
AD-Ai93 13? A REVIEW OF PRLLEL METHODS FOR SOLVING SETS OF LINEAR Ill
EQUATIONS AND THE..(U) HATFIELD POLYTECHNIC (ENGLAND)
MMERICU. OPTINISATION CENTRE. L C DIXON NOY 8?

UNCLRSSIIE TR- D AJ 45- - 67--C1.F/O L2/ L

mEmmhhhhhEIl

111.0 on~I =L=5
311 -~ 132 2.2

1111.25 14 .

- -. -

- UJ1CFILE COPYI
Numerical

Opimisation

~4Centre

TECHNICAL REPORT NO. 188 NOVEMBER197 i:

by''

- fl14.1-4

_T I C
-~ .k'i ~ ~ .. -- y T

L~EET I_ ixn~

~~~~~~~~E 21,- ±988~sr 'Ees'

-- :2: -~ Mole

- 77

doHtil oye
0~



I IAD1987

OPTIMISATION ALGORITHMS FOR HIGHLY PARALLEL

COMPUTER ARC'HITECTURES

First Interim Report

"A REVIEW OF PARALLEL METHODS FOR SOLVING SETS OF LINEAR EQUATIONS

AND THEIR APPLICATION WITHIN OPTIMISATION"

by

L.C.W. DIXON

November 1987

United States Army

EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY

London England

CONTRACT NUMBER DAJA45 - 87 - C - 0038 V

The Hatfield Polytechnic ,

Approved for Public Release; distribution unlimited

*1~*.



THE HATFIELD POLYTECHNIC

NUMERICAL OPTIMISATION CENTRE

A REVIEW OF PARALLEL METHODS FOR SOLVING SETS OF LINEAR EQUATIONS

AND THEIR APPLICATION WITHIN OPTIMISATION ALGORITHMS

by

L C W Dixon

TECHNICAL REPORT NO. 188 NOVEMBER 1987

Abstract

'-)When solving optimisation problems on a parallel computing system, the

first consideration must be to utilise the parallelism to speed up the 95X
of the time typically spent in function and gradient calculations. This
is normally done in one of two ways namely the parallel computation of
functions or gradient evaluations or the division of each function
evaluation into a number of parallel tasks.

Assuming this prime task has been undertaken effectively then for
efficiency the other 5% of the computation must also utilise the
parallelism available on the system.

The dominant remaining calculation is usually the solution of a set of
linear equations.

/ In this paper the implication of parallel processing on the solution method
for solving linear equations will be reviewed.

!A
I ror ''&

1) 1istr l z/. .

ii _ _ - .



1. Introduction

In this report we will be concerned with the optimisation problem

Min F(x) x C R.

Occasionally we will assume simple upper and lower bounds of the form Ii

x, < u, exist.

There is of course a complete theory for the convergence of iterative

algorithms which generate a sequence of estimates

X =X + O0p

and many efficient codes exist for the solution of such problems on a

sequential machine. These have successfully solved many optimisation

problems.

The question therefore arises as to why then we should be interested in

introducing the parallel processing concept into numerical optimisation.

The main reasons that influenced us were:

(1) that we knew of industrial problems that took an embarassingly long

time on a sequential machine

and we knew too that

(2) industry only poses problems that it thinks might be soluble.

By introducing the parallel processing concept into numerical 4
optimisation we hoped to be able to extend the range of soluble problems.

We identified four different situations where we felt that the solution of

optimisation problems would most benefit from the availability of parallel

processing machines. These were:-

1) Small Dimensional Expensive Problems

These are typified by industrial problems which frequently have a small

dimension n < 100 but where the time required to compute the function and -%

gradient values at x(k can be considerable and where this dominates the

computation within the algorithm.



2

",

2) Large Dimensional Problems

There are many large dimensional problems n > 2000 where the combined

processing time and storage requirements cause difficulties.

3) On Line Optimisation

There are many on line optimisation problems, for instance the

optimisation of car fuel consumption which cannot be easily solved using

existing sequential optimisation codes on the type of processors that could

be easily installed within a car but which might be solved on more than one

such processor.

4) Multi Extremal (Global) Optimisation

Problems in which the objective function has many local minima and

where the real problem is to identify the best of these, still present many

difficulties because the available sequential codes are weak and expensive

in computer time.

In all four of these areas the availability of parallel processors _

promised significant improvements and in each that promise has been

achieved. In this lecture we will mainly be concerned with the first

class of problem but the solution of sets of linear equations is an

essential step in the solution of all four classes of problem.

2. Optimisation Problems and Algorithms

It is usual to find on analysing the solution of most industrial

optimisation problems that at least 95% of the computer time is spent in aN

evaluating the values of the objective function F(x) at x (k) and only 5% of

the time within the optimisation code.

It is therefore natural to concentrate on the speed up of the .- *,

calculation of the engineering model F(x) rather than the code.

This can effectively be done in two distinct ways. If we assume a

computer system with P processors that can act in parallel.
A 



3

Approach A

The calculation of each objective function value F(x) is divided into P

parallel tasks. This approach leaves the responsibility for the efficient

use of parallelism in the hands of the user.

Approach B

The algorithm is modified so that it can accept P values of F(x) or

VF(x) computed simultaneously. This places the responsibility for the use

of parallelism on the algorithm designer.

At the NOC we have developed codes of both type A and B. The finite

element optimisation approach to the solution of nonlinear partial

differential equations Singh (1983)[11 naturally leads to optimisation

problems that divide into parallel tasks. This has been implemented with

very significant speed up on the ICL-DAP by Ducksbury (1985)[2]. Indeed

any partially separable objective function Toint (1986)131 can be solved in

this way.

Early implementations of a B type approach in which gradient and

Hessian information were approximated by difference in function values at

different points computed in parallel were reported by Patel (1984)[4].

With the availability of automatic differentiation Rall (1981)[51 which
can be implemented effectively in ADA Mohseninia (1987)[6], codes are now

being written to utilise concurrent tasking to calculate the components of

the gradient (and when necessary the Hessian matrix) on parallel

processors. In this context Mohseninia has found that it is natural and
S

efficient to utilise the partially separable structure when computing the

function and gradient values as parallel (concurrent) tasks.

More details of these approaches is given in Dixon & Price (1986)[71.

If we assume that when solving class 1 optimisation problems that

typically 95% of the computation is spent calculating function and gradient

values then a simple calculation demonstrates that to obtain significant



4

speed up factors the remaining 5% of the codes must also utilise the S

parallelism available. Assuming perfect efficiency in calculating the

function values in parallel on P processors and letting t(P) be the time of

computation we would have

(95I I
T(P) = - + 05 -(l)I IpJ

so the ratio has an upper bound of 20 even if there are 4000
T( P)

processors.

It is therefore essential to reduce 5% of the time spent in the

optimisation code. In most optimisation codes this calculation is

dominated by the time required to solve a set of equations

Ax = b x c R
n

typically in unconstrained optimisation this will be some approximation of

the Newton equation

V Fx = - V

while for REQP methods of constrained optimisation A and b also contain

constraint information.%

Even for unconstrained optimisation the most apropriate approximations

A and b are dependent on both n and P. Byrd, Schnabel and Shultz

(1987)[81 discuss modifications to Approach B appropriate when n + 1 < P <

(n' + 5n + 2)/2. Patel's experience was obtained with P > (n' + 5n +

2)/2; whilst Ducksbury assumed n + 1 > P. However in this lecture we

will now assume A and b have been obtained appropriately and consider the %

solution of the set of equations -.

Ax = b. 
r

I,
I, 

*1p



5 '

3. The Solution of a Set of Linear Equations: Introductory Comments

The problem of solving a set of equations

Ax = b

is one of the most frequently occurring problems in numerical computation.

Because of the frequency with which it occurs it has been intensely

researched and there are very many variants of most algorithms designed to

solve it. It is probably however true that on a single processor machine

most numerical analysts would prefer to use one of four standard methods

if, as will be assumed in this lecture, A is dense.

The four broad classes of method we will consider are:

1. Gaussian Elimination

2. OU Decomposition

3. Iteration

4. Conjugate Direction Techniques.

Within the first category we will consider four variations:

1.1 Choleski Decomposition

1.2 Total Pivoting

1.3 Partial Pivoting

1.4 Gauss-Jordan.

Similarly within the second category we have:

2.1 Householder's Method

2.2 Givens' Method

2.3 The Gramm Schmidt Method

and in the third category:

3.1 S.O.R.

3.2 Gauss-Seidel Method

3.3 Jacobi Method.

In each of the above three classes of method, I have attempted to list

the variations in the popular order for a sequential machine, i.e. on a



6

sequential machine I suspect most people would use Choleski decomposition

if the matrix is symmetric and positive definite. Whilst on a

nonsymmetric or nonpositive matrix most people prefer to use a partial

pivoting code, the case for total pivoting on really badly conditioned

problems is accepted but disliked. The Gauss-Jordan variant of either is

rejected as more expensive.

The questions we shall consider in this lecture are which algorithm we

should use in RN with p processors and secondly how does that answer vary

with n and p and the relative compute and data transfer times of the

system.

4. Gaussian Elimination Methods

Most Gaussian codes consist of three parts

(1) triangularisation

(2) pivoting

(3) back substitution

in which the triangulation and pivoting interact and are both completed (I

before the back substitution starts.

4.1 Triangularisation P%

Without pivoting triangularisation takes the simple form b

FOR k = I TO N - 1

FOR i k + 1 TO N

FOR j k + 1 TO N F1

a.j =a -aka /a
i j i k kj k k

NEXT j, i, k.

'Ir



7

Most early numerical analysis texts commented that it is preferable to "4

rewrite this as: .

FOR k = 1 TO N - 1

FOR i = k + 1 TO N

c = a i k /akk F2

FOR j = k + 1 TO N

aij = ai . - cakj

NEXT j, i, k.

This change was recommended because on most sequential machines

t~l DIV + (N - k) mults) < t((n - k)Divs).

Parkinson observed that this is no longer true on either a pipeline or a .

DAP processor. On a pipeline

t(1 Div + pipeline mult} > t{chained mult/divisions)

whilst on the DAP the original code is 3 simple matrix operations, a

property lost in the modified form.

For those using Fortran it is often further recommended that for data

access reasons it is preferable to do

FOR k = 1 TO N - 1

FOR i = k + 1 TO N

ci = aik /akk F3

NEXT i

FOR j = k + 1 TO N

FOR i = k + 1 TO N

a =al c aaij = a j - i k j -

NEXT i, j, k.

While these changes may seem trivial such considerations can significantly

alter the efficiency of codes and their effect in a particular architecture

should be borne in mind. U

• .

. '...



8

4.2 The partial pivoting operation

In partial pivoting the largest element of n - k elements in the pivot

row is determined between the k and i loops. On a sequential machine this

implies n - k comparisons. On a parallel machine the number of

comparisons needed to compare R numbers on P machines depends on R and P.

For instance if P 4, R = 16 it takes 5 steps

Step 1 C(N1; N2), C(N3, N4), C(N5 , N6), C(N7 , N8 )

2 C(M 1 2, M3,4), C(N9, N1 0 ), C(M 5 6, Nil), C(N 7 8, N1 2 )

3 C(M, 2 . 1, M 1,o), C(N, N (1,1, N1), C(N,-
1 ,(M ,4,'9 10 M1, ) - 1, C ( M 5 , , 6 MC,(, M 7 8) , 1- 1

5 C(M1 ,2  3,4 9,1 0,1 3,14 M( 5 6, 1 1 ,,, 12 - , - , -

The case usually quoted assumes p = R/2 when the comparison requires log2R

steps if R = 2

4.3 The partial pivoting algorithms

13 2
On a sequential machine the algorithm requires n + O(n

S 2multiplications and divisions, and O(n ) comparisons. The times for the

comparisons are usually ignored.
on a parallel machine with P = (n - 1)2 processors Sameh and Kuck

(1977) showed the most active processor only needed 3(n - 1)

multiplications/ divisions, but O(n log n) comparisons. For large n pivot

comparisons dominate! Lord, Kowalik & Kumar (1983) who tested many

algorithms on the HEP (P 8) computer for which the assumption

12P = (n - 1) was inappropriate, re-examined the algorithm assuming

2
P = In/2], they showed that the algorithm then requires n- 1

multiplications and divisions on the critical path. '

1 3 2 .'Their Speed up = n /n- 1 =n Efficiency = n

..er p 3 3 ceny 3 2 3*

The Sameh/Kuck and Lord/Kowalick & Kumar methods are contrasted below for

n - 4.

o A'



9 
I

Sameh/Kuck P = 9 Lord Kowalik & Kumar P =2

1. Select Pivot and form rk = I/akk 1. The same .

2. Calculate c. = aikrk (PAR) 2. c2 = a2 k rk
ik Ck (AR() 2 2k r k  16

3. a.. (2 a. (1 ca. (PAR) 3. c3  akr r3. i j = aikj 3 a3k k

4. Select pivot and form rk= 1/akk 4. c4 = a 4 krk
(2) (2) 2

5. Calculate c. = aik rk (PAR) 5. a2 2  a23

(3) = 2) 2) (2 26. a. a1 j - c ak) (PAR) 6. a 3 2  a3 3

7. Select pivot and form rk = 1/akk 7. a42(2) a43)

3) 28. Calculate c = aik rk 8. Pivot and rk a24a (4) a (4) (4) (. c a 4 2)'

9. ai a -- cI(ak 9. c a

10. c4  
a4  3

(3 3Note. L/K/K could be improved at the 11. a3 3  a3 4
(3 3)

beginning but this would alter 12. a4 3  a44

their calculation 13. Pivot and r k

14. c4
4)

15. a 4 4

Amusing variants can be constructed, for instance P = 3

1. Select pivot and form rk = 
1 /akk

2. c2  c3  C
(2) (2) (2)

3. a22 a23  a 24

4. a3 2  a 3 3  a 3 4
2

(3) (3) (3)

5.a 4 2  a4 3  a 4 4

6. Select pivot and form rk = 1/akk

7. c3 C 43 4
7.3c c 3

8. a a
(33(3) (3)

9. a 3  a4 '
.44

10. Select pivot and form rk = 
1 /akk

11 .

(4)

12. a 44



10

Comparing the four codes we have
S

P = 1 C =23 C*P =23

P = 2 C 15 C*P =30

P = 3 C =12 C*P =36

P = 9 C =9 C*P =81

. so our speed up is always obtained at a processor * time cost.

No attention has been given so far to data transfer times i.e. the time

necessary to transfer the data to the processor undertaking the compute.

We will return to this point in section 4.5.

4.4 Total pivoting

In total pivoting at iteration k we need to compare (n - k)2 numbers.

This would dominate the cost even more for large n and small P; but is

ideal on the ICL DAP where there is a special fast Max(A1 ) instruction ffr

determining the maximum element of a matrix.

4.5 The Gauss Jordan method

Gaussian elimination is usually completed by back substitution.

Kuck (1977) has shown that this can be done in 3(n - 1) steps on n - 1

I

processors. However it should never be done on such a system since the

unused processors are available precisely when they are needed to do the

Gauss Jordan calculation. If we insert n additional rows to update RHS we a
now only need one additional step to complete the solution.

For data transfer considerations it is better to use n or (n + 1)

processors than n - 1 as then computations involving one row or column can

be done on a particular processor. If this is done then it is efficient

to update the pivot row in parallel at each step by making the pivot

element unity.

U.o



3 11 .

Gauss Jordan n =4 P = 4

1. Select pivot and form rk = 1/akk

2. c c C C1 2 3 4

(2) (2) (2 (2
3. a1 2  a22 a32 a42(2) (2) (2) (2)

4 a 1 3  a23 a33 a43

(2) (2) (2 (2
14 24 34 44

.6 b b 2 b 3 b 4

7. Select pivot and form rk = 1/akk

8. c c 2 3 4

9. a1 3  a2 3  a 3 a43
(3) (3) (3 (3

10. a14 3 a 24 3 a 34 3 a4 43

11. bi b2  b 3  b4

12. Select pivot and form rk = 1/akk

13. c1  c2  c3  c

a4- (4) (4
14. 14 24 34 44

15. b2  b b

16. Form r k = 1/a kk

17. c cz  c c
17 1  C 2  C3  C 4

18. b ) x bz) x2  b3) x3  b ) x
1 22 3 3 4 4

It is probably worht repeating that on most parallel machines it will be

more efficient to omit the separate calculation of rk and compute ci by

division rather than multiplication. If the pivot calculation is ignored

the number of steps is

n+l

k 1 1(n + l)(n + 2) - 1.
k= 1

V



12

5. Orthogonal AU Decomposition Techniques

The parallel analysis of both Householder's and Givens' method was

given by Sameh and Kuck (1977). They showed that given P = 0(n2)

processors Householder's method required 0(n log n) operations but Givens'

method only required 0(n). This contrasts with the sequential situations

where Householder's method is the more efficient. This comparison was

tested and confirmed by Sorenson (1985).

The Sequential Givens routine consists of

1. FOR Q = 1 TO N - 1

2. FOR P = Q + 1 TO N
22 2 2

S = a Q //a Q + aQQ c ap /jaPQ + aQQ

3. FOR J = 1 TO N

TEMP= Ca + S a

aQ S/a + a j

= TEMP .,

% 4. Next j, P, 0.

Note that the J loop is an ideal pipeline calculation. Typically

operation 3 is considered 1 task. ,

The essential feature of Givens' method is that a pair PQ only alters

rows P and Q so a number can be performed in parallel. i

The earliest discussion of a parallel Givens code was that due to Sameh

and Kuck (77) who reduced APQ to 0 in the following order for an n x n

matrix

I * 3 *
2 3 * 2 5*
3 4 5 * 2 4 7 *
4 5 6 7 * 1 3 6 8

5 6 7 8 9* 1 3 5 7 9 *
6 7 8 9 10 11 * 1 2 4 6 8 10 *
7 8 9 10 11 12 13 1 2 3 5 7 9 11

Sameh & Kuck (77) Modi & Clarke (84)



13

Their code performed 13 parallel Givens steps on 4 processors. In general

(2n - 3) parallel Givens steps on 2 processors. As each parallel Givens

step involves 4n + 4 operations the speed up is dominated by 4n3/3(2n -

3)(4n + 4); so S = in and E = 1. Many attempts at improving the Sameh &

Kuck method have been proposed but Cosnard (1985) has shown that the

"greedy" algorithm, Modi and Clarke (1984), is optimal. This is also

shown above, and only requires 11 parallel Givens steps on 4 processors.

Cosnard states that the efficiency of this method is asymptotically 1 butn2

if we utilise ! parallel pipelines when performing the inner loop the

algorithm is much more powerful than this would indicate.

Kowalik, Kumar and Kamgria (1983) noted that if 2(k + 1) processors are

used to perform the inner loop it only requires 4 steps. Again analysing

the nonoptimal sort they concluded that with P - in 2 + n they could obtain

a speed up S = 1n2 /6 + 0(n), C = 8n - 12. Adding the 3n - 3 operations

for parallel back substitution they state the parallel operation count as

11n - 5. They also analysed the case with P = [(n-1)/21 and claimed '

C = 6n2 + 8n - 25 giving S = in and E- These times were verified

on their test runs on the HEP.

6. Iterative Methods

6.1 Jacobi's method

To solve Ax = b first scale so D.= 1 then iterate

S(k+II k
x = (I - + b.

This method is convergent if III - All < 1 but very slow when

III - All > .9.

The method is however ideal for parallel processing as we can do all

the rows in parallel if P > n and P rows in parallel if P < n. If each

processor is a pipeline it is even better, as each row update is an ideal

pipeline operation.



14

It is therefore possible to speed up the very poor method

significantly.

6.2 Gauss-Seidel method

The ordinary Gauss-Seidel algorithm

i-i n
k (k+l) (k) _ A k+l) Z A (k) +b.

j=l j=l

is not suitable for parallel computing due to the x. term on RHS.

This can however be adapted for a block Gauss-Seidel approach with

P < n. If q s.t. Pq < i < p(q+1)

Pq n
(k+

l
) (k

)  
- A k+1) n (k

)

X, =x -E A,. x I -=q~ A)x. + bij=l 1 jjpq1i

allows P values of x to be evaluated in parallel.

6.3 Assynchronous Jacobi or Gauss Seidel Method

As an alternative to the Block Gauss Seidel method Baudet (1978)1171

proposed the assynchronous algorithm where

n
(k+l) (k) x

9. x X. EZ A..x' + b
j=l 1) 3 1

L
is used where x is the latest value in the store when it is accessed.

3

Allowing P - n processors, 1 for each i, and slight variations of

L 1k (k+ 1
performance x could be either x3  or x. l  His analysis indicated

there would be no loss of performance.

7. Conjugate Gradient Method

The sequential code consists of the following steps:

1. Choose x'° ) (usually 0); c; r0 = b - Axo, do = r0 while H1rII > c do

2,3,4.
. + T=

2. x. = x. a d a= r d/d TAd

3. r+ = b - Ax+

4. d+ = + 1 = R+T r+/r T r.

Steps 2,3,4 are ideal for a parallel processor.



15

with P = n, the calculation of Ax and Ad requires n parallel steps

rTd, d TAd, r Tr requires log n parallel steps.

So one iteration costs 2n + 3 log n + 4 steps.

If p = n2 we can do all the multiplications in Ax and Ad in parallel so one

iteration is only 3 log n + 6 steps.

8. Preconditioning

In practice on a sequencial machine both Jacobi and Conjugate Gradients

are preconditioned before use. In the Jacobi method this involves the use

of either a matrix C or a matrix M where the equation becomes

CAx = Cb or -1Ax = M-b.

For efficiency we require C to approximate A-1 , or M to approximate A; if

we are using M we need Mz = w to be much easier to solve than Ax = b;

while if we are using C we need C to have a nice sparsity pattern.

The preconditioned Jacobi method is then either

x k+ = (I - CA)xk+ Cb or x k+ 1 =xk + z

k
where z =b - Ax .

In the conjugate gradient method we must maintain symmetry so we use

T
CAC y = Cb where x _ CTy

and we require CACT to be wellconditioned and C to have a nice sparsity

pattern.

Whilst the method could be programmed in terms of y it is more usual to

substitute into x space then the initial step

d, = ax, =CTC(Ax b)

r, = Ax, -b; z1 = C(Ax- b)

and at subsequent iterations

x + = x + Od

r+ -r + oMd

z + - z + oCAd

d+ = Cz + N,



16

U

where ot= - r Td/d TAd and 1 = z TZ/ZTZ.

The usual choices of conditioning matrix on sequential machines are the

Neumann or incomplete Choleski.

The Neumann conditions used the principle if G = (I - A) then

(I - G) = I + G + G + G ... and truncate this series for C.

On sequential machines these are not as fast as the incomplete Choleski

factorisation, where a Choleski factorisation is done without fill in to

prserve sparsity. On pipelines and parallel computers the presence of

these matrices puts up the CPU time, as the algorithms are no longer

readily adapted for parallel processing.

A typical set of results is that given by Blumenfield (1983)

Preconditioner No. of Iterations Pipeline Time

1 120 584

I + G 65 445

I + G + G2  70 606

2 3
I + G +G +G 45 493

Incomplete Choleski 37 1293

The problem of preconditioners for parallel and pipeline systems needs

further research.

9. Conclusions

In this lecture I have tried to illustrate some of the considerations

that must be taken into account when selecting an algorithm for use on a

parallel processor architecture. I hope to have shown convincingly that

the assumption that any sequential algorithm can be selected without

careful consideration is false.

Of the Gausian type methods the Gauss-Jordan version is recommended.

for OR decomposition the Greedy parallel Givens method is the obvious

choice. Foi iteration methods the Block Gauss Seidel is effective and

'5- '5



01W-VVF" WAW7 NX 16 - - - .

17

simple to program as is the conjugate gradient method. Great care needs

to be taken when introducing preconditioning matrices into parallel

computation.

References

1. Singh, P, An investigation into the prediction of the flow of viscous
incompressible fluids, PhD thesis, Hatfield Polytechnic, 1983.

2. Ducksbury, P G, An investigation of the relative merits of optimisation
algorithms on the ICL-DAP, PhD thesis, Hatfield Polytechnic, 1985.

3. Toint, P, An introduction to Quasi Newton Methods for large scale
unconstrained nonlinear programming: University of Namur, Belgium,
1986.

4. Patel, K D, Parallel Computation and Numerical Optimisations, Annals of p
Operations Research 1, 135-149, 1984.

5. Rail, L B, Automatic Differentiation: Techniques and Applications,
Lecture Notes in Computer Science No. 120, Springer Verlag, 1981.

6. Mohseninia, M, The use of the extended operator set of ADA with
automatic differentiation and the truncated Newton Method, The Hatfield
Polytechnic, NOC TR176, 1987.

7. Dixon, L C W, Dolan, P and Price, R C, Finite Element Optimisation:
The use of structured automatic differentiation, The Hatfield
Polytechnic, NOC TR175, 1986.

8. Byrd, R H, Schnabel, R B and Shultz, G A, "Using parallel function
evaluations to improve Hessian approximation for unconstrained
optimization," Technical Report CS--CU-361-87, University of Colorado,
Boulder, 1987. .

9. Sameh, A H and Kuck, D J, Parallel Direct Linear Equation Solvers - a
survey, In M Feilmer (ed.) Parallel Mathematics, 1977.

10. Lord, R E, Kowalik, J S and Kumar, S P, Solving Linear Algebraic
Equations on an MIMD Computer, J. of ACM, Jan 1983.

11. Kuck, D J, A survey of parallel machine organization and programming,
Computing surveys 9, 29-59, 1977.

12. Sameh, A H and Kuck, D J, On Stable Linear System Solvers, J.A.C.M. 25,
31-91, 1978.

13. Sorenson, D, Lecture presented at XIV Mathematical Programming
Symposium, Boston, 1985.

14. Cosnard,M and Robert, Y, Complexity of the parallel QR Decomposition of
a Rectangular Matrix In Feilmeir, Joubart and Schendel (eds.) Parallel
Computing 1985, Elsevier Science.



18

15. Modi, J J and Clarke, M R B, An alternative Givens ordering, Numer.
Math. 43, 83-90, 1984.

16. Kowalik, J S, Kumar S P and Kangria, E R, An implementation of the fast %
Givens transformation on an MIMD computer, Applications Mathematicae,
Polish Academy of Sciences, 1983.

17. Baudet, G M, Asynchronous Iterative methods for multiprocessors, JACM
2, 226-244, 1978.

18. Blumenfield, M, Preconditioning Conjugate Gradient Methods on Vector
Computers In Feilmeier, Joubert and Schendel (eds.) Parallel Computer
83, North Holland, 1983.

'°a

V1

.5'

%!

N5



I72I

op P p J" .. J

N':S

J)'r-

4 z ~

"'''1-'

4"

- 0- - -

'I r---S.'---~--* * s *P ~ ~ s *
44 55 5.5 .

,5..-'


