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A NOTE ON PROFILE LIKELIHOOD, LEAST FAVOURABLE FAMILIES
AND KULLBACK-LEIBLER DISTANCE

Robert Tibshihani and Larry Wasserman

SUMMARY

- ,) We consider several methods for reducing high dimensional models to one dimen-

*O sional models for the purpose of simplifying likelihood inferences. The equivalence

between these methods is investigated.

Some Key Words: nuisance parameters, likelihood, exponential families.
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1. INTRODUCTION

Consider a statistical model r consisting of a class of densities {f(xJ1q)} where
.%i

.n e 92 c Rk is a vector-valued parameter of dimension greater than one. Often we are

interested in a real valued function 0O(ij). Many useful inferential techniques involve .---o- F7or

3RA&I
the log-likelihood function defined by AS

ji-ac ed

LI1) =a + log(f(xi I T))

.4 where x1 ,x2 , • . ,x, are independent observations from the true density and a is an arbi- rtbution/
tlability Codes

trary real constant which, for convenience we shall take to be zero. In general, a one- Avail an/or
015.ts Special

01:
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dimensional likelihood function is not available for the parameter of interest 9. The

problem of constructing such a likelihood function is discussed at length by Kalbfleisch

and Sprott (1970).
..

The method that we discuss here for dealing with this problem is to strategically

choose a sub-family of densities from r indexed by 0. We then construct a likelihood

function based on the new reduced model. Specifically, let re = {f(x IO)} denote the

reduced model. (When convenient, F will also refer to the corresponding curve in the

parameter space 0). We then take L(0) = log(f(xi 10)). (Unqualified sums are to be

taken from i= l to n).

We shall consider several such techniques for choosing r0 and investigate certain

equivalences between them. We note that some of the methods of model reduction that

we discuss were originally proposed for reasons other than constructing likelihood func-

tions.

2. DEFINITIONS

The first reduction technique we consider is used to construct the profile likelihood (see

Kalbfleisch and Sprott, 1970). Let f(x 10) be the density which maximizes the probability

of the observed data subject to O(i) = 0. This defines a family indexed by 0 which we

will denote by FPL. The resulting log-likelihood function will be denoted by LPL(0).

4V Note that LPL(0) passes through the global maximum of LQ1).

Another method of defining a one parameter family is what Stein (1956) calls the

"least favourable family" given by

T1(r) =I +j'V(T)

ONO
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where I; is the observed Fisher information at il and VO(l) is the vector whose ith com-

ponent is 0/o-ih. This traces a straight line through i having direction 1-1 VO(71).

Denote this family by Fs and the corresponding log-likelihood by LS(0). This family

has the property that the observed Fisher information for 0 is the same as in the full fam-

ily f(x Il ) (Stein, 1956). Furthermore, any other (linear) sub-family through 11 has

greater Fisher information for 0. (Note that Stein used expected information in his

definition. Here we follow Efron (1984) and use the observed information).

Still another reduction method is employed by Efron (1981,1984) for the purpose of

constructing confidence intervals in multi-parameter and non-parametric settings. Let

co = {n : o() = Oo},

the level surface of constant 0. Efron selects the value of 1 from Coo such that the

Kullback-Leibler distance

K(Ti,T) = ff(x I ̂)log(f(x I TI)/f(x I il))I(dx)

is minimized, where g is a dominating measure for the family r. As 00 varies, this

defines a one parameter family. Since Kullback-Leibler distance is not symmetric, one

can create a "forward" or "backward" family using K(TII) or K(TI,Ti), respectively. The
.p ,-,j

corresponding families will be denoted by rF and rf and their log-likelihoods by LF(o)

and LB (0).

In section 3 we find the directions of the families at Ti. Conditions under which the

families are equivalent will be derived. In section 4 we consider two examples.

I-U

".4%
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S3. LOCAL EQUIVALENCE OF FAMIIES

The directions of the families can be found using the following lemma.

Lemma: Let g: Rk - R be three times differentiable with invertible Hessian V2g and

global minimum at Ti e Rk. Let e: Rk -+ R be continuously differentiable with non-zero

gradient on a neighbourhood of i. Define a curve c(t) implicitly by

" g(c(t)) m- min g(il)
C'

where Ct= {1: 0(71) t} and let c(to)=Tj. Then

D(c(t)) I = dc(t) It,
dt

where

X0= [v(()(V 2 g(r))- IV I

Proof: First note that c(t) is differentiable by the implicit function theorem (Spivak,

1965, p. 41). Now, since c(t) is defined as a minimum we have (using Lagrange multi-

pliers)

Vg(c(t)) = XMt)V(c(t)).

Differentiation with respect to t gives

(V2 g)D(c(t)) = X(t)(V 2 e)D(c(t)) + ).',(t)V0

where V2 h is a matrix with i,j th entry d2h/dT1jiTj for a function h. Evaluating this

0. : expression at to gives the form of D(c(t)) Iho. (Note that X(t) = 0 at t = to). The constant

,.-~

- is determined by differentiating the Lagrange equation with respect to X then t.

Now let D, be the direction vector of a particular family at Ti where a = PL,S,F or B

to indicate the appropriate family. We have

V
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Theorem: DPL D S = a= -)I-' VO(i) andD F  = a(i 1)i;l VO(11) where

cx(A)=[( (T)A'(Or) .

Proof: The direction of r is (I-Xve)a 0 which equals a(I;)I1V8(r) since

d_/a0 = c(I;). The direction of 17L follows from the lemma by taking g to be minus the

log-likelihood and assuming the usual regularity conditions. The directions of FE and

-F are obtained by noting that to second order terms

K(rl,rl) = K(Tl,11) = -1rj - 1)'i^ (71 -rI)2 T

(see Kullback (1959, p. 28)). Applying the lemma yields the result.

Therefore Stein's family and the profile likelihood family are locally equivalent as

are the two Kullback families. A sufficient condition for i;=I^ is that the model be a

member of the exponential family. Hence in this case all four families are locally

- equivalent. It can also be shown, using Hoeffding's lemma (Efron, 1978) that in the

exponential family, the profile family and the forward Kullback family are globally

equivalent.

Outside of the exponential family, I and i^ are in general different; their difference

can be expressed as a function of statistical curvature (Efron, 1975 and Skovgard, 1985).

The theorem suggests that inferential techniques based on the local properties of the

likelihood function will be similar for all four methods. In particular, note that the

6.A

second derivative (at Ti) of the log-likelihoods is (D )t 1-1 (D;) for a= PL and a = S and

'tis 1 i - (D.O) for a = B and F. Hence LPL(O) and LS(O) have the same second deriva-

tives as do LF(O) and LB (0). Agreement of the third derivatives can be shown by a simi-

0'N
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lar calculation. One application of this result would be the approximation of LPL(o) by

LS(O). This can provide considerable simplification since LS(0) requires only the com-

putation of I and VO(^) while LPL(0) requires a restricted maximization at each value of

0. This wifl be difficult if 0("1) is a complicated function of 11. However, the quality of

such an approximation is still an open question.

4. EXAMPLES

Example 1.

Let x be bivariate normal with mean 1 and covariance equal to the identity matrix.

Suppose the parameter of interest is 0 = r11 / 2 . Note that 0 is constant over rays through

the origin in E2 . It is easy to show that K(T,T)) reduces to 1/2 times the squared

Euclidean distance between Tr and TI so that the forward and backward Kullback-Leibler

families and the profile likelihood based family all correspond to the circle passing

through the origin and Tj (see Figure la). The corresponding likelihood functions are
-I

plotted in Figure lb.

I..

Example 2.

I.
This example is motivated by Efron's (1984) use of the least favourable family in

computing bootstrap confidence intervals. The data x1, x2, ...x, are fixed and the family

-, of rescaled multinoial distributions M(n,w)/n is considered. The parameter of interest
U.
, is a functional 0(o). The natural parameter is T1 = log 0o. A least favourable family is

drawn through the m.l.e wo = e' = (1/n, 1/n,...I/n). We illustrate this in Figure 2 for n = 3

- with O(w)) = = " ,oixi and (x1 ,x2 ,x3 ) = (-1,0,1). The triangle represents the simplex

S3 = >{cia O, I:C =I1.

4,
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The least favourable family and backward Kullback-Leibler family agree while the

profile likelihood and forward Kuliback-Leibler families coincide. Also shown are the

level curves Co%.
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