for the gas state.

N

The Gruneisen ratio I’ may be estimated from thermal expansion data,

™

using the relation

o
S

- - -

| - (127)
5 sO p

1"'1,‘)
1

-

- where

the volumetric thermal expansion coefficient

P
R
[}

o
e
e]
"

the specific heat at constant pressure.
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The results from Eq. (127) should be relied on only if all quantities
pertain to the same density, pressure, and temperature. For many
materials, I' lies between 1.0 and 2.0; if internal energy is not

important in the problem, an estimate can be made in this range.

C. Elastic-Plastic Deviator Stress Model

The deviator stress 1s the part of the stress tensor that arises
because of the resistance of the material to shearing deformation. 1In
C-HEMP the standard model for deviator stresses accounts for elastic

response, plastic flow, work hardening, and Coulomb friction.

1. Elastic Relations. The elastic relations between stress and

strain are cast in the following form

E 61j E

5" zc(eij T3 % S

o5 ) ‘ (128)

P=CZE €4 (129)

1

Here, oij and sEj are the deviatoric stress and elastic strain in the 1ij

direction, G is the shear modulus, § is the Kronecker delta, P is

ij
pressure, and C is the bulk modulus. For the elastic case, sij = Efj’
all the strain is elastic. But Eqs. (128) and (129) are also applicable
to the plastic case where the strain increments are separated into

elastic and plastic components.
E
de =de,, + de {(130)

where deij is the total strain increment and dggj is the plastic strain
increment. For convenience, the terms in the parentheses of Eq. (128)

can be named a deviator strain defined as follows:
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5
:~ N E = E - ﬂ. E 131
v ®15 %13 7 T3 1 *mx (131)

"ol Then Eq. (128) becomes

) ’ 132
:fx ij = 26 e j (132)

%3 2. Plastic Relations. The Reuss plasticity relations or "incre-
mental plasticity with an assocliated flow rule” are considered here
Y first. Modifications to treat Coulomb friction are described later.
Yield occurs when the effective stress reaches the yield strength. The

s, effective stress 1is

c =v3/2 loij oijl (133)

where the repeated subscripts indicate summation. The yield criterion

is

(134)

al
]
]

where Y is the current yield strength. The Reuss flow rule indicates
o that the deviator stress in any direction is proportional to the plastic

s ¥\
:8 strain in that direction:

g P _ v
e: deij oij d\ (135)

?ﬁ where d\A 1is a proportionality constant. Now we define a scalar plastic

el strain quantity as follows:

vt
-p . P 5 P
i3 &P = /2/3 e} e P (136)
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As before, the repeated subscripts indicate summation. Now we square

Eq. (135) and make use of the definitions of g and deP. Then

de? = 2/3 5 & (137)

Combining this definition with Eq. (135), we find that

P . gﬂgg

deij = cij =

(138)

To obtain a solution for an increment of strain, we compute first the

stress that would occur if the strain were entirely elastic, that is,

N E E p
! - t ' = A +
ofy =26 (eijo + Aeij) zc(eij Aeij) (139)
where
{?o = the elastic deviator up to the current strain step
Asij = the total deviator strain increment
s{? = the elastic deviator strain after the current increment

Ae ? = the plastic strain increment.

The second equality in Eq. (139) is obtained by using Eq. (130) to

decompose Ae' and by adding ¢ + Ae'E to obtain ¢!

E
1jo 13 1

g. Quantities
and Aei? can both be replaced by stress quantities through the use

«E
ij
of Eq. (132) and Eq. (138). Then,

€

N
i3

o1y = ol (1 + 3GdeP/q) (140)

If both sides of Eq. (140) are squared and a quantity EN is introduced
in analogy to the definition of 5, then we obtain

oY =5 (1 + 364cP/3) (141)
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l" . Here, g = Y.
"
¥
' : Combining Eqs. (140) and (141) yields a solution for oij
)
e
W N o
e ' =g!' — 142
\ : %13 T %3 =N (142)
) o
e
b3
N
iﬁ Then, the elastic strain can be obtained from Eq. (142) and the
¢ effective plastic strain from Eq. (141)
Y N -
o deP = &2 , (143)
).::0. .
W and finally, each component of plastic strain is found from Eq. (135).
iﬂ: The preceding process is especially approprilate for perfect plasti-
L"E city where Y is constant. The equations are appropriate for steps from
i:f one plastic state to another or from an elastic state to a plastic
[
. state.
Al
?“ 3. Coulomb Friction. When Coulomb friction is introduced, the
a.n preceding equations for Mises plasticity are modified slightly. The
U
iﬁb fundamental relation provides a shear yield stress Ter which is a
;ﬁ function of a cohesion ¢, normal stress o’ and the angle of internal
)
Qg friction ¢.
et
B
)
oy T, = ¢ +oy tan ¢ (144)
o
;W Following Terzaghi, [Ref. 42] this expression is transformed to
o
\
K = 2¢c /YN +o_N 14
N 9 cv A Cq A (145)
W ‘
o 2
Tl where N¢ = tan® (45° + ¢/2); and ¢, and o, are the most and least com-
"
:% pressive principal stresses. In the derivation we consider that
*
&ﬁo yielding has no effect on volume change (a Coulomb-without-dilation
o
l.;" 83
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¢
o
! model). TInstead of using Eq. {145), which is not symmetric because the
{’ intermediate principal stress is absent, we introduce the expression of
. Drucker and Prager43
& /37 = k + JaP (146)
(K,
: 1 4
where J, is the second invariant of the stress deviator temsor, and k
; and a are constants. Replacing Jé by the effective stress o= /33!,
j§ we can obtain the following form for Eq. (146)
. 3c/N, + 3/2 (N - 1)P
& R (% - 1 (147)
¢ 1 +0N /2
? ¢
¢
The constants k and a have been replaced by c and N¢ by equating Eqs.
‘{ (145) and (146) for the case G,y = Oq: The individual deviator stresses
12 are then obtained from Eq. (142).
- Equation 147 is now rewritten as simply
|
b - -
X o -Y°+E¢)P(o> 0) , (148)
N
vy
} where Yo is the zero-pressure yield strength and E¢ is a Coulomb-
] friction coefficient. For the program, it is expected that the user
" will calculate the required Y° and E¢ values from the cohesion ¢ and
; internal friction angle ¢.
e
£ 3c VYN
o Y = (149)
§ o 1+ N6/2
L
i
\
N
[}
Ny E = (K, - 1 (150)
N ) 2 + N
\ ¢
N
[
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Pa
Y
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N9~
\': The factor EO appears as ESC(10) in the program.
LY
{ , 4. Work Hardening. A linear work hardening 1s assumed in the.
1) .
o following form:
e
‘,(-\:
1138 -
e Y=Y +Y ef (151)
s . o D
)
a
;¢: where Yy is a work-hardening coefficient with the units of dyn/cmz- A
NN
g‘f{ more flexible treatment of Mises-type work-hardening is available in the
+
i EPP model.
)
4;3 5. Nonlinear Work-Hardening Model EPP. A general two-dimensional
j?j model for elastic-plastic, work-hardening behavior is contained in the
*Qg subroutine EPP. The model is isotropic, based on von Mises plasticity
with the Reuss incremental flow law. The work-hardening yield strength
F o -
;$": is a function of the scalar plastic strain sp.
P
'j:: Three forms are provided for the yield function. In the first two
- -
: . the yield curve is provided by the user as a series of Y, eP points. In
2N the first type, a linear interpolation between the points in logarithmic
ffﬁ space is used to compute yield Y, for any plastic strain, Ep, for the
'R -
.:1 second and later intervals in the Y, sp series. Hence the form of the
'L"A
-t funetion in the it" interval is
D
e A n
i ¥ =y, +A(P) " (152)
o
L The parameters A and n; are computed within the subroutine from the
gﬁp series of Y, Ep points. The interpolation in the first interval is
-aﬁ' linear in nonlogarithmic space.
g
N
,m$ The second type of yield function is similar to the first except
6; that linear interpolation is used between all points in the yield
ﬁ"‘ series.
%,{ﬁ The third yield function provided is a quotient form developed by
~::::, Norris [Ref. 25].
ikd
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¢, + C,eP + ¢y(eP) % + ¢ (P)°

y = 1 2 - 3 - (153)
~ 1+ CeP + ¢, (eP)
“i‘ 5 6
T
.

o
ol
wls

The Cj constants are read by EPP into the array used for the yield

values associated with the first two types.

D. Special Models for Compressed States

In addition to the Mie-Grueneisen model presented in the previous
section for pressure, several special models have been developed. Here
we present some sample models for the treatment of explosives, porous

materials, and for composites.

1. FExplosives. Treatments for explosives include a constant
volume detonation, a running detonation, and more complex initiation
processes. With explosives we must consider both the equation of state
for the explosion products and also the transformation from an unreacted
state to the detonated state. In C-HEMP we provide only two equations
of state for the products and a simple detonation process based on the
Chapman—-Jouguet (C-J) theory. The calculations are conducted in the
EXPLODE subroutine.

The equation of state for the explosion products may be given
either by a polytropic gas relation or by a tabular equation of state.
A polytroplc gas 1s characterized by the following equation for pressure

P as a function of density p along an isentrope:

P=Cop' (154)

where y is the polytropic gas exponent and C is a constant. For general

states not necessarily on an isentrope, the pressure is given by

P=(y - 1) pE (155)
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Hence, y governs both the variation of pressure as a function of energy,

and also the shape of the isentrope in the P - p plane.

For the polytropic gas relation for the explosive products, it is
necessary to provide the chemical energy Q and the polytropic gas
exponent y. From these the subroutine computes the internal energy,

specific volume, and pressure at the Chapman-Jouguet point.

= 2Qr
Ecj T (156)
e Y
ch ply + 1) (1373
Py =200y - D) (158)

where p is the initial explosive density. The detonation velocity, or

shock velocity to the C-J point is

D=/2Q (v + D(y - D) (159)

The detonation velocity governs the rate at which the detonation front
is propagated through the explosive. During a detonation, the explosive
energv () is deposited in each computational cell. The pressure is

computed from Eq. 154, using Eq. 158 to specify the constant C.

The tabular equation of state in EOSTAB may be used to specify the
isentrope of the explosion products. Then the isentrope is given by a
series of pressure-density points. Pressure values for a given density
are determined by interpolating logarithmically between the tabular
points. The condition of tangency between the Rayleigh line through the
C-J point and the explosion products isentrope provides a means of
computing the Ecj’ ch, and ch values as well as the detonation
velocity. EOSTAB uses the tangency condition to obtain Q and y. Then
EXPLODE uses the standard relations to obtain the C-J state parameters.

Pressure points that are not on the Hugoniot or the release adiabat

passing through the C-J point are computed using a variant of Eq. 155:
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P=P, +(y-1)p (E-E) (160)

where Py and Ey are values on the release adiabat through the C-J

point. FEOSTAB provides Py and Ey from the tabular data. Then EXPLODE

evaluates P.

A running detonation is simulated by a programmed burn in which
each cell is detonated at a time determined during an initialfzation
calculation. The region of detonation can be specified as a point or a

line through the explosive.

In the detonation front only a fraction A of the chemical energy Q
has been transformed to internal energy. This fraction is computed as
the larger of the amounts determined by the program burn time and the

cell density:

(t -t

)D p-p
A= max[—— L 2

I S AL

where t is time, ty is the detonation time of the cell, AZ is the cell
dimension over which the detonation front is spread, o is the original
density, and p is the current density. This value of A is used to

increment the internal energy:
Ep = By + QA (162)

where E; and E, are the energies at the end and beginning of the time
step, and A\ is the change during the time step. This energy E1 is used

to compute the pressure according to Eq. 155.

2. Porous Materials. Several models for porous materials have

been developed for representing porous metals, ceramics, plastics, and
geologic materials. Prominent among these are Herrmann's P-u model
[Ref. 26, 27), Seaman's POREQST and PEST models [Ref. 28, 29], Carroll
and Holts' model [Ref. 30, 31]) and Butcher's p-« - T model [Ref. 32].
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Each of these models contains a description of an equilibrium pressure-
volume loading path, an unloading path, and a means for representing
consolidation. 1In the POREQST model available in C-HEMP, there are also
provisions for melting and vaporization of the porous solid material.
POREQST, P-a, and Carroll and Holt's model are rate-independent, whereas
the others are rate-dependent. In these models we are considering only
the pressure component of the stress tensor: the deviator stress is
either neglected entirely, or must be treated separately. Later, under
CAP models, we outline briefly a model type in which the pressure and

deviatoric components of the stress tensor are treated simultaneously.

The general character of the mechanical response of these models to
loading and unloading 1s illustrated in Figure 21. The short-dashed
line is the equilibrium loading path specified in all the models. Com-
paction alonz this line from the "initial state” produces a gradually
decreasing specific volume and increasing pressure until the consolida-
tion point on the long-dashed curve. This curve is the solid pressure-
volume relationship. The solid curve with arrows in the figures shows
the result of a partial loading to 120 kbar, unloading, and reloading
above 500 kbar. The loading follows a rate-dependent process, so the P-
UV path lies above the equilibrium (short-dashed) line. Unloading
follows an essentially elastic line downward into tension. Duriang the
tensile phase, the state poilnt strikes a tensile limit and expands at
nearly constant stress (probably not an accurate representation of real
material behavior). Recompression along the Q path again produces a
rate~dependent P-V path which lies above the equilibrium curve. Consol-
idation occurs at about 400 kbar. Subseguent loading or unloading would

follow the solid constitutive relations.

For many applications it is necessary to provide a complete thermo-
dynamic relation for the porous material. Such a relation describes how
the material responds to heating and cooling, to melting, and even to
vaporization. In POREQST these features are provided by several

surfaces defined in energy-pressure-volume space. Fcr example, in Fig.

22 are a compaction surface YBGFCH, a fracture surface DFHE, and an
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intermediate surface ABC, as well as a solid equation-of-state surface
defined by the compaction curves GF and DF. The intermediate surface

describes elastic behavior of the material during loading, unloading,

heating, and cooling.

The foregoing is intended to provide a qualitative description of
the behavior of porous materials under fairly general mechanical and
thermal loading. Quantitative details of the behavior depend on the

particular model being considered and also on the material type.

3. Use of the POREQST Model. The rate-independent compaction

curve of Seaman and Linde?8 was constructed to be convenient for fitting
experimental data. The compaction curve is divided into a seéeries of
parabolic segments as shown in Figure 23. The segments are specified by
a series of densities: Py» Pos *o= P o where n is the number of
segments. Up to six segments are permitted. Within each segment, the
curve is defined by the pressures at each end of the segnent'(Pl and Py
for the third segment of Figure 23) and by the variation AP. As shown
in Figure 23, AP is measured midway between the specific volumes at each
end of the segment and is the vertical distance from the straight line
to the parabola. With this definition, the value of AP is negative in
the third segment shown. These quantities--densities and pressures—--are
readily determined from a measured or estimated P-V curve: these are

the input data for the model.

For the wave propagation calculations, the input data that define
the measured compaction curve are transformed to coefficients of a
quadratic series in specific volume. 1In terms of the input variables
the parabolic form 1is

vV-v

vV-v)(v-v

P=p + (P, -P) A 1 ( Ul _j‘*_l) (163)
R T ! (v,,, - v,)2
1+1 "~ V1

where V, and V, ., are specific volumes at either end of the ith segment
and correspond to Py and Pisr” By gathering terms in V and V2, we can
rewrite Eq. (163) as
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- 2
P=P  +P, V+P V (164)
P 4 AP p
where P 4 = P, + —.i_+}._[p2 - Pl - __..__1___
Piv1 ~ Py Pi41 ~ Py
by, - T Piy t Py (P, - P. - 4 4P (py +0441)
Pisel ~ Py 2 1 Pise1 ~ Py
2 2
48P0 0y 0 Py
Pet = - ( —o37
Pi41 ~ Py

The quantities Pai’ Pyys and P.qy are computed in the code and stored for
use during wave propagation computations.

With only three points to define each segment, the slopes of the
data may be poorly represented. The slopes of the parabolic segments
can be determined from Eq. (164).

P, - P, + 4 AP

)3 -2 1

v vav, Vil V)

dp Py- P

av - v,V (165)
V=Y 1+1 i

e -2 1 |
dv v -V j
\Y V1+1 i+1 i j

where V = (V1+1 + vi)/z. These equations should be used to verify that
slopes of the data are being fairly modeled by the parabolas. If neces-
sary the slope representation can be improved by using more segments or
by repositioning the segment boundaries.
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The following text outlines briefly the method for fitting the
POREQST model. The fitting operation begins with accumulation of the
data available on the material. Required data include the bulk and
shear moduli and the initial density of the solid material; the
pressure-volume loading curve for the porous material; a deviator stress
process, including a yield strength, for both porous and solid
materials; a Grueneisen ratio; and an initial density for the porous

material.

A sample of the data for a soil is shown in Figure 24. The fitting
process will be undertaken here by examining this file line by line.
The first line provides the name and the initial density of the solid
material RHOS. ‘

AMAT = "WES YUMA™ RHOS = 2.650
The material considered 1s a soil from Yuma, Arizona with an initial
density of 112 pcf. The solid density of 2.65 was selected as that for

quartz. The EQST parameters are those for quartz

ENSTC = 8.659E+11 EQSTS = 8.659E+11 EQSTG = 0.62
EQSTE = 8.800E+11

The yield data for the solid may include a yield strength (not used) and

the shear modulus.
YIELD = 1.000E+06 MU = 2.000E+11
The initial density of the porous material is read by MATERIAL.

RHO = 1.810E+00
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AMAT

EQSTG =
EQSTE

Rnd

POREQST

AK =
NREG
RHAOP
C0SsQ
cl

Pl

1 P2
P2
P2
P2
22

wiro

w g~

g
)

"WES YUMA®
8.659E+11
8.800E+10
l1.81

RHOS = 2,65
EQSTD ==8.659E+11
EQSTG = 0.62

FIXED FORMAT

2.000E+11

5
1.810E 00
1.000E 01
3.000E-01
1.000E 07
1.500E+08
4 .000E+08
1.400E+09
8.000E+09
9.000E+10

£EQ3TS = 8.659E+11

MU = 2,000E+11

Yo =

2.277E 00
1.000 Ol
3.000£-01

MUP = 2.000E+10
1.976E 00 2.136E 00
1.000£ 01 1.U00E 01
5.000E-01 3.000E-01
DELP = 1.200E+07
DELP =  =4.400£+07
DELP = -1.500E+08
DLLP = -1.000E+08
DELP = 0. »

1.000E+06

2.,423E W
i.000c Ol

FIGURE 24 SAMPLE INPUT FILE FOR A POROUS MATERIAL
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R”‘ The next line indicates that the POREQST model is used and that it will
e be read with a fixed format.

;;‘i'i

HYY POREQST FIXED FORMAT

A4

ﬁ'ﬁ

“5 The data reading by POREQST begins with the moduli. Choose AK and MUP

l B

"y (initial bulk and shear moduli) from the initial loading of the porous

J)

vﬁ ! material. YO is the initial yield strength of the porous material. AK
; A should exceed the slope of the initial part of the PV loading curve for
e

Ao the porous material.

_3."3-

. 1

3&¢ AKX = 2,000E+11 MUP = 2.000E+10 YO = 1.000E+06

:

" 5

vlet The number of density regions into which the PV curve is separated is

called NREG. Six regions are permitted.

g wa

LKy

el
e
ind NREG = 5
o
ﬁri The densities corresponding to the boundaries of each density interval
?K{ are listed in order. The first RHOP value need not coincide with RHO.
i

5!
ﬁ) RHOP = 1.810E+00 1.96E+00 2.136E4+00 2.277E+00 2.423E+00 2.930E+00
é K3
NN The artificial viscosities are listed for each interval. The normal
a,: values for COSQ and Cl are 4 and 0.05, but larger values are often
oS
Al required for porous materials. The coefficients can be selected to
.Qﬁ provide an essentially straight Rayleigh line (plot of R versus V) and
b,
ne to give a minor amount of oscillations.
'. ... Y
o
e

cosQ = 1.000E+01 2.000E+01 1.000E+01 1.000E+01 1.000E+01 1.000E+01
Cl = 3.000E-01 5.000E-01 3.000E-01 3.000E-01 3.000E-01 3.000E-01

s By
.‘..ﬁ."‘.‘
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The initial yield point of the PV curve is Pl.

"
i
‘3;;\'{ Pl =  1.000E+C7
o
ﬁk* The following describe the end points of each of the five regions. The
@&ﬁ DELP values are the central offsets from a straight line in the PV plane
éu& in each interval. DELP should not exceed 0.25(P2 - Pl) in any interval
3{6 or the curve in that interval will have a portion with a negative slope.
i |
et 1 P2 = 1.500E+08 DELP = 1.200E+07 |
ﬁ?ﬁ 2 P2 = 4.000E+08 DELP = -4.400E+07
3,;3:, 3 P2 = 1.400E+09 DELP = -1.500E+08
,i‘:(‘ ¢ 4 P2 = 8.000E+09 DELP = ~1.000E+08
et 5 P2 = 9.000E+10 DELP = 0.000E+00
'l’ﬁ
? ; A second sample of the data for POREQST 1is In the 1nput'for the
é&g last example problem in Section VI.
X 4. CAP Models. In the preceeding porous models, the pressure is
ﬁr' considered alone. In CAP models the shear and compaction behaviors are
éé& treated by introducing two yield curves into a plasticity model. One
;2: yield curve represents shear failure, and the other represents
) compaction. CAP models have often been used to represent the stress-
{ﬁé strain behavior of geologic materials, such as soil and rock, and also
ﬁ“v of concrete and various grouts. The CAP model derives its name from a !
ﬁE’ movable cap or secondary yield curve, as shown in Figure 25. The i
o abscissa and ordinate are the invariants representing pressure and shear
jE?' stresses.
ﬂﬂ? Figure 25 shows ranges of shear and normal stress permitted to
g&: occur in the model. Points interfor to both Mohr-Coulomb (shear
A{' yielding) line and the cap (compaction) line represent elastic behavior.
h%. Points on these lines represent yielding. The cap tends to expand by a
%ﬁ' work-hardening process as yielding occurs on the cap curve.
B
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*é The CAP model fits into the framework of plasticity established by
?ﬂf Prandtl, Reuss, Hill, and others (see Reference 44 for background on
qu; plasticity). The model treats the material as isotropic and homo-

0 geneous, with work-hardening and an associated flow rule. The first
Wt yleld curve (Mohr-Coulomb) shown in Figure 25 is the one common to other
5“ plasticity models. It accounts for shear yielding and for dilatation.

y { The second or cap yield curve accounts for compaction of the material;

'js the curvature provides for the shear-enhanced compaction seen in porous
: ﬁ geologic materials.

" The small tensile strength of concrete is represented by the small
3$:‘ portion of the Mohr-Coulomb curve that extends to the left of the verti-
'j% cal axis. 1In the tensile range, the curve may be considered a threshold
‘é? stress level for initiation and opening of cracks. The curve shows a

decreasing tensile strength with increasing J, (mean tensile stress);

" that is, a hydrostatic tensile state leads to lower shear strengths than
;jk; a uniaxial tensile state. This relation between strengths agrees with
EJ ! tensile data on brittle materials such as concrete.

‘ The CAP models may require special treatment in wave propagation
-ﬁg calculations hecause of the interaction of pressure and deviatoric com-
5*$E ponents. Thus, they do not fit the pattern of the preceding porous

t;f models in which pressure could be computed by one model, and deviator

f) stress by a different model.
ié; 5. Use of CAP1 Model in C-HEMP. CAPl represents a porous material
;;: using nonlinear elastic moduli, a cap curve, a Mohr-Coulomb curve, and
W an isotropic tensile damage process. Table 2 contains the expressions

"t for these functions and sample values determined for a concrete with a

compressive strength of 24 MPa (3500 psi). The elastic moduli are

xS

derived from loading and unloading data. The Mohr-Coulomb curve is

DL,
=
B XD

determined in two steps from compaction and tensile data. First the AI’

4
508 A, and Ay are derived by fitting the yield curve from uniaxial strain
fdi experiments. Then the curve is modified in the tensile range by
:ji specifying J,4 (intercept on Jy) and the parameter n which determines
‘jk the distance in the compression range to be affected by the modifica-
P.
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tion. The W factor for the cap should be determined from.a family of

%

Py %5
P

proportional loading tests. The concrete parameters in the table were

A

e

L

determined from sets of quasistatic experiments and from plate impact

tests.

rory

ARy

6. Composite Models. Composite models may represent a mixture of

two or more materials. Some composite models are for a mixture of gases

3
e

‘ 5._
’l

or particulate solids and the geometrical configuration of the

AN components is not important. For other composites, the geometry of the

!ff- components is very important: an example is a fiber reinforced epoxy.
Here we describe a model which was developed to represent reinforced

. concrete with a single mat of reinforcing steel. The steel 1is simulated

o as a steel sheet at the midplane of a cell of the reinforced concrete.

V§ Hence, specific bars are not treated, but the effect of the‘bars in

|!; stiffening and strengthening the concrete in the plane of the steel is

N represented.
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b2 Table 2 CAPl PARAMETERS FOR A CONCRETE
. .; '
‘.;-’ " Parameter Static Value Dynamic Value
¥

"
wal Elastic Moduli?*P

d

A
W Bulk K = K, + Ky J;
‘.") Shear G = G, + G2 /Jz'
Kyt
\ :: K, Zero pressure bulk modulus 6.3 GPa 7.0 GPa
N
> ' L]
:b = K, Coefficient of linear term -60 =55

o G, Zero stress shear modulus 4.7 GPa 5.25 GPa
RN

;: G, Coefficient of linear term 180 125
e

N Mohr-Coulomb Curve®

J7 = (

P /35 = A+ A exp\Jl/A3) + A, exp (JIIAS)
':‘: Ay Asymptote of curve 90.0 MPa 104.0 MPa
2.
.r“‘: Ay Shear yielding parameters -83.0 MPa -83.0 MPa
pr Ay  Shear yielding parameters 270.2 MPa 270.2 MPa
"'
y‘-'_i Jig Intercept of Mohr-Coulomb
205 curve on J; axis 3.0 MPa 61.0 MPa
o

') n Parameter controlling extent
g of tensile effect on shear

:"_:’: curve (used to compute A,

\f:v and As)o 1-0 1-0

2

<« d
‘o Cap Curve

e 2 "2 o p2
y P° + Jy/W° = P
«
:0..’ PH(O) Pressure for i{nitiation
u'::c of compaction -16.0 MPa -35.0 MPa
o
. w? W is the ratio of semiaxes
Ko of the cap ellipse 1.25 1.25
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o Table 2 (Concluded)

Tensile Damage

; Ser Minimum tensile stress required
8 in calculations 2.0 MPa 2.0 MPa

b D Tensile plastic strain-
! required for separation 0.001 0.001

L}
aJl and J, are first invariant of the stress tensor and second invariant
of the deviator stress tensor.

bStresses are positive in tension.

o Ve T e

®The last two Mohr-Coulomb parameters are computed as follows from the input

X above:

s,

\ A, = -[A] + A, exp(JIO/A3)] exp(-n)
Ag = Jyo/n

" dP (O) is only the first pressure polnt on a hydrostatic compaction curve

! ke that given above for POREQST.
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The composite model in C-HEMP, called REBAR, provides a series of

features that are important in treating reinforcing. The cell behavior
is markedly anisotropic; that is, strength and moduli of the cell differ
greatly along the plane of the reinforcing (initially the y-z plane) and
normal to the plane. The reinforcing plane is permitted to rotate in
the x-y plane during the calculation to account for the expected
response of the reinforcing mat to a projectile penetration. The con-
crete may fracture on the reinforcing plane with about the same strength
as unreinforced concrete; hence, debonding behavior is approximated by
the model.

The method for determining the stresses on a layered composite are
outlined briefly, together with the iteration process required to solve
the problem for nonlinear stress~strain relations in the components. 1In
the model, external stresses and strains are first transformed to direc-
tions parallel and normal to the plane of the reinforcing. Then all
stress calculations are made in the geometry that matches the rein-
forcing directions. The stress state is derived from the strain incre-
ments shown on a cell in Fig. 26. The kinematic requirements we applied
are that the strains in the steel and concrete parallel to the plane of
reinforcing match the imposed strains, and that the sum of the normal
displacements, Aelshs + Aslchc, equals the imposed displacement,

Aelh, where h quantities are thicknesses defined in Fig. 26.

The force equilibrium requirements are that the stresses normal to
the reinforcing plane be equal, and that a weighted average of the
transverse stresses on the concrete and steel portions provide the

lateral stress for .the computational element.

The stress~strain relations are solved for the current state of
stress at each time increment by an iterative technique in the REBAR
subroutine. The REBAR routine is provided with the strain increment
tensor for the time step. REBAR transforms the stress and strain
increment tensors to the reinforcing plane, and estimates the normal
strains in each component. Then REBAR calls appropriate stress-strain

subroutines for the steel and concrete to determine the stress state in
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N
}jt each. The normal stresses from the two components are compared, the
e normal strains are modified, and the calls repeated until the normal
B stresses are approximately equal.
233 The REBAR model for a composite material imposes special demands on
:fd a wave propagation code. 1In our simulations of reinforced concrete
:% walls under impact, we used a CAP model for unreinforced portions of the )
:i; wall, and a steel model for the projectile. Then in the area éf the
#E reinforcing, we used the REBAR model. We used the same steel and
O concrete models for direct calls by the code and for the calls through
' REBAR. Hence, it was necessary to construct the call statements such
;': that CAP could determine the stresses in the main arrays for a pure
5& concrete cell, and only provide an estimate of one component of the
ié* stress tensor when the call came through REBAR. The necessary flexi-
kX
bility was achieved by allowing all information to pass through the call
:: stAtements.
7
i% 7 Models for Fracture
" Fracture under tensile or shear stresses is often a dominant
; process in determining material response. Therefore, it is essential to
QJ have a fracture model which is able to represent the fracture phenomena
gg observed or expected. Here we describe three types of fracture model.
ﬂ) All can be added to compressive models to give a more complete response
™ for a material. These three types span the range of complexities of
‘ available models, from a simple spall model to a nucleation-and-growth
#5 micromechanical model.
Sf But first let us examine the physical nature of fracture and then
i) consider the models with which it may be represented. Our observations
if have indicated the following characteristics:
:i ° Damage in the form of voids, cracks and shear bands,
gy grows as a function of time and the applied stress.
’ﬁ' Hence a single stress or strain at any time cannot be
~ expected to characterize the dynamic fracture process.
Ay At the least some time-integral quantity (such as
L impulse) must be used to represent the dynamic strength.
na
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° As the damage occurs, the stiffness of the material
decreases; hence, the wave propagation character
changes. 1If the developing damage is not permitted to
alter the wave processes in a computational procedure,
then subsequent stress histories and damage must be
invalid.

] Even incipient damage levels are important, because,
while the voids, cracks, or bands are difficult to
observe, they may seriously weaken a structure.
While the foregoing features represent experimental observations
well enough, it may be possible to simplify or eliminate some of these

features for computational purposes.

In the remainder of the chapter several computational models are
introduced. An effort is made to indicate under what circumstances each
might correctly characterize fracture. First, the very simplest models
are given and later more complex ones that more nearly represent the

experimental observations.

1. Static Criteria

Under static conditions it is often assumed that fracture occurs
when a peak stress is reached. For multidimensional problems, the peak
stress may be replaced by an effective shear stress based on a Mises,
Tresca, or Coulomb criterion. Alternatively, a critical tensile strain
or some "effective” strain criteria may be used also under wave propaga-

tion conditions.

Bertholf33 used the critical tensile stress criterion in the two-
dimensional wave-propagation codes TOODY and CSQ to determine the occur-
rence of spall in a target impacted by a hypervelocity pellet. The
critical stress value was derived from plate impact experiments that had
evidenced full spall. The resulting simulations by Bertholf modeled the
experimentally observed spall quite well. CherryaA implemented a
similar criterion in the two-dimensional code TENSOR to study the
collapse of the overburden above an explosion at some depth in the
earth. 1In Cherry's case, tensile failure in one direction did not alter
strength in the orthogonal directions. Thus, an anisotropy of damage

was peramitted.
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Under what conditions @an such a simple peak stress criterion be
used with some justification? Probably the following conditions should
be met:

® The experimental data on which the criterion is based
(the plate impacts in Bertholf's case) should exhibit

the same stress levels, durations, and wave shapes as
those in the problem to be simulated.

® Damage should occur abruptly - within the rise time of a
wave, for example.

® Subsequent stress histories and damage are not of
interest.
The second and third conditions both deal with the waves that emanate
from the region where damage is occurring. Because such waves are not
treated correctly in the computations, effects from these waves cannot

be interpreted from the computer results.

Addition of a peak stress (or static) damage criterion to a wave
propagation code {is usually a small task. Such criteria are often
present already in the codes. If an isotropic fracture criterion is
used, then one new constant is required for each material and one
indicator for each cell of the material. Following the stress
computation at each cycle for each cell, the three principal stresses
are compared with the criterion. 1If fracture occurs, the stresses are
zeroed and the added indicator 1s set. Thereafter, the stresses are
computed as usual but they are zeroed unless they are compressive. For
an anisotropic criterion such as Cherry's, a tensile strain (or tensile
opening) should be stored for each principal direction for each cell.
This strain quantity can be used both as an indicator and also to

determine when recompression occurs.

2. Dynamic-Passive Criteria

Dynamic fracture criteria account explicitly for the gradual (time-
dependent) growth of damage. Passive criteria monitor the development
of damage hut do not modify the wave propagation calculations to account

for this damage.
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An example of this dynamic type of criterion is the one introduced
by Tuler and Butcher.35 They represented the damage K by a time

integral of the tensile stress o above some threshold stress oo.
» ae (166)

where integration is only over times when o - ao is tensile. Here A is

an exponent, usually about 1 or 2.

The critical damage level is presumed to be a material constant
Kep® This critical level may refer to full separation, incipient
damage, or any other defined level (if an appropriately quantitative
definition of damage level can be constructed). This model requires
three constants; Kcr' A, and Ou* With the parameter A set to 1,
Equarion 145 is an impulse criterion; at 2, it is an energy criterion.
When Equation 166 1s used to fit experimental data, A generally has a

non-integral value, and Kcr has very odd units.

Dynamic experiments must be performed to obtain the three material
constants for the Tuler-Butcher model. The experiments should span the
stresses and durations expected in the calculations. A typical set of
experiments might produce the results in Figure 27. 1In this figure, the
well-chosen data points just span the amount of damage Kcr that 1is of
interest. Usually there will be more experimental points just below the
damage threshold: these aid in determining 0" With such a set of
data, we can determine the three constants by trial. Note that both
duration and stress level must be varied in the experiments to provide a

basis for the determination.

The Tuler-Butcher criterion may be readily inserted into finite
difference wave propagation codes of the Lagrangian type. (The code
should have Lagrangian features so that the computed damage quantity K
follows a particular material particle.) For each cell the quantity K
is stored, i{n addition to the three constants for each material. The
criterion was designed for one-dimensional impact problems: 1if a three-

dimensional problem such as Cherry's were considered, the criterion
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o
;:iz could be extended to three K values of each cell, one for the direction
9??5 where the stress threshold was first exceeded, and two for the
ﬁﬁ' orthogonal directions. Thereafter, the orientation of the damage plane |
sg: must be tracked in the calculations. The criterion is inserted
f' immediately following the stress calculations.
?§§ . The Tuler-Butcher criterion has several advantages over the simpler
:aEQ peak stress criteria. The integral represents more realistically the
r A time-dependent growth of observed damage. Because the criterion is not
:w: so critically dependent on a peak stress, larger finite difference cells
B may be used and still accurately determine the criterion. Such a time-
LTS integral criterion 1s appropriate for extending fracture data obtained
.ﬁ% with a nearly square pulse shape to more general pulse shapes such as
L:ﬁ sinusoidal or multiple.
“Pﬁ This criterion has the disadvantage of requiring several well-
5€h designed experiments plus computer simulations of the experiments.
iéﬁ Because there is no physical model from which A and Kcr can be obtained,
S "reasonable” values cannot be selected intuitively without such experi-
: mental data. Another disadvantage 1s the developing damage does not
o have an effect on the wave propagation processes; hence, subsequent
E; stress histories and computed damage must be invalid.
Y
) 3. Dynamic-active Criteria
'“J The dynamic-active criteria follow the gradual development of
E damage during the wave-propagation process and.permit the damage to
N alter that process. Arbitrary levels of damage may be treated by these
Y methods: an initial designation of a damage level such as full spall is
Se not necessary.
g: Two approaches have been attempted: The first is a macroscopic
;ﬂ . approach developed by Norrisa6 and his coworkers. The second, in which
3 microscopic flaws are treated, was developed at SRI and is discussed
ué under Nucleation and Growth models.
Y
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W
.': In the macroscoplic approach of Wilkins the usual stress-strain
f\ relations are used for each cell until a critical plastic strain is
ﬁu; reached. Then a single crack is permitted to grow across the cell.
: y This growth occurs at a prescribed velocity and in a direction governed
th by the orientation of the applied tensile stresses. As the cracks grow,
ol
'H) the cell weakens, reaching zero strength as the crack severs the cell.
\ {
:n‘ As a cell breaks, nearby cells must take up the load. They may also
::; begin to crack and so the crack appears to extend. Because the
b direction of crack growth can be arbitrary in the model, both within a
he cell and from cell to cell, fairly complex and realistic cracking
IS patterns may be treated. The two principal material constants--critical
'
:;S plastic strain for crack initiation and the growth velocity—are derived
ﬁ? from experiments with notched specimens. These tests are simulated with
W
' a two-dimensional wave propagation code with trial material constants
;3* until the experimental results are satisfactorily represented by the
¢ i computed results.
I
)
&p& The main advantage of this macrocrack approach is that the large,
" observed cracks are treated directly. In addition these cracks may
¥ S 01
k?. wander across the computational grid:; neither their presence nor
Ay
:ﬁj trajectory needs to be known in advance. The stress-strain relations
O
& for a damaged cell are anisotropic, thus tending to direct the growth of
-) the crack. Another advantage of the model is that material constants
;,&S have a clear physical meaning.
1598
:‘;& This model has several significant drawbacks. The coding is much
o
b W more complex than for the earlier models considered. Variables must be
Qﬂd, stored to define the orientation and length of the crack in each cell,
Qéi plus the accumulated plastic strain. The anisotropic stress-strain
o
Jﬁ% relation must be developed and used. 1In addition, the material
0.
'3&: constants are derived from a combination of notch test experiments and
d multiple simulation calculations; these two-dimensional calculations
)
)‘:, tend to be lengthy and expensive.
', o
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4. Nucleation and Growth Models

The nucleation-and-growth (NAG) models developed at sr137 and

38 and by Stevens, Davison, and Warren39 deal with the

studied by Kreer
nucleation of microscopic flaws, their growth and coalescence, and the
formation of fragments. Three models have been constructed for treating
ductile fracture, brittle fracture, and shear banding. Nucleation may
occur physically by widening of inherent flaws in the material, cracking
of hard inclusions, separating along grain boundaries, or by other
mechanisms. In the models, however, nucleation means the appearance of
the void, crack or shear band at an observable and easily identifiable
size on photomicrographs at a scale of about 100X. This nucleation
occurs in the model as a function of stress, stress duration, or strain
and strain rate. Following nucleation, the voids or cracks or shear
bands grow at a rate that is dependent on the stress level or plastic
strain, duration of loading, and the current size of the flaw. The
mndels also account for the stress reduction that accompanies the
development of damage. When the numter and size of flaws meet a
coalescence criterion in the brittle fracture and shear banding models,
the flaws begin to join and form isolated fragments. With continued
loading, all the material forms fragments and complete separation may

oCcCur.

The computational models of ductile and brittle fracture and of
shear banding are implemented in subroutines that may readily be
inserted into one- and two-dimensional Lagrangian wave propagation
computer codes. While the material is undergoing fracture, these
subroutines are called instead of the usual equation-of-state

subroutines.

Basic to the development of the NAG models 18 the quantitative
determination of the damage observed on cross sections of impacted
samples. 1In ductile fracture, the damage occurs as nearly spherical
voids; in brittle fracture, the flaws are cracks; in shear banding, the

flaws appear as shear cracks.
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The ductile and brittlg fracture parameters are usually derived

from experiments like that shown in Figure 28 in which a thin flyer
plate is propelled against a thicker target plate. Then the target is
sectioned as shown in the inset in Figure 29, and the length, orien-
tation, and distance from the impact plane of all voids or cracks are
measured. These surface distributions are then transformed statistical-
ly to volumetric distributions by a method anaiogous to Scheil's.45
These volumetric crack size distributions are all approximated by the

equation

Ng(R) =N exp( -R/Rl) (167)

where Ng is the cumulative number/cm3 of cracks or voids with radii

larger than R, No is the total number/cm3 and Rl is a distribution shape

parameter.

Nucleation in the model occurs as the addition of new cracks to the
existing set. These new cracks or voids are presumed to occur in a
range of sizes with a size distribution like Equation 167. At
nucleation, the parameter Ry equals Rn, the nucleation size parameter (a
material constant). The number of cracks or voids nucleated is governed

by a nucleation rate function:

M= foexp [(H—1% - 1] (168)

where No’ LA and o, are fracture parameters and o is stress normal

to the plane of the cracks. (For ductile fracture, c¢¢ is replaced by

the pressure.)

The growth law, derived from experimental data on both ductile and
37,40

brittle fracture, is:

dr
TR (aw - ago)R (169)
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where T1 is a growth coefficient and ogo is the growth threshold stress.

Here ogo is usually treated as a constant material parameter.

A relationship between the fragment sizes and the numbers and sizes
of the preceding cracks is required to model the fragmentation process.
From our observations in both rocks and metals it appears that the frag-
ments are typically chunky objects with an average of six to eight
sides, each side probably being produced by one crack. Thus, for large
fragments, the crack radius may approximate the fragment radius and the

number of fragments may be one-third to one-~fourth the number of cracks.

All the stresses are computed from the strains in the solid
material, not the gross strains. This gross strain is presumed to be
composed of a solid strain and a change in crack volume associated with

growth and nucleation:
Ae = Ae  + Ae  + Ace (170)
s g n

For the model calculations, only Ae is known. Aes is related to the
applied stresses through the usual elastic-plastic relations. Ae
represents the increase in strain associated with opening of the
existing growing cracks. Aen represents the increase in strain
associated with opening of new cracks. Appropriate stresses are found
bv requiring that Equation 170 be satisfied. Each term on the right is
a nonlinear function of stress; therefore the solution is conducted by

an iteration procedure.

The shear band model treats a statistical distribution of bands at
each point in the material. The bands are envisioned in the model as
small, circular, planar regions that have lost their cohesive strength.
In our experiments with fragmenting cylinders, projectile penetrations,
and Taylor tests (blunt cylinder impacts on unylelding targets), the
shear bands occur in a range of sizes. As an example, Figure 30 shows
the size distributions of bands seen on the inside of a cylinder expand-
ed by explosives detonated along the cylinder axis. The counted bands

are also shown schematically in the figure. They have been transformed
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::f-': to a volumetric distribution with Scheil's method. At nucleation the

; distribution is assumed to be exponential, with the form of Eq. 167.
‘._ 7 After growth and further nucleation the size distribution retains an

:. exponential form.

:{t:: In our experiments the bands usually occur in discrete orienta- ‘\
\* tions, on the planes of maximum shear strain. In the model, we chose to ‘\
,‘1'3' represent the damage in nine orlentations, as shown in Figure 31. Each |
;‘: orientation can be considered to consist of bands on that specific plane

, or to represent bands with orientations that range over a solid angle of

":'.:' 4n /9. A size distribution, such as that in Figure 32, 1is assigned to

o each orientation. For three-dimensional motions, the nine band orienta-

.‘,: tions represent all possible bands, and all quadrants are equally well

E' represented. TIn two-dimensional motions, some reduction in orientations

o can be made by using only planes that have unique normal and shear

N ™ stresses. Also, normal and shear strains on the plane must represent

Ej:. permitted strains on the material, that is, no €z and ¢ 2" The SHEAR

"::: models have been used only for one- and two-dimensional geometries

!'- although they account for three-dimensional stresses and damage orienta-

E.?l tions.

"‘ For SHEAR4 we combined orientations 5 and 8 and orientatfons 6 and

. 9, so only seven orientations are required. In two dimensions these

) pairs of orientations have identical stresses. Strains on these pairs

. of planes combine to provide zero values for the €z and € 2 strains. :
:. As deformation occurs, the bands rotate with respect to each other, so

:’::o’ they do not retain the angular relationship shown.

'.‘ In SHEAR3 all the orientations rotate together with the average

_'_).: rotation of the material. Without independent rotations, orientations 1

:.3 and 3 and orientations 2 and 4 are equivalent. Hence, we used only four

'X: orientations in SHEAR 3: 1, 2, 5, and 6 (7 is inactive because it

4' : receives no shear strain).

,'S:.E: Bands begin to appear in the model when the plastic shear strain on

E'.:o any plane exceeds a critical value. After the threshold strain is

":?: reached, bands are nucleated according to a rate function containing

pr
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FIGURE 31 RELATIVE LOCATIONS OF THE COORDINATE
DIRECTIONS AND INITIAL ORIENTATION
OF THE SHEARING PLANES
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FIGURE 32 SHEAR BAND SIZE DISTRIBUTION
REPRESENTED BY A SERIES OF
POINTS AND EXPONENTIAL LINE
SEGMENTS
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plastic strain, strain rate, tpe critical strain, and a critical strain

rate. The critical strain rate is that required to maintain approxi-

mately adiabatic conditions. The nucleation rate is

N =aq N H(e: - eo) E: exp(-éo/E:) (171)
where a = oy/(pEm), ay, p and Em are yield strength, density, and melt
energy, and No is the number of potential nucleation sites per unit
volume. H is a Heaviside function, eg and Em are continuum in-plane
plastic strain and strain rate, eo is the plastic strain at the maximum
shear stress (about 20% in 4340 steel), and Eo is the strain rate

required to attain adiabaticity at the nucleation sites.

The bands grow under the imposed strain rates according to the

following relation, subject to some restrictions:

drR/dt = T eP R (172)
1 "m
where R {s the band radius in plan and 'I'1 is the growth coefficient.
The restrictions are that dR/dt cannot exceed the shear wave speed, Vs'
and that the total strain taken by the band cannot exceed the total

imposed strain. The strain taken by the band is

Ae =m b ) Ni(Rgi - Rii) (173)
i
where b = B/R, B is the average slip over the plane of the band, and R1
and R, are the band sizes before and after growth, respectively. The
summation is over all the band sizes in the orientation. If Ae from
equation (173) exceeds the imposed strain, then the final band radius is

reduced to force Ae to agree with the imposed strain.

The bands are assumed to be initially isolated, and their
nucleation and growth can be treated as if they were each a single band
in an infinite medium. However, at some time the bands begin to N

interact strongly, coalesce, and finally form fragments. The condition
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' :E for full fragmentation i{s written by considering the fragmented state.
fﬂg' Each fragment has some small number of faces, each formed by bands. The
{‘ sizes of the fragment faces are related to the band sizes. With these
v;: consliderations, we have derived a criterion for fragmentation:

o

‘!L T, = fR“‘ax r3aN (174)
V) 0

i

?\2 The factor ¢ allows for the spacing of bands normal to thei:hplane. The
;t: parameter T describes the degree of fragmentation on the 2 plane.

g\ When T reaches one, full fragmentation has occurred on that plane.

f:? To solve for the stress state resulting from an imposed strain

*\: increment, it 1s necessary to determine the plastic strains and

,-3 developing shear band damage. For our model, these strains and damage
" are computed on each band orientation plane. In SHEAR3 the yield occurs
;,2 by a rate-independent process.

:Eiz For the SHEAR4 model, ylelding on each plane is allowed to develop
:1%: gradually, following the stress~relaxation process:

._ do)/dt = 26 de/dt - (oi - Yls) /T (175)
b

E:ﬁ: where oi is the shear stress on the plane L, G is the shear modulus, g¢'
) is the tensor shear strain acting on the plane, T is the time constant
?;E (either a material constant or a constant chosen for computational

f‘iz convenience), and Yls is the shear strength on the plane R. Equation
:i: (175) is integrated numerically over four to ten subcycles within each
o imposed time increment. During these subcycles, the overstress, oi -
;?U Yls’ will gradually decrease and plastic strain will increase on the

;“; yielding planes. Each time increment begins with a cell-centered

;aa% elastic calculation of the stresses, based on the strain increments.

+ From these stresses the shear strains e£ on each plane are determined.
:qf On yielding planes, plastic strain is developed and used to modify the
Szﬁ imposed strain for the next cell-centered calculation. During the
:;w{ subcycles, the overstress, o£ - Yls' gradually decreases and plastic
9.
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A
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o
> strains increase on the yielding planes. The stress-relaxation process
i
h therefore provides a means for spreading the plastic strains over
{
Y several orientation planes.
-
o The SHEAR models are able to represent the local growth of micro
::: shear band damage within a cell, but they also can depict the large-
. scale propagation of shear bands from one cell to another. Such large-
X 5 scale bands are those that separate the plug from a target or sharpen a
- projectile. This formation of large bands is not required by the model
'
:: formulation, but occurs by the natural interaction of cells with damage.
The ductile and brittle fracture and shear banding models have been
W inserted into one- and two-dimensional wave propagation computer
L
programs. The subroutines containing these models (DFRACT, BFRACT,
™~ SHEAR3, and SHEAR4) act as equation-of-state routines. Such routines
' are provided the strain and must compute the stresses. These models
L’
-:. compiute stress but also compute the current damage. At any time in the
f calculation 2 complete listing of the fracture damage present in a cell
If'
(>, may be obtained.
qs The main advantage of the NAG approach is that damage is obtained
i in such detail that precise comparisons with observed damage can be
\
: made. Residual strength properties can be assessed from the computed
ROt damage. The stress—strain relations are modified to account for
% developlng damage so that subsequent waves are handled with some
L
EJ accuracy. The NAG computations are independent of stress pulse shape
L)
:b and source: thus the same parameters describe fracture under plate
N impact, explosive loading, or sudden radiant heating. The NAG approach
. also has the advantage that there Is more material information involved
Mg
‘j in it and hence it is more likely to represent reality. Some of the
f parameters are estimable from static fracture data, some from shock
;2 front thickness, others from microscopic observation; hence, the
T parameters appear to have physical significance.
o The increased memory required for the fracture quantities and the
l..
z increased computer time are the main drawbacks of the NAG models. The
\
fracture parameters must be derived from several plate impact or
l'
1 »
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contained fragmenting cylinder experiments plus a series of simulation

N calculations.

Samples of the input for SHEAR3 are given in the first and third
problems of Section VI. A BFRACT sample is in the fourth problem.

- 4=

o 4% Y

Input for these models are also outlined further in the next section.
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N IV INPUT FOR C-HEMP
f:a This section describes the input required for C-HEMP. Most of the
L)
vo) ’ input is in a free-field format, but the title and data for some
N
°~$ material models are in fixed formats.
\ '
Cd
~
'xj First, a sample input for simulating a fragmenting round is
e
ﬁu) exhibited: Figure 33. The first line is a title, read in alphanumeric
) format. Subsequent lines are in groups headed by labels that begin on
ot
:£§ the first line. For example, "GENERAL" is a heading for some general
i;b control parameters. Under this heading are three lines of values in
LY this sample. TIn these lines there are parameter names followed by
v values. The next two lines begin with "COM": these are comment
;ﬂ lines. Comment lines are read and printed but not interpreted.
20
L, "MATERIAL™ begins a set of 9 lines describing RHA steel. In this group
2,
N is "SHEAR3", the model which is called to represent the steel. The data
o following "SHEAR3"™ in this set 1s read and interpreted by SHEAR3. The
¢!
gﬂ, second material is an explosive (PETN) and the EOSTAB subroutine is used
‘é'i for the isentrope. The next lines after "EOSTAB FIXED FORMAT" are ready
)
nﬁ! by EOSTAB in fixed format. Farther down in the input are other major
%3 labels (keywords): BLOCK, GRID, BOUNDARY, SLIDE, and HISTORY. Under
' 3 "BLOCK", the labels XA and YA are each followed by four values. More
c\ﬁi multiple values appear after "SLIDE". The interpretation of the
ol "HISTORY" input Is somewhat different: the two values following "XD"
e are the X and Y coordinates of the point where the XD (X-velocity) is
4 requested.
!
gf, The 1input procedures are described in the following subsections.
<
; ; The emphasis here is on the free-field input procedure which has a
p*ﬂ format that i{s novel to C-HEMP. Of course, fixed format lines need not
Y,
‘::. conform to these rules. The title line has no required form, and the
My
o data for models, such as EOSTAB, in Figure 33, must conform to the
W
Al formats in EOSTABR.
LY
v
N
.:,"
t‘.:t
#
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i
N HEMP 2-D SHEAR3 ROUTINE TEST W/ 434U FRAGMENTING ROUND
S GENERAL IPRINT=100 NMA X800 STOP[=1.0:~04
1 CLIN=0.1 €QSQ=4.0
G, NGEOM=2 NPLOT=200 PSCRIB=1.
R COM THE RHA 15 BEING TREATED WITH AN INITIAL ESTIMATE OF THE SHEAR3
o COM  PARAMETERS. THEY MAY CAUSE TOO MUCH DAMAGE.
P MATERIAL AMAT=RHA RHO=7 .85
Ly EQSTC=1.59E12  EQSTD=5.17£E12  EQSTS=5.17E13
) EQSTE=7.36E10  EQSTG=1.69 EQSTH=0.25
g YC=.68E10 MU=8,19:+11 TSR=0.05 1.0
o SHEAR3 BFR = 14, 0.146 .01 ,2 1.5 .07 .04 1. .577 2. 2. 0 8. 0.
e ES = 0. 0.02 0.07 0.12 0.17 0.27 0.47 1.3
e Y5 = 6.8E9 7.7E9 B.7E9 9.5E9 10.4E9 11.1E9 12.4E9 14.E9
o FNUC =-1. 1. 1. 1. 1. 1. 1.
£N3
i MATERIAL AMAT=PETN RHO=1,0 EQSTG=1.45 WVAR=7
PO EXPLOUE QEXPi=3.013E10 DIST=0.5  XDET = 0.8
£V CuM  THE TABULAR DATA FOR THE ISENTROPE IS READ WITH FIXED
oY coM FORMAT IN EUSTAB.
o EOSTAB  FIXED FORMAT
' IMAX = 13 DENSITY LOG
g RHO,P =  1,043E+00 4.557E+10 8.166E-01 2,523E+10 6.394E-01 1.4375+1)
-2 5.007L=01 8.417E+09 3.920L-01 5.063.+09 3.07UE-0L 3.127C+09°
N, 2.404E-01 1.981E+09 1.882E-01 1.2862+09 1.474L-01 8.529E+08
.- 1.154L-01 5.772.408 9.037:-02 3.978E+08 7.076.-02 2.785L+08
Pre 2.,660E-02 7.506E+07
J MALERIAL AHAT=PMAA RHO=1,18
Ay EQSTC=8.94E10  EQSTD=4.57E10  EQSTE=1.0E10
Lo EQSTG=1.0 EQ5TH=0.25 EQSTS=4 . 36E11
A YC=1,03E8 MU=8.19E11
o MATLRIAL AilaT=54 140 RHU=7 .85 :
" EQSTC=1.59E12 EQSTD=5.17E12  EQSTE=7.36E10
)‘ EQSTG=1.69 EQ3Td=0.25 EQsTS=5,17:13
o YC=6.0E09 MU=8.19E11
o:. ; MATERIAL AMAT=LEAD RHO=1,14£01
hﬁ EQSTC=5.01E1l  EQSTU=4.99E1l  EQSTE=9.16E09
oy EQS5TG=2.20 EQSTH=0,.25 EQoT$=2,02E12
' BLOCK XA= 0,635 13.335 13.335 0.635
e Ya= 0. 0. 2.28 2.28
ey NC12=40 NC23=6 AMAT=PETW
W £XPLODE
K> GRID XA= 0. 15.24 15.24 0.
oy Ya= 2.28 2.28 3.42 3.42
Ay NC12=25 NC23=3 AMAT=RHA
_: COM SLIDE 1 TO 2
ok BLOCK Xa= 0. 15.24 15.24 0.
o YA= 3.42 3.42 4,37 4,37
L6 NC12=25 NC23=1 AMAT=PMA4A
s JA-314522-117
*‘ FIGURE 33 INPUT FOR CONTAINED FRAGMENTING CYLINDER SIMULATION
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Moy BLOCK Xa= 0. 15.24 15.24 0.
|'| YA‘ 4.37 ‘0037 10.16 10.16
B NC12=25 NC23=10 AMAT=34140

‘ BLUCK Xa= 0. 15.24 15.24 0.
Aoy YA=10.16 10.16 12.7 12.7
T NC12=25 NC23=2 AMAT=LEAD
e BOUNDARY NBCTYP=1 YAFECT=3. YCONST=0.
P CuM  SLIDE LINE IS BETWLEN THE EXPLOSIVE AND KHA CYLLINDER ONLY.
e SLIDE NSL 7,14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119
v NSL 126,133,140,147,154,161,168,175,182,189,196,203,210
oy NSL 217,224,231,238,245,252,259,266,273,280,287
o VAL=0.0 NMS 288,292,296,300,304,308,312
Wi NMS 316,320,324,328,332,336,340,344,348,352,356,360, 364
R NMS 368,372,376,380, 384,388
' IDIR=1

HISTORY XD 0.79375 0.19, P 6.985 l.14, YD 0.3048 2.35125

g SYY 6.985 2.35125, YD 6.985 2.35125, SYY O. 2.8
i& 2.0 2.8, 4.0 2.8, 6.0 2.8, 8.0 2.8 10.0 2.8 12.0 2.8

JA-314522-118

iy FIGURE 33 INPUT FOR CONTAINED FRAGMENTING CYLINDER SIMULATION
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o
:\ﬁ' We begin the discussfon of input with the free field syntax, and
RS,
L?: then summarize the input data groups, and then describe each data group
{ in detail.
Lo
N
“:i- A. Free-Field Input Format
K>
o
‘,) The free-field data read from FORTRAN unit 5 conforms to the
\
-‘; following format:
e
;?S
“f: KEYWORD LABEL = VALUE VALUE VALUE LABEL = VALUE VALUE VALUE VALUE...
1
L KEYWORD LABEL = VALUE...
2 SUBKEYWORD LABEL = VALUE VALUE...
B>
o [end-of-file]
e
W
) The identifiers represented by KEYWORD, SUBKEYWORD, and LABEL are
:;ﬂ alphanumeric and may have any length so long as the enti.e word is on
N .
. one line. Only the first 8 characters of the word are used in the
:j program as an identifier. Abbreviations to the words (such as MAT for
;“ﬁ MATERIAL) may be used if they are unique. Longer versions (such as
& BLOCKTARGETOF4340STEEL) can be used for ease of reading, but do not
I.J‘
:mj affect the treatment by the code. Words must start with an alpha
[ . ‘
hﬁl character. The data values can be numerical or alphanumerical.
f._!\.
”3 Numerical data values may be represented in any appropriate FORTRAN
5; format. All physical quantities should be in cgs units unless otherwise
.Eﬁ indicated. The material names are data values which must be in alpha
b
j:_; form. Therefore, the code initially interprets them as LABELS. To
~ﬁ force the code to interpret any characters as words, use quotes around
:ﬂﬁ them: "4340 STEEL”. Note that the quoted form also allows for an
;%s intervening separator, the blank.
2&1 The labels and data values must be separated by one or more of the
9. separation symbols: blank, comma, equal sign, and semicolon.
oW
‘o The data are divided logically into data groups, each assoclated
'j: with a specific task carried out by the code in setting up the
’ii problem. FEach free-field data group consists of a keyword, such as
~
it 130
W j
A
L
I

B A A A e s A s S e e R R R AR

BN 72 = =y e ;
".".h "' ) l“"\'\?"ﬂ'tf"’"‘




”
L

‘\iﬁb&i

[

256
’

20 el
PRI

%

rp—r————
4

G4

']
3
L= l.".f‘w{'- %

L

.,.;,..
[

}':

[ ﬁ? ()

A,

- i o
ek o
"& ‘:‘v"lf"j 5

'« ?

"GENERAL", subkeywords ("SHEAR3"), labels ("IPRINT"), and data values
associated with the labels. Subkeywords and data values are optional
components of the data group. The tasks are identified by keywords,
such as "GENERAL" and "MATERIAL". The keyword 1is usually the name of
the subroutine that performs the associated task. Each keyword must
bagin in column 1; the associated data group may then be continued onto
subsequent card images, which must have a blank or dollar sign in column

1.

Subkeywords are the names of subroutines which are called to read
portions of the data. Most of these are special material models. The
labels are usually the names of variables or arrays into which the data
values are to be read. Each label may be followed by one or more data

values.

Four special indicators are also provided: COM, FIX, END, and
EXD DATA. Card images beginning with COM are treated as comment lines
and are not processed as input (except the title line, which is always
read as is). The FIX indicator causes an interruption of the free-field
input; its main purpose is to permit the use of special material models
that do not handle the free-field logic and therefore require fixed-
format input. Normally, free-field input resumes after the last fixed-
format card image is read. The END label terminates processing of the
current line. When any of these Indicators are encountered, the rest of
the line i{s echoed even if it 1is not processed. Thus, COMMENT is
equivalent to COM, and FIXED FORMAT is equivalent to FIX. When the
composite label END DATA is encountered, all input processing stops.
Hence, unused data can be stored in the deck after the END DATA words

without affecting a calculation.

The C-HEMP convention is that all special material models control
the reading of their own data. The MATERIAL data group permits the
inclusion of a subkeyword (such a:, "EOSTAB") to identify special data;
when subroutine MATERIAL processes the subkeyword, it calls the
subroutine containing the special material model. The subkeyword must
not start i{n column 1: the subkeyword and its assoclated data subgroup
belong to the MATERIAL data group.
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The HISTORY group accepts a special format that allows several data

values to be associated with more than one label.

The C-HEMP input system has two additional capabilities. An array
element may be specified as part of a label: BFR(6) = 3.2. A repeat
count may be used to enter multiple data values; 3*1.0 is equivalent to
1.0 1.0 1.0.

Because the code lays out the finite difference mesh and
initializes the material arrays during the input process, the order in

which data groups appear is important.

B. Summary of Data Groups

Here is a checklist of data groups, with ordering rules.

) GENERAL -- General options for the run; may appear
anywhere in the input data stream. Required.

[ ] MATERIAL -- One group of material properties for each
material. All MATERIAL groups must precede all layout
groups (BLOCK, GRID, BOUNDARY, and SLIDE). At least one
MATERIAL group is required. Optionally, one or more
data subgroups for special material models (EP, SHEAR3,
SHEAR4, EXPLODE, BFRACT, EOSTAB) may appear at the end
of a MATERIAL group; the special data must be repeated
for each material the model is to apply to.

° BLOCK -- Sets up a block of cells for a single
material. At least one BLOCK or GRID required.

° GRID -- Like BLOCK, but starts a mesh for an independent
object.

° BOUNDARY -- Sets up boundary conditions. Must follow
the last of the BLOCK and GRID groups. The default
boundary condition is a free surface. If other
conditions are desired, they are entered through
BOUNDARY.

] REZON ~ Parameters for the automatic rezoner. Must
follow the last of the layout groups. Optional.

] SLIDE -- Identify special boundary conditions. Must
follow the last of the BLOCK and GRID groups. Optional.




P4

~
N
&, .
~, L HISTORY —- Tags locations in storage for output after
:: every computational cycle. Must be the last group.
. Optional.
{
&N L RESTART — After the last computational cycle, a restart
- dump file is written on file 10. If that file has been
:z- saved, then the problem may be restarted at this cycle.
:ﬁ: When restarting, the line first after the title must
N . begin with RESTART (left justified). This line must be
' followed by the input blocks GENERAL and MATERIAL and
o optionally HISTORY. Set the restart file to File 9.
L In the GENERAL block only changes from data formerly
; specified need to be given. NMAX or STOPT has to be
P changed. These are both counted from the start of the
N original run. If the first run stopped at NMAX=200,
. specifying NMAX=300 will make the code run 100 more
e cycles. For the MATERIAL block a complete set of data,
hel changed or unchanged, must be given. Input to BLOCK,
:: REZONE, GRID, BOUNDARY, SLIDE or WALL may give
& unpredictable results.
\ In addition, the WALL keyword is recognized but ignored. Use BOUNDARY
h . for wall boundary conditions.
-
o
I C. Detailed Description of Input Data Groups
The special parameters and rules required for each input data group
o
3, are given in this section. Required quantities are marked. Default
?% values are zero unless otherwise noted. Unless otherwise indicated, all
e
’ physical quantities must be expressed in cgs units. Some variables
jk (e.g., AMAT) may appear in more than one group with different functions.
‘5
o GENERAL
e -
o This data group is used for parameters that will affect wave propa-
g% gation or input/output for the entire run.
%\ ® CLIN -- Linear artificial viscosity coefficient. (See
3& Section II.E) Default: 0.05
e
l‘
- . CQSQ -— Quadratic artificial viscosity coefficient.
%« (See Section I1.E) Default: 4.0
)
- ] IPRINT -- Cell and node edits are printed every IPRINT
L%
> cycles. Default: 10
,
4
L
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L ISOBAR —— This indicator constitutes a request that
isobar contour data be dumped to File 19 during the
conputation.

. NPLOT -~ Plot data are dumped to File 16 every NPLOT
cycle by PLOTT on calls from CYCLE. The default, O,
suppresses plot output.

L] PSCRIB — Set to any nonzero value to produce a separate
history plot file on File 17 (see the HISTORY data

group). Default: O

] STOPT (Required) — Computation is terminated if the
time exceeds STOPT seconds.

o NMAX (Required) — Computation is terminated if the
cycle number exceeds NMAX.

. NGEOM -- 1 for plane strain, 2 for cylindrical
coordinates (with Y in the radial direction).
Default: 1

° NSLIDE -~ Number of slide lines. Computed in GENR from
the input.

. JP -- No longer in use.

® TPLOT -- Plot data are duamped to File 17 every TPLOT
seconds. The default, 0, inhibits plot output. 1If both
TPLOT and NPLOT are positive, plot data will be written
every NPLOT cycles and every TPLOT seconds.

. DTMIN -- 1f the time step for a cell goes below this
value, the stresses in the cell and the natural time
step for the cell are no longer computed. The sound
velocity of the cell {s set negative to flag the
condition. The default, 0, inhibits use of this
feature.

MATERTAL

This group specifies the material properties for a single material;
there must be a separate MATERIAL group for each material used in the
mesh layout. The default material model is the Mie-Gruneisen equation
of state for pressure, and deviator stress calculated from an elastic-
plastic model with linear work hardening and Coulomb friction. These

default models are in subroutine CYCLE. Parameters for special material
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::j models are specified by inserting, at the end of the MATERIAL group, one

fbﬁ or more special material model subgroups (see below).

fm When multiple values are entered for a single variable, each

\E& successive entry overwrites the previous one. Thus, the sequence RHO =

;f* 3.5 1.0 2.2 3.3 sets the density to 3.3. With arrays, however, succes-

:-5 sive entries occupy successive positions in storage, with no check

;': against array dimensions.

%’- The ESC label is available for convenience in inputting a large

w!: number of material parameters. Positions in the ESC array are equiva-
lenced to parameter values in the order shown in Table 1, Section

.i&j I1.J. For example, ESC(L) = RHO(L); ESC(L+4) = MU(L), and ESC(L+15) =

?:i: EMELT(L) where L = LE(m), the starting location for data pertaining to

.::5 the m'" material. The variable EMELT can be initialized only through

the ESC array. FESC(L+10) is not currently equivalenced to any

variahle. The variables in the ESC array are defined as follows:

s

o AMAT (Required) -- The material name, entered as a
contiguous string of up to 8 characters, e.g., AMAT =

ﬁﬂ“ STEELS1. Use single quotes to input a name containing
- blanks: AMAT = °‘STEEL Si.°
¥
N\’ . BFR -- Special material model array initialized during
A CALLs to the model subroutine. BFRACT3 uses this
f : array. Some material models, such as SHEAR3 and SHEAR4,
. are provided with local BFR arrays that do not share
9 storage with the COMMON arrays.
f\I

>
kﬁi ° (EMELT) -- Melt energy. Name this quantity "ESC(16)"
N for input.
:}-:;
-.- ° EQSTA, EQSTV — Parameters for the PEST model. (Not
et implemented.)
S e ENSTC (Required), EQSTD, EQSTS —— The first, second, and
4&5 third series-expansion coefficients for the bulk
v modulus.
.yf ® EQSTE -- Sublimation energy. (Not implemented.)
VO .-
‘:, e EQSTG (Required) — Gruneisen ratio.
I'.l

. -
::;_ ® EQSTH -- Gas Gruneisen ratio. (Not implemented.)

-0
L
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35:\ ® EQSTN —- (Not implemented.)
- I. % \
Y
N * ® G2 — 2* ghear modulus. (Computed by MATERIAL).
‘Loy o |
fg . ° MU — Shear modulus. The default, zero, provides a
~2¢: fluid behavior with no shear stress.
ks
o ° PMIN -- Minimum pressure permitted, a spall strength.
\i Use a negative value. The default, zero, is interpreted
‘W as no limit on pressure.
! o L RHO (Required) -- Density. 1If RHO and RHOS are not both
; entered, the missing value is taken from the one
\
Wl supplied.
°® RHOS (Required) -—— Starting density of the solid portion
?&ﬁ of a porous material. See RHO for default.
N
o
}ﬁg ° TSR -- Special material model array. Five spaces are
% allocated for each material, but only the first one is
o currently in use. This one is a coefficient for an
. antihourglassing viscosity. Recommended values are
q:ﬂ between 0.02 and 0.10.
ool
®  YAD -- Work-hardening modulus. The default, zero,
SO provides for perfect plasticity.
;, ® YC -- Yield strength. For zero yield strength (the
. default), the material acts as a fluid.
o
A
gl A number of indicators are provided in the input to designate the
D) type of material model and the amount of storage for the properties.
L
K-y e WFR, WPOR, WDS, WCMP, WPR -- Indicators for specfal
A material models. These indicators tell the code to call
> the special model subroutines to do stress-strain calcu-
k < lations. Some models (EPP, SHEAR3, SHEAR4, EXPLODE,
' @ BFRACT3, POREQST, REBAR, CAPl), initialize their own
LA indicators. For undefined values, the default action is
‘“h taken (i.e., no model called, except for WPR). The
%ﬁ following values are recognized:
N
s WFR (FRacture Models)
i 1  DEFRACT
\ 2  BFRACT (subroutine BFRACT3)
At 3  SHEAR3
3;\ 4  SHEAR4
#Q 5 (no fracture)
o 6 DFRACTS
il
)
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b
oy WPOR (PORous equations of state)
Y 1 POREQST
. 2 POREQST
) 3 POREQST
oy 4 CAPl
Y
e WCMP (COMPosite models)

If not O, REBAR

i
gal
6 WwDS (Deviator Stress models)
;23 7 EP (subroutine EPP)
e
o
ot WPR PRessure models)
P 0 Mie-Gruneisen
. 1  EXPLODE
”*{ 2  PW = EQSTC(M) (used for constant pressure

’ boundaries)

o

JQ ® WEQS — Space allotted in the ESC array for each
G material's properties. The current default, 50

~ variables, suffices for all standard models.
‘il
L;( ®  WVAR —— Space allotted in the COMl array for each cell's
o special material parameters. The general default is

I zero. Special models EPP, SHEAR3, and SHEAR4 determine
v WVAR automatically.
J¢§ [ ] WBFR, WIRI, WTSR, WYAM — Indicators not used, but
- retained for compatibility with earlier versions.
i:"
0

3 The inpu. for particular models is described in detail elsewhere,
131 and only general rules are presented here. The model data group must be
)
‘E associated with one of the subkeywords listed below. A model may
‘5ﬁ require special storage for material quantities and/or cell quantities
L

X (such as damage parameters); see WEQS and WVAR above under MATERIAL.
;sg The following models are available:
Al
0
R BFRACT -- Brittle fracture; subroutine BFRACT3.
N
-ﬁﬁ CAP1 ~- Cap yield model for porous materials
5 DFRACT -- Dynamic ductile fracture
e DFRACTS — Quasistatic ductile fracture
tie
xt' EOSTAB -- Tabular equation of state: pressure model.
£
N
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EPP —— Von Mises plasticity with work-hardening

EXPLODE -- Detonation. See EXPLODE under the BLOCK data
group for further initialization requirements.

POREQST -- Porous equation of state
REBAR -- Composites

SHEAR3, SHEAR4 (or SHEAR) — Shear-banding.

In addition, the subkeyword EXTRA 1is provided but not implemented.

BLOCK or GRID

Each BLOCK or GRID data group specifies the mesh layout for a
single quadrilateral block of material. The user can construct the
layout for a complicated structure by entering several BLOCK groups; the
code automatically constructs a single object with connected cells from
a series of BLOCK groups. The GRID keyword is used like the BLOCXK
keyword, but has the additional meaning that subsequent blocks are to be
part of an independent mesh, as when beginning the layout for a new
object. A slide line must then be provided between the group of blocks.
A typical layout using GRID would be:

GRID (or BLOCK) labels ...
BLOCK labels ...
GRID labels ...
BLOCK 1labels ...
BLOCK labels ...

This sequence of input lines sets up two independent submeshes, one
consisting of two blocks and the other of three. One submesh could
represent a penetrator, for example, and the other a target.
The labels available in the BLOCK data group are:
° AMAT (Required) -— Material name, a character string of
1 to 8 characters, including blanks. Must match one of

the names specified under a MATERIAL data group, e.g.,
AMAT = 'STEEL S1'
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s
S ® XA (Required), YA (Required) — Arrays of four X and Y
- values specifying the coordinates of the corners of a
T quadrilateral block in counterclockwise order. Example:
.
_g XA = 1. 4.0 3.2 -0.6
’ ¢ YA = 1-1 1.1 2-6 201
o
VQH The order given here for these corner nodes 1s used in
:ﬂ . the interpretation of Rij (cell size ratio), NCi}]
a (number of cells) and SLIDE i to j.

:: ® XDNOT, YDNOT -- Arrays of four values specifying the X
‘:ﬂ. and Y velocity components of the corners of the block.
5 Listed counterclockwise in the same order as for XA, YA

: values. If only one XDNOT or YDNOT is specified, all
. four nodes are presumed to have the same velocities.

\-F
&é ® CASE - Determines the layout geometry.

”
oy CASE = 1:  (Default.) Cells all the same size.

- Defaults: R (cell ratio) = 1, NC12 = NC43,
- NC23 = NCl4. Specify NC12, NC23. See
,g} examples 1 through 4 in Section VI.

>:

Q& CASE = 2: Varying cell sizes. Same as CASE = 1, but
Y cell ratios are individually set.

Defaults: R = 1, R12 = R43, R23 = Rl4.
o Specify two NCs, two Rs. See an example in
=Y problem 3 of Section VI.

{5 CASE = 3 Varying cell numbers and sizes. Rs as in
43 CASE = 2, but required that NC12 = NCl4 and
) NC23 = NC43. Specify two NCs and two Rs.
3 This layout procedure works best for square

:\‘» blocks. (See example 5 in Section VI.)

T
#5 CASE = 4: Layout of circles and ring sectors. This
,g{ case can be obtained by specifying CASE = 4,
" or by inserting the word CIRCLE. The X and
i Y values have different meanings here than
Qﬂ for the preceding BLOCK case. The
! orientation of the nodes is fixed as shown
i in Fig. 34. XA(1), YA(l) is the center of
ﬁd' the circle. XA(2), YA(2) is point 2 at the

2 outer radius. XA(3) is the extent of the

o ring sector or circle in degrees (counter-
o clockwise). XA(4), YA(4) is the point on
yjy the inner radius of the ring sector. NC12
[ 1s required: 1t is the number of cells
ﬁd , . along the radius from the inner radius to

r the outer. NC43 = NC12. NC23 and NCl4 can
%
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Identifying NCij
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FIGURE 34 DESIGNATION OF THE NODAL INPUT PARAMETERS
FOR DEFINING AN ARC OR A CIRCLE FOR LAYOUT
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) _ be specified. If either or both are left
}::\l undefined, they are computed to provide
R nearly square cells. A sample layout of
; a this type is shown in Fig. 17.
219
; w CASE = 5: The layout of ellipses has not been imple-
“§ mented yet. It is expected that satisfac-
;a*. tory treatments could be obtained in most
bk . cases using circles, sectors, rings, and
}p} ring sectors with CASE 4.

bt
'.':"

)
Wt e NC12, NC23, NC43, NC143 —— NCij is the number of cells
it
r“y along the block edges from corner node i1 to node j. See
i CASE for defaults.
e e RI2, R23, R43, R4 — Rij is the ratio of successive
A% cell dimensions along edges of the block from corner
Y node 1 to node j. See CASE for defaults.
[ 0
! 6 EXPLODE — Must be specified if the EXPLODE material

model is specified for the material in this block. The

=
j\$ resulting call to EXPLODE causes the times (TBURN) of

! ; initiation of detonation in the cells to be

L:B initialized. (See example 5 in Section VI.)

)
.%' o SLIDE i TO j — Provides for a partial separation of the

. current block from previous blocks. The boundary nodes

¢ between the corner nodes 1 and j (proceeding counter-

‘ éﬁ clockwise around the quadrilateral) are not connected to

3; previous blocks, but the corner nodes are connected.

ﬁg‘ The SLIDE provision provides the needed nodes for a

, slide line; see SLIDE for further instructions on

1;{_ specifying slide lines. For example, an edge-cracked or

fﬁ% center—-cracked panel could be constructed. For full

;#4. separations between blocks, it is simpler to use the

ﬂf: "GRID" indicator. Examples: SLIDE 1 TO 3 and SLIDE &

:.’\. TO 1.

¥ M ‘
o BOUNDARY

s —

5 : The purpose of the BOUNDARY specifications are to provide a range
W

?fQ of motion boundary conditions to keep nodes along an axis of symmetry,
;;f to represent an impenetrable wall, impose velocity boundaries, and the
* Al

_}i like. The boundary specifications have been separated into groups

:f' according to the complexity of the conditions. These groups are

N A

z_ labelled by the NBCTYP indicator, an iaput quantity.
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:i: NBCTYP 1: For this case the user can specify x and y controls on
:J: lines in the x or y direction, or on individual points. The operation

{ 2 can be visualized as the specification of a moving wall which will

:Ei affect the motion of some nodes. This method is appropriate for a

;:E: limited range of controls because it is dependent on the orientation of

- the objects and the directions required of the controls. However, this
‘;3 case meets a lot of needs in practical problems. For this method, the
23 user must specify the nodes affected, the X or Y values of the wall that

f:E will control the motion, and the type of control. The selected nodes

LN are indicated by the variables XCONST and YCONST. If both XCONST and
. YCONST are specified, a single poiant i1s designated; if only one is

;Q§ given, then a line of nodes with constant X or Y is selected. Here the

AETE user must provide the XCONST or YCONST values, even though they are

lﬂg‘ zero, because there are no defaults for these two. Next the user

specifies the X and Y values and velocities of the controlling line or
point (the wall). These values are listed as XBC, XDBC, YBC, and
YDBC. If one position value is given, a wall line 1s provided; 1f two

48 5 5 G4 4
'l I. ’L*L"'.’\,'-

position values, a wall point. The wall line or point pogitions at any

-,

time are given by

i
g X, = XBC + t*XDBC, and
;}: Y, = YBC + t*YDBC, where t is the time.
.{1 Last, the user designates the type of control desired. For example, the
}J; X value of the selected nodes may be required to remain greater than or
N’
, x equal to the current X value of the wall, less than or equal to the
O~ current X value, or equal to the current X value of the wall. These
@
2] control types are given by values of 1, 2, or 3 for XAFECT and YAFECT.
Y
X
$ NBCTYP 2: This boundary condition requires that the velocities of
1&: the designated nodes remain unchanged. Only the selected boundary nodes
4y
r , and the control type must be specified for this boundary condition.
'V; That is, specify the nodes by lines with a common X or Y value or points
; with a pair of X and Y values (XCONST and YCONST). Then give the effect
‘ using XAFECT and YAFECT (only values of 3, for control, and 0 for no
“i‘ control are allowed). This boundary condition is used for simple wall
r Y
~l
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conditions and to permit an initial velocity to remain fixed along a
boundary. The wall line or point positions at any time are given by
Xy = %1 + t*xoi’ and
Yw =Y, + t*Yoi’ where

xoi and &oi are the initial X-position and X-velocity of the ith node.

NBCTYPs 3 through 6: These four boundary types allow the user to

specify a wall of general shape (as a series of points) and to indicate
what kind of contact will occur on the boundary. The wall points may be
moving with fixed velocities so that motion of a rigid projectile, for
example, could be represented. The input consists of the series of
points describing the wall and designators for the boundary nodes which
are affected. The wall is specified by the number of points in the
series (NBCPT), the series of XBC and YBC values, wall velocities given
by XDBC and YDBC values, and the direction indicator (IDIR). To allow
the WALL subroutine to determine the relationship between the wall and
the nodes of the material, it is necessary to indicate the initial
orientation in some way. We adopted the convention that if we travelled
along the wall in the order in which the points are given, the material
should be on the right. For this case, IDIR is +1; otherwise IDIR is
-1. The boundary nodes which are affected are given by the user with
the XCONST and YCONST values as for the other NBCTYPs. The nature of
the contact hetween the wall and the material nodes is given by the
indicator NBCTYP. This indicator determines whether nodes can slide
along the wall or are struck at first contact, and whether they can
separate again or must remain in contact. These designations are given

in the following listing of the input quantities.

The 1input quantities used with the BOUNDARY group are given
below. Some of these are dimensioned so that they all pertain to the
nth boundary condition, but some are not dimensioned because their
information is immediately stored with the nodal information in the BC

or BCN arrays.
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] NBCTYP(n) -- Indicator for the boundary condition type.
Required for each condition (n is provided by the code). The
types are:

1 —- Simple control on the X and/or Y values. Type of
control is given by XAFECT and YAFECT.

2 — Retain initialized X and/or Y velocities. Type of
control is given by XAFECT and YAFECT.

. XAFECT, YAFECT — Type of boundary condition control used with
NBCTYPs 1 and 2. These indicators determine separately the
controls on the X and Y directions. The the XAFECT and YAFECT
have the following meanings:

0 or 4 -— Free condition, no control.
1 — X or Y is maintained greater than or equal to Xw or
Y .
w

2 — X or Y is maintained less than or equal to Xw or Yw.

3 —— X or Y is kept equal to X, or Y .

° XBC(j,n) and YBC(j,n) — jth point in the series for
designating the nth wall. Neither j or n indices are provided
by the user. For NBCTYP 1 only one value of XBC and/or YBC is
used. For NBCTYPs 3 through 6 XBC, YBC are arrays of
coordinate pairs designating the wall.

° IDIR -- Indicator for the relative location of the boundary
wall and the material. 1If we travel along the wall in the
order in which the points are given, the material should be on

the right for IDIR = +1. For material on the left, IDIR is
-1.

° XCONST and YCONST -- X and Y values used to designate nodes
that are affected by the boundary conditions. There is no
default for these values; each must be set, although they may
be zero. If only XCONST (or YCONST) is specified, then all
nodes with X = XCONST (or Y = YCONST) are given the boundary
condition. If both XCONST and YCONST are specified, the
condition applies to the one point specified. Subsequent
input overwrites earlier assignments. Hence, if adjacent
sides of a block are specified by boundary conditions, the
node at the corner between the sides will carry only the
second set of conditions. In such cases it is usually
necessary to separately designate boundary conditions for this
node. A set of parameters XCONST, YCONST, XAFECT and YAFECT
constitute a Boundary Line Set. For each Set, XCONST and

. @,
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o
'*ﬁ YCONST designate the nodes affected, and XAFECT and YAFECT
g: indicate the nature of the boundary control. Each Boundary
i Line Set must appear on a separate line of the input.
Ry )
as * XDBC(j,n) and-YDBC(j,n) —— Velocities of the wall points.
| Neither j nor n indices are provided by the user. Oaly the
;af first members of the arrays (j = 1) are used for NBCTYP = 1.
' The complete arrays are used for NBCTYPs 3 through 6.
-
5*‘ Some samples of the boundary groups are presented to illustrate the
.' use of the conditions.
l.l
: 5 Sample 1, Compression test on a short cylinder with a 1 cm radius
NS
i and 1 cm length. The compressing piston is treated as a rigid wall with
'\i an = velocity of 1 m/s.
>
s
. :{
g{i BOUNDARY NBCTYP = 1 XCONST = 1. XAFECT = 2
™Y YCONST = 1. XAFECT = 2.
) XBC = l., XDBC = -100.
S
T BOUNDARY NBCTYP = 1
{ XCONST = 1. YCONST = 0. XAFECT = 2 YAFECT = 3
:;,‘. XBC = 1., XDBC = -100.
)
o,
a S Here we have entered two groups of conditions. The first causes the X-
L
_5 values of nodes along the front and sides of the short cylinder to
’is: remain less than or equal to the wall position, but the Y-values are
o
iﬁ free. The second condition requires that the node at the axis along the
0
::; front remain along the axls, as well as less than or equal to the X-
oY)
'@ position of the wall. Note that the second condition overwrites the
"84
®,

first condition for the poiat at (1., 0.).

Sample 2, Impact of a blunt projectile into a hemispherical cup.
The projectile lies along'the axis of symmetry from X = -4.93774 to
13.06226 cm and has a radius of 4 cm. It is just touching the inside of
a hemispherical cup of radius 9 cm and with its center at X = 5 cm.
First the input designates boundary type 4. Then the nodes along the
front of the projectile at 13.06226 are indicated as boundary nodes
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';:. which will interact with the uall, and then the nodes along the circum-
(o,
‘hdﬂ ference at Y = 4 cm. These two Boundary Line Sets XCONST and YCONST
%‘? appear on separate lines so that they are treated separately. Next the
sl series of points defining the hemispherical cup are entered. These are
G
& +
T in the positive direction, so IDIR is +l.
W
)
N BOUNDARY NBCTYP = 4 XCONST = 13.06226
oy
Vs YCONST = 4.
‘5-.1(:
v&& XBC = 5.000, 6.563, 8.078, 9.500, 10.785, 11.894, 12.794,
L YBC = 9.000, 8.863, 8.457, 7.794, 6.894, 5.785, 4.500,
e XBC = 13.457, 13.863, 14.000
1ot
1 YBC = 3.078, 1.563, 0.000 IDIR = 1
Call]
Pl
N
Y REZON
;iﬁg This group specifies the parameters controlling the automatic
fé? rezoner. A sample of the input follows:
¢
’ REZONE NFREQ = 10 REZMIN = 0.05 REZWT = 1.0
1 ;.; XCONST = 1.0 YAFECT = 2
P
22 XCONST = 1.0 YCONST = 0.5  XAFECT = 1
el
j) The input quantities provide three types of control over rezoning.
"{u NFREQ controls the frequency with which the nodes of the mesh are
bty
2§: examined and rezoned if necessary. REZMIN and REZWT govern the amount
22}: of motion that a node can undergo in rezoning. The remaining parameters
hia¥
a” allow the user to indicate which nodes are not to be rezoned.
R
? > Often the user will want to restrict rezoning of nodes on external
‘ﬁ. boundaries, internal boundaries, and slide lines. The rezoner can treat
o
hé“ motion along boundaries and slide lines, but it may also move corner
;:5’ points and otherwise alter the grid in unphysical and unnecessary ways.
E& 2 When more than one restriction is desired, the second and subsequent
f$:4 ones must be entered in separate REZON data groups.
s
.-
l.'.
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PR

o
=
o NCONST, Number of a node for which the rezoning is restricted in
~. (TO) both X and Y directions. With the "TO" label, a range of
r nodes can be specified. Samples of this Input are
Ly}
s NCONST = 13
‘:..\
- NCONST = 13 TO 43
"&:,‘,
N The first of these input lines requests that node 13 be
') . skipped for rezoning in both X and Y directions. The
el second line specifies a range of nodes, starting at node
‘#3 13 and continuing through 43. With this specification, it
;j; is convenient to protect a large block of nodes from
o rezoning. A trial layout is usually needed to determine
e what the node numbers are.
"oy NFREQ The cycle counter controlling frequency of rezoning. For
Aryﬁ any cycle N where N = NFREQ + 2 (n is any positive
p]$ integer), all odd-numbered nodes are scanned for possible
5\3 relocation. On the next cycle, even-numbered nodes are
* scanned. For the third and fourth cycles, odd- and even-
‘ numbered nodes are scanned starting with the last node and
SY;f proceeding towards the first. NFREQ = 5 is a reasonable
o request. Therefore, if NFREQ = 5, no rezoning occurs at
‘“;: cycles 1, 6, 11, etc., while at any other cycle either
’*QP odd- or even—-numbered nodes are scanned for possible
i rezoning. The default of zero indicates that no rezoning
) is desired.
3 7 NXCONST, Number of a node for which rezoning is restricted in the X
2 NYCONST, (or Y) direction. With the "TO" label, a range of nodes
ij (TO) can be specified. Samples of this input are
NXCONST = 15
::.- NYCONST = 18 TO 21
j ”i The first of these lines restricts rezoning in the X
h;\" direction for node 15. The second restricts rezoning in
ard the Y direction for nodes 18 through 21.
LN
ﬁ'N REZMIN  The minimum relative distance that a node has to be offset
:jh from the ideal position before it is relocated. The
B distance is relative to a typical dimension of the polygon
AN that the neighbors of the node form. 0.1 may be a
9., reasonable number, but we have often had to specify a
o number as small as 0.01 in difficult runs. The default is
RO 0.1.
e
N
W
! .
LY}
NN
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REZWT Fraction of the distance the node is moved from its old
.3 position (xold) to the centroidal position (xcent)'
% Xnew = xcent * REZWT + xold * (1 - REZWT)
D
0 For REZWT use the default value of 1. If smaller values
W are used, more diffusion is introduced because more
i frequent rezoning is required.

N XCONST, X and Y values of nodes which the user does not wish to
o YCONST rezone. They are used in conjunction with XAFECT and
YAFECT below. All nodes that lie on the line X = XCONST

~ will not be rezoned in the X and/or Y direction if XAFECT
N and/or YAFECT is set. The second line of the sample input
v above specifies that all nodes for which X = 1.0 shall not
i be rezoned in the Y direction. The third line restricts
g rezoning in the X direction for the node at X = 1.0, Y =
. 0.5. There are no defaults for XCONST and YCONST, they
b, must be specified to be used.
",
2 XAFECT=1 Indicator (set to 1) for inhibiting rezoning in the X
! direction for the nodes that are specified by XCONST
b and/or YCONST.
o YAFECT=2 Similar to XAFECT. Set to 2 to inhibit rezoning in the Y
., direction.
5
i A set of the parameters XCONST, YCONST, XAFECT, and YAFECT con-
5
‘: stitute an Inhibitor Group. For each group XCONST and YCONST designate
: the nodes affected, and XAFECT and YAFECT indicate the inhibited
=~ direction of rezoning. Each Inhibitor Group must occur on a separate
. line of the input. Note that the second Inhibitor Group in the sample
- above affects a point that was also specified by the first Inhibitor
) Group. The second instruction overwrites the first so that now the
! point (1.0, 0.5) is free to be rezoned in the Y direction. The
,’ Inhibitor Groups are used to specify appropriate conditions along lines
b of symmetry or to disallow rezoning 1n a quiescent region.
l
X\ SLIDE (Read by GENR)
l
A% |
This group is used to initialize the slide-line logic. The current :
L implementation requires the specification of individual node numbers.
y
; To determine these, set up the rest of the input and run the code with
v
L NMAX = O (zero computational cycles). Then examine the INITIAL LAYOUT
{
|
L)
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NS
A
<K
e
o
s
N
‘::E part of the output to determine the node numbers along desired slide
‘~ boundaries.
gy;» NSL An array of nodes that are on the slave side of the slide
:b line. Slave and master do not have any special meaning in
1$ the present slide line implementation except that they
3" specify in which direction the slide line runs and serve
s to assemble the nodes into two groups. The node numbers
! } should refer to consecutive nodes as one goes along the
N Y slide line boundary. For IDIR=1 (see IDIR command below)
:} the material should be on the right side when one goes
roo through the node numbers in the order they are entered.

’ .
?:* For IDIR=-1 the material should be on the left side. (NSL
is required for a slide line.)

»aa NMS An array containing the master side node numbers of the
for slide line. Similar to NSL. For IDIR=1 the material
;Jﬁi should be on the left side when one goes through the node
'jkw numbers (NMS is required for a slide line.)
'Rt
B IDIR Used in conjunction with NSL and NMS above. +1 for master
Z“:f material on the left as we proceed along the slide line.
!%& -1 for a slide line specified in the opposite sense.
o Default is +1.
f{;
bt CINT The cohesion C/ in the friction mode, dyn/cmz.
? y TANP The coefficient of friction Tan (4), used to compute a
f'r shear stress t: <t = C° + 0 Tan($) where ¢ 1is the normal
"y stress. n n
o3
! ETA The coefficient of viscosity A_ used to compute a shear
‘?‘ stress on the slide line: 1 = Av U, where U i{s the
RN relative velocity.
.i
: HISTORY
{‘;! This group is used to tag locations in storage for output after
iy every computational cycle. The available designators are listed in
't
$§f Table 3. They include the node and cell array variables, plus some
() —
%s& quantities (such as ¢ and cl) which are derived from array values. For
§
;QJ‘ array quantities that are not specifically listed, use the labels COMC
f;i; ' and COMN. A unique format is required for the HISTORY group: one or
(o
:¢:w more serfies of labels followed by (X, Y) coordinate pairs; for example:
b
pin
HISTORY, Z,AM,COMC24,1.0,1.5 BC,COMN3,3.5,2.0
0..".
B
)
s
Q..‘C
iy
&
0
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)
=
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This coding requests that the variables Z, AM, and the 24th cell
variable be printed for material initially located near X = 1.0, Y =
1.5, and that the variable BC and the third nodal variable be printed
for material initially near X=13.5Y=2,0. Commas and spaces can be

used as separators as desired.

When requesting nodal variables near a slide line or material
boundary, care should be taken to correctly position the x,y points.
HISTORY first determines the cell containing this requested point. Then
it selects the nearest of the four nodes of this cell. With this method
the user can request a history of a node on either side of a slide line,

although the nodes may initially coincide.
Table 3. Variable Names Used in Historical Listing Requests

. A -- Cell area.
® AM —— Mass assigned to a nodal point (g or g/cm).
° BC, BCN -- Boundary condition indicators.

° COMC —- Use this label for cell variables not listed by name;
i.e., for extra variables. Locations in the COMC array can be
determined from Tables E.l and E.2, from the COMMON listing in
HCOM1.FOR, and from the CALL statements in CYCLE. For
example, the 6th extra variable would be requested by: COMC24
(2% = 18 standard variables + 6th extra variable). The number
must immediately follow the letters COMC. The cell density,
for example, could be requested by COMC4.

. COMN -- Like COMC, but for nodal variables.

° D -- Density.

° DEXX, DEYY, DEZZ, DEXY -—— Strain increment components.
¢ FE — specific internal energy.

] EPS -- Equivalent plastic strain.

. EXX, EYY, EZZ, EXY -- Cumulative strain components, not
corrected for rotation.

. FX, FY —— X and Y components of force assigned to a nodal
point (dyn or dyn/cm).

° SXX, SYY, SZZ -- Thermodynamic stress components, positive in
tension.
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] TH -- Gross cell rotation, radians, positive counterclockwise.

® TXX, TYY, TZZ, TXY — total (mechanical) stress components,
positive in tension.

° WH -- Cell condition indicator (initialized at 2 and updated
by material models).

® WMAT -- Material number (assigned to materials in order of
appearance in input).

] P — Thermodynamic pressure, positive in compression.
[ SBAR -- Equivalent stress.

° SPRIN1, SPRIN2, SPRIN3 — Principal stress components,
positive in tension.

. SP2 -- Sound speed squared.

. X, Y -- Nodal positions.

. YD, XO -- Initial ncdal positions.
] XD, YD — Nodal velocities.

) YY -- Yield stress.

e 7 -— Mass, in g or g/cm.

To produce a historical plot file, use PSCRIB (described under the
GENERAI, data group).

EPP, Elastic-Plastic Model
The following input quantities are used for EPP:

. TYPE -1 (Default valug) for work hardening by power law
form, Y=A¢ .

2 for work hardening by a linear function of
strain, AY = AA €.

3 for work hardening by a polynomial fraction
developed by Norris.

® YS -- Yield values, or constants for the third type of yield
function.

®¢ FES —— Equivalent plastic strain values.

Samples of this input for type 1 appear in Problems 1 and 2 of Section
VI.
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SHEAR3 1
Shear banding routine (described in Reference 4).

® BFR -- The constants in the shear banding model, 14 values
total, values 8-14 are given defaults in the code.

° FNUC -- Indicator for active planes. Six values can be given
for compatibility with SHEAR4, but only the first four planes
are computed by SHEAR3. One (1.0) indicates active; zero
(0.0) makes the code bypass the plane. We have the following
planes in order.

Bands are normal to X or Y axes.

Normal to a line at 45° between X and Z (mode 2).
Normal to a line at 45° between X and Z (mode 1).
Normal to a line at 45° between X and Z (mode 3).

® YS -- Yield values for the work hardening curve, treated as
for TYPE 1 under EPP.

L EST -- Equivalent plastic strain values for the work hardening
curve.

® EN3 -- Signals the end of SHEAR3 input; must be supplied (need
not have a value).

Samples of this input are in Problems 1 and 3 of Section VI.
SHEARA4

Shear banding routine (similar to SHEAR3, but providing a more
complete treatment of anisotropy).

. BFR -- The constants in the shear banding model, 14 values
total, values 8-14 are given defaults in the code.

° FNUC -- Indicator for active planes. One (1.0) indicates
active; zero (0.0) makes the code bypass the plane, six values
total. We have the following planes in order.

Normal to X axis.
Normal to a line at 45° between X and Y (mode 2).
Normal to Y axis.

Normal to a line at 45° between -X and Y (mode 2).
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o
N
:vc.

j 30

A

: f: Normal to a line at 45° between X and Z (mode 3).

[ -

$ﬂ§ Normal to a line at 45° between Y and Z (mode 1).

1 ;
“G ® YS -~ Yield values for the work hardening curve, treated as
o for TYPE 1 under EPP.

b, <. o
.

.$¢ . EST ~- Equivalent plastic strain values for the work hardening

‘et curve.

V) :

Sﬁﬂm ® PRINT -- Specifies the print-out from SHEAR4.

.

BAON

:“: 0  no printing
)

:“'H 1 deformation information only

S by M

2 deformation plus volume damage (if any)

":; 3 deformation plus volume damage (if any) plus surface

s
A damage (1f any)

Ry

1,5
i)

: >, ] END -- Signals end of SHEAR4 input; must be supplied (need not

'® have a value).

N
\jﬂ The following input variables are used in the EXPLODE calculations.
N

A

S :: DIST Number of cells over which the detonation front is

o, spread. This parameter is also the indicator that a

running detonation is required.

\ra

L) .

o DET Detonation velocity, may be inserted or computed by

1ty EXPLODE, cm/s.

o

iﬁg} EOSTAB  Indicator for the use of a tabular igentrope.

J

Qqq. EQSTG vy - 1, the Gruenelsen ratio

AR
l'ln

;zgﬁ QEXPL Chemical energy released by the detonation, erg/g.

' 4
L A

;Gﬂ TBIRN Delay time for the beginning of detonation, s.

§¢QJ XDET, Coordinates of the point or region of the initiation of

oy YDET detonation, cm. If only XDET (or YDET) is input, this

5 j region is a line of constant X (or Y). With both XDET and

'fﬁj YDET, the detonation begins at a point. If two values of
fﬁy each are entered, initiation begins along a line through

. the points.

&

;':- BFRACT

i. -

\

se : The subroutine BFRACT3 [Ref. 41] provides a stress-strain relation

)

s for solid material undergoing brittle fracture during wave
[
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I
-
a: propagation. The model incorporated here is micromechanical in that it
o,
f: treats in detail the nucleation and growth of arrays of microcracks.
E The output of the subroutine includes the usual stress tensor, and also
::3 a detailed listing of the damage. The damage information consists of
i
‘E¥ ® The orientation of the plane of damage: PHI and THETA
3v: in degrees.
\
gé. ® The level of damage: TAU, ranging from zero (no damage) W
+ R to 1.
r
s W h
';? L A cumulative crack size distribution given by a series
K of number-radius values.
. The numbers of cracks are given as number per cubic centimeter and the
R ﬁ- radii{ are in centimeters.
G
:“; Several forms are available for both the nucleation and the growth
¢ processes. Nucleation can occur by either a stress-based or a strain-
::: based formula. Probably the stress—-based form is more appropriate for
1- high rate loadings (microsecond times) and the strain-based nucleation
N
::: is applicable to longer duration loads. Crack growth can occur by a
’ process like that for ductile voids, or at a constant fraction of the
‘: longitudinal or Rayleigh velocity.
§~.
,}{ At each listing of the damage, a surface crack size distribution
el
p > can also be given. This surface distribution (number per unit area
'3 versus radius) 1s computed as the cracks that would be observed on a
{
:s surface sliced through the material. Finally, a listing is given of the
)
:g fragment size distribution. The radius given here is the radius of an
Y equivalent sphere of the same mass as the fragment.
®
qg The fracture data are read into BFRACT in three groups in fixed
ﬁs formats: a sample of the data 1s given in Section VI (Figure 46). 4
'™
k& These follow the indicator "BFRACT" in the listing. The first line
U
'“f contains seven values in the BFR array. The next line contains SIZE,
$ SRTIME, BETT, GAMM, VOLCRIT, TFRAG, and PBORE: these seven were BFR(8)
) |
$ to BFR(14) in earlier versions. The third line contains three
k indicators INITNUC, INITGRO, and INITPRI. All these variables are ﬁ
99 defined below.
L
&
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X
§- 
s 2
::.
I .u
hﬁ% BFR(1) controls the crack growth velocity. A positive value is
*.f interpreted as the coefficient B; in the equation for crack growth
{
w, velocity:
"
*-‘
in V = BL (176)
A
N -
;Wf where L {s the longitudinal velocity for elastic wave propagation. A
&' 'y
ey negative value of BFR(1l) indicates a ductile growth relation of the form
[ »
"
W i
o V=B (c - B2) (177)
4
o where o is the normal stress on the fracture plane, and B2 = BFR(2).
<
)

BFR(2) controls the initiation of crack growth. A positive value

means that a fracture toughness criterion is used, and 32 is the

'(5 fracture toughnes, KIC’ with units of dyn/cm3/2. In this case only
J{j cracks above the critical size are allowed to grow. A negative value of
o

PP B, means a threshold stress as in Eq. (177).

S 2

‘ BFR(3) is the slze parameter of the nucleated size distribution.
o This initial distribution fis
o
P 178
s Ng = N, exp(—R/B3) (178)
2

"

ﬁ%{ where Vg is the number per unit volume with radii greater than R, and No
#ﬁ: is the total number of cracks nucleated per unit volume.

A
BA

o BFR(4) is the nucleation rate coefficient, number/cm3/s, in the

I nucleation expressions

l...':

b

l"

K AN = B,[(o - B.)/B_ At (179a)
l:.‘i 4 5 6

Lt for stress-based nucleation
S AN = B, (L/B)at (179b)
‘0.‘ 4 3
o
%

i AN =B (ep - B.)At for strain-based nucleation (180)
& r 5

Y

o

l...l.
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KL% where ¢ is the normal stress on the plane of fracture, L is the elastic
i -
gy longitudinal wave velocity, ep is the plastic strain, and At 1s the time
D .
_::’ increment.
\' ’
g,
’iﬂ BFR(5) controls the nucleation process. Positive values mean that
< Sy
) a strain nucleation process is being used, and Bg is the threshold
:;: strain for nucleation: Eq. (180). For negative values, BS is the
sfi- threshold stress for the stress-based nucleation formula, Eq. (179a).
e
o\
. RFR(6) participates in both of the stress-based nucleation
process. For positive values, B6 is the total possible number of cracks
igﬁ per unit volume developed in Eq. (179b). A negative value of Bg is the
'¢§ denominator in the nucleation formula, Eq. (179a).
§
7
&hy BFR(7) is the maximum crack size for the nucleated distribution,
>3 cm. Thus, in Eq. (178), R runs from zero only up to By.
Y
s
AS- NSIZ is the number of size intervals for the crack size distri-
)
er bution. The dimensions of the arrays require that NSIZ not exceed ten.
At
, SRTIME is the coefficient used in computing the stress relaxation
:\52 time constant. This time constant is
58
\
Wi T. = SRTIME*R/L (181)
J
,J‘. where R is the radius of the cracks being considered. With a positive
M,
sVu value of SRTIME, the crack volume does not instantaneously increase to
'»
ﬁ'- the elastic value of V.» but is given by
¢ 5::"\ 82
:\3: vV=v, - (Vc - Vo)exp(- AT/TC) (182)
8 “ W
o
KA
h“ﬁ_ where Vo is the crack volume at the previous time, and AT is the time
Wer interval.
Lo,
jz BETT is the ratio of the number of fragments to the number of
;iﬁ cracks.
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N¢ = BETTAN_ (183)

GAMMA is the ratio of the fragment radius to the crack radius.

Rf = GAMMA*Rc (184)
VOLCRIT is the value of the crack volume (dimensionless) that
defines the threshold of coalescence.
TFRAG is the coefficient of fragment volume, Ve
3
V_ = TFRAG*:N_R (185)

f ff

PBORE is a switch that allows the borehole gas pressuré to act on

cells that are fracturing.

INITNUC is an indicator for determining the nucleation process.
For a value of 1 and a fracture mechanics growth process, the full range

of cracks are nucleated, although some may be below the critical size.

INITGRD is an indicator for determining the growth process. For a
value of 1 and the constant growth velocity process, the Rayleigh wave

velocity instead of the longitudinal velocity 1s used.

INITPRI controls some of the printing processes. For a value of 1,
the nucleation and growth functions that have been requested are listed
with the input. For INITPRI = 2, the surface damage is also listed at

each time the volume damage is given. For INITPRI = 3, the preceding
listings are given, the surface damage information is fitted to an

exponential form, and the coefficients are listed.
EOSTAB

The EOSTAB subroutine provides a tabular isentrope appropriate to
the representation of gases, including explosive gases. The isentrope
is read into the subroutine as a series of pressure-volume points.
During calculations the subroutine interpolates between successive

points to determine the pressure corresponding to the current density.
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L
Yy, a
~
b
R
l.-)
:'j The input points to define the isentrope can be provided as either
BTV volume-pressure pairs or density-pressure pairs. The sample in Section
{. TV (Figure 33) shows density-pressure points as indicated by the label
'
:, "DENSITY". The pairs can be inserted in the order of either ascending
o
N .
A or descending pressure
o
V) During initialization, if a pressure is provided, the routine
45 computes a density corresponding to that pressure on the isentrope.
)
=:V' This provision is useful for initializing the material with a preload
[\
:~; pressure. The computed density is then used to define the initial
|., !
’ density for the material.
NS
‘"ﬁ In the wave propagation calculations the subroutine is provided
f:ﬂ with the density. EOSTAB computes the pressnure by interpolating along
e
{:: the isentrope defined by the series of points. If "LOG™ is specified in
the input as shown in Figure 33 of Section IV, the pressure is computed
{:' by linear interpolation between logarithms of pressure and density.
s
-;";} P = P (D/D))* (186)
: where
-
"
N D is the current density,
.\.'.
B, o
N P2 and P1 are the pressures at each end of the interpolation
D) interval,
AL
ﬁ- N, and D1 are the densities at each end of the interval, and
o
X . If "LOG" 1s not specified, the interpolation is linear between pressure
0
fﬁ and density. For elther type of interpolation, values of pressure
»
3&; outside the range are obtained by extrapolation from the end point data.
Wiy The input includes three variables, plus the density-pressure
" array. The three variables are:
) .
:\; IMAX, the number of data points to be inserted. WNo default.
1o
G A3, a label with a value of "DENSITY" or "VOLUME", to show whether
pa density or volume values are to be inserted. The default is
oW "DENSITY".
]q
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TYPE, a lable with a value of "LOG" or "LINEAR", to request either
logarithmic or nonlogarithmic interpolation. The default is
"LINEAR".

These variables are presented in fixed formats, as shown in Figure
33. The variables for the first line are a label, IMAX, A3, and
TYPE given in the format (Al10, I10, Al0, Al0).

The density-pressure array is read in as a series of points: Py
Pys Py Py; etc. The format is Al0 (for a label), 6E10.3. The points
can be inserted in either ascending or descending order of pressure.
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:.E,;' v OUTPUT
e
f A This section describes the printed and plotted output from C-
;_) HEMP. The printed output includes the standard listing of the input and
i;ﬁ) computed results, plus any error messages. Some guidance is given for
}*t' making changes in the listed output. Plots of the histories, the mesh,
?hd: and of contours of variables over the mesh are available. The variables
provided in these listings and plots are defined in the Glossary,
'Ei Appendix €. The files used in the input and output operations are
,{: listed in Appendix A. For information about the output from special
f:: material models, see the documentation in Section III on the models.
.‘
f;ﬁ A. Dutput Listings
hsg Given below is a list of the sections that appear in the printed
}. outpit, in the order in which they appear.
} .
R ® Run Title
i‘; The first line of output specifies the code version
i) number and the run date.
@
Jffj ® TInput Listing
;ig The run data are listed exactly as they appear in the
)
D vl

input file. The listing wmay be interrupted by messages from
material models being initialized (e.g., EXPLODE).

Historical Listing Requests

TR @

U The code automatically chooses the nodes and the cells
o, closest to the requested X-Y positions (using centroids for
\
1¢Q cells). Each variable-position combination results in a
53 history request. For each request the variable name is
)
1{2 printed, along with the computed node or cell number in
‘ “
oY
Qb
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parentheses. The X and Y location values given with each
request are the requested values, not the computed values.
JEDA and JEDT are used by the code to select the requested

variables.

Initial Cell tayout

The cells are listed by number, along with initial cell
quantities and information about position in the mesh. The
WNOD values specify the node numbers at the cell corners. Tﬁe
listed x and y values are those of the centroid of the cell.
The spatial location of a cell can also be determined by
looking up X and Y for its corner nodes in the node layout
(see below). Cell quantities (and nodal quantities as well)
are stored in an array called COM1l; for a given cell, LC is
the offset in COMl to the beginning of storage for that
cell. LC can be thought of as an alternate, unique cell
identifier. AMASS is the cell mass. TIts definition depends
on the problem symmetry as specified by NGEOM.

Initial Node Layout

The nodes are listed by number, along with initial nodal
quantities and information about position in the mesh. The
cells around each node are identified under WCELL by their LC
identifier. The corresponding cell numbers can be found by
locating the LC values in the cell layout. A node's LN number
is the offset in the COMl array to the beginning of storage
for that node. Adjacent nodes are listed under WNDND by node
number. Nodes along boundaries may have nonzero values in the

BC indicator column.

Edits
Every IPRINTth time step (see GENERAL in Section III
Detailed Description of Input Data Groups), the code outputs a

R S R AR
A 3 L3

ST A }
lc AR 3'6 .':‘,.A ,' l‘,.\ ]

printed record ("edit") of the condition of the model at that
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G

1L9\8

Al

Mt ‘
j: : time step. One complete edit is also printed at the very end
(J-?' of the run. The cell edit is printed first, then the node
.1&} edit. Since data values are output after the computation for
;ﬁ each cell or node, messages from special material models, the
#ﬁé rezoner, and the slide routines may interrupt edit listings.

o

)

NN The X and Y values printed in the cell edit are those of
‘.r‘\

::: the cell's centroid. The stress is listed in terms of the
e

:j: thermodynamic stresses S-XX, S-YY, S-ZZ, and TXYW, the

o

i pressure PW, and the artificial viscous stress QW. The
¢ } density, energy, and sound-speed-squared are also listed. H
A

q?, is an indicator whose interpretation is determined by the

ol .
-3ﬁ material model used.
Z!’J .
o The node edit prints out the position (X, Y) and velocity
N
b (XDNH, YDNH) of each node. The mass assigned to nodes is

K
i:;: computed by partitioning the mass of surrounding cells in a
o way that depends on prohlem geometry (NGEOM = 1 or 2) and

R, boundary status. For BC and BCN, see the Glossary of Output
:',:: Labels section below.

s —-

g

- L Summary

34' After each edit a summary of the system energies and
r~$ momenta are printed out. For this summary, the node positions
‘?i are at time t"+1 = TIME in the listing. Velocities are at
s time t“+1/2 = TIME-DT/2. Stress and internal energy are at
> time t" = TIME-DT.

v

::’ " ® Stop Message

e,

iy After each time step, the code checks several stop

L]

" criteria and terminates if one or more is met. The stop

‘0
:: message indicates the current values of both the criteria and
¢,
:~ the appropriate indicators. (The criteria are set in the

o GENERAL input data group.) This message is followed by an

]

KX~ edit of the final state of all cells and nodes.

M
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Scribes

The data requested in the HISTORY input group are saved
after each time step and printed out in "scribes” at the end
of the run. In addition to the requested quantities, the
problem time, the time step size DT, and the incremental
calculation time DELTIM are printed. The cell controlling
each time step is identified by its number LT, the minimum
dimension DX, and the crossing time DIW. The X-Y locations
that appear in the variable headings are those requested, not
those calculated by the code. Listed variable names may
differ from corresponding internal names. If the total number
of variables is more than will fit on a page, the historical
output is divided into strips; NSCRIB= 1 identifies the first

strip, NSCRIBE= 2 the second, and so on.

Two types of augmentation of the histories may be desirable:
addition of histories of global quantities and addition of
specially constructed, non-array quantities for cells. Global
quantities can be added (permanently, not under INPUT control)
by simple changes in HISTORY and CYCLE. For example, suppose
that we wish to add the total internal and kinetic energy
quantities TIE and TKE. These are computed just before the
nodal historical values are stored in the SJ array in CYCLE;
hence, they are available. Therefore, we add statements such
as the following at the end of HISTORY to increase the size of
NJED and to prepare titles for the new histories:

NJED = NJED + 2
JEDN(NJED) = 8H TIE

JEDN(NJED-1) = 8H TKE

Next we insert statements into CYCLE at CYCQ_ 853 such as
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o8
I
o SJ(NJED) = TIE
9‘.\-
s SJ(NJED-1) = TKE
{
_\J'
-~ If manv histories are being requested, we may also check that
'..,_-‘
-5 NJED is still within the dimensioned size for the history
N
,‘:; arrays.
»)
q}: Many special variables have already been added to the
oS
:;: historical listing requests, so one of these can be followed
P
AN to insert additional requests. First a name for the new
quantity should be added to the DATA statement for CARD 1in
R,
e HISTORY at line HIST _16. The first 48 are reserved for cell
el quantities and the next 32 for nodal quantities. Then the
-:ﬁ computation and storage of the new quantity is added to CYCLE
3 tn the vicinity of CYCL_ 596. The GO TO statement at CYCL 546
,Qﬁ should be revised to reflect the increase in the list.
)
3
o,
;#Q ° Notice of Termination of Execution
’ For normal runs, the penultimate message is a notice of
~‘ the total computation time (CPU) in seconds. The run may
§
::' actually use additional time for file closing and other
ﬁh“ overhead. The last message gives the cycle number at which
i the restart dump was written.
s
‘o
i: B. FError Messages
K
Many error messages are provided by C~HEMP to aid the user in
iaa correcting the input or in understanding other problems which the code
(3
kh has encountered. The input errors can generally be overcome by re-
e
:nd examining the input rules and the input stream being used. The messages
N §.
?4d show which labels were not interpretable. Other messages may indicate
3 L]
iy more basic problems such as poorly shaped cells, or possibly a
ﬂf; shortcoming in the code.
g
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AT
..:;
LN
LA \:
:NK:
RN HEMP
&) ‘\'
:“' One message {s given by HEMP to indicate the end of the job. 1If
.'n? NERROR is nonzero, then an error of some kind has occurred. Earlier J
Fo
jzﬁ messages from other routines should indicate the type of error.
BN
N
vfi) STOP CRITERIA - NMAX = 1000 STOPT = ... NERROR > 0 ...
Y CURRENT VALUES - N = ... NERROR = O
K~
.:;Q BFRACT3
SN
;q?; BFRACT3 is equipped to perform iterations and subcycling to obtain
B
TS a solution for the stress and damage. A counter IFRAG is incrmented in
e case BFRACT3 must reset to a smaller subcycle size or is having trouble
§
: ;: with convergence. As IFRAG is increased, more print commands are
‘-.
:gﬁi triggered. These print statements have the form:
‘!i- "BFRACT3 103 L, N = ...”
‘SjQ where the number following "BFRACT3" is a nearby statement number. If
A
'ﬁ“: convergence does not occur after 10 resets, the run is halted with the
e message:
FI LM
. “BFRACT3 540 L,N,NMULT,IH = ..."
)
g
! Qj Generally this error occurs when BFRACT3 has been given unrealistic sets
ﬁ§§4 of strains by the main program, or the storage of the special data
P R
';j“ arrays is incorrectly matched between the program and BFRACT3.
{}:} If a simple error occurs in BFRACT3, the message is:
Wl
3'5,{ *kx%kx% ERROR IN BFRACT3 *&kkk
K
L which is followed by a listing of the cell and cycle number, density and
ﬁ.é' time step. Negative density or time step will cause this error. This
o
bﬁa error message probably indicates that bad information has been provided
+ &1
Qk& by the calling program.
it
e &
?an' BLCAS3
¥
f\" An error message can occur from BLCAS3 if the NC values are not in
jg§. the correct relationship. The message has the form:
'Y
|,"
W
5 oy 166
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Py

" .I

.S

LA

Y
:E;Z; "NC12 MUST EXCEED NC23 FOR CASE 3 LAYOUT
AN
o NC12,NC23,NC14,NC43 = 12 14 15 10 STOP IN BLCAS3 AT 540"
S, An immediate stop occurs following this message.
*l
0t
;V' BLOCK
5. >

\ Two error messages are written in BLOCK; both pertain to incorrect
o input. The first indicates that BLOCK does not recognize a LABEL in the
Yy
W input:
’
,}' »
gg: 'GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD BLOCK
SHBR. BLOCK"

", “

"
‘3; where 'GARBAGE' is the unknown LABEL. The second message occurs if
‘:R BLOCX cannot match the material name to those provided:
‘o
b

- "ERROR, NO MATCH FOUND FOR MATERIAL GARBAGE IN DATA FOR BLOCK"
i:, where "GARBAGE' is the unknown name found in the BLOCK data. These
v

:.- errors are actually detected in FIND, but reported in BLOCK.

¢
3%
a BLUARP.
‘Sg The subroutine BLWARP reports problems it may have in fitting a
;tﬁ hyperbolic paraboloid to the input velocity data. The message is
oL,
1Y

>
') "ERROR IN VELOCITY INTERPOLATION AT 53 IN BLWARP"

Wiy Included with the message is a list of the X and Y coordinates of the

[
Ay block being examined. The computation stops with the message
o
g "STOP BLWARP 53"

[ ]

o listed with the system messages. Similar messages occur at locations 58
LN

ﬁﬁ: and 66 in BLWARP. To correct these problems, the input should be

£ Y

5&' examined first. 1If the input contains no errors, then the parameters
N

LN with the message (DISCRIMINANT, A, B, C of the parabolic fit) should be
:‘} studied to determine the problem.
3
by
v
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« BOUNDARY

The messages from BOUNDARY indicate errors in the input. The first
nessage states that the given label cannot be found in the BOUNDARY i
list.

"GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD BOUNDARY"

where 'GARBAGE' is the unidentified label. The second error message
indicates that more than one XCONST or YCONST value was provided for a

single boundary condition.
"TOO MANY XCONST OR YCONST VALUES, XON, YON = 2.00 1.00"

e ROUNDARY input data must be inserted after the BLOCK data so that
3JUNDARY can operate directly on the X, Y values. If the BOUNDARY data
is given first, the following message is provided, and the computation

halts:

“"BOUNDARY DATA CANNOT PRECEDE BLOCK DATA, LNODE = 0"

CAP

The CAP subroutine performs subcycling and iterations to attempt to
ohtain a solution for the current stress state. If necessary, it resets
to a smaller set of straln increments, counting these resets with an
index NCAP. When resetting occurs, printing is triggered at several

places. The messages have the form:
"CAP 390 ..."

where 390 is a nearby statement number. If the permitted number of

subcycles is exceeded, the following message is printed:
"STOP CALLED FOR NMAX = NINC = 30"

Then the program halts, with the message to the system: "STOP 3121."

CYCLE

Three error messages are written in CYCLE. The first signals a

nezative area in a quadrilateral:
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50y
r ;
= 1
et |
2 |
3?{:
AT "CYCLE LOC 210: L = ..."
&
(. \ where 210 is a nearby statement number. The coordinates of the cell are
; }q. listed with the message. This is a fatal error, so NMAX (the maximum
’:}: number of cycles permitted) is reset to N - 1 so that the calculation
-
ff\~ will halt in HEMP at the end of the current cycle.
')
.?{r The second message indicates that an error has occurred in the
1qt
; , storage of the historical variables. This text may indicate an error in
?;:g the historical name in the input, or that the values are out of order.
(W' ¥
U
"CYCLE 820: ERROR IN HISTORY, JEDT = TER"
:ﬁt where 'TER' is the unidentified label. This error causes an immediate
")
;::: halt, with the message on the system: "STOP 666".
[0 "
'Jff During the energy checking in CYCLE, a message may be printed to
o indicate that some unexpected change in energy has occurred:
\-}\
o
‘\;é "CYCLE 2420: ENERGY CHANGE, L, LCEL, LCAD = ..."
\""
.‘ﬂk This message is simply Informative, and does not cause a halt.
i
.“‘;- EDP
%é&: The subroutine EPP can print two messages associated with the input
0
WY of data. The first indicates that the labels in the input do not
o)'. correspond to those in 1its list:
o
;;f- "GARBAGE IS NOT A VALID SUBVALUY TYPE FOR THE CARD NTYPE
.
o READ IN EPP, LM3 = 6"
X
A Here "GARBAGE" is the unidentified input label, NTYPE is the first label
'b
.;}j in the list for EPP, and LM3 indicates that the unidentified label is
ﬂhﬁ the 6th in the input for EPP.
o
§£5 The second message complains that an inappropriate value for NTYPE
e ¥
b has been read:
A
gt t
qﬁ. "NTYPE TOO LARGE NTYPE = 5"
i
o
"N Only three types are provided for.
N
a
e
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o
s
SN
,.1
o~
I
AN ‘
-
Y EXPLODE
{
_1\ Two messages are provided from EXPLODE in case of errors in the
?
f: input. TIf the number of explosives exceeds 6, the calculation halts
‘E: with the message to the system "STOP EXP MATLS > 6. If EXPLODE cannot
“-; identify one of the input labels, the message given is:
t
?;0 "GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD NTYPE
AN
3¢Q READ IN EXPLODE, LM3 = 10"
I4
A With this second message, the calculation halts at the conclusion of the
. input.
s
o GENERAL
-
N
',f If GENERAL cannot identify a label provided to it in the input, it
NN gives the message:
no
:;: "GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD CLIN
aTs READ IN GENERAL"
N
!
- where 'GARBAGE' is the unidentified label. The program halts at the end
'ﬁ}: of the input.
L GENR
)
S GENR provides the usual message if it cannot identify a label
ii% presented to it in the input:
ANy
’;.'.' "GARBAGE IS NOT A VALID CARD TYPE-SUBR. GENR-"
e
‘ where 'GARBAGE' is the unidentified label. In addition, GENR checks the
ht
$‘ total number of input errors, and writes:
W,
Lﬁh "hkRkR
el 3 INPUT ERRORS FOUND BY GENR, PROGRAM HALTS
Rk ok k"
[y
E Then a STOP is called and this message is put on the system output:
"y "STOP 1/0 ERR IN GENR."
N
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5%
.-2'.,
1
g 1
S0
\l
o HISTORY
TN
N
;“k If HISTORY cannot identify one of the labels in the input stream,
hg it provides the message:
j:é "GARBAGE DOES NOT MATCH ANY HISTORICAL DESCRIPTOR"
‘i
f," where "GARBAGE” is the unidentified label. The input labels should be
L?‘ examined to verify that they are those intended, that they match those
§
f : in the DATA statement for CARD in HISTORY, and that they are unique.
Ao
l.. L]
el
R >, MATERTAL
o d If MATFRIAL cannot identify one of the labels in the input, it
d
*QB gives the message:
-~ .
:‘ "GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD MATERIAL”
- wirre "GARBAGE™ is the name of the unrecognized label.
o,
Y
o r POREQST
A‘)
Cd
,“ ‘ If the input to POREQST is unrecognized, it writes the following
b " message:
s
;;- "3ARBAGE 1S NOT A VALID SUBVALUE TYPE FOR THE CARD PORQST”
o
> -
L where 'GARBAGE' is the name of the unidentified label. A second message
;) can occur if the number of porous regions used exceeds 6:
A
" T<RRORCIN INPUT TO POREQST FOR MATERIAL 3, NREG = 8, ONLY 6
;_'::j REGIONS ARE PERMITTED"
e
If this error occurs, the pressure-volume curve for POREQST must be
LY
‘ﬁ; segmented in a different manner so that no more than 6 reglons are
@
:“v used. For this error, the program halts with the message "STOP POREQST
BT g
7 I
9.
: A third message can occur if the initial bulk modulus AK is too
‘,é small, so that the pressure will not follow the P-V curve:
:: "INPUT ERROR IN POROUS REGION 3, MODULUS IS NOT LARGE ENOUGH TO
e RFACH YIELD SURFACE."
§
o
"‘
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N ‘ In this case the calculation halts with the system message "STOP POREQST
{ 185",

~
o
- REZON

-
‘Wi The subroutine REZON provides messages if the input does not meet
"') its requirements:
i\.‘
* | ]

:5:- "GARBAGE IS NOT A VALID SUBVALUE TYPE FOR THE CARD REZON"

Yol

e where 'GARBAGE' is the unidentified label. If more than one XCONST or
M)

YCONST value occurs in a rezoning group, the message 1is:

:'.: “TOO MANY XCONST OR YCONST VALUES ON A LINE,
; 5&: ¥OV = 2.00 YON = 1.00 -REZON-"

i If the REZON data precedes the BLOCK data, the following message 1is
; written:
s

.:’. "REZONE DATA CANNOT PRECEDE BLOCK DATA, LNODE = O"

3

.‘j These errors can be corrected by following the input rules in Section
l- .
¢ Iv.
q"..

‘o._‘
c\-f.' REZONH

e Several errors may be detected in the REZONH routine and these will
.J halt the calculation with the system message "STOP 666". Along with

!
":. that message will be one of the following on the standard printed

.";: output:

‘ »

("

LV, "REZONH ERROR NODE 63 HAS BAD CONNECTION"

:.,- "REZONH ERROR TOO LITTLE CELL MASS..."

5

::f "REZONH ERROR NEW DENSITY < OLD DENSITY MIN IN ..."

g

-P.: "REZONH ERROR NEW DENSITY > OLD DENSITY MAX IN ..."
P "REZONH CONSERVATION ERROR..."

e

J' If one of these error messages occurs, the printout should be examined
:-}r to ascertain the natur: of the difficulty. The problem may be

::' circumvented by modifying the input to the REZON routine.

s

L}
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SPALST
The calculations of the stress state in SPALST often require
several iterations. TIf the number of iterations exceed 10, the
following message is printed:
"SPALST--ITER = 11, BT, FT = ..."
&
3 \ If the number of iterations exceeds 12, the subroutine ceases to
)
¥
\,,.‘ calculate, and simply returns, giving the message:
3 ¥y
L
e "--STOP IN SPALST, ITER = ..."
,.:;\ However, the subroutine does not actually stop the calculation.
~
L
NN
Lo
: N WALL
® Several error or cautionary messages are present in WALL but have
A
-sf.\ been commented out in the current version. They are labeled "WALL @
B o
:}: 2420" so that theyv can be located by statement number.
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- VI EXAMPLES

4+ W

-

‘: This section presents five examples of C-HEMP input. The emphasis
' is on input format and layout logic; the input for material models is
;:: not discussed in detail.

i

U

o

%ﬁ Example 1: Rod Penetrating A Plate, With Shear Banding

P The input for this problem appears in Figure 35. The purpose of
t the computation was to explore the role of shear banding during

N penetration of a 4340 steel rod fired normally into a plate-of rolled-
L homogeneous armor (RHA) at 800 m/s. This is a eylindrically symmetric
! problem in two dimensions. The mesh is shown in Figures 36 and 37. We
1{ suggest that the user start by making an initial run using the EP

Lod

material model for both penetrator and target.

: .

ala A

The first line of input is a title.

P, The free-field input begins with the GENERAL data group, although
;; it need not appear first. NGEOM=2 specifies cylindrical symmetry. The
a: run is to terminate after 600 calculational cycles or a problem time of
- 10'& seconds, whichever occurs first. As IPRINT is 600, one singel edit
g‘ of the node and cell variables will be printed at the end. NPLOT=100
& means that data for plotting the mesh will be generated every 100

s; cycles. 1In addition, PSCRIB=1 will cause certain variables (selected
t~ under the HISTORY data group) to be written to a file.

E The first material specified is that of the penetrator. The
i : abbreviation S4340 is used; it could be enclosed in single quotes

,3 ('S4340'), but need not, since it contains no embedded blanks. The

:: anti-hourglassing viscosity entered with the TSR label is required
.:, because of the large nonuniform distortion expected in the penetrator.
gf The code's default equation of state will be used to calculate the
ﬁk thermodynamic pressure, and the EPP model will be used to calculate the
h' 173
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il.
() BLOCK
i
o
AN SRID
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! BLOCK
LWy W
o
1 >,
v BOSNDARY
oo SLIDE
e
J
;T
o
e REZONE
tN,
".z REZONE
s REZO.E
P REZONE
X REZOwE
o REZONE
b HISTORY
%'
o)
b
L
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O
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fﬂf
W
i
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\
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R
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)
N
0.
bl
\‘.'
9..
1‘.:

DL 600 0, 1 Cu ) { SR “n CAY AT WX \ My
W e St h e T o M MRt DR e A SR N D

HEMP 2-D SHEAR3 TEST A20

IPRINT=600
CLIN=0.1
NGEOM=2
AMAT=54340
EQSTC=1.59E12
EQSTE=7.36E10
YC=1.03E10
TSR=0.10 1.0
ES=0. 3.E-2 1.

\Iﬂtsx=600
€QSQ=4.0
NPLOT=100
WEQ>=50
EySTD=5.17£12
EQSTG=1.69
MU=8,.19£11

YS=1.03E10 1.07E10 1.37E10

AMAT=RHA
EQSTC=1.59E12
EQSTE=7.36E10
YC=.68:10
TSR=0.05 1.0
ESC(16)=1.05E10
BFR = 14. 0.146

WEQS=50
EQSTU=5.17E12
EQSTG=1.69
MU=8.19£11

01 2 1.5 .07

.04 1.

L il ok Sagn s s dh 2 B a Bl ol a B il die bt Siabhla Rk i C K
.

(4340-->RHA PENETRATION)

STOPT=1.0LE~-v4
TRIQ=0.02
PSCRIB=1.
RHO=7,85
EQSTS5=5.17E13
EQSTH=0.25
WVaR=7

RHO=7 .85
EQSTS=5.17E13
EQSTH=0.25
WVAR=7

«577 2. 2. O 8. 0.

ES = 0. 0.02 0,07 0.12 0.17 0.27 0,47 1.3
FUC = 1. 1. 1. 1. 1. 1. 1.

-1u27
0.3175
aAMAT=54340

0.0

1.2
aMAT=RHA

0.0

3.81
AMAT=RHA

YCONST=0.

REZWT=1,.0

YAFECT=2,
YAFECT=2,

EN3=0

Xa= -1.27 0.0 0.0
Ya= 0.0 0.0 0.3175
NC12=10 NC23=10  XDNUT=800.EZ2
Xa= 0.0 0.635 0.635
YA= 0.0 0.0 102
NC12=10 NC23=20

Xa= 0.0 00635 0.635
YA= 1.2 1.2 3.81
NC12=10 NC23=26

NBCTYP=1 YAFECT=3.
VAL=0.0 NSL 122,123,124,125,126,127,128,129,130
FITNSL=0.0

NMS 111,112,113,114,115,116,117,118,119,120,121
IvIr=1 FilALL=0.

NFREQ=5 REZMIN=0,1
YCON3T=0.0 YAFECT=2.
XCONST=0,0 XAFECT=1.
XCONST=-1.27 XAFLCT=1.
XCONST=0.635 XAFECT=1.
YCONST=3.51 YAFLECT=2.

C0MC20 0.09 .15, 0.09 .21, 0.09 .27,

.09 .39,

0.0y .33,

0.09 .45, 0.09 .51

JA-314522-120

FIGURE 35 INPUT FOR ROD PENETRATION EXAMPLE
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FIGURE 37 CELL CONFIGURATION AFTER 8 us FOR ROD PENETRATION
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stress deviators. EPP combines elasticity, Mises plasticity, and a
workhardening curve. The input for the curve is a series of yield and
plastic strain coordinates. The first segment of the curve 1is linear;
subsequent segments are linear in log-log space. Note that the EPP

subkeyword does not start in column 1.

The second material specified, RHA, is that of the target. The
shear banding model SHEAR3 wiil be used to compute all stresses as well
as to calculate shear band damage. Most of the model parameters are in-
cluded in the model's BFR array. The yield-plastic strain curve entered
under ES and YS can be used with the EPP model in making a no-damage
initial run. SHEAR3 uses all the regular material properties: RHO,
EQSTC, EQSTD, EQSTS, EQSTG, EMELT, and MU. EMELT is input as ESC(16).

Tne first BLOCK data group specifies the layout for the penetrator.
The impa-: plane will be placed at X = 0. The XA and YA pairs specify
the X and Y positions of the block corners, starting from the lower left
and proceeding counterclockwise. Since CASE is omitted, the code
assumes the default, rectangular cells of uniform size. The mesh is to
have ten cells in the X-direction (NC12=10) and ten in the Y=direction
(NC23=10). Only one XDNOT is specified, so all the nodes have the same
initial X-velocity, the impact velocity. Omission of YDNOT makes the
initial Y-velocity identically zero. The AMAT material name S4340
matches the AMAT name in the first MATERIAL group exactly, as required.

The target mesh 1is specified in two data groups. The first is
introduced hy the keyword GRID bhecause a separate object 1s being
described, and a slide line will be used between the penetrator and the
target. The mesh will consist of a small high-resolution block under
the penetrator where intense deformation 1s expected, and a larger low-
resolution block for representing the target away from the impact

reglon. Rectangular cells are specified in both blocks.

Next comes the BOUNDARY data group for specifying the boundary
condition at the axis of symmetry. Simple control on Y along the axis
is desired, so NBCTYP=1 is used. The type of control, “equal to YBC,"
is specified with YAFECT=3. Being unspecified, YBC takes its default
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Y
>1' value, zero. Thus, the points on the boundary are required to stay on
;% the line Y = 0, with no constraint on X. The points to be affected by
i‘ this boundary condition are now specified. We can select the nodes
!: along Y = 0 by entering YCONST=0. finally, we note that YCONST and YBC
‘E have the same value (0.), as required.
L]
: Now we specify the slide line between the penetrator and the .
h' target. At the present time it is necessary to enter the slide nodes

. explicitly. (For determining the node numbers, see the section on SLIDE
:?’ in Section IV.) 1In the present case, the master nodes (NMS=. . .) are
. in the penetrator, and the slave nodes (NSL=. . .) are in the target.
hes Both sets of nodes are specified from the symmetry axis outward. Since,
;: in the ordering direction, the master nodes are on the left, IDIR must
is be set equal to +1.
g Use of the rezoner is quite helpful in this problem because of the
K- enormous distortions experienced by cells near the edge of the penetra-
té tion zone. The rezone rate, set by NFREQ=5, requires rezoning at cycles
f 6, 7, 8, 9, 11, 12, 13, 14, etc., with about one-quarter of the nodes
: being rezoned on each cycle. REZMIN=0.1 is the threshold for node
:3 movement. To prevent conflict with boundary conditions, one specifies
53 several constraints on the rezoner in a series of REZON data groups.
2; The first group, for example, preserves the axis of symmetry by pre-~
1. venting the rezoner from moving nodes on the X-axis (YCONST=0.) in the
fl, Y-direction (YAFECT). The REZON groups that follow protect the slide
%S line nodes, the back of the projectile, the back of the target, the edge
‘: of the target, and the boundary between the target blocks. These REZON
r groups are probably more than needed. The main requirement is to
?% eliminate rezoning at corners and at points along boundaries where the
Eﬁ cell sizes change.
:? The HISTORY data group specifies that the 20th cell variable in

- COMMON {s to be printed at every time step for cells centered near the

; X-Y points specified. The variable requested is the first one in
, SHEAR3's array CN; it happens to be the equivalent plastic strain. (The
rm' location of variables in special arrays 1s dependent on which material
{
it
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model is helng used.) Comparison of the X-Y pairs with the BLOCK speci-

g &

fications shows that the cells being monitored are at the front of the

target.

Example 2: Cold-On-Hot Symmetric Taylor Test

. This problem arose while we were checking whether a certain experi-
mental configuration would be useful in determining the constitutive
relations of hot 4340 steel. (It turned out to be insufficiently

i definitive for our purposes.) A cold rod of 4340 steel was to be

impacted at 457 m/s against a stationary rod identical to the first,

except that it was heated to several hundred degrees C. It was assumed

x K

a

’ that the temperature difference would mainly reduce the yield stress and

P
£ e |

rate of work-hardening. The calculation is performed in the center-of-

L P
L

mass reference frame. The input is listed in Figure 38, and the layout
is shown in Figure 39. Figure 40 shows the mesh at 1200 cycles.

N N WP i PPS

Again, there is a one-line title, followed by the GENERAL data

R i
L TN

group. The linear artificial viscosity coefficient is now specified to

provide a nondefault value. The two materials are identical except for

R

nondefault yield behavior. The TSR values give the hourglassing
viscosity coefficients. Although only the first eight characters of the

material names will be processed, extra characters have been appended

1"},"'

for legibility. Each rod will be represented by two submeshes, with

-

higher resolution near the impact plane where most of the deformation
will occur. The rods are to be separated by a slide line. The HISTORY
requests are given in paired groups that specify equivalent points in

‘. the two rods. The variables requested (Y, X, XD, etc.) are repeated for
clarity, though they need not have been.

Example 3: Contained Fragmenting Cylinder Test

4 In this example an explosive is detonated inside a cylinder of RHA
! steel to investigate its material properties at high strain rate. Shear
. banding is expected to be important in the RHA, so the shear-banding

8 model SHEAR3 is used. The test material is encased in a sleeve of 4140
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TAYLOR: COLD 4340ST => HOT, W/SLIDL, 4574/S

GENLRAL

MATERIAL

EP

MATZRIAL

EP

BLOCK

BLOCK

GRID

BLOCK

BOUNDARY

SuibL

HISTORY

A

,.
&t

OOOAORGAC U OO OISO
& L) ) gk
u,..:.;'fqg ,u”‘.t,f,ottli.:,»'?,..‘.,\:., WK

BELAE P

IPRINT=100 NMAX=1200 STUPT=5.0E~05
CLIN=0.1 CQSQ=4.0
NGEU:{=2 NPLOT=300 PSCRIB=1,

AMAT=COLD4340ST RHO=7,85

EQSTC=1.59E12  £QSTD=5.17E12  £QSTS=5.17£13
EQSTE=7.36E10 EQSTG=1.69 EQSTH=0,.25
TSxk=0,10 1.0

ES.O. 3.E-2 1.

YS=1.29:10 1.30E10 1.31E10

AMAT=HOT43405T RHO=7,85

EQSTC=1.59.12 EQoTu=5.17E12 LQ>TS=5.17L13
EQSTE=7.36E10 EQSTG=1.69 EQ3Td=0.25
ISR=0,10 1.0

ES‘O. 305’2 1.

YS=6.,45E09 6.50E09 6.55.09

XA= =4,445 -0.9525 -0.9525 -4.,445

YA= 0.0 0.0 0.47625 0.47625
NC12=15 NC23=5 R12=,90909 R23=1.0
AMAT=COLD4 340ST XDNQOT=22850.

Xa= -009525 0.0 000 -0-9525
Ya= 0.0 0.0 0.47625 0.47625

NC12=10 NC23=5
AMAT=COLD43405T XDNOT=22850.

Xa= 0.0 0.9525 0.9525 0.0
Ya= 0.0 0.0 0.47625 0.47625
NC12=10 NC23=5

AMAT=HUT4340ST  XDNOT=-22350.

Xa= 0.9525 4.445 4,445 0.9525
Ya= 0.0 0.0 0.47625 0.47625
NC12=15 NC23=5 Ri2=]1.1 R23=1.0
AMAT=HOT43405T  XDNOT=-22850.

NBCTYP=1 YAFECT=3. YCONST=0.

NSL 157,158,159,160,161,162

NM$ 151,152,153,154,155,156

IDIR=1

Y 0.001 .47625, 47625 .47625, .95 47625

Y -0.001 047625, -.47625 .47025, =.95 447625
X XD 4.445 0.

X XD =-4.445 0.

CuMC20 0,001 0,01, 0.001 .476

coMC20 -0.001 0.001, =-0.001 .476

JA-314522-121

FIGURE 38 INPUT FOR TAYLOR TEST EXAMPLE
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{ TAYLOR: COLD 4340ST => HOT, W/SLIDE. 457M/S

b1 !

RN
JLL LAYOUT

~
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SR HEMP (

L
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>
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NODE EDIT AT N= 1200 TIME=~ 2.503E-05 DATE=22-~-JUN-B4
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uh FIGURE 40 CELL CONFIGURATION AFTER 25 us FOR TAYLOR TEST
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steel to limit the amount of radial strain, but with a layer of PMMA in
between to allow some radial expansion. A lead outer shell acts as a
momentum trap. The explosive, PETN, is detonated from one end. The
amount of deformation suffered by the RHA depends on its axial position,
mainly because of the pressure gradient in the explosive gaseous
products. Therefore, the simulation requires accurate modeling of the
pressure in the gas. It has been found that a slide line must be
provided between the explosive and the test material to maintain
reasonable cell shapes and to represent the average motion in the gas;

the presence of a boundary layer in the gas 1is ignored.

The input for this problem is found in Figure 41, and the mesh is
shown in Figures 42 and 43. The data stream demonstrates some special
features of C-HEMP's free-field input scheme: the inclusion of comment
lines, and provision for fixed-format input. The SHEAR3 shearbanding
model is to be used for the RHA. The melt energy is passed through
ESC(16). A tabular equation of state is used for the explosive gases;
the label beginning with the characters "FIX" indicates that the
following lines (up to the next keyword) are to be read (and echoed) by
the EOSTAB subroutine, which has not been fitted with C-HEMP's free-
field input. Comment statements have been added. (They begin with the

characters "COM".)

Figure 44 shows pressure versus time for a cell that was initially
at X = 6.985 ¢m and Y = 1.14 cm. We note that the pressure goes higher
than the peak value in the EOSTAB specification. This is possible since
the ENSTAB routine extrapolates for points outside the interval.

Fxample 4: Steel-Propellant Impact

In this example a sphere of propellant is impacted from the side by
a cylindrical steel flyer. This is a simulation of an experiment in
which the object was to determine the conditions under which the propel-
lant might detonate. Because detonation is thought to be sensitive to
hoth fracturing and temperature, a fracture model was used. The mesh

shown in Figure 45 was chosen so that cells would be reasonably shaped
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HEMP 2-D SHEAR3 ROUTINE TEST W/ 434U FRAGMENTING ROUND

GENERAL IPRLNT=100 NMAX=800 STOPT=1.0E-04
CLIN=0.1 €QSQ=4.0
NGEOM=2 NPLOT=200 PSCKIB=1.
COM THE RHA I3 BEING TREATED WITH AN INITIAL ESTIMATZ OF THE SHEAR3

COM PARAMETERS. THEY MAY CAUSE TOO MUCH DAMAGE.
MATERIAL AMAT=RHA RHO=7 .85
EQSTC=1,59E12 EQSTD=5,17£12 EQSTS=5.17E13
EQSTE=7.36E10 EQSTG=1.:69 EQSTH=0.25
YC=.68E10 MU=8.19E+11 TSR=0.05 1.0
SHEAR3 BFR = 4. 0.146 001 02 1-5 007 oOk 1. 0577 2. 2. 0 8. Oo
7 ES = 0. 0,02 0.07 0,12 0.17 0,27 0.47 1.3
::. YS = 6.8E9 7.7E9 8.7E9 9.5E9 10.4E9 11.1E9 12.4E9 14.E9
o~ FNUC = 1. 1, 1. 1., 1. 1. 1.
o EN3
S MATERIAL AMAT=PETN RHO=1.0 EQSTG=1.45 WVAR=7
EXPLOLL QEXPL=3,013E10 DIST=0.5 XDET = 0.8
CoM THE TABULAR DATA FOR THE ISENTROPE 1S READ WITH FIXED
COM FORMAT 1IN EOSTAB.
EOSTAB FIXED FORMAT
IMAX = 13 DENSITY LOG
RHO,P = 1.043E4+00 4.557E+10 8.166E-01 2.523E+10 6.394E-01 1.437£+1)
5.007L=-01 8.417E+09 3,920E-01 5.063:+09 3,070E-01 3.127C+09
2.404E-01 1.981E4+09 1.882E-01 1.286Z+09 1.474E-01 8.52YE+08
1.154.-01 5.772:408 9.037:£-02 3.97BE+08 7,.,076,-02 2,785L+08
2,660E-02 7.506E+07
MATERIAL AMAT=PMAA RHO=1.18
EQSTC=8.94E10 EQSTD=4,.57E10 EQSTE=1,0E10
EQSTG=1.0 EQoTii=0.25 EQSTS=4,36E11
YC=1.03E8 MU=8.19E11
MATCRIAL AlaT=54140 RHU=7.85
EQSTC=1.,59E12  EQSTD=5.17E12  EQSTE=7.36E10
EQSTG=1.69 EQsTH=0.25 EQSTS=5.17:13
YC=6.0E09 MU=8.19E11
MATERIAL AMAT=LEAD RHO=1.14:01
EQSTC=5.01E1l  EQSTV=4.99E1l  EQSTE=9.16E09
EQSTG=2.20 EQSTH=0,25 EQoTS=2,02E12
BLOCK XA= 0.635 13.335 13,335 0.635
YA= O, 0. 2.28 2.28
NC12=40 NC23=6 AMAT=PETH
LXPLOLE
GRID XA= 0. 15024 15024 0-
Yao= 2028 2028 3.42 3-42
NC12=25 NC23=3 AMAT=RHA
CcOoM SLIDE 1 TO 2
BLOCK Xa= 0, 15.24 15.24 0.
Ya= 3.42 3.42 4,37 4.37
NC12=25 NC23=]1 AMAT=PMMA
) JA-314522-122
FIGURE 41 INPUT FOR PROBLEM 3: CONTAINED FRAGMENTING CYLINDER

TEST EXAMPLE '
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o BLOCK Xa= 0. 15.24 15.24 0.
| ‘:' YA= 4.37 4.37 10.10 10.16
o NC12=25 NC23=10 AMAT=354140
Kn BLUCK Xa= 0. 15.24 15.24 0.
{ YA=1U.16 10.16 12.7 12.7
T NC12=25 NC23=2 AMAT=LEAD
p BOUNDARY NBCTYP=1 YAFECT=3. YCONST=0.
e CoM  SLIDE LINE IS BETWLEN THE EXPLOSIVE AND KHA CYLINDER OUNLY.
::1 SLIDE NSL 7,14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119
™ NSL 126,133,140,147,154,161,168,175,182,189,196,203,210
- NSL 217,224,231,238,245,252,259,266,273,280,287
: VAL=0.0 NMS 288,292,296,300,304,308,312
k- NMS 316,320,324,328,332,336,340,344,348,352,356,360,364
5 NMS 368,372,376,380,384,388
"y IDIR=1
o HISTORY XD 0.79375 0.19, P 6.985 l.14, YD 0.3048 2.35125
SYY 6.985 2.35125, YD 6.985 2.35125, SYY 0. 2.8
o 2.0 2.8, 4.0 2.8, 6.0 2.8, 8.0 2.8 10.0 2.8 12.0 2.8
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gﬁ FIGURE 41 INPUT FOR PROBLEM 3: CONTAINED FRAGMENTING CYLINDER
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o TIME (sec x 10°3)

: HEMP 2-D SHEAR3 ROUTINE TEST W/ 4340 FRAGW

It JA-6423-15

Gy FIGURE 44 PRESSURE HISTORY FOR EXPLOSIVE INITIALLY AT x = 6.985 cm,
¥ y =235 INCYLINDER TEST EXAMPLE
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after impact. Because of the unusual layout, it was necessary to

" g e i

specify the X-Y positions of e&ery node in the propellant sub-block.

See Figure 46 for the input. For the steel impactor, the default

—rs

Mie-Gr;neisen equation of state and constant yield stress are used.
Anti-hourglassing viscosity is introduced through the TSR array. The
: propellant uses the BFRACT model (the subroutine name is BFRACT3).
Although only the first eight characters of material names are pro-
cessed, a long propellant name has been used for clarity.

' The BLOCK keywords have also been augmented with extra characters
for clarity. This points up a peculiarity of the input logic: only the

K first eight characters are processed, the rest of the characters are

' ignored. The layout for the impactor is elementary, but the circular

§ target must be specified one cell at a time. Note that the first target
cell is identified by the keyword GRID, because a new object is being

3 described. The axis of symmetry is specified in the BOUNDARY data

group. A slide line is provided between the impactor and the target.

A
a Figure 47 shows the mesh at 502 cycles. The run stopped here because of
3,
’ a cell size that became too small.
|
»
Example S5: Explosive Sheet Detonated Over A Surface
)
1 This example is a preliminary calculation for an experimental
designed to study the propagation of shock waves thorugh a porous
L}
s soil. The soil is overlaid by a square sheet of explosive that is

detonated from one edge (see Figure 48). The problem is three-
dimensional, but only a two-dimensional (plane strain) section is
simulated. This example features a running detonation, a slide line,
and blocks with variable cell dimensions.

. Figure 49 gives the input. The running detonation is specified
under the input for EXPLODE. The soil requires a porous model, and the
indicator WPOR must be set to unity so that the POREQST model will be
used in performing stress-strain calculations for the soil. 1In
addition, space for 15 extra variables is provided. A special Coulomd
friction parameter is provided by ESC(10), vhich has no general variable
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PROPELLANT IMPACTED BY STEEL

GENERAL IPRINI=100 NMaX=1000 STOPT=3,0E-04
CLIN=0.1 CQSQ=4.0
NGEO!:1=2 NPLOT=100 PSCRIB=]1.
MATERIAL AMAT=IMPACTOR RHO=7 .85
EQ3TC=1.5889:12 EQSTu=5.17E12 EQSTS=5,17E13
EQSTE=7.36E10 EQSTG=1,.69 EQsTH=0,25
YC=1.03E10 MU=8,188cll
TSR=0.10
MATERIAL AMAT=PROPELLANT RHO=]1.85
EQ3TC=5.666E10  cQSTD=3.913£11  EQSTs=1.817£12
EQSTE=1.00E10 EQSTG=1.0 EQSTH=0,25
YC=5.0E08 MU=1.244E10
BFRACT F1XcU FORMAT
BFR 1 -1.500E-02 1.280E+08 5,.200E-03 6.000E+07-5.000E+08-
1 .U00E+08 2.000t-02 (continuation of line above in AlO,
7E10.3 format)
BFR 2 1.000E+01 6.000E+00 3.300E-01 1.000E+00 2.000E~01 4.000E+00
INDS = 1 1 3
3LOCKSTEEL XA = O, 7.62 7.62 0. AMAT=IMPACTOR
YA = 0. 0. 7.62 7062 NClZ'S NC23-2
XuUNOT=2.0E4
GRID Xa = 7,62 8.,67833 8.80333 7.70883 AMAT=PROPELLANT
YA = O. 0. 1.05833 1.05833 NCl2=1 NC23=1

BLOK-01 NeLzel Ne23-1 Yar 8:67833 373681 1:319%0 1:803%

BLOCK=-02 NC12=1 NC23=1 Xa= 9.73667 10.79500 11.05333 9.97000
YA= 0.00000 0.00000 1,05833 1.05833
SLUCK=03 NC12=]1 NC23=1 XA=10.79500 11.85333 12.13667 11.05333
Ya= 0.00000 0.00000 1.05833 1.05833
BLOCK-04 :NCl2=1 NC23=1 Xa=11.85333 12.91167 13.25333 12.13667
Ya= 0.00000 0.,00000 1.05833 1.,05833
BLOCK=-05 UC12=1 {C23=1 XA=12,91167 13.97000 14.63667 13.25333
YA= 0,00000 0.00000 1.05833 1.05833
BLOCK=06 NC12=1 .iC23=1 XA=13.97000 15.02833 15.80333 14.63667
Ya= 0.U0000 0.00000 1.05833 1.05833
BLOCK-07 NCl2=1 NC23=]1 XA=15.02833 16.08667 17.14500 15.80333
Ya= 0.00000 0.00000 1 05833 1,05833
BLOCK~08 NC12=1 NC23=1 XA=16.08667 17.14500 18.20333 17.14500
Ya= 0.00000 0.,00000 1.05833 1.05833
BLOCK=09 NCl2=1 NC23=1 XA=17,14500 18.20333 20.23167 18.20333
Ya= 0.00000 0.00000 l, «05833 1.05833
BLOCK=-10 NC12=1 NC23=1 XA=18.20333 20,32000 20.29000 20.23167
YA= 0,00000 0,00000 0,61667 1.05833
BLOCK~11 NC12=1 NC23=1 XA= 7,70883 8.80333 9.10333 7.98317
Ya= 1.,05833 1.05833 2,11667 2.11667
BLOCK-12 NC12=1 NC23=]1 Xi= 8.,80333 9,97000 10.30333 9,.10333
YA= 1.05833 1.05833 2,11667 2.11667

JA-314522-124

FIGURE 46 INPUT FOR PROPELLANT IMPACT TEST EXAMPLE
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TR TRV - Ml i R

4 BLOCK-13 NC12=1 NC23=1 XA= 9.97000 11.05333 11.57000 10.30333

:;;! YA= 1.05833 1.05833 2.,11667 2.11667
o BLOCK-14 NC12=1 NC23=1 XA=11.05333 12.13667 12.72000 11.57000
Bty YA= 1.05833 1.05833 2.11667 2.11667
e BLOCK-15 NC12=1 NC23=1 XA=12.13667 13.25333 13.97000 12.72000
. YA= 1.05833 1.05833 2.11667 2.11667
Kt BLOCK-16 NC12=1 NC23=1 XA=13.25333 14.63667 15.47000 13.97000
Y YA= 1.05833 1.05833 2.11667 2.11l067

BLOCK=17 NC12=1 NC23=1 XaA=14.63667 15.80333 17.14500 15.47000
; Ya= 1.05833 1.05833 2,11667 2.11667
o BLOCK-18 NC12=1 NC23=1 XA=15,80333 17.14500 18.55334 17.14500
i YA= 1.,05833 1.05833 2.11667 2.116067

%)
3 MR PO ALY OO IS0 OUSOLKAK ANV
ADOCGROOO000 0 AOCEAT) 0 AOROAREN S OU IR IO i N e Lokl 'y ) )
O AR RN I N M IO AN 0‘?’2‘!’0 :‘\ .‘:‘-'("-’c‘:‘a‘:’.‘!’;‘th‘?‘4"‘}'5 ! "!. ?',“‘J.‘:‘“!‘!.@\"-"Q.“lg“..‘,l.“.,.'h.‘i.“l;'.l:":'.i»“l.l‘\',,qt'l\ e [AACLASN l‘-."g.'.~“'~.

oY BLOCK-19 NC12=1 NC23=1 XA=17.14500 18.20333 19.95667 18.55334
3:. YA= 1.05833 1.05833 2.11667 2.11667
0% BLOCK-20 NC12=1 NC23=1 Xa= 7,98317 9.10333 9.97000 8.67833
e YA= 2,11667 2.11667 3.51000 3.51000
e BLOCK-21 NC12=1 NC23=1 Xa= 9.10333 10.30333 11.35333 9.97000

. YA= 2,11667 2.11667 3.51000 3.51000
A BLOCK-22 NC12=1 NC23=1 XA=10,30333 11.57000 12.67000 11.35333
P Ya= 2.11667 2.11667 3.51000 3.51000
e BLOCK-23 NC12=1 NC23=1 XA=11.57000 12.72000 13.97000 12.67000
zégc Ya= 2.11667 2.11667 3.51000 3.51000

X BLOCK-24 NC12=1 NC23=1 XA=12,72000 13.97000 15.63667 13.97000
' YA= 2.11667 2.11667 3.51000 3.51000
Lotn BLOCK-25 NC12=1 NC23=1 XA=13.97000 15.47000 17.90333 15.63667

29 YA= 2,11667 2.11667 3.51000 3.51000
RS- BLOCK-26 NC12=1 NC23=1 XA=15.47000 17.14500 19.26167 17.90333
7L Ya= 2.11667 2.11667 3,51000 3,51000
L BLOCK-27 NC12=1 NC23=1 XA=17.14500 18.55334 19.63667 19.26167
. YA= 2.11667 2.11667 2.56500 3.51000
o BLOCK-28 NC12=1 NC23=1 XA=18.55334 19.95667 19.80667 19.63667
R YA= 2.11667 2.11667 2.50000 2.86500

a4 BLOCK-29 NC12=1 NC23=1 XA= 8.67833 9.97000 11,22000 9.73667
A YA= 3.51000 3.51000 4.73300 4.73300
e BLOCK-30 NC12=1 NC23=1 XA= 9.97000 11.35333 12,65333 11.22000
2 Ya= 3.51000 3.51000 4.73300 4.73300
o BLOCK-31 NC12=1 NC23=1 Xa=11.35333 12.67000 14.18677 12.65333
a0 Ya= 3,51000 3.51000 4.73300 4,73300
e BLOCK-32 NC12=1 NC23=1 XA=12.67000 13.97000 15.63667 14.18667
) YA= 3.51000 3.51000 4.73300 4.73300
Ay BLOCK-33 NC12=1 NC23=1 Xa=13.97000 15.63667 18.20333 15.63667
(N Ya= 3.51000 3.51000 4.73300 4.73300
ot BLOCK-34 NC12=1 NC23=1 XA=15.63667 17.90333 18.90167 18.20333
N Ya= 3.51000 3.51000 4.00000 4.73300
:?ﬁ BLOCK-35 NC12=1 NC23=1 XA=17,90333 19.26167 19.09500 18.90167
R Ya= 3.51000 3.51000 3.75000 4.00000

[ ]

~ ...;' JA-314522-125
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‘Hﬁ FIGURE 46 INPUT FOR PROPELLANT IMPACT TEST EXAMPLE
A {Continued)
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: BLOCK-36 NC12=1 NC23=1 XA= 9.73667 11.22000 12.45333 10.79500
i YA= 4.73300 4.73300 5.49917 5.49917
o BLOCK-37 NC12=1 NC23=1 XA=11.22000 12.65333 13.72000 12.45333
g : YA= 4.73300 4.73300 5.49917 5.49917
N BLOCK-38 NCl2=1 NC23=1 XA=12.65333 14.18667 15.30333 13.72000

YA= 4.73300 4.73300 5.49917 5.49917
e BLOCK-39 NC12=1 NC23=1 XA=14.18667 15.63667 17.14500 15.30333
el YA= 4.73300 4.73300 5.49917 5.49917
ik, BLOCK-40 NC12=1 NC23=1 XA=15.63667 18.20333 17.63667 17.14500
iy YA= 4.73300 4.73300 5.18433 5.49917
Bk BLOCK-41 NC12=1 NC23=1 XA=10.79500 12.45333 13.97000 12.30333
) YA= 5.49917 5.49917 6.35000 6.126067
o BLOCK-42 NC12=1 NC23=1 XA=12.45333 13.72000 15.02833 13.97000
Ay YA= 5.49917 5.49917 6.26167 6.35000
R BLOCK-43 NC12=1 NC23=1 XA=13.72000 15.30333 16.08667 15.02833
o - Ya= 5.49917 5.49917 5.98667 6.26167
ki BLOCK-44 NC12=1 NC23=1 XA=15.30333 17.14500 16.63667 16.08667
Ya= 5.49917 5.49917 5.76333 5.98667
0 BLOCK-45 NC12=1 NC23=1 XA=18.20333 20.23167 20.09667 19.95667
I YA= 1.05833 1.05833 1.66667 2.11667
Wi BOUNDARY NBCTYP=1 YAFECT=3. YCONST=0,
P SLIDL NSL 19,20,43,53,63,71,77
o NMS 16,17,18
- IDIx=1
o HISTORY P XD 7.67 0., 11.47 0.5292, 16.137 0.5292, 20.32 O.
;J'. 8.72 2.8, 11-97 208. 18080 205, 10097 500

fod 13.97 5.0, 17.137 5.0, 13.987 6.32 |
o, SXX SYY S.Z 14.8596 0.5292, 16.137 0.5292, 15.764 1.587 |
A7 YD 10.47 5.0, 12.97 2.8, 13.987 6.32 |
(X
)

A
R

JA-314522-126

INPUT FOR PROPELLANT (MPACT TEST EXAMPLE
{Concluded)

FIGURE 46
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Yol PROPELLANT IMPACTED BY STEEL

SRI HEMP CELL LAYOUT

4 NODE EDIT AT N= 502 TIME= 3.001E-04 DATE=16-MAY-84
3’ 1M =JUN~B4 PREPARED 8y SR
e JA-6423-17

)y FIGURE 47 CELL CONFIGURATION AFTER 300 us FOR PROPELLANT
IMPACT TEST EXAMPLE

Wy 196

L \ " L (% ] .
05 DA OO M S ) ! DAL .‘ o '| 5' PO AU NN ) 'r‘ ¥ R RS
Ralelfeat O I e N RN N N A RO R A KT R A AR R A N '

', .

. DAFULTOL R b POCPOLIU ML POLR S PRI OON ) USSC U ) L)
(%) ’ (3

1":h":ll!.i..3).‘?i.“‘ “,“f‘fu'i.a'ﬂfc".h." 0‘::-"&"‘ AT KN N X

1!
et

) IO IO X O 2 3 Y L,



TEPTTT WU TUTTWEW APTE T PR T
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" NODE EDIT AT N= 1 TIME= 1.000E—12 DATE=15-MAY-84
"1.0. . 11 =JUN-Be PREPARED B SR
o JA-6423-18

" - FIGURE 48 INITIAL CELL LAYOUT FOR EXPLOSIVE SHEET EXAMPLE
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¥
! EXPLOSIVE SHEET OVER SOIL TESTBED
A GENERAL IPRINT=100 NMAX=500 STUPT=2.E-3
CLIN=0.1 ¢QSQ=4 .0
NGEOM=1 NPLOT=100 PSCRIBE=1.
MATERIAL AMAT=EXPLOSIVE  RHO=1.13 EQSTG=1.305
EXPLODE  QEXPL=5.0E10 DI5T=.5 XVET= 0.
MATERIAL AMAT=YUMATESTBED RHOS=2.60 WPOR=1
EQSTC=4.00E11 £QSTD=0. EQSTE=8.80L10
EQSTG=1.17 EQSTH=0.25
RHO=1.825 YC=1.0E6
TSR=0.05,0.3
POREQST REOP=1.825 2.1978 2.35 2.53 3.305
E; COsg=lu. 20. 10. 10. 10.
1 %0 C].' ° 3 . 5 . 3 . 3 03
* Pl=} ,E? NREG=4 AK=1,.El1 HUP=2,.£10
YZcRU=1.E6
@ P2=6.0E8 1.49E9 8.75E9 9.E10
o DELP= -8.E7 =-1.4C8 =1.E8 O.
e BLOCK XA= 0. 0. 731. 731.
W Ya= 10, 0. 0. 10.
R NC12=4 NC23=150 AMAT=EXPLOSIVE
EXPLODE
= GRID Xa= 0. -250. =250, 0.
", YA= 0. 0. ~250. -250.
o R12=1.05 R23=1.05 R43=1.05 R14=1.05
o NC12=13 NC23=8 NC43=8 NCl4=13
& CASE=3 AMAT=YUMATESTBED
BLOCK Xa= 00 Q. 731. 731.
o Ya= 0. -250. -250. 0.
5 R12= 1.05 R23= 1, CASE=2
b NC12=13 NC23=73  AMAT=YUMATESTSED
o BLUCK Xa= 731. 731. 981. 981.
" Yas= 0. -250. =250, 0.
) R12= 1.05 R23=1.05 R43=1.05 R14=1,.05
o NC12=13 NC23=8 NC&3=8 NCl4=13
‘ CASE=3 AMAT=YUMATESTBLD
o8 SLIDE NMS 605,606,607,608,609,610,611,612,613,614,615,616,617,618
'4. NM5 619,620,621,622,0623,624,625,626,627,628,629,630,031,632
B NS 633,634,635,636,637,638,639,640,641,642,643,644,645,646
N:IS 647,648,649,650,651,652,653,654,655,656,657,658,659,660
5 NMS 661,662,663,664,665,666,667,668,669,670,671,672,673,674
35 NHS 675,676,677,678,679,680,681,682,683,684,685,680,087,658
s NAS 689,690,691,692,693,694,695,696,697,698,699,700,701,702 :
b ¥MS 703,704,705,706,707,708,709,710,711,712,713,714,715,716
i) NMS 717,718,719,720,721,722,723,724,725,726,727,728,729,730
o JA-314522-127 ]
"
i)
5& FIGURE 49 INPUT FOR EXPLOSIVE SHEET EXAMPLE
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z
o NMS 731,732,733,734,735,736,737,738,739,740,741,742,743,744
e NMS 745,746,747,748,749,750,751,752.,753,754,755

\zg NSL 873,856,841, szs 815 804,793,784, 777 770,765,760,756,890
X NSL 891,892,893,894,895,896,897,898,899.900,901,902,903,904
) NSL 905,906,907,908,909,910,911,912,913,914,915,916,917,918
- NSL 919,920,921,922,923,924,925,926,927,928,929,930,931,932 -
nol NSL 933,934,935,936,937,938,939,940,941,942,943,944,945,946
T NSL 947,948,949,950,951,952,953,954,955,956,957,958,959,960
54 NSL 961,962,1913,1917,1921,1927,1933,1941,1951,1961,1973,1985
" NSL 1999,2015,2031

:“ . IDIR=1

: HISTORY P 241.2,1.25 363.1,1.25 484.9,1.25 245.3,-7.057
it 365.5,~7.057 485.7,=7.057 245.3,-36.71 365.5,-36.71

R 485.7,-36.71 245.3,~69.41 365.5,-69.41 485.7,-69.41

):\ 245.3,-105.5 36505.-105.5 485.7.-105.5

3 XD,YD 245.3,-36.71 245.3,-69.41
[\
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bl assignment. A small anti-hourglassing viscosity is specified with the
3; TSR values. The EXPLODE label in the BLOCK specification for the explo-
sive causes the burn times to be initialized in the explosive cells.

The soil mesh consists of three blocks. 1In the second (middle) one, the
5:- cell dimension decreases with Y. In the first and third blocks (on the
ends), the cell dimensions vary along two edges of the block but not on
ﬁ" the other two; this causes the code to automatically set up larger cells
'QL» away from the high strain-rate region. Figure 50 shows the mesh at 500

i cycles.

OO
N

ey
s
[od

-

bt
e e ) ey

@ "

. e

)

o e

b, A8



P ) Ly

-

O EXPLOSIVE SHEET OVER SOIL TESTBED
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'\ A 11 —JUN—-B< PREPARED BY SR
b JA-6423-19

4 FIGURE S0 CELL CONFIGURATION AFTER 762 us FOR EXPLOSIVE
o SHEET EXAMPLE
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PROGRAM FLOW AND DESCRIPTION OF THE ROUTINES
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lv: A brief description of the flow of program control in C-HEMP is
i
i?% given here with a description of the routines. There are three stages
o
2%“ of execution in the code: 1initialization of the materials and the
)
ﬁﬁﬂ finite-difference grid, calculation of the wave propagation process, and
printing of the histories of variables at requested locations. The
&
\;é flow-chart in Figure 51 suggests this three-part structure.
;E& Here is a brief explanation of what is accomplished dnfing the
i three execution stages:
ﬁ“r ° Initialization. Subroutine GENR supervises reading the
ﬁ' : input and laying out the grid, and sets up the map of
1Lhe array storage. GENR may call any of the routines listed
: J below it for reading the input data and preparing the
P grid. For reading the material data, GENR calls
) MATERIAL, and MATERIAL may in turn call the constitutive
o models (EXPLODE to BFRACT3) to read their own input
}4' data. BLOCK defines the grid and assigns material to
1‘“ the cells. For explosives, BLOCK calls EXPLODE to
o initialize the detonation time in each cell.
Ly
) L] Calculation. Subroutine CYCLE manages the calculations

-
-

for each time step and calls the appropriate material
models. The basic wave propagation calculations of
position, velocity, energy and strain are handled within

X “{-’.

- ™.
ol
S

X CYCLE. The constitutive models are called to determine
Y stress quantities. The other subroutines are called by
e CYCLE to rezone the grid, treat boundary conditions, and
_rs. store data for plotting.
Ot
[N .
:gﬂ: ¢ Printing. Historical information stored during the
}b: computation 1is printed or written to external files
PO after the last computational cycle.
e -
: , The following is a list of all routines and COMMON blocks refer-
:i : enced in C-HEMP. Reference names are listed by function under the
..Sﬁ , following headings:
()
g
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A T“T

EE (1) Main running routiney and service routines

; (2) Layout and input routines
(3) Wave propagation routines

L (4) Material routines

) (5) COMMON blocks.

More information about each routine is given in the listings in Volume
11.

‘ Main Running Routines and Service Routines

DATE -- Not part of C-HEMP; system routine that returns run date
% EDIT -- Prints historical information stored during computation
GENR — Coordinates initialization
HEMP -- The main program
. RESTAR; -- Handles restart of a run

,; SECOND -- Not part of C-HEMP; system routine that returns elapsed
Q CPU time in seconds

SUMMARY =-- Prints out sums of energies and momenta.

) Layout and Input Routines

BLCAS2 —— Part of BLOCK, lays out a block with varying-size cells
W, BLCAS3 -- Part of BLOCK, lays out a block with varying-size cells
# BLCIRC — Part of BLOCK, lays out a circle
BLELLIP -- Part of BLOCK, lays out an ellipse (planned)
BLOCK — Lays out a block of cells

BLWARP -- Part of BLOCK, lays out velocities when there is a
variation of velocity over a block

A\ BOUNDARY —— Initializes bdoundary conditions

K, EXTRA -- Input extra variables to special material routines (not
i fmplemented)

‘
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Oy FIND — Locates a name in a list

@ GENERAL -- Input general running data
HISTORY -- Input historical listing requests
MATERIAL -- Input material properties data

- ORDER ~- Numbers nodes, eliminates redundant nodes, initializes
contiguity arrays (WCELL, WNOD, WNDND)

POP -- Reads card images, identifies label and data fields

REZON -- Input data for the rezoner.

Wave Propagation Routines

¥
:
:

é CFORCE -- Computes forces on nodes

2;, CYCLE —- Handles all the switching and logic for propagation over a
‘~? single time step and stores higtorical data

E:,; DTQUAD -- Calculates time step

;ﬁ INSEC — Part of REZONH

. OPENANG —- Auxiliary to RSQUAD

Eg; PLOTT -- Produces file of edit data for plotting

1y 4

sg% REZONH -- Performs rezone calculations

'i RSQUAD — Reduces a quadrilateral to a triangle when the element
;Jh configuration is approaching inversion

A RSQUAD2 -- Auxiliary to RSQUAD

‘ RSQUAD3 —- Auxiliary to RSQUAD

?33 SLIDE — Computations for slide lines

i¢; TSTEP -- Calculates time step; auxiliary to the rezone routine
ggﬁ . TRAPEZ — Part of REZONH

o

'sﬁz VQUAD -- Calculates volume of a quadrilateral

Ea: WALL -- Computations for wall boundary conditions.

o

o
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:n Material Routines
)
1-1 BFRACT3 — Brittle fracture
o CAPl -- Cap model for porous material
W
ﬁs CAPPR -- Part of CAPl, calculates pressure in solid mateial
h,
A DFRACT -- Dynamic ductile fracture model
{
;ﬁﬂ DFRACTS -—— Static ductile fracture model
D)
33: EOSTAB -- Tabular equation of state (used with EXPLODE)
(o
U
' EPP — Model of elastic and Mises plastic behavior with work
hardening
sél
oy EQST — Part of POREQST, computes pressure of solid
t
ﬁa EXPLODE —— Detonation model
e FMELT -- Thermal softening model (not implemented)
:gf POREQST -- Porous equation of state
f, ’
'l
. REBAR -- Model for composite material (not implemented)
¥
. RESOLV -- Part of SHEAR4, resolves stresses on damage planes
v,
A
2 SHEAR3 — Shear band model |
g™
=y 1
o SHTAR4 -~ Shear band model
¥ i
‘) SPALST — Part of BFRACT3, computes stresses during yielding in the ‘
W presence of a free surface
\3
‘ 1
Y SURF -- Converts volume damage distribution to surface damage i
‘ distribution for SHEAR4 and BFRACT3. ‘
M : !
‘(‘Q‘ .
‘o COMMON Blocks
) |
;ﬁ Many of the COMMON blocks are located in separate COMMON decks.
o
o These decks are listed in parentheses.
E {
K A001 (HCOM1l) -- Cell and node pointers
N A002 (HCOM1) -- Cell and node variables
)
%_ A003 (HGEN) -- General running parameters
]
i-' A004 (HCOM2) -- Material pointers and material properties
o
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A00S (HBOUND) — Boundary condition arrays
BOUNDL (HBOUND) -- Boundary condition arrays
BOUNDR (HBOUND) — Boundary condition arrays
CAPOR -- Communication between CAP1l and CAPPR

CONNEC -- Local array in REZONH

FRAGM -- Used for calculation of fragment distribution in SHEAR3
and CYCLE

IS0 -- Isobar storage indicator RISBAR (communicates between
GENERAL and CYCLE)

NSCRB (HSCRB) —— History and title arrays

POR -- Local common in POREQST

PSYCHL -- Local common in CYCLE for organizing stress quantities
REST -- Used in the restart routine

RSL — Passes quantities between SHEAR4 and RESOLV (listed iwth
SHEARS)

SHR3 —-- Local common SHEAR3
SHRIN -- Local common in SHEAR4
TPL -- TPLOT.

Files Used in C-HEMP

Besides the usual input and output files, several other files are

used in C-HEMP. These files and thelr uses are given in Table A.l.
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AN Table A.l. FILES USED IN C-HEMP
e

O File Number Name Use

)

"oV

AN 4 : Storage for historical variables
R to be printed and plotted at the
'qj end of the calculation.

A

23ﬂ 5 INPUT Normal input file, also used for
:ﬁﬂ screen input to HEMPGRID.

l:|

T 6 10UT Normal output file.

Koy 7 File used for stopping C-HEMP. To

-

" stop the calculation manually

-y during a run, write 'STOP HMP'
\ on file 7.

W
A".A
9 Restart file read in RESTART

e to continue a calculation.
hid
Ro».
lyﬁ- 10 Restart file written during
o a calculation.
+99"2%

] 13 File used in POP, FIND and HISTORY
o for decoding the input stream.
‘o
%m' 17 Input file for HEMPGRID.

0) »
W 19 File containing node positions and

) pressure at nodes for grid plots
iy and contour plots.
oy )

)

iy 20 File containing fragmentation data
Yy generated in SHEAR4 and listed in
LA

l"d CYCLE

J:'.',; 66 File used in HEMPGRID for output.
[ 3

W

o0

e

i

x A

e

K
e
‘::'t
'.l‘
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e APPENDIX B

INSERTION PROCEDURE FOR MATERIAL CONSTITUTIVE RELATIONS
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b
:” As subroutines are developed for describing the constitutive
;j relations of materials, they can be added to C-HEMP for performing wave
v
J 3 propagation calculations. This appendix describes the procedure for
i‘ﬁ inserting material model subroutines and provides a sample case.
o A wave propagation code normally has four main categories of
'ﬁ: operations: reading the input data, initializing a finite difference
V‘.
;. grid, performing calculations for each time increment at each grid
Kl point, "and printing the computed information. A material model
& subroutine may be involved in all or some of these operations. Call
L]
::- statements must be provided in C~HEMP at appropriate locations to accom—
SN
t$ plish these tasks. Also the new subroutine should be provided with
f" separate sections for each operation and an indicator to show which
~¥ operation to perform. For example, in SHEAR4 the formal parameter NCALL
5 indicates the operation required, as follows:
13
-ﬁ: NCALL = 0 Initialize the routine and read data for one material
1 Read data for one material
f* 2 Calculate stresses and damage
': 3 Calculate stresses and damage, and print results
é: 4 Print results only.
X
e The calls for NCALL = 0 and 1 are in MATERIAL, the initializing routine
X
gz for material models. For NCALL = 2 and 3, the call statement is in
!
;g CYCLE. Other calling strategles are also possible. For example, DFRACT
W\
o, (a model for high-rate ductile fracture) is {nitialized on the first
H call from CYCLE; there are no other calls. EXPLODE (a subroutine to
4
b represent detonation of explosives) is called from MATERIAL to read data
v
:3 and then called from BLOCK for each cell during the layout to initialize
:5 array variables. DNuring propagation calculations, EXPLODE is called by
b CYCLE.
4
o 217
Jod
J
\"
7
A )

" ol Wy Wy A LR ORIy T, o, —_u e
.‘. ) '\") AL, :o. L, ,:'o.l.l..l:: ::.: e, lk :‘. ‘! “.,‘l‘.‘ .": o::'.. ﬁ“:"': .*'@ ),

“§ ol .!.l.‘.l. ASA AN AL AN AN oL A, ‘.“l‘. ".I



LN

=
')
L 0."4.‘ o

';':'r'
Ly

Cae
«

WS

v

-

.l.u(
LI

»
.

’

.I.'v"l _.; T,

-,

23\ WA

\f’:'\v"
i N R R

v
=
]

i : i
AL gl F
AR

At the point of insertion of each call statement, four elements are
provided.
(1) The appropriate branching statements are needed to
switch to the new model when it is required. For
SHEAR4, it was decided to treat the model as a fracture
routine and designate it by WFR(M) = 4. Then the

available branching statements in MATERIAL and CYCLE
were amplified to include one more branch.

(2) Variables in C-HEMP must be initialized, calibrated, or
given sign changes to match the dimensions and signs
appropriate to the new subroutine.

(3) The call statement is provided.

(4) Some variables may need to be reset following the
calculations in the routine. Then a jump is provided to
the appropriate section of CYCLE or MATERIAL to continue
the calculation.
Ttems (2) and (4) are discussed further below following introduction of

a call statement.

A sample call statement for SHEAR4 is listed here as it appears in
CYCL®E (the same call can be used in MATERIAL):

CALL SHEAR4, (NCALL, IN, MAT, L, N, STRESS, DEFTOT, TAU, DW, D(LM),
DT, EW, E(LM), EP, ESC(M), COM1(LM+19), ENVAR, LABEL, RLABEL,
JPOSN, JMULT, NUM, IERR, LM3)

Because SHEAR4 represents a fairly complex case, this call statement

will be discussed in detail.

The initialization of NCALL for use in MATERIAL was described
above. For CYCLE, NCALL (LS is the name used in CYCLE) is infitialized
just before the call statement. NCALL i{s set to 2 normally, but it is
set to 3 on cycles when an edit listing will occur. The parameter 1IN is
the file containing input data. Normally IN is 5. MAT is the material
number. The coordinate number L indicates the cell being treated; it is
used for printout only. N 1is the cycle number. STRESS 1is an array
containing five stress quantities: G;x’ o;y, o;z, d;y and P. DEFTOT is

the deformatfon increment array: € , € , € , € -a, € + a, where
XX yy zz' Xy xy
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o
e a is material rotation, positive counterclockwise. SHEAR4 expects the

W
" stresses and strains to be positive in tension and pressure to be

positive in compression, so no sign changes are required to prepare the

stress and strain quantities. If necessary, sign and magnitude changes
can he made in the stresses just preceding the call statement. The

current and previous density and energy values are DW, D(LM), EW, and

—

E(LM). The standard material properties are provided in the ESC array;

o~ ERORI

these quantities are defined in the section of input for the MATERIAL

‘n‘* routine. ESC is a one-dimensional array, with the index M being the
3“; starting location for properties of material number MAT. Unless
otherwise specified, for MAT = 1, M = 1; for MAT = 2, M = 51; for MAT =

fﬁ 3, M = 101; etc. All the cell quantities are stored in a single large
o

Y array called COMl. The particular locations assigned to cell L being at

B ™

’;-.' LM = LVAR(L). For example, D(LM), E(LM), and the STRESS array are all

contained in the COM1 array but are identified separately for clarity.

’ff SHEAR4 requires a large number of additional variables for each cell.

: These extra variables are provided in the COMl array, starting at

& COML(LM+19).

£

f)ﬁ following insertion of a new material model, it is a good plan to
9

,:n run a simple problem with frequent edits to determine whether the

"~

:{' routine is performing satisfactorily.
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APPENDIX C

GLOSSARY OF TERMS IN C-HEMP
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AN
.f’
2
Ko
LAY
e
(4%
W
3
v
)
:f? All physical quantities for the terms listed below are in cgs
i Nj,c units.
ol )
¢ »j A Cell area, cm“. Input label to obtain the HISTORY of an
R, area.
o AM Mass assigned to a nodal point, g or g/cm.
o
e
»'iq AMASS Total cell mass. For NGEOM = 1 (plane-strain, two-
Qxb dimensional), a cell has unit thickness. For NGEOM = 2
3iq . (axisymmetric), the mass is that of the entire toroidal
‘ volume represented by the cell. Units are g or g/cm.
i
th AMAT The name of a material (input), alphanumeric.
=
_;{: AREA Lagel for area of the cell in the plane of the layout,
"“ cm
}} } BC A packed houndary condition indicator. Boundary
%%' conditions are sequenced as they are encountered in the
5 input; BC equals the sequence number + O.1*XAFECT +
%_}j 0.01*YAFECT, where XAFECT and YAFECT are the constraints
W on X and Y.
J

The sequence number for a simple boundary condition or a
‘o wall is a counter N representing the order of the
input. Hence, the first boundary condition request might

;J“: lead to a BC value of 1.02, and a second condition might
Mﬁ' lead to BC = 2.11. For nodes on a slide line, the
® sequence number provides two bits of information:
RIW whether the node is a master or slave, and to which slide
ﬁ? line it belongs. For master nodes, the sequence number
e is 20N - 10; and for slaves, it is 20N; where N is the
ﬁ& order in which the slide line is 1listed in the input.
Uy Therefore, for slide lines the BC numbers are 10.00,
9. . 30.00, etc. for master nodes; and 20.00, 40.00 etc. for
S8 slaves.

.
\‘5 BCN An index used in slide-line calculations to designate
Tl which slave node is adjacent to a master node, and vice
%b‘ versa. BCN is the index I of the nearest-neighbor node

A A
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A
\*
j4
W
)
\::~
I\ *
o in the NSL(I,N) or NMS(I,N) array (for slave or master
Ay nodes, respectively). Used in SLIDE.
H) BETT Ratio of the number of fragments to the number of cracks,
o used in BFRACT3 (input).
>»
LS
o
#t BFR An array of parameters for the brittle fracture routine
W, BFRACT3 (input), various units.
v )
ﬁ“;i BFRACT3  Subroutine containing a nucleation-and-growth material
Yy model describing high-rate brittle fracture.
l-\:
::: BLCAS?2 Subroutine (associated with BLOCK) for laying out the
e cells in a block with varying cell sizes.
< BLCAS3 Subroutine (associated with BLOCK) for laying out the
ﬂi cells in a block in which numbers and sizes of cells
o vary.
N
i X BLCIRC Subroutine (associated with BLOCK) for laying out
circles, arcs, and sectors.
. BLOCK Subroutine and Keyword for heading the description of the
-ﬁj cell layout for each block of cells (input).
e BLWARP Subroutine (associated with BLOCK) for initializing a
velocity which varies over a block.
A
: :ﬁ BOUNDARY Subroutine and Keyword for heading the description of the
3;3 houndary conditions (input).
Sy
b, CALTIM Total elapsed CPU time for the calculation.
)
g CAP1 Subroutine containing a cap plasticity model for
describing a porous material.
™, CAPPR Subroutine for computing the solid pressure for CAPl.
' CASE Designator for the layout procedure requested during the
5&- input. CASE = 1 makes all the cells in the block the
.JJ same. 2 gives varying cell sizes. 3 provides varying
:Hﬁ cell sizes and numbers. &4 makes circles or arches.
oy
ﬁ' CELL Label for cell number.
Q.
L~ . CFORCE Subroutine for computing the forces on the nodes.
;;2 CINT The cohesion C. in the friction resistance to sliding of
‘f: a slide line (?nput), dyn/cm
5"y
b
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Ly
a
S
)
q% CIRCLE Designator for CASE 4 for layout of a block of cells as a
b circle, arch, or sector.
K\~ CLIN Linear artificial viscosity coefficient. (See Section
‘ Q A IT1.E). An input parameter with the default value of
N ;3{ 0.05.
Y
D)
:&« COMC Label used to indicate cell variables not listed by name,
- but available in the COMl array: input for HISTORYcal
oS listings.
o
; Ca
);j COMN Label used to indicate node variables not listed by name,
ﬁy but available in the COMl array: input for HISTORYcal
WY listings. A
gy €NSsQ Quadratic artificial viscosity coefficient. (see Section
wed I1.E). An input parameter with the default value of 4.
. CYCLE Subroutine for controlling all calculations for a time
T step. Specifically treats strain, time step, and
boundary calculations, and calls stress-strain models,
S REZONE and SLIDE routines.
SN
oo
ol D Density, g/cm3. Input label to obtain the HISTORY of a
_?j-'_. density.
‘(_a
DATE System routine that returns the date of the calculation.
o
N NDELTIM Incremental computational time for each cycle.
k'f NENSTTY Label for initial cell density, g/cm3.
‘ol
R AR
) DET Detonation velocity, may be read in or computed by
$y¢ EXPLODF, cm/sec.
LT
)
‘ﬁgf DEXX, Components of the strain increment tensor. Input label
o\
o NDEYY, to obtain the HISTORY of a strain increment.
ot NEZZ
A 227,
DEXY
B
uﬂ DFRACT Subroutine containing a nucleation-and-growth material
:gw model for high-rate ductile fracture.
0."
b{ DFRACTS  Subroutine containing a nucleation-and-growth material
. . model for quasi-static ductile fracture.
ol
’t; DIST Number of cells over which the detonation front is
::? spread. A zero value indicates a constant-volume
oo explosion (input).
)
' DT Current time increment, sec.
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;: DMIN An input parameter requesting a minimum time step for all
{ cells. For a nonzero value, if the natural time step

M drops below DTMIN, the stresses and time step are no

2; longer computed for the cell.
")
::‘ DTQUAD A routine for computing the minimum crossing time for a
O quadrilateral. )
i

Y DTSQM Square of the time step of the cell with the smallest

N time step, sec®. Used in CYCLE.
" 4
i’% DTW A preliminary time-step estimate for the next cycle, sec.
»
Rix

oW Current cell density, g/cma. Used in CYCLE and in

~, material models.
-~
o nxY Minimum cell dimension of the cell governing the time

:.1 step, cm.

o
)

k> Specific internal energy, erg/g. Input label to obtain

M the HISTORY of an energy.

&

Y

Pl
i:} EDIT Subroutine that prints historical information stored
o™ during the computation.
!~.
’ EMELT Melt energy for a material (input), erg/g.

f EN13, Labels used with SHEAR3 and SHEAR4 to indicate the end of
9y END the data for the model.

'

W ENSTAB Subroutine containing a tabular equation of state

) (pressure-volume relation). Also, a Keyword for use of a
\ tabular equation of state.

N
Ny RP, EPP Subroutine contaiaing an elastic-plastic model for the
i deviator stress.
W

® EPS Plastic strain. Input label for obtaining HISTORY of

s plastic strain in a cell.

f? EQST Subroutine containing the Mie-Grueneisen equation of
AL state for a material undergoing compression.
H EQSTA Parameter used in the PUFF expansion equation of state, y
pq‘ not currently implemented in C-HEMP.
H

G
k EQSTC Bulk modulus for a material, (input), dyn/cmz.
)
0
3
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EQSTD,
EQSTS

EQSTF.
EQSTG

EQSTN

EQSTV

ES,
EST

EW

EXPLODE

EXX, EYY,

EZ7,
EXY

FIND

FMELT

FNUC

FX, FY

GAMMA

GENERAL

GENR

Coefficients of the quadratic and cubic terms in
compressive strain for the series giving the pressure
Hugoniot (input), dyn/cm*.

Sublimation energy for a material (input), erg/g.
Grueneisen ratio for a material (input).

Parameter used in the PUFF expansion equation of state,
not currently implemented in C-HEMP.

Parameter used in the PUFF expansion equation of state,
not currently implemented in C-HEMP.

Array containing a series of strain values to define the
work—hardening curve for the EPP, SHEAR3, and SHEAR4
models (input).

The coefficient of viscosity Av used to compgte a shear
stress on the slide line (input), dyn-sec/cm”.

Current cell energy, erg/g. Used in CYCLE and in
MATERIAL models. :

Subroutine containing constant-volume and running-
detonation treatments for explosives.

Cumulative strains. Input labels for obtaining the
HISTORY of a strain.
Subroutine for locating a name in a list.

Function containing a thermal softening model (not
implemented).

An array indicating whether each shear plane in the
SHEAR3 and SHEAR4 models are to be treated as active
(input).

X and Y components of force assigned to a nodal point,
dyn or dyn/cm. Input labels to obtain the HISTROY of the
nodal force.

Ratio of the fragment radius to the crack radius, used in
BFRACT3 (input).

Subroutine, and Keyword for heading the overall control
parameters for

Subroutine which coordinates the initialization process.
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23
ALY
.\h 1
3:' GRID Keyword for heading the description of the cell layout
! for a block of cells which are separated from the
s previous cells (input).
]
e G2 Twice the shear modulus, dyn/cm’
AN .
:ﬁéi H Indicator whose meaning is determined by the material
v ) model used. For example, in CAPl, H = 5 means elastic
}\} response, 6 means ylelding on the Mohr—Coulomb curve, 7
. :y is yielding on the cap curve, 8 is yielding on both
) ﬂ§ curves, 9 is consolidated and 10 denotes separation.
S
R
Y HEMP The main program
R4EN HISTORY Subroutine, and Keyword heading the description of the
té: requests for historical listings of variables from a
.\i\ calculation (input).
i1 "}.'_7
"
} o IDIR Direction indicator associated with wall boundaries and
slide lines (input).
N .
?}; INITGRO Indicator for determining the growth process in BFRACT3
44 (input).
L)
Y INITNUC Indicator for determining the nucleation process in
’ BFRACT3 (input).
s‘.{l‘
. : INITPRI Indicator for controlling the special printing from the
$ { BFRACT3 routine (input).
4
14
POc? INSEC A routine used with REZONE.
)
Py INT-ENRG Total internal energy, in SUMMARY.
;-'.
‘i% IPRINT Cell and node edits are printed every IPRINT cycles.
s This input parameter has the default value of 10.
R
.. ISOBAR An input indicator requesting that cell parameters be
o written to File 19 during the calculation, in preparation
.a' for contour plots to be constructed by a post-processor
:.:.., (ISOPLOT).
et
}ﬁﬁ JEDA For historical requests, indicates that internal 1list
' where a particular variable may be found. List 1 is for
M stored array variables, lists 2 and 3 for unstored cell
\j quantities, list 4 for stored nodal quantities and list 5
’2? for unstored nodal quantities. Unstored quantities are
?\d recalculated every time step. Written in HISTORY. !
~ .
J]
o
‘.'0
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For historical requests, the cell or node number assigned
to the requested position. Written in HISTORY.

For historical requests, the name of the requested
quantity. Written in HISTORY.

For historical requests, indicates position of a variable
in its internal list (see JEDA). Written in HISTORY.

Total kinetic energy, in SUMMARY.

Starting location in COM1l array of storage space for a
cell's variables.

Starting location in COM1l array of storage space for a
node's variables.

The number of the cell controlling the time step. Used
in CYCLE.

A pointer to a node's storage of velocity inforwation.
Label for a node mass, in EDIT.

Label for total mass, in SUMMARY.

Subroutine, and Keyword for heading the material
properties information (input), and material name in
SUMMARY.

Array containing material names.

Shear modulus for a material, (input), dyn/cmzo
Computational cycle number, set in HEMP.

Boundary condition type indicator (input). Type 1 gives
simple conditions along X and Y directions; 2 maintains
the initial velocities on the affected nodes; and 3
through 6 provide for more complex sliding and sticking

conditions on walls of general shape.

The number of cells between corner nodes i and j in the
layout of a block of cells (input).

Number of a node for which rezoning is to be restricted
in both the X and Y directions (input).

Range of nodes for which rezoning is to be restricted in
both the X and Y directions (input).
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NERRO

NFREO

NGEOM

NMS

NODE

NPLOT
PLOT

NR OF

QUAD
RESE

NR OF

REZONES relocation of one node to a new position.

NSCRI

NSIZ

NSL

NSLID

NXCONST Number of node for which rezoning is to be restricted
NYCONST in the X (or Y) direction (input).

OPENANG A subroutine used with RSQUAD for determining the opening

ORDER Subroutine for organizing the contiguity arrays:

o«
N

R Error count.
The cycle counter controlling frequency of rezoning
(input).
Geometry indicator for the calculation: 1 for plane
strain,a nd 2 for axisymmetry. The default is 1 (input).
Requested maximum number of cycles for the calculation
(input).
Array of node numbers on the master side of a slide line
(input).
Label for node number.
Plot data are written to File 16 every NPLOT cycles by
T on calls from CYCLE (input).

When the time step for a cell goes down severely because
one of its nodes tends to invert the cell, then the

TS position of that node is frozen relative to the other
nodes. Each such operation (on each time step) is
counted as a quad reset. ’

Number of rezone operations. One operation is the

BE For histories written in EDIT, the number of the printout
sets.
Number of size intervals for the crack size distribution
used in BFRACT3 (input).
Array of node numbers on the slave side of a slide line
(input).

E Number of slide lines requested. Computed in GENR from

the input data.

angle between two lines.

WCELL, WNOD, and WNDND.

Pressure, dyn/cmz. Input label for obtaining a HISTORY
of the pressure in a cell.
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' PBORE Switch that allows the borehole gas pressure to act on
{ cells that are fracturing (input). Used in BFRACT3.

‘.'.

:' X ) PHI Angle from the Z direction toward the X-Y plane. Used to
‘.g' orient the shear planes in the SHEAR3 and SHEAR4 models,
"'. radians.
;:l. .

v ) PLOTT A subroutine that produces a file of data for plotting.
)

i PMIN A minimum (tensile) presgure which may be requested for a
) material (input), dyn/cm“. A zero value means no limit
§9)

e will be used.
] :

pOP Subroutine for reading lines of input, and identifying

-,,) labels and data fields.

r \
2R

;- POREQST Subroutine containing a material model for a porous

y material.

3

™,

o PRINT Input parameter for SHEARA to specify the desired
T printout.

o -

‘::\: PSCRIB An input parameter which is set to a nonzero value to
i request a plot file (File 17) of the HISTORY data.

L

llA
’ PW Curren5 thermodynamic pressure, positive in compression,
:;g dyn/cm®. Used in CYCLE and in MATERIAL models.

5.' QEXPL Chemical energy released by the detonation (input),

::.‘ erg/g.

KD

) Qqw Current artificial Xiscous pressure, positive in
!;::'; compression, dyn/cm“. Used in CYCLE.
R

:h Rij Ratio of successive cell lengths along the edges of a
" block from corner node i to node j (input).

)

® REBAR Subroutine containing a composite model describing the
.:\' anisotropic response of reinforced concrete. The CAPl
i.::: model 1s used for the concrete and a standard elastic-
M B plastic model is used for the steel reinforcing.

AN

-":: RESOLV Subroutine for resolving stresses on the shearing planes,
P, used with SHEAR4.

W »

b_' RESTART  Subroutine, and Keyword indicating that the run is a
.ﬂ;} restart of a previous calculation. This Keyword
; ! immediately follows the title line in the input.
(¥

)

W
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§§§‘ REZ Rezone indicator for limiting rezoning at a node: 0 - no
oA control; 1 - control in X-direction; 2 - control in the
' y-direction; and 3 - control for both X and Y.
WG
ak} REZMIN The minimum relative distance that a node has to be
%4: offset from the optimum position before it is rezoned
:gf,t‘: (input). .
L)
) REZWT Fraction of the distance the node is moved from 1its old
{Qﬁ; position toward the new optimum position.
IR
?i"‘
Qbs REZON Subroutine, and Keyword for heading the description of
bﬁ“ the control parameters for the automatic rezoner, REZONE
DN (input).
B~ REZONE Subroutine used to automatically rezome or reposition the
el nodes during a calculation.
v,
;S5 .
:NQQ RHO Initial density for a material (input), g/cm3.
S
RHOS Reference solid density for the material, (input), g/cm3.

RSQUAD Routine which reduces a quadrilateral to a triangle to
avoid inversion.

RSQUAD2 An auxiliary routine for RSQUAD.
RSQUAN3 An auxiliary routien for RSQUAD.

S-XX Label for the normal thermodynamic strsss in the X-
direction, positive in tension, dyn/cm

S-YY Label for the normal thermodynamic striss in the Y-
direction, positive in tension, dyn/em®.

S-22 Label for the normal thermodynamic strgss in the Z-
direction, positive in tension, dyn/em

SBAR Equivalent stress, dyn/cmz. Input label for obtaining
the HISTORY of the equivalent stress.

SECOND System routine which provides the elapsed CPU time in
seconds.

SHEAR3, Subroutine containing a nucleation-and-growth material
SHEARS model describing shear banding, fracture, and
fragmentation.

SLIDE Subroutine, and Keyword for heading the description of
the control parameters for the slide line (input).
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SLIDE
{ to j

SP

SPALST

SPRINI,
SPRIN2
SPRIN3

Sp2

SPSQ

SPSQT

SRTIME

STOPT
SUM-ENRG

SUMMARY

SURF

SXX, SYY,
S77,

TANP

TAU

TBURN

TEADD

LT AR e e e g »
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Input parameters providing for a partial separation of
the current block of cells from the previous blocks.
Boundary nodes between corner nodes i and j are not
connected to previous blocks.

Sound speed for a material, cm/sec.

Subroutine for computing the stress state on a spalled
plane, used with BFRACT3.

Principal stress components, dyn/cmz- Input labels
for obtaining a HISTORY of these stress quantities.

Square of the sound speed.
HISTORY of this quantity.

Input label for obtaining a

Sound speed squared, cm2/s2. Used in CYCLE.

Sound velocity squared for the cell with the smallest
time step, cm“/s“. Used in CYCLE.

Dimensionless coefficient used in computing the stress
relaxation time constant used in BFRACT3 (input).

Requested termination time for the calculation (input).
Total kinetic plus internal energy, in SUMMARY.

Subroutine which prints the sums of the energles and
momenta for the entire object.

Subroutine for converting the volume damage distribution
to a surface damage distribution, used with SHEAR4 and
BFRACT3.

Thermodynamic stress components, dyn/cmz.
for obtaining a HISTORY of the stresses.

Input labels
The coefficient of friction, Tan (¢), used to determine
the shear stress on a slide line (input).

Dimensionless damage level used in BFRACT3, SHEAR3, and
SHEAR4.

Delay time for the beginning of detonation (input), sec.
Energy present in the problem at the start plus energy

added during the run. TIE and TKE should add up to TEADD
to within 10% or so.
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TFRAG

TH

THETA

TKE

TMCELL

TMNODE

TPLOT

TSR

TSTEP

TRAPEZ

TXX, TYY

T2Z,
TXY

TYME

TYPE

VOLCRIT

VAQUAD
YALL

WCELL

u.l'n. 't."i"'

i

Dimensionless cpefficient of the fragment volume used In
BFRACT3 (input).

Gross cell rotation in radians, positive counter-clock-
wise. 1Input label to obtain a HISTORY of the rotation.

Angular rotation in the X-Y plane of shear banding planes
in the SHEAR3 and SHEAR4 models, radians.

Total internal energy in problem. Written in CYCLE.
Label for the total elapsed problem time, sec.

Total kinetic energy in problem. Written in CYCLE.

Total cell mass in problem, g.

Total node mass in problem; should be equal to TMCELL, g.

Requested plot frequency. Plot data are written to File
17 every TPLOT seconds (input).

An anti-hourglassing viscosity coefficient (input).

A routine for computing the time step for a cell;
auxiliary to REZONE.

A routine which is auxiliary to REZONE.

Total mechanical stress components, dyn/cmz. Input
labels for obtaining a HISTORY of the stresses.

The internal name for the total elapsed problem time (see
TIME), sec.

Work hardening process indicated for the EPP material
model: 1 means power law hardening; 2 means linear; and
3 means a polynomial form (input).

Dimensionless crack volume that defines the threshold of
coalescence (input). Used in BFRACT3.

A routine for calculatiug the volume of a quadrilateral.
Subroutine for imposing wall boundary conditions.

Array of cell-varifable storage locations (LC values) for
cells around a node. The cells are listed in counter-
clockwise order around the node. Five locations are
provided; unused locations are left at zero. Written in
BLOCK and rearranged in ORDER.
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WCMP
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WEQS

WFR

WMAT

WNDND

WNOD

WPOR
WPR

WVAR

X-MOMNTM
X0

XA

XAFECT

> S

'\)- ) Pt
R Tt

Indicator for composite models (input).

Indicator for special deviator stress models (input).

An indicator for the number of locations allotted in the
ESC array for each material's properties (input).

Indicator for fracture models (input).

Cell condition indicator. Input label for obtalning the
HISTORY of the cell condition.

Material number.

Array of node numbers for nodes adjacent to a given

node. WCELL and WNDND are assoclated so that WCELL; is
CCW from WNDND,. For interior nodes, the first WNDND
value is the smallest node number. On the boundary, the
first WNDND is to the right of the central node when
facing the material. Five locations are provided; unused
locations are left at zero. Written in ORDER.

Array of node numbers around a cell. The nodes are
numbered counterclockwise beginning with the node nearest
the first node specified in the input XA, YA arrays.
Written in BLOCK.

Indicator for porous models (input).

Indicator for pressure models (input).

Space allotted in the COMl array for each cell's special
material parameters. May be given by the user, but

several models compute the space needed.

X (axial) position of a node. Input label for obtaining
a HISTORY of the nodal position, cm.

Total momentum in X-direction, in SUMMARY.
Initial X position of a node, cnm.

X coordinate value for a node used in the layout (input),
cm

Indicator for the type of boundary control. O or 4 means
no control; 1 means X is maintained greater than or equal
to the X value of the wall; 2 means X is maintained less
than or equal to the X value on the wall; and 3 means
that X is maintained at the X value of the wall (input).
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CYP

XRT

XCONST

XD

XDBC

XDET

XDNH

XDNOT

Y-MOMNTM

YO

YA

YAD

YAFECT

YBC

YC

YCONST

YD
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\
Array defining the X values of points along a boundary
wall (input), cm.

An X value used to designate a node or nodes that are
affected by a boundary or rezoning condition (input).

X-velocity, cm/sec. Input label for requesting the
HISTORY of velocity at a node.

An array containing the X-velocities of wall boundary
lines (input), cm/sec.

Coordinate of the point or line for initiation of
detonation of an explosive (iaput), cm.

Current nodal velocity in the X-direction, cm/s. Used in
CYCLE.

Velocity in the X direction for a node or for an entire
block of cells (input), cm/sec.

Y (radial) position of a nmode. Input label for obtaining
a HISTORY of the nodal position, cm.

Total momentum in Y-direction, in SUMMARY.
Initial Y position of a node, cm.

Y coordinate value for a node used in the layout (input),
cm.

Work-hardening modulus for a material, (input), dyn/cmz.
Indicator for the type of boundary control. O or 4 means
no control; 1 means Y is maintained greater than or equal
to the Y value of the wall; 2 means Y is maintained less
than or equal to the Y value on the wall; and 3 means
that Y is maintained at the Y value of the wall (input).

Array defining the Y values of points along a boundary
wall (input), cm.

Yield strength of a materifal (input), dyn/cmz.

A Y value used to designate a node or nodes that are
affected by a boundary or rezoning condition (input).

Y-velocity, cm/sec. Input label for requesting the
HISTORY of velocity at a node.
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g:; YD3: An array containing the Y-velocities of wall boundary
; lines (input), cm/sec.
|

; y YDET Coordinate of the point or line for initiation of l
5:3 detonation of an explosive (input), cm. |
B
0% |
:ﬁﬁ YDNH Current nodal velocity in the Y-direction, cm/s. Used in '
s CYCLE. |
)

e YDNOT Velocity in the Y direction for a node or for an entire ‘
' j block of cells (input), cm/sec.
B

b
X : YIELD Label for the initial yield strength, dyn/cmz.

Lt

YS Array containing a series of yield values defining the

. work-hardening curve fgr the EPP, SHEAR3, and SHEAR4

Ny models {(input), dyn/cm”.

M

>

-

e YY Yield strength, dyn/cm . Input label for obtaining a

. HISTORY of the yield strength.

}}f 7 Cell mass, g or g/cm. Input label for obtaining a

N HISTORY of the cell mass.
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APPENDIX D

‘<
Poulter Laboratory Technical Report 001-86 February 1986 i
1

This appendix is the final report on an internally sponsored
rescarch study of the rotation problem in two-dimensional calcula-
tions. It is included in this final report because of its relevance
to the topiv of this manual.

ROTATION TRANSFORMATIONS FOR
TWO-DIMENSIONAL CALCULATIONS

By: Lynn Seaman

SRI INTERNATIONAL
Menlo Park, California 94025 USA
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1. INTRODUCTION

Rotation adjustments that are made at each time increment in two-dimensional
wave propagation and structural calculations should account for three eflects. First, the
stress tensor Is transformed to account for the material rotation. Second, micro features,
such as cracks. are rotated with the material. And third, to aid in understanding the
results of calculations, the average rotation of the cell material is computed. Treatments
for these rotation topics are reviewed in the present study. Because the conditions that
cause large rotations also require a rezoning treatment in the calculations, we examine
how to combine a precise rotation procedure with rotation. Then we examine when
rotation adjustments are necded (that is, for which types of material models and which
kinds of problems).

In the last two decades it has been generally recognized that material rotation must
be accounted for in our stress-strain calculations, or the computed stress tensor will
depend on its coordinate system. At present, rotations are commonly accounted for by
using the Jaumann rotation rate computed from the coordinate motions of the computa-
tional cell:

Aa = (du‘dy -~ dv/dx)At/2 (1)

where Aa is the increment of rotation in radians, and u and v are coordinate velocities
in the x and y directions. This rotation correction has recently been found to be
appropriate only for small shear strains (Sce, for example, Dienes!).

To indicate the nature of the approximation involved in Eq. (1), let us consider a
block subjected to simple shear, as shown in Figure 1. The block is sheared by moving
points 2 and 3 by uAt. From Eq. (1), the rotation is

At
Aa = 2 2
* 7 2ay @

The diagonals of the square rotate by this amount. Yet the line 03 rotates by
(uAt)/(Ay) and the line 01 does not rotate. Hence, the combination of shear with rota-
tion appears to produce a complex state in which different elements rotate differently.
Thus Aa from Eq. (2) is only an “average” rotation for the material. In the following

sections the average rotation is examined further.
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.::.: For an example of the difficulty with large rotation problems, let us consider the
::: case where the incremental motion in Figure 1 gives an angular change of Aa = 1°.
{ - Then continue the motion for 180 increments. Egs. (1) and (2) would give a total angu-
’”t lar change of 180°. Yet from the figure, it is clear that no rotation greater than 90°
o~ occurred, so the average rotation must be less than 45° (The actual rotation is about
%
] 38°)
Ny
15 0% ;
"i")' In the foregoing discussion we presume that we can follow the crystallographic
w"\: planes on which the stress acts. Hence, we are assuming that the stress tensor follows
': these planes. Therefore, the stress rotation calculations are made to follow the motion of
b ' the planes. However, as pointed out by Drucker?, when plastic slip occurs in the
o material, the crystallographic planes do not follow the macroscopic motion of the
in material. Yet we cannot readily determine the actual motion of these planes without a
[) a
; E; detailed theory of plastic flow that includes the development of anisotropy. In the fol-

lowing development of the rotation problem, we assume that the material remains homo-
geneous and isotropic throughout the flow, and we disregard Drucker’s important physi-
cal question.

1
J

SN
AR

This paper first presents a review of three recent analyses of the rotation problem.
Then we derive separately the procedure for the rotation of lines and of the stress ten-

{;::_

: sor. We recommend steps for conducting the analysis and discuss methods for rezoning
'_;\ the quantities needed in the rotation procedure. Finally, through use of the procedure,
3 .
p ﬁ}_ we determine the conditions under which the procedure is important.
s
."'.. . .
OO 2. BACKGROUND
P
ey _
it Recent work has been done by Dienes!, Marsden and Hughes®, and Hallquist* in
[y 1 ]
:::: determining the appropriate transformations to undertake to handle the rotation of
g . . .
Y 2 material undergoing large shear deformations.
,'" . l .
b :j John Dienes’ has developed a three-dimensional analysis for material rotation, con-
i ﬂ sidering the corrections required to transform the stress tensor and determine the correct
: ":-3 angle. The analysis was applied to elastic material initially; however, he has noted that
Wl . . . . . . .
Q.- the concept is appropriate for any rotation, elastic or plastic. His corrections to the stress
:"‘l" tensor take the same form as the Jaumann equations:
Pl .
fa 0 =0-00+ afd (3)
'
' » . . .
:: where @ is the stress rate tensor corrected for rotation, & is the stress rate directly from
! . . . . .
.y the constitutive equation. and 0 is the tensor representing the angular velocity of the
;::; : material
[)
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Q = RRT (4)

and R is the rotation tensor (defined later). Figure 2 (from Dienes’ text) shows that o,
grows monotonically with shear strain when the Dienes’ correction is used, whereas with
the traditional Jaumann method the stress oscillates for very large strains.

Now we consider in some detail the method outlined by Dienes' for determining the
rotation of the material of a cell from the locations and velocities of the material. He
begins with the deformation and velocity gradient tensors. He solves the problem for the
general three-dimensional case, but we restrict attention to a two-dimensional problem.
First we present a description of his solution, then a method based on the development,
and finally the numerical procedure he recommends.

Dienes’ method begins with the deformation tensor F with components
oX, 5
ij = asj )

where Xj is the current coordinate and & is the Lagrangian position. Next Dienes
derives the material rotation @ from the vorticity W, left stretch tensor V, and the

deformation rate tensor D. The vorticity and deformation rate tensors are both obtained
from the velocity gradient G.

aU"
=)

where u; is the velocity in the it direction. As Dienes also shows, G is related to the
deformation gradient as follows.

G = FFT (7)
The deformation rate tensor D is

Dy, = 1/2(G;; +~ Gj) (8)
and the vorticity W is

Wii=1/2(Gj; - Gj) (9)

The vorticity is the rotation quantity customarily used with the Jaumann rotation com-
putation.

The left stretch tensor V is named for its position in the defining relation:

F=VR (10)

where R is the rotation tensor. To compute V, he forms the product B

B = FFT (11)
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:5:
:::: from which he derives V by the method of Bellman®:
s V =B!? (12)
R The rotation tensor R is obtained by inverting Eq. (10):
:I
'\$ R— VIF — [cost —sino] (13)
.;3 - ~  |sind cosf
;’ With this definition of the rotation tensor, the rotation is positive counterclockwise.
3"‘) From the D and V tensors, he defines two more tensors:
n" W) )
W Z =DV -VD (14)
ii‘n »
Wy and
i
o S = [Itr(V) - v]—‘ (15)
~: With Z he defines a vector z such the Z;; = ¢;;,z; and € is the permutation tensor. His
"': angular velocity of the material axes, w (Qj; = ¢;;w;) is then given by
‘f't ) Wi = W -+ SUZJ (16)
where Wi = ¢;,w;. Thus the Sz term acts as a correction to the rotation W, which is
:::: customarily used in the Jaumann rate equations.
’-
100
:’6: In his paper Dienes gave the following steps for computing the rotation in a com-
: puter code, but did not recommend this procedure.
._3;3 (1) Compute the current F" and G™*1/2 from the nodal positions and velocities.
:.'J,: Evaluate D"*1/2 and W"*!/2 from G™*1/2, Here n refers to the beginning of
i{ the time step, so quantities labeled n+1/2 are defined at the middle of the
“) time step.
e (2) Compute V" from the square root of FFT,
1N
','.'z (3) Compute R" from Eq. (13)
x 9
"\*: (4) Compute §**2 and Z"*'/2 from V" and D"*'/2
; ' (5) Compute «"*'/2 from Eq. (16)
,E.: This procedure requires computation of the F tensor (hence, storage of the Lagrangian
: ‘:; coordinate £). The time consuming steps are the computation of the square root of
j.& FFT and the matrix inversion for determining S. The procedure is very accurate.
t
.::' Dienes recommended a second procedure with the following steps:
.':' (1) Compute G" /2 and then W™*1/2 from G"+/2.
(2) Compute Z"*¥/4 from V" and D"*!/2,
W
4 (3) Calculate S" from V" (Eq. 15).

e,
‘a S " [¥ .0 - X v
.‘1'..'- .'.t 2 ‘A'Jc ) :'n.."’ ‘El" m
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RR:
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o V"
g\‘s .
‘A‘:‘ (4) Obtain V**''? from Grrl/2yn ._Vn(wn+l/2+ Snzn+1/4)’ where the SZ pro-
"": duct is computed in the sense of Eq. (16).
e .1/
{ (5) Update V**! from V" and V**V/2,
:Y, (6) Compute the angular velocity w from Eq. (16).
it . , . .
.;::;?‘_ This method requires storage of V, but not of the Lagrangian coordinates. The lengthy
e calculation is the matrix inversion in step 3. Note that in both of these approaches
. P
) Dienes obtains the rotation quantity w = @ explicitly, and in the first method, R is also
\bqk obtained. This method is also very accurate
s
N
L} \.ﬂ
:&. Marsden and Hughes® have suggested a simplified way to obtain the stretch tensor
RN from the B tensor. Instead. of computing V, they obtain the right stretch tensor U.
. This tensor is defined by
CAC
A
A F = RU (17)
27 :
"':"‘,' They begin the computation by forming the product tensor C:
ey
o C=FTF (18)
b o
SN Then U is given by
N
a Y
y \j: _ C++vVDetCl1 (19)
| -
s VuC + 2VDetC
e Thus, their method has the following steps:
. . - . -
W v (1) Compute F* from G"*V2F" and evaluate F**! = F" + F" At.
:. .
e (2) Compute U™*! from F"*! as in Eq. (19).
N\
a.nSo (3) Compute R = Fn+l(un+l)-1.
A N They do not explicitly compute & or w because neither is needed for the rotation of the
:: stress tensor. The F tensor must be stored between cycles. U is obtained from Eq. (19),
»'.' . requiring two square roots. and a matrix inversion is required to obtain R™*! in step 3.
',
, Hallquist® uses the method of Marsden and Hughes® with some modifications in his
] S . .
:o% NIKE2D code. In this finite element code he computes the R", R"*!/2 and R"*! rota-
! . .. oL .
" ; tion tensors. With R" he rotates the initial stress tensor o" from the external coordinate
l:n:':o system to the material orientation. The strain increment Ae"*'/? is rotated to the
b '
1 T material orientation with R"*¥2. Then o"*! is computed by the material model, and
_:' , the stress tensor is transformed back to the external coordinate system. R is not stored
: between cycles, so the 3-step procedure above is performed three times at each cell and
,s o each cycle.
ol (¥
{ o :
S From the foregoing it appears that there are procedures available to transform the
) . . .
::-.:. stress tensor and to follow the rotation of the cell material. However, it is not clear how
W
R Rk
o
RTCR
. .'.
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~.':.: these methods can be used under conditions in which rezoning is also being used. The
"‘:' rotation procedures and rezoning are exalnined in the following study.
Y g
i
! o 3. DEVELOPMENT OF THE ANALYSIS FOR ROTATION OF LINES
-
N
S
:-_.';;. The rotation analysis is developed first for the motion of a line in a linear deforma-
Y tion field. This result may be applied to the rotation of line-like features such as micro-
S PP '
A cracks (which appear as lines on some cross sections), rolling planes, or the principal
,.:::': directions of an anisotropic material. Then the line analysis is applied to determine the
.;5:{ average rotation of a block undergoing large shear deformation.
Lo
A line segment L in a linear deformation field will be stretched (or shortened) and
:‘f_‘ rotated. Let us consider here only the rotation aspect. The rotation Aw is given by the
120 cross product
W L.
J.‘ Aw = ~ .A|1—><|,L (20)
A . : : . : .
.r_:j where A8 is the motion of one end of the line with respect to the other, and L is the line
R . . .
P length. Then Aé can be written in terms of x and y coordinates:
.
o A8 _ 7(0u/0x)Ax + (8u/By)Ay | 5(Bv/x)Ax + (3v/dy)Ay
‘ J LI L L]
o~ o ou du o 9v av
Lo = 1| —co0s¢ + —sin + j| —cos¢p+—sin 21
R dx dy ¢] J[ ox ¢ dy ¢] (21)
\" The angle ¢ is the angle of the line with respect to the x coordinate, measured positively
) counterclockwise. Similarly, the vector L is
X L A A
1900 s - AX = Ay - -,
R = -+j = 1C0sQ + Jsing (22)
o | L ILI "~ L]
-.f. - . i . .
P When we place the expressions for A8 and L in Eq. (20), we obtain the increment of
Lo
rotation:
o1 Syl
- Aw = - éisin ocose — ﬂsin2(:5 + Q/-coszé + a—vsinqﬁcos¢> (23)
o - ox dy ax ay
[ -
::t ; Equation (23) is used to obtain the rotation for lines or other line-like features in two-
.": dimensional calculations.
b
':,f': Now let us consider the rotation of several lines in a block of material as a means of
™ ". . .
:',:- obtaining the average rotation of the material. We assume that our block has a large
b number of lines drawn on it. Then we shear the block and follow the motion of the
'3-; lines. If we apply a simple shear dw/dt = du/dy, then the rotation d@ of a line at an
o angle 0 from the X-axis is
) -{::
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"‘\‘ d() dw' 4
.. — = - —Zsin-0 24
e dt dt (24)
Y . . . . .

( For a constant dw/dt, this equation can be integrated over time to obtain

W cotd = cotly + Aw (25)
e

: :'_M: where @, is the initial value of . An alternate form is

oy

B,

o> A = 0 - 0 = arccot(cotfy + Aw) ~ 6, (26)
')

NI where Af is the change in the orientation 6.

X2 |

o Now we can find the average rotation for a cell by finding the average Af for a
i . .

- large number of planes. A set of 18 planes uniformly distributed from 6, = 0° to 170°
2 was studied. Simple shear strain like that in Figure 1 was imposed in 1° increments for
o N . .

TN 180 steps. As shown in Figure 3, the rotations of the planes varied from 0° to 115°.
v . . . . .

N Next we analyzed the planes in orthogonal pairs. The average rotations of pairs that

fa

NN were initially orthogonal ranged from 36° to 80°, compared with the exact value of 57.52°

- = arctan 7/2. The accuracy of the average rotation gradually improved as we con-

-:j::' sidered sets of 4 lines and 8 lines. The average rotation for all 18 planes was 57.64°.
.“

. Hence, the correct rotation of the material can be found by following the rotation of

.'_:'_-: planes. but this procedure would not be practical if only an average rotation were
£ desired, because of the excessive number of planes needed to provide a satisfactory accu-

o~ racy.

T

-:::- 4. AVERAGE CELL ROTATION

e
D In this section we wish to develop a practical means for performing the rotation cal-

#:E culation. The following requirements will be considered for judging the system to be

o practical:

\.‘_'-' . oy . .

::‘.: * Only the current nodal positions and velocities are required, but not a history

)

.'f' of these quantities.

p , * The system should minimize the computational time and the additional
ot
Ky storage.

"h\ . .

:.‘: * The system must permit standard rezoning procedures to occur, that is, rezon-
*' ing should not disturb the rotation calculation, and the new variables required
Rh R (if any) must be rezonable.

P . : . . . -

! . *  Only the incremental rotation angle is needed at any time, in addition to the
f ; . . . . . . . » . .

-1 ;'.; standard quantities. This requirement is given in more detail in the Applica-

o tion section.

h § . . -

o The method we propose using begins with the computation of the tensors G112
:: F*14 and F**!. Then 6 is computed from the polar decomposition theorem. From 6
b
L%y

p
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and the stored value of 6, the increment A0 is computed. The rezoning aspect of this

calculation is treated in the next section. Here we examine the definition of the deforma-
tion tensor F, the computation of 8, and tests of the procedure.

St d
W . . .
Ejo.: Deformation Tensor Calculation
) :_‘\ The deformation tensor must be determined in a way that is natural for our finite-
3 - difference codes. To begin, we write the current coordinates X; as functions of the initial
(A0 coordinates (£ = £, n = £,) and time
]
' X = fi(&. t) (27)
and plan to compute this function by fitting it to the nodes around a cell at some time.
We want to have a single function F that represents the cell material, yet we must fit
the function to the K nodes around the cell. For this fitting purpose we could define the
‘ function X, the X; value at the k*! node, by the series
N
. - . , . 2
:f_ Nik = A~ AnE+Apn + Ay + A + A + ... (28)
"'F' where the A;,, are constants obtained by the fitting process. By differentiating Eq. (28)
‘e for X; with respect to , we obtain the deformation gradient Fj;, according to Eq. (5).
.’ﬁ For a four-node cell. these components of F are
N
ox Xy3les — Xoyl13
dg Ao+ A
- Xo f — X12£.
Fro — ﬁ _ X24813 ~ X135 (29)
Fo — Oy __ Y324~ Yoz
o g Ag + A
dy vag€iz — Y138oy
dn Ay + A, (/;5
"1
where X, = X5, — X, €nn = & = &, and m and n refer to node numbers. Clearly, in

this method the original coordinates &, and 5, must be retained for all cells. Yet these
original coordinates are not rezonable quantities, so this method of computing F cannot
be used with rezoning.

An alternate method for determining F is to start with an initial value, and update
it at each time step in the calculation using F computed from Eq. (7).

l{«n+l/4 — Gn+l/2(F-l)n (30)

where n indicates that these tensors are from the n'" time step. Then the F at the next

time step is calculated using F:

Fr!l = F" + F™ V4 A (31)




This second method, using l:“, seems the most direct, but requires storage of F from the

previous cycle. (The F"*11 is also not at the correct time t°+!/2 to make a central cal-
culation in Eq. 31.) We choose this method of computing F for our procedure.

Computation of the Rotation Angle 8

For computing the rotation-angle & we consider the left and right stretch tensors V
and U, and the rotation tensor R. Because of the symmetry of V and U, and because R
represents a counterclockwise rotation of @, we recognize that we can write thesé tensors
in the following way:

o N I o I S e
We can write out Eq. (5) term by term and solve for the unknown components of V, U,
and R.

Fjy = V) cos@ + Vi, sind = U, cosfl - Uy, siné

Fio = -V, sinf + V5 cosf = U, cosf ~ Uy, sind (33)
Fop = Vs cosf + Vyo sinf = Uy, siné + U;, cosf

Fay = -Vissin0 + Vi, cosf = U,a sind + Us, cosd
The solution of either set of four simultaneous equations leads to

Foj - Fypp
Fyy = Fo

tanf = (34)
The angle 6 can be obtained with the arctangent function or, for small angles, with a
series expansion in t = tand. The following truncated series are accurate to 10,

3

0~1t- ‘7 ~0.1839 > fort < 0.37 (35a)
t3 [5 t":' 0
0t o= -+ 008751 fort <059 (35b)

The results of the arctangent function are ambiguous so that 8 is only obtained within
some multiple of #. To remove the ambiguity, we examine § - 8, = A6, where 6, is the
angle at the previous time step. Generally, in wave propagation calculation, A8 is < 1°.
Therefore, A8 is approximately a multiple of #. Then 6 must have passed over a discon-
tinuity in the arctangent definition. The discontinuity is removed by subtracting the
multiple of 7 from 0.

To find the rotation rate w, we first compute the current orientation 8 of the
material from tanf (Eq. 34). Then

00,

W (36)

At
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where 6, is the orientation at the previous cycle. At this point we have available w, ¢
and the deformation tensor F.

Computation of V, U, and R

For the rezoning procedures considered later it maybe necessary to obtain the V,
U, and R tensors. If these are of interest, we can proceed as follows. The sine and
cosine factors in R can be computed from components of the deformation tensor:

sinf = Far —Foo (37a)
\/(le —F12)2 + (Fu + F22]2
cosf = FutFa (37b)

\/(Fel - F12)2 + (Fu + F22)2

With the sine and cosine available, we can simply solve for the V componénts from Eqs.
(33).

V1 = Fy; cosf - Fsind

Vo =Fy; sinf + F 5 cosf (38)
= Fy, cosll — Fy, siné

Vao = Foy sind + Fyg cost

and the U components are

U,; = F, cosf + Fa;sind

U)o = - F;sind + Fa cosf (39)
= Fsc0s0 + Fassinf

Uygy = - Fasin@ + Foycosl

An alternate procedure to the above would involve using Hughes’ method of finding U
from taking the square root of FTF; the results are identical.

Summary of the Method

In summary, the strategy we are suggesting for two-dimensional problems differs
slightly from those of Dienes and Hughes. We are interested mainly in obtaining the
rotation angle @ and the increment Af8. In this method it is necessary to store the full F
tensor and the rotation 8. During each time step we make the following computations:

(1) Compute G (Eq. 6), and evaluate D (Eq. 8) and W (Eq. 9) from it.

(2) Using G and the stored F, compute F (Eq. 30), and evaluate the current F
tensor (Eq. 31).

9
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)
& (3) Compute tand (34) and evaluate 6. Adjust & as needed to account for the
‘ ambiguity of the arctangent. Y,
a
{ (4) Compute the increment of rotation from A6 = @ - 6.
v
;’ ) (5) Perform the stress rotation calculations using Af in the same way that we
::- have generally used Wy,.
:;‘ The stress rotation calculations have the form
) Oxx = Oxxo = 2 Oyyo A
o
35 Oyy = Oyyo + 2 04y OO (40)
‘A
,-": O = Oz30
Oxy = Oxyo + (axxo - ayyo) Al
::;{ This new procedure requires four extra storage locations in addition to the orientation 8.
o The computation time for the procedure is mainly taken by the additional square root
P ot
; : and the arc tangent.
s
-.: Tests of the Rotation Procedure
b9
:,': A number of tests were made on the foregoing rotation procedure to evaluate its
‘,_{.: accuracy and speed, and especially to determine whether it works correctly for very large
angles. The following problems were run:
(1) Apply a uniform tension to a body and then gradually rotate the body, com-
.:;: puting the current stress tensor at each step. This is a rigid body rotation so
x> the angle and stress tensor should be obtainable even using the Jaumann
¥, method with w = W,,.
A (2) Extend a block gradually while rotating it. This is again a rotation without
Wi shear, yet a more complex test. The results should match those of test 1 at
j‘,: the end point.
- : o . .
P (3) Distort a block in simple shear and follow the computed orientation ¢ and the
. stress tensor.
\]
§ .
:E: (4) Shear a block during rotation and follow the orientation and stress tensor.
[) X
;::' In each case 400 steps were used and the stresses and orientation # were examined at
) .
X several intermediate steps as well as at the end. The rotation was through an angle of
A 360°. In all cases the final computed value of § was accurate within 0.1%. The error
-{: was found to be directly related to the imposed angular increment. The stress computa-
19

g tion obtained in simple shear is shown in Figure 4 and compared with the exact solution
§- of Dienes.
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5. REZONING OF THE ROTATION QUANTITIES

{ During a large distortion computation it is usually necessary to rezone the cells --
N that is, to construct a new mesh with less distortion in the individual cells. After the
.(\') . . . .
Y new mesh is constructed, the properties in the old cells are assigned to the new cells.
AN . . .
SN Generally, each new cell will contain some material from two or more of the old cells.
) s . . .
- The properties (for example, energy, pressure, stress tensor, yield strength, plastic strain)
' . C .
of the mixed materials in the new cell are computed by weighting each property accord-
ot . . .
-g,i ing to the mass contributed by the old cell. For example, property P is computed from
‘\h
-?'\n" {S‘ P
) o My
" k=1
‘:\ Pnew = K (41)
o ¥m
s k=1
‘ L
:.:- where m, is the mass contributed by the k' old cell to the new cell. This mass-
_":,{: weighting method is essentially an averaging technique, and thus results in some smear-
~ ing of the properties during rezoning.
23 .
Y To fit into the rezoning procedure, it is essential that the variables used in the rota-
[, . . . . .
WA tion calculation be rezonable in a manner like that in Eq. (41). We have selected the
.
"

tensors F' and V (or U), and the scalar 6 as candidates for rezoning. The angle 6 is

R

scalar and represents a physical quantity that can be appropriately averaged in combin-

x

)
e

ing properties from two groups; hence the angle is rezonable.

AR
& AL

vy
»

The stretch tensors each represent the state of distortion in the cell material. Fol-
lowing Dienes!, they can be diagonalized as follows:

P,
wout V=TAT! (42)
e
:::'n where A is diagonal, and T represents an orthogonal transformation. Hence the funda-
-'Q; mental information contained in V or U is A}, Agy, and the transformation angle o asso-
. ciated with T, where
\
‘o:'t. T — |[cosa —sina] (43)
" sina  cosa
W . - -
ot These three quantities (A;;, Ag, and a) meet our criteria for averageable quantities, and
S therefore are rezonable. An alternate set of independent quantities are the trace and
:' 3 determinant of U, and the angle . Here the determinant of U has the physical meaning
N, of the exponential of the areal strain, and hence, it is a quantity that we may especially
LY, . . .. .
! 3‘ want to preserve during rezoning. The five quantities are all readily computed from the

. U tensor:
[

' trace U = trU = U,; + Ua (44)

Y
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R
..1
N
o determinant U = det U = U,; Uss - U3 (45)
N X -
1\, e AI]‘ 4\22 = tl.)(J "IT(LI'U)- - det U (46)
(
ey _ 1 2Uy,
*-t‘ a=3 arctan T U. (47)
5t
s . . .
o The same rezoning results are obtained by using the set A;;, Ay, and a or the set tr U,
VoV S . . . . .
.) det U, and a. Following the rezoning of these invariants, the new U tensor is con-
IR structed by computing U = T A T™! using the new A and T tensors.
A
-
'-,:::- The foregoing is clearly a lengthy procedure, and thus it is worthwhile to form an
e approximate method. For a first approximation, we may choose to rezone the Uj; com-
A ponents, yet preserve the areal strain (det U). To start the calculation, we compute U
:,. from F using either Eq. (19) or (39). Then we compute the area strain factor A = det
“:: U and generate a u tensor with reduced components
oy .
A u; = U/ vVA (48)
[
[ These reduced u tensors are then used in the rezoning process to form a reduced tensor
.'-:':: for the new cell.
. .
:'..,3 o ™ Ui/ VA (49)
!i.o 1js Z my
"ﬁ Next the determinant Ay = det ujjs is computed and the areal strain factor from the old
:'_J- cells is rezoned.
LN
oY — m, A
) Y my
‘,.. : .
-~ Finally the U tensor for the new cell is formed.
1 ~V hd
!':‘ l. ij US\/ A/ t\ (51)
K
In this way the new U has a mass-weighted areal strain. This rezoning method was
tested for cases in which there were large rotations combined with either extension or
" shear. For 180° differences between rotations of the old cells, the U tensor components
0 - . e
:::0 for the new cell were all within 1% of the exact value for the extension case and within
» . . .
At 10% of the exact value for the shearing case. For the usual strain and rotation levels,
X this procedure should be satisfactory.
-,
)
t : . — :
< A simpler and faster rezoning approximation can be made by rezoning the F com-
Y ponents directly. The determinant of F also equals the exponential of the areal strain,
) . .
{8 so we can preserve the areal strain using a procedure like the one applied above to the U
oy
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i:'_-" tensor. As with the U tensor, we start by calculating the reduced components of F for
#.. the new cell:
{ 3 my Fijk/\/Ak o
i Fijs = (5‘)
P X my
B
}.:" Then we compute the areal strain factor for the reduced F tensor: A, = det F;,. Then
!
::"-o we compute the components of the F tensor for the new cell.
v - —
. Fyj = FisVA/A - (83)
M N
2, . . . .
SN Rezoning tests with the F components gave meaningless results when old cells with rota-
S tions that diflered by 180° were used. Errors of approximately 10% in the F com-
AN PP
‘N ponents were obtained when the rotations of the old cells were within 45° for either
) extension or shearing. Hence, the use of F in rezoning could only be considered satisfac-
'-f-:{ tory for fairly small angular differences between old cells.
o
A
“u e . .
N Based on these initial observations, we developed a two-branch plan for rezoning,
depending on the range in the rotation angles in the old cells contributing to the new
s cell:
‘L
t-’ (1) Cells with angular differences less than 20° Mass-weight the components of
.'; the F tensor.
o (2} Cells with large angular differences: Derive the U tensor and 8 for each contri-
SO buting cell. Mass weight U and 6. Then recover F for the new cell.
s
o :
L~ 6. APPLICATIONS TO CONSTITUTIVE RELATIONS
s <
o "
v The foregoing rotation calculations are intended for use with constitutive relations
. so that the stresses computed are objective (that is, independent of the motion of the
" coordinate system). The type of the constitutive relation determines the information
Ay required from the rotation procedure. Here we identify three types of relations:
(1) Isotropic clastic material. For isotropic material, calculation can be conducted
e either by rotating the stresses to the material coordinates using the R tensor,
o or the stresses can be incremented using A8 as in Eq. (40). The results in Fig-
v::, ure 2 show the small inaccuracies involved in computing the stresses and the
" rotation angle by the approximate, incremental rotation procedure.
.? (2) Isotropic plastic material. For material that may yield, the same rotation pro-
.z")' cedures can be used as for the elastic material. However, the continued strain-
:;:j: ing tends to eliminate the errors in the stress transformation, so the stresses
’ obtained from the approximate procedure are sufficiently accurate. The
~. results of an ideal plastic calculation of simple shear with a yield strength of
I ’ . .
::’-Z 20C of the shear modulus gave the results shown in Figure 5. The error
i J'
WSO8
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increases with yield strength. This excessively large yield strength was used to

::: show that the errors are actually very small. The exact and Jaumann solu-
"~ tions for yielding are essentially indistinguishable. However, the angle calcula-
o tion for the vielded case still has the inaccuracy illustrated in Figure 2b.
ez, Hence, if the rotation angle is not needed, the Jaumann solution is very satis-
.:g: factory for yielding in isotropic material.

t' ' (3) Anisotropic material. For calculations with anisotropic material it is necessary
) to know the orientation of the material coordinates. In such a material it is
1:' assumed that the material planes all rotate together, maintaining their fixed
L angular relationship (Under conditions of large distortion, this fixity of angles
"/;:f‘j is certainly not achieved according to the results in Figure 2b). The rotation
w tensor R or the angles 6 and A0 are required for the calculation.

~

: Multiple-plane models such as the Peirce-Asaro-Needleman model?, our BFRACT
,"‘: model’, and our SHEAR model® contain a series of internal planes that follow the
O material motion. The rotations of these planes are computed correctly from the velocity

. gradient tensor G according to the equations in section 3. These models account for the
f;{ relative motion of several planes and the gradual development of anisotropy. Hence,
::E these constitutive relations do not require the foregoing rotation treatment.

:

' 7. SUNDARY

i

:Q‘ The rotation problem in two-dimensional calculations has been treated to determine
o methods appropriate to finite-difference wave propagation calculations involving rezon-
o ing. First, the nature of the rotation problem and the inaccuracies inherent in the stan-
;'i dard Jaumann method for cases of large shear strain were outlined. An exact method
5'; was developed for the rotation of lines or planes in the material. A direct method fo:

'* obtaining the rotation @ of the cell material was outlined based on the works of Dienes
and Marsden and Hughes®. The deformation tensor F is stored for each cell. The

.. 3 .
current angle & is obtained from

"
i. . Fn - F
W tanf = —+—12 (34)
, Fii +Fg
"
§. Three methods were explored for rezoning the quantities used in the calculation.
:&E: We also outlined (1) a theoretically exact rezoning method based on the invariants of the
’::o U tensor, and (2) approximations based on the U and F components.
a4
e
£ The rotation techniques are necessary under conditions of large shear strain for iso-
;:‘:' tropic and simple anisotropic elastic materials in which all the material is assumed to
L
[}
a8
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::*',' rotate together. For materials in which yielding occurs the stresses are correctly pro-

~
:.':" vided by the standard Jaumann method, although the rotation angle is not correct for
i" large distortions. For multiple-plane material models in which specific planes in the

W, matertal are followed, this rotation treatment is not necessary. .
A
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All the cell and coordinate (node) variables are stored in a single

large one-dimensional array called COMl. The array locations that
pertain to each cell or node are identified by two auxiliary arrays, LC
and LN. Extra array locations may be provided for a cell through the
use of the indicator NVAR. Operations with these arrays are described

helow.

The standard 18 variables assoclated with cells and 24 variables
for nodes are listed in Table E.1 and E.2. These variables are
2quivalenced to the COM1 array for convenience in identifying them. For
example, consider cell 1 and node j. The information begins at I =
1.271) and J = LN(j). Some of the variables associated with this cell

anl this node arvre

72(1) = COMI(I + 1) X(J) = COM1(J)
°(1) = COMI(I + 8) Y(J) = COML(J + 1)
TXX(I) = COMI(I + 4) XD(J) = COML(J + 4)

Thus all the variables associated with a particular cell or node are
stored one after the other in the COMl array. The starting locations, T

or .7, are given by the LC and LN arrays.
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10
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19
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Table E.1
Location Name
COM1(L) X(L)
COM1(L+1) Y(L)
COM1(L+2) X0O(L)
COM1(L+3) YO(L)
COM1 (L+4) XD(L)
COM1(L+5) YD(L)
COM1 (L+6) BC(L)
COM1(L+7) BCN(L)
COM1 (L+8) AM(L)
COM1(L+9) FX(L)
COMI(L+10)  FY(L)
COMI(L+11)  WREZ(L)
COM1(L+12)  WCELL(L)
COM1(L+16)
COM1(L+17)  SCELL(L)
COM1(L+18)  WNDND(L)
COM1(L+23)

When two dimensions are listed, the first is for axisymmetric problems
and the second for planar problems.

L = LN(n), the starting location for data for the n-th node.
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VARIABLES IN COM1 ARRAY FOR EACH NODE

Description in COMlL
Eulerian position in the x direction, cm.
Eulerian position in the y direction, cm.
Initial value of X(L), cm
Initial value of Y(L), cm
Particle velocity in the x direction, cm/s
Particle velocity in the y direction, cm/s
Boundary condition indicator
Number of mating node across a boundary
Mass assoclated with the node, g or g/cﬁ

Force on the node in the x direction, dyn
or dyn/cm

Force on the node in the y direction, dyn
or dyn/cm

Indicator for rezoniﬁg

Array of 5 values containing the LC numbers
of the surrounding cells

Negative of the number of cells around the
node

Array of 5 values containing the numbers
of the nodes which are neighbors to the node
at L.

O O AN OO OO X MM NOOOOROWOIGN
,.fc,.?;_,'ik,f‘,.§u‘,?t,,‘tl.h:.‘i:,h St e sy



N

IR — Le
: - Pd
XA AL

FOUOLICRL NN
o A\ S ()
A N

Nunber

10

11

12

13

15

to 18

Notes:

MU
4 ‘:*Ugt.h‘f‘.h

Table E.2.

Location
COM1(L)
COM1(L+1)
COML(L+2)
COM1(L+3)
COM1 (L+4)
COML(L+5)

COML(L+6)

COML(L+7)

COM1(L+8)
COM1(L+9)
COM1(L+10)
COML(L+11)
COM1(L+12)
COM1(L+13)

COML(L+14)
COM1(L+17)

Name
A(L)

Z(L)

WMAT(L)

D(L)
TXX(L)
TYY(L)
TZZ (L)
TXY(L)
P(L)
E(L)
SP2(L)
YY(L)
WH(L)

TH(L)

WNOD(L)

OLUT T T AL
et i ettt

VARTABLES IN COM1 ARRAY FOR EACH CELL

Description
Arga in the x, y plane, cm2
Mass of the cell, g or g/cm
Number of the material in the cell
Density, g/cm3
Total stress in the x direction, dyn/cm2
Total stress in the y direction, dyn/cm2
Total stress in the z direction, dyn/cm2
Shear stress in the xy plane, dyn/cm2
Pressure, dyn/cm2
Specific internal energy, erg/g
Square of the sound speed, cm2/s2
Yield strength, dyn/cm2

Indicator for material state

Rotation, positive counter-clockwise,
radians

Array of 4 values containing the numbers
of the nodes around the cell

When two dimensions are listed, the first 1is for axisymmetric problems
and the second for planar problems.

L = LC(n), the starting location for data for the n-th cell.
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The LC and LN arrays are computed such that the COM1 array is just
filled, with no gaps remaining between variable sets for each cell and
node. Generally node and cell information are interleaved according to

the order in which the cells and nodes are initialized in BLOCK.

Some of the material models available with C-HEMP require extra
variables above the basic set of stresses and energy provided. For such
models, extra storage is requested for each cell containing the mth
material by setting NVAR(m) - the number of extra variables requested ~
with the other material data. Then the number of variables provided for
each of those cells is 18 + NVAR(m). The numbers of extra variables

needed for some of the models are given in Table E.3.

Table E.3. EXTRA VARIABLES REQUIRED FOR SPECIAL MODELS

Material Model NVAR
BFRACT3(a) 3 * SIZE + 9
CAP1 3
DFRACT 3
DFRACTS 3
EPP 2
EXPLOD® 5
REBAR 10
4
SHEAR3 4+ 3 FNUC, [2 * BFR(13) + 1] + 3
SHEAR4 (b) 41 +ii-§711 FNUC, [2 * BFR(13) + 1] + 5

Notes: (a) "“SIZE" is input, the number of intervals requested for the
size distribution (not greater than 10)

(b) Computed and provided by the code.
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i{ To obtain historical listings of the extra variables, a request is
i - made for a COMT or ZOMN variable, as described in Section IV C under
?j} HISTORY. An example of the necessary steps is given below for the f
9:3 plastic strain in one orientation of the SHEAR4 model. ' i
5 a
o |
- Assume that we want a history of the plastic strain in the -xy
) orientation (the normal to this plane was originally in the -xy
,j:; direction, or 135° from the x axis). According to the comment at line
‘ a2
§§ : SHR4 64 in the SHEAR4 listing, this strain is the fourth in the array.
W _
NN From the comment in SHR4 28, the plastic strains begin with CN(2), so we
are requesting CN(5). Next, we compare the formal parameters in SHEAR4
W)
' (SHR%4 1) with the CALL statement in CYCLE at CYCL 344, and find that
| ' v - B -_—
i:: CN(1) is the equivalent of COM1(LM+19). Because we want CN(5), we will
.
‘*J request COMI(LM+23). According to the instructions with the description
\ of CMC under HISTORY in Subsection II C, the 24th element in the COM1
’ﬁ&‘ array is requested with "COMC24".
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