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ABSTRACT

-'The estimation of the ratio of two independent normal vari-

ances is considered under scale invariant squared error loss

function, when the means are unknown. The best invariant esti-

mator is shown to be inadmissible. Two new classes of improved

estimators are obtained, one by extending Stein (1964) and the

other by extending Brown (1968). Numerical studies are presented

to indicate the percent improvements in risk.

1. INTRODUCTION

Let X.., j 1,...,ni, and n. > 6 be random samples from
independent normal distributions with mean E. and variance a 2

1 1

i - 1,2. We consider the problem of estimation of the variance
2 2

ratio e - O/O 2. In fact, our discussion allows i mediate exten-
sion to more general parametric functions like a 2 where m

01 02 1
and m2 are arbitrary.

This problem is motivated by the work of Stein (1964) and 3jon Tor

Brown (1968). Stein (1964) proved that for a single sample of IRA&I

X.'s, the usual estimator is inadmissible for estimating 02 under 7A8
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the squared error loss by proving an estimator which has smaller

risk (expected loss). Brown considers the more general problem of

estimating a scale parameter in the presence of an unknown

location parameter under bowl-shaped loss leading to a different

class of dominating estimators. In this paper, we extend both the

Stein and Brown arguments to two independent normal populations.

We use the scale invariant quadratic loss function of the form

L(106) - (e -6) 2-2 (1.1)

n. n.
Let n - I (X. . - X.)2 and T. - n- i - 1,2.1 1 j=l j I 1 I I

Then (i1 ,X2 ,Sits 2) is a version of the complete sufficient

statistic for ( a2,o,02

As is well known (Stein, 1964; Brown, 1968), the best scale

invariant estimator (n. + 1) S. is inadmissible for a . under

squared error loss. In Section 2, we pursue further the ideas of

Stein and Brown. Our work there is related to that of Brewster and

Zidek (1974) and Strawderman (1974). Our findings enable us to

develop in Section 3 several estimators of e which dominate

60 W (n2-5)S1/(n 1 +l)S2 , (1.2)

the best invariant estimator of 6 under loss (1.1). A brief

presentation of the results of Monte Carlo simulation to measure

percent improvement in risk is included.

In concluding this section, we argue that if U. a 2 ."

i - 1,2 independent, then 1

- (n -OU /(n +2)U 0.3)
2 1 1 2(132 2

is admissible for e - a1/a 2 under (1.1), provided n 2 
> 5. This

n.

will imply that if It2 are known by taking U. =  E(X.. - .),
j-l I

i = 1,2, the pair (U1,U2) is complete and sufficient for (0 2)
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and 8 is an admissible estimator of the variance ratio. It also

implies that 60 in (1.2) is an admissible estimator of e in the

class of rules based upon (S1,S2).

The admissibility of (1.3) may be argued straightforwardly

from Brown and Fox (1974, pp. 808-810). In particular, letting
2W4 - Iog(U1/U2), V = U2, n = log 8, * = 02 places the joint density

of W and V in their form (3), p. 809. Using the generalized prior

d*/* produces, by elementary calculation, (1.3) as an invariant

Bayes procedure. Their regularity conditions for admissibility

(a) - (d), p. 808, will be satisfied if n2 > 5. (Condition (d),

the most difficult to verify, holds by appealing to Brown (1966,

Theorem 2.3.3, p. 1105).) We remark that if we use a gamna prior

on *, i.e., f ,() - a 0-1 e-o /r(s), the same argument will

produce

n 2 + 20 - 4 U2 + a U1

n1 + 2 U2 U2

as an admissible estimator again if n2 > 5. Thus (1.3)

is seen to be the limit of admissible Bayes as well as generalized

Bayes.

2. IMPROVED ESTIMATORS OF POWERS OF VARIANCE

In this section we study the problem of estimating arbitrary

powers of variance of a normal distribution under the scale invari-

ant squared error loss. Suppose that X1 ,... ,n is a random sample
from N(&,a 2). Although Z(X. - 30)2/(n + 1) is the best estimator of
2 2

a in the class c(X - )2under scale invariant squared error

loss, Stein (1964) showed that for any fixed E09

min(" "n'+ 2  n ) (2.1)

dominates r(X. -)2 /(n+l) under the loss
1 2 2 2 -4

Ma0 , a) (C a) a .(2.2)

3
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In what follows, for convenience we take 0 0 and let

S - ( ) T a nX 2

In estimating a2m , assuming E(S2 ) exists, C l,mSm where

r(O-1 + z)2-

= n-lu 2n is beat in the class cS under the lossr='+ 2m)
2

2m 2m 2 -4m
L(O ,a) (o a) a - . (2.3)

Again, c n 5,mSm is inadmissible under the loss (2.3). Following

Stein's approach, we consider a class of estimators of the form

O(S/(S+T))(S+T)m for 2m where 0(-) is a function from [0,1]

-+ [0,-). Using loss (2.3), the risk of such estimators depends

only upon E2/ 2 (so that without loss of generality, we set a = )

and may be written (e.g., Strawderman (1974), p. 191)

r(!!~A) ) +L+2m)2 2m (r (11 L+m) 2] (2.4)

2 2 ).
where the expectation is over the joint distribution of S/(S+T) and

L, with S/(S+T) having a beta distribution Be(- 1 2L+ ) and L

2 2
having a Poissondistribution with parater nE /2o . Clearly,

Cn+2Lm increases in L for m < 0 and decreases in L for m > 0.

Hence, if B(S/(S+T))(S+T)m = c S , i.e., - ca_ - then
n-l~mn-l,m S+T

one can choose for m > 0, m* = min(O, c, m ) and for m < 0,
B* - max($, cm ). From (2.4) we see that B*(S/(S+T))(S+T)m

nm

dominates cn.l Sm under loss (2.3). We state this result as

Theorem 2.1. For Xi....,X a random sample from N(&,c2 ), in

estimating Om m - (n-)/4 (to insure canl,m finite) under scale

invariant loss (2.3) if

m > 0, min(c n,m(S+T)m , c S ) dominates c n-lm (2.5)

m < 0, max(cn,m (S+T)m, cal,m SP) dominates Cal,msi
m

4



In particular, when a - -1, if n > 5, "ax - -)dmiae

Brown (1968) has created a different type of estimator for

02 (i.e., m - 1) to dominate S/(n+l). In the case of normality, his

estimator takes the form

SI(n+l) if T/S > c (2.6)

a*S if T/S <c

where a* < l/(n+l) and depends on c. In what follows, we give a

convenient expression for a* and relate the Brown and Stein

approaches. Brewster and Zidek (1974, p. 22) look more generally

into the relationship between the Stein and Brown approaches in

the context of dominance of equivariant estimators.

Using (2.4) at m - 1, any estimator of the form

6(S,T) - B(s/(S+T))(S+T) (2.7)

under the invariant loss (2.3) has risk of the form

2S-1]2 2 ( 20)
R(0,6(S,T)) - E[B(-) - (n+2L+2) (n+2L)(n+2L+2) p( Ia,

S+T (2.8)

where P -E2(n +2L +2)-1
By noting that

<S4T >

and defining

ad~a(Y)- (n . 1)- 1 Od(y +a*I d-()

where I is the indicator function, the Brown estimator is

a (-A--)(S+T) (2.9) L
d,a* S+T

i.e., of the form (2.7) with risk as in (2.8).

5



The best choice of a* in (2.9) may be obtained from expression

(6.2) of Brown (1968). After some manipulation, we may write it

explicitly in the form

a* - (nl)- 1 11d(l/2 , 2)/lld(l1/2,--+-) (2.10)

where I (a,b) is the incomplete beta function (see, e.g.,x
Abramowitz and Stegun, 1965). In fact, for our case, we can simplify

the argument in Theorem 4.1 of Brown by considering (2.8) in the

space of (S/(S+T),L). We omit the details.

We note that the Stein improved estimator (with &0  0 O) may

be written in a form similar to (2.6), i.e.,

S/(n+l) if T/S > (n+l)-  (2.11)

(S+T)/(n+2) if T/S < (n+l)
-1

In fact, if we use c - (n+l)- 1 in (2.6), then d = (n4l)/(n+2).

Looking at (2.10) we see that if d is much smaller than (n+l)/(n+2)

A -1
(so that c is larger than (n+1)-'), a is essentially (n+l) and

(2.6) is essentially S/(n+l). But *also if d is larger than (n+l)/(n+2),

i.e., nearly 1, then c is very small, so that we will take a*S

with very small probability and again (2.6) is essentially S/(n+l).

Hence, c in the vicinity of (n+l)- 1 seems best and our numerical

studies support this.

Brown (196?) discusses improved estimation of om for m > 0.

In fact, analogous to Theorem 2.1, we can show

Theorem 2.2. Suppose XI,... ,Xn is a random sample from N(&,o2),

in estimating om , m > -(n-l)/4 under loss (2.3)

c Sm  if T/S > c

(2.12)

a*Sm  if T/s < c
m

dominates cnSl,m Sm in terms of risk, where

6
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5* ---In2m-l n+4m-l) (2.13)

Proof. The proof is essentially that of Brown's Theorem 4.1. When
m < 0 the inequality analogous to his expression (4.18)

is reversed. Notationally we have suppressed the dependence of a
m

upon n and d.
** Ti

Remark 2.1. If m > 0, a < Cn.l, m , if m < 0, am > C- . This
is analogous to using a minimum or maximum according to m > 0 or

m < 0 as in (2.5). Alternatively, the estimators in (2.5) may be

written in the same form as (2.12), i.e.,

Cn-l ,mSm if T/S > Cn l ,m

c m(S+T)m if T/S < cn-l,m

Therefore, the discussion following (2.11) suggests taking c in

(2.12) in the vicinity of Cnl, m*

Remark 2.2. Brown (1968) has considered more generally the
mestimator of a , m > 0, in distributional families when a is a

scale parameter in the presence of an unknown location parameter

under bowl-shaped loss.

3. IMPROVED ESTIMATORS OF THE VARIANCE RATIO

In this section we will show that when the means are unknown,
2 2

the best invariant estimator of the variance ratio e = alio2 is 

inadmissible. We will obtain several improved estimators of 6.

From the notation developed in Section 1, it follows that the

best invariant estimator of e (when the means 1 and t2 are unkncmn)2Y
is (n2-5) S1

60 a n2+l S2 (3.1)
1 2

Theorems 3.1 and 3.2 show that the obvious estimators created either2 -2
by improving upon the best invariant estimator of a2 or of 02

dominates (3.1).

Theorem 3.1. Under the loss (1.1), 60 is inadmissible for

e and is dominated by

7.



S 2n-5 S 1 TI

6 min(6 2) (3.2)
1 0 n1+2 S 2

and

n2-4 S12 1 ). (3.3)
2  22 S2+T 2

Proof. The proof is essentially that of Theorem 2.1 using,

for example, in the first case the fact that S2 follows up to a

constant a central chi-square distribution independent of SI + TI .

Remark 3.1. Theorem 3.1 could clearly be extended to provide
domnatng stiatos fr 2ml 2m2dominating estimators for a1" 2  . We omit the details here.

Taking mi = m2 = 1, we note that for estimators of the form

a (SI/(S +T )) 62(S2/(S2+T2 ))(SI+TI)/(S 2 +T2
) the risk depends only

22 2 2upon / I and C2/a2. So without loss of generality, we may take

2oa 1 and hence 6 - 1. Observing that

S n2-5
61 2 1 25 in((S +T1)/(nl+2),S /(n 

+ 1))

we see that Stein's result is

S 1+ T 1 2 S 1 _ 1 2 VE 1min(I 1 1 E( n-1 1 ) 

while we have added

S1+T1  1  n 2-5 2 Sl n2-5
E{min(- 1) < -(_ 1)2 Cn1 +2 ' n2 2n1 S2  V

Thus we have the following remark.

Remark 3.2. More generally using the same argument as in

Theorem 3.1 and assuming the expectations exist.

S SSlB* 1 )ST 1}2 <E{B(S1 )(S +T1- 1} 2V 1

S +T -11 2 S +T 1 1 11 1 111 ({(-)(I*T)1

if and only if
S1 S12

E(B*( 1+I)(S +T1)h(S 2 ) _1}2 <ET(S-1 )(S+T )h(S ) -1 V
1T1 1 2 S1+T8 1  11 2 1

8
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Similarly

S2  - 2 S2 )(S 1
E{*(- )(S2+T )-1) < E{-(-2 +T 1 -12 2 2 S+T 22

if and only if

2 1 1
S2 h 1(X S2+T2 ) - 1  2 S2 h(SI)(S2+T2) - 1  2 C

Remark 3.3. It is noteworthy that the argument for Theorem 3.1

and Remark 3.2 depends entirely upon using S2 with estimates of the

form 0 (S1 +T)(S I+T ) (or vice versa) rather than using S2 + T2 '

Thus we cannot show, for instance, that the appealing estimator

S I+T1 S1  n2-4 n 2 -5
6 min(- - n max(- * -) (3.4)66 n +2 '"- 1 - $+T2 $2

1 1 22 2

dominates 61, 62 or even 6 We will return to this point later.

With regard to the Brown estimators, we have

Theorem 3.2. Under the loss (.1), 6 0 is inadmissible for 8 and is

dominated by

B I 0 if T1/S 1 > c6 1 a*0l n2-5 ifT/ 1 (3.5)'!{
a*Sl '2 if TI/S < cs 21

and 6 if T2/S > c

2 (=() if < C

where a* is given in (2.10) and a** a 1 in (2.13).

BProof. Consider 6 We may write

B Sl n2-
6 a + (- )(s n -51 d,a* SI)(1 1 S 2

and appeal to Remark 3.2. The argument is similar for 62.B

Remark 3.4. Extension of Theorem 3.2 in the direction of Remarks

2.2 and 3.1 is straightforward. We omit the details.

9
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The estimators 6! and 6B, i 
= 1,2, are not admissible. We

next provide explicit estimators which dominate them. In the

process we clarify the problem of estimation of 8. Suppose that

S B
,,'a 1  el Sl(nl4.l), ciS - (Sl T1)/(nl 2), Cl 2 - a*SI

81 M (n -5)/S 8 a (n2-4)/(S2+T2) a**/S
2 2(n2-5)/S2'2 2

and define regions

A1 - {T1/S1 > (n1+1)-, T2 /S > (n -5)-1

A 1 1 1 2 2 2
A2 ={T1/S1 < (n1+1)-1' T2/$2 > (n2 .7)
A3 {T1/S 1 > (nl+l)-1 , T2/S 2 < (n2-5)-

1
}

A4 = {T1/SI < (n1+l)-
1  T2/S2 2< (n2-5)-}.

Then Figure 1 shows the previously discussed 6's and several

additional ones. In looking at the dominance of 61 over 60P we

can show that is always accomplished on A2 , whereas the situation

is unclear on A4 . Similarly the dominance of 62 over 60 is always

accomplished on A3 , again with the situation on A unclear. The
3 4 '

following theorem gives the dominance results mentioned after

Remark 3.4.

Theorem 3.3. Under the loss (1.1) the following hold:

S S 6B . B6 dominates 6 1 dominates 6153 61'

6 dominates 6 S and 6 B dominates 6
4 2 4 2"

Proof. Immediate from the Lemma 1 of the appendix and the

definition of the 's.

Corollary 3.1. 6 dominates 6 and 6 dominates 60"

Remark 3.5. For the Brown estimators, one can use general Cl, c 2
in defining the Ai's and the above results will go through.

Remark 3.6. The argument in Lemma 1 of the appendix fails on A4

and, in fact, there is no best choice on A4 . For example, the
S. S S

intuitively appealing estimator 66 in Figure I suggests a 2a2 on A4 ,

10



Estimators A1  A2  A3  A4

60  ala 1 1 a 1  a1 1 al 1

SS S1 2 S 2 1

6B aB a a aB I
61 1 1 2 1 1 12 1

S
62 1 221 1 2

2B
6B aB B aB
22 1 2 a1 2

S S s alS63 I 2 1 2 2

B B B63 1l 21 1 2  2

65  Ol 1  52 alB alB s.

45  2lb 21 1  l 2  al 1S S S

66 alB a21 alB a'B

64 11 21 12

B B BB

64 511 2 1 a1a2

6Saa Sa saS

B B B B B

616  a2 a2 1 a12 a262

FIG. 1. Estimators of 0 Defined by Regions

but we cannot show that 6 dominates even 6 However on A4 (sup-

pressing superscripts), a 1 >ct 2  6 1 < 2 implies a2 1  < S and

< < This suggests that al8I will be close to a 6

that is, the performance of 66 will be essentially that of 65 which

does dominate 60. Our numerical studies show that 65 or 66 is near-

ly always best supporting a middle rather than an extreme choice on A4 .

Monte Carlo simulations were performed to obtain risks for the

estimators in Figure 1. 10,000 replications were used. The per-
S S Scentage improvements in risk with respect to 60 for 63, 64, 65,

6 6B, 6B, 6B, 6B are given in Table I for the case nI  n 2 = 10,2 2 1 5 6 2 2
2 =2 =1'and a range of 2 2. As expected the performance of

66 is close to that of 65 although generally a bit better. The



percent improvements are small and become smailer with increasing n..
C. 1

However they are greater than those observed by Brown (1968). His

brief numerical study shoved for a single variance under squared error

loss a maximum improvement of 1 to 2%. For a variance ratio we are

able to roughly double this. Moreover, the simplicity of the

Stein estimators encourages their use particularly for small nl,n 2.

TABLE I

Percentage Improvements in Risks*over 60"

nI W n 2 -10

2 s B B B
(&1&2 3 64 65 6 3 64 65 66

(0,0) 2.0 4.0 2.9 4.1 2.0 3.5 3.0 3.5
(0,.0l) 2.1 4.0 3.1 4.0 2.0 3.8 3.0 3.7
(0,.1) 1.5 3.2 2.5 2.9 1.7 3.5 2.6 3.3
(0,1) 0.3 0.6 0.4 0.4 0.5 0.8 0.6 0.7
(.01,0) 2.5 4.0 3.2 4.2 2.4 3.4 3.2 3.6
(.01,.o) 2.2 4.1 3.1 4.0 2.0 3.9 3.0 3.7
(.01,.1) 1.6 3.4 2.4 3.1 1.8 3.5 2.6 3.3
(.01,1) 0.4 0.7 0.6 0.6 0.5 0.9 0.6 0.7
(.1,0) 3.5 4.1 3.9 4.3 2.9 3.3 3.4 3.5
(.1,.01) 3.3 4.0 3.8 4.2 2.8 3.6 3.4 3.7
(.l,.l) 2.6 3.0 3.2 3.3 2.7 3.3 3.2 3.4
(.1,1) 0.8 1.0 0.9 0.9 0.8 1.0 0.9 0.9
(1,0) 3.1 3.0 3.1 3.0 2.4 2.3 2.3 2.3
(1, .01) 2.9 2.8 2.8 2.9 2.7 2.5 2.6 2.6
(1, .1) 2.2 2.2 2.2 2.2 2.4 2.4 2.4 2.4
(1,1) 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4

*The largest sample standard error over all the 128 percentagc

improvements was less than .2.

APPENDIX

Lemma 1. Under the notations in (3.7) with a2 either aS oraB and
S B 2

82 either 02 or 8 2 the following inequalities hold:

(i) EIAUA (a 211)2 < EIA (l1-) 2 V&
A A 2 1 A AUA 1 112 4 2 4 (A.1)

2 12
* EIA (a 2B-1) < EIA (a I1-1)2

222
2 14ag- ) 2  V&2

(ii) El A (8-1)2 El (a 8-IA3V
A 3 UA 4 a1 2-l - A3 U A4 11- 2

' I E (a 8 2 -1 ) 2 < I (a 1 -1 ) 2 V C 2

3 3

12
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Proof. Simple calculation shows that (A.1) is equivalent to

EIA 222(a 2-a2 ) > 2EIA (A -a2)" (A.3)
A 2 kA 4 l1 1 2 - A 2 tA 4 1 1 2

Note that on A2 L)A4 , a1  a2. Thus (A.3) becomes

f (aI- a2 )da1 da2

212 d < E(82)/2E(O1)
f (a-c 2 )dada2

a1>02

We need only show that

E(O 2 ) < E( 2 IT2/S2 > (n2-5)1  (A.4)
1 1 (A.4)__ __ __ __ _

E(- 1 ) E(IIT 2/S2 > (n 2-5)1)

Define the density p(s2 ) of S2 by

(s2)X22(s)

p(s) 2 - 2
2 f 11(s 2)X2_(s2 )ds2

Then for each fixed t taking expectations w.r.t. the pdf P(s2) ,

one gets
E p( )Ep[I(0,(n2_5)t)] < Ep [8 1(0,(n2 5)t2)] (A.5)

Taking expectations over t2 of both sides of (A.5) and simple

manipulation yields (A.4). The proof of (A.2) is similar.
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under scale invariant squared error loss function, when the means are unknown. The
best invariant estimator is shown to be inadmissible. Two new classes of improved
estimators are obtained, one by extending Stein (1964) and the other by extendingBrown (1968). Numerical studies are presented to indicate the percent improvements

in risk.
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