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Endorsement-based Reasoning
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1 Introduction

¢
z

: A

*

Uncertainty is a state of mind that arises in the reasoning process. Our approach is
to ask what aspects of the process give rise to uncertainty. We emphasize the sources of

s uncertainty and its consequences, rather than uncertainty as a mental phenomenon. A

\;\\i second emphasis is how, in light of these sources and consequences, a system responds M:
Wy to uncertainty. When a system cannot change its behavior in response to uncertainty, ‘e
g which nonetheiess has deleterious effects, we say it is reasoning under uncertainty. A Ny
(Q system that incorporates in its problem-solving repertoire some kind of response to %;.-’N-:
3‘3 uncertainty is said to reason with uncertainty. A system that explicitly represents t&t‘
X sources and consequences of uncertainty, and reasons about them to control its own F;\‘\.
-j-". behavior (e.g., by selecting problem-solving responses) is said to reason about uncer- s
5 tainty. Reasoning about uncertainty thus places the most responsibility for managing rI
};‘. uncertainty on the system; reas- :.ng with uncertainty is inflexible, because the system %
~ does not reason autonomously about how to manage its uncertainty; reasoning under \E’;;
:’g’ uncertainty does not involve any management of uncertainty, autonomous or otherwise. C:
at Our emphasis on the many sources of uncertainty has led us to a position we call the e
"Q‘ composite view of uncertainty, contrasting with the one-dimensional view. Consider }3}7}
&{g a property of animals called “nastiness”. We propose to rank animals on this one 2-»3,"4
- dimension by their nastiness: sharks and vipers are very, very nasty; shrews are a bit ‘-::}
%‘ less nasty; and so on until we reach koala bears. The inquiring mind will look at our e
:.f-.f ranking and ask, “What features make one animal nastier than another?” because even "'.!
: though the ranking is on a single dimension, the features that contribute to nastiness are ﬁ;"\;
N several. Those who rnust deal with nasty animals will want to know why their subjects %ﬂt
Q:. are nasty - their nasty characteristics - not merely the extent of their nastiness. Just oy

so with uncertainty. People and computers need to know why situations are uncertain, ‘

Yo,

not merely the extent of their uncertainty. Thus, we believe that theories of uncertainty

!_’T should emphasize the sources of uncertainty and its consequences.
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2 Sources of Uncertainty

Uncertainty in rule-based inference has threc general sources. It enters in evidence,
which may be inaccurate or insufficient; it is implicit in any model of a domain (which is
often encoded in production rules); and it is associated with the beliefs that result from
inference. We discuss these in turn. Throughout the discussion we assume that the
environment supplies evidence, which evokes inferences, which result in beliefs. Beliefs
may be used as evidence for further inference.

2.1 Sources of Uncertainty About Evidence

Among the things we can say about evidence are that it is errorful, irrelevant, or
insufficient. These are causes of uncertainty. In addition, we can say that a situation
has a chance of being true; for example, it might rain, or Sally has an 80 percent
chance of beating Fred’s poker hand. Because we want to understand the sources of
uncertainty, we are unwilling to summarize with a number the argument that evidence
is, say, irrelevant; since we would no longer be able to distinguish irrelevance from
insufficiency or other causes of uncertainty. We will try to maintain this distinction,
though it is easily muddled when probabilistic arguments are combined with other
causes of uncertainty; for example, the evidence “Sally’s chances are 80 percent” may
be insufficient, and evidence may have an 80 percent chance of being insufficient.

Errorful evidence is common in systems that rely on sensory information. For
example, the tactile sensors of a robot may malfunction, resulting in an errorful inter-
pretation of any evidence the sensor provides. Noise causes uncertainty about whether
one’s evidence is relevant. Systems such as HEARSAY-II (Erman, Lesser, Hayes-Roth,
and Reddy, 1980) and HASP/SIAP (Nii and Feigenbaum, 1977) contended with noise
from their transducers. Before they could ask whether data from transducers was er-
rorful, they had first to cope with uncertainty about its relevance — whether it was
signal or noise. Many applications are uncertain because they need more data than is
readily available, quite apart from the questions of whether the data that s available
is errorful or relevant. In medicine, for example, some invasive tests are expensive or
life-threatening, and so diagnosis might proceed on the basis of incomplete evidence.
In other cases, the needed evidence will never be available; for example, pollsters nec-
essarily make statistical inferences from small samples because it is impossible, or
impractical, to query an entire population.

We prefer to characterize a poll as “accurate within a 2 percent margin of error,” or
a diagrosis as “lacking the evidence from a brain scan,” since these characterizations
guide us in dealing with our uncertainty. The more we know about the causes and
consequences of uncertainty about evidence, the better we are able to cope with the
uncertainty.

1 L P W e R L L L TR RN R T R R N R e N T A A e Wom o
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2.2 Sources of Uncertainty About the Model

3':, Rule-based inference systems capture knowledge about the world in inference rules
fa' (which constitute a world model). Uncertainty is caused by the processes of construct-
: ing and using these rules. When constructing rules, uncertainty is an inevitable con-
¥ sequence of summarizing kncwledge. We recognize that expert inference rules are
! compilations of dozens or hundreds of experiences, and that minor differences between

; the experiences are “smoothed out” in the rule. When using such rules, “relevant”
features of a case ~ those mentioned in the condition of a rule — are attended to, but
discrepant features are ignored.

A related source of uncertainty in rule-based inference is that rules are constructed
with some purpose in mind, but the context in which rules are used does not necessarily
correspond to the purpose for which they were intended. For example, imagine a simple
rule that states “If it’s raining, then take an umbrella.” This rule assumes that one’s
purpose is to stay dry, when in fact one may want to be drenched. It doesn’t work
to add another conditional clause to the rule, specifying that one wants to stay dry,

R because other implicit assumptions are easily generated; for example, we are assuming
*.\: that the umbrella works. One cannot escape the uncertainty caused by not knowing
';: whether the implicit assumptions of an inference rule are met.
% Uncertainty arises from limitations of the world model. In terms of rule-based

' inference systems, uncertainty is caused by not knowing whether one has rules for all
£ situations that may arise. It is worth making this source of uncertainty explicit, because
_;;. it makes an interesting qualification on one’s conclusions. Expert knowledge may be et
'{\' relatively complete, so when the expert says “As far as I know, you are healthy,” you L
' can be pleased. But the knowledge of expert systems is usually less complete, so a fC
i clean bill of health from one of them is probably less encouraging. The expert system P
D should say “As far as I know, ...,” because far from being a conversational nicety, it is E‘
Bt: an important qualification. >
< Note that “I’m pretty sure you're healthy” is not as informative as “As far as I know, :"h‘
‘E; you're healthy,” since the latter states the cause of any uncertainty and the former does :*‘"i
o not. We re-emphasize the point we first made in connection with uncertainty about ’.
N evidence: The more one knows about the sources of uncertainty about inference rules, T:-
3 ' the better one might cope with this uncertainty. V;
1 . . &
\{; 2.3 Sources of Uncertainty About Belief ;
= Beliefs, in our simplified model of rule-based inference, are the conclusions of in-
. ferences. Thus, important sources of uncertainty in beliefs are uncertainty in evidence
f,:-:ni and inference rules. We will discuss how these sources of uncertainty are propagated
.;;: to beliefs in later sections. Here, we concentrate on uncertainty that arises from one’s
& beliefs independent of their derivation. The chief cause of uncertainty is that beliefs are
;* sometimes tnconsistent. For example, we believe that we pay too much money in taxes, R
¥ &b
; 0%
3 6 ix;&
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but we also believe that taxation for social programs is a Good Thing. Inconsistent
beliefs lead to uncertainty about our future conclusions and actions; it is not possible to
predict with certainty whether we will vote for tax-cutting or tax-raising political can-
didates. Another source of uncertainty concerns how beliefs are accessed. In humans,
at least, one can easily demonstrate priming and availability biases (e.g., Kahneman,
Slovic, and Tversky, 1982). Briefly, people do not bring all beliefs to mind with equal
facility, and we use apparent facility as evidence about the truth of statements. 11 the
simplest case, if we cannot think of any examples of a proposition (e.g., that books can
dance the polka) then we say the proposition is false. This is fair enough, but we often
misjudge the likelihood of propositions by this same device. In Al inference systems,
access can be interpreted as search, which may be bounded by resource considerations,
or deduction, also susceptible to limits. Since the structure of the representations of
belief can affect the efficiency of access, judgments based on the relative ease of access
can introduce uncertainty about beliefs regardless of their content.

3. Desiderata for Intelligent Reasoning About Un-
certainty

This section asks what behaviors we should require of expert systems that reason
intelligently about uncertainty. The requirements are of two kinds: first, we discuss
what an expert system ought to do about uncertainty, then we focus on the represen-
tation of knowledge required to reason as we desire. It is striking that contemporary
expert systems do very little about uncertainty besides measuring it. Some expert sys-
tems assess degrees of belief for hypotheses, but they do not use these numbers except
to rank hypotheses and for some rudimentary control decisions. What more should an
expert system do? We focus on two behaviors: planning (or control) and explanation.

Intelligent behavior under uncertainty requires a plan for the management of the
uncertainty. Here are some examples of plans:

1. Confronted with uncertainty about which of two diseases afflict a patient, try
to rule out the most serious one. Specifically, order relatively inexpensive, non-
invasive tests before more costly ones, and give the patient a therapeutic trial
of medication for the more serious disease. See the patient again after the test
results are known and after the therapeutic trial has an opportunity to alleviate
symptoms.

2. Since I am uncertain whether my weekday bus runs on the weekend, I decide to
drive my car.

3. I am going to visit my parents, who say they have a birthday present for me.
They won't tell me what it is, so just to be safe, I put the roof-rack on my car.
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The first case is taken from a series of interviews with a physician on the problem
of diagnosing chest pain. Two causes of pain, angina and esophageal spasm, can have
identical manifestations, but one is more serious than the other. Thus, physicians will
try to rule out angina first, and may prescribe therapy for angina on a trial basis. The
angina/esophageal spasm differentia! is not usually resolved by ruling in esophageal
spasm, since it is difficult to get direct, physical evidence of spasm. However, this plan
is appropriate if less costly tests fail to resolve between the disease hypotheses. In
contrast, one can sometimes quickly rule out angina by demonstrating that the pain is
due to damage to the muscles of the chest. This “rule-out by ruling-in” plan may not
be appropriate, however, if the patient is at risk for heart disease because of smoking,

age, family history, and so on, since this patient may have both heart disease and
other cause of chest pain.
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Thus, intelligent reasoning under uncertainty involves selecting a plan appropriate
to the nature of the uncertainty. The “rule-out by ruling in” plan may be appropriate

in some cases but not to the angina/esophageal spasm differential if the patient is at
risk for heart disease and if less difficult tests have not yet been tried.

-1If one knows enough about the nature of one's uncertainty to intelligently select a

3 plan, then this knowledge can be used to explain one’s behavior:

"

t; * Why did you try to rule out angina before esophageal spasm?

_' e Because the consequences of my uncertainty about angina are more serious; and

'_'v; because it is difficult to find direct evidence for or against esophageal spasm; and

:_ because there is evidence that the patient is at risk for heart disease, so ruling in

:: esophageal spasm would not rule out heart disease.

A

l Many plans for managing uncertainty are much simpler than this one. The second

hy example, above, is a case of sidestepping uncertainty. Instead of facing the uncertainty

) of whether a bus is running, the question is made irrelevant by deciding to drive a car.

;\ The third case is similar: it involves anticipating possible outcomes and preparing for

L} the most extreme. When uncertain about the size of a birthday present, one prepares

' for the worst (best?) case by arranging transportation for the biggest possible obiect.

. One characteristic of these examples is that the probability of the various uncertain "i'«;

;: outcomes is both insufficient to determine a response to the uncertainty, and further- mp’,

): more, it is largely irrelevant. In the medical example, provided there is “enough” "’1(;’;

::’ evidence for angina, the physician pursues the angina hypothesis not because it is more ‘.i

9 likely than esophageal spasm but because it is more dangerous. In the second case, if F@

o there is “not enough” evidence that the bus is running, the commuter decides to drive. o

- The extent of the uncertainty in these cases, and the third case, is not the salient factor 'r: '

! in deciding on a plan to manage the uncertainty. r’;?

' Yet, the probability of outcomes plays a smal! role in these examples, and » greater ’:ﬁ*

i role in other cases, such as this one: 3;:'
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An airplane has crashed in dense jungle. Searchers superimpose a grid on a map

of the area and calculate, for each square in the grid, the probability that the plane
crashed in that square. They search the high-probability areas first.
Here, the appropriate plan for managing uncertainty depends on lnowing the likelihood
of outcomes. Thus, in addition to planning and explanation, we need the ability to
believe one proposition more than another. This, in turn, requires the ability to update
degrees of belief in light of evidence.

In summary, the behaviors that make for intelligent reasoning about uncertainty
are: the ability to plan a course of action appropriate to one’s uncertainty, the ability
to explain one’s actions, and the ability to determine degrees of belief in alternatives
given evidence. We now consider the conceptual tools required to build expert systems
with these abilities.

An expert system requires a representation of knowledge about its uncertainty and
methods for manipulating this knowledge to plan and explain actions, and to modify
its belief in propositions. A good representation supports all the concepts one wishes to
reason about, and all the methods one uses to reason about them. A good representa-
tion makes important distinctions explicit. One should not have to struggle to represent
a situation — the representational techniques should make the “translation” between
a situation and its representation easy. If these representational criteria are met, then
we will be able to represent the knowledge required to achieve the three performance
criteria outlined above. Table 1 summarizes the performance and representational cri-
teria. We now survey current Al approaches to reascning under uncertainty from the
perspective of these criteria.

TABLE 1

Performance Criteria

Planning: Plan actions that are appropriate to uncertainty
Explanation: Explain plans for managing uncertainty
Measuremeit: Modify degree of belief in light of evidence

Representational criteria

Adequacy: Support all interesting concepts and methods for
reasoning about them

Explicitness: Make important distinctions explicit

Ease-of-use: Make the “translation” between situation and

representation easy
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4 Al Approaches to Uncertainty

Given the diversity of sources of uncertainty, it is not surprising to find a plethora
of responses in Al inference systems. The current approaches to uncertainty can be
organized into three major groups. Systems constructed to circumvent ‘he effects of
uncertainty are of the engineering approach. Systems that ¢antrol their behavior to
avoid or reduce the effect of uncertainty use the control approach. Some systems divide
the inference process into two separate subprocesses, one that performs inference as
if there were no uncertainty, and another that associates representations of partial
belief with the conclusions of the first process; this approach is called parallel certainty
inference (Cohen, 1983). Although there is some overlap in these categories, they
provide a useful organization to the discussion of current Al approaches to uncertainty.

4.1 The Engineering Approach

The designer of an inference system can anticipate some causes of uncertainty that
effect the performance of a system, and then formulate the problem to eliminate any
need to consider the uncertainty. For example, elementary textbook problems in physics
ignore the effects of friction, relieving the student of the need to calculate the (uncer-
tain) effect of this difficult-to-measure factor. It is common in Al inference systems to
engineer the uncertainty out of problems, especially for prototype systems. Problams
are frequently hard enough without considering noise or error, so the clean data assump-
tion is often made to eliminate the effect of uncertainty introduced by the evidence. Of
course, the same techniques that work with clean data must often be modified to cope
with the problems of noise and error.

A second way to engineer uncertainty out of Al systems is to assume relevance. It is
sometimes difficult to decide which features of the environment are relevant to a task,
especially if one’s world model is incomplete. Systems that are free of this uncertainty
are conceptually simpler. For instance, Winston’s (1975) “concept learning” program
was presented with a set of training instances and inferred a “rule” to classify them.
The program assumed that the teacher would supply typical and “near miss” cases
of a special form. The problem was made tractable by assuming relevance, but the
more difficult task of generating and evaluating training instances was finessed. Other
learning systems (discussed in Dietterich, 1982; Michalski, Carbonell, and Mitchell,
1983) have made similar assumptions.

A third form of thie engineering approach is a response to the kind of uncertainty that
results from incomplete models of 2 domain. Since a system cannot know everything
about its domain, it must make tentative decisions on the basis of uncertain beliefs.
For instance, it is common to make the closed world assumption (Reiter, 1980) when
working with a finite database of facts. The assumption asserts that something is false
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if it is not known to be true.! Thus, under the closed world assumption, to decide

whether X is true, one checks if X is known; if it is not known, then X is assumed to
be false. In a rule-based inference system, if no rule has asserted a proposition (even
though it is possible that one might in the future), the proposition is false under this
assumption. A system that makes the closed world assumption is freed from the need
to have a complete model; it has removed one source of uncertainty-the uncertainty of
the unknown-by hiding it. (However, not all systems ignore the uncertainty intr. duced
by assumptions. See the discussions of dependency-directed backtracking and reason
maintenance in the following two sections for techniques that recognize and reason with
the uncertainty introduced by assumptions.)

4.2 Control Approaches

Control approaches to uncertainty recognize the characteristics of a domain that
cause uncertainty, and utilize control strategies to reduce the effects of uncertainty or
eliminate its sources. As an illustration, consider a control strategy for solving a jigsaw
puzzle: build the borders first, and then work in towards the center. This strategy
exploits the local constraints provided by the straight edges of the border pieces to
reduce the number of pieces that could be fit. Border pieces are less unconstrained
and should be placed first; then, any piece that looks as if it might extend the frame
should be placed next. A control strategy that exploits domain constraints this way
can sometimes minimize uncertainty or its effects. Al systems use knowledge about
uncertainty in their control strategies in a variety of ways. By recognizing those points
where uncertainty is introduced, a control strategy can provide a mechanism to retract
errorful conclusions or mark problematic issues for careful analysis. A control strategy
can also concentrate on hypotheses (partially supported belief) with especially high or
low certainty, or modify action on the basis of characteristics of uncertain evidence.

Dependency directed backtracking (Stallman and Sussman, 1977; Doyle 1979; Lon-
don, 1978} is a method for efficiently recovering from errors in choices made with
uncertainty. The behavior of a system can be seen as a tree, with each node represent-
ing a choice made under uncertainty. The power of backtracking is that the reasoning
process assumes all nodes (choices) along a single branch of the tree are certain. When

R e R R R R R R N SN R

!Something is typically considered known if it is immediately available in a database or if it can be
found by some limited inference. But in some logic-based paradigms, something is known if it can be
proven — deduced from the current set of assertions (Artificial Intelligence, 1980). See (Levesque, 1984)
for a discussion of the difference.

A general assumption relating knowledge of a proposition to its truth is that X iz true if and only if X
is known. The contrapositive of implication in one direction { known(x) -; true(x)) is the closed world
assumption as commonly understood. The positive implication in one direction (true(x) -; known(x)
i the ussu:‘nptiun firade l:y (Ca“i‘lrs, et. al, l:f-'\':) in piausitk r..aSbhihs. The }.\...itivt i.ny“tutiu.. in
the other direction (known(x) - true(x)) is the assumption made by reasoning processes that ignore the
effects of uncertainty in their beliefs, as in parallel certainty inference discussed in a later section.
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a choice is found to be wrong, the reasoning process reconsiders and makes an alternate
choice at that point. An efficient method for redoing the choice leaves the bulk of the
belief set unchanged. A related approach, which records the reasons for the uncertainty
at each choice point, is discussed below.

Least-commitment planning (Sacerdoti, 1977; Stefik, 1980) is a strategy to manage
the uncertainty introduced by not knowing the effects of actions (i.e., incompleteness
of the domain model). The construction of plan steps introduces uncertainty because
possible interactions with other plan steps are not known in advance. By delaying the
commitment to these plan steps until more interactions are known, the uncertainty in
the effects on other parts of the plan is reduced.

Opportunistic control, as in the HEARSAY-II speech understanding system, (Er-
man, et.al., 1980) directs the system to focus its attention to those hypotheses that
are supported with the greatest certainty, that is, to follow the most promising leads.
These islands of certainty are sources of local constraints that make it easier to propose
and support new hypotheses. In the speech understanding domain, the effects of uncer-
tainty were minimized by this opportunistic strategy, which relied on the redundancy
of information in the speech signal. One can imagine cases in which an opportunistic
strategy is not as well-suited to the characteristic uncertainty of a domain. The point
is that for the control approach to work, the control strategy must be matched to the
kinds of uncertainty that arise in a domain.

Heuristic search can also benefit from the consideration of uncertainty. The term
“heuristic knowledge” implies that the knowledge is imperfect (uncertain) in some
way. Understanding the limitations of heuristic knowledge can be a source of power in
using it. For instance, many computer chess programs incorporate a static evaluator, a
heuristic that estimates the worth of a board position. By searching a few moves ahead
and applying the static evaluator at the terminal nodes of the search tree to compare

the relative worth of each move, a chess program can choose a reasonable move. A
difficulty called the horizon effect (Berliner, 1974) occurs when beneficial positions are
missed because the static evaluator is applied at a uniform depth. Important positions
are missed if they are just over the horizon of the evaluator’s view. A control strategy

can improve performance if it extends the search at points where the horizon effect is
most likely.
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In summary, the control approach to uncertainty recognizes where uncertainty arises
and incorporates a control strategy to provide flexibility at those points.

4.3 Parallel Certainty Inference

The parallel certainty approach divides the reasoning process into two semi-independent
processes. One proceeds as if there were no uncertainty in its conclusions. The other de-
cides on the certainty of the conclusions derived by the first. This is convenient because
it allows the first process to concentrate on the domain problem without considering
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difficulties introduced by uncertainty. The first process decides what to believe, and the
second, how much or why to believe. Three broad categories of parallel certainty will
be discussed: degrees of belief, reason maintenance, and the theory of endorsements.

Degrees of belijef

e N O A iR e )

The most popular parallel certainty methods represent uncertainty as a ¢ gree of
belief,? an expression of how much something is to be believed. The canonical example
is the certainty factor representation of MYCIN (Shortliffe and Buchanan, 1975) and
PROSPECTOR (Duda, Hart, and Nilsson, 1976). A proposition is associated with a
number between 0 and 1 that represents how much the system believes it. Inference
rules are applied without regard to the certainty of their premises® (or conclusions, if the
inference is backward-chaining), while degrees of belief are propagated from premises
to conclusions via a rule of combination.

At least two sources of uncertainty are represented by certainty factors: certainty
in inference rules and certainty in beliefs. A certainty factor for a rule represents
the expert’s confidence in it, but it is not always clear what confidence means. For
example, a rule that states that obesity implies illness might have a certainty factor
of 0.8 associated with it. This number might represent the proposition that 80that
the probability is .80 that a sick person is obese, or that the general rule that obesity
causes sickness is more applicable than a rule with a certainty factor of 0.6. Whatever
its meaning, the effect of the certainty factor on a rule is to weight the belief in its
conclusions; the higher the rule's cf, the higher the belief in conclusions from that rule
(all things being equal). Certainty in beliefs is also represented by numbers. Again, it
is difficult to be clear about what the certainty factor of a beljef means, other than to
say that higher numbers mean stronger belief.

Belief is propagated across inferences. The propagation rules used by MYCIN and
PROSPECTOR are variants of Bayes’ rule, which provides a mathematical method for
updating the probability of a hypothesis given an observation of evidence. Bayesian
methods are based on the axioms of probability theory, and have been applied in
several ways to combine the degrees of belief for multiple hypotheses given evidence
from multiple distinct sources that might disagree. They are quite general.

A related method of representing and reasoning with degrees of belief is the Shafer-
Dempster method (Dempster, 1968; Shafer, 1976; Lowrance and Garvey, 1982). In
contrast to the Bayesian approach, belief is represented by an interval between 0 and
1, rather than as a single point. The Shafer-Dempster method has a number of advan-
tages over a strictly Bayesian approach, mainly because it makes weaker assumptions.

e Ny e Ty T T e N W el T TN B e T e A KL P KV

3The term is due to Shafer (1976).

3Actually, MYCIN did not fire rules whose conditions were believed with less than 0.2 <f, so0 it is
not strictly a parallel inference method, since domain inferences are not kept entirely separate from
inferences about uncertainty.

13 .

{ ]

g\\\;”ﬁ-’

. . B LR A T

R T R b b e
\"if;:";*s"-,'“»>"~";‘§‘\‘¥f'-;--’-. 1 ":Zij{-iﬁ:iw ‘-'x*h"{-:’lﬂ&:ﬁ:{\A:t*‘..:f‘%:.f Sl Ry 2 i s ;,_ﬁ&r\»\;\ﬁ?&
AL e e kil " i " -..‘\ , RRRRAY LA AL SERERLS o Tt RN U st W . s
}‘:}"f' \'v-'{:[j“.‘i.'-«‘(‘ ::'1',-\\‘)‘ :'}‘ 0y Z‘.V'-C'f'f ‘.'tﬂ'u)':".'m‘-'-;ﬂ':‘ A T e o :\f"&‘v\n}\\‘y :\\\ Gy \‘\wé.“%\.\“. )\4 B VO I P R S 0 Uy 0 6.



o vy A e i o LN RIS TG B WA b A ek UL N -l i~ 4 . L LA b WA ML VLAWK m
" ‘ i N R L L e e L L L e
P T AL WS RN R E Pl VoMW M e ST AR R LA TR DR Al AR el i e WY LA

Fﬁﬁ

Ko,
H:.ﬁ*
L
_—

(Bayesians require all hypothesis to be mutually exclusive, exhaustive, singletons). The
two-number representation allows for ignorance (the inescapable result of incomplete
knowledge), as well as degree of belief, whereas in Bayesian models ignorance is com-
monly misrepresented as belief in the negation. The Shafer-Dempster representation
can capture belief in sets of hypotheses, which is particularly useful when uncertainty
about the relevance of evidence prevents the assignment of belief to individual (single-
. ton) hypotheses.
| Many objections can be raised to representing uncertainty with degrees of belief.
First, the semantics of the numbers are not well defined. Some authors interpret the
numbers as subjective probabilities, others as frequencies, and others entirely ignore
the issue of what the numbers mean. An emphasis of recent research (Rich, 1983;
Kim and Pearl, 1983; Wesley, 1983; Ginsberg, 1984; Strat, 1984) has been to make
numerical degrees of belief represent an increasing variety of kinds of uncertainty, so
the interpretation of the numbers is a bewildering task. We believe that numbers are
not an adequate representation for everything one wishes to say about the causes and
consequences of uncertainty. A second problem, which is a consequence of the represen-
tational inadequacy of numbers, is that the numbers are used to represent combinations
of factors; for example, certainty factors in rule-based systems frequently account for
salience and utility as well as degree of belief. A third and related problem is that if
the components of a degree of belief are unknown, or if their relative contributions are
unknown, then it is impossible to predict whether transformations of degrees of belief
- such as combining functions - have any effects on the meanings of the numbers, since
the meanings were obscure to begin with. A rule may be given a high certainty factor
because it is important, or useful, even if it is not very accurate. What interpretation
does one give a number produced by combining two such certainty factors? A fourth
problem, again closely related, is succinctly put in the question: “where do the numbers
come from?”. Salmon (1967) calls this the criterion of ascerntainability. How do we
hope to effectively capture the knowledge of a human expert with numbers when the

P—— e e e ey e
B T =, R I — —

expert doesn’t reason that way? e
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Reason Maintenance o
(-;:"'4':
Reason Maintenance (Doyle, 5980, 1983a). was developed specifically to deal with 5'.""
g uncertainty caused by incomplcie knowledge. Often, the truth of a oroposition cannot "{.j:-‘
/ be determined, but one can proceed as if it were known. Reason maintenance, and the '
| thcory of “reasoned assumption” most recently developed by Doyle (1983b), calls for 7
; . X C [ - ’ ey
. umping to conclusions in the case where the truth of a pro osition is not known but can (-
f jumping prop 44
. be assumed. In making assumptions of various forms, the system consciously introduces O
y uncertainty; it records the reasons for the assumption, and thus represents sources of “:;“
1 uncertainty associated with it. In terms of the parallel certainty inference model, the .
. . . . . . i i
: first inference process proceeds as if it has confidence In assumed propositions, and the F
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second provides a mechanism to carefully retract assumptions if they are found to be
wrong. Thus, reasons for belief support sophisticated reasoning about uncertainty.

The Theory of Endorsements

The parallel certainty inference approach divides reasoning under uncertainty into
two “streams”; one is a stream of fogical inferences, typically the inferences t"at are
needed to solve a problem. The other is a stream of inferences about the certainty
of conclusions produced in the first stream. We have considered numerical inferences,
based on Bayes’ and Dempster’s rules, and also reason maintenance - the recording
and maintenance of dependencies among conclusions. A third approach is to record
arbitrarily complex messages (which we call endorsements) in the second stream. These
messages record causes and remedies of uncertainty; for example, we might note that
evidence is produced by an occasionally faulty sensor, or that a newspaper reporter
considers a wide range of sources before filing a report, or that the margin of error
on a poll is 5%, or that a recommendation comes from someone who doesn’t know
his subject, and so on. The fundamental assumption of the theory of endorsements
(Cohen, 1983) is that subjective degrees of belief, usually represented as numbers, are
composites of reasons to believe and disbelieve. We suggest that, for many tasks, one
needs to know more than simply the eztent of one’s belief; one also needs to know the
causes of belief. The theory of endorsements is concerned with how to represent and
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reason with this knowledge. .»_::,.-‘3;.;5
We misrepresent the theory of endorsements somewhat by grouping it with parallel RAtS "~

certainty inference approaches. One advantage of knowing why a proposition is un- tﬂ ?- '

certain is vhe ability to “take evasive action” to eliminate the cause, or the effects, of '?i"

uncertainty. For example, if one knows that the cause of uncertainty is the absence
of attainable knowledge, then one might eliminate the uncertainty by simply asking
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for the missing information, or by searching for it. On the other hand, if the missing ::,;; Y,
knowledge isn’t obtainable, then one cannot eliminate the cause of uncertainty but one z}:w &~
may minimize its effects. For example, hedging minimizes uncertainty arising from .',ﬁ:-}_‘

i

unattainable knowledge. The key to such evasive action is knowledge about uncer-
tainty. The search for missing evidence, for example, depends on knowledge about
its source. If the source produces evidence intermittently, like a volcanic fault, then
one must sit around and wait. We adopt one strategy for a feedback-directed search
for evidence (e.g., we have found the right book, then the right section, and finally
the desired sentence), and another for evidence that just “pops up” without warning
{e.g., waiting fur & bus that may or may net be running). Thes, the key tuv making
a system responsive to its uncertainty is knowledge about the causes of uncertainty;
or, conversely, parallel certainty inference approaches aren’t responsive to uncertainty
because they know nothing about it except its extent.
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i 5 SOLOMON - An Implementation of the Theory

’ of Endorsements

E’; The theory of endorsements was initially developed in the context of rule-based

' systems, and was tested with expert heuristics from the domain of portiolio manage-

ment (gleaned from a program called FOLIO; see Cohen and Lieberman, 1983). Our
implementation of the theory of endorsements, a program called SOLOMON, reasoned
about the uncertainty associated with these heuristics and their use. All such reasoning
was mediated by structures called endorsements that represented reascns to believe and
disbelieve their associated propositions. Endorsements are frame-like knowledge struc-
tures representing reasons to believe (positive endorsements) and disbelieve (negative
cndorsements). They are associated with propositions and inference rules at various

times during reasoning. Five classes of endorsements appeared important for reasoning
about uncertainty in rule-based systems:

xT X A

£/ b o8 s G0 S e bt

Rule endorsements. Reasons to believe and disbelieve inference rules
(e.g., a clause in a premise may be endorsed as maybe-too-restrictive,

that is, the premise might occasionally fail due to this clause when the
conclusion is in fact valid.)

Data endorsements. Reasons to believe and disbelieve raw data (e.g., a

el ;
PESESLabSart Tt oL pon S0 O SR G et £

‘2.
statement about one’s own tolerance of risk is often conservative). ,37{_";
. . 3 L4 e
Task endorsements. Arguments about the evidence that executing tasks : b /ﬁ:,,:
are likely to produce, used to schedule the tasks (e.g., a task is worth doing ,‘) gs
because it may produce a corroborating conclusion.) "13,/;}‘
Conclusion endorsements. Reasons to believe and disbelieve conclu- F:s
" sions. These are combinations of a priori rule endorsements and detected E::‘;B
b . . . . w U
Y relationships - such as corroboration - between conclusions {e.g., a con- ?,: ;
o servative conclusion about one’s risk tolerance is corroborated by other
5 evidence.) g‘#ﬁ’&‘.
=] . ] . N W
Resolution endorsements. Records of the application of methods to re- FU
3 . . . . MRS
. solve uncertainty (e.g., no rules conclude a desired goal, but after eliminat- il
3 . . . . . ol
\‘é ing a maybe-too-restrictive clause from a rule, we achieved the desired ,;.:}Z-
¢ conclusion.) far
P (.P_...
?:‘,. The style of reasoning mediated by these endorsements is, by design, similar to ®
7 the goal-directed reasoning of many expert systems: SOLOMON starts by trying to Fi:\“:
7 conclude a goal, usually the value of a parameter, such as risk-tolerance in the domain C\f{t
4 of investments. It then backchains through its rulebase, directed by this goal and its X:
't e, . N oYL
i subgoals. As it proceeds, SOLOMON develops bodies of endorsements — reasons to v,;:.
.'\, believe and disbelive its conclusions. These provide justifications for the conclusions, o
and also play a role in the control of SOLOMON’s reasoning. ,E.ﬁ
LY
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It is important that endorsements should affect control of processing in SOLOMON,
because the theory of endorsements is oriented towards the cffects of uncertainty on
behavior. In SOLOMON these effects were two: First, SOLOMON used endorsements
to decide whether a proposition was certain enough for the task at hand. It would
ask whether the endorsements of a subgoal conclusion were good enough to warrant
using the conclusion to assert its parent goal. This is similar to setting a threshold on
the numeric degree of belief that a conclusion must accrue in a backchaining s 'stem
(e.g., MYCIN set a global threshold of 0.2.) However, the “threshold” is determined
dynamically for each goal and applied to its subgoals’ endorsements; and the threshold
is not a quantity but a boolean combination of desirable and undesirable endorsements.
Importantly, a proposition that is not certain enough for one task may serve for an-
other; for example, the word of a used-car salesman might barely suffice if you want
to know who won last night’s football game, but is perilously untrustworthy where the
salesman’s self-interest is concerned.

The second effect of uncertainty on behavior is achieved, in SOLOMON, by reso-
lution tasks. The principle of these tasks is that negative endorsements are viewed
as problems to be solved. SOLOMON will attempt to improve the endorsement of an
important proposition. It has available general and domain-specific rules for resolving
uncertainty. For example, when it is unable to derive a desired conclusion from its
available rules, it can make small modifications to the premises of the rules, such as
dropping clauses. Clauses to drop are selected by their endorsements; SOLOMON will
not drop clauses endorsed as criterial. Dropping clauses results in additional endorse-
meiits noting the uncertainty that it introduces (see Cohen, 1983, pp. 148-158, for a
detailed example).

In addition to rules to decide when a proposition is certain enough for a task,
and rules for resolving uncertainty, SOLOMON had a simple rule to combine endorse-
ments and propagate them over inferences. This was that a conclusion inherits all
endorsements of its premise, plus any that result from posting the conclusion (such
as a contradiction between the conclusion and another). In fact, this rule was doubly
flawed: First, reasons to believe or disbelieve a premise are not always endorsements
of the conclusion; and, second, the rule led to large bodies of endorsements after only
a few inferences. The remainder of this report reveals recent work on the problem of
combining endorsements.

6 Combining Endorsements e
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Combining evidence is something that numerical approaches to uncertainty do very i S
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knowledge about evidence, and we do not summarize this knowledge in a degree of e
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belief. Thus, it is not as easy to combine evide
is in quantitative theories. If there js evidence
sition, we must “caiculate” a body of endors
the endorsements of each piece of evidence.
ments leads to the problems me
and not all endorsements remaj
We are exploring semantic co
combination of endorsements i
mean.

A related problem is ranking endorsements.
rank the credibility of hypotheses easily, and again, it is more difficult with endorse-
ments. However, endorsements can be ranked on an ordinal scale, if not an interval
one, and so schemes for ranking endorsements can be designed. This is the subject of
a research note in preparation. This is the subject of the next section.

nce in the theory of endorsements as jt
from more than one source for a propo-
ements for the proposition by combining

Simple syntactic union of the endorse-
ntioned above: Large bodies of endorsements result,
n relevant for all uses of their associated propositions.
mbining rules for endorsements - so called because the
s mediated by rules that reflect what the endorsements

Again, quantitative approaches can

7 HMMM - An Endorsement-Based Plan Recogni-
tion Program

HMMM is a plan recognition program that
intends by combining the evidence provided b
is uncertain for two reasons: the user might
from the action might suggest the wrong pl
the action might be consistent with sever
belong to only one known plan, the interpr

infers which of several known plans a user
Yy successive user actions. Plan recognition
make a mistake, in which case extrapolating
an; or a user action may be ambiguous; Le.,
al known plans.® If all the user’s actions

etation process is straightforward; but when
an action can be interpreted as a mistak

e, or as belonging to more than one plan,
HMMM is uncertain of the user’s intentions, and so generates endorsements for the
competing interpretations. HMMM is a simplified version of POISE (Carver, Lesser,

and McCue, 1984), an office automation system with an intelligent user interface, which
discerns a user’s plan and offers assistance by automating some plan steps.

Individual plan steps are interpreted in the context of developing plans. The pro-
gram uses its knowledge of the user’s previous actions to restrict the interpretations of
the current action. For example, assume the program knows the following plans:

Plan Steps
plant abd
plan2 bde
plan3 acd

4Other sources of uncertainty in plan reco

gnition include an incomplete library of known plans and
inaccuracies in the plan library. We limited o

ur exploration to unintended and ambiguous actions.
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Given that the user takes the actions a followed by b, we can construct three
interpretations for each action:

(start planl a) (continue planl b)
(start plan3 a) (start plan2 b)
(mistake a) (mistake b)

However, the interpretation of b as continuing planl would not be valid unless
the first step of planl, a, had already been taken. We account for these syntactic
restrictions with data structures called step linkages. Each step linkage represents an
interpretation of all the plan steps taken so far. Step linkages for the “current” step
are constructed from the existing step linkages, which link all previous steps. For an
interpretation that continues an already-opened plan (as b above continues planl),
each step linkage that mentions the preceding step is extended to include the new step.
For an interpretation of a plan step as starting a new plan (as b above is interpreted
as starting plan2), all step linkages are extended to include this interpretation.

Each step linkage carries endorsements. These are reasons to believe and disbeljeve
the interpretations of plan steps represented by the step linkages. For example, a reason
to believe that b continues planl, above, is that “continuity is desirable.” Recall our
contention that these reasons have no implicit meaning, no matter how evocative are the
strings we use. The following example shows how meaning is ascribed to endorsements
and how endorsements facilitate reasoning about uncertain interpretations.

7.1 An Example of Endorsement-Based Plan Recognition

Suppose we have a simple environment in which we know that the user intends
exactly one of two known plans,

“(fl%({.(r_‘k‘;&d ¥l

Plan Steps

planl abc N

plan2 bde
.
and the user types the input actions a followed by b followed by d. Briefly, we can ik

. o . . . . RV
imagine interpreting the first input as evidence for planl, and the second as further SN
. y . . Ny
evidence. The third input lends support for the plan2 interpretation of b, and casts it
doubt on the planl interpretation of a, and indirectly supports the possibility that a t},*;
was a mistake. If a fourth input was ¢, we'd want the system to reaffirm its belief in

planl, whereas an input of e should have the opposite effect. Ve
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8 Applicability Conditions for Endorsements

HMMM uses endorsements to reason as just described. The actions a, b, d result
in the following syntactic interpretations:

Step Interpretation Endorsements
-:."
;\ l:a (start planl a) (a only grammatical possibility +)
% (a could be a mistake -)
<

22b  (continue planl b) (a b continuity is desirable +)

(b other grammatical possibility -)
(b could be a mistake -)

b (start plan2 b) (a b discontinuity is undesirable -)
(b other grammatical possibility -)
(b could be a mistake -)

3:d  (continue plan2d) (d only grammatical possibility +)
(b d continuity is desirable +)
(d could be a mistake -)

The endorsements are associated with the interpretations by rules specifying their
applicability conditions: “other grammatical possibility” is applicable whenever a plan
step figures in more than one possible plan; “could be a mistake” is always applicable;
“continuity is desirable” is redundant with the interpretation of a plan step as contin-
uing an open plan; and “discontinuity is undesirable” applies whenever a plan step is

el interpreted as disrupting an already open plan by starting a new one. Some endorse-
::;’ ments are positive, meaning that they support the interpretation with which they are
W associated. Others are negative - reasons to disbeljeve their associated interpretations.’
;.7|

p
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- 9 Combining Endorsements

7

- The endorsements associated with an interpretation are brought along when that
-

.\'i

interpretation is appended to a step linkage, and they are combined with endorsements
from the previous steps in the linkage to give the endorsements of the plan up to that
point. For example, the input a is evidence for planl, and b is further evidence for
planl. Note that b is a different kind of evidence from a, because it is ambiguous

PO TR b

"’Applicability conditions for endorsements include ruies to decid
or negative. This is easy in HMMM, but we believe it to be difficult
speaks for or against a hypothesis.
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between planl and plan2. Applicability conditions for endorsements give us the mech-
anism to distinguish between the kinds of evidence - each kind carries characteristic
endorsements - but they don’t specify how to combine the endorsements of pieces of
evidence, such as a and b, when they support the same hypothesis (in this case, plan1).
To this end, we have implemented semantic combining rules, two of which follow.

SCR1: If (plan N: step i could be a mistake -) and
(plan N: steps i j continuity is desirable +)
Then erase (plan N: step i could be a mistake -)

SCR2: If (plan M: steps i j discontinuity is undesirable -) and
(plan M: steps j k continuity is desirable +) and
(plans N,M: step j other grammatical possibility -)
Then erase (plan M: steps i j discontinuity is undesirable -)

Both rules use the occurrence of two consecutive plan steps as a basis for removing
negative endorsements that may have accrued to the first of the steps. The general
idea is that consecutive steps in a single plan eliminate uncertainty about the inter-
pretation of the first step. Given these rules, the combined endorsements for the planl
interpretation of the inputs a, b and the plan2 interpretation of the inputs a, b, d are
derived from the endorsed step linkages shown above:

planl interpretation of a, b: plan2 interpretation of a, b, d:

(a only grammatical possibility +) (b other grammatical possibility -)
(a b continuity is desirable +) (d only grammatical possibility +)
(b could be a mistake -) (b d continuity is desirable +)

(b other grammatical possibility -) (d could be a mistake -)

Note that (a could be a mistake -) has been erased by application of SCR1 for
the planl interpretation, and that (b could be a mistake -) and (a b discontinuity is
undesirable -) have been erased by SCR1 and SCR2 respectively for the plan2 inter-
pretation.

10 Strengthening Endorsements

The semantic combining rules discussed above are unintuitive because they elimi-
nate endorsements entirely, rather than increasing or decreasing the weight of endorse-
ments (e.g., a more intuitive version of SCR1 should reduce the concern that a plan
step is a mistake, not drop it entirely). Currently, we use numerical weights to reflect
the strengths of endorsements, and adjust the weights to reflect combinations of en-
dorsements. Since we are concerned that these numbers should mean the same under
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combination as combinations of endorsements, we have strictly limited ourselves to a
single case of combination, namely corroboration of endorsements. We have identified
three general situations where endorsements corroborate, that is, where two endorse-
ments combine to create another “weightier” endorsement:

1. Corroboration of multiple instances of the same endorsement within 2 singie plan
step. For example, if an ambiguous plan step could continue one plan and start
numerous others, then the weight of the “continuity is desirable” endorsement is

greater than it would be if the step could continue a plan and start but a single
plan.

2. Corroboration of instances of different endorsements of the same sign (both pos-
itive or negative) within the same plan step, resulting in a kind of synergetic
increase in the belief in an interpretation. For example, the two negative endorse-
ments “discontinuity is undesirable” and “other gran.matical possibility” have a
combined weight which is greater than the sum of their individual weignts.

~ 3. Corroboration of multiple instances of the same endorsement over consecutive
plan steps. We believe in a plan more strongly if it is successively reinforced by the
same positive endorsements. For example, we increase the weight of endorsements

associated with a plan if the “continuity is desirable” endorsement appears in
several consecutive steps.
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11 Ranking Endorsements

'-.
« 's,,'

A 3

T

I
|

Zoa

<
f

We have said that the three components of semantics for endorsements are applica-
bility conditions, combining rules, and ranking rules. We have explored two methods
for ranking combinations of endorsements: one used the numerical weights of endorse-
ments as described above, the other was a classification scheme to separate likely and
unlikely alternatives.

We wanted combinations of endorsements to dictate at least a partial ordering on
alternatives facing any decision-making program. We accomplished this in HMMM
with a scheme for classifying step linkages as likely, unlikely, or neutral® contingent
on the presence of particular endorsements or combined endorsements. For exam-
ple. a sufficient condition for being considered “likely” might be corroboration of two
different, positive endorsements, and the condition for “anlikely” might be any neg-
ative endorsement. Interpretations can be ranked by assigning them to one of these
implicitly-ordered classes, based on their endorsements. We think this kind of classifi-
cation scheme can serve as a general model for ranking endorsements, since the criteria

.

®These terms are the names of classes; membership in any class is determined by endorsements. We
imply no probabilistic interpretation of these terms.
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for membership in classes are flexible (and may be set dynamically); and since the num-
ber of classes is also flexible, ensuring adequate discrimination of alternatives. (The
classification scheme was originally devised for a planning program which predicts a
planner’s next move to be from the class of “likely” moves.)

12 Discussion

The HMMM program raises many questions about endorsement-based reasoning.
Two we did not address in the body of this report concern the subjectivity and cost of
endorsement-based reasoning.

Subjectivity of endorsements. Endorsement-based reasoning is not normative or
prescriptive: there’s no “correct” set of endorsements for a domain, no correct method
for combining the endorsements of successive pieces of evidence. The endorsements
discussed in this report seem appropriate to the domain of plan recognition. We believe
that ambiguity of plan steps reduces certainty in all interpretations of those steps,
just as certainty is increased when two or mcre consecutive steps are interpreted as
belonging to the same plan. Other people might design a different set based on their
perceptions of the domain. The point is that this report provides a framework for
endorsement-based reasoning, but it is not prescriptive.

How much is required? The simple plan recognition example required few en-
dorsements and only two semantic combining rules. We need more of each to handle
other kinds of uncertainty and other relationships between endorsements. The number
of endorsements and combining rules required for a domain depends cn what you intend
to do with them. If you wish to represent the .najor sources of uncertainty in a domain
(e.g., the possibility of mistakes, ambiguity, disruption of an established scheme, etc.),
then we believe the number of combining rules will be small. This is the approach
we took for plan recognition. We expect that endorsements can constitute a small
investment for system-builders with a large payoff in terms of explanatory power and
facilitation of knowledge engineering (since the expert can give reasons for uncertainty
instead of numbers).

To effectively reason under uncertainty, in the long run, intelligent systems must
reason about uncertainty. This means specifying representations, thinking carefully
about what they mean, developing operations for combining and propagating them,
and considering what properties of uncertainty the operations preserve. Early work
in reasoning with uncertainty concentrated on whether there was uncertainty and how

much. This is adequate for some purposes, but the intelligent reasoning systems of the E"‘:*-i'f.‘»i'
future will need richer representations for a more sophisticated approach to uncertainty. Ry
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Some of the purposes to which sophisticated reasoning about uncertainty must be
applied are explanation, evaluation, and control.
Explanation. We want to know “why” an agent believes something, not just
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“how much” it is believed. Early inference systems such as TEIRESIAS, (Davis, 1976)
explained their behavior by displaying the chain of rules leading to a conclusion; they
didn’t explain why those particular rules fired. In particular, they failed to explain the
basis for partial support (i.e., certainty factors). It is not clear how a degree of belief
summarizes the reasoning under uncertainty that produced it, and yet, it is precisely
in conditions of uncertainty that good explanations are most beneficial.

Evaluation. Al systems cannot be evaluated as black boxes. Proper validation
requires a consideration of the structure and content of jnternal belief, For example,
Lenat’s (1976) AM program discovers fundamental concepts in mathematics. That’s
the black box view. Only after several years of experiment did anyone (including
Lenat) really understand why and how AM worked. (Lenat and Brown, 1983) That
analysis, which demystified the original program and provided valuable insights into the
nature of learning, was based on experiments with the structure and content of AM’s
representations. Similarly, we cannot hope to understand how our systeims reason under
uncertainty unless we “open up” the black box representations of uncertainty. As with
AM, we can say that our systems “work.” But they do not currently give us any insight
into the sources and consequences of urncertainty.
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b Control. Most expert systems use relatively simple control strategies. Processing

:{i is data-driven or goal-driven, or the two may be mixed in an opportunistic manner.

9 Focus of attention in opportunistic systems is managed by numerically weighing, in

‘ empirically derived equations, alternative actions (e.g., Erman and Lesser, 1980). Un-

ﬂ':. fortunately these numeric assessments hide the reasons for performing one action over

¢ . . . . . .

.c: another. We propose that flexible control strategies for reasoning in uncertain domains

:,:d must be sensitive to the causes and consequences of uncertainty. Only if these are

A, represented explicitly, can a system tailor its actions to minimize uncertainty or its

! consequences.

3 In conclusion, sophisticated reasoning about uncert2inty will require adequate repre-

j‘_‘.' sentations of knowledge about the causes and consequences of uncertainty, and adequate

i] mechanisms for weighing, combining, and selecting actions, based on these representa-

= tions.
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Chapter 2

Semantics of Endorsements and the
GRANT Project

The work on endorsements was eventually impeded by a difficult question: Where

do endorsements come from, and what do they mean? The mnemonic value of en- l;:.\‘_"'
dorsements like may be a mistake disguises the fact that endorsements are arbitrary »,&i\’
symbols, whose meaning comes from the rules by which they are combined with other ‘Y': i

endorsements. We were concerned that, for complex domains, dozens of endorsements :Q 3
and combining schemes would have to be acquired. Although we had no objection in E
principle to acquiring this knowledge from an expert (much as other domain knowl-
edge is acquired), we wondered whether the endorsements and combining schemas of
a domain could be derived from other knowledge about the domain, such as inference
rules. If so, we would worry less about whether we had the “right” endorsements and
combining schemas.

We focused on the uncertainty inherent in a single probleni-solving task, namely
classification, to pinpoint the sources of uncertainty (and thus endorsements) of all
classification tasks. Classification is the problem solved by many or most expert systems
(Clancey, 1984).

Uncertainty in classification problem solving has two major sources. The first is that
data may be inaccurate or incomplete, and the second is partial matching. This article
is not concerned with the quality of data; we focus instead on uncertainty inherent in
the design and behavior of classification systems. The partial matching problem has
two forms, easily illustrated by the following common, empirical association: A person
with a queasy stomach, fatigue, aching limbs, and a fever has flu in its early stages.
Now consider a person with a marginal fever, complaining of poor appetite, headache,
and a persistent twitch in his left eye. This case seems to exhibit manifestations not
stated in the rule for flu and fails to display manifestations that are so stated. We are
uncertain whether the person has flu for two distinct reasons: we cannot be certain
that the actual symptoms fail to match the stated ones (Does “marginal fever” count
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as a fever? Does “headache” count as aching limbs?); and we cannot be certain that
the rule for flu includes all and only the relevant manifestations of fiu.

We suggest that the interpretation of probability in classification systems should
be in terms of similarity, not in terms of games of chance. This interpretation has
precedent in some frame-based expert systems (e.g., PIP and INTERNIST) and in
psychological literature, where it is called the representativeness heuristic:

Many of the probabilistic questions with which people are concerned
belong to one of the following types: What is the probability that object
A belongs to class B? What is the probability that event A originates from
process B? What is the probability that process B will generate event A? In
answering these questions, people typically rely on the representativeness
heuristic, in which probabilities are evaluated by the degree to which A is

representative of B, that is, by the degree to which A resembles B. (Tversky
and Kahneman, 1982, p. 4)

- Assessments of subjective probability in classification situations are insensitive to
factors that affect probability (such as prior probability distributions) and sensitive to
the resemblance between data and their classification. For example, Kahneman and
Tversky asked subjects to classify individuals as librarians or truck drivers on the basis

of personality sketches. They found that the classification was insensitive to the prior 51?3@
distribution of librarians and truck drivers in the population. An individual described ';‘_\‘\;J
as “neat, methodical, and shy” was classified as a librarian even if the prior probability R
of being a librarian was low. R-~markably, subjects ignored prior probability even \';:é{?w
when the personality sketches were completely uninformative, assessing a probability 9“,?
of 0.5 for each alternative instead. Translating these results to the expert systems "f}ff\f’i

literature, we would expect degrees of belief in heuristic associations between data
and solutions-often represented as conditional probabilities-to be interpreted not in
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terms of relative frequency, but in terms of the degree to which data are representative ::\}‘:3’
of a solution. We might hope that experts would use probabilistic information more “{M'.
efficiently than novices, but evidence suggests that experts are as prone to judgment LRI
by representativeness as the rest of us (Kahneman and Tversky, 1982, p. 35). [ ’;g,‘}

Intuitively, the degree to which evidence is representative of a conclusion determines C.J-B}j 5;:8
the credibility of the conclusion given the evidence. But if representativeness is to be L

useful as an interpretation of uncertainty in Al programs, we need a way 0 measure
it.

The concept of representativeness is described only informally in the psychology
literature. An obvious implementation of representativeness, discussed in Section 2y
calculates the degree to which an instance is representative of a class by a weighted
sum of their common properties. For example, we say a person is likely to be suffering
flu if he or she has relatively many flu symptoms (properties) and relatively few non-
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flu symptoms !. This intuitive approach — counting common properties — fails if
an instance shares semantically-related, but nonidentical properties with a prototype.
Imagine that the prototype for flu includes the property “nausea,” but the patient
reports “loss of appetite”; or the prototype may include “aching limbs,” and the patient
reports “pain across the neck and shoulders.” In these cases, we are obliged to look
at the degree of semantic match between properties before we can calculate the total
degree of match batween two concepts.

In fact, we believe there are six sources of uncertainty in classification by partial
matching: Solutions are uncertain when data may be inaccurate; when the prototypes
(e.g., rules or frames) may be incorrect; when one cannot find data to match an aspect of
a prototype; when a prototype fails to account for some data; and when the procedures
that match data with prototypes make errors of ommission or commission, that is,
when the procedures fail to match relevant data to a prototype, or when they match
irrelevant data to a prototype. These six cases are shown in Figure 2.1, and illustrated
in the context of an example: A researcher is applying for funding for work on the
effects of dietary sodium on heart disease in tribal African populations. Two possible
funding agencies describe their interests as

1. funding new investigators to research the effects of diet on health

2. the effects of dietary sodium on appetite

Consider the proposal to be data, and the agencies to be prototypes. Assume,
for the moment, that a program matches the data with features of the prototypes
as shown in Figure 2.2 and concludes that agency 1 is more likely than agency 2 to
fund the proposal. Here, the word “likely” reflects the degree of match between each
agency and the proposal: agency 1 is considered the better match. This conclusion
is uncertain for the six reasons just articulated: 1) agencies 1 and 2 may not have
described their interests correctly, 2) the researcher may have described her interests
incorrectly, 3) agency 1 wants to fund new investigators, but no datum matches this
feature, 4) neither agency accounts for the datum that the research is to be done
in tribal african populations. These four problems are well-known (e.g., Hayes-Roth,
1978; Tversky, 1977), and many schemes have been proposed to deal with them. To
understand the last two sources of uncertainty, note that we assumed the matches
between data and features that are illustrated with dotted lines in Figure 2.2. One
match - between dietary sodium in the proposal and agency 2, is exact. The others
are semantic matches. They assume a semantic memory in which associative paths
(represented by dotted lines) hold between diet and dietary sodium, health and heart-
disease; and appetite and heart divease A mateher unable to exploit these associative

!Clearly, the representativeness interpretation of likelihood is not probabilistic in the frequentist or
Bayesian flu — only the number of shared and unshared symptoms — in assessing the liklihood of flu.
See Tversky and Kahneman (1982) for other examples.
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paths (i.e., a syntactic matcher that requires equality of the objects to be matched)
would fail to match diet with dietary sodium. This would be an example of case 5,
above - a datum miay match a feature in the sense that an associative path connects
them, but the matcher doesn’t report the match. However, in principle, one can find
an associative path - often lengthy and indirect - between any datum and any feature
of a prototype, if these objects are nodes in semantic memory. The presence of an
associative path does not guarantee a “good” semantic match. Intuitively, thc match
between appetite and heart disease seems to be based on such a path, and is an example
of case 6, above - a datum inappropriately matched with a feature. Allowing semantic
matches, then, introduces uncertainty that data will be inappropriately matched with
features (case 6); but any attempt to restrict semantic matching introduces uncertainty
that an appropriate match has been disallowed (case 5).

In this report, we ignore cases 1 and 2 altogether, assuming accurate data and
accurately-specified prototypes. We address cases 3 and 4 this way: a feature of a

N
prototype lacks a match if no credible assocsative path can be found between a datum E“(:&\:ﬁ
and the feature; and a datum is unaccounted-for if no credible path can be found F)""é""-‘"
between it and any feature of the prototype. Assuming criteria for what constitutes a T

credible path, the credibility of a match between several data and a prototype depends
on how many features are unmatched with data (case 3) and how many data are
unmatched with features (case 4). Cases 5 and 6, then, reflect uncertainty about what
constitutes a credible associative path. Case 5 reflects concern that the criteria for a
credible associative path are too stringent; case 6, that they are too lax. Said differently,
cases 5 dnd 6 rbﬂ((‘t COlICETIL thdt ddtd ShUU‘ld, or thu'd hUl, bb LUIlSidter cbl'dencc
for a prototype. These cases are the main concern of this report.

Our central claim is that the degree to which a datum provides evidentsal support for
a prototype depends on the associative pathways between the datum and the features
of the prototype in a semantic memory. Once we know whether data support individual
features of prototypes, we can ask how many features are supported, and derive sotie
measure of the overall fit between data and a prototype. This is illustrated in Figure
2.2: the proposal seems a good match to agency 1 because there seem to be semantic
matches between two of the features of the agency and data from the proposal (although
another datum-tribal african populations-is unaccounted for). Diet matches dietary
sodium and health matches heart disease. Agency 2 seems poorly matched (even though
it shares with the proposal an interest in dietary sodium) because no apparent match
holds between appetite and heart disease. However, if we knew that appetite was
strongly associated with heart disease (perhaps as a symptom}, then the match between
the proposal and agency 2 would seem stronger.

>

T

Given this claim, if we knew which pathways provide evidential support between any
datum and prototype feature, then the uncertainty of cases 5 and 6 could be eliminat~
Our approach to managing this uncertainty, discussed later, is to mark a small nur ‘" er
of general pathiways as particularly likely or unli! £ly to provide evidential suppor:
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In the following sections, we describe a particular matching task in overview, then
formally specify the knowledge representation language used by an expert system that
performs this task. We then discuss the performance of the expert system as a test of
our claim that the degree of evidential support between data and prototypes depends
on the nature of the associations between them.

1 GRANT

GRANT is a knowledge system that finds sources of funding for research proposals.
The user builds a representation of a research proposal and instructs GRANT to search
for funding agencies that are likely to provide support. GRANT first constructs, then
ranks, a candidate list of agencies. An agency is added to the candidate list if a single
topic in its statement of interests is a good semantic match to a topic in the research
proposal. Semantic matches exist between topics that are the endpoints of particular
paths through a semantic network. Agencies on the candidate list are ranked by the
number of semantic maiches between all the topics in the proposal and all the topics
in each agency’s statenient of in° rests. The best-ranked agencies are thus those that
support the largest number of topics that are semantically related to the proposal.

The key assumption of the system is that if no agency can be found to support
research on a specific topic, then one might be found to support work on a semantically-
related topic, and the likelihood of support depends on the relationship between the
topics. Imagine a researcher is interested in dandelions, but GRANT cannot find any
funding agencies in its memory that mention dandelions. GRANT may, however, find
an agency to fund research on a related topic, say plants. The likelihocd that the
agency will fund work on dandelions depends, in part, on the nature of the relationship
between dandelions and plants. Once GRANT has found an agency to fund a given
topic or a related vne, it then calculates how well all aspects of the agency description
fit those of the research proposal. These two phases, finding an agency and computing
overall match, are the main components of GRANT. Since the novel aspect of GRANT’s
architecture is how it finds agencies, that will be the focus of this report.
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2 GRANT Architecture RN
)
GRANT’s architecture includes a large semantic network of research topics, a set of RSESA

i O ]
@

funding agencies, a user interface for specifying proposals and presenting results, and a
control structure for finding agencies given a proposal. These are illustrated in Figure
2.3. The semantic network is in effect an indez to the agencies, since each agency
is linked into the network at those nodes of the network that represent its research
interests. Proposals, once elicited from researchers, are linked into the network in vhe
same way.
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Overview of the GRANT System
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In overview, the system works by spreading activation from a proposal through
the network until one or more agencies are activated. First, the research topics in a
proposal are activated, followed by all topics that are directly related (i.e., one link
away) in the network, followed by their related topics, and so on, as activation spreads
across relations in the network like ripples in a pond. Ordinary spreading activation
can quickly touch every topic in a network, which means that it can find pathways
from any research proposal to any agency description. Since most agencies fou 1d this
way would not fund a given proposal, GRANT uses a modified search algorithm, called
constrasned spreading activation. This algorithm is constrained by a set of rules to favor
particular pathways through the network, and terminate search along other pathways.
The rules lead GRANT to agencies that cannot be found by keyword search, and allow
it to avoid the numerous, irrelevant agencies that are found by ordinary spreading
activation.

2.1 GRANT’s Knowledge Base

- GRANT’’s semantic network of research topics was constructed specifically to repre-
sent the interests of funding agencies. Currently, the network contains over 4500 nodes
that represent the research interests of 700 funding agencies. Nodes are added to the
network by linking them to other nodes with one or more of 48 distinct relations. Fer
example, we can define a heart disease node by linking it to heart with the has-setting
relation and to the disease node with the isa relation (see Figure 2.4). All relations
are directional and have inverses (not shown in Figure 2.4); for example, the inverse
of has-setting is setting-of and the inverse of ssa is has-instance. GRANT adds inverse
links between nodes automatically.

Sometimes the nodes that would define a new node do not exist in the network and
must themselves be defined. For example, to add mitral valve prolapse to Figure 2.4
we need to say it is a heart disease but we also need to say its setting is the mitral
valve, which is part of the heart. Figure 2.5 shows how adding mitral valve prolapse
also involves adding mstral valve. Nodes are added only as needed to define research
topics; GRANT’s knowledge base is not an encyclopedia of science, medicine, and the
arts, but is a highly cross-referenced index of research topics, represented from the
perspective of funding agencies?.

The relationships that define concepts are similarly tuned to GRANT’s domain; for

. . SO
example, one field of research is a subfield of another, a phenomenon is an effect of a (Tt

process, something is a dependent variable of a study, and so on. i
All nodes in the network are represented as frames. Slots represent links or relations SRuTR,
with other nodes. Some nodes represent funding agencies and the research topics they T
Ty w

2See Lenat, Prakash, and Shepard (1986), for a fascinating description of an encyclopedic knowledge ‘\,..‘_»{\;.
base. RS .0
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support. Agencies have slots for level of funding, citizenship restrictions, and so on, as
well as links to their research interests (Figure 2.6).

The frames that describe research interests, both for agencies and proposals, are
created by classifying the goal(s) of research into one or more of ten classes:

e

A T Hor S MR Y XX

Design Educate Improve Intervene Manage
Supply Promote Protect Study Train

Each class is represented by a case frame with a set of obligatory and optional slots.
For example, a study frame represents exploration of some topic, and so has subject

and object slots that represent the topic, and a focus slot that describes which aspect
of the topic will be studied.

R F ion S0 SR T e 2

2.2 Constrained Spreading Activation

x

Falrtate al L

During a run of the GRANT system, activation spreads from the topics stated in a
proposal, through the network, to agencies via their stated interests. Some constraint

;j'j on the spreading activation is required, otherwise all agencies linked into the network
3— would eventually be activated. Three kinds of constraints have been imposed. The
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distance constraint says that activation should cease at a distance of 4 links (i.e., 5
nodes) from any research topic mentioned in the proposal. This is an extremely weak
constraint. A second fan-out constraint says that activation should cease at nodes
that have very high connectivity or fan-out. Examples of these nodes include science,
disease, and person. Two research topics may be semantically related by both being
sciences, but this does not guarantee that an agency will fund one if it will fund the
other.

The third kind of constraint captures the idea that the likelihood of an agency
funding a proposal depends on the nature of the relationships between the agency’s
interests and those of the researcher. Formally, GRANT is an inference system that
applies repeatedly a single inference schema:

request-funds-for-topic(x) and R(x,y) — request-funds-for-topic(y) (1)

for “paths” R. (Note that R can be thought of as a single link, such as ISA, or more
generally as a path of n links connecting n + 1 nodes, as described below.) If one would
ask an agency to fund research on dandelions, request-funds-for-topic(dandelions), and
dandelions are a kind of plant, then one stands a reasonable chance of obtaining funding
from an agency that supports research on plants.

request-funds-for-topic(dandelions) and ISA (dandelions,plants) —

request-funds-for-topic(plants) (2)

If we replace the constants with variables, leaving just the relationship ISA, we get
a rule of inference of the form described in (1) that we call a path endorsement:

request-funds-for-topic(x) and ISA(x,y) —
request-funds-for-topic(y) (3)

Associated with each path endorsement is a score denoting how likely it is that an
agency would fund research on topic x if they would fund research on topic y. The rule
above has a high score because funding agencies often support work on specializations
of their stated interests; an agency may specify plants but support dandelions, may
specify transportation but support air travel, may specify heart disease but support
mitral valve prolapse. On the other hand, agencies typically state their interests at the
most general level possible, so proposals that request funding for more general topics
are likely to be denied. One cannot approach the National Heart, Lung, and Blood
Institute with a proposal to study anatomy, ;’nce that agency is interested in much
more specialized topics. This reasoning is represented by giving the following path
endorsement a low score, and calling it a negative path endorsement.

s
s
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request-funds-for-topic(x) and INSTANCE-OF(x,y] - oy

- | 2
4 \ T
}j request-funds-for-topic(y) (4) %%
".ﬁ L} A
:& Negative path endorsements constrain spreading activation by disallowing particular K

transitions through the network. The example in (4) says that if we are searching for

. funding from the heart-dizease node in Figure 2.5, we should not allow activation to
4 . . .

x spread to the mitral valve prolapse node over the tnstance-of relation because any agency
3! associated with that node would be unlikely to fund the proposal.

2 The relaiionship R in (1) need not be a single link, but could be a chain of links.
H Referring again to Figure 2.5, one can imagine that a funding agency interested in the
"\ heart might support work on mitral valve prolapse; that is, spreading activation from
e mitral valve prolapse to its setting, the mitral valve, then to the heart, which has-part
)

mitral valve, may find an agency that is likely to fund the original proposal. This is
denoted by giving a high score to the positive path endorsement

& .8
AN
)- 3.8

request-funds-for-topic(x) and HAS-SETTING:PART-OF(x,y) —
request-funds-for-topic(y) (5)

Negative path endorsements like (4) constrain search by disallowing spreading ac-
tivation. Since GRANT follows high-scoring endorsed paths before lower-scoring ones,
positive endorsements like (5) order search. Path endorsements are heuristie: (3) and
(5) could lead to agencies that will not fund the proposal, and (4) could lead to a willing
one®. Currently, GRANT uses about 120 path endorsements to prune and order search
paths. These were determined empirically during the early days of the GRANT project
and have not been changed appreciably since. Given that 48 different links are used in
GRANT’s network, many more than 120 different pathways can be traversed. The set
of path endorsements is not complete, except in the weak sense that unendorsed path-
ways are treated as if they are negatively endorsed - that is, they are pruned during
ﬁ search.

' The matching of the previous section is accomplished in a knowledge network,

‘A_ A iy ¢ Bk
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v formally described as a collection (O, L, P, D) where

r'} O is a set of structured objects.

5

" L is a set of binary relations between objects called link-types. Each link-type
‘.ﬁ [ € L links two objects.

I

) P is a set of distinguished objects called prototypes.

o

{..;" GRANT engages in best-first search (Nilsson, 1980) through a search space defined by its network.

The heuristic evaluation function is not computed dynamically at each node by lookahead, but is rather
a precompiled list of endorsed paths to search and prune.
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D is a set of distinguished objects called data-objects.

A link is a triple o04lo,, with 0,,0, € O,l € L.

A feature of object o, f(0), is a link from o to some other object: flo) = o,lo,,
where 0 = 0, or 0 = o,.

An object o is a “frame” uniquely defined by its features:

0=flaf2a"'afn

A path between object 0,4, and 0,4 is a sequence of links connecting 0,ar¢ t0 0gng:
Path(ostarts Ocnd) = (Ostartly01,011202, -, 0k 1 1Oena)
A path endorsement is a generalization of a sc: of paths:
hiz = (D,1,05l, P)

lil; is the path endorsement of a path hetween any Data-object D;, linked by {; to any
object Oj, linked by [; to any prototype P.

Path endorsements thus represent the associative pathways between data and proto-
type, without regard to the identity of data objects, prototypes, or objects intermediate
on the pathways.

We claim that the degree to which a feature of data provides evidential support for
a feature of a prototype depends only on the endorsement of the path that connects
them.

GRANT performs a best-first search through its knowledge base, guided by path
endorsements. Assume the program starts at a proposal and follows a link to an object:
(Proposaly,.,!10;). If a continuation of this path, l,0;, results in a path endorsement [,
that GRANT recognizes as poor, then o; is pruned from the list of nodes that GRANT
tries to expand. If /,/; is a good path endorsement, then GRANT will give 0; priority
to be expanded before any node o, found by an unknown path (Proposal lyo,lx0y).

Constrained spreading activation finds a single semantic pathway between a pro-
posal and each agency it reports as a potential funding source. But what if the proporal
and agency share just a single interest - discovered by the search - but are otherwise
completely different? For example, an agency may support research on reproduction
in plants, while a proposal requests funding to study the economic impact of dande-
lions on landscaping. These seem to be a poor match, yet according to (2) above, the
agency is likely to fund the proposal based on the semantic match between dandelions
and plants. It appears that GRANT needs a way to calculate the full match between
all aspects of a proposal and an agency, once it has found a partial match based on
single pathway between them.

The rasult of best-first search is a candidate list of agencies. Each is known to have
a singlc research interest that atomically or semantically matches one research interest
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I of the proposal. To the extent that the proposal and an agency share several common V\{.‘o
" research interests, the agency is more likely to fund the proposal. Thus, GRANT ranks ‘H;J\nj
E the candidate list of agencies by the degree of overlap between the research interests }%
of the proposal and each agency. This is done by a partial matching function based on ﬁ‘j
2 both atomic and semantic matching. Hayes-Roth (1978), Tversky (1977), and others i
I measure the degree of overlap between sets in terms of set intersection and symmetric RS ‘;:’.r
; difference; for example, Tversky’s contrast model (1977) calculates overlap this way: **’3'\;\;{‘
/ Rt
3 S(a,8) = 0f(ANB) - af(A - B) - Bf(B — A). &xﬁ’;
‘ The function f returns the cardinality of the set to which it is applied. If A and B W‘!ﬁ
) are frames, then f(A N B) is the number of slot-value pairs shared by A and B, and : ;-f}
3 f(A — B) is the number of slot-value pairs in A not shared by B. The parameters 6, a, " e
S and J are set empirically; in GRANT each is 1.0. If A and B are frames representing &" \
; the research interests of a proposal and an agency, respectively, then S(a,b) measures f"x"
, the number of research topics they have in common relative to those they do not share. U"%
“" Agencies for which S(a,b) is higher are more likely to fund the proposal. -{-‘:’j:”i
) In GRANT, (A N B) includes both atomic and semantic matches. If a path between ;}‘ig‘\'
ﬁ A and B contains a single node (e.g., the first case in Figure 2.5), or if the path is an f;sfy‘r}
ﬁ instance of a likely path endorsement (e.g., the second case in Figure 2.5), then f(A N ‘_le’{x
i B) is incremented. Unlikely path endorsements, such as the third case in Figure 2.5, w}_,%
2 and unknown paths do not contribute to f(A N B). The quantities f(A — B) and f(B e
:: ~ A) are increased when research topics in the proposal lack an atomic or semantic “r'(':ifg:
A match to the agency, and vice versa. bl
( In fact, we have not focused on full matching algorithms because GRANT currently e

performs adequately without one, and because its performance was not significantly
improved when we added one to an earlier version of the system. Looking to the future,
however, the analyses of partial matching presented in this report have convinced us

that GRANT will eventually require full matching to achieve major reductions in its
fallout rate.
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: 3 Evaluation of GRANT _ﬁg
" <
> i )
¥ GRANT’s evolution from a small, prototype system (Cohen, et al., 1985) to the j.:::(:
" present has given us the opportunity to compare performance as the system has been PR
/ .
< scaled up, and to consider the potentials and pitfalls of developing other GRANT-like .L:_:‘)};_;
?‘W systems. This section discusses a battery of tests on the current system. (”:Jﬁ-)::f
::; The primary measures of GRANT’s performance are recall and fallout rate. (A 3-{,}'
¥ third statistic, precision, is 1.0 - fallout.) Recall is the percentage of all the agencies f,‘;x‘.
; accepted by the expert that GRANT found, and fallout is the percentage of all the i - 4
P g
" agencies found by GRANT that were judged good by GRANT but bad by the expert: f-),‘;"g.‘*{
) P
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:
fallout = num. of agencies judged good by GRANT, bad by expert
alout = um. of agencies judged good by GRANT
num. of agencies judged good by GRANT, good by expert
recall rate = —
num. of agencies judged good by expert
g

To calculate recall and fallout for a proposal, we need to generate a list of agencies
5 from which the expert can select the ones that are likely to fund the proposal. One

3 methad would be to have the expert rank all 700 agencies in the network for each
gf proposal, but this would be exhausting. Instead, GRANT is run in a minimally-

constrained, spreading activation search that reports all agencies found within a given
“distance” from each research topic in the proposal. This is called breadth-first (BF)
search!. For each proposal, we first run a BF search then ask our expert to classify
the agencies it finds as good or bad. Since the search is blind, many of the agencies
are bad; that is, unlikely in the expert’s judgment to fund the proposal. Then we run
GRANT in an endorsment constrained mode called EC search, avoiding negatively-

253!.\ 2

endorsed pathways and favoring positively-endorsed ones. It finds a subset of the

agencies discovered by BF search. Ideally, it should find all and only the agencies [
ranked as good by the expert, but in practice it fails to find some of the good agencies e
(called misses) and finds some bad ones (called false positives). GRANT’s miss rate e
tends to be very low, so we will be concerned primarily with the relationship between .&_,\f
the fallout rate and recall rate. y\

The following tests were all performed on a set of 27 proposals, representing the
interests of a diverse group of first-year faculty at the University of Massachusetts.
The first test was designed to probe the utility of endorsement-constrained search. We
compared EC and BF search with a third mode called unconstrained keyword search
(UKW). It finds all agencies that share a common research interest with a proposal.
It is implemented as a search for all agencies exactly 2 links distant from the proposal.
For example, if a proposal and an agency share the common interest dandelions, then
each will be linked to that node by, say, a SUBJECT link. The two-link

SUBJECT : dandelions : SUBJECT-OF

path connects the agency and the proposal via the common term dandelion; and, in
general, any two-link path between an agency and a proposal indicates a shared term.
UKW search is thus a simple keyword search, since it finds only those agencies that
share terms with proposals. The relevant statistics for UKW, EC, and BF searches are
shown in Table 1.

4Ccmpletely unconstrained BF search finds all agencies in the network, each by dozens of different
paths, and requires hours of CPU time on a TI Explorer Lisp Machine. The data presented here are for
a mod.fied version of BF search that avoids nodes with extremely high fan-out and prunes paths longer
than 4 links.
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UKW EC BF

fallout rate 64% T\% 9%
recall rate 44% 67% 100%
number of agencies found 164 406 2145
number of false positives 106 207 2013
number of hits 58 88 132
number correctly rejected 0 111 0

Table 1. Statistics from UKW, EC, and BF searches.
EC search has a higher recall than UKW and a lower fallout rate than BF. lis fallout

rate is typically higher than UKW because it subsumes UKW: it finds all the agencies
that UKW finds, then finds some more by exploiting semancic relations. Let us consider
the utility of this additionai search.

Of the agencies found by GRANT for the 27 test cases, the expert thought that 132
would be likely to fund their respective proposals. UKW found just 44% of these. To
find the rest, it is necessary to exploit semantic relationships between the terms used
in research proposals and agency descriptions. EC search found 67% of the agencies
judged good by the expert. It found 242 more agencies than UKW search: 30 hits,
101 false positives, and 111 correctly rejected. So in the regions of the network that
cannot be explored by keyword UKW search, EC search found 40% of the agencies it
shouid, and incorrectly accepted 101 agencies, for a “marginal” fallout rate of 42% . In
contrast, BF search found almost all the agencies judged good by the expert, but at a
cost of a 94% fallout rate.

In practice, GRANT’s mode of operation is EC search. It is preferred to UKW
search because it finds more agencies, and to BF search because it has higher precision.
BF search finds about 80 agencies per proposal at a precision of 6% — only 1 agency
in 20 is truly worth pursuing. EC search reports fewer agencies (15 per proposal), has
a better level of precision (29%) than BF search, and has an acceptable, intermediate
recall rate (67%).

Since EC search subsumes UKW search, it also inherits a significant fallout rate.
The fallout rate for agencies found by keyword UKW search is 64%, but the marginal
rate for those agencies found by additional semantic matching is just 42%. Clearly, path
endorsements can increase precision. But their utility is obscured to some extent by
the fact that EC search “starts of” with the 106 false positives found by UKW search.
With this proviso stated, we now explore how to increase the recall and precision of
EC search.

Our experiments are designed to address two general hypotheses:

* GRANT's performance is due to its path endorsements.

e GRANT’s performance is affected by the structure of its network, including the
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lengths of pathways between proposals and agencies, and the degree of intercon-
nection between nodes.

A third hypothesis is that GRANT’s performance is affected by how its language of
links is used to encode the interests of agencies. Since many people worked on GRANT’s
knowledge base, we were concerned that knowledge was encoded inconsistently. We
calculated several statistics that measure consistency, but we did not find signif.-ant or
even suggestive correlations of these measures with fallout rates. We cannot conclude
that incnnsistencies have no affect on GRANT’s performance, because our measures
of consistency may not be sufficiently sensitive. But we have found much stronger
evidence for the cther two hypotiheses.

Structural Factors in Recall and Precision. We first calculated the recall and
fallout rates as a function of the distance between proposals and agencies in EC search
(Table 2). As noted, at distance = 2 EC has the same fallout rate as UKW search,
which finds all agencies within two links of the proposal. Extending the search one
more link increases the recall rate substantially (from 42% to 70% ) and also raises the

used in the agency description. Increased fallout limits the utility of longer chains of

; fallout rate somewhat. Interestingly, extending the search further has almost no affect &fjf‘(;'
.s on the recall rate but does increase the fallout rate. This suggests that endorsement- SV L4
) 1 H . . [¢ | “\: {
: constrained search as implemented here offers most advantage when finding agencies &‘) AL
\ based on a single semantic relationship between a term used in the proposal and a term ‘.-_Y A
’ . LI
! relations. Lf-‘%
j ‘.:-\.‘g-:'gv_:t
J length fallout recall ;3‘_:'}‘&
: rate rate s
By
= e
I less than 3 64 42
less than 4 73 70
less than 5 78 69

T

Table 2. Recall and fallout rates for searches along pathways of different
lengths.
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