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ON THE ESTIMATION OF A VARIANCE RATIO

Alan E. Gelfand and Dipak K. Dey

Key Worde and Phrases: variance ratio; loss fumction; invariance;
adniseibility; inadmissibility.

ABSTRACT

~ The estimation of the ratio of two independent normal vari-
ances is considered under scale invariant squared error loss
function, when the means are unknown. The best invariant esti-
mator is shown to be inadmissible. Two new classes of improved
estimators are obtained, one by extending Stein (1964) and the
other by extending Brown (1968). Numerical studies are presented
to indicate the percent improvementb in risk. <

1. INTRODUCTION

Let xij’ j= 1,...,ni, and n, > 6 be random samples from
independent normal distributions with mean {i and variance oi,
i =1,2. We consider the problem of estimation of the variance

ratio 6 = oi/og. In fact, our discussion allowsmimmediate exten-
sion to more general parametric functions like 01102 » where m

1
and m, are arbitrary.

This problem is motivated by the work of Stein (1964) and
Brown (1968). Stein (1964) proved that for a single sample of

. .. I . . 2
Xi's, the usual estimator is inadmissible for estimating ¢~ under
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the squared error loss by proving an estimator which has smaller

risk (expected loss). Brown considers the more general problem of
estimating & scale psrameter in the presence of an unknown
location parameter under bowl-shaped loss leading to s different
class of dominating estimators. In this paper, we extend both the
Stein and Brown arguments to two independent normal populations.

We use the scale invariant quadratic loss function of the form

L(8,8) = (o - §)%672, (1.1)

n. n,
let X, = n.1 t* X.., 5. = IMx,. - X.)zand T. = n.x?, i=1,2.
i i, ij i . ij i i i1
j=1 j=1
Then (il,ié,sl,sz) is a version of the complete sufficient

statistic for (El,Ez,oi,og).

As is well known (Stein, 1964; Brown, 1968), the best scale

invariant estimator (ni + 1).1 Si is inadmissible for oi under

squared error loss. In Section 2, we pursue further the ideas of
Stein and Brown. Our work there is related to that of Brewster and
Zidek (1974) and Strawderman (1974). Our findings enable us to

develop in Section 3 several estimators of 6 which dominate

60 = (nz-S)SI/(nlﬂ)S (1.2)

2 ?
the best invariant estimator of 6 under loss (1.1). A brief
presentation of the results of Monte Carlo simulation to measure
percent improvement in risk is included.

In concluding this section, we argue that if Ui v Oixi.,

i = 1,2 independent, then 1

§ = (n2-4)01/(n1+2)02 (1.3)
2
is admissible for 6 = Oi/O2 under (1.1), provided n, > 5. This
ni 2
will imply that if £ ,E_  are known by taking U. = I'(X.., - £.),
1’72 i j=1 ij i

i =1,2, the pair (UI'UZ) is complete and sufficient for (Oi,og)
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and § is an admissible estimator of the variance ratio. It also ‘

implies that 60 in (1.2) is an admissible estimator of 6 in the ;

class of rules based upon (sl.sz). Tf

The admissibility of (1.3) may be argued straightforwardly ﬁ

from Brown and Fox (1974, pp. 808-810). 1In particular, letting 2

W= log(UI/UZ), Ve Uz, n=1log 6, ¢ = Ui places the joint density ﬁ

(]

of W and V in their form (3), p. 809. Using the generalized prior s

d¢/¢ produces, by elementary calculation, (1.3) as an invariant 5

v

Bayes procedure. Their regularity conditions for admissibility i

(a) - (d), p. 808, will be satisfied if n, > 5. (Condition (d),

W
X]

the most difficult to verify, holds by appealing to Brown (1966, m

Theorem 2.3.3, p. 1105).) We remark that if we use a gamma prior :ﬁ
- - U

on ¢, i.e., fcl B(d>) = of ¢8 1 e °¢/F(B), the same argument will s

’

produce o

n, + 28 - 4 U2 +a . Hl (1.4} %

- n, + 2 02 U2 3
as an admissible estimator again if n, > 5. Thus 1.3) 3

'

is seen to be the limit of admissible Bayes as well as generalized ‘

Bayes. z
2. IMPROVED ESTIMATORS OF POWERS OF VARIANCE %
‘ In this section we study the problem of estimating arbitrary ff
'

{ powers of variance of a normal distribution under the scale invari- b

[
! ant squared error loss. Suppose that xl,...,xn is a random sample :
from N(&,OZ). Although Z(Xi - i)zl(n + 1) is the best estimator of i'
/ 0 in the class cZ(Xi - i)z under scale invariant squared error -
loss, Stein (1964) showed that for any fixed 50, b
0(x, - €)% 1(x, - 02 -
min| —2——9 1 (2.1)
n+2 : n+1l :

dominates X(Xi - i)zl(n+1) under the loss X
- N
L(2,a) = (0% - &)%07%, (2.2) 3
3
3
|:‘;
l‘:,
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In vhat follows, for convenience we take EO = 0 and let
s =1x; - O, 1o,
In estimating ozm, assuming E(Szm) exists, €-1 mSm where

r(E= + m)2™

c__ = is best in the class c¢S" under the loss
o-l,m rEL 4 om)

L(ozm,a) = (o2m - a)2 o-am. (2.3)

Again, cn-l,msm is inadmissible under the loss (2.3). Following
Stein's approach, we consider a class of estimators of the form
B(S/(S+T))(S+T)™ for °2m vhere 8(+) is a function from [0,1]

+ [0,»). Using loss (2.3), the risk of such estimators depends
only upon 52/02 (so that without loss of generality, we set 02 = 1)
and may be written (e.g., Strawderman (1974), p. 191)

2 TG sL+2m)22® T *l+m) |2

) - (2.4)
n+2L,m r(% + 1) - r(% +L+2m)2"

S
1+ E[(B(ﬁ) -c

where the expectation is over the joint distribution of S/(S+T) and

L, with S/(S+T) having a beta distribution Be(Egl, Z%:l) and L

having a Poissondistribution with parameter n§2/202. Clearly,

c increases in L for m < 0 and decreases in L for m > 0.
n+2L,m

Hence, if B(S/(S+T))(s+T)" = ¢ s” i.e., B=c

(=)™, then
n~1l,m

S+T
one can choose for m > 0, B* = min(B, . m) and for m < 0,

g% = max(8, < m). From (2.4) we see tha; g*(S/(S+T)) (s+T)"

n-1,m

dominates ¢ _, mSm under loss (2.3). We state this result as
]

Theorem 2.1. For X,,...,X_ a random sample from N(E,Oz), in
—_—— 1 n

estimating 6", m > - (n-1)/4 (to insure €o-1.m finite) under scale
]

invariant loss (2.3) if

. o m . m
m> 0, m1n(cn’m(S+T) , cn-l,ms ) dominates h-1,m° (2.5)

m m 3 o
m<0, max(cn’m(s+'r) , cn-l,ms ) dominates cn-l,ms"



n-4
S+T* 8§

In particular, vhen m = =1, if n > 5, max(T—= n-S) dominates

(n-5)/8.
Brown (1968) has created a different type of estimator for

02 (i.e., m = 1) to dominate S/(n+1). In the case of normality, his

estimator takes the form

s/(n+1) if T/S > ¢
ax*s if T/s < ¢

(2.6)

where a* < 1/(n+l1) and depends on ¢. In what follows, we give a
convenient expression for a* and relate the Brown and Stein
approaches. Brewster and Zidek (1974, p. 22) look more generally
into the relationship between the Stein and Brown approaches in

the context of dominance of equivariant estimators.

Using (2.4) at m = 1, any estimator of the form

6(s,T) = B(S/(S+T))(S+T) (2.7)

under the invariant loss (2.3) hés risk of the form

R(& 6(5,T)) = EIB(ED) - (ne2Le2) 112 (av2L) (me21e2) + p(e2/0?),

(2.8)
where p = E2(n + 2L + 2)"
By noting that
> S
T/S _ c & T > N (1+c)
and defining
-1
= *
Bd’a*(y) (n +1) I(o’d)(y)y + a I(d,n)(y)y
where I is the indicator function, the Brown estimator is
S
By ax (G (S*D) (2.9)

i.e., of the form (2.7) with risk as in (2.8).

e 5 B
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The best choice of a* in (2.9) may be obtained from expression :EE

) (6.2) of Brown (1968). After some manipulation, we may write it :ﬁ
explicitly in the form at
"

o = (o) 12, By g2, B (2.10) .g

(X

where Ix(a,b) is the incomplete beta function (see, e.g., ;&
Abramowitz and Stegun, 1965). 1In fact, for our case, we can simplify &i
the argument in Theorem 4.1 of Brown by considering (2.8) in the s%
space of (S/(S+T),L). We omit the details. ;&

We note that the Stein improved estimator (with & = 0) may %i

be written in a form similar to (2.6), i.e., o
S/(n+1) if T/5 > (n+1)} (2.11) g'g

(5+4T)/(n+2) if T/S < (n+1)7} !'vf

In fact, if we use ¢ = (n+1)-1 in (2.6), then d = (n+1)/(n+2). ?
Looking at (2.10) we see that if d is much smaller than (n+l)/(n+2) {:
. (so that ¢ is larger than (n+1)-1), a* is essentially (n*l)-? and "s

(2.6) is essentially S/(n+1). But also if d is larger than (n+1)/(n+2), -%i
i.e., nearly 1, then ¢ is very small, so that we will take a*$ :3
with very small probability and again (2.6) is essentially S/(n+l). ;Q
Hence, ¢ in the vicinity of (n+1)-1 seems best and our numerical f_

studies support this. %

Brown (1968) discusses improved estimation of o” for m > 0. &:

In fact, analogous to Theorem 2.1, we can show o
Theorem 2.2. Suppose xl,...,xn is a random sample from N(E,oz). »
in estimating om, m > -(n~-1)/4 under loss (2.3) t

cn_l’ms'II if T/s > ¢ Ef‘

. (2.12) :;

a " if T/s <c -

. m . .
dominates Ch-1.o5 1in terms of risk, where
’
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Y n+2m-1 n+4m-1
8" Coopg N-a(V/2, /1,072, =) (2.13)

Proof. The proof is essentially that of Brown's Theorem 4.1. When
m < 0 the inequality analogous to his expression (4.18)

*
is reversed. Notationally we have suppressed the dependence of a
upon n and d.

* 3
Remark 2.1. If m > O, s < cn-l,m a-1,m’ This

is analogous to using a minimum or maximum according to m > O or

. *
, ifm<0, a >c¢
m

m < 0 as in (2.5). Alternatively, the estimators in (2.5) may be
written in the same form as (2.12), i.e.,

s if T/sS > ¢

cn—l,m n~1,m

m .
cn’m(S+T) if T/S < -1,m .

Therefore, the discussion following (2.11) suggests taking ¢ in

(2.12) in the vicinity of ¢ .
n-1,m

Remark 2.2. Brown (1968) has considered more generally the
estimator of om, m > 0, in distributional families when o is a
scale parameter in the presence of an unknown location parameter

under bowl-shaped loss.

3. IMPROVED ESTIMATORS OF THE VARIANCE RATIO

In this section we will show that when the means are unknown,
the best invariant estimator of the variance ratio 6 = of/og is
inadmissible. We will obtain several improved estimators of 6.

From the notation developed in Section 1, it follows that the

best invariant estimator of 6 (when the means El and &2 are unknown)

18 (n2-5) S1
60 = nl*l §; . (3.1)
Theorems 3.1 and 3.2 show that the obvious estimators created either
2

by improving upon the best invariant estimator of oi or of o;

dominates (3.1).

Theorem 3.1. Under the loss (1.1), 60 ie inadmissible for

8 and is dominated by

T AV 0n 12"t a1 %20 0" R R O MR RO S C U U R PR R W N LR AR AP
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a,-5 S,+T

s . 2 171
61 - nzn(éo, =3 S ) (3.2)
1 2
and
n.-4 S
S 2 1
6. = max(§,., ). (3.3)
2 0 n1+1 82+T2

Proof. The proof is essentially that of Theorem 2.1 using,

for example, in the first caselthe fact that S, follows up to a

2
constant a central chi-square distribution independent of Sl + Tl'
Remark 3.1. Theorem 3.1 could clearly be extended to provide

2m; , 2m2

dominating estimators for % /02 We omit the details here.

1 = m, = 1, we note that for estimators of the form

31(51/(51*T1)) g, (s /(82+T2))(SI+T1)/(82+T2) the risk depends only

2
2,2
2/02

Taking m

upon 5%/0? and § . 8o without loss of generality, we may take

oi = ] and hence 6 = 1. Observing that

n,-5
S .
8, ; mln((sl+T1)/(n1+2),Sll(n1+1))
we see that Stein's result is
S,+T S 2 S
. 171 1 1 2
E{mln(;—:i— s ;—:T) -1} < E(n +1 1) Vgl
1 1 1
while we have added
S,+T S n,-5 S n.-5
. 171 1 2 2 1 2 2
E{min( , ) -1} < E( - 1) v,
n1+2 n1¢1 S2 n1+1 S2 1

Thus we have the following remark.

Remark 3.2. More generally using the same argument as in
Theorem 3.1 and assuming the expectations exist.

E(BM(lo)(5 +T) - 1) < E(BGebo)(s.+1.) - 137 vt
S, +T 171 - S,+T 171 1
171 171
if and only if
Sy 2 S 2
E{B*(E_:T_)(sl+Tl)h(SZ) -1} :ﬁ{ﬁ(g-:i—)(81+T1)h(Sz) -1} vgl

171 17
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Similarly - ¢
]
S S ~
2 -1 2 2 -1 2 o
Y G- - . - A
! E{g*(g377)(5,+T,) 1} < E{B(g=7)(5,+T,) 117 ve, N
3 2 72 2 72 N
if and only if 3
5, h(sl)(s‘,!vrz)'1 2 s, h(Sl)(Sz'*'l‘z)-l 2 N
E{8*( ) -1} <E{B( ) -1} | [
sz+'r2 n1+l szﬂ‘2 n1+1 2 X
" a
; Remark 3.3. It is noteworthy that the argument for Theorem 3.1 N
H and Remark 3.2 depends entirely upon using S2 with estimates of the r
s
1 . .
—=)(S .
form 81(81+T1)( 1+T1) (or vice versa) rather than using S, + T, :
Thus we cannot show, for instance, that the appealing estimator h
S, +T S n, -4 n, -5
S _ . .11 1 2 2 &
&) = min( , ) max( , ) (3.4) t
6 n1+2 n1+1 SZ+T2 S2 2
A
dominates Gf, ég or even 60. We will return to this point later. :f
) With regard to the Brown estimators, we have %)
Theorem 3.2. Under the loss {(1.1), 60 is inadmissible for 6 and is
dominated by
) 7 if T./s. > ¢
3=9 °  nss 1l (3.5)
a*s_ - if T./S, < ¢
S 1'71
2 (a8
and . :'
60 if T2/S2 >c N
B S 7
§, = ¢ ak* 1 . (3.6) ~
— (=) if T, /S, < ¢
n1+1 82 22 F.
*
where a* is given in (2.10) and a** = a_, in (2.13). N
"™
Proof. Consider 6?. We may write f:
] n_-5 gt
B _ 1 2
8) = By, a% (G377 (5,*T))
171 2 T
and appeal to Remark 3.2. The argument is similar for Gg. :;
Remark 3.4. Extension of Theorem 3.2 in the direction of Remarks ”‘
~ {

2.2 and 3.1 is straightforward. We omit the details.
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The estimators 6i and 6:. i=1,2, are not admissible. We

next provide explicit estimators which dominate them. 1In the
process we clarify the problem of estimation of 6. Suppose that

= (SI+T1)/(n1+2), o = aws

- S
a; Sl/(n1+1), a 2 1

2
B, = (n,=5)/S,, B> = (n,-4)/(5,+T,), B> = awv/s
1 2 2’ "2 2 2 727 "2 2
and define regions

1

Al = {'rlls1 > (n1+1)"1, 'rz/s2 > (nz—s)'

-1 -1
A, = {Tl/s1 < (n1+1) , 'r2/s2 > (n2-5) }
(nz-S)-l}

(nz-S)-l}.

(3.7)

A

-1
Ay = {T1y/8, > (n;+1) 7, T,/8,

A
A

-1
Ab {T1/s1 (n1+1) , T2/82

Then Figure 1 shows the previously discussed §'s and several

additional ones. In looking at the dominance of &, over 60, we

can show that is always accomplished on A, whereat the situation
is unclear on AA' Similarly the dominance of 62 over 60 is always
accomplished on A3, again with the gituation on A& unclear. The
following theorem gives the dominance results mentioned after
Remark 3.4.

Theorem 3.3. Under the loss (1.1) the following hold:

Gs dominates ds GB

. B
3 1 & dominates 61,

S . S B . B
64 dominates 62 and 6& dominates 62.
Proof. Immediate from the Lemma 1 of the appendix and the

definition of the 6's.

Corollary 3.1. 6? dominates 60 and 6? dominates 60.

Remark 3.5. For the Brown estimators, one can use general ¢

[

17 72

in defining the Ai's and the above results will go through.

Remark 3.6. The argument in Lemma 1 of the appendix fails on A4
and, in fact, there is no best choice on AA' For example, the

intuitively appealing estimator Gg in Figure 1 8suggests agsi on A,

10
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FIG. 1. Estimators of 6 Defined by Regions :k
&
but we cannot show that Gg dominates even 60. However on A& (sup- E:i
. . . . e
pressing superscr1pts), al>a2, 81<52 implies a261<0181<a182 and qa
a8 < ayBy < ayBy: This suggests that 0181 will be close to a8, s
that is, the performance of 66 will be essentially that of 65 which ]
does dominate 60. Our numerical studies show that 65 or 66 is near- :j
\l
ly always best supporting a middle rather than an extreme choice on A“. :}
Monte Carlo simulations were performed to obtain risks for the {j
estimators in Figure 1. 10,000 replications were used. The per- .
. S S S )
centage improvements in risk with respect to 60 for 63, 6“, 65, ?
~
52, 53, 52, ég, 52 are given in Table I for the case n, =n, =10, E
hms.
oi = oi = 1 and a range of Ef, 55. As expected the performance of
66 is close to that of 65 although generally a bit better. The ?:
' A
.2
AL
11 .
¢ o
N
\d'

NP . o e e el e e e e e e e s e e e e e e N e e e e et
A S AT SN N TN RN N IPEI N I N I S T S A A P S N N N P I A N NG AT



percent improvements are small and become smaller with increasing n..

However they are greater than those observed by Brown (1968). His
b brief numerical study showed for a single variance under squared error
loss a maximum improvement of 1 to 2%. For a variance ratio we are

sble to roughly double this. Moreover, the simplicity of the

Stein estimators encourages their use particularly for small n,,n,.

TABLE 1

Percentage Improvements in Risks®over 60

n = 10

1

L] .
WNWOWOWOVWWNWAFOMNMP,PVOION N

2 .2
(£1.87) 8

(0,0)
(0,.01)
0,.1)
(0,1)
.01,0)
.01,.01)
.01,.1)
.01,1)
.1,0)
.1,.01)
.1,.1)
.1,1)
(1,0)
(1,.01)
(1,.1)
(1,1)

O

WNOOOODOHIYPMOONOO IO
O

rP P NP DN BONPROPNUOO |
O

l\bub'owow\ou\oboommu .
O

O
l\bobob\lu\nuum\nuﬂm [- .}

.
.

PN N NN NN TN N

ONMNWONWWORNPNDOEHNN
L’NOHQGWU‘#O\NWWUHO w v
oNMNWHRWEIPOWRDOWES
ONMNWOWWWOMNMWWONOWLN
.U)Nm'-'\DNQ\OG\J-\HNJ-\U'H\D v
ONNWOWSTITFEOWETPFONMES
ONMNPDNONBNRMNOEEBMNMDMNOMMNDN
ONPMNMNNFHFWWWOWWWOWWW
ONPNPNNOWWWONWWOMNWW
rProwoNnNbPPrOoOONMOOOO |V
ONRNMNMNOWWWOLWLWWLODWLWW

*The largest sample standard error over all the 128 percentage
improvements was less than .2.

APPENDIX
Lemma 1. Under the notations in (3.7) with a, either ug or ag and

82 either Bg or Bg, the following inequalities hold:

: 2 12
(1) EI, j, (0,8,-1)" <EL, (a,8,-17 v&,
274 24 (A.1)
2 2
g EIAz(azBl-l) < EIAz(ule1 1) vE,
Gii) EI,  ,(e8,-D? <EI, , (a,8,-1)% v :
A UM 72 = Fta,ua, 10 2 he
3V % 3Y% (A.2)
2 2 '
4 EIA3(0182-1) < EIA3(°181 1) Ve,
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Proof. Simple calculation shows that (A.1) is equivalent to
EI 82 (a2-a?) > 2E1 8, (a,-a,). (A.3)
A2\)A4 1'%17%2 AZKJA“ 171 2
Note  that on A,yA,, @, > a,. Thus (A.3) becomes

[ (a,- a )du da
1
>02

S (ul-a )da,da

u1>u2

We need only show that

2 2 -1
E(8))  E(B]{T,/8, > (n,-5) )

E(e) ~ _ey-1
1 E(81|T2/82 > (n,-5)"")

a 2
1

2
< E(8])/2E(B,).
2

(A.4)

Define the density p(sz) of 5, by

Bl(sz)xiz_l(sz)
p(sz) = 3
fBl(sz)xnz_l(sz)ds2
Then for each fixed tz, taking expectations w.r.t. the pdf p(sz),
one gets
E (B )E [1(0 (n —5): )] E [e 1(0 (n,-5)t, )] (A.5)

Taking expectations over t, of both sides of (A.5) and simple

manipulation yields (A.4). The proof of (A.2) is similar.

ACKNOWLEDGMENT

The authors acknowledge John Judge and Brad Carlin for
performing the computations.
_The research was supported in part by the University of

Connecticut Regearch Foundationm.

BIBLIOGRAPHY

Abramowitz, M. and Stegun, I. (1965).
Functions 1. New York: Dover.

Handbook of Mathematical

13

- N o "y > 1 W ~ 2l R TL AN ’.V\_ \\i\k‘h‘-
J‘y‘-‘.‘- 4 N p -u’, q.. B WIS, |. RO AL '»“!'. " o * “ 2,

o,

L. - -,

2%

Lo i) v to o w0

[l Al L <y

o T )

L B

LI Py Yo LI



J
f.
“‘
~l
'l
0
4
Brewster, J. F., and Zidek, J. (1974). Improving on Equivariant
Estimators. Ann. Statist. 2, 21-38. S
' Brown, L. D. (1966). On the Admissibility of Invariant Estimators {
of One or More Location Parameters. Ann. Math. Statist., 37, ]
1087-1136. 2
g
Brown, L. D. (1968). Inadmissibility of the Usual Estimators of gj
Scale Parameters in Problems with Unknown Location and Scale 4
; Parameters. Ann. Math. Statist., 39, 29-48. o
- {
f W
d Brown, L. D. and Fox, M. (1974). Admissibility in Statistical p
Problems Involving a Location or Scale Parameter. Ann. e
Statist. 2, 807-814. \

PR %

Stein, C. (1964). Inadmissibility of the Usual Estimator for the
Variance of a Normal Distribution with Unknown Mean. Ann.
; Inst. Statist. Math., 42, 385-388.

Strawderman, W. E. (1974). Minimax Estimation of Powers of the
Variance of Normal Population. Ann. Statist., 2, 190-198.

2
P e e

A

4
o

v

¥

"‘" '," 5, A " -~ ?j‘ i;‘ Pl g

PO X RN S

14

P o 45 huad

- »
A AT LA LA A

- - L] - - » L] . "
“Ll‘ll‘t.l.l ‘.c W “l -"‘- '.I“ o‘\" NS A UMY .- L iR 0 0F, U0 e Ui



DUCLASSIFIED
JECUMTY CLASHPICATION OF THID PAGE (When Daro Briwed

REPORT DOCUMENTATION PAGE srrAP BsTRVCTIONS
¥ AEFoAT wuusln SOVT ACCEsBioN n} T RECIPIENT D CATALO® NUNBER
403 '
& MITLE (and Subueie) ] S TYPE OF REPOART § PEMIOD COVERLD
On The Estimation Of A Variance Ratio TECHNICAL REPORT
. . PERFOMMNG ORG. ATPORT NyUNSER
VA LT) 1)
Alan E. Gelfand and Dipak K. Dey N00014-86-K-0156
V. PERFORMING ORGANITATION NAME ANO ADORESE . RAN SN Y. PROJECT,
Department of Statistics M.sa. PORK UmT mo‘ﬁs
Stanford University NR-042-267
Stanford, CA 94305
1. CONTROLLING OFFICE NAME ANO ADORRSS 3. AEPORT DATS
Office of Naval Research April 6, 1988
Statistics & Probability Program Code 1111 - > '1':'“' oF Passs
(TS WONTYORING AGENTY NANE & ADOAEIKIT Gitiorent ui Conmolitng Ofes) | 15. SECURITY CLASL (of e reper®
’“. ) UNCLASSIFIED

e g:! ASHIPICATION/ DOUNGRADING
Nkﬂk. ' ° -

1e. OISTRISUTION STATEMENT (of this Repert)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

-

7. ISTRIBUTION STATEMENT (of the sbeirect sntered in Block 30, i differant frem Repery)

18 SUPPLENENTARY NOTES

Partial support from University of Connecticut Research Foundation.
£ e

19. XEY POROE (Continue on reverse side M nosossary and ibumitly iy biosk sunbes)

Variance ratio; loss function; invariance; admissibility; inadmissibility.

38. ABSTRACY (Continue an roveree oide N necoseary and isatily by Mock mmbeg)

The estimation of the ratio of two independent normal variances is considered
under scale invariant squared error loss function, when the means are unknown. The
best invariant estimator is shown to be inadmissible. Two new classes of improved
estimators are obtained, one by extending Stein (1964) and the other by extending

Brown (1968). Numerical studies are presented to indicate the percent improvements
in risk.

OD ,%onss 1473  coimion of ' uov 62 10 oesoLete
8/0 0102:-014- 0401, 15

Ry N Uy




A LR I N A R A R R A R A N A O R RPN Y A UM K R L U R AN RN R N N K A AN U LT WU IR R

B - "';U ol

T

S5 Sl by

N
m

[

L

oy

A
.
N
)
&

Bl T g

N

g 5

oL

-,

<oC

N
M~
X
“v
%

WP IEMT e : ; ; 2
oAl IO

() 0y 1

B T AR~ XA N o

-




