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A NUMERICALLY EFFICIENT DIGITAL 
MATCHED FILTER FOR PERIODIC AND 

WINDOWED PERIODIC RADAR WAVEFORMS 

I. INTRODUCTION 

A network whose frequency response function maximizes the output peak signal-to-mean noise 
power (S/N) ratio is called a matched filter. Almost all radar receivers are designed with the matched 
filter criteria. If h(t) is the impulse response function of the matched radar receiver, s(t) is the 
transmitted radar waveform, and the noise interference is white and additive, then it can be shown 
[1-3] that 

h(t) =s*(-t), 

where * denotes the complex conjugate operation. 
(1) 

A digital matched receiver design is based on the same principle of maximizing (S/N). We sam- 
ple the transmitted radar waveform at equal time intervals T. Let .SJ, JJ, • ■ • , ^N be the values of the 
sampled transmitted waveform where A^ is the number of sampled points as seen in Fig. 1.  We set 

S  =  (5i, *2> ■••   > %)^ (2) 

where T denotes the vector transpose operation.   The digital receiver applies a weighting vector 
w = (wj, W2, ...  , vv^v)^ such that 

y = w^s. (3) 

^1    ^2    S3 

Fig. 1 — Sampled radar waveform 

Manuscript approved September 15, 1987. 
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It can be shown that (S/N) is maximized when 

w = s" (4) 

The matched receiver structure can be represented as seen in Fig. 2. Here x(n) is the received time- 
sampled input sequence consisting of signal plus noise. The received input sequence is digitally 
convolved with the conjugated time-reversed sequence of the vector s, denoted by §*, which results in 
a matched output sequence yQi).  Mathematically, this can be stated as 

N -I 

y(n) =   D   s^+ix(n +k). 
k =0 

(5) 

x(n). 
MATCHED 

FILTER -*- y(n) 

Fig. 2 — Simplified digital matched filter 

Many surveillance radars employ a periodic waveform as illustrated in Fig. 3. The waveform is 
"on" for a given duty cycle and then turned "off" to receive the reflected echoes. The "on" por- 
tion of the waveform is subdivided into N cells where the n th cell has the value s„. Each cell is T 

seconds long, where T is proportional to the range resolution cell. In fact, it can be shown [3] that if 
j8 is the bandwidth of the radar waveform, then T ~ l/jS. Let there be M range resolution cells in 
the pulse repetition interval (PRI).   It can be shown that PRI =MT. 

M RANGE CELLS 

I     I     I     I     I      I     I 

PRI  =  Mr 

Fig. 3 — Periodic radar waveform 

The digitally matched receiver of this periodic waveform can be implemented by using the linear 
convolution operation as given by Eq. (5) or it can be implemented by using fast convolution tech- 
niques [4]. In this report, we introduce a processing method (based on circular convolutional tech- 
niques) that is numerically more efficient than the fast convolution techniques when the duty cycle is 
not small. In fact, for 50% duty cycle waveforms, the technique uses half as many complex multipli- 
cation operations (CMOPs) as do the fast convolution techniques. The circular convolution algorithm 
is presented in Section II and is compared with a fast convolution technique in Section III. 

Note that if the radar waveform pulse train is a long-windowed periodic function, then the circu- 
lar convolution technique is also applicable with some (S/N) losses occurring at the leading and trail- 
ing edges of the received waveform. 
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n. MATCHED FILTER IMPLEMENTATION 

In this section, we present a matched fiher implementation based on circular convolution tech- 
niques. Consider the simplified digital receiver structure shown in Fig. 4. The return signal is x(t) 
and is sampled each T seconds. Each sample is successively stored in a shift register (SR) until M 
samples are taken. We match the filter to those M samples. After matching, the SR is reloaded with 
the next M samples of x(t), matched, and so on. Note that when this implementation scheme is 
employed, in most cases we are matching the received data, x^, X2, . . ., x^ across two PRIs. For 
example, with no noise, x, = s„,, x-, = s^., x^     ^, = y„   r»,       , = n  r - n 

■' ^M-m-3 = 0> •^M-m-2 = ^u Xj^-m-i = *2' • • •   x,^ = ■Sm-i- where m is related to referenced 
time delay or compressed range cells. 

x(t) 
STORAGE SHIFT REGISTER 

IZ 

MATCHED FILTER 

\y OUTPUTS 

7 
Fig. 4 — Simplified digital receiver 

We designate the compressed range cells as r^, A-2, 

data contained in the SR for each range cell is 
.,   rjjf.   The matched filter output for the 

rj :     y\ = s^x^+S2)C2 +■■.+Sf^Xf^ 

r2 :     y2 = s^X2 + S2Xj, + ...+sj^Xf^ + ^ 

3:       y3  =S^Xj,+S2X4^-...+Si^Xj^ + '^ r-K : 

(6) 

^M  '■       JM   = •^l-^M + •^2^1 + • • • + Sj^Xf^ _ 1, 
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where y^, m = 1,2, ... , M represent the compressed output for each range cell. 

Let 

X = (Xi, X2, ■ ■ ■ , XM) 

y = CVl, )'2. •••.)'M)^ 

(7) 

(8) 

5 = 

5i 52 ^3 

0 51 52 

0     0    5i 

52   S3   54 

%      0 

%-2   %-l 

0     0 

0 

0 

0 

*1 

(9) 

We can then show that 

y = S*x. 

However S is a circular Toeplitz matrix [5] and can be written in the form 

S = BAB* , 

where the Butler matrix 

B =ir^-'^^^"-\      m,n = 1,2,...,M, 

(10) 

(11) 

(12) 

rw =e 
.2r 
'li- 

the diagonal matrix 

and 

A = (X^);      m = 1,2,... ,M 

VAf k =0 

Hence y can be rewritten as 

(13) 

(14) 

(15) y = B*A*Bx. 

As a result, the matched filter implementation can be configured as shown in Fig. 5.   Note that this 
implementation is equivalent to a circular convolution [4]. 
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_r(t) /_ 

Fig. 5 — New matched filter implementation 

An efficient implementation of this multiple channel matched filter is accomplished by using M- 
point fast Fourier transforms (FFTs) which is equivalent to multiplying by the B matrix; and by using 
Af-point inverse FFTs, which is equivalent to multiplying by fi*. This implementation is shown in 
Fig. 6. The input data structure is as illustrated in Fig. 7, for iV = 8 and Af = 16. Note that the 
input data structure differs from that of the linear convolver in that the "matching" in most cases 
actually occurs over two adjacent pulses. In the example seen in Fig. 7, three subpulses Sg, s-j, s^ in 
pulse 1 are inputted along with the five subpulses Sj, 52. •^3. ■^4' ■^'5 i" pulse 2 into the matched filter 
(circular convolver implementation). 

r(t) 

w 

•   •   • ^M 

M ptFFT 

X* 11 

11 

X* 22 

M pt INVERSE FFT 

Vi      Vz 

Fig. 6 — Efficient implementation of new matched filter 

VM 
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Doppler processing is also implementable in conjunction with using the circular convolver as a 
matched filter or pulse compressor as illustrated in Fig. 8. Here, we have inserted a Doppler filter 
bank before pulse compression (note that ideally the operations of Doppler filtering and pulse 
compression can be reversed with no differences in the respective output channels). The Doppler 
filter bank samples the input data stream x(t) every PRI, which we set equal to T. We make the fol- 
lowing definitions. Let a, = (a^'), ap, .. . , ap_,f be the K Doppler coefficients on the /th 
Doppler filter. Let L be the number of Doppler filters and <A be the Doppler phase shift over one 
PRI of our desired signal. Thus the output s '„' of the /th Doppler filter related to the nth subpulse of 
the received desired signal is 

s'n = a^'\ + aP s„e^-^ + 4\eJ^t' + ...  + aP_,s„.eJ^^-'^ 

K-l 
0) Jk<t> 

(16) 

k=0 

= sJi((l>), 

where we have defined 

K-l 
,il)Jk4> fii<f>) =  E «/V*^* (17) 

/t=0 

to be the Doppler filter gain factor of the /th filter. Hence the output data stream of the desired sig- 
nal through the /th filter looks as is shown in Fig. 9. Note that the input data stream for the desired 
signal is muhiplied by the Doppler filter gain factor, which is range independent, and also that the 
basic periodic structure is retained. Thus this signal can be matched filtered by using the circular 
convolution procedure as if there were no Doppler processing present. 

III.  NUMERICAL EFFICIENCY COMPARISON 

The total number of complex multiplications operations (CMOPs) per PRI to implement the cir- 
cular convolution algorithm is tabulated below: 

CMOPs 
M-pt inverse FFT :     .SMlogzM 

X weighting    :      M 

M-pt FFT     :     .SMXogjM 

Total :     M log2 2M ' 

We compare this with the number of CMOPs per PRI if the standard matched receiver (Fig. 2) is 
implemented. 

In Fig. 2, X(/M), m = 0,1,... , are consecutive samples of xit). This sequence is convolved 
with the matched finite impulse response filter, which has coefficients ^i, ... ,j;^ to form the matched 
output sequence: y(0), ^(1),     If standard convolution is employed to generate a single output 
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PULSE 1 PULSE 2 

V 
M = 16 SAMPLES INPUTTED INTO MATCHED 

FILTER (CIRCULAR CONVOLVER) 

x(t) 

Fig. 7 — Input data structure into the circular convolver 

DOPPLER 
FILTER BANK 

^0 
"oW MF 

~* 
s 

"L-IW 

• 

• 

• 

• 

• 

• 
x(t) 

k-^ 
MF 

S* 

\ 

S = (Si, Sg s^f 
MATCHED 

FILTER 

Fig. 8 — Doppler processing and matched filtering 

PULSE 1 
,MULTIPLIED BY f,(</)) 

I      I      I     I      I      I      I 

PULSE 2 

x(t) 

V 
M = 16 SAMPLES INPUTTED INTO MATCHED 

FILTER (CIRCULAR CONVOLVER) 

Fig. 9 — Input data structure after Doppler processing 
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point, N CMOPs are necessary (see Eq. (5)).  Thus to generate M ou^uts (or all the matched outputs 
over a PRI), MN CMOPs are needed. 

If fast convolution techniques are employed, then we can show that to generate A^ outputs (over- 
lap and add technique [4]), then 2N log2 4A^ CMOPs are needed (see tabulation below). 

CMOPs 
2N FFT of A^-pt input  :   N logj 2N 

internal multiply by the DFT {s} :  2N 

2N inverse FFT      :      N logj 2N 

Total :    2N log2 4N 

Hence to generate M points, 

M 
— (2yV log2 4N) = 2M log2 4iV (18) 

points are needed. 

We list the number of CMOPs per PRI for each algorithm 

Algorithm CMOPs per PRI 
New M log2 2M 

Fast Convolve M log2 16^^ ' 
Standard Convolve MN 

Thus if 2M < 16N^, then the circular convolutional matched filter is more efficient. For example, if 
the duty cycle of the waveform is 50%, then M = 2N. The new algorithm takes 2N logj 4A^ 
CMOPs, and the fast convolve algorithm takes 4N logj 4A^ CMOPs. Hence the new algorithm 
requires half as many CMOPs as the fast convolution algorithm. In fact, foTd = l or 100% duty 
cycle waveform, the number of CMOPs of the circular convolution algorithm is slighdy less than half 
of the fast convolution algorithm. 

If we define the duty cycle d to be the "on" time divided by the PRI, then d = N/M. Also, 
if p is the pulse compression ratio, then p = N. If BPRI is the radar waveform bandwidth-PRI prod- 
uct that is equal to the number of range cells per PRI, then 

N =dM ^ dBPRI. (19) 

Using these above definitions, we can show that 

no. COMPs using fast linear convolution  _    4-1-2 log2 p 
no. CMOPs using circular convolution 1 -I- log2 BPRI 

(20) 

In Fig. 10, we plot the ratio expressed in Eq. (20) as a function of the number of range cells per PRI, 
BPRI, and the pulse compression ratio p.   Note that if the ratio given in Eq. (20) is greater than one. 
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100 1000 

NUMBER OF RANGE CELLS PER PRI (BPRI) 

Fig. 10 — CMOP's ratio vs BPRI and p 

10000 

or I 
H 

.ro! 

then the circular convolution implementation is more numerically efficient than the fast linear convo- 
lution. Also observe that the circular convolution implementation tends to be more efficient for larger 
pulse compression ratios. 

Using the above formulation, we can show that the circular convolution algorithm is more effi- 
cient when 

d> 
1 

V8 • BPRI 
, or p > V BPRI 

8 
(21) 

This is illustrated and plotted in Figs. 11 and 12. The region above the straight line indicates 
values of duty cycle (or pulse compression ratio) and BPRI where the circular convolution implemen- 
tation is more numerically efficient than the fast linear convolution. 

Finally, we note that there is a settling time of one extra PRI associated with using the circulatr 
convolutional matched filter as compared to using linear convolution. This is because the circular 
convolutional matched filter in most cases uses data from adjacent PRI. Hence, initially upon recep- 
tion for a target at a given range, there is target data in one PRI but not in the preceding PRI which 
leads to an incomplete circular match. Furthermore, for finite length pulse trains, the last PRI will 
not be properly matched because the succeeding PRI has no target data. Also note that the absolute 
settling time of any matched receiver depends on the PRI (the possibility of second, third, etc. time 
around returns) and whether there is clutter processing. 

(iR<^iai iB\ 
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Fig. 11 — Duty cycle vs BPRI 
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